INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

MANY—TO—MANY MULTICAST FOR XTP

Tong Ma

A REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA
MARCH 2001

©TONG MA, 2001

| Lg

National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Ne Votre réidrence
Our fie Notre riférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the ~ droit d’auteur qui protége cette thése.
thesis nor substantial extracts fromit Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent &tre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59336-3

Canadi

Abstract
Many-To-Many Multicast for XTP

Tong Ma

XTP is a transport protocol. A protocol is an agreement between the
communicating parties on how communication is to proceed. For traditional transport
layer connections, it is an error free point-to-point channel to provide reliable, cost-
effective data transport from the source machine to the destination machine. The XTP
is a new protocol with higher data rates, lower bit error rates, user defined service
reliability, support multi-communication and latency controls, more suitable for today
or the near future as modern networks continue to develop. Compared with traditional
point-to-point communications, the XTP can provide efficient multicast data delivery,
and the XTP also provides a powerful mechanism for group communication.

Multicasting represents a powerful mechanism for group communication. The
multicast service provides a set of hosts to participate in real-time data transfer via a
multicast call. This report describes the design and implementation of m by n

multicasting in the Sandia XTP.

Acknowledgments

First and foremost, I wish to thank my supervisor, Dr. J. W. Atwood. This
report would not have been possible without his unstinting support. Dr. Atwood has
made important technical and stylistic suggestions throughout. Moreover, I wish to
thank my team members, Tian Fang and Yonglin Jiang, with whom I spent a
considerable amount of time finding solutions to the problems which arose while
pursuing this project. Finally, a special thanks must go to the Computer Science
monitors, who helped me to solve a number of complex system problems and also
helped me to configure the Unix environment so that it could handle many-to-many

multicast projects.

Table of Contents

LIST OF FIGURES il
LISTOF TABLES]
1. INTRODUCTION 1
2. XPRESS TRANSPORT PrROTOCOL (XTP) 3
2.1 XTP THE NEW PROTOCOL AND NEW TECHNOLOGY 3
2.2 THE HISTORY OF THE XTP 4
2.3 THE NETWORK OSI REFERENCE MODEL 5
2.4 XTP ARCHITECTURE 6
2.5 THE XTP PACKET TYPES 9
3. SANDIA XTP aND MTL 1
3.1 INTRODUCTION TO SANDIA XTP AND THE MTL 11
3.2 THE MAIN CONCEPTS OF SANDIA XTP IMPLEMENTATION 14

3.2.1 The Association Management of the Sandia XTP 14

3.2.2 Flow Control in the Sandia XTP 16

3.2.3 Rate Control in the Sandia XTP 17

3.2.4 Error Control in the Sandia XTP 17

3.2.5 Data Transmission in Sandia XTP 18
3.3 ADDRESSING IN THE SANDIA XTP 27
3.4 UNICAST IN THE SANDIA XTP 28
3.5 MULTICAST IN THE SANDIA XTP 28

3.5.1 Addressing of the Multicast in the Sandia XTP 29

3.5.2 One by N Muiticast in Sandia XTP 30
4. THE PROPOSED CHANGES IN THE SANDIA XTP 32
4.1 THE EXTENSION OF ONE 8Y N MULTICAST TOM BY N MULTICAST 32
4.2 RATE CONTROL, FLOW CONTROL AND ERROR CONTROL IN M BY N MULTICAST 34
4.3 SETTING THE CONTEXT FOR M BY N MULTICAST. 34
4.4 THE MAJOR CHANGES IN THE SANDIA XTP FOR M BY N MULTICAST. 38
4.5 ASSOCIATION ESTABLISHMENT IN THE M BY N MULTICAST 45
4.6 ASSOCIATION MANAGEMENT IN THE M BY N MULTICAST 46
4.7 TO TERMINATE THE ASSOCIATION IN THE M BY N MULTICAST 47

5. Top LEVEL (ECSL) IN M BY N MULTICAST IN XTP

5.1 THE PRINCIPLES OF ECSL. IN XTP

50

5.1.1 Token Message Table in ECSL

51

5.1.2 The ECSL protocol for session layer connection

52

5.2 THE PERFORMANCE OF ECSL IN XTP

53

5.3 THE DESIGN OF ECSL FOR THE XTP MULTICAST

6. EXPERIENCE TEST AND RESULT

7. CONCLUSION AND FUTURE WORK

57
59

7.1 ADDRESSING THE PROBLEM WHERE THE MASTER SENDER (S DEAD IN MULTICAST

7.2 LATER JOINING IN M BY N MULTICAST.

8. REFERENCE

List of Figures

Figure 1. The OS! Reference Model

Figure 2. XTP Host Architecture

Figure 3. XTP Communication Model

Figure 4. Sandia XTP and MTL Daemon main classes diagram

Figure 5. Sandia XTP user interface main classes and application model diagram

......................

Figure 6. States in Context in Sandia XTP
Figure 7. The implementation architecture of Sandia XTP and MTL

Figure 8. Handle new packet decision table 1

Figure 9. Handle new packet decision table 2

Figure 10. Handle new packet decision table 3

Figure 11. The Sandia XTP One by N Multicast Architecture

Figure 12. The M by N Multicast Architecture

Figure 13. The changes in the handle_new_packet function

Figure 14. The new algorithm in the daemon dispatch_request function
Figure 15. M by N multicast event trace in send and receive procedure
Figure 16. The architecture for sending RCLOSE and WCLOSE

List of Tables

Table 3. Token Message Table

Table 4. The New Protocol for ECSL

Table 1. Sandia XTP receive data procedure algorithm with its related classes 20
Table 2. Sandia XTP send data procedure algorithm with its related classes 22
51
52
53

Table 5. Token Type List

1. Introduction

Unicast (one-to-one, point-to-point) services constitute the most popular service
offering for many years. Network multicast services have been increasingly used by
various continuous media applications. For example, the multicast backbone (Mbone)
of the Internet has been used to transport real time audio and video for news,
entertainment, distance learning, and other collaborative applications. Multicast
communication includes one-to-many (point-to-multipoint) and many-to-many
(multipoint-to-multipoint) delivery of data.

The Xpress Transfer Protocol (XTP) is a transport layer protocol designed to
provide a wide rage of communication services based on the concept that orthogonal
protocol mechanisms can be combined to produce appropriate paradigms within the
same basic framework [10]. XTP, as defined [XTP4.0B], provides unicast and one-to-
many multicast services.

Ramasivan [6] has proposed extensions to XTP to permit many-to-many
operation, which extend the range of applications for which XTP is useful.

Sandia XTP is an object-oriented implementation of XTP designed by Dr.
Strayer [Sandia XTP] at the Sandia National Laboratories. Its design is based on
extending a set of Transport Protocol Base classes, called the Meta Transport Library
(MTL).

This report gives the design and implementation of Ramasivan’s proposals within
the Sandia XTP implementation.

The report is organized as follows. Chapter 2 describes the existing XTP. Chapter

3 gives a brief introduction to Sandia XTP and Sandia MTL. Chapter 4 outlines the

changes that I made in Sandia XTP to provide m by n multicast. Chapter 5 provides
more details about the top level that will be added to Sandia XTP to complete the
implementation of Ramasivan’s proposals and the design of top level built on the
basic many-to-many multicast service. Chapter 6 presents performance tests of the
result after adding the many-to-many multicast to Sandia XTP. Chapter 7 presents my

conclusion and an outline of possible future work.

2. Xpress Transport Protocol (XTP)

2.1 XTP the New Protocol and New Technology

Over the past 30 years, computer networks have undergone exponential
growth. Much of this growth occurred through connecting existing networks to the
Internet. Consequently, there has been a drive to provide numerous services on the
Internet for both companies and individuals, and many industries are making
elaborate plans to produce a high-speed data service. As networks grow larger and
faster, they become harder to manage. For example, teleconferences require the
support of a multicast management program. Because of this exponential growth,
special network management systems and protocols have been devised. On the
Internet, such programs run the TCP/IP protocol stack through an IP address and the
ability to send IP packets to all the other machines. Traditionally, the Internet has had
four main applications—Email, News, Remote login and File transfer—yet as high
speed networks have become increasingly available, multimedia applications are
gaining ascendancy on the Internet, providing such services as remote medical
diagnostics, video-phone conversational exchanges, tele-shopping and so on, which
require enormous bandwidth and a substantially new communication system. In terms
of this rapid change in technology, the XTP (Xpress Transfer Protocol) project began
as a project to design and implement a new transport and network level protocol to
produce a significant new network system. Compared with traditional point-to-point
communications, the XTP can provide efficient multicast data delivery, and it also

provides a powerful mechanism for group communication.

2.2 The History of the XTP

Since the early 1980s Dr. Greg Chesson, more recently Chief Scientist of the
Research and Development Division of Silicon Graphics Inc, developed the Datakit
network at Bell Telephone Laboratories. In the course of this project, he has
identified the following problems: (1) the sharing of the CPU between the application
program and the protocol processing, (2) the multiplicity of interactions with the
operating system (generated by the application, the protocol suite, and the network
interface), resulting in many context swaps, and (3) the inflexibility of the protocol
suite in providing any service other than a reliable byte stream [2]. Based on his
conclusions and experiments, the XTP is defined as a resource to provide what is
missing in fundamental communications. The “white papers” defined the XTP
protocol in 1987. By the end of 1991, it was being actively developed in many
universities, including Concordia University, as well as in research institutes,
including Sandia National Laboratories, with the express purpose of improving the
XTP published version. Today, the protocol design has been developed by an
international group of researchers. This report uses the XTP 1.5.1 version
implementation, developed by Dr. Tim Strayer of the academic research sector at
Sandia National Laboratories, as the basis for an implementation of the m by n
multicast on XTP.

The High Speed Protocol Laboratory of Concordia University is headed by
Professor Dr. J. W. Atwood, president of the XTP forum. He has worked in this field
for many years. Up to the present, several students have been directed by Professor

Dr. J. W. Atwood in his Iab to study the XTP. He also actively cooperates with

Sandia National Laboratories and they are jointly responsible for publishing the XTP
40B Specification and test, and for the improvement, development, and

implementation of XTP 1.5.1.

2.3 The Network OSI Reference Model

Before we present the XTP, we have to look at the OSI reference model,

because it outlines the network architecture. Following Figure 1 is the OSI reference

model.
Sending Receiving
Processing Processing
Application Protocol
Application < > Application
t Presentation Protocol t
Presentation [€ P! Presentation|
t Session Protocol t
Session [¢ Session
Transport | g Transport protocol p| Transport
3 @) ® 3
Network [®—P| Network [®—P] Network Network
DataLink [€—P| DataLink [€¢—| DataLink| [¢—®] DataLink
Physical [€——P| [Physical Physical | (€= Physical
Host A Communication Subnetwork HostB

Figure 1. The OSI Reference Model

The OSI (Open System Interconnection) Reference Model, is well known to
anyone who works in the field of networks, and it is based on a proposal developed
by the International Organization for Standardization as a first step toward
international standardization of protocols used in the various layers [3]. It presents
network architecture that generates layers and protocols to deal with network open
system communication with other systems. By means of the network, communication
is achieved through sending messages from an application program on one through
layers of software protocol across the network to another machine, and subsequently,
through layers protocol software on the receiver side interface. The OSI is
demonstrably better for the organization of protocol software and implementation
details in the network, since each layer makes decisions to choose an appropriate
action based on the transfer message type or address. For example, when a machine
receives a message, the network layer must decide whether to process this message
according to the address, while another layer has to decide which application should
receive the message. Further details about each of those seven layers are not
presented in this report, however a clear understanding of OSI is the necessary first

step in the understanding of a network protocol like XTP.
2.4 XTP Architecture

The XTP is essentially the same as a small network operating system for users
to transfer messages from one machine to another. When the user sets up application
programs to send or receive data, the XTP daemon will handle message formats and
describe the computer responses through seven successive layers to either transmit

data to its destination, or accept data from its source without the user understanding

the XTP technology. To gain insight into the XTP daemon we can examine Figure 2,

which shows the host architecture of the XTP, while Figure 3 presents an XTP model

which demonstrates how the XTP works.

<>

Input Queues

i

" From

Network

N\
L —

XTP :
Control Context Translation
<P

user

Blocks Map

<D O Qs >To
network
Figure 2. XTP Host Architecture

Figure 2 shows the protocol procedures during data transmission. There are

four main processes: (1) the writer process, (2) the reader process, (3) the sender

process, and (4) the receiver process in the XTP. The writer and reader processes

ensure that the XTP provides an interface to the user to establish the communication

between the user and the XTP. Through the XTP interface, the bridge between the

user and the XTP, the XTP can receive commands from the user to launch data for

traveling, and for outputting received data and information to the user. The sender

and receiver process is interfaced through the lower layer, the network data delivery

service, for communication between the XTP and the underlying networks.

When the user starts to order service for data transmission, the writer process
will output the user commands to put data into output queues and offer the key to
match an appropriate context in the sender process. The sender will take the data from
output queues, encapsulate it in a packet, set the address and related information in a
packet header, then emit this packet with data to its destination. When the receiver
process receives packets from the network, it will match the appropriate receiver
context from the context database, and parse the packet based on the packet’s control
information. If the data is complete in this packet, it will be put into receiver input
queues. The reader process will unblock the user request and give the data to the user.
The XTP context is the XTP end point to hold the stated information about each

active XTP connection upon XTP host implementation.

Local XTP Remote XTP
Implementation Implementation
Association
Context [¢ Corresponding
P context

Figure 3. XTP Communication Model
In the XTP, the aggregate of active contexts and the data streams between

them are collectively called an association. Each context manages both an outgoing
data stream and an incoming data stream as in Figure 3, the XTP communication
Model, while the end point context provides most of the real communication services
such as addressing, establishing an association, data transfer, flow control, and release
connection. For example, when a user wishes to communicate with other hosts, the
XTP has to build an association for them. The transmitter sends 2 FIRST packet to all

of the destination end points to request the creation of an association. After the

receiver hosts have found a context to handle the first packet so as to set up the

association, the data will then be transferred from sender to receiver.

2.5 The XTP Packet Types

A packet is a basic transport and information exchange unit. It contains all of
the mechanisms for transferring data and state information from one end point of an
association, through all of the intermediate switches, to the other end point or group
of end points. The XTP provides the following seven packets.

The FIRST packet carries all of the information necessary to find a listening
context at a destination host, and to establish an association between that context and
the sending context. The FIRST packet contains the address specification and a traffic
specification. The traffic specification is examined by the listening context to see
whether it can support the requested type of traffic or not. If it can support this type of
traffic, the data in the FIRST packet are given to the context and finally delivered to
the user. Basically, the FIRST packet is used to make a group association either in
unicast or multicast.

The DATA packet carries user data subsequent to the association’s
establishment. The DATA packet consists of an information segment with only a data
segment. There is seq field in the Header, which is used to order and identify bytes in
the data stream. The end of the message is marked by the EOM bit in the options field
of the Header of a data-bearing packet.

The CNTL packet is the common control packet. It transfers state information

between protocol state machines at the end points of an association. The seq field

holds the sequence number of the next untransmitted byte to be sent on the outgoing
data stream of the sender of the packet.

The ECNTL packet is used to convey error control information as well as
common control information. It signals contain error conditions encountered during
the processing of a packet.

The TCNTL packet is used to convey and negotiate traffic shaping
information as well as common control information.

The JCNTL packet is used to join an in-progress multicast communication.

The DIAG packet is used to report pathological conditions that are either fatal
or which require corrective action. The information contained within a DIAG packet
is designed to give the receiver of the packet some idea as to what caused the error

condition so that this receiver can make informed decisions about how to process it.

10

3. Sandia XTP and MTL

3.1 Introduction to Sandia XTP and the MTL
Sandia XTP (SXTP) is an object-oriented implementation of XTP 4.0B

derived from the the Sandia MTL (Meta Transport Library) base class library. Its
transport protocols provide data delivery from one transport user to one or more
transport users, using the services of the network layer. There are six main classes
within the XTP implementation derived from the MTL base classes. The XTP context
class, the XTP context-manager class, the XTP packet class, the XTP daemon class,
the XTP user interface class and the XTP states machine class, are derived from the
MTL. The Sandia XTP functionality resides in the user’s application program, which
makes requests to the daemon, and the daemon satisfies them. The MTL is designed
to present an infrastructure for building transport protocols. There are six main
classes within the MTL library package: a daemon class, a packet class, a context
class, a state machine class, a context manager class, and a user interface class. The
daemon class converts everything into an entity that can be handled by the operating
system. Given the MTL’s characteristics—portability, adaptability, configurability,
and readability—the goals of the MTL permit a developer to rapidly prototype a
protocol implementation without any kernel modification or special hardware
support, and with as little use of root privilege as possible [9]. Figure 4 and Figure 5,
which immediately follow, are diagrams of the main classes of the Sandia XTP and
the MTL in daemon and user interface. Daemon is the XTP protocol procedure. The
user interface is the path between the user application program and the Sandia XTP

daemon.

11

contain

mtl packet pool

mtl daemon

mtl context_manager I

Xl'Pcontext_manﬁger

mtl ip_del srv
create
64 contain mtl tcp_del_srv
| s , tcp_del_
mtl context
a
contain contain contain contain
mtl packet_fifo mtl dds_address mt] buffer_manager mtl user_request
1 ‘I‘ T 1
I ip_dds_address
udp_dds_address I__use Xtp_reg_msg
XTPcontext
mtl event_queue mﬂm—__[IJSEI Xtp_trans_msg
| contain use|

XTPstate_machine _'l mtl state_machine Xtp_state _msg

XTP DIAGpacket contain XTP CNTLpacket
P| XTPpacket [
XTPTCNTLpacket [P X T X XTP DATApacket
1]
XTP JCNTLpacket XTP FIRSTpacket XTP ECNTLpacket

Figure 4. Sandia XTP and MTL Daemon main classes diagram

12

mtlif mtl

use daemon
‘__-
ol
in ontain
mtl
buffer_manager
contain
mtl]
user_request
A a F N
XTPdaemon | | xtpif
contain
Xtp_trans_msg | . ..o : use
XTP
use common.h
xtp_reg_msg
use
xtp_state_msg —— s
use
User
application

Figure 5. Sandia XTP user interface main classes and application model diagram

13

3.2 The Main Concepts of Sandia XTP Implementation

The goal of a transport layer protocol such as XTP is to provide the
procedures necessary for the transparent, efficient, and reliable delivery of arbitrarily
long messages for an arbitrarily long duration between two or more entities not
necessarily sharing the same local network segment. In the Sandia XTP there are five
procedures that facilitate this goal: association management, flow control, rate

control, error control and data transfer.

3.2.1 The Association Management of the Sandia XTP

The association management procedures are invoked when the context
receives the FIRST packet to build the association. The XTP association provides a
full-duplex communication. Each end point of the association is both a transmitter
and a receiver. After the context has received the FIRST packet, the destination
address is set with the transmitter address to establish a path between the sender and
the receiver.

In the Sandia XTP, the behavior of the changing context indicates the
establishment, maintenance and termination of an association. The progression of
context states from Quiescent to Active indicates that the context has become an end
point of an association, while a transition from Active to Quiescent shows that the
association is going to be terminated. The context management is based on different
states in the context to handle the different kinds of processing, for example, through
processing the DATA packets with the appropriate Active context state or closing the

association with an Inactive context state. Figure 6 shows different states in the

14

context during the life of the association from beginning to end, and the following is

the explanation of Figure 6’s letters.

Figure 6. States in Context in Sandia XTP

e Before the XTP end point starts to establish association, the contexts are
initialized to have the register state in both transmitter and receiver in the letter A.

o Receiver goes to the listening state from the register state to listen for the FIRST
packet in the letter B.

o Transmitter starts to send FIRST packet making the association, then to change its
state to Active in letter C.

o Receivers set state to Active when receivers receive FIRST packet to join the
association in letter D.

e When the END bit is set, both transmitter and receiver convert outstream and

instream to AssocClosed state. The association is closed in the letter E.

15

o After the context detects that the outstream and instream are in the AssocClosed
state, the context will go to the Inactive state to leave the association in the letter
F.

e When association is terminated, the context goes back to the Quiescent state for
the next user of the letter G.

e If an error is detected, association is aborted, and then the context is converted to
Quiescent in the letter H.

The setting of the mechanism states in a context is used to manage the context
better, and to recover from errors during data delivery. The XTP provides a rich set of
mechanisms, since it recognizes that only the user has sufficient knowledge

concerning the application to truly optimize the parameters of a data exchange (2].

3.2.2 Flow Control in the Sandia XTP

The transport layer has to provide flow control and a buffering service. In the
XTP, it performs in the same manner as the traditional transport layer functionality in
protocols such as TCP. The essential point is that they are in the same layer, and a
sliding window or other scheme is needed on each connection to keep a fast
transmitter from overrunning a slow receiver. The Sandia XTP sets the flow control
according to a sliding window of sequence numbers. Two fields, alloc and rseg, of
the control packet are used in these flow control procedures. The Sandia XTP also has
a RES parameter to be sent from the transmitter to indicate how much buffer space is
required in the receiver. Consequently, it pushes the receiver to allocate a
conservative flow control to be sure that the data is in a safe place, and that no

packets are lost due to the lack of a buffer. In contrast, if the NOFLOW bit is set this

16

means the transmitter does not require flow control during data transmission, and so

the flow control is disabled.

3.2.3 Rate Control in the Sandia XTP

The rate control in the XTP solves the congestion problem during data
transmission. It controls how fast packets can be processed, or consumed at the
receiver [1]. This means there is a maximum rate of packets or amount of data at the
transmitter for the output stream, and a maximum rate of packets or amount of data at
the receiver for the input stream, so that the rate control is able to protect the quality
of communication effectively. In the Sandia XTP implementation, there are three
parameters for the rate control: rate, burst and credit. The rate parameter shows the
maximum transfer rate in bytes per second. The burst parameter indicates the
maximum number of bytes to be emitted in each group of packets, indicating the
maximum the receiver can handle. The function of credit parameter is to cooperate
with burst to measure the outgoing packets. There are certain rules for credit and
burst: (1) if credit is zero or negative, add burst to the value of credit, (2) if credit is

positive, then replace it with burst.

3.2.4 Error Control in the Sandia XTP

The XTP fulfils the same function as a traditional transport layer protocol
through the provision of reliable service, and so the error control in the XTP has an
important role to play in ensuring this reliable service. The error control is necessary
to detect loss of data, unexpected packets, protocol errors and wrong states at the end

point. There are three functions in the Sandia XTP, that regulate the error control

17

procedure. The first is a checksum, used to test incoming packets so as to make sure
of all of the frames, which are eventually delivered to the network layer at the
destination, each in their proper order. The second function checks the sequence
number for detecting lost packets. It compares the received data sequence and the
emitted data sequence value so as to decide whether the transmitter can retransmit the
recovered lost packets. If there is any missing data, it will cause the ECNTL packet to
be sent back for retransmission. Sandia XTP supports both a go-back-n algorithm and
a selective repeat algorithm. The go-back-n algorithm tells the receiver simply to
discard all subsequent packets, sending no acknowledgements for the discarded
packet [4]. If the transmitter times out, it will retransmit all unacknowledged packets
in order. The selective repeat algorithm requires retention of out-of-order packets, but
only requires retransmission of missing packets. Sandia XTP supports only go-back-n
operation for multicasting. The third function of the Sandia XTP sets up the DIAG
packets to notify the end points. When an error occurs, and there are, for example,
unexpected packets or the wrong status, or the mechanism state is in the wrong status

in context, or the data fails to be delivered, this will cause DIAG packet to be emitted.

3.2.5 Data Transmission in Sandia XTP

The data transfer procedures implement the movement of data from a
transmitting XTP user data buffer space to a remote receiving XTP user data buffer
space. This data transfer includes the moving of data from an XTP user data buffer
space into a data buffer space, placing it into data fields of either the FIRST packet or
subsequent DATA packets, traversing the network, placing the data into receiving

XTP data buffer space, and finally, delivering the data into the receiving XTP user

18

data buffer space. Figure 7, demonstrating the Architecture of Sandia XTP and MTL

implementation shows how the data is transferred in Sandia XTP.

XTP User
XTP User .
(Application) (Application)
XTP API
XTP parameter
N User request e
L/ \
N\
/] MTL buffer {
manager
Share memory
send_buffer
XTP Dacmon recv_buffer XTP Dacmon
(XTP protocol (XTP protocol
proc) proc)
M) XTPpacket s
LJ \
Layer3 Layer 3
Layer2 Layer2
Layer 1 Layerl

Figure 7. The implementation architecture of Sandia XTP and MTL

Sandia XTP offers two paths between the daemon and user-interface. One is

to transfer the parameters, using API socket, to establish the information exchange

communication. For example, the user inputs the command to the daemon. The other

path is to write the data into the buffer space with a SEND command or to read the

data from the buffer space with a RECEIVE command. In the daemon, to establish

communication between the context and the network are the XTP packets. One of the

19

main tasks in a context is to construct a packet for sending or processing a received
packet for each single host. Table 1 and 2 below outline the Sandia XTP receive and

send algorithms with their related classes in the process of implementation.

Table 1. Sandia XTP receive data procedure algorithm with its related classes

wait_on_input(shortest) { P! mtl daemon
// switch to processing according to the signal that the

// daemon received
swich (request -> cmd) {
/I switch to the user commands process
case XTP_RECEIVE {

find_context (request -> key) P! mtl context_manager

// get proper context for process receiving
receive(){ p| XTPcontext

// start to receive incoming packet

if (state_mach.is Active() { P | XTPstate machine

event =in_eq.pull(ev_seq); \
// the context is ready to be received mtl event_queue

// and processed to pull events
I/ off the queue

)

if (state_mach.is_Listening()) { p | XTPstate machine

return ;

. // wait for FIRST packet coming
-}
}

set_blk_reg (); p | mlbuffer_manag

. // set up block to wait for coming packet
}
case PACKET {

get_packets_from_dds () { p| mtldacmon

// get incoming packet from delivery service
// then find appropriate context to handle it

bandle new_packet(); p| XTPcontext manager

.« . . [lthe packetis put in the proper context T
R |

satisfy () {
"

process_DIAG packet(); XTPcontext

—>

ptocms..FIRST_packet() { /

. . . hdrkey =set hi bit(in hdr->key)

20

//set up packet return key for any return packet

c_r_bm ->set_beg seq(); P | mtl buffer manager

/i set the receive buffer’s header, taﬂ/'
datalength =c_r_bm -> write ();
// get data from received packet and write it to the receive buffer

process_sequence_number(); —p)

// update context for received packets sequence number XTPcontext

// set the buffer tail to reflect previously received data
in_addr = fpkt -> get_address; mtl udp_dds_address
// get packet source address
c_ucast_dest -> put_hostid(&(in_addr->IPaddr.srchost))
// set up the destination address for packet to be sent from
// receiver to transmitter with unicast address XTPstate machine
state_mach.trans on_rcvd ();
// make the context states result according to received
// packet options bits set. If the packet options is set (WCLOSE |
//RCLOSE)
// the context has to be turned to Inactive.
if (this is the last packet) {
events =in_hdr -> cmd.options
in_eq.put (events, in_hdr-> dlen)——— | T ventqueue
// put into the queue with sequence number and events

}
settle_block_on_data() { p| XTPcontext
// set unblock for user with received information
receive (¢_blk_reg);
// pull off the events from queue to user

// return how many bits received information to us
unblock_user (); i XTPcontext
// reply to user with data and current local model s '

}

if (!(in_hdr -> cmd.options & END)) {
send_cntl (); p| XTPcontext
// this is ACK and ask transmitter about the current status

-}
-}
-}
-}
}

if r bm.read(); p| mtlbuffer manager

/I xtpif read the received data from the received buffer then output to user.

21

Table 2. Sandia XTP send data procedure algorithm with its related classes

wait_on_input (shortest) { p| mtl daemon
. I/ switch to the processing according to the input signal

case USERREQ {

/I get the request from the user

switch (request -> cmd)

// switch to the processing according to the user command

case XTP_SEND
find_context (request -> key); _p| mtl context_manager
// get proper context for sending
send() {
If(18 reglstered()){ P XTPstate machine

// register state in context to send FIRST packet
// active state in context to send data packet

FIRSTpacket * fokt = new FIRST || —————p{ FIRSTpacket

DATApacket * dpkt;
// construct the packet
fpkt = put _header (&hdr); p| XTPpacket
// get a pointer to the XTP packet common head
/ XTPaddress
seglen = address.alength + tspec.tlength [XTPatiic
c_s_bm ->set_beg_seq (seglen) \
// adjust the buffer mtl buffer_manager
if (burst !=0) {
// adjust for rate control
// burst = 0 turns off rate control
}
fpkt -> put_address (&address) »| XTPpacket
/I copy address information into packet address
amount =¢_s_bm->read() ™ o buffer_manager

./l read from the send buffer to fill the packet
. if (bytes_left==0) {

Il check if this is the last packet in this message ,
out_hdr -> options [= add_in_optionsO——| XTPcontext
(out_hdr -> cmd.options)

I/ if this is end of the message,
/ it sets out_hdr->options | SREQ

// if it needs to close association, it scts out_hdr->options | END

}
if (out_hdr -> cmd.options & SREQ){
. /I this is the last packet in the message
. saved_synct+;
. // save the sync value for matching the

// returned control packet
. start_wtimer(); >
/i
}
int state_changed = state_mach.trans on_sent
(out_hdr -> cmd.options);
// set context states according to cmd.options

XTPcontext

int res = fpkt -> send (); _p| XTPpacket

// launch the packet with a multicast address in a
// multicast association
// 1aunch the packet with a unicast address in a
/fanicast association
if (bytes ==0) {
// there are no more bytes left to be sent
set_sent_modes (xtr -> options);
// set sent modes
return (xtr-> data_len);
. // return to user the number of bytes completely sent
}
num_packets ++;
// keep track of the number of packets sent
if (is_active()) {
// start to send data packet as above
//presented the algorithm

int r&s’= dpkt.send (); p | XTPpacket

// launch the packet

return (xtr -> data_len);
. // return to user the number of bytes completely sent
-}
-}
}
case RPLY
send_reply(reqmsg, &user_addr);
. // reply to user without ACK
if ({daemon_stop)
get_packets from dds()
/Il get ACK CNTL packet from del_service
d_cm-> satisfy()
// process received ACK packet to determine whether retransmit or
// reply to user

Data is transferred to a remote Sandia XTP user in the Sandia XTP
implementation. The local host issues an input command, the data is placed in Sandia
XTP buffers, and when appropriate, is copied into the data fields of outgoing data-
bearing packets. The packet contains the sequence number to ensure all the data have
been sent. When the data-bearing packet is received by the destination, its contents
are placed into an XTP data buffer according to the sequence number in the seq field.
The receiving context keeps track of outstanding data and, when requested via an
input command, delivers contiguous data to the Sandia XTP user. The Sandia XTP
uses a special mechanism to mark the end of a message. The user data is conceptually
one or more messages, where a message is considered as a user-defined grouping of
the data. The association is equipped to handle an arbitrary number of messages over
its lifetime.

Data transfers between two Sandia XTP users are packet unit transmissions.
When a host receives incoming packets, it is important to find a proper context to
handle the packet, and then let it process the packet. The Sandia XTP establishes the
rule with the key value in the packet header. The key value is a 64-bit unsigned int.
When the transmitter emits the packet, the packet key value is equal to the send
context key value. If a receiver wants to send a packet to the transmitter, the packet’s
key value will have its high bit set “on” as a return key. After the FIRST packet has
landed in the receiver context, the context sets a high bit for the FIRST packet’s key
and stores it in the context for the returning packet. The JCNTL packet with no high

bit set key is then called a late join case.

24

Handle new packet function in the XTPcontext_manager class performs the
task of handling the incoming packet in the proper context. Figures 8, 9 and 10 below
are the decision tables used to handle new packet function.

Data transfer may not be limited to only two users. In fact, the Sandia XTP
supports one-to-many and many-to-many data flows. The many-to-many data flow is
a significant new feature added in this project.

Receive XTP packet

confirm_checksum
A
get packet header drop packet

is_hi_bit_set return;
y no

find_context(key) I=NULL in_hdr->cmd.ptype = FIRST (see next page
table 2)
ng,

drop packet context status
return; is_quiescent()

/ \QA
in_hdr->cm ptype=JCNTL in_hdr->cmd.ptype =DIAG
& c->is | xm1tterO
f \‘n
send_diag()
is dnphcate acket

drop packet drop packet
yes context gets packet return; return;

return;

context gets match jcpkt.address
packet
match in hdr->cmd.opt10ns

7%

c->mcast_num_act _ send_diag()

revrs() >= drop packet
c->mcast_max_act_ return;
revrst()
yes no
send_diag() context gets packet
drop packet return;
return;

Figure 8. Handle new packet decision table 1

in_hdr->cmd.ptype = FIRST
(D

y 0
(2) full_context_lookup(&entry,1) = NULL in_hdr->¢md.ptype = JCNTL
0 y! no
is_multicast() find listener(&fpktres) in_hdr->ke
c\ (see table 3) full_context_lookup
yes no yes o I=NULL
drop packet is_multicast()
return; yes no yes no
get_mcast_sib_listQ!=NULL context gets
drop packet send_diag() packet return
y no return; drop packet return

retarn:
drop packet find_listener (&fpkt,res)
return; I=NULL

7 no
drop packet Xum,
return;

Figure 9. Handle new packet decision table 2

26

(table 3) in_hdr->key =0
y no
get FIRST pkt(Q !'=NULL find_listenr (&jcpkt, res) !=NULL

> % y N\

drop packet full_context_lookup context gets drop packet

return &en 0) I=NULL packet
yes no

context gets packet mcast num_act rcvrs()>— mcast_max_act_rcvrs()

return; / w‘

send_diag() get_next_free_context() != NULL

drop packet ‘y no
return

drop packet context gets packet
return return

Figure 10. Handle new packet decision table 3

3.3 Addressing in the Sandia XTP

When an application process wishes to set up a connection to a remote
application process, it must specify which one to connect to and which destination is
defined for ongoing packets. It is the same, as when we send a letter to someone, we
have to write a valid address on the envelope in order for the mailman to deliver it.
On the Internet, the IP address and the local ports of each host identify the desired
destination. Sandia XTP operates with a dozen network addresses including IP, the
Internet protocol. This implies the Sandia XTP can map popular network addresses,

which can be indicated by the user.

27

3.4 Unicast in the Sandia XTP

The Sandia XTP provides the functionality of unicast, which permits two end
points to communicate with each other. This provides a high degree of functionality
through protocol mechanisms. Once an association is established, a listening context
has received a FIRST packet and sent back TCNTL packet as an acknowledgement,
then the initial contexts in both hosts have moved into an active state. Once an
incoming packet arrives at the appropriate active context during the transmission, this
context can be the receive context, since after one host finishes sending data, the other
host can use this context to send a data packet to the initial transmitter. The
association is created once by the first transmitter to send the FIRST packet, and is

terminated by exchanging WCLOSE, RCLOSE and END bits in the packets.

3.5 Multicast in the Sandia XTP

The XTP multicast is an abstraction of hardware multicast. It is not like
broadcasting. XTP multicast permits each machine to choose whether to participate in
the multicast or not. When a group of machines want to communicate, they choose
one multicast address to use for communication. After establishing an XTP group
communication association, the XTP sets a context for recognizing the selected
multicast address, then all the machines in the group will receive a copy of every
packet sent to this multicast address. The designers of the Xpress Transfer Protocol
strove to balance the need for group communication and support with the desire to
avoid distorting or overburdening the protocol with special case processing for the
multiparty case [2]. Before this report the XTP unicast and the one by n multicast

already existed in the Sandia XTP implementation. The Sandia XTP provides the one

28

by n multicast and unicast functionality—to let the user choose between different
options in his association. In the Sandia XTP implementation, if the user sets the
MULTT parameter in options, the Sandia XTP begins its multicast process for group
communication. Since this process is a transport layer multicast (not a datalink
multicast or broadcast), it is a reliable peer-to-peer multicast, providing flow control,
rate control and error control transmission of arbitrary messages of arbitrary sized
groups [3]. The unicast is also used in the established Sandia XTP multicast

association, in processing the ACK packets from receiver to transmitter.

3.5.1 Addressing of the Multicast in the Sandia XTP

In the Sandia XTP, the communication between machine and machine is
controlled through packets. The packet can find its path according to its encapsulated
destination address information. This address information is necessary to establish a
path between the Sandia XTP end points. The Sandia XTP provides a global address,
expressed in a number of existing address formats [2]. In the Sandia XTP multicast,
the value to be set in the address segment of the FIRST packet is the multicast address
corresponding to the set of destinations. In this report, I use an IP multicast address as
the group address and as the destination address in the application program. The IP
multicast address is an Intenet class D address between 224.0.0.0 and
239.255.255.255. IP multicast addresses can be used only as destination addresses.
They can never appear in the source address field of a datagram. In order to map an
IP multicast address to the corresponding Ethernet multicast address, the low-order 23
bits of the IP multicast address must be inserted into the low-order 23 bits of the

special Ethernet multicast address 01-00-5E-00-00-00 [S]. Since group membership is

29

associated with a particular network address, an application program must specify a
particular network address when it asks to join a multicast group. The Sandia XTP
multicast is designed for networks with a physical broadcast medium, and the
destination address of the FIRST packet is a multicast or broadcast address, derived
from the group address in the Address Segment. It is assumed that address
assignments are accomplished through an outside mechanism, such as agreement

among peers or an address management protocol [1].

3.5.2 One by N Multicast in Sandia XTP

Sandia XTP one by n multicast is a group communication. One transmitter
and many receivers are located in one group. Since this is a transport multicast —
rather than a data-link multicast or broadcast — flow control, rate control, and error
control procedures are applied in the transmission of arbitrary size messages to
arbitrary size groups [1]. Following the transport service primitives, Sandia XTP
provides a mechanism to simulate the primitives in implementation which readily
permits the user to set application programs for establishing, using, and releasing
connections. Consequently, reliable multicast transport can be derived from the
participants who can group together in one association in a transport service to access
multicast service. This service uses the same best-effort datagram delivery, which can
be lost, delayed, or duplicated, but because XTP is a transport layer protocol, it
requires reliable transmission. Consequently, the transmitter has to keep the messages
until it gets all of the acknowledgements it requires from its group members. Figure
11 below shows the architecture of the one by n multicast in the Sandia XTP.

30

Figure 11. The Sandia XTP One by N Multicast Architecture

One by n multicast encapsulates the group communication management in its
protocol mechanisms, which are sufficient to manage the entire group. In order to
initialize a multicast association it is necessary to send a FIRST packet with
association information, so that one or more slave hosts can receive it. After the host
context is set up by the FIRST packet, it knows the specified group multicast address
and other packets can be sent to that group address. Each receiver in the multicast
group acknowledges the initiation to join by returning a JCNTL packet. The
transmitting host then issues a JCNTL to each receiver, to complete the exchange of

necessary information and fully establish the multicast association.

31

4. The Proposed Changes in the Sandia XTP

4.1 The Extension of One by N Multicast to M by N
Multicast

The existing Sandia implementation provides unicast communication and one by
n multicast as defined in the XTP specification 4.0B. The goal of this major report
project is to implement the changes proposed in Ramasivan’s thesis, which specify
the extensions necessary to permit m by n XTP communication. The implementation
of XTP m by n multicast is based on the existing Sandia XTP unicast and one by n
multicast implementation. It extends their functionality and provides essential new
features. These changes imply that there are many transmitters and receivers in one
communication group. Figure 12 below presents the architecture of the m by n

multicast.

Figure 12. The M by N Multicast Architecture

32

The XTP m by n multicast permits many members in one association to both
send and receive, as with peer to peer transmission. The m by n multicast features
transport layer communication including flow control, rate control, and etror control
procedures. But the XTP host management has to extend to group context
management in a single host from one by n multicast in the Sandia XTP. The m by n
multicast’s group address management continues to adopt one by n address
management. The main differences between one by n and m by n multicast in XTP
can be outlined as follows.

The first difference between one by n and m by n is that one by n has one
context in each host either sending or receiving data, while with the m by n multicast
each host can hold many generated contexts so as to receive data from the different
machines in an association. In each single host, one receive context corresponds to
one transmitter in the association.

The second difference between one by n and m by n is that the m by n
multicast case not only features a master host in an association, but also has a master
context in each host to control the slave contexts in each context group during the
data transmission.

The third difference concerns group communication management. With the m
by n multicast, the association is not closed until the last transmitter has finished
sending a message, but with the one by n multicast, because there is only one
transmitter in an association, once the data source has finished its delivery data, the

association terminates.

33

From the above differences, we can deduce that the m by n multicast
association has been devised to transform and extend unicast and one by n multicast
in the Sandia XTP, and to build on all the advantages of functionality built into

unicast and one by n multicast association.

4.2 Rate Control, Flow Control and Error Control in M by
N Multicast

The m by n multicast obeys the same rules of flow control, rate control and
error control as the Sandia XTP one by n multicast. Another difference between the
Sandia XTP one by n multicast and the new proposed m by n multicast concerns
retransmission and error detection procedures. First, RCLOSE and WCLOSE will no
longer be forced in the outgoing and return packets, respectively. Second, the context
states continue in Active during the entire data transmission. Third, the WCLOSE bit
will now be set after one transmitter has finished sending a message. All of the above
considerations will mean that the existing Sandia XTP will identify these features as

errors, but they are not errors in the m by n multicast.

4.3 Setting the Context for M by N Multicast

The XTP context presents information to the XTP endpoint. To set an
appropriate context in each host will be the first step to be performed by the m by n
multicast. In the Sandia XTP, one host has one context to record information from the
end point, and the context is only used to send or receive data since the host can either
send or receive. However, the auxiliary context can be retained so that the host can
handle special cases. For example, it can handle the JCNTL packet for join and later
join cases. In m by n multicast, every host has the ability to send and receive after the

association has been established. This means that each host needs at least two

contexts to accomplish data transmission, one for sending and one for receiving.
When the user sends commands to the daemon to make an association, two contexts
will be created in one host, one being the send context, the other being the receive
context. The receive context will be used to receive the first FIRST packet and the
send context will be used so that the daemon can send data. Another reason for setting
the two contexts before establishing the association is to keep the original
information. For example, the receive context will change its destination address from
the multicast address to the data source, which is the transmitter’s address, after it has
received the FIRST packet. After the association has been established, when a host
receives an incoming packet, the handle new_packet function of the XTP context
manager decides which context is qualified to take the packet according to the key
value of the packet’s header. If there is no proper context in the context list, it will
generate a new context to handle this case.

The algorithm of the m by n multicast comprises one master host and many
slave hosts in one association. The slaves remain under the master host’s control. The
master host is the host, which sends the first FIRST packet to build the association.
No one can close the association except the master host, which emits the packet with
the WCLOSE value set. In each host, there is one master context and many slave
contexts, which correspond to each of the data source hosts. This indicates that the
numbers of transmitters in an association are equal to the number of slave contexts in
one single host. In each host, the slave contexts are generated by the master context
and they are placed in the m by n sibling context table. The master context is the send

context for each host since it retains the original information. There are two places

35

through which to generate the context during m by n multicast processing. One is
located in the daemon dispatch function; the other is in the handle new_packet
function. When the user issues a command (send or receive) to the daemon with
request, the daemon will find the initialized context for the user according to the key
value in the request. At this time, if the context is in the Register state for the
transmitter or the Listen state for the receiver before building the association, then
they begin to generate a context.

The following seven points describe the main changes in Sandia XTP
implementation for the m by n multicast.

1. Three main new principal parameters were added in the context class,
master_host, master_context, and m_key. The master_host parameter can indicate
whether this host is the master host or not. It is set to “1” when the master host sends
the FIRST packet. Otherwise, it is set to “0”. The master_context parameter indicates
whether this context is the master_context or not in this host. The m_key parameter
identifies group contexts for each host. All the contexts that are part of the same
association in a host have an identical m_key value. The m_key is equal to the key
value of the first initialized context key in each host. This is set when the context is
generated.

2. In slave hosts, the master context (send context) is created before the slave
host receives the first FIRST packet. When the receive context starts to receive the
FIRST packet, the master_host parameter of the receive context has to be set at “0”,
and then the context is set from the information received by the FIRST packet, such

as the path address establishment for the unicast address between receiver and sender.

36

3. The state of each generated Context has to be set to an Active state, because
the new context does not need to be initialized again and the value is copied from the
initialized master context. Meanwhile, the context in the Active state means that
communication is enabled in the existing association.

4. Another important new parameter added in context is the return_key (data
source key). Since the full context look up function can not cover the m by n
muticast so as to map the proper context to handle the FIRST packet, there were two
main reasons for adding this parameter: to cooperate with the new functions
set_nbym_rcv_list and find_nbym_sib_next to map the proper context so as to handle
the FIRST packet. Consequently, when the return_key is zero, this means that the
receive context is not being used and the daemon can then use this context to receive
incoming packet. Moreover, in duplicate the packet case, if the incoming packet key
value is the same as the return_key value, the context does not take this_packet and
the packet is consequently dropped. The return_key parameter is set to the FIRST
packet key value when the context receives the FIRST packet from the transmitter.
The principal reason for the duplicate packets is to ensure that as many potential
receivers as possible are attracted to the group and to deliberately send the duplicate
FIRST packets upon expiration of the WTIMER from the transmitter. Similarly, the
join receiver is permitted to deliberately send duplicate JONTL (key =0) packets after
it receives the ACK from the transmitter. Regarding the DATA packet, CNTL packet
and other XTP packets, the full context look up will be used to map the proper

context in an m by n multicast. The explanatory detail can be found in section 4.4.

37

5. A new data structure nbym_sibling_info was added in context to list the
group contexts in one host. This was necessary to put the generated contexts on an m
by n sibling list table located around their own host. The master context is the header
on the table. When the daemon wants to get obtain an appropriate context to handle
the different cases, it looks at the m by n sibling list to identify a suitable context. If
no proper context can be found, the daemon will generate a context to handle that
case, then put it on the m by n sibling list.

6. The buffer, which has been created by the first context in its initialization,
has to be attached to each generated context for receiving data, since every context
has to use one created buffer in a single host. The start point and end point of the
buffer segment have to be considered. When the context sets the correct address and
segment length in the buffer, the user can read the correct data from the buffer in the
XTP user interface.

7. In the Sandia XTP, the RCLOSE bit indicates that the sender’s incoming
data stream is closed and the RCLOSE bit has to be set in each outgoing packet from
the sender, starting with the FIRST packet. In the m by n multicast, the RCLOSE bit
will not be set in the FIRST packet and not every outgoing packet from the sender has
to be set in the RCLOSE. Section 4.7, provides more details concerning RCLOSE,

WCLOSE and END bit settings in m by n multicast.

4.4 The Major Changes in the Sandia XTP for M by N
Multicast

To satisfy the m by n multicast, the main aspects of context management, process
packet, XTP interface and handle WTIMER have to be modified and extended. The

following six points indicate the main changes that have been executed so far.

38

1. The Full context_look up function works with a handle new_packet function.
When the packet is sent, the full_context_look_up function maps all the active
contexts so as to get a proper context to handle the packet according to the context
states and the key value of the packet. However, the full context look up
function is not powerful enough to cover the m by n multicast case, and after
association establishment the FIRST packet is sent again from another transmitter
but the full_context_look up function does not work for this case. It consequently
needs to add set_nbym_rcv_list function and find nbym_sib_next function so as
to cooperate with the full_context_look_up function to map the proper context for
the incoming packet. After the association is established, except for the FIRST
packet, the full_context_look_up function keeps mapping the proper context for
the other packets in an m by n multicast case.

2. In context management, the handle new packet function handles each received
new packet through a proper context. In terms of original design, there are three
rules to be used here to find the proper context to handle the new packet. First,
does the packet’s key (return key) have the high bit set? If the packet’s key is high
bit set, this means the packet is a return packet from receiver to transmitter with
the unicast address so the find_context function in the MTL context manage class
is used here to get the transmitter context with the return key to handle the packet.
There are no FIRST and DATA packets with high bit set key because the FIRST
and DATA packet comes from the transmitter to the receiver. Second, if the high
bit is not set in the packet’s key, this means the packet comes from the

transmitter. If the packet is the FIRST packet to make association, the

39

find listening context function is used here to get all of the listening status
contexts to handle the packet. If the packet is DATA or another packet, the
full _context_lookup function is used here to map all of the context database to
ensure the proper contexts to handle the packets. Third, if the packet’s key is zero
in the JCNTL packet, this implies it is a join packet from the receiver to the
sender. The difference in performance between the one by n case and the m by n
case in handle new_packet function is as follows. With the one by n multicast
case, the context is in a listening state to receive the FIRST packet and it can only
receive one FIRST packet. But with the m by n multicast, only one host can send
the FIRST packet in the association, while the receive context is placed in an
Active state to handle the FIRST packet. To deal with new situations, the
handle new_packet function needs to be modified so as to find the appropriate
contexts to receive the packets, or to generate a new context for them. The m by n
sibling list has to be used here to identify the appropriate received context. The
algorithm is necessary if the FIRST packet comes and the association is already
established, and the handle new_packet has to fulfil a new function
(set_nbym_rcv_list) by looking up each host’s m by n sibling list to check each
receive context. If the context parameter return_key (data source key) is zero then
the context starts to handle the packet. If there is no proper context to be found
from the m by n sibling list, a new context is subsequently generated to handle the
packet. If the FIRST packet is the duplicated packet, then the packet’s key is the
same as the context return_key, and the packet will be dropped. There is no

context to receive the duplicate FIRST packet. To handle DATA and other

packets, the algorithm for the m by n multicast is the same as that for the one by n
in this (handle_new_packet) function. Figure 14 below shows the changes in the
handle new_packet function.

in_hdr->cmd.ptype = FIRST
1)

yes

set_ nbym _recv_list (&entry, 1) I=NULL

// this is a new function added here cooperated

// with another new function find_nbym_sib_next()

// to map proper context from context database

// for the received packet.

/ if it gets nothing from the context database then the new function
// set_nbym_context is called to generate the new context then the

/I new function set_nbym_list puts this context on the nbym_sib_list

// table
Yes no
fpkt.is_multicast
)
get_mcast_sib_list full context_lookup (&entry, 1)
context gets packet
return

(1), (2) are in correspondence with figure 10

Figure 13. The changes in the handle_new_packet function

3. The process_packet function indicates which process is used for the received
packet according to the context state and the packet type. If it is another FIRST

packet and the context is in the Active state, then the Sandia XTP of the

41

process_packet function performs it as a duplicate case. It must therefore be
modified here for the m by n multicast, since each transmitter has to send the
FIRST packet to make a path between the transmitter and the receiver.

. The Sandia XTP user interface is a bridge between the user and the XTP daemon
to pass user commands to the daemon and the send back received messages from
the daemon to the user. To perform the m by n multicast, it is necessary to
distinguish the m by n multicast from the one by n in both the XTP user interface
and the XTP daemon classes. In order to specify that the process used is the m by
n multicast, two commands (XTP_MULTI_SEND and XTP_MULTI_RECEIVE)
were added so that the user can tell the daemon to use the m by n procedure. After
the daemon has been given a correct command, the daemon engages the right
process. Figure 14 shows the algorithm for the m by n case in the daemon.

. The retransmission function is used in the handle WTIMER function. It is caused
by timeout, and there are no responses from destination hosts, and its context
states. To adapt to m by n multicast, it is necessary to avoid from retransmission if
the transmitter context’s state is Active and all the data are received in the
receiver side. This will cause retransmission in the Sandian XTP 1 by n and
unicast. To perform this, it has to issue a stop WIIMER function once the
transmitter has received all of the responses.

. The m by n multicast send and receive procedures have their own API functions
to enable the user to access the XTP. There are two new functions comprising
send and receive to be added in the common.h, xtpif class and the context class.

Other functions include modified inside codes of Sandia XTP implementation to

42

perform the m by n multicast case. Figure 15 shows an XTP m by n multicast

send and receive events trace.

User command

|

case XTP_ MULTI_SEND
case XTP_MULTI_RECEIVE

y

validate_context (request -> key) == OK;

//check the request-> key is valid
O,

return xtr-> context_key =0
/fit is a new parameter in xtp_trans_msg class to keep trace of
//the specified generated context to send or receive the data

//packet.
M
find_context (xtr-> context_key) find_context (request -> key)
//get appropriate context // get master context
context -> send (is_nbym_multi) context_used = |
or //the 1 indicates the association has been established
context -> receive (is_nbym_multi)
? no yes
set_nbym_context() get appropriate

set nbym list “4—f6— generated context =0K
) ———T

// to generate a send
/I or receive context

Figure 14. The new algorithm in the daemon dispatch_request function

43

Bulk commonh xtpif xtpdaemon XTPcontext manager XTPcontext buffer
mtlif daemon context_manager context manager

-MIR
—Phit receiver
> L_config()

EXOK
reg ()

init_context()

initialize())

create shmid
request | EXOK
request |j¢—————

reply to xtght
ch (shmid)
EXOK >

0

EXOK ¢
_.bindL).. issue()
— P! bind_context (}
—®_bind()

EXOK
reply xtpif Ixbd-> result |¢
endof | A EXOK [¢—

send initiq]

—p| validate context for receive
__—’_’

Listen ([.
end of replgxipit___EXOK.
recv initigle xir D EE—

send or
receive, | send or

receive I issue()
—hvalidate_contexﬁ

EXOK

ﬁnd__conﬁt()

Bulk commonh xtpif xtpdaemon XTPcontext manager XTPcontext buffer

mtlif daemon context manager context manager
—EXOK |
set nbym_context (|)
attach(shmid) I——
—>
EXOK
< EXOK]
send() of
P
repeive () and bloc
for receive
context processes
received packet|
write()
" Unblock to reply to user —
Read () >
EXOK
received [€—
print ¢ data |
received]
P

teply to user finish send process
print | EXOK |¢———

for sendﬂ

Figure 15. M by N multicast event trace in send and receive procedure

4.5 Association Establishment in the M by N Multicast
When the user sets an output command to send the FIRST packet with a

multicast address, if certain contexts are listening on the same multicast address from

45

the other hosts, the FIRST packet will be given all the appropriate Listening contexts.
Once the contexts have received the FIRST packet, their state changes from listening
to Active simultaneously, while the receiver hosts send back JCNTL packets as a join
acknowledgment. The first host to issue the FIRST packet will be the master host and
the rest of the hosts will be slaves. Once the group has been established, we can
assume that the group will be kept until everyone has finished sending information.
With the m by n multicast, the slave host turns from receiver to sender, and it still
works in the same group, while the context is still in the Active state and there is no
later join case in the m_by n case which means that the later participant issues a
JCNTL packet with a key value equal to 0. This is the difference between the one by
n and m by n multicast. In the one by n multicast, after the master transmitter has
finished sending data, the group is closed and the later joining is permitted in the one
by n multicast through issuing a JCNTL packet from the joining host.
4.6 Association Management in the M by N Multicast

The establishment procedures occur when the context receives the FIRST
packet. These procedures put the facility into place using the FIRST packet delivery
address. After the context has received the FIRST packet, it sets the destination
address through the transmitter address for establishing a path between the sender and
the receiver. For example, the JONTL packet is emitted with a unicast address from
the receiver to the sender. With the m by n multicast, each transmitter needs to send
the FIRST packet before the transmission data, but it does not need to build an

association many times, since the association is established just once at the beginning.

Sending the FIRST packet from slaves is necessary to establish a path between the

transmitter and the recetiver.

4.7 To Terminate the Association in the M by N Multicast

Associations are designed to handle an arbitrary number of messages over an
arbitrary length of time, but sometimes it is necessary to end the association in
specific cases, as when all of the transmissions in the association have been finished.
The XTP provides the mechanisms for several different termination semantics,
ranging from an independent graceful close to an immediate abort [2].

With the m by n multicast, the graceful close (three-way handshake) is
necessary to end the association when all the transmitters have finished transmitting
their data. The termination association with the m by n multicast complies with the
following policy.

o The association master identifies the process at a given host that first transmits the
XTP FIRST packets for a given m by n group. It will not set the RCLOSE bit in
the packet header and its contexts. While the receivers receive the packet without
an RCLOSE bit, the receivers will leave the context open as regards the incoming
data stream and the outgoing data stream.

e When the master host sends the last packet with the WCLOSE bit to the slave
hosts, the slave hosts will record WCLOSE then reply to the master host with
RCLOSE. This implies the receivers will not receive the transmitter packet
because the transmitter has set the WCLOSE in order to close the outgoing data
stream. The following three figures a, b and c, describe how WCLOSE bit and

RCLOSE bit can be set using four hosts multicast data communication.

47

Send data packet without RCLOSE | WCLOSE » U

Send data without d data packet without
RCLOSE | WCLOSE CLOSE | WCLOSE

w

\%

(a)

Send last packet with WCLOSE

Send last packet with WCLOSE

Send last packet with WCLOSE

:

(b)

‘Received the WCLOSE then replying with RCLOSE U

eceived the WCLOSE then replying with

Received the WCLOSE then replying
with RCLOSE

w

(¢)

Figure 16. The architecture for sending RCLOSE and WCLOSE

e Any sender

in the association once it has finished issuing WCLOSE looks for

RCLOSE in all the other sites. After the association master has received each

WCLOSE from all of the members in the association, it will then send the
WCLOSE | RCLOSE | END bits with a multicast address to terminate the
established association.

With an additional termination association, the master host has the power to force
the association to be terminated. Once the master host has sent the END bit to the
members of the association at any given time, then the association will be shut down
immediately. However as regards the slave hosts of the association, once any slave
host wants to leave the association, it sends the END bit to the members of the
association and then it terminates the connection with the association. This implies

that these hosts have retired from this association.

49

5. Top Level (ECSL) in M by N Multicast in
XTP

It frequently happens in M by N multicast communication that strict ordering
is required among the packets from the multiple senders. Ramasivan [6] proposes the
addition of a layer above the M by N XTP features, to manage this ordered delivery.
The ordering is achieved by requesting a token from the association master, and
combining this token with all data sent by a particular host.

This Enhanced Communications Support Layer (ECSL) is outlined in
Ramasivan’s thesis [6]. Actual implementation of this proposal requires additional
changes to the Sandian XTP. Additional design ideas are contained in this chapter,
based on experience with the implementation of M by N multicast. However, the
actual implementation is left for future work.

5.1 The Principles of ECSL in XTP

The International Organization for standardization (ISO) and the International
Electromechanical Commission (IEC) have defined a new transport service interface
named Enhanced Communications Transport Service (ECTS). This draft standard
attempts to provide a uniform and universal service interface between transport
protocols and applications that require support for powerful multimedia group
communication [5]. The Enhanced Communications Support Layer (ECSL)
constitutes a new proposal for the XTP multicast. It is based on the ECTS principle to
dealing with token management and data ordering. ECSL is a new proposal to
perform multicast in XTP for today’s high-speed networks.

50

The principle of ECSL in XTP is to manage multi-sender function in a
communication group. Essentially it is m by n multicast that has ordering between
each participant who wants to send the data packets. This implies that when the
master transmitter has finished making the association, other transmitters can start to
send as a multi-sender within one group. Once the receivers receive the packets, the
XTP daemon will deal with the received data by means of the token list. This both
enhances efficiency and saves time in group communication. ECSL is a natural
extension of the m by n multicast, the context generation process, establishment
association, path establishment, context states changing, and terminate, and can be

operated according to the same processes as m by n multicast.

5.1.1 Token Message Table in ECSL

To perform ECSL for multicast in each host, the buffer has to be set in XTP
daemon so as to store massive amounts of data, and the token table needs to be built
within the daemon too. Table 3 below permits one example of the taken message
table from Ramasivan’s thesis that lists token numbers and corresponding packet

numbers.

Table 3. Token Message Table

-1 | T2 |[T3 | T4 |.. |... P-1 {P-2 |P3 |4 P-16

Token Number Packet Number

This token table is set in the packet header for data delivery. Only the master
host can change the token value in the token table. We can assume the token apply

procedure, once association has been established, the group members who want to

51

send data have to send packet with a request message of token applying with a unicast
address to the master host, then the master host assigns the token number in the token
list according to its established priority, and sends it to group members with a
multicast address immediately. Every participant in the group needs to obtain the
same token list (this is different from Ramasivan’s thesis for the address mapping as
Ramasivan contends that the token list should be sent with a unicast address from the
master host). After all the members have received the token message, they can put it
in the daemon and start their transmission procedure. In the case of ECSL, the user
can not directly affect the daemon if the user wants to send data. The user
consequently has to send data to the daemon buffer, and then the daemon will order
the data and provide an appropriate context to send it. Once the daemon arranges the
data for the user, it will identify the token number corresponding to the packet

number so as to write the data to input queues.

5.1.2 The ECSL protocol for session layer connection
Table 4. The New Protocol for ECSL

Protocol
Version Packet Type Length

Session Source Connection Identifier

Session Destination Connection Identifier

Message Acceptance Record

Data

52

Protocol version: 8 bits. This indicates the protocol version. Here its value is set to

0x01.

Packet type: 12 bits. This indicates the desired kind of packet for the ECSL

protocol, indicated in table 7 below.

Table 5. Token Type List

Service Parameters
Open S_OPEN_MASTER
S_OPEN_SLAVE

Token Request S_TOK_REQ
Token Response S_TOK_ACC
Token Deny S_TOK_DEN
Token Cancel S_TOK_CAN

Data S_DATA

Length: 12 bits. This indicates the length of the data field.

Session Source Connection Identifier: 32 bits. This indicates source entity.
Session Destination Connection Identifier: 32 bits. This session layer identifies
the destination entity.

Message Acceptance Record: 32 bits, comprising 16 bits for the token number
and 16 bits for the packet sequence number.

Data: The packet can supply its own data.

5.2 The Performance of ECSL in XTP

There are two ways to perform ECSL protocol for session layer

communication, one is to set up this protocol in each existing XTP packet, and

another is to create a new packet for ECSL. The best way is to create new packets for

session layer communication. To perform ECSL in XTP, Ramasivan’s design should

53

be changed in terms of sending or receiving procedures. Ramasivan’s design enables
the user to send or receive commands to or from the daemon so that the daemon can
identify the context to perform sending or receiving process immediately. In ECSL
performance, the daemon would not directly reflect a user command, since it is
primarily a send command. The daemon has to wait until all the highest priority’s
data have arrived by receiving the EOM from the data source host, then the daemon
can request a context for transmission. Because user commands do not directly affect
the context, the context does not unblock to reply to the user, nor does it write
received data into the receive buffer for the user either. There are two ways to transfer
data from the daemon to the user. In the first instance, the context writes the data to
the daemon buffer, and then the daemon writes the data to receive the buffer
according to the daemon token list. The other way is to let the context temporarily

store the data until it gets the daemon’s order to write the data to receive the buffer.

5.3 The Design of ECSL for the XTP Multicast
To set ECSL in XTP provides an acceptable solution to the problem of raising the

efficiency of network transmission for the m by n multicast. Since it is built in the
session layer, it is designated the top level of XTP. The primary character of XTP is
peer to peer transport layer data transmission. The algorithm is determined after the
group members get the FIRST packet through which to make association, and the
token applying will be sent to the master host with either the JCNTL packet or a new
packet. The master host sets the token number for each of the slave hosts and sends
back this token list with either the JONTL packet or a new packet with a multicast

address. After every slave host has received the token list; they start to send data. The

six principal steps outlined below should be modified and extended to implement the

ECSL in XTP multicast.

L.

To set a token table in daemon that will include the parameters of the token
number, the packet number and the key value of the data source host.

To create a buffer in the daemon which will hold at least twenty data packets.
To increase the packet header’s length by adding a 32 bits token table to it.
Before the packet with data has been emitted, the context will write the token
number and packet sequence number in the packet token table.

If the user is blocked by the daemon from receiving data, the context should
not unblock the user since the receive context just writes the received data into
the daemon receive buffer. The daemon will take over this task of unblocking
the user and ordering the received data to be sent to the user.

In slave hosts, the first process with a receive command is to receive the
FIRST packet to join association. If the user wants to send data, the user
should notify the daemon by applying for the token after association. Certain
parameters should be added in the user request class to facilitate
communication between the daemon and the user, since the daemon should
know after establishing association whether the host wants to apply for tokens

for sending data or not.

6. The token management in ECSL with m by n multicast. When slaves want to

send data they have to ask for a token by sending a packet to the master. This
could be handled by a JCNTL packet or created by a new packet with the

unicast address as its destination address. The master host will then position the

55

applicants on the token list table according to their priority, and subsequently
reply using the token for the user with a multicast address. It is better to use a
multicast address, since the token lists are the same for each host. Every user
must get token lists from the master host, so that they can send packets with
data or wait for the processing of the packets if they don’t want to send any

data in the association.

56

6. Experience Test and Result

The xtpif class implements the programming interface for the Sandia XTP. The
xtpif object is the user access point ensuring the functionality of XTP. The user can
only use the functions provided by xtpif to accomplish the unicast or multicast.

xtpif() is a constructor with no argument and ~xtpif() is a destructor for releasing
the user’s resources kept for the association.

config() allows the user to configure certain parameters for this association.

reg() registers the user with the XTP daemon.

bind() binds an address to this association.

getaddr(), gettspec(), puttspec(), and getstate() are used to extract and replace
information about the association held within the context.

listen() causes the endpoint to listen for incoming FIRST packets.

receive() and send() are overloaded to allow the user to receive the data into the
receive buffer without reading the receive buffer, and they also permit the user to
chose m by n multicast in one of the overload functions.

release() causes the XTP daemon to release all resources for this association.

sendcentl() causes an unsolicited control packet to be sent.

The implementation of the XTP m by n multicast has to be run under UNIX
environment and has been integrated with a new timer system implemented by
Yonglin Jiang. The new application program to run the XTP m by n multicast is
called bulk4 and it is found under /mnt/grad/ma_tong/mysniff/team work/bin. The
application program is better to run in pine, loon, forest and fir four machines in

Concordia university, since those four machines have more than ten shared memories

57

which allows the context to be attached if you want to run all four machines. For
those who don’t have the right to access these machines, I also provide another
application program which is called mnbulk permitting three machines to perform
multicast so that you can run it in any three machines in the Computer Science
Department of Concordia University.

In the bulk4 application program, type bulk4 -K -R 239.0.0.239 can be
performed in one machine, and it performs receive, receive, send and receive in the
group. Type bulk4d -Q -R 239.0.0.239 in one machine, performs receive, send,
receive and receive in the group. Type bulk4 -M -R 239.0.0.239 in one machine, it
does receive, receive, receive and send in the group, on the last machine, type bulk4 —
H -T 239.0.0.239, performs send, receive, receive and receive in the group.

It is possible to run mnbulk application among three machines. In one machine,
type mnbulk -Q -R 239.0.0.239, it performs receive, send and receive in the group.
In one machine, type mnbulk -K -R 239.0.0.239, performs receive, receive and send
in the group. In last machine, type mnbuik -H ~T 239.0.0.239, performs send, receive
and receive in the group.

From the above test, it is evident that each host can be a sender and receiver in
the group. The xtpif class can be used to create more m by n multicast application

programs which can be variously applied.

58

7. Conclusion and Future Work

A set of XTP requirements, including design and implementation, has been
given for a generally applicable multicast transport platform. This report provides a
general overview of XTP protocol. More specifically, the m by n multicast has been
described in this report according to its implementation for the Sandia XTP. The
more detailed design of the top level of m by n multicast—ECSL, has also been
presented in this report. Certain strengths and limitations can be identified and will
become more clearly manifest once the suggestions for future work outlined in this
report have been implemented.

XTP owes a great deal to outstanding academic work conducted both before
and after its inception. The XTP owes everything to this seminal work which will
undoubtedly became stronger and more reliable in the future as it continues to

evolve in the wake of this research.

7.1 Addressing the problem where the master sender is dead
in multicast

If, in m by n multicast, after the association has been established, all the slave
hosts send data packets one by one to the existing association which is created by the
master host, then the association will be closed by the master host. During
transmission, if the master host found to be dead, a problem emerges concerning who
will send the packet to the slave hosts to turn off the association. There are at least 2
ways to handle this case. One solution is that each host can wait for the closing of the
packet from the master host after a certain period of time, if this is not possible, the

association will be terminated automatically. Another solution is that after a specified

59

period of time, if the slave has not received the closing signal from the master host,
then it will send a packet to the master host to query after it. If there is no immediate
reply, then he will automatically leave the association.

If the master host is found to be dead after he has finishing sending the FIRST
packet, the consensus of a new master host may be required to manage the
association.

Further consideration of the problem of the dead master host will be necessary
in any subsequent research.

Closing the association is not possible in one group, since the death of the
master host affects all the groups.

7.2 Later joining in m by n multicast

Later joining frequently occurs in multicast. It sometimes happens that after
the association has been created, another host asks to join the group as well by
sending a JCNTL packet. If it gets a reply from the master host, it can join the group
by sending and receiving packets from others. XTP one by n provides an opportunity
for a host that wants to join later, however this option is not available in m by n
multicast. In this scenario, if the host is permitted to join the group, it will begin to
receive a packet. The problem concerns how the host can obtain the token to start
sending a data packet. In ECSL, all the token lists are sent from the master host at the
very beginning, and so the host that attempts to join later cannot send a data packet,
because in each host’s daemon, there is no context token number. Perhaps it is

possible to choose another algorithm and send a new token number from the master

host to the slave hosts so as to alert other hosts that there is a new member in the

group. This design problem will undoubtedly be of interest in any future research.

61

8. Reference

1. Jim Krupp, ed., Xpress Transport Protocol Specification XIP Revision 4.0B XTP,
XTP Forum, July, 1998.

2. W. Timothy Strayer, Bert J. Dempsey, Alfred C. Weaver, The Xpress Transfer
Protocol 1992.

3. Andrew S. Tanenbaum, Computer Networks, Third Edition, 1996.

4. J. W. Atwood, The Xpress Transport Protocol: Outline of a Tutorial.

5. Douglas E. Comer, Internetworking with TCP/IP Volume I Principles, Protocols,
and Architecture, Third Edition, 1995.

6. Ganesh Ramasivan, Enhanced Communication Services for Many-To-Many
Multicasting Using XTP, Thesis in Department of Computer Science at Concordia
University, March 2000.

7. Louis Harvey, In Search of a Rate Control Policy for XTP: Unicast & Multicast,
Report in Department of Computer Science at Concordia University, March 1999.

8. Kamal Ghander, Requirement Documentation for XTP Time Management Base
Class, Report for the fulfillment of a Computer Science Project at Concordia
University, January 10, 2000.

9. Infrastructure and Networking Research Sandia National Laboratories, Mera-
Transport Library Reference Manual, MTL version 1.5, December 1996.

10. Infrastructure and Networking Research Sandia National Laboratories,
SandiaXTP User's Guide, Release 1.5.1, 1997.

11. Infrastructure and Networking Research Sandia National Laboratories, Meta-

Transport Library User’s Guide, Release 1.5.1, 1997.

62

12. Infrastructure and Networking Research Sandia National Laboratories,
SandiaXTP Reference Manual, SandiaXTP version 1.4, February 1996.

13. S. Armstrong Xerox, A. Freier Apple, K. Marzullo Cormell, Multicast Transport
Protocol, February 1992.

14. C. Bormann, J. Ott, H.-C.Gehrche, T.Kerschat, N.Seifert, MTP-2: Towards
Achieving the S.E.R.O. Properties for Multicast Transport, Presented at the
ICCCN’94, San Francisco, September 1994.

15. Carsten Bormann, Joerg Ott, Nils Seifert, MTP/SO: Self-Organizing Multicast

draft-bormann-mtp-so-01.txt, Internet-draft, May 1998.

63

