INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Design of a Zooming Viewer
for Statecharts

Roger Bernier

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
For the Degree of Master of Computer Science at
Concordia University,

Montreal, Quebec, Canada

December 2000

©Roger Bernier, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

385 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votra rélérence
Our file Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-59317-7

ABSTRACT

DESIGN OF A ZOOMING VIEWER FOR STATECHARTS

Roger Bernier, M.Comp.Sc.
Concordia University, 2000

Traditonal state-transition diagrams have been inherently flat in nature. With the advent of
hierarchical state diagrams, known as statecharts [FHLARS87], there has been a marked
improvement in the way the dynamics of a system can be modelled. As systems become
larger and more complex, statecharts been used successfully to reduce the complexity.
However, the current lack of tools that take advantage of this notion of hierarchy have
hindered the development process. It is sometimes desirable to hide or display certain
portions of a statechart. For example, a composite state may be collapsed or expanded
depending on the zooming level. Thus, the aim of this thesis is to design and implement a
‘zooming’ viewer for statecharts. This goal is to provide the architect or system analyst with
an easy and intuitive way to navigate a large statechart diagram. In so doing, the system

should be easter to view and understand.

1

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. Greg Butler for his assistance in the
preparation of this manuscript. Also thanks to Dr. Ben Bederson of the University of
Maryland who provided the Jazz framework used in this thesis and to his many useful
comments. In addition, thanks to the many helpful comments of my fellow graduate
students at Concordia. Special thanks to my wife Irene who gave me her much needed

support during this undertaking.

v

TABLE OF CONTENTS

LISTOF FIGURES......ccuttettiiicicancnnscciossecionsaccsascsssarsaasancassssosscssscssananns viil
LISTOF TABLESccciitiiiiiiaiiincscetciieteteiictascascssssssasssancansacccssssssnsosannn x
CHAPTER 1: OVERVIEW 1
1.1 J 1N 420) 51804 () ARt 1
1.2 U318 5210) 2] 021, ORIt 1
1.3 THE MOTIVATION ...oooimiiinieeeeeeeee e e e eeetee e e e e e e e e e mecce e e e e ann s e e s na e e emeeeees 2
1.4 OVERVIEW OF THE SOLUTION .. _...ciitiiniieiiiietieemo e eeecneeneaneeenenan e ssssn s snsenseaaaeneene 3
1.5 OVERVIEW OF THE CONCLUSIONScetttttmitaneaiaamieeesmimmmeeeeeieessnnesesseseeenrenrees 3
1.6 LAYOUT OF THE THESIS ...t ioei e e eeee e e o ma e e e ne e e e oo e meemae e e 4
CHAPTER 2: STATECHARTS 5
2.1 INTRODUGTION .. .oeinoiiee e et e e e ee e e e e eaamneaneananram e st e eniaanaannnen 5
2.2 BACKGROUND. ...ttt ee et ee et e e eee e e e e e ens e e n s na s e s e neeae 5
2.3) AT 21 - SRR PPNt 6
24 ST AT ES .ot e et et e e e e e e oo e e e e e e e e annean 8
2.4.1 Initial and FinQl SIQLEs............cceeeeeememneeeareeeeceacieiieiineieieiiee et 9

2.5 TRANSITIONS ..ot ee e e e ee e emeemem e em e m e eeeaen s e e mem e e maaeanen 10
2.5.1 Entry ad EXit ACIIONSeeeueeeeeeeeiinaneaeaeeeecaaneneenineteeeeeeeesesneeseeeeeeeeenanaes 11
2.5.2 Internal TYQUSTIIONSceueeeeeeeeeeeeeeeeeeeeeeemeceeeetsnnseateenae s e n e senmnanaeeaens 11
2.5.3 Self-tFAnSITIONS -..cccuunnnneeeeeeecteeeceeceeceeee e e e et 12

2.6 SUB ST ATES .o ceee e e ee e e e e e e e me e s e mm e e e e e e e e e e e mane e e 12
2.6.1 Simple states versius COMPOSILe SIALES............coueeeruremroeneeeianreaeeneeeieeene. 13
2.6.2 Sequential versus Concurrent SuUbSIQtescoouueueeeeueeeeimmemeiineiieninne. 13

2.7 COMPLEX TRANSITIONS (FORK/JOIN)uiiiiiiiei e iceeieee e 15
2.8 HISTORY STATES. . e et ee et e e esae e et re e meem e e et e o eanreeanneeanes 15
29 HIER AR CH Y IS SUES ..ottt et e et e e e e e e e e e e e e e e eaeemeeasenes 16

PR LOREE B) 1101 053] () oSO 18
211 CONCLUSION ..ot e ee e ree e e ea e e s et e mmeaaeae e ane s oneenaaaennnns 19
CHAPTER 3: STATE OF CURRENT TECHNOLOGY ...ccueiiirenenceaeeceieancanniecnee 20
3.1 INTRODUCTION . .ottt e e e imee e ee e eeme e e e e e e e e e r e e e e s e e s e ce e e 20
3.2 BACKGROUND.ttt e ee e eee e et s e ama e n e r e e e e e e nnaans 20
3.3 GRAPHIC FRAMEWORK ee et e e eeeeme e e e e ae s eam et e e e e s neemaaenaas 21
3.3.1 2D FrAMEWOFKS.......nnennenneeeeeeeceeeeeneececeeeaneee et enerene s ee s e esnnne e 21
3.3.2 3D FrAMEWOFKS.c....ocuuaeaeeeeeeereeiieiieiececeemnsenreserssntrtrae e s s s s eesesesesenteae e 21
3.3.3 2D FIAMEWOFKSaneeeeeeeeeeeeeaiieineeeeee e e e e eseet e e s e 22

3.4 JAVA-RELATED TECHNOLOGIESccceevtiernterteeianeemmmeieaeaarneenaeecnanssssresesesseeenaees 22
3.4.1 Java Foundation CIlAss (JFC).....cocuuaeemeiiiemnririieeeeeinreerceeneessesiaeeesennrenens 22

342 JavaMedia APLcooeeieminiieeeeceeeete e ee e e
343 JaAVA2D APL.......counnniiniieeieiiniiieieee e e e e
AR R BN 12 AV2 37 B U o O
K2 TN 7 - SO
3.5 OTHER RELATED INTERNET TECHNOLOGIEScotccuuiieenieeeiiaeiemeeacaemeeemeccnennn.
3.5.1 Virtual Reality Modeling Language (VRML)c.ooveeenmoeromimiieveeenn.
3.5.2 Dynamic Hypertext Markup Language (DHIML.............c...ocueeueeeeeeucenanne.e.
A B) /2 L S U U RSOOSR
3.6 INDUSTRY STANDARDScouniiiimeeeemneieemeeeeae s eeeea e eenaeaan e e maceneeneaeeanneans

3.6.2 eXtensible Markup Language (XML)..........coeeeeemmmemimioioiiieemeeeeeeee.
A T D ¢ SO OO OO
3.6.4 XMI VErsus UXF.........ueeiiceeeieeeceneeeseeseeeete et e e ee s eeeeennsane e
3.7 ZOOMING TECHNIQUES ..o oeeeooeeeoeee e eeee e eee e e ee e
3.7.1 Rapid ZOOMINIG...........uueiriinnneeieeeiee ettt cee e e

3.7 4 Multiple WIRGOWS...........cooceeieieiiiaaiiiiiiiiieecctetee et s
3.7.5 Distortion techniques (FiSheye VIEWS)ccceeeeriiiiimmmeriiiiieciicicnnnaeeeneeeneennen.
3.8 CONCLUSION ...t e e e e e e e e e e e eeeaee s man s e sennneesnen

4.1 INTRODUCTION . oo e e e e e e e e et ee e e e e s e
42 THE JAZZ FRAMEWORK ..ot eeee e eeee e e eeee e e e e e mie e e
43 JAZZ ARCHITECTURE ... oot ee e e e e
4.4 JAZZ SCENEGRAPH ..o e e e ee e

4.4.1 Visual COMPONEHUSccuueeeaeeeaeeeeeeaeeeeeeenee et eee e

Bod. 2 INOES ..ottt tee et e eisssamesssasenannassasesnnesnsessasnsnaseasnnsnrnsnns
4.5 MULTIPLE REPRESENTATION OF OBJIECTS ...conineeneeiieeeeeeceeeeeeeeneee e meeeneeeeennneeens
4.6 (00) N R 815) () SN U

5.1 INTRODUGCTION ... oot eeeeee e ee e e e e e eee e e e e e e e e e eemmna
52 OVERVIEW OF THE SYSTEM .. .ottt e et e e e e e e e e e e eeeeennea
53 ARCHITECTURE . ..ottt e e e e e e e e e e e e emeeenee e e e e e mmemeeemennnens
5.4 USER INTERACTION LAYER ..ottt eeeee e e e e e eee e eme s e e eene s
5.5 XIMIPARSER ... e e e e e e eee e e e e e e e e e e eeeaneeen e e e e s enn
5.6 STATE MODEL ... e e e e e e e ee e e e e e e e e eeeeaens
5.7 SCENEGRAPH GENERATOR ... oot eeeee e eeeeeteeae e e e e mmeen s e e nmnennes
5.8 CONCLUSION ...ttt e e et eeeee e e e ee e e e e mmeeeeeenee s s s sanmneannns

6.2.2 Parsing MeCRAITISTcccccoceimieeiiianiiiiiieeenmmmieeeeecneeeennemteeeeem e eeneens 57

6.2.3 State Model PACKAGEoeeeeeeeeeaeaacieeceeieneeceeiiieeeee e e eeasseeenesns 54
6.2.4 Visual Components Package.................ooeeeeeeemeomeeoeicaieieeieeeeieeeeceen, 57
6.2.5 Scenegraph PACKAGE.............cccoccceeveamummuemeeneammenieenineeeseetceenm e e es e 57
6.2.5.1 Scenegraph Construction Example.................coooomieminiominiiiiiiininnnn 60

6.3 BEHAVIORAL MODEL ...oniniiiieeee oo eeeeee e e e mmeeee e e e n e e e nssea 62
6.3.1 USE CASE VIEWoeeeeaeceeeeeeeeeeeeeeeeeeecresceecnesnssesnrenans s e nee s ansmansannssannes 62
6.3.2 SCEHUAPTOS.eeeeeeeaeeeeeeeieeactereeeeeeeceeneueteeraeeeesessnrsesseesensarasesssnaae s mansnasssnssees 63
6.3.3.1 Starting the QDPIICATION................ccocovviieeumminieienieee e e 63
6.3.3.2 Openinganew file..........ccccccocommmmmimimmmiieeieeiieeeet et 64
6.3.3.3 Interaction between SceneGraph and XMI Parseroueeceeieeeiinnenn. 64
6.3.4 Zooming MECRQIISTN.............cocueeiimmemmmiiiiieeenenneaeenneceeccnes e coeeennananens 66

6.4 MULTIPLE REPRESENTATION OF NESTED TRANSITIONS (STUBS) --.ccoceiscomeareeenes 68
6.4.1 Lowest COMMOF ATICESIONc.coueeuuuuueiienrenneeeerieisnsnnnnsensesereenmnennneneesans 70
6.4.2 Implementation in Jazz Scenegraphi...............ueeeeemeeeeeneeeemeniiiiiaiie e, 71
CHAPTER 7: DISCUSSION AND CONCLUSION... 74
7.1 INTRODUCGTION ...ttt et e e e emee e s s e e em s et en s aeemeen s anee cannenesaneaes 74
72 D) 23 (€3N SR 0 50 O 74
7.3 CONTRIBUTIONS.. ettetauuienieneteeee e e e e eacmeaeeesaeemnsesess s s e m s e sasen sennteenenes 76
7.4 LIMITATIONS. . oo oeiieeiee e ee e e e e e e e et eteame s e mram s s man e mansn e eenrm e nnmeanenaas 77
7.5 010 (015 8151 (0 PN 77
APPENDIX A: SAMPLE SCREENSHOTS..... ceesesansasesamensansessansnie 80
GLOSSARY [BRJ99] [OMG99A].... cessserersnsttescisesnstessssseamsnsnsnsnnnsans 87

LIST OF FIGURES

Number Page

Figure 1: A Traditional State Transition Diagram v 6
Figure 2: A Statechart DIiagram..c.c.ec e ecemrieeieemcnceeecnncece 6
Figure 3: Call EVENTS e ccciscsnmse e mies st 7
Figure 4: Change and Time Events .8
Figure 5: State with entry/exit Transitions . 9
Figure 6: Initial and Final states..... . 10
Figure 7: State Transition . eeeeeeeteses stsseaesetasasetacecestener R R e et ettt st s s e e ee 11
Figure 8: Internal Transitons.... .12
Figure 9: Self-transition et oo rrenmeressesesasuesacere e asa s nama e s ananese 12
Figure 10: Simple versus COmMPOSItE StAE .uwuerewveeuermsseemsinsmsescssnsesaseennenee .13
Figure 11: Sequential SUDSTALES .. oreuecemuueemmsremmese s mreniimase st 14
Figure 12: Concurrent SUbStatesco..ceueee reereersaseessue e st ansarsaresasace .14
Figure 13: Forking and Joining of Transitions . reeeeeenennieeeresasesaeaee .15
Figure 14: Expanded View of Substates et eeaes 16
Figure 15: Collapsed View of Substates . . 17
Figure 16: A Typical Jazz Scenegraph......... reteememetstesetteat s e st n e s et ar e et .33
Figure 17: Class Hierarchy of Jazz Scenegraph Objects..coverucusecmecmenrussmisnsisssercneinees 32
Figure 18: Context-sensitive Rendering of Transitions Depending on Zooming Level.......... 36
Figure 19: High-level Architecture of the StateChart VieWer . .cccoccuerruuneeeene 38
Figure 20: Sample Screenshot of StateChart VIEWEE .. cerucescmimremssissrisssineemscmcmcnnsinssenees 40
Figure 21: Use-Case Diagram for the StateChart VIEWer .weuecereremreeinenessinenns 41
Figure 22: Functional View of the ArchifeCture .. it 42
Figure 23: Class Diagram for the StateChart Viewer. - 43
Figure 24: Mapping between State Model and Jazz Scenegraph... . 44
Figure 25: Overview Of the SySterMm e ainraesissenisetses s . .48
Figure 26 XMI Content Containing an Overview of the Model INformationoveeeeeeeeenseennens 50
Figure 27: XMI Content Containing Detailed View of States and TranSitioNS. .oceueueseesessescencac 50
Figure 28: XMI Extensions Containing View INfOrmMation e e cesseemmesrmsnsiiss s 51
Figure 29: Detailed Class Diagram for XMI Parser and Scenegraph e 54
Figure 30: A Scenegraph EXample . iuen ettt 61
Figure 31: Opening an XMI file and Creating a SCEnegraph uucrueereeeeeeessrermssnissiseciserscneinenees 64
Figure 32: Object Interaction when Constructing a SCenegraph ccueueeeecemmssrssiserivassssesssserieecen 65
Figure 33: Statechart for Zooming MechaniSmwueriuercerecm et 66
Figure 34: Detailed (Zoomed-in) View of COMPOSIte StAE ceucuuseerrmrminsrusssnisseneneeee 69
Figure 35: High-level (zoomed-out) View of Composite State with Stubbed Transitions......... 69
Figure 36: The Transition T1 is inserted in the same layer as St and S2 in the Scenegraph......72
Figure 37: The Transition T2 is inserted in different layer in Scenegraph than T1 .ceeceeess 73
Figure 38: High-level View of Stopwatch ce.ueeecueiceeeneissccenenees reemeeemsesnessrssenernesare e aarea 80
Figure 39: Details from the various substates are eXpOSed . cceuwmmmereemsissssissensssemaserasermeeseeeee 81
Figure 40: An example of fading While ZOOMUME ruueiiussusciscis sttt cnese 82

Figure 41: Another example of fading while zooming

Figure 42: Detailed view of various substates
Figure 43: More details of Statechart

Figure 44: Zooming at lowest level of detail

x

83
84
85
86

Table 1: Jazz Object Types

LIST OF TABLES

...35

Chapter 1

OVERVIEW

1.1 Introduction

This thesis concerns the design and implementation a zoomable viewer for Unified Modeling
Language (UML) [RATO00] statecharts. A UML statechart is a state transition diagram that
provides the software architect with a powerful and intuitive way of expressing the dynamic
behaviour of an object or an interaction. Based on Harel's visual formalism [HAR87], UML
statecharts provide additional semantics for displaying hierarchical object-oriented statecharts.
A zoomable viewer is a software tool that enables a statechart to be viewed and navigated at
various levels of detail. This section provides an overview of the problem, motivation, and

solution in order to provide a framework for understanding later chapters.

1.2 The Problem

Information visualization is an important area of research in Human Computer Interaction
(HCI). The problem of information visualization is well documented in the literature and on
the Internet [OLIV00] and involves limitations on memory load and user capacity, the
complexity of the information, and platform constraints and capability. The inherent
problems of navigating a large information space, at various levels of detail, using multiple-
representation of data, and zooming techniques [BMGO0] are especially relevant when

navigating a large statechart diagram.

The problem is that as a statechart diagram grows in size ox complexity, it often becomes
difficult to read, understand, and maintain on a single screen space. This results in an
increase in the cognitive load that a user must endure while navigating the diagram. Froma
user’s perspective, it is desirable to customize the environment in order to exploit the multiple
representations of statecharts. From a designer’s perspectiwe, the problem is threefold: 1)
deciding what information of the statechart to represent at a given level of detail (LOD), 2)
when to represent it, and 3) how to represent it.

'What' information to represent depends on the context thatis presentata given level of detail.
For example, as a user zooms in, more details (such as a state's name) should be presented.
"When' to present the information depends on the policies set by the program and manipulated
by the user. It depends on the scale or size of the statechart diagram components at a given
instance. 'How' to represent the statechart has more to do wvith the graphic framework and

the layout tools available to the software architect.

1.3 The Motvation

UML is a recently adopted modeling language standard in the software industry. In the last
few years, many tool builders have embraced this new staradard and have created various
Computer-Aided Software Engineering (CASE) tools to sup-port UML. However, in the
case of statecharts containing hundreds of embedded states and transitons, there is a lack of
tool support for managing large UML statechart diagrams. Most tools lack support for
zooming and navigation. Thus, there is a real need for specialized tools such as the one
presented in this paper to complement commercially available tools. Additionally, many such

tools only implement only a subset of what a statechart viewer can represent.

2

1.4 Overview of the solution

With the advent of eXtensible Markup Language (XML) [W3C00] in the Internet community,
a new standard called Extensible Model Interchange (XMI) [OMG99c] has become available
for exchanging UML models. The purpose is to allow UML models to be exchanged between
tool vendors.

The solution proposed is to create a statechart in 2 commercial tool such as Rational Rose and
to export it into an XMI file containing model and view information. This information can
be read by a Java program which is capable of reading and interpreting the XMI file, re-
constructing the model and view information, and representing it as a secezegraph in a 2D
graphics framework (called Jazz [JAZZ00]). Once in a Jazz scenegraph, the user can easily
navigate the scene using basic GUI interaction techniques (i.e., keyboard and mouse). Alarge
statechart diagram can be navigated using panning and zooming, complex states can be
hidden/viewed depending on the level of detail, and various views can be presented to the

user.

1.5 Overview of the conclusions

According to Ware, ‘One of the greatest benefits of data visualisation is the sheer quantity of
information that can be rapidly interpreted if it is presented well’ [WAREO0, p. 1]. The ability
to easily navigate a large information space has wide applications in many areas of computer
science and other domains. As systems continue to grow, it becomes important to manage
this ever-increasing complexity. One such technique involves zooming while navigating a
statechart diagram. The author has demonstrated that by providing a zoomable interface for

statecharts, the system becomes more comprehensible.

3

1.6 Layout of the Thesis

Chapter 1 serves as introduction to the thesis. Chapter 2 covers the details of what a
statechart is and what it kind of information it contains. The goal is to understand what a
statechart is before trying to design the system. Chapter 3 contains background material
concerning the state of current technology. The aim is to select the appropriate tools to
design the statechart viewer based on the technology available at the present ime. The Jazz
framework in Chapter 4 provides a key component to the architecture of the system. Chapter
5 provides the high-level architecture the system, whose aim is to understand the system from
a global perspective. Chapter 6 contains a detailed view of the architecture and covers the
design issues involved during the development and implementation of the statechart viewer.
Chapter 7 discusses what has been found and draws some conclusions. Appendix A shows

some sample screenshots of the statechart viewer. Finally, there is a glossary of key terms

used in this thesis.

Chapter 2

STATECHARTS

2.1 Introduction

This chapter reviews the basic terminology of statecharts. It then focuses on the hierarchical
issues involving nested states and transions. The ability of a state to contain other states is
the key to simplifying the modeling of complex behaviours. The goal is to provide the
context for the design of a zoomable viewer for statecharts presented in the next chapters.
Several examples of the desired features of statecharts will be presented in this secton along

with their major concepts.

2.2 Background

Statecharts were first introduced by Harel as a2 means of modeling the complex reacuve
behaviour of a system [HARS87]. Reactive behaviour signifies event-driven behaviour
(common in Graphical User Interfaces (GUIs)). According to Harel [HARB87], statecharts
represented a major improvement over traditional finite state machines (FSM). Traditional
state diagrams were ‘flat’, providing no notion of depth, hierarchy, or modularity. If an event
caused the same transition to occur from a large number of states, such as a high-level
interrupe, state transitions were required to be attached to each resulting in an unnecessary
multitude of arrows. As a system grows linearly, the number of states grows exponentally,
since each state must be explicitly shown. Finally, such state diagrams were inherenty

sequential in nature. Concurrency is not easily modeled.
5

Statecharts provide several improvements over traditional state transiton diagrams.
Hierarchy, nesting, sequential and concurrent substates are but some of the advanced features
of statecharts.

As an example, Figure 1 shows a traditional finite state machine with two transitons leading
from State A and State B. Figure 2 shows a semantically equivalent representation while
reducing the number of transitions (arrows) by creating a composite state D. This improves

the clarity of the model and simplifies the behaviour.

(Y o a h
State A . >3 State B
=)

T

State C

Figure 1: A Traditional State Transition Diagram

State D w}
(State A W a If State B W
. L J
. s

c
r State C j
L J

Figure 2: A Statechart Diagram

2.3 Events

An event is the specification of a significant occurrence that has a location in time and space

[BRJ99]. There are several kinds of events that can be modelled with UML. Signa/ events

6

represent a named object that is dispatched (thrown) asynchronously by one object and then
received (caught) by another. For example, a ‘Printer Failure’ signal event causes a message
to be sent from the printer to the terminal. Cal// events represent the dispatch of an operaton
(usually 2 method). The difference with a signal event is that a call event is normally
synchronous. Modeling signal events and call events are very similar. In both cases, events
and parameter are represented as a trigger on a state transition. For example, Figure 3 has a
call event ‘startAutopilot’ with the parameter ‘normal’, which causes the state “Manual’ to

change to ‘Automatic’.

Manual ﬂ startAutopilot(normal) \(Automatic 1
i

f |
L J — J

Figure 3: Call Events (BRJ99]

A time event 1s an event that represents the passage of time. For example, if one wants to
model the number of seconds passed after picking up a telephone to hear a dial tone, then a
time event (for example, after 1 second) can be used. A change eventis an event that represents
a change in state or the satisfaction of some condition. For example, if we want to model
how long a furnace should stay on based on an upper temperature limit, then a change event

could be used. Figure 4 shows an example of change and time events.

change event -
time event

A
\

B
i

heat (t:amp < 25) lil cool (temp > 15)
I’I
&
after (10 seconds)
Heating Cooling
—_—

Figure 4: Change and Time Events

2.4 States

A state is a conditon or situation during the life of an object during which it satisties some
condition, performs some activity, or waits for some event [BRJ99]. A state has several

(optional) components:

¢ Name. The name is used to identify a state. If it is not specified, then it is an
anonymous state. However, each state will have a unique identifier that does not need

to be presented.

e Entry/exit actions. Actions executed on entering and exiting the state.

e Internal transitions. Transitions that do not cause a change in state.

e Substates. The nested structure of a state, which can be composed of sequential or

concurrent substates.

¢ Deferred events. A list of events that are postponed to be handled by an object in

another state.

A state is represented by a rounded rectangle writh three or four compartments depending on
whether it is a simple or composite state. Thee zame of the state distinguishes it from other
states, and it may be empty, meaning that it is an anonymous state. The entry and exit actions
are executed upon entering and exiting a state, respectively. Other components of a state will
be discussed in later sections. For example, Figure 5 shows a simple state with a name and
entry/exit states defined. = The name indicates that it is in the ‘Active’ state. The ‘entry’
action is defined as ‘setAlarm’, which indicates that an alarm is set when entering the state
Active. The ‘exit’ action ‘clearAlarm’ indicates that the alarm is cleared when the state is

exited.

Active

entry: setAlarm
exit: clearAlarm

Figure 3: State with entry/ exit Transitions [BRJ99]

2.4.1 Inidal and Final States
There are two specialized kinds of states: Infzial and Final State. In the UML metamodel
[RATO0], these are referred to as pseudostates. The inital state indicates the default starting
state for the state machine or substate. Likewise, the final state indicates that the state

machine or enclosing state has terminated. Initial and final states do not have time duration,

meaning that an object cannot be ##z an initial or final state. A small black circle represents
the initial state and the final state is represented by a bulls-eye. =~ Note that initial states
cannot have incoming arrows and final states cannot have outgoing arrows. Figure 6 shows

an example of how to represent an initial and final state.

keyPressed
Idle Running

keyReleased

DY
.Q state Final state

Figure 6: Initial and Final states [BRJ99]

2.5 Transitions

A transition indicates a relationship between two states such thatan object in the first state will
perform certain actions and enter the second state when a specified event occurs and certain
conditions are satisfied. A transition is represented as a directed edge from a source state to a
target state. A transition consists of five (optional) parts:

e Source state: This is the state which is affected by the transition

e Event trigger: The event that triggers the transition

¢ Guard condition: The condition which must be satisfied for the transition to fire

e Action: the action that occurs after the transition fires.

e Target state: the state which is active after the transition finishes
The parts of the transition are rendered as a string consisting of:

Event [condition] /action

10

For example, in Figure 7, assume that we are currently in the ‘Idle’ state. If the event
keyPressed occurs and the Key is Help, then the action “displayHelp’ will occur and the system
will change to the ‘Running’ state.

keyPressed[key=Help]
/ displayHelp — N
lr idle W >‘ Running J

L J L

Figure 7: State Transition

2.5.1 Entry and Exit Actions
Frequently 2 modeling situation arises where the same actions are present on various
incoming transitions. In order to simplify the modeling of this behaviour, a state may
contain entry actions, which are executed on every incoming transition (after the transition’s
action). Also, when exiting a state, the same actions may be present on each outgoing
transition. This may be modeled by using exit actions. In order to present this to the user,
the keywords ‘entry’ and ‘exit’ are used for the event. For example, Figure 8 shows the
entry and exit actions for the state ‘Tracking’. Every transition entering the Tracking state
will execute the action ‘setMode(onTrack)’. Likewise, on exiting, every transition exiting this
state will execute the action ‘setMode(offTrack)’.

2.5.2 Internal Transitions
Often we want to execute an action within a state in response to some event but we do not
want to leave the state. This can be handled by an internal transition. Internal transitions
are special transitions in that they do not fire the entry and exit actions (unlike self-

transitions). As an example, Figure 8 shows an example of internal transitions. In this

11

example, if the event ‘NewTarget’ occurs, then the method ‘tracker. Acquire()’ method would

execute without executing the entry or exit actions.

(Tracking

Entry/ setMode(onTrack)
Exit/ setMode(offTrack)

)
L NewTarget/tracker.Aquire() J

Figure 8: [ntemal Transitions

2.5.3 Self-transitions
Self-transitions are transitions from a state to itself. The result of this is that the exit and
entry actions are executed. For example, in Figure 9, the event ‘digit’ causes the transition
to leave the state ‘dialing’. In so doing, the exit action ‘sendSignal’ is executed, followed by
the action ‘dialAction’ on the transition, and finally, the entry action ‘initSignal’ is executed.

digit(n) / dialAction

a

| Y
Dialing
entry: initSignal
exit: sendSignal

e L

u

Figure 9: Self-transition

2.6 Substates

A substate is a state that is nested inside of another state. The ability of a state to contain other
states is the key to simplifying the modeling of complex behaviours. Itis also a feature that

differentiates it over traditional state-transition diagrams.

12

2,61 Simple states versus Composite states
It is useful to distinguish between simple states and composite states. A simple state is a state
that has no substates. A composite state, on the other hand, can contain substates. A
composite state may be expanded or collapsed in order to expose the more or less details of
its contained substates. This allows the view of the state to change, depending on its desired
level of detail. This will have major implications in the chapter on the design of the
zooming viewer. Figure 10 shows a statechart diagram containing three (3) Simple States

(State A, B, and C). In addition, State D is a composite that contains State A and State B.

-

State D
(State A | i
; Statec | f |
Kk !\S J §
| A |
N\
(State B J |
Initial state
_ . J

Figure 10: Simple versus Composite State

2.6.2 Sequental versus Concurrent Substates
Sequential substates represent the ‘OR’ decomposition of a state, meaning that a state may be
in one of several disjoint substates. In other words, only one state can be active at any one
time. Figure 11 shows that the sequendal substate of the composite state ‘Active’ can be

either in the ‘Selecting’ state OR in the Processing’ state, but not both at the same time.

13

Active

L Selecting J
e
L Processing J

Initial state

Figure 11: Sequential Substates

Concurrent substates allow the specification of two or more state machines to execute in
parallel in the context of the enclosing object. Concurrent substates represent the ‘AND’
decomposition of a state. For example, in Figure 12, there is the ‘Active’ state that consists
of two concurrent substates ‘Testing’ AND ‘Commanding’ running in parallel. ~ Each
concurrent substate must contain at least one sequential substate. In this example, Testing’
has ‘Running’ and Self test’ as its substates. This means that an object in the ‘Active’ state
can fork two threads of execution, one representing the ‘Testing’ and the other the

‘Commanding’. Only when both states reach their final states does the state cease to exist.

- ~\

Testing Active

Commanding

HF Waiting H Processingj@

g »,

Figure 12: Concurrent Substates

14

2.7 Complex Transitions (Fork/Join)

Fork and join pseudostates are used to split and merge (synchronize) concurrent threads of
execution. Both fork and join states are represented as short solid vertical bars. They are not
supported in the current implementation of the statechart. The author considers it a simple

extension to add this capability to the statechart viewer.

Process

EREEE

— /

Figure 13: Forking and Joining of Transitions [OMG99b]

2.8 History States

History states are used as a way for an object to remember its past behaviour. A history state
represents the last state was active prior to leaving a composite state. It is represented as a
small circle with the symbol H (history). Figure 42 in Appendix A shows an example of
shallow and degp history states. The symbol H designates a shallow history, which remembers
only the history of the immediate nested state machine. You can also specify deep history,
shown as a small circle containing the symbol H*. Deep history remembers down to the

innermost nested state at any depth [BRJ99].

t As of this writing, Rational Rose 2000 does not implement fork/join of states in its statechart editor. Nor does itimplement
concurrent states.

15

2.9 Hierarchy Issues

This section discusses the issues involved with rendering hierarchical statechart diagrams.
Since a composite state is capable of expanding and/or collapsing its containing substates,

there are several items that need to be considered when zooming,.

How to hide states and transitions?

e How to represent stubbed transitions?

When to display or hide substates?

How and when to represent the textual components?

The substates of 2 composite state may be hidden from view szatically, that is independently of
zooming level. For example, Figure 14 and Figure 15 show a simple and effective technique
used by the Rational Rose tool to hide substates. Figure 14 represents an expanded view of a

state diagram while Figure 15 shows a collapsed view of the same diagram.

f State D W

State A J_\ﬁ{ State B j
\
[State E J/

N Y
State C J

o

Figure 14: Expanded View of Substates

16

State D

[State A J\
>
=
[State E)/

Figure 15: Collapsed View of Substates

When a state is collapsed, the transition edges crossing a state’s border can be represented by
stubbed transitions. Figure 15 shows a stubbed transition entering State D. However, the
precise substate that it entered s nof specified. In other words, from this we cannot easily tell
if the state entered is State B or State C. This is one of the problems with stubbed
transitions. A small icon (e.g;, *) in the bottom left corner represents a composite state when

collapsed.

Another approach is to allow states to be collapsed or expanded dynamically. This is the
approach taken in this thesis. As the user zooms in, the user sees more details. States are
expanded dynamically during the zooming of the diagram. For example, at one level of
detail, the user may see a single state. As the state increases in magnification, the name
appears. Next, the contents (assuming this is a2 composite state) are exposed, revealing the
intricate and detailed structure of its substates. In a similar fashion, as the user sees more

details, each level exposes more and more details.

The main issue with this dynamic approach is whether or not to allow states to

expand/collapse in an independent manner or as a whole. This thesis takes the latter

17

approach since it is simpler to implement. However, independent zooming can be an
interesting future goal. Another issue involves the zooming of the textual components.
Either the text increases or decreases in size while zooming or it does not. If the textis too

small, then it should be hidden from view when zoomed out.

2.10 Discussion

It is interesting to note that many tool builders do not support concurrent substates, and by
extension, forking and joining of complex transitions. In partcular, there IS NO way In
Rational Rose or Argo/UML to represent such notation. The reason for this is not clear.
Rendering a concurrent state diagram does not seem to be a problem. The only reason that
can be thought of is that it is difficult to generate code for a concurrent statechart diagram.
Booch even refuses to support concurrent (orthogonal) states in his methodology, stating that
it is unnecessary to so. In his opinion, objects are implicitly concurrent and therefore not
necessary to model as such [BOOC94]. It is this author’s opinion that concurrent state
diagrams should be used since because many objects can contain concurrent ‘threads’ of
execution, which need a notation and support to be modelled effectively. FHowever, the lack
of tool support from Rational and Argo /UML makes this difficult to implement, since there is
no information on how to render concurrent states. Manual editing of an XMI file may be
the only way to represent concurrency at this time, and this does not seem a viable option for

the average end-user.

18

2.11 Conclusion

This aim of this chapter was to gain a better understanding of statecharts so that a zoomable
statechart viewer can be designed and implemented. The focus on hierarchical issues was
made in an effort to understand the challenges involved. Various techniques to reduce the
complexity of a statechart diagram were discussed, such as the ability to collapse and/or
expand composite states. However, as it can be seen, these efforts resulted in other layout
and presentation problems that need to be addressed, such as the use of stubbed transitions.

These will be examined in latter chapters.

19

Chapter 3

STATE OF CURRENT TECHNOLOGY

3.1 Introduction

This chapter examines the state of the current technology. The aim is to select a graphical
framework for the design of the statechart viewer based on the current technology available.
A statechart diagram can be easily represented on a two-dimensional (2D) surface.
However, adding zooming capabilities involves the selection of a framework that can combine
some features of three-dimensional (3D) modeling in a two-dimensional (2D) world. The
next chapter introduces Jazz, a graphical framework for 2D graphics, which contains a number

of features that combines the best of both worlds.

3.2 Background

Toolkits for building graphic applications can be broadly categorized as two-dimensional (2D)
and three-dimensional (3D) [BM99]. Most of the research in the graphics area has
emphasized 3D because of the level of interest, the computational requirements, and the
complexity of building such applicatons. 3D applications are widely used in medical,
scientific, game development. However, 2D applications are also now becoming prevalent in
various domains such as business and Internet applications. Since the range of applications
for 2D appears to be greater than for 3D applications, there is a need for a robust framework

for 2D graphics.
20

3.3 Graphic Framework

3.3.1 2D Frameworks

All GUI toolkits include 2D graphics. Frameworks that support 2D graphic applications
include:

e Microsoft Win32 API. Based on C++ for the Microsoft platform, it provides basic

drawing operations.
e Mac toolkit. Used on the Macintosh platform.
e Xlib. A C++ toolkit for X windows.
~® Tk Canvas.

e Java 2D. Discussed below.
Most 2D frameworks include only a renderer for 2D graphics. There is no way to structure the
graphical information into hierarchies or groupings. Except for some (e.g., Java 2D), most
of these frameworks are platform dependent.

3.3.2 3D Frameworks

e Silicon Graphics Inc. (SGI) Openlnventor.

e Java 3D

e Many others
Most 3D frameworks provide both a renderer and a scenegraph. A scenegraph is used to help
an application manage the structure graphical objects. 3D frameworks tend to have a large
number of features to assist in modeling three-dimensional worlds. This tends to increases
the difficulty of using such a framework, since the developer must learn a large number of

(possibly unused) classes and methods and understand their inter-relationships.

21

3.3.3 2D+ Frameworks
e Jazz 2D Graphics Toolkit
This framework combines a 2D renderer with a scenegraph. This will be discussed in the

following chapter.

34 Java-Related Technologies

Java is regarded today as the language of choice for developing distributable applications over
the Internet. Sun describes Java as a "simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, high-performance, multi-threaded, and dynamic language” [FLAN9T]. For
graphical applications, the main advantage to using Java is the wide range of available
frameworks for constructing robust applications. The main disadvantage of Java is its current
poor performance since it is an interpreted language. However, it is believed that this will not
be an issue in the years to come as the implementation of the Java Virtual Machine JVM)
improves.
3.4.1 Java Foundation Class (JFC)
The Java Foundation Class (JFC) is included with Java 2 (core API). It contains Java 2D,
Swing, the Accessibility API, and Drag and Drop. Swing is based on the Abstract
Windowing Toolkit (AWT). The important thing to note is that Java 3D is not included in
the "core" API. Therefore it cannot run with earlier versions of the Java Development Kit
(JDK).
3.4.2 Java Media API
The Java Media APIs are designed to provide Java multimedia capabilities. It includes Java

2D, Java 3D, the Sound API, and the Advanced Imaging APIL

22

3.4.3 Java2D API
The Java 2D API is an Application Programming Interface for two-dimensional graphics.
It is 2 set of classes that can be used to create high quality graphics [KINUS99]. It includes
support for geometric transformations, antialiasing, alpha compositing, clipping, text, colour,
images, image processing, and printing.
The Java 2D is used as a foundation in developing the Jazz framework.

3.44 Java 3D API
The Java 3D API is an Application Programming Interface used for writing three-
dimensional graphics applications and applets [SRD99]. It gives developers high-level
constructs for creating and manipulating 3D geometry and for constructing the structures
used in rendering that geometry. Application developers can describe very large virtual
worlds using these constructs, which provide Java 3D with enough information to render
these worlds efficiently. The Java 3D API provides a scenegraph, however it is an extremely
complex toolkit to use. Its goal is to satisfy the needs of the 3D modeling community. The
Java 3D API uses the Java 2D primarily for developing textures for 3D.

34.5 Swing
Swing is used for developing GUIs, beans, applets, and plug-ins. Java 2D can be used to

draw on Swing components via the paint () method.

3.5 Other Related Internet Technologies
3.5.1 Virtual Reality Modeling Language (VRML)
VRML is an authoring standard for placing 3D content on the Web. Itis a text based file

format that can be used to model 3D objects and create virtual worlds. The current standard

23

uses a scenegraph similar to Java 3D that can handle events and perform animation. In
fact, Java in conjunction with the Java 3D API can be used to load a VRML file and create
Java 3D objects within it. Thus, 2 VRML browser can be created. In a similar fashion, a
Java program can read XMI, which is a standard for exchanging UML documents, objects
created in a Jazz framework, and browsed.
3.5.2 Dynamic Hypertext Markup Language (DHTML)

Dynamic HTML 1s a term used by some vendors to describe HTML pages with animated
(changing) content. It combines Cascading Style Sheet (CSS), Hypertext Markup Language
(HTML), and JavaScript. The three components are tied together using the Document
Object Model (DOM). DOM is a standard for representing documents. However,

DHTML is not a W3C standard [W3C00].

3.5.3 Flash
Macromedia Flash is an authoring tool for the Web [MACRO00]. Itoffers a dynamic, media-
driven standard for designing website navigation interfaces, technical illustrations, animations,
and other effects. It uses layering techniques to place graphic objects on different levels.
The idea of layering is similar to the Mult-Layer model [FBL96] and is used in the design of

the statechart viewer.

3.6 Industry Standards

When designing a large software system, it is desirable to use industry standards. This ensures
that the quality of the software is high and that many users (e.g., architects, system designers,

programmers, etc...) can understand the system. Itis also desirable to exchange informaton

24

amongst the various users. XMI is an XML-based industry standard for exchanging object
models (especially the UML metamodel) and allowing tools to interoperate. These terms are
described below.

3.61 UML

Unified Modeling Language (UML) is an industry standard language for specifying software
systems. There are nine different models (or views) in UML: Class diagram, Object
Diagram, Use case diagram, Sequence diagram, Collaboration diagram, Statechart diagram,
Activity diagram, Component diagram, Deployment diagram {BRJ99]. Some of these are
static in nature (e.g., Class diagrams) while others are dynamic. A statechart diagram is one
example of a dynamic model. ~ These different models will be used in the chapters on the

architecture and design of the StateChart Viewer.

3.6.2 eXtensible Markup Language (XML)

Extensible Markup Language (XML) is a language used on the Internet for exchanging
information. It consists of markup tags, which can be used to identify each item. For
example, the following is a small sample of how to specify a statechart consisting of two states,

where the first contains an optional entry action.

<Statechart>
<State name="State 1”/>
<EntryAction>Do Entry</EntryAction>
<State name="State 2" />

</Statechart>

25

The major advantage of using XML is that it can store structured and semi-structured data
[BRADOO]. Since a statechart can consist of many parts and these parts can be arranged in a
recursive tree-like manner, XML is a prime candidate for specifying the information contained
in a statechart diagram. A Document Type Definition (DTD) is used to specify the legal ways
that the tags in an XML document can be used. However designing a DTD from scratch is
notan easy task. Itis desirable to use an existing XML standard for exchanging UML model
information.

363 XMI

XMI. Metadata Interchange (XMI) is an XMIL-based format used for exchanging object
models. XMI specifies an open information interchange model that gives developers working
with object technology the ability to exchange models and data over the Internet in a
standardized way, thus bringing consistency and compatibility to applicatons created in
collaborative environments [IBM00]. = XMI is used by the Object Management Group

(OMG) to facilitate the exchange of UML models.

3.64 XMI versus UXF

It 1s desirable to have a standard for exchanging UML information independently between
different software vendors. There were two standards that where considered in this design,
UML eXchange Format (UXF) [UXF99] and XML Metadata Interchange (XMI). Both
provided a standard exchange format for UML models. The basic structure of XMI and
UXF are similar. UXF was designed to be a research tool prior to the release of XMI.
Originally, UXF was the preferred choice since it was simpler to use and easier to understand.
However, it had several shortcomings, such as the inability to uniquely identify states. Also,

it was not an approved standard by the Object Management Group (OMG). For this reason,
26

it was decided to select XMI as the standard for exchanging UML model information in this

thesis.

3.7 Zooming Techniques

This section outlines the common techniques used for zooming that are relevant to the design
of the statechart editor. Finding detail in 2 larger context is known as the focus-context problem
[WAREQO, p.355-362]. These techniques are said to solve the focus-context problem.
3.7.1 Rapid zooming

The Jazz’ framework, presented in the following chapter, uses this technique. It involves
navigating a large information landscape, although only a part of it is visible in the viewing
window at any instant. The user is given the ability to zoom rapidly into and out of points of

interest. The user can rapidly and smoothly mowe from focus to context and back.

3.7.2 Structural scale (Level of Detail)
This is representing a large amount of informatiora at varying levels of detail. For statecharts,

we may have different representations at different scales.

3.7.3 Elision Techniques
This involves visually hiding some information until it is needed. For example, a complex state
can be collapsed and viewed as a simple state. In the case of text, less and less details are

shown, as the distance from the focus of interest increases.

27

3.7.4 Multiple windows
This involves using multiple windows or portals to view the same data at different levels. For
example, one may have an overview window and a details window. This can be accomplished

with Jazz by using multiple canvases and/or cameras.

3.7.5 Distortion techniques (Fisheye views)

This involves distorting the information spatially so that more room is given to points of
interest and less space is given to regions away from those points. Fisheye views, according
to Furnas [FURNSG], this provides a technique whereby nearby objects appear large and far
away objects appear small. This technique allows the representation of large amounts of data
on a small screen space. This allows the user to dynamically alter the szew so that more
interesting objects appear nearer (and larger).

The hyperbolic tree browser [LPR95] is another example of distortion that allows the focus to
be changed by dragging a node from the periphery into the center [WAREQ0, p.357-358].
The user is able to maintain the context and does not get lost when presented with a large tree
of nodes. The nodes closest to the center (focus) appear larger than at the penphery

(context).

3.8 Conclusion

The aim of this chapter is to select a graphical framework for the design of a statechart viewer.
Since statechart diagrams are easily visualized on a two-dimensional surface, there is really no
need for the complexities involved in trying to represent them in a 3D world. Therefore,
there is little advantage in selecting a three-dimensional (3D) graphical framework. However,

3D frameworks provide several advantages over 2D frameworks, such as the ability to provide

28

structure to simple graphical objects. In the next chapter, we will examine the Jazz
framework, a graphical framework for 2D applications. = The reason for selecting this
framework is that it provides 2D applications with both a rendering engine and the ability to
structure graphical objects. Jazz can also be used to assist us in implementing the various
zooming techniques discussed in this chapter. In the following chapters, the XMI standard for
exchanging UML models will be used to represent the model (state hierarchy) and view
(positional information) of the statechart. The main advantage of this 1s that XMI is an

accepted standard and it has a well-defined DTD.

29

Chapter 4

JAZZ: A FRAMEWORK FOR 2D GRAPHICS

4.1 Introduction

Jazz is a general-purpose Java-based graphics engine that supports 2D visualizations
[BEDEQO]. Jazz is built on top of Java2D, which is the Java toolkit for 2D applications.
Jazz provides several features common to 3D graphic frameworks, such as a scenegraph, which
allows applications to structure primitive graphical objects in a ‘scene’ that can be grouped and
manipulated by various operations or methods. A scene (or ‘virtual universe’) is made up of
several parts: behaviour, model, object characteristics, coordinates, and everything needed to
create a complex world of graphical objects [BP99]. The aim of this chapter is to provide a
background on Jazz, which will be used in the design and implementation of the statechart

viewer in later chapters.

4.2 The Jazz Framework

Jazz provides many services to application developers. By basing an application on such a
framework, the time to develop is reduced since most of the details (such as zooming,
panning, primitive shapes, scenegraph structure, etc...) are implemented in the framework.

Jazz provides a number of features to aid the development process:

® Scenegraph support. The ability to structure primitive graphical objects into a scene.

30

e Built-in support for panning and zooming. This allows the developer to build an
application that the user can navigate a 2D information space.

e Hierarchical grouping with affine transformations (translation, scale, rotation, and
shear)

e Multiple layers. This allows graphical objects to be presented on different layers when
rendering.

e Semantic zooming. Allows a scene to be rendered differently depending on the
context (e.g., scale).

e Multiple representations. Internal cameras and lenses allows for multiple views of the
underlying model in question.

e Multiple platform support. Since Jazz is based on Java2D, it can run on all platforms

that support the Java Virtual Machine (JVM).

4.3 Jazz Architecture

This section outlines the architecture of Jazz. The architecture of Jazz consists of a root scene
graph object (ZSceneGraphObject), which contains the common functonality of both nodes
(ZNodes) and visual components (ZVisualComponents). The ZNode objects are of two
basic types: leaf node (ZLeaf) or group nodes (ZGroup). A ZGroup object can contain
either ZLeaf objects or other ZGroup following the composite design pattern [GHJV94]. In
this pattern, a ZLeaf object cannot have children, whereas the ZGroup objects can have
children (including objects of its own type). Visual components are the basic elements in a
scenegraph and they must be attached to a ZVisualLeaf or 2 ZVisualGroup in order for it to

be inserted into the scenegraph. Figure 16 illustrates the Jazz class diagram.

31

JAZZ CLASS STRUCTURE

ZLeaf

o

1

-

ZVisualLeaf

-
-

| ZFadeGroup

ZSceneGraphObject ZDrawingSurface
4§ ;
7/
] /
ZNode 2VisualComponent /
/
PN~ /
/§ 0..n =7 /
\\\ e \2,\\"\ Al\ /l
) 1 - \ - -
I 4
T ZCamera \ / [——
- " < —=—— ’Zlmage ‘ | ZTextj ZRectangle !
-~ 2Group 1
g fi // "
- 1 / [Swing | ZCoorlist |
R /
; : | i
/ '
7 4 .
/ ZTransformGroup LZPolyLme I [ZPolygon I
7
Ir'
I ZLayerGroup e ! 4‘X
2VisualGroup I ZConstraintGroup I

! ZAnchorGroup

b

\
BlnvisibleGroup l
! ZStickyGroup
i |
[ZSelectionGroup l ‘ ZlayoutGroup]

i
;

Figure 16: Class Hierarchy of Jazz Scenegraph Objects [BEDEQO]

44 Jazz Scenegraph

This section discusses the way Jazz applications are structured and can be implemented. A

scenegraph provides a way to organize and group visual elements in a in 2 hierarchical data

structure.

Each visual element consists of two types of objects in the scenegraph: nodes and

visual components. A ZVisualComponentis the base class for objects that actually get rendered.

It specifies the size of a visual element and how to render it. It cannot exist by itself in the

scenegraph and, thus, is always associated with a node.

32

A ZNode is responsible for

maintaining the structure of the scenegraph and contains all characteristics (position, scale,
transparency, etc...) that are passed on to child nodes. A scenegraph will also have exactly
one ot node and one or more cameras. The root serves as a holder to all elements in the
virtual universe that is being represented. The camera serves as a viewport into a portion of
the scenegraph. Figure 17 illustrates a typical Jazz scenegraph. This scene consists of a

camera looking onto a layer that contains a rectangle and a group consisting of two polylines.

(ZDrawingSurface)

{ZvisuallLeal

'
ZVisualleaf

ZRectanadle

(zVisuallLeaf)

ZVisuallLeaf)

Figure 17: A Typical Jazz Scenegraph [BEDEQO]

4.4.1 Visual Components
A visual element is represented by a ZVisualComponent object and is associated with a
ZNode. A visual component is a primitive graphical object in a scenegraph. It contains
basic information that specifies its size and how to render itself. For example, a2 ZCircle
object can be represented by its centre point, radius, and pen colour. Thus, it contains the
‘model’ component in the Model-View-Controller (MVC) architecture. In addition, a visual
component may contain methods that tell the visual object if it was picked ornot. A basic
set of visual components is provided with the Jazz toolkit (rectangles, polylines, text, cameras,
Swing components, etc...). Visual components are easily extensible. If a new graphical

33

object is needed, such as a rounded rectangle (ZRoundRect) to represent a state shape in the
statechart viewer, we only need to extend the class ZVisualComponent and implement the
methods paint (), computeBounds (),and (optionaly) pick() . The
paint () method is used to render the object, the computeBounds () is used to find
the size of the object, and the pick () method tells whether an object has been picked or
not.
4.4.2 Nodes

Nodes are the basic building elements that form the structure of the Jazz scenegraph. Jazz
contains several types of nodes, each providing an application with additional funcoonality.
For example, a ZTransformGroup node allows an application to position, scale, and rotate a
visual element. A ZFadeG roup allows a visual component to fade in/out depending on the
level of magnification. In addition, several node types can be combined to achieve various

effects. Table 1 shows the kinds of nodes that can exist in a Jazz diagram

ZRoot Each scenegraph contains exactly one root which serves a the root of the entre

scenegraph tree

ZLeaf Serves as a tag, identifying all sub-classes as being leaves.

ZVisualleaf ZVisualLeafis a leaf node with a visual component. Visual components are nomally

attached to visual leaves.

ZGroup ZGroup is a node that serves to group children. Each time a group node is

manipulated, it affects all of its children

ZFadeGroup ZFadeGroup is a group node that controls transparency and fading of its sub-tree.
When a fade group is inserted, the transparency and minimum/maximum

magnu fication can be controlled.

ZLayerGroup Is used to specify the portion of a scenegraph, which the camera can see.

34

ZAnchorGroup Used for hyperlinking. Itis not used in the statechart viewer

ZlInvisibleGroup Used for making all the nodes below it to be invisible.

ZVisualGroup ZVisualGroup is 2 group node for visual components. It has two visual
components, which tells which node is rendered in front of or behind another visual
component

ZSelectionGroup ZSelectionGroup is a visual group that allows a group of visual components to be
selected.

ZLayoutGroup Allows nodes to be positioned automatically according to a layout manager.

ZTransformGroup Allows nodes to be positioned using an arbitrary affine transform. This allows the
subtree of this node to be translated, rotated, scaled, or sheared.

ZContraintGroup A constraint group changes its transform based on a computation defined in a
specified method. Itis called every ime the camera view is changed, allowing for
dynamic behaviours to be created depending on the view

ZStckyGroup A special kind of constraint group that moves its children inversely to the camera
view. This is used in the case of a text field where the text does not change
magnification when zooming in/out.

ZDrawingSurface Represents the drawing sucface that 2 camera renders upon. This is associated with a
ZCanvas window or anything that a Graphics2D can render on.

Table 1: Jazz Object Types [BEDEG0]

4.5 Multiple Representation of Objects

This section discusses how an object can be changed depending on the circumstances for

which it is viewed. Often itis desirable to let the context ofan object being viewed affect the

rendering of an object. This is referred to as context-sensitive rendering. Two especially

common cases are magnification level and camera. When the context of a representation

depends on the magnification level, it is termed semantic-gooming. When the context depends

35

on the type of camera used when viewing, it is termed s or filter. For example, Figure 18
illustrates the case of semantic-zooming. As the magnification level is decreased (zoomed-

out), the arrows leading into a composite state is replaced by stubbed transitions.

' ™

Composite
Y
[\ Substate j:, (SimpleState
P

L g,

' N
Composite

! i SimpleState

- -/

Figure 18: Context-sensitive Rendering of Transitions Depending on
Zooming Level

4.6 Conclusion

The aim of this chapter was to describe a framework for the development of a zoomable
viewer for statecharts. Jazz provides both scenegraph support and zooming capabilities that
are crucial in the design of the statechart viewer. The scenegraph will allow primitive visual
components such as lines, rectangles, and text to be structured and managed as a hierarchy of
graphical objects in a scene. The primitive graphical objects will eventually represent states,
transitions, events, etc... in the statechart viewer. The zooming capabilities that are already
built-in to Jazz demonstrate the reusability of the framework. This shortens the

development time and improves the reliability of the system.

36

Chapter 5

SYSTEM ARCHITECTURE

5.1 Introduction

This chapter presents the architecture of our system, StateChart Viewer. The aim of this
section is explain the major organizational decisions taken as well as provides the structure to

be used in the design of the system in the following chapter.

5.2 Overview of the system

StateChart Viewer is a program that allows 2 UML statechart diagram based on the XM
exchange format to be imported, rendered, zoomed and navigated. ~ The XMI format is an
XML-based file representing 2 UML statechart. A statechart diagram is constructed using 2
commercial Computer Aided Software Engineering (CASE) tool, which in this case is Rational
Rose 2000 [RAT00]. Rational Rose consists of an XMI export facility that allows the model
information to be saved to a file in XMI format. The StateChart Viewer imports the
previously created XMI file. Based on this informaton, a scenegraph of the model and view
information is constructed in the StateChart Viewer. This is constructed using Jazz and
Argo/UML [ROBBO00]. Jazz is used to create the scenegraph, while Argo/UML contains

the structural components of the UML metamodel for statecharts. Finally, once the

¢ XMI used in this context is an exchange format based on the UML metamodel. It may also be used for other kinds of
models than UML.

37

scenegraph is created, the statechart diagram is rendered on the screen, and the user is able to

navigate and zoom.

5.3 Architecture

The program consists of several layers, as shown in Figure 19.

User Interaction (Swing GUI)

Scenegraph Generator | XMI Parser
State Model (Argo/UML)

Jazz Framework

Java2D

Java 2 (JDK 1.2)

Figure 19: High-level Architecture of the StateChart Viewer

At the top is the User Interaction Layer, which is the user interface responsible for interacting
with the user. The user interacts with the GUI by the WIMP (Window, Icon, Mouse,
Pointer) model using the keyboard and mouse. For example, the user opens a file from the
file menu and then uses the mouse to navigate the statechart diagram in the drawing canvas.
These commands will be translated into various actions with the Action interface of Swing,

The program first opens a previously created XMI file and parses it with the XMI Parser.
The XMI Parser uses the State Model layer to construct the objects to be used by the

Scenegraph Generator. The Scenegraph Generator is responsible for building the

38

scenegraph and rendering the statechart diagram on the screen. The scenegraph layer uses
the services from Jazz framework. For example, the Jazz framework provides default
interaction mechanisms such as panning and zooming. This allows the user to navigate the
statechart diagram. Jazz is based on the Java2D framework. JavaZD provides basic
r.:endering of the visual components via its paint () method. Finally, Java2D is part of the
Java 2, the standard Java software development kit (SDK). Java 2, which is the base of the

architecture, provides all the classes and methods that support the above-mentioned layers.

5.4 User Interaction Layer

The User Interaction Layer is responsible for executing services on behalf of the end users.
This section examines how the user interacts with the system through the user interface. The
GUI is built using Swing, which is part of JFC. This provides the structure for all visual
components (such as menu, viewing canvas, status bar, etc..). Swing components are used to
build the overall look and feel of the application. The interface consists of a menu bar, a
canvas (i.e., the drawing area where the statechart is viewed), and a status area. When a user
selects an item from the menu, an action is executed, which causes an Action object to be
created which performs the required action. However, when the user is interacting with the
statechart diagram in the canvas ares, it is the Jazz framework that is providing the desired
behaviour (i.e., panning, zooming). Finally, the status area is used to provide feedback to the

user. Figure 20 shows a screenshot of the StateChart Viewer.

39

5 E—%‘ SC Viewet

Super State
(Substaie w
2
" SinpleState2 SimpleStatel
’\ Entrys EntryAction
<3 et Exits ExiAction
SimpleState3
_ y,
\e4
- AN _.4

Figure 20: Sample Screenshot of StateChart Viewer

The user can load an XMI file by selecting File/Open from the menu. Once the statechart
diagram is loaded, the user can then navigate the diagram by using the mouse. Jazz is then
used to provide default navigation capabilities for a scene (i.e., the statechart diagram). Itis
desirable to show the different ways a user can interact with a system through a use case diagram.
A use case is a description of a set of sequences of actions, including variants, which a system
performs, that yields an observable result of value to an actor [BRJ99]. Figure 21 shows the

use case diagram for our systemn.

40

O

Loading File Loading XM! File

\
\ooming out
O

Panning

Figure 21: Use-Case Diagram for the StateChart Viewer

The user interacts with the system by loading an XMI file using the File/Open from the main
menu. Note that opening a file is common behaviour that can be reused. In fact, Swing
provides a default dialog box (JFileChooser) for implementing this behaviour. — The
generalization arrow shows how loading an XMI file is a specialized case of loading a file.
The zooming and out are shown as two (2) separate behaviours, since they are caused by two

separate actions.

5.5 XMI Parser

The XMI Parser is responsible for parsing an XMI file and constructing the State Model to be
used by the Scenegraph Generator. A user will typically create an XMI file with 2 commercial
software tool, such as Rational Rose, which contains an XMI export facility. The XMI file is
an XML file that contains the model and view information of an entire UML diagram.

However, for the purposes of this thesis, only a single statechart diagram will be visualized ata
41

time. Therefore, a statechart will always be created for a single class or package. Thisisa
limitation of the current system, since more than one statechart diagrams could be presentin a
system. In Figure 22, the XMI file consists of two parts: model and view. The model
contains the all information relating to the state hierarchy, transitions, actions, and events.

The view contains of the location and size of the states.

XMI File
Model |—] State S h
! Model Scenegrap
» Generator
Vi //.
lew

Figure 22: Functional View of the Architecture

The XMI parser uses this information to construct the State Model. The mechanism that

the parser uses will be discussed in the following chapter.

5.6 State Model

The State Model is contains the objects that are created during the XMI parsing stage. For
example, this contains all objects and relationships between the classes State, Transiton,
Event, etc... which are represented by the UML metamodel. The UML metamodel is used
as a basis for the construction of the State Model. Figure 23 shows a class diagram for the
UML metamodel of the state machine. ~ The details of this model will be discussed in the

next chapter.

42

StateMachine
g—::: text Transition
&_transitions &._trigger
& _guard
®add Transition() &>_effect
®removeTransition() &._source
:sgetTop() %_t;;%:t
etTo iti -
’getTr:r(\s)itions() ““s"'f,’“.\ &_stateMachine
StateVertex ®setTransitions() -
&_incoming 0.1 . SgetEffect()
&_outgoing Q outgoing | ®getGuard()
&_parent SgetSource()
0. | %getState()
®addincoming() incomin :getStateMachine()
*addOutgoing() get‘Tr_a_rget()
Sremovelncoming() Ee:e?fgger()
SremoveQutgoing() top etEffect()
Ayd i 1.1 @setGuard()
@getincoming()
StubState “getOutgoing() State ®setSource()
SgetParent() & _deferredEvent) :ssetState() i
@setParent() & _entry internal ®setStateMachine()
: =i 0.~/ | %setTarget()
®setincoming() _exit aoctTh
$setQutgoing() %_intemal’l'ransiﬁon etTrigger()
- stateMachine
PseudoState | 0. - c
& find subvertex &_stateVariable ’
‘ ®addintemalTransition(0--1
$getKind() °°"ta'?9—f ®addStateVariable()
®setKind() 0 0.1 ®addDeferredEvent()
— - QgetDeferredEvent()
CompositeState QgetEntry()
&%_isConcurrent ®getExit()
& _substate QgetinternalTransition()
SgetStateMachine()
@addSubstate() SgetStateVariable()
“getSubstate() ‘setEn;ry()
“removeSubstate() SsetExit() SimpleState
VsetSubstate() @setinternalTransition()
QgetisCancurrent() ®setStateMachine()
QsetisConcurrent() ®setStateVariable()
Figure 23: Class Diagram for the StateChart Viewer
5.7 Scenegraph Generator

A scenegraph is a hierarchical data structure that is used to store the visual elements in the
Zoomable User Interface (ZUT) [BEDEO00]. The Scenegraph Generator is responsible for
translating the State Model 1nto a scenegraph that can then be zoomed and/or panned. A
Scenegraph object receives an XML file from the user interaction layer. Itsendsa message to

the XMI parser to parse 2 file. The parser in turn creates the necessary objects in the State

43

Model. Next, the scenegraph generator receives the root state in the state hierarchy from the
State Model. From this, the scene is generated by recursively examining each state in the state
hierarchy and placing it on the correct level in the Jazz scenegraph. The level thatis chosen is
based on the depth of the state in the state hierarchy. The position of the states are added to
the model are used to determine the correct position of the states. Finally, the transitions are
placed in the scenegraph. Figure 24 shows a simplified mapping between the State Model

information and the scenegraph. This will be explored in greater details in the following

NG| A
)Q\

chapter.

l :> c
€ \
Y= oo

Figure 24: Mapping between State Model and Jazz Scenegraph

5.8 Conclusion

The aim of this section was to provide an overview of the system’s architecture. Using a
layered approach, we can see how the system is decomposed. This facilitates the design and
implementation since the layers are well defined. The interaction between the XMI Parser,
Scenegraph Generator and State Model form the major part of the development effort. The
rest of the layers offer support for the above-mentioned layers. The XMI Parser provides the

input facility that creates the State Model. The Scenegraph Generator uses the information
’ 44

from the State Model to construct the scenegraph. This mechan ism ensures that the system
is easier to maintain since the system is there is a loose couplirag between layers and high

cohesion within the different modules.

45

Chapter 6

STATECHART VIEWER: SYSTEM DESIGN

6.1 Introduction

This chapter discusses the design of a zooming editor for statecharts. The aim is to present
the design of the system so that the system can be understood and implemented effectively.
The system’s static and dynamic aspects can be best userstood by examining it from several

views. The UML standard will be used to represent these views.

6.2 Structural Model

In order to make the system more comprehensible, the system is divided into several packages,
as shown in Figure 25. These packages are:
e StateChart Viewer contains several sub-packages, including:
o XMI Parser: responsible for parsing the XMI file;
o State Model: contains the classes for structuring the state model and view
information. This is the model component in the Model/ View/Controller
(MVC) architecture [RUMBO00];
o Visual Components: contains the visual elements used to render the

statechart diagram. This is the view information in the MVC architecture;

46

o Scenegraph: contins the classes responsible for constructing the Jazz
scenegraph. This class, in conjunction with the Jazz Framewortk, provides the

controller in the MVC architecture.

e Jazz Framework: Provides the framework for constructing a scenegraph and
controlling the model and view information.
e Java 2 (JDK 12): Provides the Java2D package and the Swing package. Java2D

provides the graphics capabilities used by Jazz. Swing is used in the construction of

user interface components such as menus and toolbars.

e DOM Parser: contains the classes and methods used in parsing an XML file used by

the XMI parser.

47

StateChart Viewer

Rational ™ XMiParser <<view>>
Rose XMi Visual
export Components
- ,
| ;
<<model>> <<controller>>

Based on
Argo/UML S S StateModei Scenegraph

N
AN
Y

*_ << imports >>
. N i
<<imports>> AN P

'

ya !

- I
!
i

-
_-<<imports>>

____‘ Kl ! \,'/ \\\

DOM Parser !
Java 2 N
\\
N
A
' | l
<<GUi>> <<graphics>> <<framework>>
Swing Java 2D P Jazz

Figure 25: Overview of the System

6.2.1 XMI Parser Package

The XMI Parser is responsible for parsing an existing XMI file. The JAXP 1.0 XML parser
from Sun is used to construct a Document Object Model (DOM) tree [DOMO00]. During the
parsing of the XMI file, the State Model is constructed which contains model and view
elements. The XMI Parser package contains an XMIParser class to do the actual parsing of
the XMI file. The XMIParser class contains a large number of methods to parse each XMI

element as shown in Figure 29. The XMI file consists of several logical parts.

48

¢ XMI.header: Provides basic information on the type of exporter used (e.g., Unisys)

and the UML version (e.g., 1.1).

e XMl.content: Provides the model information. = XMI Content Contamning an
Overview of the Model Information shows an example of the content using the XML
Notepad tool [MICR00]. The ‘StateMachine’ element is an owned element of the
class ‘NewClass’. The ‘StateMachine’ element has a unique identifier (e.g., °S.10002),
name (e.g., State/Activity Model), visibility (e.g,, ‘public’), context (e.g., class =
“NewClass’), root state in a state machine, and a set of transitions. Figure 26 shows

the elements for the ‘StateMachine’ element.

e XMI.extensions: Provides the view (geometry) information. The XMIl.extensions
provide a mechanism to store additional information in the XMI file. In partcular,
the state’s geometry (size and position) is located here. For example, Figure 28 shows
the geometry for ‘State 1’ located in the Foundation.DataTypes.Geometry.body
element. The value of this attribute is a fixed integer coordinate (center x, centery,

width, height)'.

i This took a while to figure out, since it was not documented anywhere by Rational or Unisys. I assumed that the state
positon was (top, left, width, height).

49

% % AR
&:%%@3. ~§§ aogag..m%}“

SR

dation.Core. ModeEk
FmCmaModeEmm
megsmmmunm
dation Core. G Ele islLeaf
Foundation Core G, L oAb

Lt}] FomdmCa«aModeElenmm

- 2 FWCU&MMMIWNM

& F ion. Core N

= 8ehavioral_Elements. State_Machines StateMachine

-@ xmiid

W, Foundation.Core.ModeiElement. name
Foundaticri Core. ModeE lemer. visbilky

Behavioral_Elements. State_Machines. SiateM achine. contet
8ehavioral_Elements.State_Machines. SiateMachine.top
8ehaviorai_Eloements. State_Machines. StateM achina. transitions

RNATES
22 3
SRR

Figure 26 XMI Content Containing an Overview of the Model
Information

R Lo 3
Behavioral_| Ehmsuu _Machines.StateM achine
® xmiid

. Foundation.Core. ModeiElement name

Foundation.Core. ModelElement. visibity
Behaviotal_Elements.State_Machiner. StateM achine.context
Behavioral_Elements.State_Machines. StateM achine.top

— @ aniid
—\, Foundaion.Core.Mode lement. name
% Foundation.Core.ModelE lement. visibiity
23-751 Behavioral_Elements. State_Machines.C: isConcurrent
Behavioral_Elements.State_Machines.C: i substate
Behaviaral_Elements. State_Machines. SimpleState

5543 Bohavioral_Elemerts. State_Machines. SmpioState
Bd\avmd_Eletm:.SweJﬂec}meszeMmumm

Foundation.Core.ModelE lement visibilty
Bchavioral_Elements. State_Machines. Transition. source
ZZ] Behavioral _Elements State_Machnes. Tranution target

Figure 27: XMI Content Containing Detalled View of States and
Transitons

50

R 74t € Xampien xm1 A ﬂulru i

ek »as §§ ~<;~ o
3‘*‘

RO N0
feoaitatooany

SO SRR
3 --, § \& S q\;@ «««?ﬁl 'z i bgﬁﬁcugzﬁ:-“
3 AR ,w.(;. ,,‘ «; % %
53 W i«-. 5§ “ %‘
e "”‘ SEe
e

§§3§§§§3; =
nd MudelGI
5 _Unssysint rchhaZ

q‘,um.nwm.-

“5.10008
NewDingram

\ Fwadmeata Type;Gcome!ry body
Foundation Auxdiary_Elements. Presentation style
Foundation Atdiay_E lements. Presentation. model
£'_§ Behavioral_Elements.State_Machinez. SimpieState
- §= |COMMENT]

3 FmadahonAwiuy Elements. Presentation

aniid

3 Foundation Awschary_Elements Presertation. geometry
Foundation Auxiiary_Elements. Presentation. styie

3 FomdaﬁorMay_Elunaﬂs.PrMaﬁonmdd

X

3 _-é-m-.\“' .pv»}\; %
\“«““g&-?-."! .v.s\l\l

33 : "1’%% %\ “33

s"w.J-.-‘ X

S ‘35"3?‘%3‘%&53332%

SRR Q85 A

Figure 28: XMI Extensions Containing View Information

6.2.2 Parsing Mechanism

[BRADOO].

object model representing the statechart (i.e., StateModel).

An XML parser constructs a tree model of an XML document in memory using the
Document Object Model (DOM) standard [DOMO0]. This allows the document tree to be
parsed, navigated, and processed using a well defined set of interfaces. A document consists
of aset of nodes that describe the elements, text, comments, processing instructions, CDATA

sections, entity references and declarations, notational declarations, and even entire documents

The goal is to create the DOM tree, navigate it, extract the required elements, and create the

51

The methods used in the design of the XMI Parser follow a specific pattern.

First, a Document object is

obtained through a factory method of the DocumentBuilderFactory class. This method, called
‘newDocumentBuilder()’, is used to create a DocumentBuilder object. The DocumentBuilder
has a method ‘parse()’ which is used to parse the XML file and create the Document object, as

fllustrated below:

DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);

try
{

// getainstance of a builder, and use it to parse the specified file
DocumentBuilder builder = factory.newDocumentBuildez();

// document is an instance variable of the XMIParser class fora
// Document object
document = builder.parse(new File(filename));

Next, the DOM tree is navigated using the method ‘getChildNode()’ and examining its
children. For example, the method ‘getiNodeList()’ from the Node interface generates a list of
child nodes. Each of these child nodes may be a different type (e.g., Element, Entity, Text,
etc...). Based on the type of node, the context (location in the tree), and the DTD, we can
determine how to process a given node. .The following shows how a CompositeState object

is created:

public void createCompositeState(Node node)
{
NodeList list = node.getChildNodes();
int size = listgetLength();
int idx = 0;
String name="";
for (inti = 0; 1 < size; i++)

Node state = listitem(D);
if (state instanceof Element)

{
52

top = new CompositeState(getNodeAttribute(state,ID));
top.setStateName("Top state™);
top.setParent(null);

// Continue processing DOM tree...
getCompositeState(state, top);
System.out.println("Top is " + top.getName());

}

In this way, the entire tree can be processed using a common mechanism. Since each node in
the tree may require slightly different specialized processing, several methods are used (as

shown in Figure 29).

53

XMIParser

&pdocument : Document

&top : CompositeState
&state_list : StateVertex(]
&trans_list : Transitionf]
&modelElement_list : Position(]

Scenegraph

&canvas : ZCanvas
&XMI filename : String
&frame : MainFrame
&maxLayer - int
&sm : StateMachine
&substates : Vector
&top : CompositeState
ns_string : String

®addActionSequence (StateVertex, ZTransformGroup)
®BoldTextGroup (String, x, y)

SclipVertex (StateVertex, StateVertex)
Qdraw_root_level (ZGroup)

¥ddrawTransition (StateVertex, StateVertex)
%findMaghnification (maxLayer, layer)
#findOuterTransition (Vector, ZGroup)
findTransition (StateVertex, StateVertex)
¥getAliSubstates (CompositeState)
QgetTransitionString () : String

¥makeSceneGraph (CompasiteState, ZGroup, ZCanvas)
QScenegraph (String, ZCanvas)
¥setNumberOfLayers (CompositeState, int)
¥setStatePosition ()

9¥setTransitionPosition ()

QsetTransitionString (String)

¥TextGroup (String, int, int)

®assignSourceState (Node, int)
dassignTargetState (Node, int)
QcreateCompositeState (Node)
QcreateDOM

%createPresentation (Node)
QcreateTransitions (Node)
*findNode (Node)

dgetActionName (Node)
QgetActionSequence (Node)
%getCompositeState (Node, CompositeState)
®getDocument () : Document
QgetEntry (Node)

YgetExit (Node)

@getGeometry (Node)
QgetGeometryBody (Node)
¥getGeometryContent (Node)
SgetModel (Node)

®getNbrModels () : int
¥getNbrTrans () :int
®getNodeAttribute (Node, String)
@getNodeText (Node) : String
YgetPresentation (Node)
®getPseudoState (Node, StateVertex)
®getSignalName (String)
¥getSimpleState (Node, StateVertex)
$getStateName (Node, StateVertex)
“@getStateVertex (Node, CompositeState)
QgetTransAction (Node)
QgetTransDetails (Node, int)
¥getTransEffect (Node)
QgetTransGuard (Node)
@getUISDiagram (Node)
¥getuisDiagramPresentation (Node)
@getUninterpretedAction (Node)
¥XM{Parser (String)

Figure 29: Detailed Class Diagram for XMI Parser and Scenegraph

6.2.3 State Model Package

The State Model is responsible for containing the model and view information for the system.

It contains the structural components (classes, relations, etc...) for the state machine. Itis

based on Argo/UML, which is an Open Source object oriented design tool for UML models.

The following modifications have been made to Argo/UML to support the work of this

thesis:

® Addition of Position information in the state vertex class to support the efficient

layout of states, pseudostates, transitions, etc.

¢ Addition of magnification information along with accessor and mutator methods in

the state vertex class to support the zooming mechanism.

¢ Removal of information that may be important in a real-life application but reduces

the clarity of the model (e.g., fireVetoableChange()).

¢ Merging of information from other packages, such as the Common_Behavior and the
Foundation, into the State_Machine package in order to simplify the design.
Argo/UML deals with the entire UML metamodel, however, we are focusing on only

the State_Machine package.

One of the advantages of using Argo/UML is that is based on the UML metamodel, which
correlates well with the XMI package from the OMG. Figure 23 shows the class diagram for

the State Model. This is based on the UML metamodel for state charts.

A brief overview of this model is presented here. For a more detailed explanation, please

refer the UML reference document [OMG99a).

e State Machine (class) is at the root of the state hierarchy. It consists of a context
(e.g., class, package, or system) that represents the owner. Since a state machine
‘owns’ its transitions, it has methods that adds, removes, and sets transitions. It also

contains methods to set the root of the state hierarchy.

55

State Vertex (class) is a node in a graph of states. It contains the common behavior
of all types of states (e.g., composite state, simple state, pseudostates, etc...). Its main
responsibility is to manage the association between the states and their attached
transitions. It contains Position information (discussed later) which tells a state where

to render itself and how big it should be.

Transitions (class) are associations between a source and a target state. They also
manage information regarding the associated triggers (¢vents), guards (conditions), and

effects (actions). This information is represented as a String of characters.

State (class) is derived from the StateVertex. It contains the methods to manage the
internal transitions, state variables, deferred events, and entry/exit actions. In

addition, it can manage the associations between the state and the state machine.

Composite state (class) is a container of other states vertices such as simple states,
composite states, pseudostates, and stubbed states. The composite state follows the
composite design patternwhere the composite acts as a container of simple and composite
objects. It contains methods to manage its contained substates and indicate whethera
state is running sequentially or concurrently. Only sequential states are implemented

in the program, since Rational Rose XMI export does not support concurrent state

diagrams.

Simple state (class) is a state that has no substates. It inherits attributes and methods

from the State Vertex class.

e Pseudostate (class) uses the ‘kind’ attribute to determine what type of state it is.
Several kinds of states may be differentiated: initial, final, shallow history, deep history,
join, fork, junction, and choice. Only the initial, final, shallow bistory, and deep history
pseudostates are implemented in this implementation. The other types of

pseudostates are considered to be extensions to the program.

e DPosition (class). Each state contains a reference to the position (x, y, width, height)
of the state on the screen. This is done to improve the performance of the system.
A Position object is stored as an attribute in the StateVertex class. The Transition
makes use of this position information when rendering the transition. Itlooks up the

attached source and target state to determine how to render the transition.

6.2.4 Visual Components Package

The Visual Components package contains a number of ZVisualComponents that correspond
to the viewable elements in a Jazz scenegraph. The classes ZlInitialState, ZFinalState,
ZCurvedLine (for transitions), ZHistory, ZDeepHistory, and ZSelfTransition extend the
ZVisualComponents class. These implement the methods paint (), pick(), and
computeBounds (). As mentioned in Chapter 4 (page 33), the paint () method is
used to render the object, the computeBounds () is used to find the size of the object, and

the pick () method tells whether an object has been picked or not.

6.2.5 Scenegraph Package
The Scenegraph package contains the classes required for creating a scenegraph, which is a

hierarchical (tree-like) grouping of visual components.

57

e Scenegraph (class) contains the methods necessary to constructa scenegraph. Itfirst
calls the method makeSceneGraph(). This is a recursive function that uses a layered

approach [FBL96] to constructing a scenegraph. This has three parameters:

o The current root StateVertex of the state model. First, the rootis the root of
the state hierarchy. As soon as the method detects a composite state, it calls

itself recursively.

o The group or layer to which the state will be added. This is used to place the
objects in back-to-front order when rendering and to allow fading ar each

layer.

o The canvas tells where the drawing will occur.

Next, the states are constructed (depending on the type of state). For composite states, the
makeSceneGraph() is called recursively for each level in the state hierarchy. Thus, objects
appearing closer to the user are added in front of other visual components. The algorithm
constructs a scenegraph for the various visual components. To do this, it creates a visual
component, adds it to a ZVisualleaf object. The ZVisualLeaf object is added to agrouping
node (e.g., ZTransformGroup). Finally, the group of objects is added to a ZFadeGroup,
which permits the layer in the scenegraph to be faded in/out. ~The ZFadeGroup uses a

method setMinMax() to set the minimum magnification level for that node in the scenegraph.

Finally, transitions are added to the scenegraph at the appropriate level. The methods used in

the Scenegraph class are:

58

TextGroup() and BoldTextGroup() are responsible for rendering adding a string of
normal text and bolded text to the scenegraph. They encapsulate a

ZTransformGroup node.

Clip Vertex() is responsible for clipping a transition (lirae) with the border of a source

or target state.

DrawTransition() is responsible for adding a directed (arrow) curved lines between

two state vertices.

FindMagnification() is responsible for determining the level at which a visual group of

objects fade in or out.

FindTransition() is responsible for finding all the trarasitions on a given layer in the

state hierarchy.

GetAllSubstates() is responsible for finding all the suabstates at a given layer in the

state hierarchy.

GetTransitonString() is responsible for constructing the text to be rendered on a

transition.

Scenegraph() is a constructor which calls the X\MI parser and then generates a

scenegraph.

SetNumberOfLayers() is responsible for determining the number of layers in the state

hierarchy.

o SetStatePosition() is responsible for placing the geometry (size and location) of the

states in the StateVertex object.

o SetTransitionPosition() is responsible for determining if a transition is visible or not.
It is used so that a transition only appears once in 2 state diagram, starting from the

top most (closest) layer.

BoxLineClipper (class) is a helper class that assists the scenegraph generator in clipping a

box to a line. This is used when constructing a Transition between two states.

6.2.5.1 Scenegraph Construction Example

Figure 30 shows a simple example of how a scene can be constructed. The figure is divided
into three parts: 1) a legend, 2) 2 sample scenegraph, and 3) the resulting statechart diagram.
The root of a statechart consists of a set of states and a set of transitions. First the state
group is constructed. A fade group is used so thatan entire branch of the scenegraph can be
faded or shown as needed. This allows for individual fading of the state vertices (t.e.,
simple states, pseudostates, and composite states). Under each fade group, there is a grouping
node. This allows the states to be treated as a unit. Each state can be positioned
independently by means of a transform group node. In this example, state A is an initial
pseudostate. It is positioned by applying the translate() method of a ZTransformGroup
object. A Simple state (State B) is slightly more complex. The state’s border is rendered as a
rounded rectangle. However, the name of the state requires extra work. First, a fade group
allows the state’s name to be faded odt at a minimum level using the method setMinMag() in

the ZFadeGroup class. Since the state’s name does not depend on the zooming level, we use

60

a sticky group (ZstickyGroup) to handle this case. Finally, the text itself can be positioned
relative to the state’s border. For this, we use a TextGroup, which is in fact a

ZTransformGroup. Finally, the name of the state is attached to the TextGroup.

Group Node Shage Node
{ZGroup) (ZVisuallLeaf)
TransformGroup Node

(ZTransformGroup)

FadeGroup Node @ StickyGroup Node
(ZFadeGroup)

Q Root state group

N

State Fade Transition
C;/ Group Fade Group
m Composite Group level Transition
_/ Transform
Group
State 8
Transform
Transition
shape (leaf)

State B Border
{Simple)

O State B
Text Group
State A
State
Name
Simple example

Figure 30: A Scenegraph Example [MC97]

61

6.3 Behavioral Model

6.3.1 Use Case view

When modeling a system, it is desirable to view the system from the user’s point of view
UML provides a notation called Use Cases to show the intended uses of a system. The

advantage of this method is that it gives the end user and the system architect 2 common

understanding of what the system should accomplish. Figure 10 ilustrates a Use Case
diagram for the zooming statechart editor.

Rational Rose
2000 tool

-

-
-
-

. ./)\/ Save file
7M Generated
/ XMI Export XMI File
Q Edit statechart K_\ S
User N XMI Import N
©<}——\© Open file
View statechart .
. R Zoom in
LN D
\ \
1
1
1
1
¢

Zoom out
Zooming
Statechart Editor

Pan

This diagram shows that the system comprises of two main activities: Editing a statechart and

viewing a statechart. Editing a statechart is accomplished by using a commercial CASE tool

such as Rational Rose 2000. The state diagram is created and modified with this tool.

62

Next, the data is exported to an XMI file. The XMI file consists of all of the model and
view information necessary to render the statechart on the screen.

6.3.2 Scenarios

From a use case, various scenarios can be constructed. This section discusses various
“interesting” scenarios that the statechart viewer undergoes. This helps to understand the
system by examining its dynamic aspects. Scenarios can be represented in UML by an
interaction diagram. There are two main types of interaction diagrams in UML: Sequence
Diagrams and Collaboration Diagrams. For these examples, I have selected sequence
diagrams to model some typical uses of the system. Collaboration diagrams are better suited
for visualising systemns with multiple concurrent flows of execution.

6.3.3 Object Interaction - Sequence Diagrams

6.3.3.1 Starting the application

Starting the application will generate a default scenegraph for a sample file. Figure 1 shows

this type of interaction.

QOpening application without user interaction (splash screen)

¢ : Client sc : StateChart ui : MainFrame menu : JMenu canvas : ZCanvas sg :Scenegraghj,
] .
; <<create>> i t) i
Create GUI createUl) ' IMenu(File”) : :
I
Open”) !
Create Menu JMenulltem("Op "):
- ,
Drawing canvas . :
<<create>>]
| U
Create scene createScenegraph("Example xmi”,canvas)

S S

]

- 1
1 1

! H

I i

1 i

i !

| !

| !

1 1

Rt

Figure 1: Sequence diagram for starting the application

63

6.3.3.2 Opening a new file
Figure 2 illustrates the dynamics involved with opening a file. Opening a file causes a file

action object to be invoked. An action object is a listener as well as an action. This allows
the file to be selected from the JFileChooser dialog box. Once selected, the scenegraph is

created.

Opening an XM! file and creating a scenegraph

¢ Client sc - StateChart | | ui: MainFrame | | gpen : Action chooser : file - JFile sg - SceneGraph
JFileChooser
. <<create>> . ,] ') ’
A createl! I : :
' 0 ! Fieaction) _ | ! I .
Create GUI : : |
13
and action L" : : |
T H | ! ;
— ! l | |
] | . : !
T l ! i i |
[}] . ! i !
i) 1 1 | |
T 1 ' : '
Open file : : : Il]
T : open;ﬁ <0 ! getSelectedFile() | :
‘ I | | 1
I t . .
] 1 . L l I
Create scenegraph } : [: :
X | ! createScenegraph(file,canvas) | '
; i
| = | gl
1 ' |
1 H ;
I ! !
1 ' :
i ' |
[i |
i : |
i ' !
! ; !

L?

'
[
1
1
1
I
I
]
i
i
I
!

e

Figure 31: Opening an XMI file and Creating a Scenegraph

6.3.3.3 Interaction between SceneGraph and XMI Parser

This is a sequence diagram for the interaction between the objects in the SceneGraph and the
XMI Parser. From the client object, the MainFrame is called. The details of the UI are
omitted in this in this scenario. Assuming the user, when calling the createScenegraph

64

method has created a file object, it causes the parser to be invoked. The XMI parser will, in

turn, ask for a Document object.

The document represents a Document Object Model

(DOM) tree. Parts of the tree that we are interested in are the transitions, the states (composite),

and the presentation (position, size, geometry, etc...) information. Once this is ready, we are

able to ask the scenegraph to create itself. Finally, the scenegraph is added to the canvas,

which is rendered by the Jazz framework.

ui - MainFrame canvas : ZCanvas sq - SceneGraph parser - XMiParser doc - Document raot layer :
- : ransformGroup|
| <<create>> ' | | 1 |
- ! 1 I :
! 1 1 1
Create canvas : : : : :
createScenegraph(file, canvas) ! XMiParser(file t ! H
Create T (fte) ! getDocument() ' 1
scenegraph : Sy :
! U |
i findNede() | | : ;
I -
i 1 1 |
{ setNode() : :
1 | I 1
t < i '
1 ! i
: createTransiticn(doc, TRAN) T : i
1 1 i
1 ,U | i
: createCompasite(doc, COM) lL ; :
i t 1
; . U . .
1 createPresentation{doc,PRES) | ' 1
1 i !
1 : ;
! ,]T‘ <<create>> : :
ate ! | : T
scenegraph : makeScenegragh(parser.top, roct_layer) ! !
1
: addChild(root_layer) : ; !
Attach | | I
scenegraph to : : :
canvas } i 1
) 1 1
1 1 1
| 1 !
i ! !
1 | i
i ! [

%

Figure 32: Object Interaction when Constructing a Scenegraph

65

6.3.4 Zooming Mechanism

The zooming mechanism is an important part of the StateChart Viewer. Jazz implements a
default zooming event handler in a class called ZoomingEventHandler. This event handler
responds to actions performed when pressing and dragging the right mouse button. In order
to understand how zooming occurs, a statechart diagram shown in Figure 11 can be used to

represent the behaviour of this class.

‘ - ~
Zooming !
drag right] mag <= max_mag | drag leftf mag > min_mag and mag > 0] |
a &
(Zooming in 7 drag leftf mag > min_mag and mag > 0] Zooming out]
entry: setMagnification entry: setMagnification l
drag righftf mag <= max_mag] L)
=
drag right[mag<=max_mag] drag left{ mag > min_mag and mag > 0]

e Ready ;

¥
right mouse click / start-zooming }
|

release mouse / stop-zooming

{

idle

LEGEND

mag = current magnification

min_mag = minimum maghnification
max_mag = maximum magnification

drag left = dragging mouse towards left
drag right = dragging mouse towards right

Figure 33: Statechart for Zooming Mechanism

66

When the user presses the right mouse button, the system enters the Zoozzng state. This is
composite state that contains the substates ‘Zooming in’, ‘Zooming out’, and ‘Ready’as well as the
initial pseudostate. The first substate that is entered is the initial state. This state has an
automatic transition to go into the Ready state. From this state, the system waits for the user
to drag the mouse button right (to zoom-in) or left (to zoom-out). If the user, for example,
drags the mouse towards the right with the mouse button down, the ‘drag night’ event will
occur. If the current magnification is less than the maximum magnification, then the system
will enter the Zooming in state. This will cause the entry action ‘setMagnification’ to update the
magnification and the camera position will be updated. If another event ‘drag right’ occurs,
then the system will exit this state momentarily and re-enter it causing the action
‘setMagnification’ to fire again. If, however, the user begins to drag the mouse to the left,
then the ‘drag left’ event will occur, causing the state to change to Zooming Out if the current
magnification doesn’t exceed the minimum magnification or the current magnification is less
than 0. Note that the entry action in both Zooming in and Zooming out cause the same
‘setMagnification’ method to be invoked. This method is responsible for updating the

zooming magnification level and positioning the camera in the correct location.

67

6.4 Multiple representation of nested transitions (stubs)

There are actually two problems with nested transitions. First, how should we represent
stubbed-states? Second, what layer to place the nested transition on so that it will be hidden
or displayed. In order to understand how to represent stub states, we need to understand the
goal of stub states. The goal is to be able to represent a ‘hidden’ view of the internal states so
that we can view the model from a higher level. Often, it is desirable to hide the sub-states of
a super-state. However, this causes a problem on what to do with the transigons that lead
into/out of the states. Both of these problems require a solution that tells the transitions
when it should be displayed, when it should be hidden, and how it should be displayed (regular
arrow, stub on the incoming edge, stub on the outgoing edge, stub on both the incoming and
outgoing edge). Figure 34 shows a sample screenshot of 2 composite state that is zoomed-in
revealing its details. Figure 35 demonstrates the use of stubbed transitions when the

composite state is zoomed-out.

68

1ewel

ey

Figure 34: Detailed (Zoomed-in) View of Composite State
[OMG99b]

P RTTRRRIRR T
R0 R
SRR 3 S

PR RO POOPE T SRoRRRe
REEER RS SRS
e = R oR: ‘QQ“;,;*'J&Q“' SIRE
5 RN 1 3 R
T RS RURRNNAERNEE
S5 S 3 e B S

“;.3& R

Figure 35: High-level (zoomed-out) View of Composite State with
Stubbed Transitions [OMG99b}

69

The solution to the first problem of how to represent stubbed transiti-ons is to realize that the
underlying model does not change, only the view at which the transitions are represented. In
other words, if we can use the geometry (position information) of thxe states to guide us, we
can establish how to draw the stub states. In this thesis, we use a simple algorithm for
drawing the stubbed states. A state’s center position is established and its length and width is
known. We clip either the incoming or outgoing transition to the boundary of the substate.
A special transition is used to represent the small stubs (either incomirsgor outgoing). So that
as each layer hidden from view, the transitions leading into/out of each layer must change
depending on the position of its direct parent state and its magnmification level. The
magpification level depends on the level of the state in the state hierarchy.
The second problem deals with what layer to place the transition on so that as the containing
states are concealed, all nested transitions should also be hidden. In order to solve this
problem, when we request a state to be hidden, the composite state should query all of its
‘owned’ (contained) transitions. All transitions that are contained within the composite state
will be hidden. The transitions leading to/out of a composite state will be visible.
6.4.1 Lowest Common Ancestor
Another way of thinking about hiding transitions is to use the lowest-common ancestor
technique. From the point of view of the transition, this looks at the lowest common
ancestor of its source and target states to determine whether the transition should be rendered
or not.
Ex. Transition:
s Source: Root: Compositel: substatel: simplestatel
v Target: Root: Compositei: substate2: simplestate2

70

In this example, the lowest common ancestor is the Compositel. Therefore, only when the
sub-states of Compositel are hidden, the transition should also be hidden.

A problem with this is that a transition may have no knowledge of its path or it may not be
very efficient to query each transition to determine what source and target states are in order to
find the lowest-common ancestor.

The solution to this is to notice that this is the same as saying ‘determine and hide all the
transitions contained within a given state’. Thus, if we are looking from the state’s point of
view, all we need to do is to find out what transitions occur within a nested composite state.
We can find this out easily by querying the composite state to determine what transitions are
present in it. Once we have a list of transitions, we can simply hide them from the view.

6.4.2 Implementation in Jazz Scenegraph

It is desirable to implement the transitions in a Jazz scenegraph. Once in a scenegraph, the
transitions can be easily be hidden or displayed as needed by using specialized group nodes for
this purpose. For example, 2 ZFadeGroup allows visual components to be selectively faded
or displayed based on the current magnification level. The difficulty is to know what layer to
place the transition. When recursively drawing a state diagram, it is difficult to know where
to place the transition in the scenegraph.

A possible solution is to use divide-and-conquer techniques to break the problem into sub-
problems. A trivial problem occurs when two states are on a same layer and connected with
a transition. In this case, the transition would go in the same layer as the contained
substates. Figure 36 illustrates this example. A more complex problem occurs when the
transitions connecting two states where the states occur on different layers in the scenegraph,

as in Figure 37. In this case, we need to determine the lowest-common ancestor of the two

71

states and insert the transition at this layer. The problem is that we do not know what layer
to place the transition in while we are creating the scenegraph. When we create the
scenegraph, we recursively add visual components (states, transitions) into it beginning with
the root and following its children. Only after we are exiting the recursive call can we identify

which layer the transition should appear.

=)

Figure 36: The Transition T1 is inserted in the same layer as S1 and
S2 in the Scenegraph

72

S3

Figure 37: The Transition T2 is inserted in different layer in
Scenegraph than T1

73

Chapter 7

DISCUSSION AND CONCLUSION

7.1 Introduction

This chapter discusses the issues involved during the design and implementation of the
statechart viewer. It provides the information of what was done and what was learned. The
achievernents and limitations of the system are given. Finally, the work that needs to be done

in the future is provided.

7.2 Design Issues

Statecharts were invented as a formal way to visualize the dynamic behaviour of a system. As
systems become larger and more complex, statecharts helps to reduce this complexity in
several ways. As shown in chapter 2, hierarchies of states can be constructed by embedding
states inside one another and forming composite states. Once this is done, the composite

state can be treated as a unit whose details can be hidden or exposed from view.

A state machine forms 2 tree-like structure of state vertices. The state vertices can be either
simple or composite. It is fairly easy to represent this hierarchy of states on a 2D plane.
The difficulty lies in how to represent transitions when a portion of the state diagram is hidden
from view. For example, when a state appears on different levels in the state hierarchy in a2
state diagram, it is difficult to see how transitions can be hidden or shown from wview.

Knowing when 2 transition should be rendered is a key to understanding and implementing
74

the zooming mechanism. Section 6.5.1 discusses this approach. The zooming mechanism
allows the user to dynamically change the view of the statechart. ~ Stubs are an example of

context-sensitive rendering based on magnification level.

Constructing a scenegraph for statecharts using the Jazz framework is not an easy task. The
scene is composed of a hierarchical grouping of states and transitions. [t was important to be
able to place the groups in the correct layers of the scenegraph so that the state could be
displayed or shown as desired. ~Fade group nodes were used to provide a notion of fading
in/out while zooming. Various recursive algorithms were used to create the scenegraph.
The difficulty was in mapping the state model to the Jazz scenegraph, especially when it came

to layering the states and transitions. ~ Several layout issues became apparent, as follows:

1. Should an automatic layout algorithm to position states and transitions? It was
decided, that the state would be positioned as in the original model (from the Rational
Rose tool), while the transitions would be based on the position of the states. Also,
the position of the text would depend on the position of the states. This was based
on the fact that the information to position the transitions was missing from the XMI
export. Therefore, no layout automatic layout algorithm was used for states (only

transitions).

2. Should we represent transitions as curves or straight lines? Curved lines were used

since they were more pleasing to the eye and allow two edges to appear between states.

« This contraint actually helped improve the layout, since it was later decided to use curved lines

75

3. Should the textual elements be scaled? This is more a matter of personal taste, butit
was decided not to scale the text in the state name and on the transition. ~ Only the

internal transitions would be scaled.

4. Where should the text on a transition appear? It was decided to position the textin
the centre of the transitions after a review of the literature on edge label placement

[KT97a, KT97b] problem.

5. How to represent seemingly simple graphical objects such as arrowheads and stubs?
The basic Jazz framework’s arrowheads were insufficient and required 2 custom
solution. For this, some of Argo/UML’s library was used (in particular, Graph
Editing Toolkit (G.E.F) [ROBB00]). This consumed quite a lot of time because of

the transformations involved.

7.3 Contributions

There are several contributions made by this research effort:

= Development of a statechart viewer for visualising UML statecharts

* Improved representation of statechart diagrams over commercial tools

* Ability to zoom and navigate a large statechart diagram

* Demonstrated the use of the Jazz framework

* Automatic layout of curved lines on transitions

76

s Construction of an XMI parser for statecharts

74 Limitations

Currently, the system provides no editing facilities, such as the ability to manipulate (move,
resize, add, modify, delete) the states and transitdons. Qur original intention was to create an
editor for statecharts. However, we preferred to concentrate on the zooming aspects of the
statechart diagram, since there were already a large number of commercial editing tools
available on the market.
Several advanced features of statecharts were not implemented:

e Concurrent states.

e Fork/Join of transitions.

e Send events.
These could be considered as future work and would be relatively simple to implement. Also,
there is no automatic layout mechanism of the statechart diagram. ~ The system is currently
limited to five levels of depth.
There was no usability test done to verify the assumption that ‘the system should be easier to
view and understand’ or that ‘the navigation of the system is easy and intuitive’ (see Abstract,

p.ii). This could be considered future work.

7.5 Conclusions
XMI is a powerful standard for exchanging model information berween software vendors.

Since the XMI standard is based on UML and XML, model and view information can be

extracted from a commercial vendor such as Rational Rose. It is rather straightforward to

77

parse an XMI file because UML metamodel is well described and several XML parsers are
available. A disadvantage of using Rational Rose is that it does not support the entire UML
standard for statecharts (e.g., concurrent states are missing). In addition, the XMI exporter
from Rational Rose is flawed and incomplete. For example, only the positions of the states
are available. Various workarounds were necessary. For example, the Rational Rose tool does
not export transitions consisting of polylines; the XMI export loses this information'. The
work around for this was to base the position of the transitions on the position of the source
and target states. At first, straight lines were used to connect source and target states. This
caused 2 problem when there were multiple transitions (edges) between two states (vertices)-
The solution to this was to use curved lines to represent transitions. Other advantages of
using curved lines is that they are esthetically pleasing to the eye, can better represent the

dynamics of a system, and are better at representing Gestalt’s principle of continuity

[WAREQO, p.206-207].

It is interesting to note that the system can be easily extended to include other kinds of UML
diagrams, such as package diagrams- Since the basic infrastructure is in place, one would only

need to add new visual components and make appropriate changes to the existing architecture

Jazz provides an excellent framework for structuring 2D graphics. Once the XMI file is
parsed, and the state model is created, the scenegraph must be generated. The mapping
between the state model and the Jazz scenegraph is the most difficult part and several layout
issues emerge at this stage. Lt is important to understand the underlying semantics of the

statechart when deciding what information to present while zooming. Visual elements can be

i This is a defect in the current Rational Rose tool.
78

easily hidden or displayed when requested by inserting 2 ZFadeGroup in the scenegraph and
applying the appropriate transformations. However, we must decide at what level a substate
becomes invisible, when a transition end becomes 2 stub, when a state name disappears, the
number of levels we can support, how to render the various visual components, whether text
is zoomable or not, etc... Jazz facilitates this task by providing scenegraph support and
basic -zooming capabilities; however, the designer and/or developer must assume the

responsibility of understanding the requirements to make the project a success.

79

Appendix A: SAMPLE SCREENSHOTS

This section shows some sample screenshots of the StateChart Viewer. Itis based on Harel’s

SC Viewer

bt- rrm’clh

g

>

—beep-rt

hits-tm [.l'p(e nab)]
beep :

alarm-st chime-

Y
i 2-‘~‘>\'\‘<

T
3 RS

i 3“ SN
E i

Figure 38: High—levcl View of Stop\vatch

80

|)

\ beep-it

thitstm[inlenab)]

rbeep

alarm-st
din(alarm)i.
dfin(alarm

81

=4 SC Viewer

5. S p <

Lo e
.. x> s
beep-rt s
t-hitstm g}((enab)]
heep)

82

bt-rm/eih
IR

weak

spdnde

sfszpretody

upaia’m A e

\ beep-rt J
- t-hitstrn[i?fenab)]

’ ~
(beep |

chime-st

PR P12 1

seeernrensens |

S — — T
a *3;&
yw K\“‘&f‘%&\a e %@*\%\\ & \:‘Q\ \%2\\ .
S n S S

SN -.s-.“ .\ -.-.-. 2

Fxgure 41: A.nother example of fading while zoomi.ng

83

-

d[ir?)bup \i

~

A

beep- S

SR
R
£33

y
t-hits-tm{in¢anab)]

% o i\'\i)
3% 3
3 3

SERESE
RN

s
s
\.3‘%:

84

dlingotff 7

ddfin(on)]

L

b
Disri
b

techart

d

{in(on)]

on

off

hour

86

GLOSSARY [BRJ99] [OMG993]

Action. An action is an executable atomic computation that results in a change in state of the
system or the return of a value.

Guard condition. A guard condition is a condition that must be satisfied in order to enablean
associated transition to fire.

Statechart diagram. A statechart diagram is a diagram that shows a state machine,
emphasizing the flow of control from state to state.

State machine. A state machine is a behaviour that specifies the sequence of states an object
goes through in response to events, together with its responses to those events.

State. A state is 2 condition or situation during the life of an object during which it satisfies
some condition, performs some activity, or waits for an event.

State Vertex. A state vertex is an abstraction of a node in a statechart graph. In general, it
can be the source or destination of any number of transitons.

Simple State. A simple state is a state that does not have substates. Itis a child of State.

Composite State. A composite state is a state that contains other state vertices (states,
pseudostates, etc.). The association between the composite and the contained vertices is a
composition association. Hence, a state vertex can be a part of at most one composite state.

Pseudostate. A pseudostate is an abstraction that encompasses different types of transient
vertices in the state machine graph. There are several types of pseudostates: initial,
deepHistory, shallowHistory, join, fork, junction, and choice.

Initial State. An initial pseudostate represents a default vertex that is the source for a single
transition to the defanlt state of a composite state. There can be at most one initial vertexina
composite state.

Final State. A final state is a special kind of state signifying that the enclosing composite state
is completed. If the enclosing state is the top state, then it means that the entire state machine
has completed. A final state cannot have any outgoing transitions. A final state is a child of
state.

Stub State. A stub state can appear within 2 submachine state and represent an actual sub-
vertex contained within the referenced state machine. It can serve as a source ot destination

87

of transitions that connect a state vertex in the containing state machine with a sub-vertex in
the referenced state machine. A stub state is a child of state.

Submachine State. A submachine state is a syntactical convenience that facilitates reuse and
modularity. Itis a shorthand which implies 2 macro-like expansion by another state machine
and is semantically equivalent to a composite state.

Synch State. A synch state is a vertex used for synchronizing the concurrent regions of a
state machine. A synch state is used in conjunction with forks and joins to insure that one
region leaves a particular state or states before another region can enter 2 particular state or
states.

Event. An event is the specification of a significant occurrence that has a location in time and
space. There are several kinds of events: Signals, CallEvent, ChangeFEvent, TimeEvent,

Signals. The specification of an asynchronous stimulus communicated between instances.
Call Event. A call event represents the reception of a request to synchronously invoke a
specific operation. The expected result is the execution of a sequence of actions that
characterize the operation at a particular state.

Change Event. A change event models an event that occurs when an explicit Boolean
expression becomes true as a result of a change in value of one or more attributes or
associatons.

Time Event. An event that denotes the time elapsed since the current state was entered.
Transition. A relationship between two states indicating that an object in the first state will

perform certain actions and enter the second state when a specified event occurs and
conditions are satisfied.

88

[BEDE00]

[BM99]

[BMG00]

[BP99]

[BOOCY4]

[BRADOO]

[BRJ99]

[DOMO0]

[FBL9¢]

[FL.AN97]
[FURNSG]

[GHJV94]

[HARST]

[FIARSS]

[TBMOO]

REFERENCES

Ben Bederson, Jagg tutorial, HCI lab, University of Maryland, URL:
http://www.cs.umd.edu/hcil/jazz/, 2000

Bederson, B., McAlister, B., Jazz: An Extensible 2D+ Zooming Graphics Toolkit
in Java, CS-TR-4014, UMIACS-TR-99-24,
URL: http://www.cs.umd.edu/hcil/jazz/learn/papers, May 1999

Bederson, B., Meyer J., Good L., Jagg: An Extensible Zoomable User Interface
Graphics ~ Toolkit in Java, CS-TR-4137, UMIACS-TR-2000-30,

http://www.cs.umd.edu/hcil/jazz/learn /papers, May 2000

Brown, K., Petersen, D., Ready-to-run Java 3D, Wiley, ISBN 0-471-31702-0,
pp-40-42, 1999

Grady Booch, Object-Oriented Analysis and Design with Applications, 7% ed,
Addison-Wesley, p.208, 1994

Neil Bradley, The XML Companion, 2° Edition, pp. 3, pp-261-286, 2000

Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, 1999

World Wide Web Consortium, DOM standard, URL:
http://ww.w3.0rg/DOM, 2000

Jean-Daniel Fekete and Michel Beaudouin-Lafond, Using the Multi-Layer Model
for Building Interactive Graphical Applications, Proceedings of the UIST'96 Conf,
Seattle, USA, p. 109-118, Nov, 1996

David Flanagan, Java in a Nutshell, 2 edition, O'Reilly, p. 1, 1997

George W. Furnas, Generaliged Fishey Views, Human Factors in Computing
Systems CHI'86 Conference Proceedings, 16-23, 1986

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, Reading, MA, USA, 1994.

David Harel, Statecharts: a visual formalism for complex: systems. Science of
Computer Programming 8(1987), pp. 231-274

David Harel, On vsual formalisms. Communications of ACM 31, 5 (May 1988),
pp- 514-530

XMI Toolkit, IBM Alphaworks, URL: http://www.alphaworks.ibm.com, 2000

89

[JAZZ00]

[KINUS99]
[KT974]

[KT97b]

[LRPYS]

[MACRO0]

[MC97]

[MICRO0]

[OLIV00]

[OMG992]

[OMG99b]

[OMG99¢]

RATO0]

[ROBBO0]
[RUMBOO]

[SRD99]

[SUNOOQ]

Jazz, URL: http://www.cs.umd.edu/hcil/jazz

Jonathan Knusden, Java 2D Graphics, O'Reilly, 1999

K. G. Kakoulis and L. G. Tollis. On the Edge Label Placement Problem (Proc.
GD’96), volume 1190 of Lecture Notes in Computer Science, pp- 241-256.
Springer-Verlag, 1997

K.G. Kakoulis and L. G. Tollis. An Algorithm for labeling edges of hierarchical
drawings, In G. DiBattista, editor, Graph Drawing 97, vol. 1353 of Lecture
Notes in Computer Science, pp. 169-180. Springer-Verlag, 1997

Lamping, J., Rao, R., and Pirolli, P. A focus+context technique based on

hyperbolic geometry for viewing large hierarchies. Proceedings CHI'95, ACM,
pp-401-408, 1995

Macromedia, Flash, URL: http://www.macromedia.com

Chris Marrin & Bruce Campbell, notation adapted from Teach yourself VRML in
21 days, p.17-18, 1997

Microsoft Corporation, Microsoft XML Notepad, URL:
http:/ /www.microsoft.com, 2000

OLIVE (On-line Library of Information Visualization Environments), URL:
http://www.otal.umd.edu/Olive

OMG Unified Modeling Language Specification, URL: http://www.omg.com,
UML reference (99-06-08), p2-129 to p2-158, 1999

UML Notation Guide, UML v.1.3, URL: http://www.omg.com, 1999

Object Management Group, XML Metadata Interchage, (XMI 1.0) URL:
http://www.omg.org, 1999

Rational Corportation, Unified Modeling Language (UML), URL:
http://www.rational.com, 2000

Jason Robbins, Arge/ UML, Tigris, URL: http://argouml.tigris.org, 2000

Rumbaugh et al., Object-Ordented Modeling and Design, Prentice-Hall, p.325, 1991

Henry Sowizral, Kevin Rushforth, Michael Deering, The Java 3D API
Spectfication, Addison-Wesley, 1999

Sun Microsystems, DOM Parser, URL: http://www.java.sun.com, 2000

90

[UXF99]

[W3C00]

[WAREO0]

]umchl Suzulg, U"\/EL eXchange Format (UXF), URL:
. ject/uxf/ , 1999

W3 Consortium, eXtensible Markup Language (XML), URL:
http://www.w3.org, 2000

Colin Ware, Information Visualization, Perception for Design, University of New
Hampshire, Academic Press, ISBN 1-55860-511-8, 2000

91

