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Abstract

On Synthesis and Optimization of Floating Point Units

Syed Yawar Ali Shah

This work describes the effect of architectural/system level desigmn decisions on the perfor-
mance of floating point arithmetic units. By modeling with VHDL and using design syn-
thesis techniques, different architectures of floating point adders., multipliers and multiply
- accumulate fused units, are compared using different technologies and cell libraries.
Some modifications to recent published works have been proposed to minimize the energy
delay product with special emphasis on power reduction. A new low power, high perfor-
mance, transition activity scaled, double data path floating point multiplier has been pro-
posed and its validity is proved by comparing it to a single data path floating point
multiplier. A transition activity scaled, triple data path floating proint adder has been com-
pared with a high speed, single data path floating point adder using an optimized Leading
Zero Anticipatory logic. Three different architectures of floating point multiply - accumu-
late fused units are evaluated for their desirability for high speed, low power and minimum
area. The findings of this work validate different higher level design methodologies of

floating point arithmetic units irrespective of the rapidly changin g undemneath technology.
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Chapter 1
Introduction

1.1 Introduction

Floating point units are indispensable for the current high performance microprocessors
and DSPs. Small dynamic range of fixed point operations limits their desirability for appli-
cations where programmers have to put extra efforts for the proper scaling of numbers to
maintain sufficient precision and prevent overflows. This work addresses the evaluation of
architectural level design approaches for the implementation of low power, high speed

floating point adders, multipliers and multiply - accumulators (MACsS).

Although full custom implementations and technology specific design optimization at the
circuit level is a clear choice for the low power, high speed digital design, the magnitude
of power reduction and speed enhancement attainable through higher level approaches is
quite significant. The main reason for the exploration of higher level design optimization
strategies is the reusability of architectures and algorithms for different technologies. The
evaluation of architectural/system level design strategies that are insensitive to technology

migration provide results that don’t perish in short time.

1.2 Motivation
In applications like digital signal processors (DSPs), microprocessors and computer
graphics, the wide dynamic range capabilities of floating point operands is strongly

desired. In the past, only large computers were equipped with floating point math-proces-



sors but with the advances in VLSI technology, these days even small computers can per-
form floating point computations and new CPUs are equipped with floating point units.
With the increasing popularity of multimedia entertainment using three-dimensional
graphics and the visualization of scientific simulations, computer graphics require floating

point units to obtain high quality images.

Although conventional instruction driven CPUs and DSPs offer flexibilities in terms of
programmaﬁlity and re-configurability etc., many new applications demand computa-
tional speed which is not attainable by them. Also power consumption for the supporting
hardware of instruction driven CPUs like control units, instruction decoders, bus interface
units, cache memory, on chip RAM/ROM memories etc., make them suboptimal. So the
dedicated system solutions are becoming increasingly popular [1]. When general purpose
floating point processors/DSPs are claiming performance heights of a few hundred
MFL.OPS, dedicated systems have already reached BFLLOPS capabilities [2]. The primary
concemns of embedded system designers are the performance specifications, area require-
ments and power budget. They define appropriate data formats, analog/digital or mixed
signal design strategies, hardware/software partitions such that the final solution meets the
required performance and power goals. Since the integrated circuits generated are applica-
tion specific (ASICs), the economy of scale and production volumes may not support
exhaustive full custom design approaches. Also, the design turnaround time should be
minimal in such situations [1]. In this scenario, the use of modern day logic synthesis tools
is the viable choice. The evaluation of floating point architectures for power/performance
measures, using these tools, gives us a clear picture about their applicability in DSPs and

MiCroprocessors.



1.3 Low Power Digital Design and Logic Synthesis

As much of the research efforts in the past twenty years are directed toward increasing the
speed of digital systems, present day technologies possess computing capabilities that
make possible powerful work stations, sophisticated computer graphics, and multimedia
capabilities. But the new digital applications like digital cellular telephones, which employ
complex speech compression algorithms and sophisticated radio modems in a pocket-
sized device, and notebook and laptop computers, which demand same computational and
performance capabilities as found in desk-top machines, require methodologies for low

power design.

Power dissipation in digital CMOS circuits can be described as

2
Ploml = plCLfcll: Vdd + Iscvdd + [lealcagevdd """"" (1-1)

The first term of equation (1.1) [3] represent the Switching Power which is dissipated by
charging and discharging of the load capacitance C;. Where f, is the clock frequency,
V4415 the power supply voltage and p, is the probability that a power-consuming transition
occurs (the activity factor) and it is equal to p,(1 - p,), Where p, is probability of finding a

logic high at the node under consideration.

The second term is Short-circuit Power which is due to the direct-path short circuit current
I, which arises when both the NMOS and PMOS transistors of a gate are simultaneously
active, conducting current directly from supply to ground. It is also called internal power.
These first two terms comprise the Dynamic Power i.e. power dissipated when the circuit

is active.



The third term of equation (1.1) represents the Leakage Power. It is the result of source to
drain subthreshold leakage current, [j,,z40¢- This leakage is caused by reduced threshold
voltages that prevent the gate from completely turning off. Leakage power is also dissi-
pated when current leaks between the diffusion layers and the substrate and is also refer-

enced as Static Power i.e. power dissipated by a gate when it is not switching.

Switching power comprises 70 - 90% of the power dissipation of an active CMOS circuit
[4], thus low power design becomes task of minimizing p,, C;, V4 and f_j, while retaining

the required functionality.

Low power design approaches reduce the operational power demand through a variety of
techniques. It is possible to implement a certain Boolean function in different ways and
different implementations can consume different amounts of power. Selection of power
optimized implementation by estimating the respective switching activity is a viable
approach in the VLSI design of power critical applications. Reduction in operating voltage
is another approach to save power. Architectural level power reduction approaches include
algorithmic optimizations, technology scaling, clocking strategies, etc. In design synthesis
for low power, design decisions related to algorithms, architectures, number systems,
clocking strategies and problem redefinitions etc. are applicable while circuit level design
decisions are not, because the final implementation may use any available target technol-

ogy and/or cell libraries [1].

Kurt Keutzer et al. [5] discuss the possibilities of power reduction at various levels of

design synthesis, which are summarized in Table 1.1 [1].



Table 1.1: Expected power savings in logic synthesis at various levels of design flow

Level Transformation Expected Power Saving
Algorithmic Algorithm selection Orders of magnitude
Behavioral Concurrency Several times
Register Transfer Level Structural transformations | 10 - 15%

Clock control 10 - 90%
Data/signal encoding 20%
Technology independent Extraction/decomposition | 15%
Technology dependant Technology mapping 20%

Gate sizing 20%
Layout Placement 20%

The right algorithm gives the maximum amount of power saving which can be orders of
magnitude in comparison with other alternatives. Instruction driven architectures versus
embedded systems can be considered an example for this type of design decisions. In
behavioral level power optimization, the possibility of saving is again several times in
comparison with other approaches. RTL level approaches can give 10 to 90% savings
while data/signal encodings can save another 20% power. The example of behavioral and
RTL level transformation is the use of concurrency and pipelining. These approaches give
significant speed enhancements, which can be traded for power, if desired. A proper
design of clocking scheme (e.g. multi phase vs. single phase clocking) can save a substan-
tial amount of power. Activities like extraction/decomposition, technology mapping, gate
sizing, placement etc. are best handled by the synthesis tools. So more and more designers

are relying on them for low level optimization. Efficient power management strategies and



activity reduction through logic minimizations, architectural modifications, low power

encodings etc. also result in power-efficient logic implementations [1].

The above discussion show that by using logic synthesis tools, a considerable amount of
power saving can be achieved by utilizing correct algorithm/architecture/clocking, without

going to circuit level technology dependent details.

1.4 Floating Point Units

The computational algorithms for the realization of floating point operations and the float-
ing point hardware had been around for many years. Early floating point units were built’
as part of large computers where different implementations were following different float-
ing point number systems. With the introduction of IEEE standards for floating point
arithmetics [6], more and more manufacturers are following these standards for the design

of their hardware units.

Traditionally, floating point units had been implemented as a combination of integer units.
The reason is the availability of good knowledge about integer arithmetic units and the
optimized integer building blocks in the form of standard cells. References [7], [8], [9],
[10], presents some approaches for high speed addition. A considerable work about high
speed multiplication is reported in references [11] through [20]. Many new architectures
of integer multipliers have been proposed in [21], [22], [23], and [24], for the significand
multiplication of IEEE single and double precision floating point multipliers. A new

design for a fast barrel shifter is reported in [25].

In reference [26], the development of a floating point cell library has been reported. The



library contains cells of floating point ALU, floating point multiplier, instruction RAM
and register file. These cells can be used for the design of instruction driven processors.
Reference [27], presents the implementation of a CMOS floating point processing unit for
superscalar processors. Reference [28], reports the design of a high speed floating point

multiplier for computer graphics applications.

Some algorithms for high speed rounding of IEEE floating point multipliers are presented
in [29]. In reference [30], a super-scaler processor with a floating point unit, which uses
both IEEE single and double precision data formats, is reported. It also contains two float-

ing point MACs.

The IBM RISC/6000 reported in [31] and [32] contains the first floating point unit with
multiply - accumulate fused architecture. The throughput improvement offered by this
scheme is quite attractive. A compound normalization and rounding step is performed
instead of separate normalization and rounding for floating multiplication and addition.
The authors also present a new leading zero anticipation scheme (LZA) [33] which facili-
tates concurrent evaluation of significand addition and computation of normalization shift
requirements (instead of sequential leading zero counting) so that the latency of the float-
ing point unit is reduced. Suzuki et al. [34] reported a new LZA scheme that outperforms
the s;:heme reported in [33], both in terms of speed and area. The LZA logic is using a
simple boolean algebra structure and can be realized by fast logic circuits. The paper also
suggested a five stage floating point adder, using new LZA logic, in which normalization

shift is performed in parallel with rounding operation.

Recently J. D. Bruguera et al. [35] proposed a Leading - One Prediction (LOP) logic



which can correct the wrong anticipation by earlier LZAs [33] [34] by one bit, in parallel

with LOP.

R. V. K. Pillai etc. reported some significant work on the low power, floating point data
path architectures in references [1] and [36]-[51]. References [36] through [44] present a
new low power, transition activity scaled, triple data path floating point adder with its
validity for different DSP applications. The design of a floating point accumulator is
reported in [45]. Reference [46] presents the design of a round to nearest - even, Zero
Overhead Rounding scheme for floating point adders. Pre-computation of rounded results
is performed to decrease the latency of floating point adders. Energy delay measures of
different barrel switch architectures for the pre-alignment shift of floating point operands
for addition is reported in [47], while [48] presents the evaluation of 1’s complement arith-
metic for the implementation of low power floating point adders. Reference [49] describes
the energy delay analysis of partial product reduction methods for parallel multiplier
implementations and reference [50] reports an alternative architecture for floating point
multiply - accumulate fused (MAF) unit, compared to that used in IBM RISC/6000 [31],
[32], so that the architectural power/delay implications of MAC fusion are optimal. MAFs
reported in [31], [32], [50], use a compound rounding operation encompassing multiply
and accumulate but in order that the results of multiply - accumulate operation be confor-
mal with IEEE standards, the results of multiplication and addition need separate round-
ing. Reference [51] presents a new architecture of floating point MAF which delivers
IEEE conformal product and sum. It is important to note that in this thesis we have pro-
posed a new architecture of low power, high performance floating point multiplier. The

architectures of floating point adder and multiply - accumulate fused unit are proposed by



other authors. We have evaluated these architectures by modeling them with VHDL and
thus we do not claim any Intellectual Property, IP, apart from modeling and implementa-

tion of these architectures.

1.5 Design Methodology

Comparison of the different architectures of floating point units is done by writing the syn-
thesisable VHDL code of each architecture at RTL level. Developing the architectures
using hardware description languages can keep them technology independent. The code is
simulated at RTL level, gate level and after placement and routing using Synopsys VHDL
System Simulator (VSS) for the functional verification. The code is then synthesized using
Synopsys Design Compiler and Power Compiler. As the power consumption of multiple
data path architectures is highly dependent on the utilization of different data paths, the
role of input data, processed by floating point units, becomes very important and RTL and
gate level simulations are done using real data (test vectors generated by the conversion of
real audio signals to IEEE single precision data format) and synthetic data (test vectors
generated manually using different probabilities of data path utilization to get the ﬁgufes
of the average and worst case power consumption). The switching activity is back-anno-
tated from these simulations to Design Compiler and Power Compiler. Power Compiler
uses it for the optimization for low power while Synopsys Design Power uses it for the

accurate calculation of power consumption.

1.6 Design Implementations
The synthesis is done towards 0.35 micron CMOS and FPGA (Xilinx XC4085XL) tech-

nologies to validate that the findings achieved by the evaluation of different architectures



of floating point units are independent of the technology used. The operating voltage for
0.35 micron CMOS technology is 3 volts and it is 4.75 volts for the FPGA technology.
During the comparison, by using the same technology, same cell libraries and same set of
constraints for synthesis, it is made sure that it is only the difference in architectures that
are affecting the final results. While this is a way to do comparison, each architecture can
be further optimized by using the circuit level optimization techniques or by adding cer-

tain constraints specific to the architecture during synthesis.

1.6 Thesis organization

The rest of the thesis is organized in the following way. Chapter 2 introduces floating point
basics, specially the algorithms that implement floating point arithmetic operations. The
IEEE floating point data formats and recommendations for the designing of fioating point
units are presented. Chapter 3 presents our proposal for a low power, high performance,
transition activity scaled, double data path floating point multiplier (FPM). Validity of the
proposed architecture is proved by comparing it to a single data path FPM [26] using dif-
ferent technologies. Chapter 4 presents the hardware configuration of a transition activity
scaled, triple data path floating point adder [1], [36]-[44], and a high speed, single data
path floating point adder [34]. Both adders are then compared to evaluate their perfor-
mance in DSP applications. Chapter 5 presents the hardware configuration and evaluation
of three different architectures of floating point Multiply - Accumulate Fused (MAF) unit,
i. e. the MAF used in the IBM RISC/6000 floating point execution unit [31] [33], a low
power, multiple data path MAF [1] [50] whose results are compatible with IBM MAF’s
results, and an IEEE compliant floating point MAF [51]. Chapter 6 concludes the thesis

and presents some proposals for future work.
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Chapter 2
IEEE Recommendations for Floating Point Arithmetic

2.1 Introduction

Floating point numbers are used to obtain a dynamic range for representable real numbers
without having to scale the operands. Floating point numbers are approximations of real
numbers and it is not possible to represent an infinite continum of real data into precisely

equivalent floating point value.

A floating point number system is completely specified by specifying a suitable base (B),

significand (or mantissa) M, and exponent E. A floating point number F has the value

B is the base of exponent and it is common to all floating point numbers in a system.
Commonly the significand is a signed - magnitude fraction. The floating point format in
such a case consists of a sign bit S, e bits of an exponent E, and m bits of an unsigned frac-

tion M, as shown below

S | Exponent E Unsigned Significand M

The value of such a floating point number is given by:

MBE ... (2.2)
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The most common representation of exponent is as a biased exponent, according to which

where bias is a constant and E"“ is the true value of exponent. The range of E"*¢ using

the e bits of the exponent field is

that

The advantage of using biased exponent is that when comparing two exponents, which is
needed in the floating point addition, for example the sign bits of exponents can be ignored

and they can be treated as unsigned numbers [52].

The way floating point operations are executed depends on the data format of the oper-
ands. IEEE standards specify a set of floating point formats, viz., single precision, single
extended, double precision, double extended. Table 2.1 [1] presents the parameters of the

single and double precision data formats of IEEE 754 [6] [53] standard.

Fig 2.1 shows the [EEE single and double precision data formats. The base is selected as
2. Significands are normalized in such a way that leading 1 is guaranteed in precision (p)
data field. It is not the part of unsigned fraction so the significand is in the form I.f. This

increases the width of precision, by one bit, without effecting the total width of the format.
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Table 2.1: Format parameters of IEEE 754 Floating Point Standard

Format
Parameter Single Double
Precision Precision
Format width in bits 32 64
Precision (p) = 23 +1 52+1
fraction + hidden bit
Exponent width in bits 8 11
Maximum value of + 127 + 1023
exponent
Minimum value of -126 -1022
exponent
ngg“ gf&;gﬁsgd 23 bits - unsigned fraction ()

(a) IEEE single precision data format

Si 11 bit - biased
g'gn Expétnegtla; 52 bits - unsigned fraction ()

(b) IEEE double precision data format

Fig 2.1 - Single and double precision data formats of IEEE 754 standard

The value of the floating point number represented in single precision format is

F = (1)L .. (2.6)

where 127 is the value of bias in single precision format and exponent E ranges between 1

and 254. £ = 0 and E = 255 are reserved for special values.
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The value of the floating point number represented in double precision data format is
F=()SLpRE 1% Q.7

where 1023 is the value of bias in double precision data format. Exponent E is in the range
1 < E <2046. The extreme values of E (i.e. E =0 and E = 2047) are reserved for special

values.

The extended formats have a higher precision and a higher range compared to single and

double precision formats and they are used for intermediate results [52].
2.2 Choice of Floating Point Representation

The way floating point operations are executed depends on the specific format used for
representing the operands. The choice of a floating point format for the hardware imple-
mentation of floating point units is governed by factors like the dynamic range require-
ments, maximum affordable computational errors, power consumption etc. The exponent
bit width decides the dynamic range of floating point numbers while the significand bit
width decides the resolution. The dynamic range offered by floating point units is much
higher than that offered by fixed point units of equivalent bit width. Larger dynamic range
is of significant interest in many computing applications like in multiply - accumulate
operation of DSPs. But larger range is not needed in all the applications. The actual bit-
width required in many applications need not match with the ones provided by IEEE stan-
dards. For example, considering the design of an embedded systems, the choice of IEEE
data formats need not give optimal results. In some cases, even IEEE specified rounding

schemes may not guarantee acceptable accuracy. That means, depending on the specifica-
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tions of a certain application, dedicated system solutions can work with non IEEE data
formats as well as rounding schemes such that the real life input/output signals satisfy the
data processing goals required by the target application. Although custom specification of
floating point format do find quite a lot of applications, in the recent years more and more
manufacturers are following IEEE standards for the design of their hardware. I[EEE com-
pliance guarantees portability of software between different platforms. Applications that
does not need such portability need not stick to IEEE standards [1].

2.3 IEEE Rounding

As not all real numbers can be represented precisely by floating point representation, there
is no way to guarantee absolute accuracy in floating point computations. Floating point
numbers are approximations of real numbers. Also the accuracy of results obtained in a
floating point arithmetic unit is limited even if the intermediate results calculated in the
arithmetic unit are accurate. The number of computed digits may exceed the total number
of digits allowed by the format and extra digits have to be disposed before the final results
are stored in user-accessible regisfer or memory [52]. IEEE 754 standard prescribes some
rounding schemes to ensure acceptable accuracy of floating point computations. The stan-
dard requires that numerical operations on floating point operands produce rounded
results. That is, exact results should be computed and then rounded to the nearest floating
point number using the ‘round to nearest - even’ approach. But in practice, with limited
precision hardware resources, it is impossible to compute exact results. So two guard bits
(G and R) and a third sticky (S) bit, are introduced to ensure the computation of results

within acceptable accuracy using minimum overhead [1].
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The default rounding mode specified by the IEEE 754 standard is round to nearest - even.
In this mode, the results are rounded to the nearest values and in case of a tie, an even
value is chosen. Table 2.2 [52], shows the operation of round to nearest - even, for differ-
ent instances of significand bit patterns. In this table, X represents all higher order bits of
the normalized significand beyond the LSBs that take part in rounding while the period is

separating p MSBs of the normalized significand from round (R) and sticky (S) bits. It can

Table 2.2: Round to nearest - even rounding

Significand Rg;‘gfﬁd Eror | Significand ng‘;;i‘zd Error
X0.00 x0. o X1.00 X1. 0

X0.01 X0, _1/4 X1.01 X1 - 1/4
X0.10 X0. 12 X1.10 X1+ 1 +12
X0.11 X1, + U4 X1.11 XL + 1 + 14

be seen from the table that the average bias (which is the average of the sum of errors for
all cases) for the round to nearest scheme is zero. Fig 2.2 illustrates the relative positions
of the decision making bits. Rounding to the nearest value necessitate a conditional addi-
tion of 1/2 ulp (units in the last place). The decision for such addition can be reached
through the evaluation of the LSB (M) of the most significand p bits of the normalized
significand, the round (R) bit and the sticky (S) bit. Rounding is done only if R(M, + S)
condition is true.

2.4 Floating Point Multiplication

The algorithm of IEEE compatible floating point multipliers is listed in Table 2.3. Multi-
plication of floating point numbers F; (with sign s;, exponent e; and significand p;) and

F, (with sign s,, exponent e, and significand p,) is a five step process. Its block diagram is
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p bit significand field

r— Round bit

p - | higher order bits Mgl R| S

X

Sticky bit
Figure 2.2 - Normalized Significand before rounding

presented in Fig 2.3 [54].
Table 2.3: Floating point multiplication algorithm

Step 1

Calculate the tentative exponent of the product by adding the biased expo-
nents of the two numbers, subtracting the bias, (e, + e, — bias ). The bias is
127 and 1023 for single precision and double precision IEEE data format
respectively

Step 2

Ifthe sign of two floating point numbers are the same, set the sign of product
to ‘+’, else set it to *-’

Step 3

Multiply the two significands. For p bit significand the product is 2p bits wide
(p. the width of significand data field, is including the leading hidden bit (1)).
Product of significands falls within range 1 < product <4.

Step 4

Normalize the product if MSB of the product is | (ie. product of
significands 22 ), by shifting the product right by 1 bit position and incre-
menting the tentative exponent.

Evaluate exception conditions, if any.

Step 5

Round the product if R(MO + S) is true, where MO and R represent the pth and
(p+1)st bits from the left end of normalized product and Sticky bit (S) is the
logical OR of all the bits towards the right of R bit. If the rounding condition is
true, a 1 is added at the pth bit (from the left side) of the normalized product.
If all p MSBs of the normalized product are I’s, rounding can generate a
carry-out. In that case normalization (step 4) has to be done again.
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1- Add the biased exponents of the two numbers,
subtracting the bias from the sum to get the tentative
exponent of product

y

2- Set the sign of the product to pesitive if the sign of the
original operands are the same. If they differ make the
sign negative

Y

3- Multiply the significands

|

4- Normalize the product if its MSB is 1, by shifting it
right by 1 bit position and incrementing the exponent

5- Round the significand of result to the appropriate
number of bits

Yes

QOverflow or
Underflow?

Yes Still normalize?

Fig 2.3 - Block diagram of IEEE compliant floating point multiplication

Fig 2.4 illustrate the process of significand multiplication, normalization and rounding.
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L/ p-bit significand field L/

/1 /1
Input 1 p - 1 lower order bits
Significands 1 p - 1 lower order bits
Significands before multiplication
|~ 2p bits L~
~1 ~ 1
Cout
Result of significand multiplication before normalization shift
L p-bit significand field
/1
p - 1 higher order bits M| R[S

Normalized product before Rounding

Figure 2.4 - Significand multiplication, normalization and rounding

2.5 Floating Point Addition

For IEEE compliant floating point adders, D. Goldberg etc. [S4] has presented an algo-
rithm. This algorithm is applicable to floating point numbers whose significands are pre-
sented as sign magnitude format and they are normalized in such a way that a leading one
is guaranteed. The algorithm of addition of floating point numbers F; (with sign s;, expo-
nent e¢; and significand p;) and F, (with sign s,, exponent e, and significand p5) is listed in

table Table 2.4 [1], and block diagram is presented in Fig 2.5 [54].

Fig 2.6 [1], illustrates the process of significand addition, normalization and rounding.
2.6 Floating Point Multiply - Accumulate

Floating point multiply-accumulate (MAC) is required in many scientific computing

applications and in the design of digital filters. According to IEEE standard, the operation
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Table 2.4: Floating point addition algorithm

Step 1

Compare the exponents of two numbers for (e, > e, or e, <e, ) and calculate
the absolute value of difference between the two exponents (|e; —e,| ). Take the
larger exponent as the tentative exponent of the result.

Step 2

Shift the significand of the number with the smaller exponent right through a
number of bit positions that is equal to the exponent difference. Two of the
shifted out bits of the aligned significand are retained as guard (G) and Round
(R) bits. So for p-bit significands, the effective width of aligned significand
must be p + 2 bits. Append a third bit, namely the sticky bit (S), at the right
end of the aligned significand. The sticky bit is the logical OR of all shifted out
bits.

Step 3

Add/subtract the two signed-magnitude significands using a (p + 3)-bit adder.
Let the result of this is SUM.

Step 4

Check SUM for carry out (C,,,) from the MSB position during addition. Shift
SUM right by one bit position if a carry out is detected and increment the ten-
tative exponent by 1. During subtraction, check SUM for leading zeros. Shift
SUM left until the MSB of the shifted result is a 1. Subtract the leading zero
count from tentative exponent.

Evaluate exception conditions, if any.

Step S

Round the result if the logical condition R”(Mq + S} is true, where Mg and
R’ represent the pth and (p + 1)st bits from the left end of the normalized sig-
nificand. New sticky bit (S”) is the logical OR of all bits towards the right of
the R” bit. If the rounding condition is true, a I is added at the pth bit (from
the left side) of the normalized significand.

If p MSBs of the normalized significand are 1's, rounding can generate a
carry-out. In that case normalization (step 4) has to be done again.

of multiplication and addition should produce results that are IEEE compatible i.e. both

product and sum should be rounded individually [1].
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1- Compare the exponent of the two numbers and find the
exponent difference

v

2- Shift the significand of the number with smaller
exponent right until its exponent would match the larger

exponent

y

3- Add/subtract the aligned significands

-

4- Normalize the sum, either shifting right by 1 bit and
incrementing the exponent or shifting left through a
number of bits (equal to leading zero count) and

decrementing the exponent

5- Round the significand of the result to the appropriate
number of bits

Yes

Overflow or
Underflow?

Yes

Still normalize?

Fig 2.5 - Block diagram of IEEE compliant floating point addition

2.7 Exceptions

For the handling of arithmetic operations on floating point data, IEEE standard specifies
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p bit significand field

Aligned p - 1 higher order bits 0/010
significands 20
p - 1 higher order bits bp|G|R| S

Significands before addition

Cout GRS

Result of significand addition before normalization shift

p - 1 higher order bits M| R”|S”

Normalized Significand before Rounding

Fig 2.6 - Significand addition, normalization and rounding

some exception flags. Some exception conditions are listed in Table 2.5 [1]. When the

result of an arithmetic operation exceeds the normal range of floating point numbers as

Table 2.5: Exceptions in IEEE 754

Exception - Remarks
Overflow Result can be * o= or default maximum value
Underflow Result can be O or denormal

Divide by Zero | Result can be oo

Invalid Result is NalN

Inexact System specified rounding may be required

shown in Fig 2.7 [1], overflow or underflow exceptions are initiated. Detection of overflow
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Underflow

Overflow Within Range i i Within Range Overflow
g — - et -tt—
-} —-f —
—o0 Negative numbers 0 Positive numbers 40
Denormalized

Fig 2.7 - Range of floating point numbers

Table 2.6: Operations that can generate Invalid Results

Operation Remarks
Addition/ An operation of the type oo * o0
Subtraction
Multiplication An operation of the type 0 x o°
Division Operations of the type 0/0 and oo/e0
Remainder Operations of the type x REM 0 and e REM y
Square Root Square Root of a negative number

or underflow is quite straight forward as the range of floating point numbers is associated
with the value of exponents. Table 2.6 [1] lists all possible operations that result in an
invalid exception. During invalid exception the result is set to a NaN (not a number). Inex-
act exceptions are true whenever the result of a floating point operation is not exact and
IEEE rounding is required [1]. In IEEE single precision data format, width of exponent
field is 8. So 256 combinations of exponent are possible. Among them two are reserved for
special values. The value e = 0 is reserved to represent zero (with fraction f= 0) and denor-

malized numbers (with fraction f#0). The value e = 255 is reserved for +o (with frac-
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tion f=0) and NaN (with fraction f #0) [52]. The leading bit of significands (hidden bit)

is zero instead of one for all the special quantities.
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Chapter 3

Transition Activity Scaled Double Data Path Floating Point
Multiplier

3.1 Introduction

Low power, high speed Floating Point Multipliers (FPM) are essential building blocks of
modern day digital applications like signal processing, computer graphics and scientific
computations. Recent microprocessors, graphic processors and various kinds of DSPs,
used for user interfaces, communication or code compression, are equipped with dedi-
cated floating point multipliers. Due to the presence of a relatively high traffic of floating
point multiplications in these applications, the power/performance implications of floating
point multipliers directly impact the power/performance desirability of the target product.
In digital CMOS implementations, the power consumption and speed performance of
functional units are highly influenced by algorithmic/architectural design decisions [5].
These decisions influence the switching activities, fanouts, layout complexity, logic
depths, operand scalability and pipelinability of functional units. Among them, switching
activities, fanouts and layout complexity are directly related to the power consumption. So

architectural design for low power operation targets the minimization of these parameters

[1].

High speed multiplication of integer data has been a field of research for long time. Some
remarkable work has been reported in references [11] through [20]. But applications like

DSPs and computer graphics require dynamic range larger than that offered by fixed point



operations. New approaches for high performance floating point multiplication have been
proposed in the recent years in [26], [27], and [28]. References [21], [22], [23], and [24]
discuss the implementation of integer multipliers for the significand multiplication of
IEEE single and double precision FPMs. Floating point niultiply - accumulate fused
(MAF) units proposed in [31], [32], [50], [1], and [51] are the preferred choice in the
applications where there is room for the fusion of multiplication with accumulation but

there are still applications even in DSP which require stand alone FPMs.

For the design of FPMs, most of the work has been centered around the performance
improvement of significand multiplier. A lot of optimization is possible in other parts of
FPMs to minimize critical path delay, latency and power consumption. In this chapter, a
new architecture of a low power, high speed Floating Point Multiplier (FPM) is presented.
The proposed architecture delivers IEEE compliant product in three clock cycles. The
switching activity and hence the dynamic power consumption is reduced by the functional
partitioning into two mutually exclusive, clock gated data paths. During any operation
cycle only one of the data paths is active and the logic states of the other data path are con-
stant. Critical path delay and latency is improved by using different architectural/logic
level approaches like the use of a fast significand multiplier, Zero Overhead Rounding and
high speed calculation of sticky bit. Comparison of the proposed FPM with the single data
path FPM [26], for power consumption, speed, area and different products of them, is

done by synthesizing towards 0.35 micron CMOS technology and FPGAs.

3.2 Architecture of the proposed FPM

Fig 3.1 shows the basic building blocks of the proposed FPM. It can support single and
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double precision data formats of IEEE 754 floating point standard. In this Chapter, com-

parison of single precision FPMs is presented.

Exponents Input Floating Point Numbers
Ist
ExponentLogic | guf Control / Sign Logic
2nd
Significand Multiplier
(Partial Product .
Processing) Bypass Logic
3rd W
Critical . .
Path CPA / Rounding Logic Sticky Logic
' vy
Exponent Result Selector /
Incrementor T Normalization Logic ‘

Y Y Y

Result Integration / Flag Logic

Flag bits IEEE product
Fig 3.1 - Block diagram of the proposed FPM with 3 execution pipeline stages.

Exponent logic calculates the tentative exponent of the product and also evaluates the con-

ditions for multiplication overflow and underflow using exponents of the input operands.
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Control/Sign logic generates the control signals which activate one of the two data paths.
It also calculates the sign of the product using a two input XOR gate. Bypass logic is a
non-computational unit, which maps floating point numbers to the output during various
bypass conditions. Significand Multiplier is composed of partial product generation and
compression logic for the multiplication of significands. Partial products are generated by
2 input AND gates. In CPA/Rounding logic precomputation for rounding is concurrently
performed with addition. Sticky logic can calculate sticky bit in parallel with CPA. Result
Selector/Normalization block selects an appropriate copy of the result in accordance with
the rounding/normalization requirements. Normalization shift can be one bit right shift. In
case of normalization shift tentative exponent of product is incremented by 1 by the Expo-

nent Incrementor.

3.2.1 Transition activity scaling

In CMOS circuits, the switching activities of functional units exhibit sensitivities towards
architectural/algorithmic design decisions and architectural design for low power opera-
tion targets the minimization of power consuming transitions through the use of appropri-
ate algorithms, number systems, structural transformation etc. Switching activity
reduction through clock gating offers promising results as far as architectural design for
low power operation is concerned. The reduction of switching activity implies minimiza-
tion of effective capacitance being switched per unit of time and minimization of switched
capacitance can be achieved through the reduction of either of the factors - capacitance or
activity factor. Also, design decisions that increase the area and hence the total capacitance
are not considered as bad choices as long as there is a reduction in switched capacitance

(per unit of time) [1]. In transition activity scaling [S7], the hardware implementation of
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algorithms are partitioned into a set of mutually exclusive, distinct, gated clock data paths.
During any computing cycle, the operations are mapped to only one clock gated logic
block and the logic assertion status of the circuit nodes of all other data paths are pre-
served at their previous states, so that the switching transitions within these data paths
don’t exist. If the hardware implementation of an algorithm is partitioned into k& data paths.

The power consumption of such a scheme can be represented by

P =Y p()P...... 3.1)

where p(i) is the probability that the operation is mapped into the ith data path while P;
represents the power consumption of the ith data path. Without activity scaling, the power
k
consumption can be as high as )’ P,. The mapping of the algorithm into distinct data paths
i=1

is governed by factors like: area, layout regularity, data path simplifications, delay reduc-

tion, pipelineability, functional units reusability etc. [1].

With the proposed architecture, the process of floating point multiplication is partitioned
into two distinct categories and a separate activity scaled data path is envisaged for the
handling of each. Among the two distinct data paths, one is computing data path while the
other is a non-computing data path. The non-computing or bypass data path becomes
operational during those situations when the process of floating point multiplication is
guaranteed to produce a result that is known apriori. For example, the situation in which
either of the two operands is a special quantity (zero, denormal, *infinity, not a number
(NaN)), there is no need to activate the multiplier data path as for operation of type 0 x
number, zero can be latched to output, for £ X number, an infinity can be latched. Dur-

ing operations when floating point multiplication produces NaN result, NaN can be
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latched to the output by the Bypass logic etc. To find that an input floating point number is
a special quantity, only their exponents need to be explored. As in IEEE data formats, spe-
cial quantities are represented by setting the exponents, e,,;, — 1 (represents zero if frac-
tion, f = 0 and represents denormalized numbers if fraction f#0)or e, + 1 (represents
+o if fraction, f = 0 and represents NaN if fraction f#0). With exponent biasing,
enin = 1 and e, , = 254, for single precision floating point numbers. So if exponents
are either of the extreme values (0 and 255 for single precision data format), bypass data
path will be activated and vice versa. Thére are also some situations in which based on the
exponents of input numbers, multiplication underflow (e, + eg+ 1 —e,;,.<e,,;,) or mul-
tiplication overflow (e, + eg —€;;,. > €,,,,.) can be found in the exponent logic. In case of
multiplication overflow, Bypass logic sets the significand and exponent of the result to
+infinity or —infinity, depending on the sign of the product. Multiplication underflow is
dealt by latching a zero as result. In bypass mode, all the FPM core except the Exponent
logic, Control logic, Bypass unit and Result Integration/Flag logic is transition activity

scaled and a significant amount of power saving can be achieved in applications where

probability of utilization of bypass data path is high.

3.2.2 Exponent logic
During the multiplication of two floating point numbers, A and B, the exponent of the
product, ep is given by

€p = es+eg—ep  +Inc...... 3.2)

In the above equation e, and eg represent the exponents of the A and B respectively. Also,

epiqs Tepresents the value of the exponent bias which is 127 for IEEE single precision data
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format and Inc represents the MSB of the output of significand multiplication (1 only if
the Product of significands >2). Whenever Inc is one, the tentative exponent of the
product is incremented and the product of significands is subjected to a normalization shift

(and rounding). Exponent logic calculates the tentative exponent of product, eg; as
eT = eA+eB—€bias .......... (3-3)

Since the number of operands is three, a single row of 3:2 compression logic (carry save
adder approach) is required for the processing of input operands ey, eg and e, as shown
in Fig 3.2(a). Third row in Fig 3.2(a) represents the 1’s complement of ej;,;. After the
compression (Fig 3.2(b)), 9 least significant bits of two operands are added together with a
carry-in of 1. In this way, evaluation of multiplication overflow and underflow conditions
is quite straight forward. If carry-out of the addition is 1, there will be a multiplication
underflow otherwise if MSB of the result of addition is 1, there will be a multiplication

overflow, else 8 LSBs of result present the tentative exponent of product.

0 €a7 €a6 | A5 | Caqa | a3 | Ca2 €A1 | Cao

0 €p7 CRe6 €85 | R4 €3 €B2 €B1 €Bo

1 1 0 0 0 0 0 0 0

(a) - Input data for the evaluation of €5 + €p - €pias

0 S8 S7 S6 S5 S4 S3 S2 S1 SO

C8 C7 C6 Cs5 C4 | C3 C2 C1 Co 0

(b) - Input data after bit compression

Fig 3.2 - Data presentation for the evaluation of €5 + €p - €,
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3.2.3 Significand Multiplier

In floating point multipliers using IEEE single precision data format, a 24 X 24 bit integer

multiplier is needed for the multiplication of significands (24 bits wide).

Several schemes, with the objective of improving the speed of the integer multipliers, have
been proposed in the past. In the start, multiplication methods were iterative schemes
based on the simple shift and add algorithm. Later, Wallace [13] suggested the simulta-
neous addition of all partial products in a carry free way using carry save adders. Wallace
reduced the partial products by connecting the carry save adders in parallel tree structure.
A carry propagate addition step is needed in the end. The carry save adders (Wallace
scheme) are generalized by Dadda [14], [15], to (m, n) counters. He also showed how to
minimize the number of counters in a compression tree. Weinberger [16] introduced a 4:2
compressor as a way of reducing the bits in a parallel multiplier array. Booth recoding
[11], [12], has been widely used in parallel multipliers and using radix 4 modified Booth
algorithm (MBA), the number of partial products can be reduced to n/2 for an nxXn 2’s
complement multiplication but its efficiency has been denied by several authors. In [17], it
has been shown that 4:2 compressors can reduce the number of partial products to n/2 in
less time and using fewer gates compared to radix 4 MBA. The authors in [49], [1],
showed that compared to MBA, the energy delay improvement of 4:2 compressor based
scheme is better than 20% for a 24 x 24 bit unsigned multiplier. Also compared to Booth
algorithm, 4:2 compressors based partial product compression logic gives a highly regular
layout. So the routing lengths and hence the routing delay is reduced which is quite signif-

icant in the submicron technologies.
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In our significand multiplier, 4:2 compressors are arranged in Wallace tree format, thus
only 4 addition stages are needed in order to add 24 partial products as shown in Fig 3.3.
The 4:2 compressor has five inputs and three outputs and it adds up four partial products
(I; to 1) and one carry-in (C;) into one sum (S) and two carry-outs (C and C,). Such a 4:2

compressor is designed to operate faster than two full adders. The XOR operations for the

24 partial Products

T AT T TR T T
L A &

2

4:2 4.2

Sum Carry

Fig 3.3 - Structure of partial product compression logic using arrays of
4:2 compressors arranged in Wallace tree format

individual two inputs of four are concurrently performed, so four inputs are compress- ed

to sum using three XOR gate propagation delay as shown in Fig 3.4 [49] [1]. It takes four

XOR gate propagation delay when using an ordinary carry save adder. Also since one of
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the two carry-outs (C,) is indeperzdent of the carry-in (C)), it can be the carry-in of the 4:2
compressor in the same stage of the upper bit without making a long critical path as shown

in Fig 3.5 [21] [56].

151
I
Co
y
Iz A S
Ig /

Ci__ fy

Fig 3.4 - 4:2 compressor

3.2.4 Sticky bit evaluation

For p-bit significands, the width of the product is 2p bits. Among them, p - 3 (p - 3 repre-
sents the number of bits towards the right of G (guard) and R (round) bits) LSBs are only
computed for the evaluation of thee sticky bit of the product, which is the logical OR of
these bits. For IEEE multipliers, the sticky bit can also be generated through an evaluation
of the trailing zeros of the product. The sticky bit should be set to 1 only if the expected
number of trailing zeroes in the product is smaller than the number of the least significand
product bits that are discarded i.e. p —3. The number of trailing zeros in the product of
two binary significands is equal to the sum of trailing zero of the multiplicand and multi-

plier [52] [1] [28]. Hence sticky bitis 1, if
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Where TZ, and TZg represent the trailing zeros of multiplicand and multiplier (signifi-
cands). For the counting of trailing zeros, a fast, tree type, 32 bit trailing zero counter is
used. Its 16-bit version is shown in Fig 3.6 [46]. This type of counter had been proposed
by H. Suzuki et al. [34], for leading zero counting. The input to the counter is the 1’s com-
plement of the data word whose trailing zeros are to be counted. The basic building block
of the counter is a 4-bit tree, which encodes the number of trailing zeros of 4 bits of input

data into a 3-bit field. Two 4-bit trees are cascaded to form an 8-bit tree. Two 8-bit trees
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can be cascaded to form a 16-bit tree and two 16-bit trees of the form shown in Fig 3.6 can

Il
S
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\—~ O/
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]
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S8
TQ
X 7

Bl By

Fig 3.6 - Trailing Zero Counter

j?J
I

be cascaded to form a 32-bit trailing zero counter, which counts and encodes the trailing

zeros of a 32-bit data word. As both multiplier and multiplicand are 24 bits wide, remain-
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ing bits are asserted as 1’s, on the most significant side, before using them in the trailing

Zero counter.

A high speed comparator, proposed for the sticky bit evaluation in floating point adders
[44], can be modified to evaluate the condition in Equation (3.4). Equation (3.4) can be
reformulated to p—-3 —TZ,~TZz >0, so that end around carry of 1’s complement adder
can be used. The power consumption and delay of 1’s complement operations are less
compared to that of their 2’s complement counterparts. Trailing zeros are encoded into 5
bit numbers and are complemented, as shown in Fig 3.7(a). The 3rd row in Fig 3.7(a) rep-
resent the value of p—3 + 1 i.e. 22, for the 2’s complement addition with 7Z, and 7Zp.

These three rows are compressed into sum and carry vectors by a row of 3:2 compressors,

1 | TZpg | T2ps | TZpg | TZp; | TZpg

1 |TZps |TZp3 | TZpy | TZg; | TZpg

0 1 0 1 1 0

(a) - Input data for the evaluation of TZ, + TZg <p -3

C4 | C3 C2 Cl Co

]
1 0 | S4 | S3 | s2 | SI

(b) - Input data after bit compression

Fig 3.7 - Data presentation for the evaluation of TZ5 + TZg <p - 3

as shown in Fig 3.7(b). The end around carry of the 1's complement arithmetic operation

can be found by making use of a circuit of the type shown in Fig 3.8. The end around carry
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is the required sticky bit.

O }

I 0 :
0 C3 ca Sticky
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Fig 3.8 - Sticky bit evaluation
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3.2.5 CP Adder and Zero Overhead Rounding

During floating point multiplication, decisions regarding rounding become available only
at a relatively latter stage, any subsequent delays introduced by rounding adds up with the
overall delay of floating point multiplication. In the worst case, the delay due to rounding
can be as much as the delay of a significand adder. Pre-computation of rounding results is
the best choice as far as the delay reduction of floating point multipliers is concermned. A
Zero Overhead Rounding approach for floating point adders has been presented in [46].
Here Zero Overhead Rounding approach for floating point multipliers is proposed. In this
approach, p - 3 LSBs (bits towards the right of R bit) of sum and carry vectors from Signif-
icand Multiplier are truncated from the rest of the MSBs. After the truncation, p + 3most

significant bits are shown in Fig 3.9.

Bit positions M, to Cout of sum and carry vectors are treated as a separate block. Since the
rounding decisions are not available till the normalization shift is complete, pre-computa-

tion of two sets of sum bits is the best choice for Zero Overhead Rounding. So that by the
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time the rounding decisions are known, an appropriate set of sum bits can be chosen. The
sum bits are evaluated for an incoming carry of zero (sum0) as well as one (suml). Condi-
tional Sum/Carry select adders [23] [7] [56] are ideal for this application. As the sticky bit
is calculated directly from the significands of the input floating point numbers, p - 3 LSBs
takes part only in the calculation of carry from these lower order bits to p + 3 higher bits,
Cin. So p - 3 LSBs of sum and carry vectors are added together in parallel with the addi-

tion of most significant bits (M; to Cout) to generate Cin.

L/ p bits
/1

Coutg M)s|Mgs| Gs | Rs
Coutd] Mic|Mgc| Gc | Re

Fig 3.9 - p + 3 MSBs of sum and carry vectors of Significand Multiplier

3.2.6 Result Selector/Normalization logic

This unit selects an appropriate copy of conditional sum bits based on different rounding/
normalization conditions. In this unit, My, G and R bits of sum and carry vectors (Fig 3.9)
are added with Cin (carry from lower order bits), which results in S;, S5, S3 and C bits as

shown in Fig 3.10.

MOSMOC GS GC RS RC

YVYVVy

=

C - —— Cin

y Y Y

S3 Sa Sy

Fig 3.10 - Addition of G, R and MO bits of sum and carry vectors
with carry-in from lower order bits.
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This unit selects the sum bits with a carry-in of zero (sum0) or sum bits with a carry-in of
one (suml) based on the carry injection at the M bit position. Let the most significant bits
of sum0Q and suml vectors are CoutO and Coutl. There are three possible cases for the

evaluation of carry injection at M bit position.

Case I: If the MSBs of sum0 and suml are one i.e. CoutO = I and Coutl = I (in this case
product of significands is greater than or equal to 2), the carry injection at M bit position

is
C, = C+Round1

Where C is the carry out from the 3-bit addition of M, G and R bits of sum and carry vec-

tors, as shown in Fig 3.10, while
Round; = §3(sum0(0) +S, + S| + Sticky)

Where sum0(0) is the least significant bit of sum0 vector and S, S, and S; are the sum bits
of 3-bit addition of sum and carry vectors of Significand Multiplier. If C; = 1, suml will be
selected, otherwise sum0. Selected sum bits are then normalized by shifting right by one

bit position.

Case2: If the MSBs of sum0 and suml vectors are zeros i.e. Couz0 = 0 and Coutl = 0 (in

this case product of significands is less than 2), the carry injection at M; bit position is
C; = C+Roundy,

Where Round; is
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Round; = §,(S5+S; + Sticky)

If Cyp = 1, result selector will select suml otherwise sumO. In this case no normalization

shift is required. Rounded bit towards the right of M bit, Mj’ can be found as
Where Mg and M are the M, bits of the sum and carry vectors as shown in Fig 3.9.

Case 3: This case represents the situation in which after normalization and rounding, a
correction shift is required in conventional FPMs. In this case, CoutO = 0 and Coutl = 1.
Here again, C;is checked if it is one, suml bits are selected and normalization (one bit
right shift) is performed, otherwise sum0 bits and My’ are selected and no normalization

shift is needed.

The Zero Overhead Rounding approach considerably decreases the delay introduced by

rounding and correction shift.

3.2.7 Exponent Incrementor

When the selected result in Result Selector/Normalization logic is normalized by shifting
it right through one bit position, tentative exponent needs to be incremented. Exponent
increment can result in an overflow if tentative exponent of product is equal to the maxi-
mum representable exponent without overflow, e,,,,, where ¢, . = 254 for IEEE single
precision data format. 1’s complement adders are ideal for this kind of application. With
the conditional carry outputs of these adders, evaluation of overflow condition is a trivial

operation. During the exponent increment operation, C,,(I) = 1 implies an overflow,
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where C,, (1) represent the conditional carry output from MSB position of the adder

anticipating an input carry at the LSB position of 1 [48] [1].

Control unit, Exponent logic and Result Integration/Flag logic are common to both the
data paths. Control unit selects an appropriate data path and routes the inputs to the
selected data path. This unit generates various control signals which control the activation
of various data paths by clock gating of registers of pipeline stage 2 and stage 3 (Fig 3.1).
Result Integration/Flag logic selects the appropriate copy of result from the relevant data
path. It also asserts various status flags subject to the validity of exception conditions. Five
different flags are included for zero, —infinity, +infinity, not a number and denormal-

ized results.

3.3 Comparison with single data path FPM

Comparison of the proposed double data path FPM is done with a single data path FPM
[26] by writing VHDL code of both architectures at RTL level. Both floating point multi-
pliers are IEEE compliant using IEEE single precision floating point data format. Both
architectures of FPM are pipelined to 3 stages. The code is synthesized using Synopsys
Design Compiler and Power Compiler. The synthesis is done towards 0.35 micron CMOS
and FPGA (Xilinx XC4085XL) technologies to validate the claim that the proposed FPM
gives optimal results independent of the technology used. By utilizing the same technol-
ogy, same cell libraries and same set of constraints for synthesis, it is made sure that it is
only the difference in architectures that are affecting the final results. As the power con-
sumption of the proposed double data path FPM is dependant on the utilization of a certain

data path, simulations are done using real data (test vectors generated by the conversion of
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real audio signals [55]) and synthetic data (test vectors generated manually using different
probabilities of data path utilization). Switching activity from these simulations is back-

annotated for the calculation of power consumption.

3.4 Results

Maximum delay, power consumption and area information for both floating point multi-
pliers after synthesizing to 0.35 micron CMOS technology is summarized in Table 3.1
while Table 3.2 presents the same results after synthesizing to FPGAs. The calculated val-
ues of Power-Delay (PD), Area-Power (AP), Area-Delay (AT) and Area—Delay2 (ATZ) are
also presented in Table 3.1 and 3.2. In these tables, Py, ; represents the power consump-
tion during processing the synthetic data in which the probability of utilization of both
data paths of the proposed FPM is the same. Furthermore, Py, shows the power figures
of the FPMs using synthetic data in which the probability of utilization of bypass data path
of the proposed FPM is zero. Also, P,,,;; shows the power consumption of the FPMs
when real floating point data from two files (each containing 128K déta samples, obtainedA
from the conversion of real audio signals) is multiplied, while P,,,,, is the amount of
power consumption when real data from one file is multiplied by co-efficients (rotating) of

low pass FIR filter of order 8, having cut-off frequency of 0.2 [55].

Table 3.1 shows that using 0.35 micron CMOS technology, when the probability of utili-
zation of both data paths of the proposed FPM is the same, it offers 44.8% reduction in
power delay product compared to single data path FPM. The proposed FPM offers 26%
reduction in power delay product over single data path FPM during prbcessing the syn-

thetic data in which bypass data path of the proposed FPM is never utilized. Proposed
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FPM gives 11.4% reduction in power delay product during multiplication of real data and

Table 3.1: Comparison of the proposed FPM with the single data path FPM [26]
using 0.35 micron CMOS technology

Single data path
Parameters Proposed FPM FPM
Maximum Delay, D (ns) 22.58 24.59
Power using synthetic data, Pgy,;; 2441 4425
(mW) at 40 MHz
Power using synthetic data, Pg,;> 33.77 45.63
(mW) at 40 MHz
Power using real data, P,,,;; 22.67 25.59
(mW) at 40 MHz
Power using real data, P, p» 46.25 76.35
(mW) at 40 MHz
Area, A (104’ cell-area) 67.55 48.46
Power-Delay Product, PD (ns.mW) 610.25 1106.25
Area-Power Product, AP 1648.9 2144.36
(104cell-area.mW)
Area-Delay Product, AT (104cell-area.ns) 1525.28 1191.63
Area-Delay? Product, AT? 3.44x 10* 2.93 x 10*
( 104cell-area.n52)

39.42% reduction in power delay product when real data is multiplied with rotating filter
coefficients, compared to single data path FPM. Moreover the proposed FPM is 8.2%
faster than the single data path FPM and it takes around 28.26% more area. Same kind of
results are obtained by synthesizing both architectures of FPM to FPGAs (Table 3.2). The
proposed FPM gives 26.9% reduction in power delay product when processing the syn-

thetic data in which the probability of utilization of both data paths of the proposed FPM is



the same. The proposed FPM offers 11.9% reduction compared to single data path FPM
when the probability of utilization of bypass data path of the proposed FPM is zero. The

proposed FPM is 9.1% faster and it uses 23.8% more CLBs.
Table 3.2: Comparison of the proposed FPM with the single data path FPM [26]

using FPGAs
Single data path
Parameters Proposed FPM EPM
Maximum Delay, D (ns) 151.28 166.4
Power using synthetic data, Py, 503.55 688.95
(mW) at 5 MHz
Power using synthetic data, Py.,> 637.47 723.8
(mW) at 5 MHz
Power using real data, P,,; 426.33 435.01
(mW) at 5 MHz
Power using real data, P, 959.96 1000.1
(mW) at 5 MHz
Area, A, Total CLBs (#) 1580 1204
Power-Delay Product, PD (ns.mW) 1.0 x 10° 1.38 x 10°
Area-Power Product, AP (#. mW) 7.96 x 10° 829 x 10°
Area-Delay Product, AT (#.ns) 2.39 x 10° 2.0x 10°
Area-Delay? Product, AT? (#ns%) | 3.62 x 107 333 x 107

3.5 Discussion and Conclusion

Using both 0.35 micron CMOS and FPGA technologies, the same kind of results are
obtained. The proposed architecture of FPM is faster, consumes less power but takes more
area compared to single data path FPM [26]. The results indicate that the proposed FPM
offers power saving, however the amount of saving is dependent upon the input data. Dou-

ble data path FPM offers significant amount of saving for the applications where the prob-
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ability that the data will go through the Bypass data path is higher. The double data path
FPM has more area than the single data path FPM because it has an extra data path, Con-
trol logic and Result Integration unit. As the data files are generated from the conversion
of real audio signals in which data doesn’t change for some time specially in the start and
in the end of audio signals, so the values of power consumption, P,,,;, for both floating
point multipliers are less than the values generated by synthetic data. The power consump-
tion of the two FPMs when real data is multiplied by rotating filter coefficients which are
changing with every clock cycle, P,,,;», in this case, are higher than the values of power
consumption using synthetic data. While multiplying real data, the chances of bypass are
negligible and the proposed FPM offers reduction in power delay product due to its high
performance. Floating point bypass becomes important in some DSP applications, where
certain arithmetic operations may fail to impact the final result due to the limitations of
floating point data formats. Symmetrical band pass/stop filters having a normalized centre
frequency of 0.5 exhibit relatively large differences between the exponents of adjacent fil-
ter co-efficients [1]. With these applications, the power/delay advantages of the proposed

FPM renders it an ideal choice for floating point multiplications.
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Chapter 4
Floating Point Adders

4.1 Introduction

The demand for high performance, low power floating point adders has been on the rise
during the recent years in the applications like DSPs, image processors and microproces-
sors. As floating point addition involves operations like pre-alignment shift, addition of
significands, normalization, rounding, correction shift and exponent evaluation, the delay
and power consumption of floating point adders is quite significant. New design
approaches have emerged that incorporate these operations concurrently, to reduce the
critical path delay and latency. The significant among such approaches is the concurrent
evaluation of leading zeros for normalization shift, with significand addition (leading zero
anticipation). The first leading zero anticipatory (LZA) logic, used in IBM RISC/6000
execution unit [33] [31] [32], uses some of the signals of conventional carry look ahead
adders (carry generate, propagate and kill signals) and processes these signals concur-
rently to do its job. Hiroaki Suzuki et al. [34] proposed a new architecture of LZA logic,
which is using simple boolean algebra structure and it can anticipate leading zeros using
less delay and area compared to the LZA unit proposed in [33]. He also proposed an
approach for the concurrent evaluation of rounding and normalization shift in his five
stage, single data path floating point adder (FADD). J. D. Bruguera et al. [35] proposed a
scheme to correct the wrong anticipation of leading zeros by earlier LZA logics [33] [34]

by one bit in parallel with leading zero anticipation, in his Leading-One Prediction (LOP)
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logic to reduce the latency of the floating point adder proposed in [34]. R. V. K. Pillai pro-
posed a Zero Overhead Rounding approach [46] for floating point adders in which pre-
computation of rounded results is performed along with significand addition. Their pro-
posed triple data path floating point adder (TDPFADD) [1], [36]-[44], uses transition
activity scaling for power reduction. It also removes one barrel shifter from the computa-

tional data paths for the reduction of latency.

In this chapter, hardware configuration and comparison of the two optimized architectures
of floating point adder, i.e. TDPFADD proposed in references [1], [36]-[44], and single
data path FADD proposed in [34], is presented. The basis of comparison of the two float-

ing point adders is their performance in DSP applications.

4.2 Hardware configuration of triple data path floating point adder
(TDPFADD)

In this section, hardware configuration of a triple data path floating point adder (TDP-
FADD) [1], [36]-[44] is presented, in which transition activity scaling, utilized by the
exponent behavior based design partitioning, gives optimized values of time averaged

power consumption.

4.2.1 Algorithm and transition activity scaling

At the architectural level, transition activity scaling of the functional units offers a viable
approach for power minimization [56]. During the evaluation of floating point addition
operation, following observations can be made: (1) The leading zero estimation circuits of
floating point adders, that handle variable number of leading zeros, generated by signed-

magnitude addition of significands, need to be operational only during a limited set of
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additions. (2) The operation of floating point addition can be bypassed during certain situ-

ations.

Based on the above observations, the process of floating point addition is partitioned into
three distinct categories and a separate activity scaled data path is envisaged for the han-
dling of each. Among the three distinct data paths, two are computing data paths while the
third is a non-computing data path. The non-computing or bypass data path becomes oper-
ational during those situations when the process of floating point addition is guaranteed to
produce a result that is known apriori. Functional partioning of the floating point adder
into three distinct, mutually exclusive, clock gated data paths allows activity reduction.
During any computing cycle, only one of the data paths is active, during which state, the
logic assertion status of the circuit nodes of the other data paths are maintained at their

previous states.

The algorithm of floating point addition that is mapped to the transition activity scaled, tri-
ple data path floating point adder (TDPFADD) is listed in Table 4.1 [1], [36]-[44]. Fig 4.1
[11, illustrates the finite state machine representation of the transition activity scaled TDP-
FADD and Table 4.2 lists the criterion for the assertion of various states of TDPFADD as

well the modules that are activity scaled in each state.

State I represents bypass conditions. State J represents the TDPFADD operations that can
result in the generation of a significand with a variable number of leading zeros, which is
only possible during the subtraction of one significand from another when the difference

between their exponents is zero or one. In this case Leading Zero Anticipatory (LZA) data
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Table 4.1: Floating point addition algorithm for TDPFADD

Step 1

compare the exponents of two floating point numbers for (el > e2, el < e2, el
= e2) and compute exponent difference lel - 2|

evaluate input numbers for special conditions e. g. 0+ operand, oo * oper-
and, NaN * operand etc.

select the tentative exponent of the result

order significands on the basis of the relative magnitudes of exponents

iflel - 2| > p or special conditions, go to step 2

iflel - e2| < I and subtraction and neither |el - e2| > p nor special conditions,
go to step 3.1 |

iflel - e2|> 1 or addition and neither el - e2| > p nor special conditions, go to
step 4.1

Step 2
generate default result
gotostep 5

Step 3.1

align the significands

perform 1's complement addition of aligned significands
perform speculative rounding

count leading zeros of the different copies of result
select result and corresponding leading zero count

go to step 3.2

Step 3.2

normalize significand

compute the exponent of the result
evaluate exception conditions, if any
gotostep 5

Step 4.1
align the significands

Step 4.2

perform signed - magnitude addition of aligned significands
perform speculative rounding

evaluate normalization requirements; 0/1 bit left or right shift
select result and perform normalization

compute the exponent of the result

evaluate exceprion conditions, if any

gotostep S

Step 5

select the appropriate copy of result from the relevant data path
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path is active. State K represents the operations of the TDPFADD during those situations
when the signed-magnitude addition of significands can produce at the most one leading
zero. In this state, floating point addition is performed by Leading Zero Bounded (LZB)

data path. The time averaged power consumption of TDPFADD is represented by

P = p(I)P;+ p(J)P;+ p(K)Pg eunen.. 4.1)

BP (bypass)

LZB LZA

Figure 4.1 - Finite state machine representation of TDPFADD operation

Where p(I), p(J) and p(K) represent the probability that the TDPFADD is operating in
states 1, J, and K respectively and P, P, Py represent the time averaged power consump-
tion of the TDPFADD when it is operating in the respective state. With non activity scaled
floating point adders, the power consumption can be as high as P; + Py + Pg. With the
transition activity scaling scheme, the reduction in time averaged power consumption of

TDPFADD occurs mainly due to the following:
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Table 4.2: State assertion conditions of TDPFADD

° .

= Active State assertion criterion Activity scaled blocks

& | data path

I | Bypass Either exponent is zero or ep,, +1 Entire TDPFADD except Exponent
Or e4i>p logic, Control unit, Bypass logic

and Result Integration/Flag logic

J | LZA No Bypass and Pre-alignment barrel shifter (large)
subtraction and ey;r< 1
LZs<p)

K | LZB No Bypass and LZA logic and normalization barrel
addition or eqiF> I shifter (large)
(LZs<1)

(1) The leading zero estimation circuits that anticipate a variable number of leading zeros
are as complex as significand adders. Transition activity scaling ensures that this unit
becomes operational only during situations that demand its use. During all other situa-
tions, the switching activity of this unit is zero and in floating point additions, the proba-

bility that FADDs endure situations that demand estimation of a variable number of

leading zeros is marginally low.

(2) In bypass mode, most of the floating point adder core is activity scaled and a signifi-

cant amount of power saving can be achieved.

(3) Transition activity scaled design partitioning of floating point adder offers power sav-
ings also due to the data path simplifications. Since in the LZA data path, the significand
pre-alignment shifts are < 1, they can be performed by using a single level of multiplexers
(iVIUXs), however the normalization shift requirement can be anywhere between 0 and p
(p represent the width of significand data field, including hidden bit), by virtue of which it

is mandatory to have a composite barrel shifter for performing such shifts. In LZB data
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path, significand pre-alignment shifts can be any where between 0 and p and a pre-align-
ment barrel shifter is needed. The normalization shift of this data path can be realized by
using a single level of 3X1 MUXs. Due io the complexity of the barrel shifters, they are
expensive in terms of power consumption, delay and area and because of transition activ-
ity scaling, at the most one barrel shifter is used for the addition of floating point numbers.

_This minimizes the power consumption, logic depths and circuit delays of the data paths.

4.2.2 Architecture
Fig 4.2 illustrates the data flow architecture of TDPFADD. To distinguish between the two
computational data paths, functional sub-units of the LZA data path are shaded darker

than that of the LZB data path.

4.2.2.1 Exponent logic

This logic evaluates the relative magnitudes (el > e2, el < e2 or el = e2) of the exponents
of input floating point numbers and calculates the absolute value of difference between
them (le! - e2[). A 1's complement adder is used for this application because during opera-
tion of the type [el - ¢2|, the conditional carry outputs also reveal the truth of the condi-
tions el > e2, el < e2, or el = ¢2, using no extra hardware as can be seen in Table 4.3 [1]
[48]. In Table 4.3, C,,,(0) and C,,(1) represent the conditional carry outputs from the
MSB bit position of the adder anticipating an input carry (at the LSB bit position) of 0 as
well as 1. Compared to 2’s complement scheme, the 1’s complement adder can evaluate |A
- B| in the same time, using half the hardware. The power consumption of this scheme is

around 50% of that of its 2’s complement counterpart. The inherent data comparison capa-
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Exponents Input Floating Point Numbers

ExponentLogic | o, Control Logic

y
Data Selector
1 - Data Selector/Pre-align
1 Pre-alignment (0/1 Bit Right Shifter)
(Right Barrel Shifter)/ -
Complementer
T vy v y
‘ * Adder/Rounding Logic Bypass Logic
| Adder/Rounding Logic
]
— v RRA2
v Y v vy LT
Exponent Result Selector  Leading Zcero
Exponent Result Subtractor Counting logic
Incr/Decr Selector
Normalization Normalization
(1 bit Right/Left (Left Barrel Shifter)
Shifter) _

Y | v Y Y

Result Integration/Flag Logic

_———-—1;———¢——————

Flags IEEE Sum

Fig 4.2 - Block diagram of the TDPFADD

bility of the 1’s complement adder facilitates the evaluation of conditions like A > B, A <
B, B>A,B<A, A =B andA # B, with-out any power consumption or use of hardware [1],

[48]. Absolute value of exponent difference, ey = |e] - €2| is needed by Control logic, for
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Table 4.3: Significance of conditional carry outputs of

1’s complement adders

Cour(® CoulD) Remarks
0 0 Coudl)=0=>A<B
0 1 Couf0)=0and C, (1) =1=A=8
1 0 Impossible condition
1 1 Coud0)=1=A>RB

the activation of different data paths and also it is the magnitude of pre-alignment shift in
LZA and LZB data paths. Relative magnitude of exponents is used in the selection of the

significand of the smaller number for pre-alignment shift by Data Selectors.

4.2.2.2 Control Unit

Control unit selects an appropriate data path and routes the inputs to the selected data path
by exploring the exponents of input floating point numbers and exponent difference. This
unit generates control signals, according to state assertion conditions discussed in Table
4.2. The Bypass data path is activated not only when either of the inputs is a special quan-
tity but also whenever the magnitude of significand pre-alignment shift i.e. the exponent
difference, exceeds the width of significands (p), because in that case the result of floating
point addition is definitely the larger | number. TDPFADD gives substantial amount of
power saving during such ‘beyond shift range’ conditions due to the limited width of the

significand data field.
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4.2.2.3 Bypass data path

The bypass data path is a non-computing data path which selects and memorizes an appro-
priate floating point number during various bypass conditions. Whenever the difference
between the exponents of the input floating point numbers is greater than the width of sig-
nificand, the larger floating point number is latched into the bypass data path. During oper-
ations of the type 0 & number also the larger floating point number is latched. If both the
operands are zeros, a zero is latched. For operations of the type oo + number, an infinity
is latched. During situations when a FP addition produces ‘NaN’ (not a number) result,
NaN is latched into the bypass data path. As latency of pipelined TDPFADD (pipelined
architecture is presented latter) is fixed, the results of the bypass data path are not immedi-
ately presented to the output. The latched data is presented to the oufput during an appro-

priate cycle of pipeline operation.

4.2.2.4 Leading Zero Anticipatory (LLZA) data path

LZA data path is activated by Control logic when bypass conditions are false and there is a
possibility of generation of variable number of leading zeros during signed-magnitude
addition of significands, which is only possible if the operation is subtraction and the dif-

ference in exponents of the input operands is either zero or one.

In LZA data path, Data Selector/Pre-alignment logic handles the pre-alignment shift of the
appropriate significand by 0/1 bit right shifter. Based on the conditional carry outputs of
the 1’s complement adder, used for the evaluation of |e] - ¢2| condition in Exponent logic,
significand with the larger exponent is routed directly to the significand adder while the

significand with the smaller exponent is right shifted by one bit and is complemented. The
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LSB of the shifted out significand is retained as guard (G) bit. Fig 4.3 illustrates the pre-

aligned significands before addition.

Significand of large number _g,.| p - 1 higher order bits 1]a0
I’s complement of the signi}__p,. ~1 hisher order bits bile
ficand of the small number } P gh G
V p-bit significand field I/
/1 7]

Fig 4.3 - Pre-aligned significands

The data field with a G at its LSB position represents the 1’s complement of the right
shifted significand when the exponent difference between the floating point numbers is 1.
The bit a0 is asserted 1 during the subtraction of a right shifted significand. Effectively,
this type of operation guarantees a 2’s complement addition of the aligned significands
whenever the exponent difference is one, in which case a positive result is guaranteed as
significand with smaller exponent is always cornplementegi. Whenever the exponent dif-
ference is zero, pre-alignment shift is not required and one of the significands is comple-

mented. In this case, a0, G bits are not relevant in the signed-magnitude addition.

The Adder/Rounding block performs signed-magnitude addition of significands. Pre-com-
putation for rounding is performed concurrently with addition, so that by the time the
rounding decisions are known, an appropriate copy of the result can be selected for nor-
malization shift. Adder/Rounding logic adds the pre-aligned significands without a0 and
G bits (LSBs of pre-aligned significands) and generate conditional sum bits for bit posi-
tions MO to MSB and conditional carry outputs by anticipating block carry inputs of 1 as

well as 0. A 1's complement addition using conditional sum/carry select adders is ideal for
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this application [23] [7] [56]. Fig 4.4 shows the process of pre-computation, selection and

normalization of rounded result in LZA data path while Fig 4.5 illustrates the result of sig-

Aligned Significands
c 4 4 Ciy =0
o% | Adder (Bit positions MO to MSB) Cip=1
- —

o ; { Y

-
L1 Result Selector (3 X 1 MUXS) |« Leading Zero Counters

|

Barrel Shifter

lRounded Result

Fig 4.4 - Pre-computation, selection and normalization of rounded results
in LZA data path
nificand addition. Note that Cour is useful for effecting the selection of the right result
after 1's complement addition. The least significand bit, R, shown in Fig 4.5, is evaluated
separately and is used for the purpose of rounding. The Adder/Rounding logic generates
the conditional sum bits with an anticipated carry inputs of one (suml) and zero (sum0) as
well as the 1’s complement of the conditional sum bits with carry-in of zero (sum0). The
sumO is required during those situations when the end around carry of 1's complement
addition, with equal exponents, is zero. The Leading Zero Counting logic detects and
encodes the number of leading zeros of the three results, generated by the 1’s complement
Adder/Rounding logic. In references [1], [36]-[44], the authors favour the use of serial

leading zero counters instead of parallel leading zero anticipatory logic for their
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Cout p - I higher order bits o R
p bits Ve

Fig 4.5 - Result of significand addition before normalization shift

TDPFADD architecture. According to their assumption, since the significand pre-align-
ment operation is faster for the LZA data path (due to the absence of a multi-stage barrel
shifter), the adder inputs of this data path get asserted at a relatively earlier ime compared
to that of the LZB data path. The earlier the arrival of significand inputs, the earlier the
completion of addition. Because of this reason, even with a simpler (serial) leading zero
counting logic, this data path can complete the process of floating point addition within
such time the LZB data path completes an addition. But the speed advantages given by fast
significand pre-alignment shift in LZA data path is covered by slower normalization shift,
which is done by a barrel shifter. Normalization shift in case of LZB data path is faster
because it is a 0/1 bit left or right shift and it can be realized by a single row of MUXs.
Hence, even the use of simpler (serial) leading zero counter has the advantages in terms of
power consumption and silicon area, the delay introduced by leading zero counter adds up
to the critical path delay of TDPFADD and it also increases the latency in pipelined TDP-
FADD. For the counting of leading zeros, a fast, tree type, 32-bit leading zero counter has
been chosen. It is proposed by H. Suzuki et al. [34] and its 16-bit version is shown in Fig
4.6. The basic building block of the counter is a 4-bit section, which encodes the number
of leading zeros into a 3-bit data field. Two 4-bit sections are cascaded to form an 8-bit

section. Two 8-bit sections can be cascaded to form a 16-bit section and so on.
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Fig 4.6 - Leading Zero Counter

The Leading Zero Counting logic is composed of 3 such LZ Counters which evaluate the

number of leading zeros in sum0, suml and sum0Q vectors in parallel. As the conditional
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sum outputs of Adder/Rounding logic are 24 bits wide, the remaining 8 LSBs are asserted

as 1’s before feeding them to leading zero counters.

Result Selector receives three conditional sum vectors and their leading zero counts and
selects one of the sum vectors and its corresponding leading zero count in accordance with

the rounding/complementation conditions as explained below.

Whenever the exponents of input floating point numbers are equal, a subtraction of one of
the significands from the other is guaranteed to produce at least one leading zero, due to
the equality of their leading bits. This situation doesn't demand any rounding. Since the
relative magnitudes of the significands are not known in the beginning of addition, a 1's
complement subtraction can produce either a positive result or a result that is equal to the
1's complement of the magnitude of the result or even a zero result. If the conditional
carry-out of 1's complement significand addition, with an anticipated carry-in of zero, is 1
i.e. Cout(0) = I, it means the smaller significand was subtracted from the larger signifi-
cand and the result is positive. In this case, conditional sum bits with an anticipated carry-
in of 1 (suml) should be selected. If the conditional carry-out, with carry-in of one, is zero
i.e. Cout(1) = 0, it means the larger significand was complemented and 1’s complement of
conditional sum bits with carry-in of O (sum0 ) needs to be selected. When two significands
are equal (i.e. Cout(0) = 0 and Cout(1) = I), it produces a zero result as the exponents are
also equal and the operation is subtraction. The decoding of the conditioﬁal carry outputs
of 1’s complement adders is attractive for the evaluation of such a condition as a direct
evaluation of zero result through the decoding of the resulting significand is expensive in

terms of silicon area and power. Also in this situation, a zero result is directly mapped to
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the output and the normalization shifter is not operational. Transition activity scaling of

this barrel shifter results in significant amount of power saving.

During subtraction with an exponent difference of one, the normal carry input at MO posi-
tion is G. This carry input is valid as long as no rounding is required, which is guaranteed
for all those situations which result in the generation of at least one leading zero and in this
case, R bit is also required which is the complement of G. When the subtraction with
exponent difference of one produces no leading zeros, rounding may be required and carry

injection at MO is G + (a; ® b,) . Combining both the cases, the actual carry input at MO

position is
Cin = G+ (a;® b,)LB(0).......... 4.2)

where a;, b; and G are relevant bits of the aligned significands as shown in Fig 4.3 and
LB(0) is the leading bit of sum0 vector. If Cin = 1, sum bits with anticipated carry-in of 1

(suml) is selected otherwise sumO is selected.

Normalization logic is composed of a barrel shifter, which shifts the (p+1)-bit wide result,
presented by the Result Selection logic, left by an amount equal to the selected value of
leading zero count, such that the leading bit of the final result is always a 1. As in case of
IEEE single precision data format, the maximum amount of normalization shift is 23, 5
bits are sufficient for effecting the significand shift. LZ = 24, presents the case in which
result is zero and barrel shifter is transition activity scaled as zero is mapped to the output.
In barrel shifters, the dominant component of power consumption is the switching activi-

ties of high fanout control path and operand data path nodes. Transition activity scaling of

62



these nodes is rewarding as far as design for low power operation is concerned. Also the
delays of drivers which interface signals to the high fanout nodes, forms a major compo-
nent of the overall delay. Because of these reasons, the additional power/delay overheads
for the evaluation of extra control signals for effecting transition activity scaling is insig-
nificant in contrast to the savings in power wastage attainable through such a control. The
barrel shifter is composed of a cascaded array of 2X1 multiplexers. A single stage of nX1
MUXs can also perform the requisite shifts but multi-stage shifters are advantageous, as
far as energy delay minimization of barrel shifters is concemned [47] [1]. The 8-bit version
of the multistage left barrel shifter [S6] used is shown in Fig 4.7. Each 2X1 MUX of the
ith stage selects one of the 2 shifted data and unshifted data. The shifter operates in the
order from the shift by the smallest amount to the shift by largest amount. Once the shift-
ing is complete, the L.SB of the resultant significand can be discarded. The leading bit can

also be discarded, since this bit is guaranteed to be a 1 all the times.

The Exponent Subtractor subtracts the relevant copy of leading zero count from the tenta-
tive exponent of the result. The 1’s complement adders are appropriate for the evaluation
of the exponent of the final result. With the conditional carry outputs of these adders, eval-

uation of underflow condition is a trivial operation. A C,,,{0) = 0 during the subtraction of

a leading zero count from the tentative exponent of the result indicates underflow.

4.2.2.5 Leading Zero Bounded (LZB) data path

This data path handles the signed-magnitude addition of significands in all those situations
when the number of leading zeros of the result of such addition is guaranteed to be less

than or equal to one. This include all cases of addition (when the sign of input floating
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Fig 4.7 - Left barrel shifter

point numbers is equal). The subtraction performed by this data path is, however,

restricted to those cases when exponent difference (|e! - €2|) is greater than 1.

In LZB data path, the input Data Selector selects significands for pre-alignment operation.
Using conditional carry outputs of the 1's complement adder, used for the evaluation of |e!
- e2| condition in Exponent logic, significand with the smaller exponent is fed to the Pre-

alignment logic for right shifting while significand with the larger exponent is routed
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directly to the significand adder.

Pre-alignment logic is composed of a right barrel shifter. The barrel shifter shifts the sig-
nificand of smaller number right by an amount that is equal to the exponent difference |el-
e2|. For values of exponent difference greater than the width of significand (p), the aligned
significand will be zero. In this condition, Control logic activates the Bypass data path and
LZB data path is transition activity scaled. Transition activity scaling of floating point
adders during such situations results in power savings. In single precision floating point
adders, the width of significand is 24, so the amount of pre-alignment shift is upper
bounded by 24 and 5 bits are sufficient for effecting the significand shift. Five LSBs of the
exponent difference are realized as the shift control data word. Again a barrel shifter with
cascaded array of MUXs is used. The 8-bit version of right barrel shifter is shown in Fig
4.8. Two of the shifted out bits are retained as guard (G) and round (R) bits. In reference
[44], authors proposed a sticky bit formation scheme for floating point adders through the
evaluation of trailing zeros of the significand of the smaller number. In floating point addi-
tions, the magnitude of pre-alignment shift of the significand of the smaller number is
given by SH = |e; —e,| , where SH represents the magnitude of alignment shift and e; and
e, represent the exponents of the floating point numbers. Since the number of shifted out
(discarded) bits is less than the actual shift by an amount that is equal the number of guard
bits (G, R bits), the effective shift as far as sticky bit evaluation is concerned is given by
SH,, = SH-2.If the effective shift is greater than the number of trailing zeros, the sticky
bit can be set to 1, and vice versa. Evaluation of the condition SH,g#> TZ can be formu-

lated to SH~2-TZ >0, so that a 1’s complement adder can be used for the evaluation of
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0 selecty 0 select; 0 selecty

Fig 4.8 - Right barrel shifter

this condition. Trailing zeros are counted by a 32-bit tree type Trailing Zero Counter (16-
bit version shown in Fig 3.6). Fig 4.8 (a) illustrates the input data representation for the
evaluation of the above condition. The shift magnitude SH and trailing zero count, TZ are
encoded into 5-bit numbers. The third row in Fig 4.9 (a) represents the 2’s complement of
2. These three rows can be compressed into sum and carry vectors, as shown in Fig 4.9 (b)

by a single row of 3:2 compressors. The end around carry of 1’s complement arithmetic
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(a) Input data for the evaluation of SH -2 > TZ

c4 |C3 | Cc2 | c1 |co

1 0 S4 S3 S2 S1

(b) Input data after bit compression

Fig 4.9 - Data presentation for the evaluation of SH - 2 > TZ

operation gives the required sticky bit by making use of a circuit shown in Fig 3.8. The

computation of sticky bit through this approach is attractive for high speed of operation.

The output of the Pre-alignment logic is routed to the significand adder through a comple-
menter which performs an inversion (bitwise) of its input data word during subtraction of
one floating point number from another. Fig 4.10 (a) shows the data representation of the
aligned significands, where a0 bit is a 0 during addition and it will be a 1 during subtrac-
tion (for 2’s complement addition of the aligned significand). The G, R, S and bi (Vi) bits
are the complements of the bits of the aligned significand during subtraction and are the
_ true bits during addition. Fig 4.10 (b) represents the result of significand addition before

normalization shift.
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For rounding purposes, bit positions MI to C,,, are treated as a single block. Since the
rounding decisions are not available till the normalization shift is complete, pre-computa-
tion of two sets of sum bits is the best choice for Zero Overhead Rounding, so that by the

time the rounding decisions are known, an appropriate set of sum bits can be chosen. The

EignmCM% of the}-» p - 2 higher order bits ~ |a4|a3| 0|0 |a0
arge numboer p - 2 higher order bits b4|b3|G|R| S

p-bit significand field

(a) Pre-aligned significands

Cout p - 2 higher order bits MIMO G R §°
p-bit significand field

(b) Result of significand addition before normalization shift

Figure 4.10 - Data representation in LZB data path

sum bits are evaluated for incoming carries of zero (sum0) as well as one (surml). Condi-
tional sum/carry select adders are ideal for this application. Fig 4.11 gives the block dia-
gram of the significand addition/normalization/rounding scheme for the LZB data path. As
far as the bits towards the right of M are concerned, conditional results for all possible
cases of addition and rounding are pre-computed. The Result Selector and Normalization
Shifter blocks append the rounded bits of the lower order bit positions (towards the right

of M) to that of the higher order bit positions (M to MSB).

In LZB data path, rounding for addition and subtraction are distinct problems. These prob-
lems are further categorized into sub-problems, depending on whether Cour and leading

zero occur during the signed-magnitude addition of significands.
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Fig 4.11 - Pre-computation, selection and normalization of rounded results
in LZB data path

During addition, a0 bit is a zero. When Couz is 1, the normalized result with new round
and sticky bits is shown in Fig 4.12. MO of Fig. 4.10 (b) becomes the new round bit while

the new sticky bit is the logical OR of all bits towards the right of M0. Hence

S”=G+R+S..... “4.3)

Cout MIR”|S”
L/ P bits L
/1 4

Fig 4.12 - Result of significand addition after normalization shift (Add operation)
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R” =M0O = a3®5b3.......... “44)

MI = a4 ® b4 ® a3b3.......... 4.5)

In the above equations, G, R, S, ai and bi bits represent the bits of the aligned significands,
as shown in Fig 4.10 (a). The condition for rounding is given by R”(MI + S”). If the
rounding condition is true, a 1 must be added to M1. The carry in at M1 bit position due to

rounding is given by

Cinl = a3b3+ (a3 @ b3)(sum0(0) +G+R+S) .......... (4.6)

In the above equation, a3b3 represents the normal carry input to the M1 position (irrespec-

tive of whether there is any rounding condition or not) while the second term represents a

Table 4.4: Carry injection at M1 bit position

Case Rounding condition Carry injection at M1

1 Addition with Cout =1 Cinl = a3b3 + (a3 ® b3)(sum0(0) + G+ R +S)
2 Addition with Cout =0 Cin2 = a3b3 + (a3 ® b3)G

3 Subtraction with no leading zero | Cir3 = a3b3 + (a3 ® b3)(G + RS)

4 Subtraction with one leading zero | Cin4 = a363 + (a3 ® b3)G(R+S)

carry input that is generated due to rounding. Table 4.4 [46] lists the carry injection at M
bit position for all possible addition and rounding cases. If carry injection at M1 is 1,
Result Selector selects the conditional sum bits with anticipated carry-in of one (suml)

else sumO is selected.
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The rounded bits towards the right of M1 for all four cases of rounding and addition are

given in Table 4.5 [46].
Table 4.5: Rounded M0 and M_; bits
o v
g Rounding condition MO’ M,
1 Addition with Cout =1 Not required Not required
2 | Addition with Cout =0 (a3 ®53)G + (a3 ® 53)G(R + S) | Not required
3 Subtraction with no leading zero | (a3 ® 63)GRS + (a3 @ £3)G Not required
4 Subtraction with one leading zero | a3 ® b3 ® G(R + S) GR+G(R+S)

The normalization shifter for this data path is a one-bit left/right shifter. Exponent compu-
tation of LZB data path is realized by using Exponent Increment/Decrement logic, which
conditionally increments (subject to the generation of a carry-out from the MSB position
during significand addition) or decrements (because of the generation of a leading zero
during subtraction) the tentative exponent. Evaluation of overflow/underflow conditions is
straightforward in this data path and it can be easily evaluated by the conditional carry out-
puts of 1’s complement adders. During subtraction, an underflow condition can occur if
and only if the tentative exponent is the smallest representable exponent, e, (¢,;, = 1,
for single precision floating point adders) and the result of the signed magnitude signifi-
cand addition contains a leading zero. Underflow is evaluated by Cout(0) = 0, where
Cout(0) is the conditional carry-out of 1’s complement adder with an anticipated carry-in
of zero. Similarly, overflow can occur if the tentative exponent is the maximum represent-
able exponent without overflow, €,,,, (€n4r = 254 in IEEE single precision data format),

and the significand addition produces a carry out from the MSB end of the significand
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adder. The Cout(1) = 1, implies an overflow where Couz(1) is the conditional carry-out of

I’s complement adder with a carry-in of 1.

4.2.2.6 Result Integration/Flag logic
Result Integration/Flag logic selects the appropriate copy of result from the relevant data
path. It also asserts five status flags to represent zero, —infinity , + infinity , not a number

and denormalized results.

The block diagram in Fig 4.2 shows a low latency architecture of TDPFADD. Input and
output registers are needed for the data alignment. A 2nd stage of registers is required for
the transition activity scaling of the different datav paths. Control logic controls the data
presentation to the different data paths by generating control signals which can selectively

activate or mute the clock signals to registers of certain data paths.

4.2.3 Pipelined TDPFADD

In [1], [36]-[44], the authors proposed the reduction of latency in TDPFADD by around
two pipelined stages compared to the 5 stage single data path floating point adder pro-
posed by H. Suzuki et al. [34]. One stage reduction due to Zero Overhead Rounding and
the other due to the reduction in logic depths of the computing data paths by way of elimi-
nating one barrel shifter from the critical path. As TDPFADD is evaluating the number of
leading zeros by using a serial leading zero counter while single data path FADD [34] is
using an optimized Leading Zero Anticipatory logic in which the delay of LZA logic is
completely hidden behind the significand addition and as the first purpose of pipelining is

to achieve maximum possible speed of operation without unnecessary increase in power
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consumption and area, we present a 5 stage triple data path floating point adder as shown
in Fig 4.13. The delay time of the third stage of LZA data path restricts the cycle time of
pipelined TDPFADD because the significand adder of the LZA data path has the largest
delay time. Clock of register stages 2, 3, 4, and 5 is gated by control signals, generated by

Control logic, for the activation/de-activation of different data paths.

4.3 Hardware configuration of single data path floating point adder
(FADD)

In this section the hardware configuration of a single data path floating point adder
(FADD) [34] which utilizes an optimized approach for leading zero anticipation, and con-
current evaluation of normalization with rounding, for high speed operation, is presented.
In this section first the most important feature of single data path FADD i.e. high perfor-
mance 1eading zero anticipation is presented and then the hardware configuration of

FADD using this LZA logic is discussed.

4.3.1 Leading Zero Anticipatory (LZA) logic

In a floating point addition operation, subtraction of significands can generate leading
zeros in the resultant significand. The normalization shifter has to shift the significand to
the left until the first ‘1’ appears on the left end as the leading bit. When the two floating
point numbers are close to each other, this procedure of normalization can introduce a sig-
nificant amount of delay. If the consecutive bits of these leading zeros are counted in par-
allel with the addition/subtraction of significands, ihe total delay time for the FADD is .

greatly reduced and it can be helpful in the designing of low latency floating point adders.
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Fig 4.13 - Block diagram of the pipelined TDPFADD with five execution stages
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Significand addition and normalization parts of floating point adders are shown in Fig 4.
14. Fig 4.14 (2) shows an example with LZA logic. The LZA logic anticipates the amount
of shift for normalization. Because this amount is calculated from the source operands of
the addition/subtraction of significands, the LZA performs this operation in parallel with
addition/subtraction. Immediately after the addition/subtraction, the normalization shift

can be performed since the shift amount is already been determined.

Fig 4.14 (b) illustrates a direct way to perform normalization. Once the addition/subtrac-
tion of significands is finished, a serial leading zero counter, counts and encodes the num-

ber of leading zeros and then the result is left shifted by the barrel shifter. LZA logic

Significand of input A Significand of input B Significand of  Significand of
l 1 input A input B
i Significand
l * ! Adder/Subtracter
. Significand
LZA logic Adder/Subtracter
*—__' Leading Zero Counter
Normalization
Barrel Shifter
Normalization
‘ Barrel Shifter
Significand of output
Significand of output

(a) Example with LZA logic
(b) Example without LZA logic

Fig 4.14 - Addition/Normalization part of floating point adder

improves the performance of floating point adders by hiding the delay of leading zero esti-
mation behind significand adder/subtracter. In reference [33], an LZA logic is proposed

which is used in the design of low latency multiply-accumulate fused (MAF) unit [31]
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[32]. But due to the complexity of the LZA unit, the performance acceleration comes with
power and area penalties. Here overview of an optimized LZA logic, proposed by H.

Suzuki [34] is presented.

The process of leading zero anticipation is divided into 2 parts. In the first part, LZA logic
prepares the predicted consecutive bits of the leading zeros from the two source operands
of significand addition/subtraction. Second, the leading zero counter decodes these con-
secutive bits to drive the normalization shifter. In this scheme, smaller significand is
always subtracted from the larger significand, in which case a positive result is guaranteed.
Let A and B are the significands of input floating point numbers. In case of subtraction, if

A =B then

Let Ap = A and Bp = B, where Ap and Bp are the inputs to the LZA logic and significand

adder. If A < B, then
S=B-A=A+B+1..... (4.8)

In this case, Ap = A and Bp = B. In case of addition

and Ap = A and Bp = B. The leading 1, Ei, is drived as

Ei = (Ap;® Bp;) * (Ap_1y+ Bp(i_1y) -eovvenee (4.10)
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A possible gate level schematic of LZA logic, i.e. E}, is presented in Fig 4.15. Ey is always
asserted as discussed below. The OR gate of the (i - I)th bit is shared withs the next block
of the ith bit. The delay of the LZA logic is significantly less than the adder delay as unlike

Ay —a

B

m

Fig 4.15 - LZA logic

the carry of adders, no signal is spread in more than two bit positions. This: LZA logic has

the possibility of wrong anticipation of leading 1 by one bit position as can be seen in the



behavior of £ and S (sum bits) in the following examples [34]. In these examples,

“_“ is

used to denote Ej as it can’t be evaluated from Equation (4.10). As A2 B, so Ap = A, and

B, = B, in case of subtraction.

Example I:
A:
B:
A
B
E:
S:

1000 0000 1010 0001
011111110110 1001

\

1000 0000 1010 0001
1000 0000 1001 0110 + 1

Y

0000 0001 0100 100-
0000 0001 0011 1000

In this example, leading bits of significands A and B are complement of each other, which

makes the leading bits of A, and B, identical. Position of leading 1 is the same for both E

and S and uncertainty about E, does not affect the result.

Example 2:

™ >

1001 1100 1010 0001
1001 1100 1000 1001

Y

1001 1100 1010 0001
01100011 01110110+ 1

\

0000 0000 0010 100-
0000 0000 0001 1000

Leading bits of A and B are the same, which makes the leading bits of A, and B, comple-

ment of each other. In this case anticipated leading ‘1’ is not matching with leading ‘1’ of

the sum bits. It is one bit left of the correct leading ‘1’. Status of Ej is not affecting the
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result.

Example 3:

A: + 10011100 1010 1000
B: — 10011100 10100111

\

Ap: +0 1001 1100 1010 1000
Bp: +1 01100011 0101 1000 + 1

Y

E: 0 0000 0000 0000 000-
S: 0 0000 0000 0000 0001

In this example, subtraction of 2 significands result in § = 7000...001”, while E =
”000...00-". Status of E, needs to be considered in this case. If E, is always asserted, E in
this case will correctly anticipate the leading ‘1’. But this will lead to wrong anticipation
in case of § =000...000”. But this error represents the anticipated leading ‘1’ to be one bit
left of correct leading one, which is the same mode as in Example 2. If E is always de-
asserted, this error will be different from the one mentioned in Example 2 and different

correction logic (compensation shifter) needs to be designed. So E is always asserted.

Example 4:

A: + 10011100 0010 0001
B: <+ 00111011 1100 1001

\

Ap: +0 1001 1100 0010 0001
p- +0 00111011 1100 1001 +0

Y

E: 1 0101 1000 0001 001-
S: 0 110101111110 1010

Example 4 represents a case in which the process is significand addition. In this case E
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value at the sign bit will always be 1. So if the LZA logic is extended to sign bit, a no shift

signal will be generated in case of addition of significands.

These four examples cover all possible behavior of LZA logic. It can be seen from the
examples that LZA logic can either correctly anticipate the leading ‘1’ or a one bit larger
than the leading ‘1’ of S bit vector. The wrong anticipation can be corrected by a compen-

sation shifter, which can be shared by other shifters of floating point adders.

4.3.2 Architecture of FADD

Reference [34] also presents a single data path floating point adder (FADD) using IEEE
double precision data format. For the comparison with TDPFADD [1], [36]-[44], it is
modified to work with single precision data format. Fig 4.16 shows the block diagram of
the single data path FADD. The operation of floating point addition is divided into five

execution pipeline stages.

In the first stage, Exponent logic compares the exponents of two input floating point num-
bers for their relative magnitude and also calculate the exponent difference, which is the
amount of pre-alignment shift. Relative magnitude of exponents helps in the selection of
significand of floating point number with smaller exponent for pre-alignment shift. Also
the larger exponent is selected as the tentative exponent of the result and sent to Exponent

Subtracter in the 4th stage.

In the second stage, Pre-alignment logic performs the right shifting of significand, with

smaller exponent, by an amount equal to the exponent difference, using a right barrel
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shifter. To reduce the complexity of barrel shifter, five LSBs of exponent difference are
realized as the shift control data word. In case of single precision floating point adders, as
the width of significands is 24 bits, any shift larger than 24 bits will result in a zero signif-
icand. So if either of 3 MSBs of 8-bit exponent difference is one, significand with the
smaller exponent is shifted by a maximum amount which can be encoded by five bit data
field i.e. 31, which produces a zero result from the output of barrel shifter. This reduces the
delay, power consumption and area of right barrel shifters. The barrel shifter used here is
of the same type as used for the pre-alignment shift in the LZB data path of TDPFADD. It

is composed of cascaded array of 2X1 MUXs (Fig 4.8).

Instead of the rounding proposed in [34], round to nearest-even rounding mode is selected
to make the floating point adder IEEE compliant. So two of the shifted out bits of the
aligned significand are retained as guard (G) and round (R) bits. Sticky (S) bit, which is the
logical OR of all shifted out (discarded) bits, can be evaluated by using different tech-
niques. References [46], [1] present a technique for high speed evaluation of sticky bit
using the trailing zeros count of significand of input floating point number, which is right
shifted. This approach can be realized using high performance/low power/low area hard-

ware as discussed in Section 3.2 of this thesis. The same technique is also used for single

data path FADD.

In parallel with the pre-alignment shift, Significand Comparator compares and orders the
significands so that subtraction results are always positive. In case of non-zero exponent
difference, significand with larger exponent is selected as the larger significand. If the

exponent difference is zero, only then two significands are compared for their relative
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magnitudes. The LZA logic proposed in [34] can also work with the negative results in
case of subtraction, as suggested in [35] but the absolute result of subtraction achieved by
the use of Significand Comparator simplifies the Significand Adders and the concurrent
rounding with normalization shift. In Bit Inverter, first G, R, and S bit positions of the sig-
nificand which is not pre-aligned are asserted as “000”, as shown in Fig 4.17. In case of
subtraction, the Bit Inverter performs the inversion of the smaller significand. Most of the
the time the right significand (output of pre-alignment logic) is inverted. The left signifi-
cand is inverted only if it is smaller than the right significand and the exponent difference

is zero. In case of addition, none of the significands is inverted.

Sign a4/a3{ 0 {0 |0
Sign b4{b3|G IR | S
L p bit significand field L/
g

(a) Pre-aligned significands before bit inversion

Cout MI1{MO|G’| R S’

L/ P bits L/
/1 V4

(b) Result of significand addition before normalization shift
Fig 4.17 - Data representation in single data path FADD

Third stage performs the significand addition and leading zero anticipation for normaliza-

tion shift, in parallel. The optimized LZA logic presented in the previous section prepares

the predicted consecutive leading zeros from the two source operands of significand addi-
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tion. A 32-bit, tree type, leading zero counter also proposed in [34] (16-bit version shown
in Fig 4.6) is used to decode these consecutive leading zeros. The circuit of LZA logic
(shown in Fig 4.15) is extended to sign bits. This enables the LZA circuit to generate the
unshift signal in case of add operation (Example 4, Section 4.3.1). Hence unshifted data
will pass through the; normalization barrel shifter and is used as rounded-down (not incre-
mented) data during rounding operation. Hence, the extension of the sign bit enables the
signal path of the round-down data to be shared with the signal path of the normalization
shifter. Significand addition is performed by a 28-bit (24-bit significand, Sign, G, R, and S
bits), two stage Carry Look-Ahead (CLA) adder [56], with a carry-in of 1, during subtrac-
tion operation for 2’s complement addition (as smaller significand is always comple-
mented, a positive result is guaranteed) and a carry-in of zero in case of an addition

operation.

Normalization and rounding conditions are evaluated concurrently in the 4th stage.
Rounding Controller evaluates the conditions for rounding and generate Round signal
(Round = 1, represents round-up, and Round = 0, represents round-down) by examining
the various bits of the result of significand addition (Fig 4.17 (b)). By utilizing [EEE
default rounding mode of round to nearest-even, the rounding conditions are evaluated as

below:

If MSB of result of significand addition is 1, it represents a case in which Cout = 1 during
the add operation. Normalization logic will right shift the result by one bit and the round-

ing condition in this case is

Round = MO(M1+G + R +5) eeeueen... 4.11)

84



Where M1, MO, G’, R’ and S’ are the LSBs of the result of significand addition as shown
in Fig 4.17 (b). Else if the first bit to the left of MSB of the result of significand addition is

one, no normalization shift is required and rounding condition is
Round = G(MO+R +§").......... “4.12)

Else if the second bit to the left of MSB is one, it implies one leading zero exists and one

bit left shift is needed. The rounding condition is
Round = R(G' +S) ceeueenn. (4.13)
Else if the third bit to the left of MSB is one, there are two leading zeros and
Round = RS .......... (4.14)

For other possible values of the result of significand addition, round-up condition is
always false. Normalization logic performs the normalization shift in parallel. In case of
subtraction operation, it shifts the result of significand addition by an amount which is
equal to the number of leading zero encoded by the combination of LZA logic and leading
zero counter. A left barrel shifter (of the type shown in Fig 4.7) is used for this purpose. In
case of addition operation, one bit right shift may be needed in case MSB of the result is
one. In case of addition, the extended sign bit generates the control signal to bypass the
non-shifted data through left barrel shifter. As round to nearest-even approach using G, R,
and S bits is utilized for this single data path FADD, the normalized result has to be incre-
mented because due to the normalization shift the position of conditional increment due to

rounding is not the same. Rounding Selector selects the incremented or non-incremented
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normalized result based on the value of Round signal from Rounding Control logic.

The 5th stage consists of Compensation Shifter and Exponent Incrementer. A one-bit sig-
nificand shift is performed to compensate for any mis-shift caused by the wrong anticipa-
tion of leading zeros. As LZA logic is working on the operands which include the sign bit,
it performs the correct anticipation of leading zeros in case the anticipated position of
leading one (E) is one bit larger than the leading one of sum (S), as in Example 2 and
Example 4 (Section 4.3.1). In case the leading one of E matches with that of S, the antici-
pated leading zero count and hence the left shift is 1 larger than the actual leading zero
count (Example 1 and Example 3, Section 4.3.1). The Compensation shifter performs one
bit right shift to correct the mis-shift. In cases where p MSBs of the normalized signifi-
cand are 1’s, rounding can result in a carry-out from MSB. Here also a 1-bit right shift is
required to bring the significand of the result back into normalized form. Compensation
Shifter is shared with the shifter for the rounding procedure. In case of a 1-bit shift, expo-

nent is incremented by one by the Exponent Incrementor.

ADelay time of the third stage restricts the cycle time of the FADD as 28-bit Significand
Adder has the largest delay time. As the LZA logic and LZ Counter have smaller delay
than the adder so the process of leading zero anticipation is completely concealed behind

the significand addition.

4.4 Evaluation Process

TDPFADD [1], [36]-[44], presented in section 4.2, and the single data path FADD [34],

presented in section 4.3, are implemented by synthesizing towards 0.35-micron CMOS
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and FPGA (Xilinx XC 4085XL) technologies. Comparison is done using two different
technologies and cell libraries to validate the architectural approaches irrespective of the
technology used. Both floating point adders are IEEE compliant using IEEE single preci-
sion floating point data format and I'EEE default rounding mode of round to nearest - even.
The comparison is done for both pipelined structures (presented in Figs. 4.13 and 4.16)
and low latency architectures (TDPFADD presented in Fig 4.2, single data path FADD
using only input output data alignment registers). Low latency architectures are desirable
in applications like digital filters. As the power consumption of TDPFADD is highly
dependant on the utilization of a certain data path, simulations are done using real data
(test vectors generated by the conversion of real audio signals [55]) and synthetic data (test
vectors generated manually using different probabilities of data path utilization to get the
average and worst case power consumption). Switching activity from these simulations is

back-annotated for the accurate calculation of power consumption.

Data path utilization probabilities of TDPFADD during the filtering of synthetic data are
provided in reference [1]. These probabilities, listed in Table 4.6 [1], are also used here for
the evaluation of relative magnitude: of power consumption of TDPFADD and single data

péth FADD in different filter applications.

Filters IR 1, IIR2, ITR3, in the Table 4.6, are the direct form I, direct form II, and trans-
posed direct form II realizations of 8th order elliptical filters (low pass), having pass band
ripple of 0.03 dB, stop band ripple of -100dB and normalized cut-off frequency of 0.2.

While FIR1, FIR2 and FIR3 are low pass FIR filters of order 64, 16 and 8 respectively,
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Table 4.6: Data path utilization probabilities of TDPFADD during filtering of
synthetic data

[IR1 IIR2 IIR3 FIR1 FIR2 FIR3

PA) [PCK) [ PQ) | PCD | PCAO [ PAY | POD | PCK) [ P | B(D [ PEKY | PO | PO | PEK) | POD | PMD) | PCK) | POD

0.0589 105952 [03460 {0.0589 |0.6116 [0.3295 |0.0595 |Q.704% [02356 102002 {0.6755 |0.1243 [0.1765 [0.6779 |0.1456 (0.1111 10.7415 [0.1474
0.0589 |0.6406 |[0.3005 |0.0589 }0.6373 |0.3038 |[0.0601 j0.6952 |02447 02002 10.6963 }10.1035 |C.1765 |0.7571 |0.0664 [0.1111 [0.8485 [0.0403
0.0589 10.6180 [0.3231 [0.0589 |0.6162 j03250 |0.0599 |0Q.7031 {02370 {0.2002 }0.7033 [0.0965 |0.1765 |0.7227 |0.1007 }O.I111 {0.7938 {0.0950

with normalized cut-off frequency of 0.2. The first among the synthetic signals is a
sequence of white noise samples (N(0,1) IID RVs) of sample size 128K, while the second
and third are auto regressive signals of the same sample size. The AR model of the second
signal is y[n] = x[n] + 0.9*y[n - 1] while that of the third signal is y[n] = x[n] + 0.5*y[n -
1]. Where p(I), p(J), and p(K) represents the probabilities when bypass, LZA and LZB
data paths are active as shown in Fig 4.1 and Table 4.2. Data path probabilities of TDP-
FADD, listed in Table 4.6, are used to make artificial data files, which utilize different data
paths of TDPFADD according to the respective probabilities. Both single data path FADD
and TDPFADD are simulated using these data files. Switching activity from these simula-
tion is back-annotated to Synopsys Power Compiler and Design Power tools, where these
switching activities are used for power calculations. The relative power consumption of
TDPFADD and single data path FADD when they are part of these filter programs pro-

cessing different signals is obtained.

4.5 Results

Table 4.7 presents the comparison of the low latency architectures of both floating point
adders using 0.35 micron CMOS technology. Maximum delay, power consumption and

area information is obtained from reports generated after synthesis. The calculated values
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of Power-Delay (PD), Area-Power (AP), Area-Delay (AT) and Are:a-Delay2 (ATZ) are also
presented in Table 4.7. In this table, P,,,; presents the relative power figures during the
addition of real data. Furthermore, P, is the power consumption of 2 floating point adders
when the average behavior of TDPFADD is considered (i.e. the probability of utilization
of all three data paths is the same), while P, shows the worst case power figures of TDP-
FADD (data is always passing through the LZA data path, in which case TDPFADD con-

sumes the maximum amount of power).

Table 4.7: Comparison of low latency architectures of TDPFADD and single data
path FADD using 0.35 micron CMOS technology

Parameters TDPFADD Singl; :Stg path
Maximum Delay, D (ns) 40.88 58.64
Average Power, P, (mW) at 16.7 MHz 26.53 47.18
Worst case Power, P,, (mW) at 16.7 MHz 37.91 46.23
Power using real data, P, 30.71 41.3
(mW) at 16.7 MHz
Area, A (lO4 cell-area) 32.64 20.23
Power-Delay Product, PD (ns.mW) 1591.8 2830.8
Area-Power Product, AP 865.94 954 45
(lO"’ceIl-area.mW)
Area-Delay Product, AT (10%*cell-area.ns) 1334.32 1186.29
Area-Delay? Product, AT2 5.45x 10* 6.96 x 10*
(10%cell-area.ns?)

It can be seen from the results that the average power delay product of TDPFADD is

43.77% less than that of single path FADD. Reduction in the worst case power delay prod-
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uct given by TDPFADD over FADD is about 18% while power delay product of TDP-
FADD is 25.64% less than that of single data path FADD during the processing of real

data. Moreover, TDPFADD is around 30.29% faster and takes 38.02% more area than

FADD.

Using the data path utilization probabilities of TDPFADD during the filtering of synthetic
data, presented in Table 4.6, the percentage reduction in power delay product offered by

TDPFADD over single data path FADD are presented in Table 4.8.

Table 4.8: Percentage reduction in power-delay product offered by low latency
TDPFADD over FADD during the filtering of synthetic data (using 0.35 CMOS

technology)
SL # IR1 RrR2 IIR3 FIR1 FIR2 FIR3
1 37.45 39.44 39.93 46.66 46.70 42.60
2 38.06 38.06 39.93 45.07 48.42 48.40
3 38.58 38.58 39.93 45.07 48.00 43.21

Comparison of Table 4.6 and Table 4.8 indicates that TDPFADD offers power saving.
However the amount of saving is highly dependent on the input data. Whenever the bypass
is used instead of LZA data path more saving in power is obtained. Among the results,
TDPFADD is offering maximum reduction (48.42%) in power delay product when second
signal is filtered through the FIR filter of order 16 (FIR 2) because the probability that the
data will pass through LZA is quite low (approximately 6%) and the probability of Bypass
is higher (around 18%). Also, TDPFADD is offering minimum reduction in power delay
product (37.45%) when first signal is processed by the direct form I, IIR filter because the
probability of Bypass is minimum (around 6%) and the probability that the data will pass

through LZA is maximum (around 35%).
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In DSP applications, certain arithmetic operations can’t affect the final result due to the
limitations of floating point data formats. In these circumstances, bypass in floating point
addition becomes important. Symmetrical band pass/stop filters having a normalized cen-
tre frequency of 0.5 exhibit relatively large differences between the exponents of adjacent
filter co-efficients. With these filters, the probability that the TDPFADD endures bypass is
relatively significant. During precision limited IIR filtering of white noise samples, proba-
bility of bypass data path utilization is around 53% and the probabilities of utilization of
LZA and LZB data paths are nearly 11% and 36% respectively [1]. In this case, TDP-
FADD consumes 21.35 mW power at 16.7 MHz and offers 52.82% reduction in power
delay product over FADD, whose power consumption is 45.25 mW. These results are also

reported in [44].

Table 4.9: Comparison of low latency architectures of TDPFADD and single data
path FADD using FPGA technology

Parameters TDPFADD Singl Fe jfgtg path
Maximum Delay, D (ns) 213.81 327.64
Average Power, P, (W) at 2.38 MHz 1.0249 1.8365
Worst case Power, P, (W) at 2.38 MHz 1.7686 1.8506
Power using real data, P,,,, 1.2476 1.8533
(W) at 2.38 MHz
Area, A, Total CLBs (#) 1035 664
Power-Delay Product, PD (ns.10mW) 4.3 x 104 7.71 x 10%
Area-Power Product, AP 1.06 x 104 1.22 x 10%
(10#.10mW)
Area-Delay Product, AT (104#.ns) 2.21 x 104 2.18 x 10%
Area-Delay? Product, AT2 4.73 x 10° 7.13 x 10°
(10#.ns%)
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Results of comparison of low latency architectures of floating point adders using FPGA
technology are presented in Table 4.9. Average power delay product of TDPFADD is
44.19% less than that of single path FADD. Note that TDPFADD gives 4.43% reduction in
power delay product over FADD in the worst case. Using real data, TDPFADD offers
32.68% reduction in power delay product compared to FADD. Also, TDPFADD is

34.74% faster and utilizes 35.85% more CLBs than FADD.

Table 4.10 gives the reduction in power delay product offered by TDPFADD over FADD,
using FPGAs, during the filtering of synthetic data. Again TDPFADD gives substantial
amount of power savings when bypass conditions are true more often and the chances of
utilization of LZA data path are less. Considering Precision limited IR filtering, TDP-

FADD offers 60.31% decrease in power delay product compared to single data path

Table 4.10: Percentage reduction in power-delay product offered by low latency
TDPFADD over FADD during the filtering of synthetic data (using FPGA

technology)

SL # OR1 IRrR2 IIR3 FIR1 FIR2 FIR3
1 37.75 40.17 43.14 53.20 51.35 47.46
2 41.98 41.98 43.14 52.71 51.35 54.49

42.70 42.70 43.14 52.71 52.34 48.00

FADD. Both architectures of floating point adders are also pipelined to 5 stages. Table
4.11 presents the comparison between pipelined structures of TDPFADD, shown in Fig
4.13, and single data path FADD, shown in Fig 4.16, using 0.35 micron CMOS technol-

ogy. In this case, reduction in average power delay product offered by TDPFADD over
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single data path FADD is 35.53%. Worst case reduction offered by TDPFADD over
FADD is 27.96%. Using real data, TDPFADD gives power delay product that is 28.28%
less than that of FADD. Performance of TDPFADD is 9.07% better than that of single data

path FADD, while it utilizes 18.8% more area compared to FADD.

Table 4.11: Comparison of pipelined architectures of TDPFADD and single data path
FADD using 0.35 micron CMOS technology

Parameters TDPEADD | Singe daapaih
Maximum Delay, D (ns) 17.34 19.07
Average Power, P, (mW) at 50 MHz 34.84 54.04
Worst case Power, P, (mW) at 50 MHz 40.64 56.41
Power using real data, P, 35.53 49.54
(mW) at 50 MHz
Area, A (104 cell-area) 49.19 39.94
Power-Delay Product, PD (ns.mW) 696.8 1080.8
Area-Power Product, AP 1713.78 2158.36
(10%cell-area.mW) .
Area-Delay Product, AT (104cell-area.ns) 852.95 761.66
Area-Delay? Product, AT? 1.48 x 10* 1.45 x 104
(104cell-area.nsz)

Table 4.12 gives the percentage of reduction in power delay product offered by pipelined
TDPFADD over pipelined FADD during filtering of synthetic data. During precision lim-
ited IIR filtering of white noise samples, pipelined TDPFADD consumes 30.477mW at 50
MHz, while power consumption of pipelined FADD is 52.2382 mW at the same fre-

quency, which accounts for 41.66% reduction in power delay product by TDPFADD.
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Table 4.12: Percentage reduction in power-delay product offered by pipelined
TDPFADD over FADD during the filtering of synthetic data (using 0.35 CMOS

technology)

SL # IIR1 IR2 IIR3 FIR1 FIR2 FIR3
1 31.05 33.07 32.63 36.03 35.90 32.58
2 31.00 31.00 32.63 34.44 35.67 35.19
3 31.35 31.35 32.63 34.44 35.51 35.52

Table 4.13 lists the comparison results of pipelined floating point adders using FPGA tech-
nology. The reduction in power delay product offered by TDPFADD over FADD consider
average and worst case behavior and real data are 20.63%, 5.51% and 15.7% respectively.
Pipelined TDPFADD is 25.24% faster and utilizes 28.85% more CLBs compared to pipe-

lined single data path FADD.

4.6 Discussion

Results presented in the foregoing section show similar trends. Energy delay implications
of transition activity scaled, triple data path floating point adder (TDPFADD) [1], [36]-
[44], are always better compared to single data path FADD [34], using any of the two
available technologies and for both pipelined and low latency structures. Area of TDP-

FADD is always more than FADD.

Due to the transition activity scaling, whenever exponent differences are greater than the
width of significands, TDPFADD endures bypass data path and gives a large amount of

power saving. In TDPFADD, shift operations are controlled by a few LSB bits of the

94



Table 4.13: Comparison of pipelined structures of TDPFADD and single data path

FADD using FPGA technology
Parameters TDPFADD Singl;f;tlz)i path
Maximum Delay, D (ns) 101.11 135.24
Average Power, P, (W) at S MHz 0.8035 1.0123
Worst case Power, P,, (W) at S MHz 1.0201 1.0796
Power using real data, P,,,; 0.8661 1.0274
(W) at 5 MHz
Area, A, Total CLBs (#) 1324 942
Power-Delay Product, PD (ns.10mW) 1.61 x 10% 2.02 x 10%
Area-Power Product, AP 10.64 x 103 9.54 x 103
(10#.10mW)
Area-Delay Product, AT (10#.ns) 1.34 x 104 1.27 x 104
Area.-Delay2 Product, AT? 1.35 x 10° 1.72 x 10°
(10#.ns?)

exponent difference. With single data path FADD, even during situations when the expo-
nent differences are greater than the width of significand, the significands may be shifted
through certain finite number of bit positions, as the barrel shifters are not activity scaled.
Also with TDPFADD, because of the simplification of barrel shifters, the number of layers
of nodes undergoing toggling activity is reduced. Compared to conventional FADD
schemes, the computing data paths of the TDPFADD activate only one barrel shifter while
all other schemes activates two of them. The pre-alignment shifting of LZA data path as
well as normalization shifting of LZB data path are handled by single stage MUXs. Com-

pared to multi-stage barrel shifters, the data path switching activities of these single stage
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shifters are insignificant. In contrast to other schemes, the leading zero counting logic of
the TDPFADD is operational only during situations that demand its use and it can be seen
from Table 4.6 that the probability that FP additions produce a significand with a variable

number of leading zeros, is relatively small.

In single data path FADD, some optimizations made to achieve high performance also
results in the reduction of power consumption of this unit. The simplicity of the optimized
LZA logic, which not only hides the delay of estimation of leading zero count completely
behind the delay of significand addition but its power consumption and area are also sig-
nificantly less than the conventional LZA logic [33]. But efforts made in TDPFADD for
low power outperforms the single data path FADD as far as the relative power implications
of the two architectures are concerned. Relative power savings given by TDPEADD over
single data path FADD are less when the two architectures are pipelined. The reason
behind this is the power consumption of a large amount of registers used in the pipelining

of 3 data paths of TDPFADD.

Performance improvement was the main goal of the designing of single data path FADD.
For this, optimization of LZA logic and concurrent evaluation of rounding along with nor-
malization shift, were introduced. But the data path simplifications and Zero Overhead
Rounding approach of TDPFADD makes its performance better than single data path
FADD even though it is using a serial leading zero counter. One factor which increases the
delay and latency of TDPFADD is the extra delay imposed during the evaluation of many
activity scaling conditions. If this delay is overcome by instruction driven processors, the

performance and latency of TDPFADD can be even better.
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The optimized LZA logic used in the single data path FADD is also area efficient but the
area implications of FADD are increased by the requirements for dedicated significand
comparator and correction shift logic. With TDPFADD, the merging of rounding opera-
tion with significand addition and the absence of a significand comparator offers area
reduction. The usé of 1’s complement adders for the evaluation of functions like |e] - 2|
(as well as el > e2, el = e2 and el < e2) involving integer data el and e2 is attractive as
far as power and area reduction are concerned. Still the introduction of extra data paths for
transition activity scaling makes the area requirements of TDPFADD more than that of the

the single data path FADD.

4.7 Conclusion

Comparison of two different architectures of floating point adders is performed using dif-
ferent technologies. The results obtained show the validity of TDPFADD over single data
path FADD for power/performance critical applications where there is room for extra data

paths.
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Chapter 5
Floating Point Multiply - Accumulate Fused Units

5.1 Introduction

Multiply - Accumulate operation is essential in many applications like DSPs and ALUs.
Because of increase in application programs that envisage arithmetic operations involving
dot product computations, modern day ALUs are equipped with dedicated multiply accu-
mulators (MACs). Since the number of computational operations in dot product process
are more than one - evaluation of a product and summation of this product with another
operand - the time complexity of dot product operations are relatively high. The execution
time of such operations may, however, be reduced by incorporating concurrency. Architec-
tures that use concurrency for the performance acceleration of MAC operations are termed
multiply - accumulate fused (MAF) architectures. Since the most common use of floating
point multiplication is for dot product operations, a single unit which performs the multi-
ply - accumulate operation (A X B) + C as an indivisible operation would produce a signif-
icand reduction in latency, chip busing, number of ports and distinct functional units while

increasing the performance of floating point operations.

Fusion of multiply - accumulate operation involving fixed point operands is straight for-
ward, the operand to be added with the product is treated as any other partial product. With
floating point operands, because of the requirements for significand alignments during
addition, the fusion of MAC operations is quite complicated. Though the complexity of

floating point hardware units that envisage fusion of multiply - accumulate operations is
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relatively high in comparison with traditional approaches of MAC, MAF architectures are

still the preferred choice for time critical applications.

The first floating point multiply - accumulate fused (MAF) architecture was presented in
[31], [32], as part of IBM RISC/6000 floating point execution unit. While IBM MAF dem-
onstrates the feasibility of floating point multiply - accumulate fusion, this MAF has cer-
tain limitations as far as compliance with IEEE floating point standards [6] is concerned.
Also in this MAF, due to the increase in the width of significand data path, the amount of
power consumption is high and the Leading Zero Anticipatory (LZA) logic [33], used in

this MAF is suboptimal in terms of speed, power, area and complexity.

R. V. K. Pillai [1], [S0], proposed a low power, high performance, transition activity scaled
architecture of multiply - accumulate fused unit which consists of four data paths. The
results produced by this MAF are compatible with IBM MAF’s results. In this architec-
ture, both partial products of significand multiplication and previously accumulated sum
can be shifted for pre-alignment, unlike IBM MAF’s approach of always shifting the pre-
viously accumulated sum (left or right) with respect to the positions of the partial products
of significand multiplication. This gives power-optimal results due to the reduction in the
width of significand data paths. Critical path delay and latency are reduced in this MAF by

incorporating data path simplifications and Zero Overhead Rounding [46].

The above two MAFs do not produce results that conform to IEEE standards, though the
numerical accuracy of results is better than that of IEEE conformal schemes. In order that
the results of multiply - accumulate operation be conformal with IEEE standards, the

result of multiplication and addition need separate rounding. With the IBM scheme,
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rounding is performed only once, which is rather a compound rounding operation encom-
passing multiply and accurnulate. R. V. K. Pillai et al. [51] also proposed a low power
floating point multiply - accumulate fused architecture which produces results that comply

with IEEE standards.

In this chapter, comparison of the above three state of the art multiply - accumulate fused
units is presented. The comparison is done by synthesizing each architecture using differ-
ent technologies to evaluate the effect of different architectures on parameters like speed,
power consumption and area. All three MAFs are designed to work with IEEE single pre-
cision data format. The rest of the chapter is organized in the following order. Section 5.2
presents the architecture and hardware configuration of low power, transition activity
scaled, IBM compatible MAF unit [1] [SO]. Section 5.3 presents the implementation of
IEEE compatible MAF [51]. Section 5.4 presents the hardware configuration of IBM
MAF [31] [32]. Section 5.5 highlights the evaluation process for the above 3 MAFs. Sec-
tion 5.6 presents the results. Section 5.7 presents a discussion highlighting the salient fea-

tures of different architectures of MAF unit. Section 5.8 concludes the chapter.

5.2 Hardware configuration of IBM Compatible MAF Unit

In this section first the approach used for the design of an optimized multiply - accumulate
fused architecture [1], [50] is discussed and then the hardware configuration and analysis

of this MAF are presented.

5.2.1 The multiply - add fused (MAF) scheme

The concept of multiply - accumulate fusion, used for the designing of this MAF unit and
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also the IBM MATF, is illustrated in Fig 5.1 [31]. In the classical approach of multiply
accumulation, the operation of multiplication and summation are performed sequentially-
and floating point product and sum are separately rounded. In multiply - accumulate
fusion, the multiplication and addition operations are merged together and a compound
rounding operation is performed in the end. This rounding operation provides additional
accuracy but the compatibility with IEEE standards is suffered which require separate

rounding of results of multiplication and addition.

In IBM MAF, the position of product of signifcands is taken as reference and significand
of previously accumulated sum (C) gets aligned all the time irrespective of the value of its
exponent. For those values of exponents of C that are greater than that of the product

A x B, the significand of C is left shifted through an appropriate number of bit positions

Al Bl l Cl Ai Bl Cl
AXB AXB+C AXB+C
Round Round/normalize Round/normalize

AXB l l
Result Result
(a) Classical MAC (b) MAC fusion

Fig 5.1 - Multiply - accumulate fusion

and vice versa as shown in Fig 5.2. This results in an increase in the width of significand

data path which demands the use of barrel shifters, CPAs and leading zero estimators of
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large bit width. Floating point MAF [1], [50], discussed in this section tries to reduce the

width of data field and hence the power/delay implications.

According to this approach, both significand of C and product of significands can be pre-
aligned (right shifted) with respect to each other depending on the relative magnitude of
their exponents. Shifting of product is accomplished through the shifting of one of the sig-

nificands and then forming the product as is evident from the following equation [1], [SO].

AB _, B
2edif=A2¢d,.f .......... 5.1

A right shift of the product of the significands of A and B is equivalent to dividing this
product by 2°, where eqir Tepresents the absolute value of the difference between the

exponents of the product and C i.e. the amount of pre-alignment shift.

Multiplication of p-bit significands produce a product that is 2p bit long. The Inc bit repre-

AXB

l< Shift range for C ’{

Fig 5.2 - Pre-alignment shift in IBM MAF
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sents the MSB of the pre-normalized product, which occurs at the 2nd bit position towards
the left of the binary reference point (Inc is one only if the product of significands22). The

shift magnitude, e4ris given by

edif = leT—eCI = [eA-f-eB—ebia:—eCI .......... (5.2)

where e and e represent the exponent of C and the tentative exponent of product. ¢4 and
ep are the exponents of A and B and ep;,, represents the exponent bias. The tentative expo-

nent of the product for the purpose of shift evaluation is
er = €4t eg—E€pinanennnnnes 5.3)

Since IBM compatible MAF (the MAF scheme presented in [1], [SO]), envisages a condi-
tional shifting of the product of significands through the shifting of one of the component
significands, it selects significand of multiplicand for shifting instead of multiplier’s sig-
nificand. In this case, the number of partial products is always fixed - with p-bit signifi-
cands, the number of partial products is p. Fig 5.3 illustrates the approach of pre-

alignment used in the IBM compatible MAF.

If all of the shifted out bits of the significand are retained for partial product generation,
the width of the partial products is ey + p. However, the upper bound for shifting the mul-
tiplicand significand is p + I. With (p + 1)-bit shift of the multiplicand, there is still a
chance of non-zero product bit at G bit’s position as long as product of significands 22.
This bit is used in the evaluation of conditional rounding of the significand of C. Shifting

of the multiplicand significand beyond p + I bits is guaranteed to produce a product
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whose summation with the significand of C produces a result which. is no different than C.

Significand of Significand of o
Multiplier Multiplicand Significand of C
Barrel Shiftem
v !
-

PP Generation

PP Compressiom

C P Add/Normali=e

Fig 5.3 - Pre-alignment approach of IBM compatiblee MAF

If all the shifted out bits of the multiplicand significand are retained., the width of the mul-
tiplicand is 2p + I and the width of the aligned product becomes 3ip + I as shown in Fig
5.4. Among 3p + 1 bits, 2p - 3 of the LSBs are seldom used in thse subsequent addition
with the significand of C. As the MAC operation envisages a single -rounding step (instead
of rounding the product and rounding the sum), these bits are only computed for the eval-
uation of sticky bit of the aligned product and the carry injected tzowards the left of the
sticky bit. For IEEE multipliers, the sticky bit can be generated thr-ough an evaluation of
the trailing zeros of the product. So the complexity of the partial product array can be
reduced by discarding some of the shifted out bits of the aligned significand. In reference

[1], [50], the authors suggested to keep all the shifted out bits for t-he applications which
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require high precision floating point computations. They also gave another scheme that

R

Shifted significand | |
Multiplier

Partial product array l l l

L |
|F |l
| 1

l |
| | |
[ | [G[Rr]s] | | |

l 1 J< Shifted product of significands

T Significand of C

-

L Binary point reference I«
Region of no sum bit evaluation
l< P [ P l 1%

Fig 5.4 - Partial product array by keeping the p + I shifted out bits of multiplicand

retains four of the shifted out bits which results in compact partial product arrays, that is
attractive as far as power/delay/area considerations are concerned. In the hardware config-
uration of this MAF, 8 of the shifted out bits of the multiplicand were kept as shown in Fig
5.5. In this case, width of the partial products is p + 8 and the width of the aligned product
becomes 2p + 8. In general, truncation produces a negative bias, and in a worst case sce-

nario, this bias can accumulate but in practice, the rounding error produced in one MAC
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operation may get cancelled in a subsequent MAC operation, and hence the accumulation
of truncation error is never a one to one addition. The accumulation of truncation error can
be reduced, by extending the width of the accumulator [1]. The effect of above multipli-
cand truncation is equivalent to the subtraction of 1/128 ULP (unit in the last place) from

the product (worst case), which is tolerable in most of the target applications.

]

Shifted significand [ ] [ | | ]
Multiplier

Partial product array [ [ J

| | i
| | il
l | |
| | |

| l l
| l |

l | [G[r]s] | |

| 1 J« Shifted product of significands
Significand of C

L Binary point reference l< »‘

Region of no sum bit evaluation

Fig 5.5 - Partial product array by keeping 8 of the shifted out bits of multiplicand

5.2.2 Transition activity scaling

In References [1], [36]-[44], the authors present the architectural power minimization of

floating point adders through transition activity scaling as discussed in Section 4.2. They
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also used this approach for the design of floating point MAFs. The switching activity func-
tion of the IBM compatible MAF is represented as a four state FSM as shown in Fig 5.6.
During any given operation cycle, only a limited set of functional sub-units are active, dur-
ing which time, the logic assertion status of the circuit nodes of the unused functional
units are maintained at their previous states. Table 5.1 lists the criterion for the assertion of

various states as well as the modules that are activity scaled in each state.

(2
-

Fig 5.6 - FSM representation of IBM compatible MAF

b

.

'S
X

0

In state I, the transition activity scaled MAF operates in a full bypass mode. During those
situations when the difference between the exponents of the current sum and product
. (egy = ec—er) exceeds p + I, the results of a MAC operation is not different from the cur-
rent sum. In such a situation, neither the evaluation of the product nor the addition of the
product with the current sum is required. Essentially, the whole of the MAC core except

the Control unit, Exponent logic, Bypass data path and Result Integration/Flag unit is
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activity scaled during this situation. Bypass conditions also include special quantities for

input operands and product overflow and underflow.

In state J, the exponent difference is still greater than the width of the significand, but the
current sum is relatively insignificant compared to the product. That means, it is essential
that the product be evaluated, but the summation of this with the current sum is not
required. Whenever, the current sum has no effect on the MAC operation, which also
include conditions when addition underflow can occur (current sum is zero or a denormal-
ized (< f,,;,) number), addition part of MAC which involves significand adder, large barrel

shifters and LZA logic can be activity scaled.

Table 5.1: State assertion conditions of transition activity scaled IBM compliant

MAF

8 Active . S ..

% data path State assertion criterion Activity scaled blocks

I | Bypass Exponent of multiplicand or multi- | Entire MAC except Exponent logic,
plier is zero or e, +1 Control unit, Bypass logic and
or Exponent of accurmulated sum is | Result Integration/Flag logic
emax +1
or Product overflow or product
underflow
or ey < ecand ey;> p+1

J | Partial No Bypass and LZA logic and large barrel shifters

Bypass Exponent of accumulated sum is 0

or er > ecand ey > p

K | LZA No Bypass and no Partial Bypass Pre-alignment barrel shifter (large)
and subtraction and eg;< 2
LZs<p)

L | LZB No Bypass and no Partial Bypass LZA logic and normalization barrel
and addition or e > 2 shifter (large)
(LZs<1)

In state K, the MAC operations can result in a significand with a variable number of lead-
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ing zeros. In significand addition, a variable number of leading zeros can be generated
during the subtraction of one floating point number from another only if the exponent dif-
ference is not large. Table 5.2 [1] lists various situations during which a variable number
of leading zeros can appear at the MSB end of the result significand. It is evident from
Table 5.2 that more than one leading zero are only possible during the subtraction of sig-
nificands when the exponent difference is less than or equal to 2, so the barrel shifter for

significand pre-alignment is activity scaled for power reduction.

In state L, the MAC performs floating point operations that is guaranteed to produce, at the
most, one leading zero. The normalization shifts in this state are upper bounded - a maxi-
mum right shift of 2 and a maximum left shift of 1. Since the normalization shift distances
are limited, there is no need to excite the large barrel shifter. Activity scaling of this barrel

shifter gives power reduction.

Table 5.2: Generation of variable number of leading zeros during the subtraction of

significands
Exponent difference Remarks
edif =0 Inc bit of product of significand can be 0 or 1
edif =1 AND ec- < er Variable number of LZs iff Inc = 0
edif =1 AND ec > er InccanbeQorl
edif =2 AND ec > er Variable number of LZs iff Inc = 1

The partitioning of MAC operations for transition activity scaling also leads to data path
simplifications. Since the significand pre-alignment shifts are less than or equal to 2 dur-
ing situations when the MAC operation produces a pre-normalized significand with a vari-

able number of leading zeros, significand pre-alignment operations of this data path can be
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effected by using a single level of MUXs. However, this data path requires a normalization
barrel shifter that can handle a maximum right shift of 1 and a maximum left shift of p
bits. With LZB data path, significand pre-alignment shifts can be anywhere between 0 and
p+1. Normalization shifts for this data path are bounded, a maximum right shift of 2 bit
positions and a maximum left shift of 1 bit position. Effectively, the proposed data path
partitioning results in data path simplifications. For both LZA and LZB data paths, only
one barrel shifter is present, by virtue of which the power consumption, logic depths and
circuit delays of the data paths are minimized. Fig 5.7 and 5.8 illustrate the organization of

prealignment and normalization barrel shifters of the adder segment of MAF.

5.2.3 Architecture
Data flow architecture of transition activity scaled IBM compatible MAF is presented in

Fig 5.9.

Exponent logic calculates the exponent of the product (e; = e, +ez—e,;,,) using a 3:2
compressor and 1’s complement adder with which evaluation of product overflow and
product underflow conditions is a trivial operation. Exponent difference (e, = |er—ed) is
also calculated by a 1’s complement adder whose end around carry reveal the truth about
conditions like (er > ec, er < ec or ey = ec). Based on the relative magnitude of ey and

ec, larger value among e or e is selected as tentative exponent of the result.

Control logic generates control signals, according to the state assertion conditions of Table
5.1, which are used for the selection of an appropriate data path and routing the inputs to

the selected data path.
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Significand input

Aligned significand /} Aligned significand
LZA data path LZB data path

Fig 5.7 - Transition activity scaled pre-alignment barrel shifter for
IBM compatible MAF

From LZA data path From LZB data path

significand significand

significand output

Fig 5.8 - Transition activity scaled normalization barrel shifter for
IBM compatible MAF

The bypass data path is essentially a non-computing data path which maps an appropriate
floating point number during various bypass conditions. During operatioﬁs in which either
multiplicand or multiplier is zero, the multiplication is guaranteed to produce a zero result.
The MAC can be bypassed under such situations as the result is known apriori i.e. the pre-

vious sum. For the condition numberl x number2 + o, an infinity can be latched to bypass
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Exponent Logic —— Control Logic
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Y

3:2 Compression 3:2 Compression
LZA ‘] LZB : j
Path CPA/Rounding CPA/Rounding CPA/Rounding
LZA LZB Partial Bypass
Result Selector/ Result Selector/ Result Selector/
Normalization-LZA Normalization MUXs| i Normalization MUXs
(LZC, Barrel Shifter) LZB Partial Bypass
Y v v Y
Result Integration / Flag Logic
Flags Sum
Fig 5.9 - Data flow diagram of IBM compatible MAF with 3 execution
stages

data path. In case of multiplication underflow, previous sum is latched. The latched data is
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presented to the output during an appropriate cycle of pipeline operation.

The pre-alignment logic conditionally right shifts the significand of C or significand of
multiplicand by an amount that is equal to e The pre-alignment unit contains two sub-
units. For LZA data path, significand pre-alignment shift is upper bounded by 2. For LZB
data path, one sub-unit is handling the significand pre-alignment between 3 to p+I (by
right barrel shifter) while the other handles significand alignment that is upper bounded by
2. So prealignment barrel shifter becomes operational only if selected data path is LZB
and shift amount is > 2. During situations when shift amount is larger than p+1, bypass
data path is active and pre-alignment barrel shifter is activity scaled. During this situation,
the shift imparted by the barrel shifter is the last shift and hence for IEEE single precision

data format 5 of the LSBs of eq;r are used for the effecting the pre-alignment shift.

In LZB data path, when the amount of shift can be larger than 2, and significand of C is
right shifted, the sticky bit due to this operation can be asserted if the condition
eqr—2>TZ, is true. The evaluation of this condition using 1’s complement arithmetic has

been discussed in Chapter 4.

The significand multiplier is composed of partial product generation and compression
logic for the multiplication of significands. Shifting of multiplicand prior to partial prod-
uct generation results in partial products of larger width, but the number of partial prod-
ucts stays the same as p (24 for IEEE single precision data format). Thus by arranging 4:2
compressors in Wallace tree format only four addition stages are needed in order to com-
press 24 partial products into sum and carry vectors as shown in Fig 3.3. The horizontal

carry-out of the 4:2 compressors is not dependant on carry-in (Fig 3.4, 3.5), so the increase
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in the width of partial products due to keepimg the shifted out bits of the aligned multipli-

cand will not affect the speed of partial produict compression.

For the high performance evaluation of stickzy bit, Sticky-Product logic makes use of the
trailing zeros of the product. For floating poimt MACs, the sticky bit of the shifted product

can be set to 1, if the following relation is truze.
TZ,+TZg<p—-3—+kegypem.... (54)

Where TZ, and TZp represent the trailing zemo counts of the significands of floating point
numbers A and B while k is a 0/1 integer vari.able, which is zero whenever the exponent of
the product is greater than or equal to that o=f C and vice versa. When e,>e. i.e. signifi-
cand of C is shifted, the sticky bit camn be found by evaluating the condition
TZ,+TZz<p-3, as explained in Section 3.2.4. Whenever et < e, the condition for the

evaluation of sticky bit of the product is
TZy+TZg<p—3 +egp e (5.5

A high performance approach for the evaluatzion of this condition is proposed here. Equa-
tion (5.5) can be reformulated to p -3 + ey, — TZ, - TZy>0. Trailing zeros are encoded into
5 bit numbers and are complemented, as showvn in Fig 5.10(a). The 3rd row in Fig 5.10(a)
represents the value of p—3 + 1 i.e. 22, for the 2’s complement addition with TZ,, TZg and
eqir These four rows are compressed into a set of sum and carry vectors by a row of 4:2
compressors, as shown in Fig 5.10(b). The emd around carry of the 1’s complement arith-

metic operation can be found by using a circtait shown in Fig 5.11 which is the required
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(2) - Input data for the evaluation of 7Zy + TZg <p - 3 + ey

C5 Cc4 | C3 C2 Cl Co

S5 S4 S3 S2 S1

(b) - Input data after bit compression

Fig 5.10 - Data presentation for the evaluation of 7Z4 + TZg <p - 3 + egf

sticky bit. Partial bypass data path is active during those situations when the previously
accumulated sum is zero or very small compared to the product of floating point numbers.
Addition operation can be bypassed and product forms the result of floating point MAC
operation. The CPA/Rounding block of partial bypass data path performs the carry propa-
gate addition and pre-computation for rounding. The Result Selector/Normalization logic
selects an appropriate copy of result based on rounding/normalization conditions and per-

forms the normalization shift.

The 3:2 Compressors in LZA and LZB data path compress the sum and carry vectors of
Significand Multiplier with pre-aligned significand of C to 2 vectors and prepare them for

carry propagate addition. The operation of rounding is merged with addition. Normaliza-
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Fig 5.11 - Sticky bit evaluation

tion logic of LZA data path includes, a left barrel shifter that can shift through O to p - I bit
positions, based on the result of leading zero counter as well as 0/1 bit right shifter. Shift
control signals of left barrel shifter are transition activity scaled during situations when the
result is zero. The normalization- shifter in LZB data path is a left/right shifter which can
handle a maximum left shift of 1 and a maximum right shift of 2 as shown in Fig 5.8. The

Result Integration/Flag logic integrates the results from various data paths and assert flags.

5.3 Hardware Configuration of IEEE Complaint MAF

As Aiscussed earlier, IBM approach of a compound rounding in floating point MAFs
makes their results non-compatible with IEEE standards even if the accuracy of the results
is increased. R. V. K. Pillai et al. [51] proposed a floating point MAF which delivers IEEE
conformal product and sum. Other salient features of this architecture of floating point
MATF that makes it an ideal choice for DSP applications as well as general purpose com-

puting, include the functional partitioning of the MAC into 4 data paths for transition
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activity scaling and data path simplifications and Zero Overhead Rounding approach for

performance enhancement.

5.3.1 Transition activity scaling

Functional partioning of I'EEE compatible MAF into four transition activity scaled data
paths gives power saving. Finite state machine representation of IEEE compatible MAF is
the same as that of IBM compatible MAF as shown in Fig 5.3 but criterion for the asser-

tion of various states is changed as can be seen in Table 5.3.

Table 5.3: State assertion conditions of transition activity scaled IEEE compliant

MAF

2 Active . A ..

= State assertion criterion Activity scaled blocks

& | data path

I Bypass Exponent of multiplicand or multi- | Entire MAC except Exponent logic,
plier is zero or e, +1 Control unit, Bypass logic and
or Pro-duct overflow or product Result Integration/Flag logic
underflow

J | Partial No Bypass and LZA logic and large barrel shifters

Bypass Expoment of accumulated sum is

Zero OT €,y +1
orer>=ecand egz>p
orer<<ec and ed,f> p+1

K | LZA No Bypass and no Partial Bypass Pre-alignment barrel shifter (large)
and swbtraction and eg;r< 2
IZs<p)

L | LZB No By pass and no Partial Bypass LZA logic and normalization barrel
and adidition or > 2 shifter (large)
(LZs<1)

In state /, the MAF works in full bypas:s mode. For applications that need an IEEE sum
and an IEEE product, irrespective of the relative magnitude of these results, the question

of transition activity scaling of the multiplier segment is not very relevant. In situations
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when previously accumulated sum is large compared to the product and IEEE sum result
is the previously accumulated sum, the multiplier segment will still work to deliver IEEE
product. When the product is known apriori, i.e. multiplier or multiplicand is a special
quantity or product overflow or underflow occurs, neither the evaluation of product nor the
addition of product with the current sum is required. In these conditions IEEE sum and
product can be mapped to Bypass data path and both multiplier and addition segments of

MAF are activity scaled.

When current sum is relatively insignificant compared to the product or the product is
insignificant compared to the sum, state J is acquired. In this state, IEEE product needs to

be evaluated so the product segment is active but adder part can be activity scaled.

State K represents the case when during subtraction of significands, variable number of
leading zeros can be generated. Transition activity scaling of pre-alignment barrel shifter

gives power reduction.

In state L, possibility of generation of variable number of leading zeros, during significand
addition, is upper bounded by 1 and LZA logic and normalization barrel shifters are activ-
ity scaled. In states K and L, IEEE product is generated by the multiplier segment of the

MAEF.

5.3.2 Architecture

Fig 5.12 gives the data flow diagram of IEEE compliant MAF.
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Fig 5.12 - Data flow diagram of IEEE compliant MAF

Exponent logic evaluates the tentative exponent of the product, product overflow and
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underflow conditions, amount of pre-alignment shift (e, = |er-e;]), relative magnitude
of e7 and e and the tentative exponent of the sum result as discussed in Section 5.3.2.
Based on the results of exponent logic and the values of input operands, Control logic con-
trols the activation and de-activation of different data paths. Bypass logic maps the floating

point numbers as IEEE sum and IEEE product without performing any computation.

Significand Multiplier performs the multiplication of significands of multiplier and multi-
plicand (non-aligned). CPA/Rounding logic of the multiplier segment performs the carry
propagate addition and pre-computation of rounding. Once the final result taking into
account the rounding/normalization decisions is arrived at, the rounding information of
the product is sent to the floating point addition segment of the MAF, where it is used to
produce IEEE compliant sum. In this scheme, in contrast to IBM MAF, the significands of
both previously accumulated sum and product can be aligned in accordance with their rel-
ative magnitudes. During situations when the exponent of C is larger than that of AB, the
sum and carry vectors from the partial product compression logic are simultaneously right
shifted, as shown in Fig 5.13, by using a double barrel shifter. When the exponent of AB is
greater than that of C, the significand of C is right shifted by a single barrel shifter. The
pre-alignment barrel shifter that shifts C is merged with the double barrel shifter by incor-
porating suitable significand selection scheme. Since in LZA data path the significand pre-
alignment shifts are less than or equal to 2 during situations when the MAC operation pro-
duce a pre-normalized significand with a variable number of leading zeros, significand
pre-alignment operations of this data path are realized by a single level of MUXs without
activating pre-alignment barrel shifters. In LZB data path significand pre-alignment shift

can be anywhere between O to p + I but barrel shifters are activated only if the shift
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Fig 5.13 - Alignment of compressed partial products

amount exceeds 2 bit position. The use of double barrel shifters for simultaneous shifting
of sum and carry vectors of Significand Multiplier, in LZB data path, when e- > e and
the shift amount is more than 2, results in increase in power consumption as with floating
point adders, the power consumption of the shift control lines of barrel shifters account for
the most dominating component of the overall power consumption of these units. But in
IEEE compliant MAF that generate both IEEE sum and IEEE product, multiplication of
significands of multiplier and multiplicand needs té be performed prior to the pre-align-
ment shift of the multiplicand as in this architecture of MAF, unlike IBM compatible MAF
discussed in Section 5.2 of this chapter, product segment is active during all the states
except when bypass conditions are true (state /), to produce IEEE product and to generate
conditional rounding signals of product. If pre-alignment shift is performed before the sig-
nificand multiplication, the evaluation of product and the rounding signals of product can’t
be achieved during those situations when multiplicand is shifted. In IBM compatible
MAF, CPA/ Rounding and Normalization units of product segment are only active during

partial Bypass conditions when no pre-alignment shift is performed.
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Multiplication of significands before pre-alignment shift results in partial products with
smaller sizes compared to that of IBM compatible MAF. Compact partial product genera-
tion and compression logic makes the power/area/delay considerations of the multiplier
segment of IEEE compliant MAF quite attractive compared to IBM compatible MAF. In
order to reduce the power/area/delay overheads of IBM compatible MAF, some of the
LSBs of the shifted significand (and hence LSBs of the partial products) were truncated,
which makes it less desirable for applications that demand higher precision for MAC com-
putations. But this is not the case in IEEE compatible MAF. No truncation of partial prod-

uct is needed and hence no rounding errors associated with it are introduced.

Fusion of multiply - accumulate operation is quite challenging when IEEE compatibility is
also taken into account, as the rounded product (which require CPA, normalization and
rounding of the product) needs to be added with previously accumulated sum. In this
architecture of MAF, following efforts are being made to add the rounded product with

previous sum but still keeping it as a fused unit.

(1) Rounding control signals and sum and carry vectors of Significand Multiplier, instead
of rounded product are sent to the adder segment. These control signals are generated as
soon as the results of carry propagate addition of multiplier section is complete without
the normalization shift of the significand of product. These rounding control signals carry
information regarding conditional increment at two bit positions based on the fact that the
Inc bit (MSB of the result of the significand multiplication, 1 if product of significands 22)
is O or 1. These signals are introduced in the adder segment by using rows of half adders.

A row of half adders, partly adds the sum and carry vectors of the Significand Multiplier
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leaving an empty hole at the LSB position as shown in Fig 5.14 [29]. Conditional incre-

ment bit from the multiplier segment can be placed into this hole.

(2) Delay of the pre-alignment shift is hidden behind the delay of the carry propagate addi-

tion of the multiplier segment for the fusion of multiplication with addition.

Sum and carry vectors from rows of half adders are compressed with the aligned signifi-
cand of C using 3:2 compressors. CPA/Rounding units of LZA and LZB data path perform
the pre-computation of different copies of results taking into account the various rounding/
normalization requirements. Conditional sum / carry select adders are ideal for such appli-

cations. Result selectors selects an appropriate copy of sum bits based on the normaliza-

tion/rounding conditions.
Carry (@ [0 | @ oje|eo
Sum |eje} e LI
Row of half adders
Cary (@[ ®| ® °
Sum |eje| ® o o | e

Fig 5.14 - Introduction of conditional increment (for rounding) bit in sum and
carry vectors

Normalization shifts of LZA data path are realized by single row of MUXSs in case of 0/1
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bit right shift and by a le-ading zero counter and barrel shifter in case of left shiftof 1 top -
1 bits. During situations- when the result is zero, the shift control signals of barrel shifter
are activity scaled. Normmalization shifts of LZB data path are confined to a maximum right
shift of 2 bit positions arad a maximum left shift of one bit position and they are performed

by MUXs. Absence of b:arrel shifter results in significant amount of power saving.

The design partitioning of floating point MAF also gives data path simplification. From
LZA data path, pre-aligriment barrel shifter is removed and in LZB data path, normaliza-
tion barrel shifter is not mequired. Pre-alignment shift in LZB data path can activate a dou-
ble barrel shifter but theys performed the required shift in parallel. So the delay of the adder

segment of MAF is redusced by one barrel shifter delay.

5.4 Hardware Confi:guration of IBM MAF

R.K. Montaye et. al. [311], [32], proposed IBM RISC System/6000 floating point unit in
which performance and :accuracy is improved by including a unified floating point multi-
ply - add fused (MAF) umnit, which executes the double precision MAC instructions as an
indivisible operation, wirth no intermediate rounding. Fusion of multiplication with accu-
mulation allows one-cycle throughput and two-cycle latency, producing a MAC result
with one rounding error.. It also reduces the number of adders/normalizers by combining
the addition required fom fast multiplication with accumulation. Internal busing require-

ments and number of pomts are also minimized.

In this section the hardw~are configuration of IBM MAF is presented. For the comparison

with low power IBM coempatible MAF (presented in Section 5.2) and IEEE compatible
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MAF (Section 5.3), IBM MAF is configured to work with IEEE single precision data for-

mat.

Data flow diagram of IBM MAF is presented in Fig 5.15. The first cycle of pipeline is
shared by multiplication of significands, the exponent calculation, and the pre-alignment

shift.

Exponent logic calculates the tentative exponent of product (e; = e, + eg—e,;,.) and the
amount of pre-alignment shift i.e. exponent difference between the tentative exponent of
product and the exponent of C (e = |er—e| ). As during pre-alignment shift, Significand
of C is shifted left or right depending on the relative magnitude of e~ and e (er2e. or
er < ec), it also needs to be evaluated. Significand of C is aligneci irrespective of the value
of its exponent, so the tentative exponent of product also represents the tentative exponent

of final sum.

Pre-alignment logic is composed of a left-right barrel shifter. Significand of C is shifted
by an amount which is equal to the e;;x The direction of shift is decided by the relative
magnitude of e and e (left if ef < e, right otherwise). Right shift is realized by 6 LSBs
of exponent difference while during left shift only 5 LSBs of exponent difference are used
as shift control data word. In case of right shift, a shift larger than 2p bits results in a sig-
nificand which can't effect the significand of product during subsequent carry propagate
addition and normalization. If the left shift is larger than p + 7 bits, it results in a signifi-
cand in which leading one is shifted out. This case is realized by generating a product

underflow signal as the previously accumulated sum is so large that the product can not
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Fig 5.15 - Data flow diagram of IBM MAF

affect the final result. In this situation Result/Flag logic maps previous sum as the result of
MAC. A fast left-right barrel shifter which is composed of cascaded array of 2 x 1 MUXs
is used which hides the combined delay of Exponent logic and Pre-alignment unit behind

the delay of partial product generation and compression array of Significand Multiplier.
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In reference [31], [32], multiplier array utilizes two techniques i.e. modified booth encod-
ing (MBA) and extended Wallace tree (composed of (7,3) counters) for the generation and
compression of 56 partial products for double precision MAF. Many authors [17], [49],
[1], favour the use of 4:2 compressors for the partial product compression compared to the
MBA for its energy delay improvements and less wiring complexity and gate count. Also
partial product array organization using (7,3) counters presented in reference [32] intro-
duces more gate delays compared to 4:2 compressors based partial product compression
scheme (presented in Section 3.2.3) for the compression of 24 partial products (using
IEEE single precision data format), as far as the gate level implementation is concerned
(Reference [32] also presents an optimized transistor level design of (7,3) counter which
can't be utilized in this woxk as using logic synthesis tools, the transistor level design deci-
sions can not be acquired). So the partial product compression array, composed of 4:2
compressors arranged in Wallace tree format (Fig 3.3), which require four addition stages,
is also used here. In reference [31], [32], it is suggested to add the aligned significand of
C, during the partial product compression, due to the availability of extra pin for‘an extra
operand, without sacrificirag the cycle time. Some extra pins are also available in the Wal-
lace tree of 4:2 compressors, as compression of 32 partial products can be realized using
4-stage array. But another issue is involved here. Due to the left right shift of significand
of C, its effective width is 3p bits. In order to add it to 2p - I bit wide partial products,
zeros should be appended on the most significand end of all partial products. It results in
an increase in the width of partial product array which increases the power consumption
and area of Significand Multiplier. With a small sacrifice in terms of speed, the addition of

pre-aligned Significand of C is performed using a row of 3:2 compressors of bit width 3p.
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Addition of 3p-bit wide operands is performed using conditional sum/carry select adder
[7] [23] [S6], in a 1's complement form, which involves an end around carry. Conditional
sum bits with an anticipated carry-in of zero (sum0) and carry-in of one (suml) are evalu-
ated. If the result is positive (can be found by evaluating the condition Cout(0) = 1, where
Cout(0) represent carry-out of addition with anticipated carry-in of zero), suml is selected
as the result of addition. If the result is negative (evaluated by Cout (1) = 0, where Cout(1)
is carry-out, when the injected carry-in during addition is 1), bits of sum0 vector are com-

plemented. So that the sign magnitude result is correctly output in one more gate delay.

After the addition, normalization shift is required to bring the leading one to the left of
binary point reference. In this scheme, due to the alignment of significand of C all the
times irrespective of the relative magnitudes of exponents of C and AB, leading 1 after sig-
nificand addition can occur within a range of 2p + 2 bits. Reference [31], [32], [33], also
present a leading zero anticipatory logic for its use in IBM MAF. But the power/delay/
area considerations of this LZA logic have been proved sub-optimal by many researchers
[3»4], [35], [1]. As hardware configuration of IBM MAF is envisaged for its comparison
with power/delay optimal MAFs which are using a fast tree type leading counter, whose
simplicity makes it an ideal choice for power sensitive designs. The same type of 64 bit

tree type leading zero counter is also used here.

The leading one can occur to the left or to the right of binary point reference (BPR). If the
condition LZ < p + [ is true, leading 1 is to the left of BPR, where p + I represents the
number of bits of aligned significand of C towards the left of BPR. A right normalization

shift is required in this case. If leading 1 is to the right of BPR, evaluatedby LZ>p + I, 2

128



left shift is needed for normalization. The shift amount is calculated as [p+1-LZ] and a
left right barrel shifter, with a 5 bit wide shift control signal, can perform the necessary
normalization shift. In parallel with the normalization shift, p + I - LZ amount is added to
the tentative exponent of result in Exponent Corrector logic. Rounding/Correction shift
logic performs the rounding operation using round to nearest-even approach, which some-
times result in a carry-out from MSB, in which case, a correction shift (right) of one bit
position, and exponent increment, is performed. Flags logic asserts five flags to represent

special results.

5.5 Evaluation Process

Comparison of 3 different architectures of floating point multiply - accumulate fused
(MATF) unit is done by writing VHDL code and synthesizing towards 0.35 micron CMOS
technology and FPGA technology (Xilinx XC4085X1L). Selection of two completely dif-
ferent technologies is made to show that optimization strategies at the architectural level
give results that are almost unaffected by the technology change. All three architectures
are configured to work with IEEE single precision data format. As the power consumption
of transition activity scaled 4 data path IBM compliant MAF and 4 data path IEEE com-
patible MAF, is highly dependant on the utilization of a certain data path, simulations are
done using real data (test vectors generated by the conversion of real audio signals [55]) as
well as synthetic data (test vectors generated manually using different probabilities of data
path utilization t6 get the average and worst case power consurnption).AWhiIe using the
real data for simulations, data from 2 files, each containing 128K data samples, is applied
to the multiplier and multiplicand inputs of MAFs and the result of MAF is fed back to

input C, so that MAFs are performing the multiply - accumulate operations and C input is
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the previously accumulated sum.

5.6 Results

Comparison of the 3 different architectures of MAF unit using 0.35 micron CMOS tech-

nology is presented in Table 5.4. Maximum delay, power consumption and area informa-

tion is obtained from reports generated after synthesis. The calculated values of Power-

Delay (PD), Area-Power (AP), Area-Delay (AT) and Area-Delay? (AT?) are also pre-

sented in Table 5.4.

Table 5.4: Comparison between MAFs using 0.35 micron CMOS technology

(104cell-area.nsz)

IBM IEEE
Parameters compatible compliant | IBM MAF
MAF MAF
Maximum Delay, D (ns) 44.55 49.18 49.3
Average Power, P, (mW) at 20 MHz 58.46 78.25 122.96
Worst case Power, P, (mW) at 20 MHz 68.67 90.92 122.96
Power using real data, P, 37.98 55.01 76.84
(mW) at 20 MHz
Area, A (10 cell-area) 120.57 112.47 89.77
Power-Delay Product, PD (ns.mW) 2.92 x 103 3.91 x 10° 6.15 x 10>
Area-Power Product, AP 7.05x10° | 8.8x10° | 11.04x103
(10%cell-area.mW)
Area-Delay Product, AT (10%cell-area.ns) | 5.37x10° | 5.53x10° | 4.43x10°
Area-Delay? Product, AT? 239x10° | 2.72x10° | 2.18x10°

It can be seen from the results that the reduction in average power delay product (figuxes

obtained by considering the average behavior of IBM compatible and IEEE compatible

MATFs, (i.e. there is an equal chance of data path utilizations through all 4 data patkis)

130




offered by transition activity scaled IBM compatible MAF [1], [51], over IBM MAF [31],
[32], is 52.46% and it offers 25.21% reduction in average power delay product compared
to IEEE compliant MAF [51]. The reduction in average power delay product given by
IEEE compliant MAF compared to IBM MAF is 36.36%. Considering the worst case for
transition activity scaled architectures of MAF (data is always passing through the LZA
data path, in which case, both IBM compatible and IEEE compliant MAFs, consume the
maximum amount of power), IBM compatible MAF gives 44.15% and 24.47% reduction
in power-delay product compared to IBM MAF and IEEE compatible MAF respectively
and the worst case reduction in power delay product offered by IEEE compliant MAF
compared to IBM MAF is 26.06%. While performing the multiply - accumulate operation
on real data, IBM compatible MAF offers 50.57% and 30.46% reduction in power delay
product compared to IBM MAF and IEEE compatible MAF respectively. With real data,
IEEE compatible MAF gives 28.4% reduction in power-delay product compared to IBM

MAF.

Also IBM compatible MAF is 9.63% and 9.41% faster than IBM MAF and IEEE compat-
ible MAF respectively. Speed of IEEE compatible MAF is slightly better than IBM MAF.
These improvements came at a cost. Area of IBM compatible MAF is 25.55% more than
that of IBM MAF and it is 6.72% more than the area of IEEE compatible MAF. IEEE
compatible MAF occupies 20.18% more area than IBM MAF. The table also gives Power-
Delay (PD), Area-Power (AP), Area-Delay (AT) and Area-Drezlay2 (ATZ) products for

more detailed evaluation of these architectures.

Table 5.5 presents the results of comparison of 3 MAFs using FPGA technology. Reduc-
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tion in average power delay product given by IBM compatible MAF is 50.14% and
31.24% compared to IBM MAF and IEEE compliant MAF respectively. IEEE compatible
MAF is offering 27.48% reduction in average power delay product compared to IBM
MAF. Considering the worst case for IBM compatible and IEEE compliant MAFs, the
reduction in power delay product given by IBM compatible MAF is 37.47% compared to
IBM MAF and 26% compared to IEEE compliant MAF. Worst case reduction in power

delay product given by IEEE compliant MAF is 15.5% compared to IBM MAF.
Table 5.5: Comparison between MAFs using FPGA technology

IBM IEEE
Parameters compatible compliant IBM MAF
MAF MAF
Maximum Delay, D (ns) 287.32 301.25 361.54
Average Power, P, (W) at 2.5 MHz 1.2729 1.8513 2.5529
Worst case Power, P, (W) at 2.5 MHz 1.5964 2.1571 2.5529
Power using real data, P, ; 0.7646 1.4014 1.6602
(W) at 2.5 MHz
Area, A, Total CLBs (#) 3293 3222 2392
Power-Delay Product, PD (ns.10mW) 509x10% | 7.41x10% | 10.21 x 104
Area-Power Product, AP 419x10* | 596x10* | 6.1x10*
(10#.10mW)
Area-Delay Product, AT (10#.ns) 9.46 x 104 9.71 x 104 8.65 x 104
Area-Delay? Product, AT? 272x107 | 292x107 | 3.13x10’
(10#.n32)

Using real data, IBM compatible MAF gives 53.95% and 45.44% reduction in power
delay product compared to IBM MAF and IEEE compliant MAF respectively, while IEEE

compliant MAF gives 15.59% reduction in power delay product compared to IBM MAF.

132



Also using FPGA's, the delay of IBM compatible MAF is 20.53% less than that of IBM
MAF while it is 4.62% less compared to the delay of IEEE compliant MAF. IEEE compli-
ant MAF is 16.68% faster than IBM MAF. IBM compatible MAF requires 27.36% more
CLBs compared to IBM MAF and 2.16% more CLBs compared to IEEE compliant MAF.

IEEE compliant MAF requires 25.76% more CLBs than IBM MAF.

The amount of power consumption of all three MAFs when processing real data is less
compared to the amount of power consumption when working on artificial data for both
ASIC and FPGA netlists. The reason behind this reduction is that the artificial data gener-
ated manually is changing with every work cycle while real data stays the same for quite
some time, specially in the start and end of audio signals. This results in reduction in

switching activity and power consumption in all three MAFs.

5.7 Discussion

As anticipated, the results of synthesis to both FPGA and 0.35 micron CMOS technolo-
gies present the same kind of trends. The IBM compatible MAF consumes the minimum
amount of power, then comes the IEEE compliant MAF and power consumption of IBM
MAF is the worst. IBM compatible MAF is faster than IEEE compliant and IBM MAF but
it requires more area compared to the other two MAFs. Area overhead of IBM MAF is
minimum compared to both IBM compatible and IEEE compliant MAFs. As the differ-
ences in the architectures were evaluated at the logical/architectural level without going to
circuit level details, the results are also obtained which are almost technology indepen-

dent.
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Transition activity scaled, IBM compatible MAF and IEEE compliant MAF outperforms
the IBM MAF as far as the relative power consumption of the architectures is concerned.
Due to the modifications in significand pre-alignment operation in IBM compatible and
IEEE compliant MAFs, the width of their significand data path is around half of the IBM
scheme. With transition activity scaling, during situation when IBM compatible and IEEE
compliant MAFs endure bypass and partial bypass conditions, a substantial amount of
power saving is achieved. In general, the power consumption of pre-alignment barrel
shifters accounts for the most dominating component of power consumption in FADDs
and MAFs. Because of the large fanout of the barrel shifter control lines, the capacitive
loading of these lines are large. Compared to normalization, the activity of pre-alignment
barrel shifters is relatively large. With IBM MAF, the pre-alignment of the significand of
C is handled by a non-activity scaled, bidirectional barrel shifter in which fanout of shift
control signals is around twice than that of IBM compatible and IEEE compliant MAFs.
In IBM MAF, even during situations when the exponent differences are greater than the
width of significand, the significands may be shifted through certain finite number of bit
positions as the barrel shifter is not activity scaled. During floating point adder part of
MAFs, normalization shifts through a large number of bit positions are required only dur-
ing situations when the process of significand addition results in a large number of leading
zeros. During all other situations, normalization shifts are limited. However, with the IBM
MAF scheme, normalization shifts can be large even during other situations. With this
scheme, with p-bit significands, the leading 1 after significand addition can occur within a
range of 2p + 2 bits. The reason for such behavior is simple. In this scheme, the signifi-

cand of Cis aligned all the time irrespective of the relative magnitudes of the exponents of
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C and AB. With such a scheme, the leading zero estimation logic has to work with the (2p
+ 2)-bit result and hence the normalization shifts are usually large. With transition activity
scaled MAFs, leading zero estimation circuit becomes operational during a limited set of
input data. In IBM MAF, a CPA of larger width is required for the handling of significand

additions. In general, the wider the width of the adder, the higher the switching activity.

In IBM compatible MAF, the shifting of the multiplicand prior to partial product genera-
tion results in certain undesirable effects as far as the switching activity of the multiplier
segment of MAF is concerned. The width of the partial product array is increased which
results in extra switching activity during the partial product generation and compression.
But in this MAF, during the processing of input data, at the most one barrel shifter
becomes active. In IEEE compliant MAF, pre-alignment shift is performed after the sig-
nificand multiplication so the switching activity of the multiplier segment is less but pre-
alignment shift in this scheme may require the use of a double barrel shifter. This results in
a substantial increase in power consumption and the reduction in power consumption of
the multiplier section of the IEEE compliant MAF is offset by the increase in power con-
sumption during pre-alignment shift. Also in IEEE compliant MAF due to the generation
of IEEE product, irrespective of its value compared to IEEE sum, the conditions in which
MAF is in full bypass mode, are limited, compared to IBM compatible MAF. Unlike IBM
compatible MAF, CPA/Rounding logic and Normalization unit of multiplier segment of
IEEE compliant MAF stay operational during situations when LZA or LZB data paths are
active to generate IEEE product and conditional rounding signals of product required to

generate IEEE compatible sum result.
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In majority of computing applications, MAF bypasses are not very relevant but this is not
the case for some DSP applications. For example, with the order 64 and 16 FIR filters, the
probability that the exponent of the product is negligible compared to that of the sum is
between 10 and 20%. With symmetrical band pass and band stop filters (the normalized
pass/stop bands centered at 0.5), the probability that the MAC operation produces a result
that is not different from the current sum is around 47% [1]. In these applications the use

of transition activity scaled MAFs can give significant amount of power savings.

With IBM compatible and IEEE compliant MAF, due to reduction in the width of signifi-
cand data path, speed performance is also improved. Removal of one barrel shifter from
LZA and LZB data paths of these architectures also give speed advantages. Also the
fanouts of barrel shifter control lines are half than that of the IBM scheme so the set up of
these signals are faster. This is true with normalization shifters as well. Also, the process
of significand addition is faster in these schemes owing to the reduction in significand data
path width, in contrast to that of IBM MAF. However, the evaluation of many of the activ-
ity scaling conditions impose extra delay. Evaluation of IEEE compatible results in IEEE
compliant MAF adds the extra delay of CP addition of the multiplier segment. But with
above measures to increase the performance of IEEE compliant MAF, its speed is slightly

better than the IBM approach.

Introduction of new data paths for transition activity scaling in IBM compatible and IEEE
compatible MAFs results in an increase in the area, but the area measures of significand
adders, barrel shifters and leading zero counters of the transition activity scaled MAFs are

less than that of the IBM scheme. Also the handling of certain arithmetic operations by
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using 1’s complement arithmetic units in the multiple data path MAFs results in area/
power reductions. Since the largest share of MAF circuitry is in the significand multipliers
and due to the pre-alignment of multiplicand prior to significand multiplication in IBM
compatible MAF, the width of partial product compression increases, which makes the

area of the IBM compatible MAF the largest among the three architectures of MAF.

Another issue is accuracy and IEEE compatibility. The requirements for IEEE compatible
floating point results is mandatory in many computing applications. The availability of
IEEE product and sum makes the IEEE compliant MAF widely accepted. Energy/delay
implications of IBM compatible MAF makes it an ideal choice for applications that
doesn't require IEEE compliant floating point results. Due to the truncation of some of the
LSBs of the shifted multiplicand, IBM compatible MAF introduces a small rounding
error, which is acceptable in most of the applications. If the target application is very sen-
sitive to rounding errors, then all of the shifted out bits of the multiplicand need to be
retained. In this case transition activity scaled IBM compatible MAF still gives power/

delay optimized results composed to IBM MAF but the amount of savings is reduced.

5.8 Conclusion

Three different architectures of floating point multiply - accumulate fused unit are evalu-
ated by synthesizing them to ASIC and FPGA technologies. The results obtained during
this comparative study gives a clear picture of the feasibility of a certain architectural

approach in a particular application.
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Chapter 6
Conclusions and Future Work

6.1 Contributions
Contributions towards the evaluation of high level design decisions for power/perfor-
mance optimal realization of floating point adders, multipliers and multiply - accumulators

were presented in the preceding chapters.

We developed a low power transition activity scaled double data path architecture for
floating point multiplications. We validated the proposed architecture by comparing it
with a conventional floating point multiplier by modeling the architectures with VHDL

and synthesizing using 0.35 micron CMOS and FPGA technologies.

We compared the two recently proposed architectures of floating point adders. We evalu-
ated the performance of the pipelined and low latency structures of both floating point

adders in DSP applications. The findings are reported in [44].

Using VHDL, we modeled and evaluated three different architectures of floating point
multiply - accumulate fused unit. The generated results can help in the selection of a suit-
able architecture for different applications. IEEE compatibility and the accuracy of results

in different architectures is explored.

Results obtained in this work by exploration/implementation of floating point units at the

logical/architectural/algorithmic level, are almost technology independent.
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Netlists of floating point units, generated in this work are used in the implementation of

fioating point digital filters.

6.2 Future work

The next step is the development and evaluation of these floating point units at the circuit
level, where using transistor/full custom level strategies, further optimization, specific to
the particular technology, is possible. For the implementation of the transition activity
scaled data paths, a stage of registers was always inserted, which is the cause of increase in
latency and power consumption in these units. This can be addressed by implementation at
the circuit level. Another solution to this problem is to calculate control signals, required
for the activity scaling, using instruction driven processors. Functional verification is per-
formed using simulations at various level of design flow. These simulations require a very
large number of test vectors for reasonable coverage of functionality in these designs. This

can be addressed by utilizing new verification techniques like Formal Verification.
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VLSI

MFLOPS

BFLOPS

VHDL

ASIC

CAD

RTL

VSS

CLB

NaN

MSB

TDPFADD

LZB

MAC

Appendix A

List of Abbreviations
Very Large Scale Integration
Institute of Electrical and Electronics Engineer
Millions of Floating Point Operations per Second
Billions of Floating Point Operations per Second
Very High Speed Integrated Circuit Hardware Description Language
Application Specific Integrated Circuit
Computer Aided Design
Register Transfer Level
VHDL System Simulator
Configurable Logic Block
Not a Number
Least Significand Bit
Most Significand Bit
Multiplexors
Triple Data Path Floating Point Adder
Leading Zero Anticipatory Logic, LZA data path
Leading Zero Bounded data path
Multiply - Accumulator

Multiply - Accumulate Fused Architecture
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Appendix B
VHDL Code of Floating Point Multipliers

VHDL code of the proposed transition activity scaled double data path FPM and the single
data path FPM, along with test benches, simulation results, dc-shell scripts to run Design
Compiler and Power Compiler and reports generated after synthesis to 0.35 micron
CMOS technology and FPGA technology (containing results which are summarized in
Section 3.4) are in the discs attached.

Structure of the VHDL code of the proposed FPM is shown in Fig B.1. Top level entity
DDPFPM-PIPELINE also contains registers for 3 stage pipelining as shown in Fig 3.1. In
SIGNIFICAND-MULTIPLIER, 4:2 compressors are arranged in Wallace tree format (Fig
3.3). STICKYS is the entity containing 1’s complement logic, shown in Fig 3.8, for the eval-
uation of Sticky bit.

Structure of VHDL code of single data path FPM is shown in Fig B.2.
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DDPFPM-PIPELINE

v

Y '

Y

EXPONENT BYPASS CPA-ROUNDING RESULT SELECTOR

LOGIC LOGIC . LOGIC NORMALIZATION
CONTROL SIGNIFICAND) STICKY RESULT INT.
LOGIC MULTIPLIER LOGIC FLAG LOGIC

4:2 { 1
COMPRESSORS
TRAILING
ZERO COUNTER| | STICKYS

Fig B.1 - Structure of VHDL code of the proposed transition activity scaled FPM

SDPFPM-PIPELINE

v

EXPONENT
LOGIC

Y

SIGNIFICAND)|
MULTIPLIER

ROUNDING FLAG
CP ADDER LOGIC LOGIC
NORMALIZATION CORRECTION

LOGIC SHIFT

Y

Fig B.2 - Structure of VHDL code of the single data path FPM
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Appendix C
VHDL Code of Floating Point Adders

VHDL code of the transition activity scaled triple data path floating point adder (TDP-
FADD) and the single data path floating point adder (FADD) for both pipelined and low
latency architectures, along with test benches, simulation results, dc-shell scripts to run
Design Compiler and Power Compiler and reports generated after synthesis to 0.35
micron CMOS technology and FPGA technology (containing results which are summa-
rized in Section 4.5) are in the discs attached.

Structure of VHDL code of the low latency TDPFADD is shown in Fig C.1. Low latency
architecture of TDPFADD has input output data alignment registers and a register stage
between Control logic and three data paths to address transition activity scaling as shown
in Fig 4.2. Pipelined structure of TDPFADD has the same sub-entities shown in Fig C.1
but some extra register stages are included to get five stages of pipelining as shown in Fig
4.13. STICKYS is the entity containing 1’s complement logic, shown in Fig 3.8, for the
evaluation of Sticky bit.

Structure of VHDL code of the low latency single data path FADD is shown in Fig C.2.
Entity SELECTORS contains MUXSs to select significand for pre-alignment shift and tenta-
tive exponent of the result. Pipelined single data path FADD has register stages as shown

in Fig 4.16.
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TDPFADD

EXPONENT CONTROL BYPASS RESULT INT.
LOGIC LOGIC LOGIC FLAG LOGIC
DATA SELECTOR ADDER NORMALIZATION| EXPONENT
PREALIGN LZA ROUNDING LZA LZA SUBTRACTOR
LEADING ZERO RESULT
COUNTING LOGIQ SELECTOR LZA
+ + LEFT BARREL
SHIFTER
LZ COUNTER|| LZ COUNTER||{ LZ COUNTER
DATA ADDER NORMALIZATION
SELECTOR LZB ROUNDING LZB LZB
PRE-ALIGNMENT RESULT
1ZB SELECTOR LZB E’&"ggggl'
RIGHT BARREL
TRAILING ZERO
COUNTER

Fig C.1 - Structure of VHDL code of the TDPFADD
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SINGLE DATA

PATH FADD
EXPONENT PRE-ALIGNMENT] BIT SIGNIFICAND
LOGIC LOGIC INVERTER ADDER
SIGNIFICAND LZA
SELECTORS COMPARATOR SIGN LOGIC LOGIC
RIGHT BARREL
SHIFTER
Lz EXPONENT ROUNDING EXPONENT
COUNTER SUBTRACTOR CONTROL INCREMENTER
NORMALIZATION ROUNDING COMPANSATION FLAGS
LOGIC SELECTORS SHIFTER LOGIC

LEFT BARREL
SHIFTER

Y

0,1 RIGHT
SHIFTER

Fig C.2 - Structure of VHDL code of the single data path FADD
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Appendix D

VHDL Code of Floating Point Multiply - Accumulate
Fused Units

VHDL code of IBM compatible MAF, IEEE compliant MAF and IBM MAF, along with
test benches, simulation results, dc-shell scripts to run Design Compiler and Power Com-
piler and reports generated after synthesis to 0.35 micron CMOS technology and FPGA
technology (containing results which are summarized in Section 5.6) are in the discs
attached.

Structure of VHDL code of the IBM compatible MAF is shown in Fig D.1. Pipelined reg-
isters are inserted in the top level entity IBM-COMPATIBLE-MAF as shown in Fig 5.9.
STICKYS and STICKYG6 are the entities containing 1’s complement logic, shown in Fig 3.8
and Fig 5.11 respectively.

VHDL code of IEEE compliant MAF is structured as shown in Fig D.2. HA-ARRAY entity
contains the arrays of half adders. Pipelined registers are inserted in the top level entity -
IEEE-COMPLIANT-MAF as shown in Fig 5.12.

Structure of VHDL code of IBM MAF is shown in Fig D.3. Registers are inserted for

pipelining as shown in Fig 5.15.
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IBM COMPATIBLE

MAF
EXPONENT || CONTROL BYPASS STICKY SIGNIFICAND RESULT INT.
LOGIC LOGIC LOGIC PRODUCT | | MULTIPLIER FLAG LOGIC
I
v 1 ] Y Y
Tz 4:2 STICKY6
COUNTER | {coMPrESsoR| | STICKYS
Y
PREALIGNMENT
R
] | ]
PREALIGN PREALIGN
LZB LZA
|
Y Y L4
STICKY RIGHT BARREL 01,2 0,1,2
ACC. SUM SHIFTER SHIFTER SHIFTER
|
] Y i ¥
TZ STICKYS CPA-ROUNDING EXPONENT
COUNTER PARTIAL BYPAS INCREMENTER
RESULT SELECTOR
NORMALIZATION
PARTIAL BYPASS
v Y ' Y v
32 B RESULT SELECTOR
compression| | CPAROUNDING| | 0 A MALIZATION | | EXPONENT
LZB INC./DEC.
LZB LZB
|
32 UND RESULT SELECTOR| | ExPONENT
COMPRESSION| CPA'RSZ N ING| | N ORMALIZATION UB (l){A CTER
LZA LZA SUBT
— ; y
LEADING ZERO LEFT BARREL 0,1
COUNTER SHIFTER RIGHT SHIFTER|

Fig D.1 - Structure of VHDL code of the IBM compatible MAF
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IEEE COMPLIANT

MAF
EXPONENT|| CONTROL BYPASS STICKY SIGNIFICAND) RESULT INT.
LOGIC LOGIC LOGIC PRODUCT | | MULTIPLIER FLAG LOGIC
|
v 2 ] Y
TZ 4:2
COUNTER | |comprESsoR | STICKYS | | STICKY6
Y
PREALIGNMENT
k ] : v
P LZBIGN PREALIGN
|
¥ v ¥ v Y
STICKY | |RIGHT BARREL| {RIGHT BARREL 01,2 0,1,2
ACC.SUM SHIFTER SHIFTER SHIFTER SHIFTER
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Y Y ¥ v
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COUNTER S PARTIAL BYPASS INCKEMENTER
Y
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HA 32 CPA-ROUNDING| [RESULT SELECTOR| | £xpONENT
ARRAY| { COMPRESSION 1.ZB NORMALIZATION INC/DEC.
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!
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CPA-ROUNDING| [ KB = S5 ATION | | EXPONENT
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LZA
; I )
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Fig D.2 - Structure of VHDL code of the IEEE MAF
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IBM MAF

Y

v

v

v

Fig D.3 - Structure of VHDL code of the IBM MAF
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