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Abstract

‘Modeling and Robust Adaptive Control of Metal Cutting via
Application of Piezoactuator

Jingchuan Pan

Self-excited vibration, so called chatter, is known to cause detrimental effects on the
machined surface finish and to decrease the machining efficiency. Because of the small
amplitude, high frequency properties of chatter, it requires active vibration control
providing a force to the cutting system to overcome the chatter effect. To provide such a
force, the piezoactuator has been introduced into the cutting system as an important
controllable positioning device for ultra-precision machining. With the application of
piezoactuator, a much more accurate model is required for achieving the ultra-precision
control. In this thesis, rather than using the commonly accepted linear Merchant model,
the relationship of cutting force and chip thickness variations is explored as a nonlinear
hysteresis model. Furthermore, the piezoactuator itself also exhibits hysteretic behavior.
Thereafter, the turning system investigated in this thesis is described as a class of
uncertain systems with hysteresis and time delay. The novelty of this thesis is that the
hysteresis model is for the first time incorporated into the chatter suppression design for
metal cutting systems, but notoriously, it severely complicates the task of controller
design and analysis. In this thesis, in order for ultra-precision machining, several robust
adaptive control schemes are proposed in different circumstances with such complicated
turning syétéms. The simulation results show significant reduction of chatter by the

proposed adaptive controllers in all the circumstances.
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Chapter 1

Introduction

Introduction — A brief introduction and a literature survey regarding chatter vibration in

metal cutting are given in this chapter; contributions and organization of this thesis are

also presented.

1.1 An industrial problem in Metal Cutting — Chatter

Chatter, which in itself is a sufficient and independent source of chatter vibration energy,
is known to cause detrimental effects on the machined surface finish and to decrease the
machining efficiency. In order to improve the surface quality of the workpiece and the
production efficiency by overcoming the chatter oscillations in the process of metal

cutting, the dynamic models of metal cutting have been investigated and different chatter

models have been proposed.

In the cutting process, there are many identified types of self-vibrations excited by
different mechanism. Three basic principles of chatter in metal cutting are given by

Koenigsberger and Tlusty (1970). I. Regenerative Chatter. It is excited due to the tool



tip difference between the current cut and the previous cut, and it can be found in the
simplest single DOF system. 2. Mode Coupling. It can be found within vibratory
systems with at least two degrees-of-freedom. Gasparetto (1998) presents a theoretical

analysis of mode coupling chatter without damping.

Figure 1.1 Mode Coupling Chatter

In Figure 1.1, the counter-clock-wise ellipse describes the track of the cutting tool. When
mode-coupling chatter is present, if the tool rotates counterclockwise, the unstable mode
corresponds to an ellipse run clockwise. The force F is in phase with the velocity of the
tool between point A and point B, whereas F is 180 degrees out of phase with the
velocity between point B and point A. The positive work by force F between point A
and B is greater than the negative work done between point B and A, increasing the
amplitude of the ellipse, thus giving rise to mode-coupling chatter. 3. Velocity
Component. 1t is excited due to the existence of a phase shift between the change of the
chip thickness and the change of the cutting force. It is fully understood on the basis of
vibration theory, that a time lag of the force behind the vibration would create energy,
which would cause self-excitation of vibration. The name of this principle means that the

cutting force contains a variable component in phase with the velocity of vibration.



Focusing on the chatt‘er directions, Tobias and Fishwick (1958), Tobias (1965)
distinguish that there are two types of chatter based on different chatter directions. 7; ype A
chatter occurs when the amplitudes lie in the plane perpendicular to the cutting direction.
Type B chatter occurs when the chatter amplitudes have a component co-directional with
the cutting speed, regardless whether the amplitudes are co-directional with the feed or
perpendicular to it. And furthermore it is shown in Tobias (1965) that type A chatteris a

special case of type B chatter.

Type A Chatter

Figure 1.2 Type A and type B chatter

As type A chatter involves chip thickness variation, it can be classified, according to
different as primary effect [Merrit (1965)], regenerative effect [Koenigsberger and Tlusty

(1970)] and multi-regenerative effect [Tlusty and Ismail (1981)].

Primary effect accounts for the fact that the cutting tool is cutting on a “fresh” workpiece
with smooth surface. For turning metal cutting, primary effect can only dominate in the

first cutting revolution and it strongly depends on the pre-condition that the workpiece



has a smooth surface when it is “fresh”, which has made it a negligible problem in

turning metal cutting, comparing to the regenerative or multi-regenerative effect.

Figure 1.3 Primary chatter

Regenerative effect occurs when the tool subsequently cuts a surface that it has already
cut during the previous revolution. Therefore, if there was a vibration between tool and
workpiece during the ith cut and the produced surface has become undulated, the chip of
the (7+1)th cut is removed from that undulated surface. Regenerative effect is the
unavoidable factor for chatter occurrence in turning, it occurs after the first revolution of
cutting subjected to the effect of wavy surface produced during the preceding revolution,
and it is a combination of both wave-producing and wave-removing processes. In fact,
primary chatter is always being called as “wave producing” chatter while regenerative
chatter as “wave removing” chatter [Merrit (1965)]. For orthogonal cutting, it is
generally considered that the regenerative effect can be described as the follows, [Chiou
and Liang (1998, 1999), Kondo, et al (1997)]
v(it) =x(@)—x(-T)
where v(f) is the chip thickness variation and 7 is the time interval during one

revolution of cutting.



Figure 1.4 Regenerative chatter

In order to describe the chip thickness variation due to the different effect, Merritt (1965)
provides an equation for uncut chip thickness, defining the primary chatter and
regenerative chatter by use of the overlap factor x,

v(t) = x(t) + poc(t —T)

# =0 Primary Chatter
u# #0 Regenerative Chatter

where v(f) is the instantaneous chip thickness variation at time £, x is the relative
displacement between tool and work piece normal to machined surface, and M 1s the
overlap factor and 0<x <1. The overlap factor may also be used to account for the

geometrical effects of rounding at the tool cutting edge and of tool clearance angle.

'Considering the geometrical relations of shear angle, it was proposed in Ota and Kono
(1974) that the chip thickness variation is

V() =x(+H)~x(t—-T+H"
where the previous cut is precedent to the cutting edge by a time value H', as shown in

the folloWing figure.



x(t =T)
x(t~T +H")

- ~.

x(t)

Figure 1.5 Chip thickness definition of Ota and Xono (1974)

The chatter due to the regenerative effect can grow as the metal cutting system stays in
the oscillating state. During the cutting process, the amplitude of the chatter does not
grow indefinitely but stabilizes at finite amplitude of vibration. It was first proposed by
Tlusty and Ismail (1981) that this phenomenon of non-linearity is caused by the so-called
Multi-Regenerative Effect. With the increase of vibration, the tool starts to move outside
of the cut for an interval in a cutting revolution. It has been experimentally verified
[Kondo, et al (1981)] that the tool separates from the work surface periodically due to the
multiple regenerative effect during chatter. And the cutting force reduces to zero during
the separation. So, the multi-regenerative effect limits the amplitude of the chatter.
However, the re-contact of the work and the tool will cause umpredictable collapse and

force generation.

Figure 1.6 Multi-regenerative chatter



To account for the multi-regenerative effect, Kondo, ef al (1981) and Kaneko, et al
(1984) proposed that due to the multi-regenerative effect, the uncut chip thickness
variation depends on the previous cutting revolutions.

v() =min{x(t —-T), f, +x(t - 27T), 2.f, + x(t =37T), ---, (n=-1f, +x(t —nT)}—x()

where f is the steady feed of cutting tool.

1.2 Chatter Mechanism in Turning

The study on chatter occurrence requires a thorough investigation over the dynamic

cutting process, i.e., the relationship of cutting force, contact force, chip thickness and

tool displacement.

1.2.1 Relationship of Cutting Force and Chip Thickness

Consider a machine tool operating under nominal feed and cutting speed, which is

regarded as a dynamic system in a condition of steady-state motion. If the steady-state
cutting operation is disturbed, the cutting force variation F, will be generated,
superimposed on the static cutting force F;,. It may happen that the F, is of such a form
that it inc_reases the original disturbance, so that a still larger F, is built up and this in

turn leads to an even more severe disturbance, and so on. Consequently the machine

begins to vibrate, and so does the chatter occur. This explanation is given by



Tobias(1965) for the physical causes of chatter, and it reveals the fact that the chatter

occurrence is related to the cutting force variance.

Many researches have been devoted to find out the relationship of the force and the chip
thickness during the dynamic cutting process. For the cutting system in steady state,
Merchant (1945 II) proposed the famous linear relationship between the force and the
geometry of chip formation that the force is in proportion to the undeformed chip
thickness.

Fy=k-v()
where £ is a constant and v(f) corresponds to the chip thickness. Obtained based on the

principle of minimum energy, this cutting force model treats the chip as a “separate”
body in stable mechanical equilibrium under the action of two equal, opposite resultant
forces. Merchant model is proved to be a very good approximation for the actual cutting
force in steady state, which leads to the fact that it has been accepted as the basic model
for the analysis of dynamic cutting process in the research of chatter occurrence. Ever
since the linear Merchant model was first proposed, it has become dominant in the
modeling of metal cutting. Most of thc? existing theories on the dynamics of metal cutting
employ the linear model [Merrit (1965), Kondo, ef a/ (1981), Kaneko, ef al (1984), Marui
et al (1988), Olgac and Hosek (1998), Rao and Shin (1999), Chiou and Liang (1999)].

There are also many theories which are transformations of the linear Merchant model. It
is indicated in Kaneko, ef a/ (1984), Marui, et al (1988) that the cutting resistance may be
inﬂuenced- by the dynamic vadatiohs of the relative velocity between the tool and the

work x, and the resistance is inversely proportional to the cutting speed and proportional



to horizontal relative velocity between the tool and the work, however independent on the
projected area of the uncut chip. Kaneko, et al (1984) considers the penetrating force to

be

F, -—-Kov(t)—lca[V X J

0 —X
Marui, et al (1988) introduces variation of cutting speed as one more effect that
influences the cutting resistance, and it is proposed that the cutting force gain can be

described as the follows,

K=K,-k,y—k tan™ x
0 vy aa‘n(Vo_}-}J

where y represents the relative velocity between the cutting tool and the work, which is

proportional to the cutting speed.

Sarnicola and Boothroyel (1974) presents experiments to develop the equations for the
effect of surface slope on machine forces and it is proposed that the force variation due to

chip surface slope is in negative proportion to sectional area 4_ and the slope angle .

AF, =~k,A.f

Figure 1.7 Relationship of cutting force and surface slope



Linear Merchant model is derived in steady state for metal cutting system, however, it
should be noticed that many conditions are absolutely different in steady and dynamuc
state, i.e., the chip in chattering state can no longer remain the stable mechanical
equilibrium, which results in a different description of the cutting process mechanics.
Merchant model has been successfully introduced to describe the cutting system in stead—y
state, however, Szakovits and D*Souza (1976) indicates that the assumption of modeling
the dynamic cutting process with steady-state state data is invalid, and there are
experimental results showing that the dynamic cutting process is a nonlinear model rathe—

than a linear model [Albrecht (1965)].

Smith and Tobias (1961) suggested that the direction of cutting force in the vibratings
state is different from that in the steady state. As a matter of fact, Merchant Modell

cannot explain the phase difference occurring between force and the chip thickness,.

which has been verified by Smith and Tobias (1961).

In order to account for the phase difference leading to non-linearity, Albrecht (1965)
suggested hysteresis relationship between tool face force and uncut chip thickness, by
analyzing a small phase lag of the force to the thickness. And Doi and Kato (1956),
Marui et al (1988), Kato and Marui (1974), Ota and Kono (1974) present a model by
introducing a time lag = between force and chip thickness.

F=k(-17)

where v denotes the uncut chip thickness.

10



There is phase difference between the cutting force and the vibration wave, and it is
verified that in some ca.;‘»es force lags behind the geometry vibration [Smith and Tobias
(1961)]. With the linear Merchant model, Doi and Kato (1956) gives F, = Kx(t—h) for
the primary chatter, Kato and Marui (1974), Ota and Kono (1974) gives
Fy =K[poe(t +7—h)—x(t - h)], Marui et al (1988) gives
Fy =K(t)-[oc(t + T — h) — x(¢ — h)], where £ is the time lag of the cutting force and 7 is

the revolution period.

However, Shumsheruddin (1964), Szakovits and D’Souza (1976) found that the dynamic
cutting force lags the chip thickness variation at low frequencies, and leads at high
frequencies, and in Szakovits and D’Souza (1976), it is indicated that the phase angles
between the fluctuating forces and undeformed chip thickness depend on cutting
conditions and are definitely frequency dependent. Shumsheruddin (1964) explain this
phenomenon by including the torsion characteristics of the tool, and Szakovits and
D’Souza (1976) model the dynamic process of phase lead and phase lag with the

introduction of hysteresis model.

It is not enough to describe the nonlinearity only with the introduction of phase
difference, thus, in order to account for the non-linearity, Hanna and Tobias (1974)
proposed a nonlinear relationship between cutting force and chip thickness variation.

F, =cAs+c (As)? +c,(As)?
where As represents the chip thickness variation. But, it is indicated in Szakovits and

D’Souza (1976) the above equation does not accurately represent the dynamic cutting

11



process. Shi and Tobias (1984) considered the dynamic force variation with additional
penetration factor other than the chip thickness variation,
Fy =¢As+¢,(As)? +¢,(As)? +c,x

where x corresponds to the penetration rate.

Pandit, et al (1975) considers the chatter as self-excited random vibration with white

noise excitation,

Doi and Kato (1956), Kato and Marui (1974), Kaneko et al (1984), Marui et al (1988)
showed by employing the experimental data that the relationship between the cutting

force and the displacement of workpiece has got the characteristic of hysteresis.

A

Cutting Force

N

Displacement of Workpiece

Figure 1.8 Relationship of cutting force and workpiece displacement

Fabris and D’Souza (1974), Szakovits and D’Souza (1976) proved by employing

experimental data that in the dynamic cutting process, the relationship between cutting

force variation F, and chip thickness variation v(t) exhibits hysteresis.

12



Figure 1.9 Hysteresis relationship of F, —v(¢) in metal cutting

The mechanism of energy excitation for chatter has been successfully explained in Doi
and Kato (1956), Kato and Marui (1974), Kaneko et al (1984), Marui et al (1988), and it
is concluded that chatter is the self-excited vibration caused by the hysteresis relationship
between force and workpiece deflection, which ensures the system to gain energy

necessary to maintain the vibration.

1.2.2 Relationship of Contact Force and Tool Displacement

A number of analyses of the contact force deflection due to the tool wear have been
undertaken over the years. Koren and Lenz (1972) proposes that the tool wear
occurrence involves thermally activated mechanism and mechanically activated

mechanism. The following section will focus on mechanical mechanism.

In the metal cutting, the fluctuation of the clearance angle has the strongest effect on the

contact force exerted on the flank face.

13



Figure 1.10 Machine Tool Cutting on the Wavy Surface

It is clear from the figure 1.10, that the flank face will come into contact with the
workpiece when the tool is cutting on the “down” slope, which will cause extremely
violent interference between the flank face of the tool and the workpiece. Sisson and
Kegg (1969), Mauri, e al (1983 I), Jemieniak and Widota (1989), Tamg er al/ (1994)

consider that clearance angle varies due to the relative vibration between turning tool and

workpiece.

YV=VotVi =%, +arctan§

where y, is the normal clearance angle and V' is the cutting speed. The decreasing of

clearance angle while cutting on a wavy work surface causes a additional damping force,
and due to the increase of damping, the system stability at low cutting speed is greatly
increased, which is known a the Low Speed Stability(LSS) [Kegg(1969)]. Furthermore,
Mauri, ef a/ (1983 I) proposed the clearance angle also varies due to the deflection of
turning tool, which could be characterized as chatter B vibration of the tool (refer to
Figure 1.2). Due to the elasticity of the machine tool, there is a deflection that

contributes to the changing of the clearance angle.

14



Y=VetVi 1V,
X +1.3784y

V-3 /

=y, +arctan

where / is the length of turning tool

Sisson and Kegg (1969) developed a physical explanation of the contact force between

tool flank face and workpiece, in terms of tool edge roundness and tool clearance angle.

Cutting

Figure 1.11 Cutting Edge with Rounded sharpness

According to the rounded tool nose model proposed by Sisson and Kegg (1969), Marui ef
al (1983 I/I), Chiou and Liang(1998) that, a very large negative rake angle at the
rounded part of the cutting edge causes the separating action of chip and work material,
the material at the lower part of the cutting edge is compressed under the tool nose and
thereafter reacts elastically. Thus, contact force is exerted between the workpiece surface
and the flank face of the turning tool. It is proposed by Sisson and Kegg (1969), Marui et
al (1983 1/2) that the contact force is proportional to the contact area,

F, =k wl

15



where w is the width of contact area, / is the length of contact area, and k, is the

constant proportional gain.

Furthermore, based on theoretical analysis for indention of a smooth spherical indenter
on a plane, Shaw and DeSalvo (1970) proposed that the contact force is proportional to
the volume of displaced material by the flank face of the cutting tool. Based on this idea,
Chiou and Liang (1998) proposed a cutting system model with a simplified
approximation of the displaced volume, which results in the proportionality of contact
force and vibration velocity.
F,=K_V =k
where K and k, are the constant coefficients, and ¥ is the displaced volume of the

chip.

Figure 1.12 Schematic diagram of simplified displaced volume

However, because the cutting tool is not a sphere object but with differently shaped
profile, it is clear that the obtained results of Chiou and Liang (1998) are simplified
approximation. For the contact force related to vibration velocity, Jemielniak and Widota
(1989), -Tarng, et al (1994), Chiou and Liang (1998) consider the directionality of the

vibration velocity. Because the contact force is always compressive and non-negative,

16



the contact force becomes zero when the vibration velocity is positive. The following
figure illustrates the free vibration and the area in gray represents the period when the

contact force in not zero.

Figure 1.13 Resultant contact force under free vibration

Chandrasekaran and Nagarajan (1977) proposes a comprehensive model for the
distribution of contact stresses along the wear land, and the contact force on the rake face

and flank face can be obtained based on the established tool-chip stress.

Elanayar and Shin (1996) proposes a model for the contact force of flank face by
considering the contact force as the frictionless indentation problem and using a

generalized friction law to determine the tangential forces.

F = Kf J-z:r J«-(o) al@) f(r,0)r drdo

Ja*(@)-r?
where f(r,0) is the function of cutting depth, and a(d) defines the boundary of the

contact region.

And the friction on the flank face is
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Fy=0,4,=Cy*[[ a*(6)drds

where C, and C, are the constants coefficients, 4, is the contact area, and

77 =0.00067d° 7%y (1 +1.85vd' W)

is the maximum penetration depth.

These two models are both based on the theory of a rigid punch on a semi-space. The
principle difference between the two models is that Elanayar’s model can reflect the

interference on the flank face by the variation of clearance angle, while Chandrasekaran’s

cannot.

It is experimentally proved by Marui et al (1983 1/2, 1995) that the relationship between

contact force and the cutting tool deflection demonstrates hysteresis, as shown in the

following Figure 1.14.

Y

Figure 1.14 Relationship between contact force and cutting tool deflection

It is obvious in Figure 1.14 that the amplitude of the contact force increases as the

amplitude of the cutting tool deflection increases. Marui et al (1983) also indicated that
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the hysteretic relationship between contact force and cutting tool deflection also results in

the maintenance of chatter vibration.

1.3 Cutting Dynamics in Turning

Though the actual metal cutting system has infinite degrees of freedom. However, it has
been indicated in Koenigsberger and Tlusty (1970), Chiriacescu (1990), that the principle
modes corresponding to the high eigen-frequencies and having high damping and
stiffness values exert little influence upon the dynamic displacement between tool and
workpiece and may be neglected. While the modes with very low eigen-frequencies,
ranging much below the level of those arising during the machining, are not considered
either for practical purposes. Consequently, the system is considered to have a finite

number of degrees of freedom.

The cutting system is regarded as the machine tool together with workpiece, cutting tool,
workpiece clamping device and tool clamping device. In order to describe the cutting
dynamics of the metal cutting system, Koenigsberger and Tlusty (1970) presented several
simplifications and assumptions.

1) The vibratory system of the machine is linear.

if) The direction of the variable component of the cutting force is constant.

iit) The variable component of the cutting force depends only on vibration in the

direction of the normal to the cut surface.
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iv) The frequency of the vibration and the mutual phase shift of undulations in

subsequent overlapping cuts are not influenced by the relationship of wavelength to

the length of cut; this assumption corresponds to an infinite length for every cut or,

" practically, to planning.

And under the above assumptions, the cutting system can described as a linear second

order function [Tobias (1965)],

mx+cx+ke=F,

where m,c,k are the equivalent mass, equivalent damping coefficient, and equivalent

spring stiffness respectively for the metal cutting machine.

NSOUONANNANNNN

Workpiece

Cutting
Tool

Figure 1.15 Schematic model of turning metal cutting system

Merritt (1965) and Chiriacescu (1990) developed the structure equation for the structure

with n7 degrees of freedom,

yis) < 8
F(s) ,-Z=I:k s°
| 0} +28,s/w, +1
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where k£ = k—‘ is the directional static stiffness, @, is the undamped natural frequency of

L4

the modes of vibration, respectively.

Altintas (1997) presented a general machine tool structure equation as in Figure 1.16,

x, tool

workpiece

> o

w

F=[0o 0 «-- 1 -1 .- Q]F,
And the equation of motion for the system is,
Mi+Cx+K x=F
where M_, C, and K, are the local mass, local damping and local stiffness matrices,

respectively.

Wu and Liu (1985), Minis and Tembo (1993), Elbestawi et al (1994) showed that the

dynamics of the cutting system may be described by the following equations,
m. 0| fc. O} |k O F,
o m[Tlo ¢ o & [7|F
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where z = [x y]T represents the varying displacement along X and Y axes, m_, m,,c

x?

¢,, k. and k, are the modal mass, damping, and stiffness, respectively.

Hanna and Tobias (1969) proposed the following system description with nonlinearity,
mi+ f(X)+g(x)=F,

The investigation of the dynamic cutting system shows that the damping function f(x)

can give a good approximation when it is treated as a linear function, though it maybe

exhibits hysteresis. However, it is shown in Hanna and Tobias (1969), Koenigsberger

and Tlusty (1970) (pp 32-34) and Chiriacescu (1990) (pp 78-79), that in some cases the

static stiffness of the cutting system demonstrates the non-linear characteristic with

respect to the displacement x.

A .
A £, ;

%y
\\

|

Figure 1.17 Non-linear characteristic of stiffness

Investigation in Chiriacescu(1990) show that, to a good approximation, when the static
force-displacement demonstrates nonlinearity as the left figure of Figure 1.17, or the
resonance .tests yield _results like those shown in right figure in Figure 1.17, the cutting
system must be described as

mv, +cv, +k(v,)=F,
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where the elastic force that resist the displacement of the mass m subjected to the force

F, is replaced by nonlinearity. For the nonlinear stiffness function, Hanna and Tobias

(1969) proposed the following equation, .
k(x) =kx+kx* +k,x°

where k,, k, and k; are constants.

1.4 Chatter Suppression in Turning

In order to suppress the chatter occurring during the cutting process, proper control
schemes are proposed. Koren, Y. (1997) reviews the progress in machine tool control
during the last three decades, three types of controls are discussed: (i) servocontrol loops
that control the individual axes of the machine, (ii) interpolators that coordinate the
motion of several axes and (iii) adaptive control that adjusts the cutting variables in real
time to maximize system performance. Rasmussen, et al (1994) improved the workpiece
surface by employing a digital repetitive servo control with the design of a piezoelectric
actuated cutting tool. Tarng and Wang (1993) developed an adaptive fuzzy control
system for the turning processes with highly non-linear and time-varying cutting
characteristics. Shiraishi et al (1991) obtained satisfactory chatter vibration control by
implemented optimal control of chatter. Hwang et al (1989) implemented a fixed gain PI
control and an adaptive pole assignment control technique with the feed force feedback.
Chen and -Chang (1991) considered the system to be linear with nonlinear time-varying

perturbation and employed PI controller to treat this stabilization problem. Hwang
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(1993) presented an adaptive turning force controller that has optimal robustness under
the constraint of feed raté. Recently, with the advent of piezoelectric devices, more and
more attention is attracted to the application of piezoactuator for metal cutting systems
[Cuttino et al (1999)], [Fawcett 1990], [Liu et al (1998)], [Ge and Jouaneh (1996)].
Piezoactuator has a prominent characteristic of fast expansions with small response time.
The fast response property of piezoactuator has made it a perfect controllable positioning

element for the ultra-precision control.

1.5 Contributions of the Thesis

The work presented here was motivated by an industrial problem of turning metal cutting.
In turning metal cutting, the occurrence of self-excited vibration, so called chatter, is
undesirable as it gives rise to production problems, causing detrimental effects on the
machined surface finish and decreasing the machining efficiency, and has adverse effect
on the work surface finish, tool wear and tool life. Because of the small amplitude (as
small as several microns), high frequency properties of chatter, it requires active vibration
control providing a force to the cutting system to overcome the chatter effect. Recently,
with the advent of piezoelectric devices, more and more attention is attracted to the
application of piezoactuator for metal cutting systems [Cuttino et al (1999)], [Fawcett
(1990)], [Liu et al (1998)]. Piezoactuator has a prominent characteristic of fast
expansion§ with small response time. With electrical voltage applied, the piezoactuator

can expand and reach its nominal displacement on the order of microseconds and a
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pushing or pulling force can be excited with accelerations of more than 10,000 g’s, so
that the position of the cutting tool can be maneuvered to suppress the chatter effect. The
fast response property of piezoactuator has made it a perfect controllable positioning

element for the ultra-precision control.

With the application of piezoactuator, we are able to implement chatter suppression with
ultra-precision. As a matter of fact, ultra-precision control requires a much more precise
model describing the actual metal cutting system, more specifically, the cutting
dynamics. There are strong indications that the relationship between the cutting force
and chip thickness displays nonlinear dynamics in the cutting process [Albrecht (1965)],
[Hanna and Tobias (1974)], [Pandit et al (1975)]. The mechanism of energy excitation
for chatter has been successfully explained in [Fabris and D’Souza (1974)], [Kato and
Marui (1974)], [Marui et al (1983)], [Marui et al (1995)], and it is concluded that chatter
is the self-excited vibration caused by the hysteresis relationship between force and
workpiece deflection, which ensures the system to gain energy necessary to maintain the
vibration. In contrast to the linear Merchant model [Merchant (1945)], hysteresis model
can better explain the experimental phenomena and as well give better correlations with
the theoretical analysis of dynamic cutting process. In this thesis, we explore the
relationship of cutting force fluctuation and chip thickness fluctuation as a hysteresis

model where the nonlinearity dominates.

Hysteresis is recognized as one of the factors that cause undesirable chatter, resulting in

instability of oscillations, inaccuracy, etc [Tao and Kokotovic (.1995)][Gorbet et al
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(2001)]. However, most of the hysteresis models proposed are very complicated and the
non-smooth nonlinearity; can severely complicate the task of controller design and
analysis. This leads to the fact that the hysteresis model is never applied to the dynamic
model of metal cutting when it comes to controller design. Piezoactuator with the fast
response property has been introduced into the cutting system as an important
controllable positioning element for the ultra-precision control; however, piezoactuator
also displays hysteretic behavior and the hysteresis actuation relationship imposes a still
open problem of developing control scheme with unknown hysteresis actuation [Su et al
(2000)], [Tao and Kokotovic (1995)]. In addition, the adverse effect of time delay,
unavoidably resulting from the regenerative effect of turning metal cutting, is another
major factor that causes instability in the cutting process. Without any doubt, the
combination of hysteresis and time delay in the closed-loop system has proposed an even
challenging topic for the controller design in metal cutting. In this thesis, a robust
controller is developed to deal with unknown hysteresis combined with time delay. The
proposed robust -adaptive controller ensures the suppression of chatter and global stability

of the metal cutting system.

1.6 Organization of the Thesis

The present chapter provides a brief introduction and a literature survey regarding chatter

vibration in metal cutting.
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In Chapter 2, hysteresis models for dynamic cutting process, including cutting force
model and contact force 'model, are presented. Active hysteresis is proved to be one of
the causes of chatter occurrence as it provides the energy for chatter excitation and
maintenance. Simplified mathematical hysteresis models are given and the simulations
based on these models demonstrate the behaviors of passive hysteresis model, active
hysteresis model, regenerative chatter effect and multi-regenerative chatter effect, which

give a good correlation with the actual experimental results.

In Chapter 3, linear cutting dynamics descriptions are presented for turning system with

piezoactuator, including one degree of freedom and two degrees of freedom.

In Chapter 4 — Chapter 7, in order for chatter suppression, a piezoactuator is introduced
for the regulation of the machine tool displacement. Based on different developed
turning models, different adaptive controllers are proposed for ultra-precision machining.
In Chapter 4, piezoactuation is treated as linear actuation, while the cutting models are
taken as backlash hysteresis and backlash-like hysteresis. In Chapter 5, the hysteretic
property of piezoactuator introduces a still open problem of controller design. In Chapter
6, the cutting system model involves the cutting tool dynamics and piezoactuator
dynamics. And in Chapter 7, type A and type B chatters are considered in the cutting
system with two degrees of freedom. -In order to overcome the chatter due to the
hysteresis and time delay in the cutting process, several adaptive controllers based on

different hysteresis descriptions for the metal cutting system of ultra-precision machining
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are presented. The simulation results show that the proposed adaptive controllers

significantly eliminate the chatter phenomena.

Chapter 8 provides the conclusions of the thesis and some recommendations for future

work.
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Chapter 2

Modeling of Dynamic Cutting Process

Introduction — In this chapter, hysteresis models for dynamic cutting process, including
cutting force model and contact force model, are presented. Active hysteresis is proved
to be one of the causes of chatter occurrence as it provides the energy for chatter
excitation and maintenance. Simplified mathematical hysteresis models are given and the
simulations based on these models demonstrate the behaviors -of passive hysteresis
model, active hysteresis model, regenerative chatter effect and multi-regenerative chatter

effect, which give a good correlation with the actual experimental results.

2.1 Hysteresis — A Cause for Chatter Occurrence

As chatter is found to have detrimental effects to the work piece finish, tool life, etc, a
large number of investigations [Shi and Tobias(1984), Wu .and Liu(1985), Tamg et
al(1994), Lee et al(1995)] have been performed to study the mechanism of chatter
vibration in order for chatter suppression. One of the proposed mechanisms is the active

hysteretic behavior appearing in the dynamic cutting process.
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In view of the nonlinearity of the relationship of force and chip thickness, Albrecht(1965)
gives a theoretical explaﬁation for the closed-loop relationship of force and uncut chip
thickness. Doi and Kato(1956), Kato and Marui(1974), Fabris and D’Souza(1974),
Kaneko et al(1984), Marui et al(1983 1/2, 1995) have successfully explained the energy
excitation of the chatter, and concluded that chatter is the self-excited vibration caused by
the hysteresis relationship between force and workpiece deflection, which ensures the

system to gain energy necessary to maintain the vibration.

A Deflection of cutting force

/ ,

O L
/eﬂection of chip thickness

Figure 2.1 Hysteresis relationship between cutting force and chip thickness

For primary chatter, the energy excited is proportional to the area enclosed by the
hysteresis [Fabris and D’Souza(1974), Doi and Kato(1956)], while for regenerative
chatter, Kato and Marui(1974) provided the hysteresis relationship of force and
workpiece displacement (Figure 2.2), and the energy for the chatter excitation is also

proportional to the area enclosed by the hysteresis.
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Cutting Force

N

Displacement of Workpiece

Figure 2.2 Hysteresis relationship between cutting force and workpiece

displacement

In Tobias and Fishwick (1958), Tobias (1965), chatter is classified into type A and type B
chatters: (a) Chatter with sglf—excited vibration perpendicular to the cutting direction; (b)
chatter with self-excited vibration co-directional with the cutting speed, due to the
deflecting cutting tool subjected to the bending effect of the force exerted on the tool tip.

And the two chatter types are illustrated in the following Figure

._Type A Chatter

Figure 2.3 Type A and type B Chatter

Most of the current research focus on the type A chatter, however, as we can see from

figure 2.3, type B chatter can also affect on the workpiece surface. Sisson and Kegg
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(1969), Marui et al (1983 1/2), Marui et al (1995), Elanayar and Shin (1996) consider the
contact force between the flank face and the workpiece, and different contact force
models are introduced based on the elastic dynamics. Furthermore, it is experimentally
proved by Marui et al (1983 1/2, 1995) that the relationship between contact force and the

cutting tool deflection demonstrates hysteresis, as shown in the following Figure 2 4.

Y

Figure 2.4 Relationship between contact force and cutting tool deflection

It is obvious in Figure 2.4 that the amplitude of the contact force increases as the
amplitude of the cutting tool deflection increases. Marui et al (1983) also pointed out that
the hysteretic relationship between contact force and cutting tool deflection also results in

the maintenance of chatter vibration.

As indicated in the reference, the hysteresis is proved to be one the chatter mechanisms
on the basis of energy excitation and maintenance. Thereafter, in the next section, we

will introduce the hysteresis models into the cutting system.
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2.2 Hysteresis Models in Dynamic Metal Cutting

2.2.1 Cutting/Thrust Force Models

The study on chatter requires a thorough investigation over the dynamic cutting process.
When it comes to the relationship of putting force and chip thickness, most of the existing
theories on the dynamics of metal cutting employ the linear model proposed by Merchant
(1946)[see, for example, Merrit (1965), Mauri et al (1988), Olgac and Hosek (1998)]

F, =k, -v(t) (2.1)
where &, is a constant, and v(f) represents the chip thickness variation at time ¢. The
linear Merchant model has become dominant in the modeling of metal cutting ever since
it was first proposed in 1945. However, there are strong indications that any linear
relationship between the cutting force and chip thickness cannot satisfactorily express the
nonlinear dynamics of the cutting process [See, for example, Albrecht (1965), Hanna and

Tobias (1974), Pandit, ef al (1975)].

In order to account for the non-lihearity, Hanna and Tobias (1974) proposed a nonlinear
relationship between cutting force and chip thickness variation.

F, =c,As +¢,(As)? +c,(As)? (2.2)
where As represents the chip thickness variation. Shi and Tobias (1984) consid;red the

dynamic force variation with additional penetration factor other than the chip thickness

variation,
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F, =c As+c¢,(As)®* +c,(As)’ +c,% (2.3)
where x corresponds to the penetration rate. But, it is indicated in Szakovits and
D’Souza (1976) that equation (2.2) and (2.3) does not accurately represent the dynamic

cutting process which actually exhibits the relationship of hysteresis.

Albrecht (1965) gives a theoretical explanation for the closed-loop relationship of force
and uncut chip thickness by introducing a time lead in the ploughing cutting force model.
However, it cannot describe the phenomenon of dynamic force lagging dynamic

displacement of the workpiece surface, which occurs at low frequency [Szakovits and

D’Souza(1976)].

In Marui et al (1988), a phase deviation is introduced into the linear Merchant Model to
describe the hysteresis relationship of the force and chip thickness, however, due to the
limitation of the linear Merchant model, the metal cutting system model cannot
successfully explain the nonlinearity in the dynamic cutting process, such as the low
frequency experiment observation in Szakovits and D’Souza(1976) that the resultant

cutting force achieves varying phase difference to chip thickness fluctuation.

Expenmental results from Doi and Kato(1956), Kato and Marui(1974), Fabris and
D’Souza(1974), Szakovits and D’Souza(1976), Kaneko et al(1984), Marui et al(1983
172, 1995) demonstrated the hysteresis relationship between cutting/thrust force and

undeformed chip thickness. And the following is one of the experimental examples.
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Figure 2.5 Hysteresis relationship between cutting/thrust force fluctuatioms and chip

thickness fluctuation

The hysteresis relationship between the cutting/thrust force fluctuations and chip

thickness fluctuation can be described as,

F. () =H_ (v©)
{F,A () =H,(v©®) @4)

where F_, (f) and F,(¢f) represent the cutting force and thrust force fluctuations
respectively, and H_() and H,(-) represent the functions describing; hysteresis

relationship between cutting/thrust force fluctuations and chip thickness fluctuation,
respectively. It is noted that the hysteresis descriptions of cutting force and wthrust force
are different in the amplitude and hysteresis slope, etc., except that they are an the same

positive direction while in chatter condition.
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2.2.2 Contact/Frictional Force Models

Marui, et al (1983) investigated the contact force between flank surface and the
workpiece surface by the primary chatter due to the deflection of cutting tool. The

chatter mark is given experimentally as follows,

ing

uttin
Direction

Figure 2.6 Chatter mark configuration

It is seen from Figure 2.7 that inclination of the chatter marks from A to B is large and
the effective relief angle y reaches zero or a minus value, so that the flank surface of the
cutting tool will contact the workpiece surface during the this period. At the same time, a
large frictional force may act on the flank surface in the vibration direction of the turning

tool.

For type B chatter, the cutting tool can be taken as a beam with free end vibration.
Arnold (1945), Marui et al (1983 1) give the description for the deflecting relationship of
the cutting tool tip, which illustrates the cross deflection effect on workpiece surface

owing to the tool tip deflection in the cutting direction.
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Figure 2.7 Deflection of cutting tool tip

A contact model of flank is presented in Sisson and Kegg (1969), Marui ez a/ (1983 II),
Elanayar and Shin (1996), which is based on the rounded tool nose model with the
following assumptions.

1 The workpiece material subject to intensive compression is not “squeezed” out of

the side of the cut.

2 The workpiece material is elastic and cannot be compressed permanently.
According to Sisson and Kegg (1969), Marui et a/ (1983 II), Elanayar and Shin (1996),
the tool nose cannot be “perfectly” sharp, and should be represented by the rounded tool

nose model, as shown in the figure below

Cutting
Tool

Figure 2.8 Rounded tool nose model
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where R represents the tool sharpness radius. As shown in Figure 2.8, a very large
negative rake angle exists at the lower part of the tool so that the workpiece material is

essentially “trapped” under the tool nose and an intensive contact force is generated.

And, Marui et al (1983 1/2, 1995) experimentally presented the hysteresis relationship

between the contact force and the cutting tool deflection, as shown in the following

Figure.

"-(-}"

Y

Figure 2.9 Hysteresis relationship between contact force and cutting tool deflection

The hysteresis relationship between the contact force fluctuations and y-direction
fluctuation can be described as,

Fy =T(y) (2.5)
Figure 2.6 shows that the dynamic contact force increases approximately linearly with the
cutting tool amplitude enlargement and the contact force in the increasing period 4' to
B', when the flank face contacts the workpiece. It is shown in Figure 2.10 that after the
chatter vibration reaches its positive maximum position, the separation of flank face and
workpiebe results in the contact force reducing to zero in a very short period (B' to C')

and the contact force remains a small magnitude while the tool is deflecting upwards to
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the negative maximum (C' to A'). This property of zero contact force is explained in
Chiou and Liang (1999) as due to the fact that the contact force is always compressive
and assumed only non-negative value. And Marui et al (1983) gives a quantitative

explanation by investigating the relief angle variation.

In Marui et al (1983 1/2), the frictional force due to contact force can described as
proportional to the contact force,

F,=kF, (2.6)

nt I

And the frictional force F,, is in the reverse direction as the cutting force.

The hysteresis models for cutting/thrust force and contact/frictional force are set up in
this section. In conclusion for this section, it is necessary to emphasize that we are
searching a model that is accurate enough to describe the actual system. In order for the
ultra-precision control for the turning metal cutting, linear model is not enough while the

closed loop nonlinearity — hysteresis dominates the phenomenon.

2.3 Mathematical Hysteresis Models of Dynamic Cutting

Process

In order for the controller design, some simplifications are required for the hysteresis

models of the cutting/thrust force, contact force, and tool motions.
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In order for the controller design, in this paper, we will treat the hysteresis demonstrated
in the metal cutting as a backlash hysteresis due to their resemblance in profile, which is
demonstrated in the following figures. For the hysteresis model of cutting/thrust force,

the backlash hysteresis model is introduced in place of the actual hysteresis model.
Fy (DA
2 3
B
h /
-
0
/B2
1

Figure 2.10 Backlash hysteresis model

In Figure 2.10, the line segments 1 and 3, 2 and 4 are parallel, and the hysteresis model of
cutting force — chip thickness can be described in terms of # and B.

Fy(y=H(v(t)) = H(h,B)
h-v(t)+B, v()>0
=<sh-v(t)+B,, v({)<O0
F, () v()=0

(2.7)

where v(f) =x(¢)—x(¢—7) is the chip thickness variation, A is the slope of the
hysteresis lines and B,, B, are the backlash distance. Due to the different descriptions of
hysteresis model for cutting force and thrust force, we have the following description

functions,

40



Fa()=H.(v())=H. (h.,B,)
h.-v()+B,, v(#)>0
=Jh -v({t)+B_,, w()<O0’
Fo() v(t)=0

and

FtA(t) =Ht(V(l)) =Hr(ht:Bt)
h, -v({)+B,, v()>0
={h,-v({)+B,, v({)<0’
Fu(t) V() =0
B

[

where 4., h,, B

cl»

for cutting and thrust force, respectively.

(2.8)

(2.9)

B, , B,, are the slopes of hysteresis and distance of hysteresis

For the dynamic contact force model, a triangular hysteresis model is introduced to

describe the actual hysteresis model,

Figure 2.11 Triangular hysteresis model

The triangular hysteresis model describes the relationship of dynamic contact force and

tool deflection in a simpler method and we have the following description functions:
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Fy=T(x;)
_ A, -T) x%,>0 (2.10)
- 0 %, <0

and

F,

nt

=k, F, @.11)

where A, is the slope of the increasing line and 7, represents the chatter amplitude.

By combining models of the cutting/thrust forces and contact/frictional forces, we have

the following general description functions for dynamic cutting process.,

{A}«; =F,+F, @.12)

AF, =F, +F,

In the following chapters, the above simplified hysteresis models will be used for

controller design.

2.4 Simulation Results

In order to illustrate the effect of active hysteresis, passive hysteresis, primary chatter
simulations are conducted in the following. We are taking the metal cutting system as

mx +cx+ke=F, (2.13)
The equiv-alent mass, damping coeﬁicient and spring coefficient for the metal cutting

system are,
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m=10kg, c=5x 10* kg/s, k=5 x 107 kg/s?,
With initial tool deflection x, =10m and F, =0, we have the force free response of

the cutting system as illustrated in the following figure,
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Figure 2.12 Force free response of turning system

It is clearly seen that the cutting system response is decreasing exponentially due to the

damping coefficient c.

Active hysteresis is so called that the direction of the hysteresis is clockwise, while
passive hysteresis is so that that the direction of the hysteresis is anti-clockwise. In order
to demonstrate the effect of active hysteresis and passive hysteresis, we are going to
simulate the primary chatter with coefficients for hysteresis model listed as follows,

h#4X_106N/mand By=20N.

For active hysteresis model,
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F,()=H(v())=H (" B)
h-v(t)+B,, v()>0
=h-v(t)-B,, v({)<0
F,(t) v(t) =0

where v(¢)=x.

x10 yum
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Figure 2.13 Response of turning system with active hysteresis

For passive hysteresis model,

Fy()=H(t)) = H(h, B)
h-v(t)—-B,, v()>0
=<h-v(t)+B,, v(t)<O0
F,(t) v()=0

where v(¥)=x, as primary chatter is considered in this case.

And the cutting system response is as following,
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Figure 2.14 Response of turning system with passive hysteresis

It is obvious that the cutting system is much more “stable” when the cutting process is
displaying passive hysteresis. As a result, based on the proposed hysteresis models,
simulations (figures 2.12-2.14) give a good correlation to the theory of chatter excitation

and maintenance.

In the following, we are going to present the most frequent types of chatter — regenerative

chatter and multi-regenerative chatter. Taking into account (2.13), the equivalent mass,

damping coefficient and spring coefficient for the metal cutting system are taken as,
m=15kg, c=3 x 10° kg/s, k=6 x 10 kg/s’,

And regenerative effect is considered with external force free, the cutting system

response is as following,
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Figure 2.15 Regenerative chatter in turning

It can be seen that chatter is growing as time is going on. Theoretically, chatter can grow
as the metal cutting system stays in the oscillating state, however, it is indicated that
chatter cannot grow infinitely due to the multi-regenerative effect [Tlusty and

Ismail(1981)], which is illustrated in the following.

In order to display the effect of multi-regenerative chatter, consider the normal depth of
cut is 0.5 mm. When the chip thickness variation v(f) < -0.5 mm, which leads to an
impossible result of (chip thickness < 0), the cutting force is reduced to 0 owing to the
fact that the cutting tool moves out of contact with workpiece. And we have the

following illustration for multi-regenerative chatter,
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Figure 2.16 Multi-regenerative chatter in turning

Taking into account the multi-regenerative effect, it is found out that the chatter can be
divided into developing and “stabilizing” periods, which also give good correlation to the

experimental results [Tlusty and Ismail(1981)].

2.5 Summary

In this chapter, hysteresis models for dynamic cutting process, including cutting force
model and contact force model, are presented. Active hysteresis is proved to be one of
the causes of chatter occurrence as it provides the energy for chatter excitation and
maintenance. Simplified mathematical hysteresis models are given and the simulations
based on these models demonstrate the behaviors of passive hysteresis model, active
hysteresis model, regenerative chatter effect and multi-regenera'tive chatter effect, which

give a good correlation with the actual experimental results.
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Chapter 3

‘Modeling of Linear Cutting Dynamics with

Piezoactuator

Introduction — In this Chapter, cutting dynamics descriptions are presented for turning

system with piezoactuator, including one degree of freedom and two degrees of freedom.

3.1 Cutting Tool Dynamics

The cutting system is regarded as the machine tool together with workpiece, cutting tool,
workpiece clamping device and tool clamping device. In order to describe the cutting
dynamics of the metal cutting system, Koenigsberger and Tlusty (1970) presented several
simplifications and assumptions. i) The vibratory system of the machine is linear. ii)
The direction of the variable component of the cutting force is constant. iii) The variable
component of the cutting force depends only on vibration in the direction of the normal to
the cut surface. iv) The frequency of the vibration and the mutual phase shift of
undulations in subsequent overlapping cuts are not influenced by the relationship of

wavelength to the length of cut; this assumption corresponds to an infinite length for

~

every cut or, practically, to planning.

48



And under the above assumptions, the cutting system can be described as a linear second

order function [Tobias (1965)],

mi+cx+hkx=F, 3.1
where m,c,k are the equivalent mass, equivalent damping coefficient, and equivalent

spring stiffness respectively for the metal cutting machine.

Equation (3-1) is the description for a one DOF cutting system. And a two DOF cutting

system is illustrated in Figure 3.1.

Y2
Ax,
Y
2 1
|72
Y

[omsmemtmm e gomn

Figure 3.1 Cutting system with two degrees of freedom

In Figure 3.1, x, and x, are the displacement of the tool in the directions of freedom,

and the equations of the system in these two directions can be described as,

m 0. [ 0]. [& 0] [F] =
|5 oF (.2)
[o mz]”[o cZJ}”{o LP”TIE
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4

where )7:[)1, }’z] , and m,,m,,c,,c,,k,k, are the equivalent mass, equivalent

damping coefficient, and equivalent spring stiffness respectively for the two degrees of

freedom. F, F, are the forces for the two different directions.

The displacement and force components of the two degrees of freedom 1 and 2, can be

described in the terms of the reference frame X, — X,

B S -

¢ cosy, |
F= ?571 . V2 N (3.3)
| Sy, Smyz_J | V2 |
_ [cosy, cosy,]'[F.]
F=| ] B4)
| siny, siny, | | F,
Substitute (3) and (4) into (2), we have,
cosy, cosy,[m, O Jcosy, cosy,] [%
siny, siny, | 0 m, | siny, siny, y
L[ o7 cos 7. [k O cosy, cosy,|'[x
siny, siny, | 0 Kk, |siny, siny, | |y
L [cosri cos v2 [k 0T cosy, cosy, T [x] [F. (3.5)
siny, siny, | 0 k, | siny, siny,| {y| |F, )

Altintas (1997) presented a general machine tool structure equation,
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Figure 3.2 Transfer function between a tool and workpiece on the machine tools
x=[x x, - x, x, - x|
F=[0 0 - 1 -1 - 0]F,
And the equation of motion for the system is,
Mi+Cx+K x=F
where M,, C, and K, are the local mass, local damping and local stiffness matrices,

respectively.

Wu and Liu (1985), Minis and Tembo (1993), Elbestawi et al (1994) showed that the

dynamics of the cutting system may be described by the following equations,

Z+ z + z=
0 m, 0 ¢ 0 &, F,
where z =[x y] represents the varying displacement along X and Y axes, m,, m,cC,.,

¢,, k. and k, are the modal mass, damping, and stiffness, respectively.

In summary with all the results presented above, a general linear machine tool dynamics

can be described as follows,
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Mi+Cx+Kx=F (3.6)
where the local mass M, damping C, and stiffness K matrices are R*“, the force

vector F € R, xe R*, and k is determined by the system model.
3.2 Piezoactuator Dynamics

The turning metal cutting system is illustrated in Figure 3.3, where the cutting tool is

mounted on the tool holder with a piezoactuator as the actuator.

Chuck
Z
—
Workpiece Tail
Stock ;
«+— Cutting
= Tool
Tool
Holder Piezo-
actuator
Tool Post

Figure 3.3 Turning metal cutting

With the advent of improved machines and processes, interest has been growing for a fast
tool servo mechanism to increase the capability and capacity of existing machines. The
purpose of the _piezoactuator is to move the tool small distances into and out of the
workpiece several times per revolution of the part, thus generating desired workpiece
surfaces or correcting for errors. With electrical voltage applied, the piezoactuator can

expand and reach its nominal displacement on the order  of microseconds and
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than 10,000 g’s are possible, so that the position of the cutting tool can be maneuvered.
Therefore, the chatter occurred in metal cutting can be reduced with appropriate control
scheme with the help of piezoactuator [Fawcett (1990), Cuttino, et al (1999)]. Figure 3.4

demonstrates the simple section view of a piezoactuator.

Tool Holder Piezoelectric Stack

/ /

Cutting Tool
% = =
g‘?ﬁ.& ?
e
o \
Alignment Cap Housing

Figure 3.4 Section view of piezoactuator

Many piezoactuator models are offered with a mechanical preload so that it is possible to
apply larger pulling forces to the positioning element. In order to present the description

of piezoactuator model, the mechanical preload is not indicated in Figure 3.4.

Whether the piezo translator can generated force depends on its stiffness and its
expansion capacity. If it is attached between two rigid walls so that it cannot expand,
then it generates its maximum force, also called blocking force. However, it is only true
for ideal restraints, whose spring constant &, is infinitely large. In practice, due to fast
expanding of piezo translator and the inertia of the mass load connected to the piezo

translator, a pushing or pulling force can be excited and it is described as,
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3.3 System Dynamics without Independent Tool Holder

Dynamics

Without considering the independent tool holder dynamics, Liu et al (1998) presented a

dynamic model for the turning cutting system demonstrated in the following,

Cutting Tool

m —C

Z

Figure 3.5 Dynamic model 1 for cutting tool with piezoactuator
And the cutting system can be described as,
mi+cx+hkc=F, - F, (3.8)

the equivalent mass of the cutting system is m, the stiffness is k£, and the damping

coefficient of the system is ¢. F, represents the force generated by the piezoactuator

due to the high speed expansion.

3.4 System Dynamics with Independent Tool Holder Dynamics

Considering the tool holder dynamics,
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Figure 3.6 Dynamic model 2 for cutting tool with piezoactuator

From figure 3.6, the piezoactuator dynamics can be described as,

m,%, +c %, +k,x, =F, —F, (3.9)
F,=c,(t-%,)+k,(x—x,) (3.10)
mi+ck+kc=F, —F, (3.11)

Where the equivalent mass of the cutting system is m, the stiffness is &, and the

damping coefficient of the cutting system is ¢. And m,, c,, k, are respectively the

equivalent mass, stiffness, and damping coefficient of the piezoactuator. F, represents
the cutting force fluctuation of the machine tool and is, as will be clear later, a nonlinear

function with respect to the chip thickness fluctuation. F, represents the force generated

by the piezoactuator, which will also be given detailed analysis in the following section.

And F,, is the reaction force between the piezoactuator and cutting tool. In Figure 3.2,

F,, is represented by the force generated by the spring-damper structure.

In the following chapters, we will develop robust adaptive controllers according to these

two proposed system dynamic models.
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3.5 Summary

- Two different dynamic system models are presented in this chapter, considering the

linear cutting dynamics of turning system with piezoactuator.
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Chapter 4

Chatter Suppression via Linear Piezo-actuation

Adaptive Controller Design — 1

Introduction — In this chapter, in order for chatter suppression, a piezoactuator
actuation is introduced for the regulation of the machine tool displacement. Metal cutting
system is modeled as a class of uncertain linear system with hysteresis and time delay
and the piezoactuator is considered exhibiting linear actuation. In order to overcome the
chatter due to the hysteresis and time delay in the cutting process, two adaptive
controllers based on different hysteresis descriptions for the metal cutting system of ultra-
precision machining are presented. The simulation results show that the proposed

adaptive controllers significantly eliminate the chatter phenomena.

4.1 Dynamic Turing System Model

The schematic model of turning metal cutting system is illustrated in Figure 4.1, and the
dynamic cutting process is demonstrated in the magnified contact parts of workpiece and
cutting tool. In this paper, we focus on the cutting force that is perpendicular to the

surface of workpiece. In Liu et al (1998), considering the piezo-actuated tool holder
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assemble as a lumped mass system, the structural system may be represented by a

dynamic model of turning process as illustrated in the following.

Workpiece Cutting  Piezo- .
Tool  actuator

r—

NOONNNNNNYN

Figure 4.1 Schematic model of turning system

From Figure 4.1, the dynamical process of the above metal cutting system can be

described with a linear second order function as the following [see, for example, Chiou
and Liang (1998)],

mi+cx+ke=F, - F, “.1)
where x(¢) represents the fluctuating part of the depth of cut, or so called offset chip
thickness(refer to Figure 4.1), m,c,k are the equivalent mass, equivalent damping
coefficient, and equivalent spring stiffness respectively for the metal cutting machine, %,

is the equivalent spring stiffness for the piezoactuator and u is the control input applied

to the piezoactuator. F, represents the cutting force variation of the machine tool and is

proved to be a nonlinear function with respect to the chip thickness variation.
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In this chapter, we are considering linear Voltage-Displacement characteristic for
piezoactuator, i.e.,

AL =ku
where u is the applied voltage and the &, is the proportionality. Due to thé fact of fast
expansion response of the piezoactuator, a pushing or pulling force can be excited and it
is described as,

F,=k,AL
Where £, is the equivalent stiffness of the piezoactua;tor. Denote k&, = kk,, we have that

the force F, exerted on the cutting tool by the piezo actuator is proportional to the

displacement u(¢),

F,=ku (4.2)

Thus, the turning cutting system can be described as,

mx+cx+hkc=F, —ku (4.3)
And the block diagram illustrating the control system is as follows, with
G(s)=1/(ms* +cs+k).
Remark: The cutting system model illustrated in Figure 4.2 is a complicated nonlinear
system involving hysteresis, which can lead to instability in closed-looped operation and

complicates the task of controller design and analysis [Gorbet (2001)].
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Figure 4.2 Block diagram of turning system with piezoactuator

Focusing on the above model, in the following, a robust adaptive control scheme for

control input «(¢) will be designed to suppress the chatter effect.

4.2 Adaptive Controller Design

The control of metal cutting system is a challenging task in the presence of hysteresis
nonlinearity. Hysteresis is known to be non-differentiable and severely limits the
performance of the system by causing undesirable chatter. Most of the hysteresis models
proposed [see, for example, Macki, et al (1993)] are very complicated and it is still
unavailable for designing the control scheme with a general type of hysteresis. In this

paper, we will treat the hysteresis demonstrated in the metal cutting as a backlash

hysteresis in two different descriptions,
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L. A dynamic backlash-like hysteresis

dH (v) av dv
2 —a—hv-H «“v
e la (v =H )+ 5 dt @4
where a and B, are constants, satisfying 2> B, .
II. A discontinuous time backlash hysteresis model
F,()=H((t))=H(h,B)
h-v(t)+B, v({t)>0
WO +B, (0)> @)

={h-v({)~B, W({)<0
0 v(£) =0

where 4> 0 is the slope of the hysteresis lines and B > 0 is the backlash distance.

In Chapter 2, it is known (4.5) is used as the approximation for the actual backlash
hysteresis in the cutting process. We shall now examine the solution properties of the
dynamic model (4.4) and explain the corresponding switching mechanism, which is
crucial for design of the controller. The equation (4.4) can be solved explicitly for v

piecewise monotone,

H(V) =hv +f(V) with (4.6)
f(V) = [HO _hvo ]e—a(v—vo)ssn\" _*_e—avsgn\;f [BI —h]e“”(’g‘°)d§

for v constant and H(v,) = H,. Analyzing the solution (4.6), we see that it is composed
of a line with the slope 4, together with a term f(v). For f(Vv), it can be easily shown
that if H(v;v,,w,) is the solution of (4.6) with initial values (v,,w,), then, if

v>0(v<0)and v — +0o (—0), one has
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lim H(v) =lim[w(v;v,,w,)— f(V)] = —ﬂ , @7
V—p0 v—p0 o4

(lim H@) = lim [wv;vy,wy)— f(V)] = —h—:ﬁ) .
V) v——x a

It should be noted that the above convergence is exponential at the rate of «. Solution
(4.6) and properties (4.7) and (4.8) show that H(v) eventually satisfies the first and
second conditions of (4.5). Furthermore, setting v =0 results in W =0 which satisfies

the last condition of (4.5). This implies that the dynamic equation (4.4) can be used to

model a class of backlash-like hysteresis and is an approximation of backlash hysteresis

(4.5).

Let us use an example for specified initial data to show the switching mechanism for the

dynamic model (4.4) when v changes direction. We note that when v >0 on w(0)=0

and v(0) =0, the solution (4.6) gives

HW)=hv- (1-e™) for v(£) 20 and v>0 (4.8)

h-B,
a
Let v, be a positive value of v and consider now a specimen such that v is increasing

along the initial curve (4.8) until a time ¢, the signal v is decreased. In this case, A (v)

is given by

h=5, [1-(2e™ —e™**™)e™] for v <0 4.9)

Hy)=hv+
lo4
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where v <v,. Equations (4.8) and (4.9) indeed show that H(v) switches exponentially

1

. h-B
from the line Av— L to hv+ to generate backlash-like hysteresis curves.

(74

To confirm the above analysis, the solutions of (4.4) can be obtained by numerical
integration with v as the independent variable. Figure 4.4 shows that model (4.4) indeed
generates backlash-like hysteresis curves, which confirms the above analysis. It should

be mentioned that the parameter « determines the rate at which A (v) switches between

_h-B, __ h-B
(24 a

. The larger the parameter « is, the faster the transition in H (V) is

going to be. However, the backlash distance is determined by ~— 1 and the parameter
a

must satisfy A~>B,. Therefore, the parameter a cannot be chosen freely. A
compromise should be made in choosing a suitable parameter set {«, &, B;} to model the

required shape of backlash-like hysteresis.

It is very important to note that equation (4.7) implies that there exists a uniform bound
p such that

lfmi<e (4.10)
So, the solution of the backlash-like hysteresis (4.4) consists of a linear function and a

bounded nonlinearity,
H()) =hv(t) + f(v()) 4.11)

63



In the following, two adaptive controllers are presented based on continuous backlash-

like hysteresis model and discontinuous backlash hysteresis model.

4.2.1 Adaptive Controller for Backlash-like Hysteresis Model

Utilizing the solution property (4.11), and substituting v(f) with x— ux(r—7), the
backlash-like hysteresis model (4.4) for metal cutting is given as follows,

H (o — et = 7)) = h-(x = poc(t = ) + f (x — pox(t — 7)) (4.12)

where |[f(x— it —))| < p.

In this case, the turning cutting system can be described as,
mf+cx+/oc=h-(x-;5c(t—z))+f(x-yx(z—r))—kau (4.13)

It should be noted that by using the definition of the hysteresis model (4.4), the

complicated description of the cutting model (4.3) is transformed into a simplified form,

which makes the design of robust control scheme possible.

Before the controller design, the following assumptions are required,
(Al) Time delayr remains constant during the cutting process;

(A2) m,c,k,k, , h are bounded variables with

me[mnﬁn’mmax]’ ce[cmin’cmax]’ ke[kmin’kmax]’ ka e[kamin’kanwx]’ he[hmin’hmax]’

k h_. , h_, are known constants.

amax ?

where mminr me s Crnin > Cmax’ kmin’ kmax’ kamin’
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Remark: In the resear_ches of chatter occurrence, it is commonly assumed that the
revolution speed is constant [see, for example, Merrit (1965), Olgac and Hosek (1998)].
Due to the fact that m,c,k,k,, h are physical coefficients for the metal cutting system,

subjecting to internal changes or external disturbance, it is reasonable to assume that they

are bounded variables.

Divided by m on both sides of (4.13) and with some manipulations, we have the

following second order function with nonlinearity,

i=-Si+ _k+hx+ _h‘ux(t—r)+if(x—yx(t—z'))—k—°u 4.14)
m m m m m

Remark: In metal cutting, what we concern about most is the offset chip thickness x(z),
for it directly reflects the surface quality of the workpiece being machined, and the
vibration of x(f) reflects the chatter occurrence during the dynamic cutting process. In
order for the chatter suppression, a robust adaptive controller is proposed in the following

for the regulation of x(z).

Denote,

b=—k—" and
m

g(6,x,) = — f(x - px(t — 1)
) m

Equation (4.14) can be rewritten as
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X=ax+ax+ax(t—t)+g(x,x.)+bu (4.15)

where g(x,x )<o = L

mmin

A filtered tracking error is defined as

s(f)=%+Ax with >0, (4.16)

Remark: Tt has been shown [Slotine and Li (1991)] that the definition (4.16) has the
following properties: (i) the equation s(t)=0 defines a time a hyper-plane on which the
state x(t) decays exponentially to zero, (ii) if x(0)=0 and |s(t)] <& with constant &, then

x(t) e Q, ={x(t)|| x|<A ¢} for V¢ 21,, and (iii) if x(0)=0 and |s(t)| < &, then x(t) will

converge to €2_with a time-constant 1/4 .

Differentiating s(f) with respect to time and substituting ¥ with (4.14), one has,
S@y=xX+Ax
=(1 +le))&+a2x+a3x(t—r)+g(x,x,)+bu (4.17)
Define

2 B o=

b b

b
Due to the boundedness of m, ¢, k, k,, h, we have 8 [em,am], e [fm,ﬁm] and
¢=l¢...c... ], where 6 in »Ornax » E i > E o » Smin » Smae. € R @re constants, and they can be

easily obtained with the bounds provided in assumption (A4.2).
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In stead of deriving the adaptive law with the filtered error s(f), we introduce a tuning

error, s_, as follows,
s
S, =85—~ asat(—) (4.18)
£

where & is a positive constant subject to the choice of designer and sat(-) is the

saturation function.

Remark: The tuning error s,, becomes 0 when the absolute value of filtered error,
|s(1)| < £, which is equal to creating an adaptation dead band with the range of [- ¢, g].

Given the uncertain system with bounded nonlinearity (4.14), the following control and

adaptation laws are preéented:
u(t) = —-[kds +0x+ fx +Sx(t—o)+ k'sat(i—j] (4.19)
with |
é = proj(é, ssi') , /,; = proj(f, sex) anci g,‘- = proj(g“‘, s x(t— r)) (4.20)

where &°>-Z2- And proj(-7) is a projection operator, which are constructed as

follows:
0 iff=6__ands x>0
ord =6, ands, x<0

prOJ'(é,S;i)= is,;x if6, <6 <6, (4.21)

ord = 6..c and s, x <0
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0 iff:f,mandssx>0
oré = Enand s_x <0
proj(f, sgx)= i1s,x if & <£ <& . (4.22)
oi'zf =£ ands.x<0

or(,ez.f,‘min and s, x>0

[0 if é=¢_ andsx(—7)>0
oré¢=¢_, and s, x(t—7)<0
prof(§, s, x(t=7))=1{5.x(t~7) if 6 <& <G (4.23)

oré=¢_ ands.x(t—7)<0

oré=¢ands . x(t—-7)=20

Remark: As shown in Figure 4.3, the term k'sat(—{) is continuous for s € [-w,+w0].
&

The smaller £ is chosen, the higher control accuracy may result in. However, if ¢ is
chosen too small, the slope of the linear function in the region s e [— a,+£] would be so
large that the adaptive controller has a “jumping” effect, and it would cause undesirable
high frequency chatter phenomena while stabilizing the system. So, & should be
properly chosen to ensure the control performance requirements and to avoid the

undesirable chatter phenomena.

A K'sat(s/¢g)

k “":

e |/
; >
: € s
) -1 k.

Figure 4.3 Relationship between k'sat(i) and s
£
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The stability of the closed-loop system described by (4.14) and (4.19)(4.23) is

established in the following theorem.

Theorem: For the system model (4.14), the robust adaptive controller specified by

equations (4.19) - (4.23) ensures that all the closed loop signals are bounded; morecver,

the state x will converge to Q_={x@®]|x|cA e} for vez,.

Proof: To establish the global boundedness, a Lyapunov function candidate is defined as

follows,

V()= %Bs: O+O-0) +E -+ (5—;)2] (424)

Since the discontinuity at [s|=¢ is of the first kind and since s, =0 when [s|<¢, it

follows that the derivative ¥ exists for all 5, and given by

V(t)=0 when lsl <e

When |s| > &, notice the fact that s_$, =s,$, and differentiating ¥'(f) with respect to

time yields

V(e =253+ @-000+E-HE+E o)

=s.u +%ss [(A+a)x +a,x+ax(t -7)+g(xx,)]

+(@-0)0+E-HE+(E-o)é
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=~k,s_5+ ss[— O% —Ex—Cx(t—1)— k'sat(g):l

+S, [9)2 +&x+gx(t—1) +%g(x, X, ]

+(0-0)0+E-OE+E )
From the fact that |s| > £, it is easy to see |s| > s, [, so one has,

V() <—k,s* +s, [— 0% —Ex—Cx(t-1)— k'sat(i—)}
+s, [efc +Ex+gxt—1)+ o g(nx, } @-00+E-HE+E-6)
By using adapffive laws (4.19) - (4.23) and noticing that
6-6)- proj@,s,x) < (6-6)-s,% and E-&) projé,s,x)<(E-¢&)-s.x,
(& —¢)proj(¢,s x(t — 7)) <{& —¢)s . x(t—7), the above inequality becomes,
V() <~k st +s, l:— o% —fx —-¢x(t—7)—- k'sat(g)]

+s, [9:& +&x+gx(t—1) +%g(x, x,)]

+(0-O)s % +(E-E)s x+(E—¢)s,x(t - 1)

<~k 52 —k’|s,| +35§(—xl’)x—’)
<-k,s2-k s8|+bils5|

Therefore, all signals iri the system are bounded. Since s(¢) is uniformly bounded, by the
standard filter theory and the definition of s(¢) in (4.16), it can be shown that both x(¢)

and x(¢) are also uniformly ultimately bounded. To complete the proof and establish
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asymptotic convergence of x(f), it is necessary to show that s_(¢f) -0 as ¢t — . This

can be accomplished by applying Barbalat's Lemma to the continuous, nonnegative

function:

V) =V O~ [ (0) +kus2 (@Mr with V(1) = ~k,s2(0) 4.25)
It can easily be shown that every term on the right side of (4.17) is l:;ounded, hence $(¢)
is bounded. This implies V;(f) is a uniformly continuous function of time. Since V() is
bounded below by O, and Vl (#)<0 for all -z, use of Barbalat's lemma proves that |
V.(t)—>0 as t — o and hence from (4.25) thats_(¢) — Oas ¢ — oo . Remark for equation

(4.16) indicates thatx(z) » Q_as t — oo . This completes the proof. =

Remark: The above theorem proves the convergence of x(f), that is, the chatter effect

will be significantly suppressed in metal cutting with the proposed adaptive controller.

4.2.2 Adaptive Controller for Backlash Hysteresis Model

As known in the cutting force modeling part, the backlash hysteresis model with

uncertainties is introduced in place of the actual hysteresis model for the sake of

controller design. In this case, the turning cutting system can be described as,
mi+cx+hkc=F, —ku (4.26)

with F, in the description of (4.5).

Before the controller design, the following assumptions are required,

- (A4.3) Time delayr remains constant during the cutting process;

2 a?

(A4.4) m,c,k,k, ,h, h, and B are bounded variables with
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m e [mmin’mmax]’ ce [cmin’crmx ]’ k € [kmin7klmx ]’ ka € [kamin’kamax ]’ h € [hmin’hmzm]’
B=Bo+AB with AB<pg
k k ..,k h

max ? amn ? amax ?

h B, and p, are known

k

m__,c.,cC i s

max ? min 2

where m___, o s s P

constants.

In order for the chatter suppression, a robust adaptive controller is proposed for the
regulation of x(#). Divided by m on both sides of (4.26) and with some manipulations,
we have the following second order function with nonlinearity, '

f=_£f_£x+i__,§_i (4.27)
m m m m

A filtered tracking error is defined as
s()=%x+Ax with 1 >0, (4.28)

Differentiating s(¢) with respect to time and substituting ¥ with (4.27), one has,

$(f) = ¥+ A%
-k B kv KW (4.29)
m m m m m
Define
bk Lk kB— v>0
m c - .
01—-1}:-(2.——’;1—), 6, = " 63——ka, 6, = B 5o (4.30)

Due to the boundedness of m, ¢, k, k,, h, we have 6, €[6,..,6,. ], i=1,2,3,4, where
6 . ,0. . €R are constants, and they can be easily obtained with the bounds provided

imin? ~imax

in assumption (A4.4).
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In order to avoid undesirable high frequency chatter phenomena caused by the designed

adaptive controller, in stead of deriving the adaptive law with the filtered error s(¢), we

introduce a tuning error, s_, as follows,

s
s, =s—é&sat| —
£

where & is a positive constant subject to the choice of designer and sat(-) is the

saturation function.

Given the tuming metal cutting system (4.27), the following control and adaptation laws

are presented:

u(t) =k,s, +él£+ézx+é3x+é4x, +k'sat(£) “.31)
£
with

5.- = proj(é’,-,g,-) (4.32)

where

«__Ps
k™= 4.33

kamin ( )

and g, are defined in the following. proj(,-) is a projection operator, which are

constructed as follows:

0 ifé,.=t9,.m‘andg,.>0
orf, =6, _,and g, <0
proj(éi’gi): 18 if 0, < éi <6, (4.34)

oré,. =6, ..andg <0

oré,. =6, .and g, =0

The different 6, and g, (i =1,23,4) are defined respectively as follows,
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[0 ifd =6
or63l =6,,.,and s.x <0

proj(él,ssfc) X £ 6., <§l <6, e (4.35)
or él =6,

or6"\l =6, and s, x>0

and s_.x >0

max

I
”
tat

and s, x <0

max

0 if éz =6, and s, x>0
oré2 =6, and s,x <0

proj(éz,ssx)z is.x if 6, < éz <G,mac _ (4.36)
or éz =6, and s, x <0

oré2 =6,,,and s, x>0

(0 if 6,=6,,  ands,x, >0
or é; =6, and s, x_ <0
prOj(é”sExr): 15:%, 1 Oy < éz < &;max (4.37)
or é3 =60, ands.x. <0
| or 9; =6, and s, x. >0
(0 if 94 =6, ands, >0
oré, =6,,and s, <0
P’OJ'(éis): ; Se if Oupiy <6, < By (4.38)

oré4 =6, .ands, <0

oré4 =6, ,ands_ =0

The stability of the closed-loop system described by (4.26) and (4.31)-(4.38) is

established in the following theorem.

Theorem: For the system model (4.26), the robust adaptive controller specified by

equations (4.31) — (4.38) ensures that all the closed loop signals are bounded; moreover,

the state x will converge to Q_ = {x(¢)|| x|<A™'&} within a time constant 1/4 .
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Proof: To establish the global boundedness, a Lyapunov function candidate is defined as

follows,

V()= %[ k”; s2(t)+(6, -6, +(6,-6,)* + (6, -6,)* + (6, —94)2} (4.39)

Since the discontinuity at [s| =& is of the first kind and since s, =0 when |s|<¢, it

follows that the derivative ¥ exists for all s, and given by

V()=0 when |s|<¢

When [s] > £, notice the fact that 5§, = 5,5, and differentiating V' (#) with respect to time

yields

V() = k”; s.5+(8,-6,)6, + (8, - 6,)8, + (8, - 6,)d, + (8, - 6,)8,

a a

=7 s (,?_—.E.)x'_f.x.f-i_uj
k., m m m m
+(8, - 60, + (8, - 6,)8, +(6,-6,), + (8, - 6.)4, (4.40)

In the following, the proof is constructed with the two conditions (i) v(¢) >0 and (i1)

v(?) <0;

() When v(¢) > 0, by substituting F, = Av + B, one has,

k +h(x—;oc,)+B_ka-uj

= ss((}, —i))& ~-—X
m m m m

k,h

a a

V() =

+(8, - 6)6, +(8, - 6,)8, + (6, - 6,)8, + (6, -8,)b,
Noting that B = B, + AB, -

V(t) =£1—s5((/1—£—)£+h>—k x+ — X, +&-+A—B—)—ssu
k m m m m m

a
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+(6,-6,)8, + (6, -6,)6, + (4, -6,)8, + (8, - 6,),

. AB
=6 s X+0,5,x+6,5.x_+6,s,_+ A s, —s.u

a

+(él —61)9: +(é2 _ez)éz '*'(és —93)é3 '*'(‘94 - 64)54

And using the property (6, - 6,)proj(6,.g,) < (6, - 6,)- g,, we have,

. i AB
V(i) <6 s x+6,s,x+6,s.x, +6,s_+ k—s‘ —-s.u

a

+(6, - 6,)s,% +(8, - 0,)5,x + (6, - 0,)s,x, + (0, - 6,)s,

~ . ~ ~ ~ AB
=65, x+0,5 x+6;5.x_+6,s_+ k_s‘ -S.u

a

Using the adaptive law, one obtains,

Ps

V() < —k,s.s—ks.sat(S) + I, |
& amin
=—k,s? —k|s,| +;€::lssl
< —k,s* ' (4.41)

(i) When v <0, by substituting F, =hv—B, and following the same procedure, it is

clear that by using the control law (4.31),
V() < —k,s* (4.42)

Therefore, for all the conditions, ¥ (f) < —k,s?, and all signals in the system are bounded.
Since s(¢) is uniformly bounded, by the standard filter theory and the definition of s(¢)
in (4.28), it can be shown that bothx(¢) and x(t) are also uniformly ultimately bounded.

To complete the proof and establish asymptotic convergence of x(f), it is necessary to
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show that s(¢) -0 as 7 —oo. This can be accomplished by applying Barbalat's Lemma

to the continuous, nonnegative function:

Vi) =V () - [P @) +ks2()r with V(1) = -k ,s2() (4.43)

It can easily be shown that every term on the right side of (4.43) is bounded, hence $(¢)
is bounded. This implies ¥ (f) is a uniformly continuous function of time. Since V(£ is
bounded below by 0, and V,(f)<0 for all ¢, use of Barbalat's lemma proves that
V.(t) >0 as t > and hence from (4.43) thats(#) — O as # — o . Remark for equation

(4.28) indicates that x(z) — Q_as £ — « . This completes the proof. (]
Remark: The above theorem proves the convergence of x(¢), that is, the chatter effect
will be significantly suppressed in metal cutting with the proposed adaptive controller.

4.3 Simulation Results

For controller 1 with backlash-like hysteresis description, parameters of the backlash-like
hysteresis model are taken as, @ =1, A=4500, and B, =200. Using the input signal

v(¢) = 0.02sin(r), the backlash-like hysteresis for the cutting system can be illustrated as

in the Figure 4.4.
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Figure 4.4 Backlash-like hysteresis of metal cutting system

To illustrate the preceding results, we consider the turning system (4.4) with the
following parameters. For the tprning cutting system, take m = S0kg with m_, = 25kg-
and m,, =100kg, c=1 with ¢, =05 and ¢, =S5, k= 7x10° N/m with kuin = 6x10°
N/m and Ay, = 8x10° N/m, and u# =1. For the piezo actuator, k,= 5 x107 N/m with komin=

4.5x10” N/m and kumax=5.5x10” N/m. And from Figure 4.4, we take p=S5.

The simulation in Figure 4.5 shows that the turning cutting system without control is in

chattering condition due to the small damping coefficient and the presence of hysteresis.
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Figure 4.5 Turning system without control (chattering)

In order to eliminate the chatter in the turning cutting, the adaptive controller (4.19)-

(4.23) is introduced into the system.
a1e x(t) (mm)

cos
0.97
0.08
0.05
0.0+
003
0.02

0.01

: L . -
0.08 0.08 0.1 012
t (sec)

Figure 4.6 Turning system with proposed adaptive controller
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In metal cutting, as what we concern about most is the offset chip thickness x(t), we
should choose proper A of the tracking error s(¢) so that x(¢#) is much more “sensitive”
to the adaptive control than %(¢). 1 =100 is considered in the tracking error equation.

And the simulation of the turning system with the adaptive controller is shown in Fig.8,
which shows clearly that the proposed adaptive controller results in suppression of

chatter.

For controller 2 with backlash hysteresis description, we have the following typical
experimental data for tumning metal cutting system [Liu et al (1998)]. The equivalent
mass, damping coefficient and spring coefficient are respectively, m = 15 kg, ¢ =3 x 10°
kg/s, k=6 x 10" kg/s®. And we can have a reasonable range for these system coefficients

as, m €[10, 20] kg, c €[2, 4] x 10° kg/s, k [5, 7] x 10" kg/s%.

For the hysteresis model for cutting force, we take the following from the experimental

data of Szakovits and D’Souza (1976),
h=4x10°N/mand B=20N

with A€ [3, 5] x 10° N/m and Be [10, 30] N.
For the piezoactuator, the spring coefficient is considered to be 4,=7 x 107 N/m [Cuttino
et al (1999)]. In this chapter, the piezoactuator is considered to display linear property.

Thus the piezoactuator displacement is taken as the control input for convenience.

The simulation in Figure 4.7 illustrates the turning cutting system with initial tool

deflection 10 um, and it is in chattering condition in the presence of active hysteresis.
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Figure 4.7 Turning cutting system without control (chattering)

It can be seen that chatter is growing as time is going on. Theoretically, chatter can grow
as the metal cutting system stays in the oscillating state, however, it is indicated that
chatter can not grow infinitely due to the multi-regenerative effect [Tlusty and Ismail

(1981)], which is not discussed in the controller design.

It is easy to obtain 6, =—-8x10~°, 6, =-3x107, 6, . =-1, 6, =1, 6. =-1,

é =5x10°. And we are taking the initial data as,

3max

=0, 4, —5x107%, @

4max

6, =-5x10"°,6,=02, 6,=-03, ,=1x10"°, k;, =1x107°, and k" =5x107°.
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Figure 4.8 Turning cutting system with proposed adaptive controller

And the piezoactuator displacement is illustrated in the following figure 4.9.

10
O Hm

- . : . . . . .
0.033 0.0335 0.034 0.0M5 0.035 0.0355 0.038 0.0385 Q.037
Time (sec.)

Figure 4.9 Controlled displacement of piezoactuator
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In this case, 2 =100 is chosen in the tracking error equation. And the simulation of the
turning system with the adaptive controller is shown in Figure 4.8, which shows clearly

that the proposed adaptive controller results in suppression of chatter.

4.4 Summary

In this chapter, in order for chatter suppression, a piezoactuator is introduced for the
regulation of the machine tool displacement and metal cutting system is modeled as a
class of uncertain linear system with hysteresis and time delay. In order to overcome the
chatter due to the hysteresis and time delay during the cutting process, an adaptive
controller for the metal cutting system of ultra-precision is presented. The simulation

results show that the proposed adaptive controller significantly eliminates the chatter

phenomena.
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Chapter 5

Chatter Suppression via Nonlinear Piezo-actuation

Adaptive Controller Design —2

Introduction — In this chapter, in order for chatter suppression, a piezoactuator with
hysteretic relationship is introduced for the regulation of the machine tool displacement.
The metal cutting system is modeled as a class of uncertain linear system with hysteresis
and time delay and the piezoactuator exhibits nonlinear hysteretic actuation. In order to
overcome the chatter due to the hysteresis and time delay during the cutting process, an
adaptive controller for the metal cutting system of ultra-precision 1s presented. The
simulation results show that the proposed adaptive controller significantly eliminates the

chatter phenomena.

5.1 Turning System Model with Hysteresis
In Liu et al (1998), considering the piezo-actuated tool holder assemble as a lumped mass

system, the structural system may be represented by a dynamic model of turning process

as illustrated in the following,
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Figure 5.1 Dynamic model of turning process

In Figure 5.1, the equivalent mass of the cutting system is m , the stiffness is &, and the

damping coefficient of the system is ¢. F, represents the force generated by the
piezoactuator due to the high speed expansion. And the cutting system can be described

as,

mi+ck+hkc=F, —F, ;.1
with F, = F,(u) as the description of the generated force on the cutting tool and the

voltage applied on the piezoactuator.

As known in the cutting force modeling part, the backlash hysteresis model with
uncertainty for the relationship of cutting force and uncut chip thickness is introduced in

place of the actual hysteresis model for the sake of controller design.
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Figure 5.2 Backlash hysteresis model

In Figure 5.2, the line segments 1 and 3, 2 and 4 are parallel, and the hysteresis model of
cutting force — chip thickness can be described in terms of # and B.

F,(t)=H(v(t)) = H(h, B)
h-v(t)+B, v()>0
=<h-v(t)—-B, v({)<0
F,(t) v(£)=0

(52)

where % is the slope of the hysteresis lines and B >0 is the backlash distance. The
hysteresis in cutting force can approximately described as Figure 5.2 because of its
resemblance in profile with the various experimental data and figures in [Fabris and

D’souza (1974)][Szakovits and D’souza (1576)].

Force F, generated by piezoactuator serves as the force provided by the active vibration
control. To find out the description of F,, we should first find out the relationship

between the stimulated piezo expansion and the voltage applied to the piezoactuator,
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which demonstrates the nonlinear close-loop characteristic of hysteresis [Cuttino et al

(1999)][Fripp and Hagood (1995)] as shown in Figure 5.3.

Expansion

Y

Voltage

Figure 5.3 Hysteresis curves of a piezoactuator

Figure 5.3 is a typical relationship graph of expansion — voltage for piezoactuator. As
can be seen, the expansion of a piezoactuator is not exactly proportional to the electric
field strength. How much a piezoactuator expands at a given voltage depends on
whether the voltage is increasing or decreasing, demonstrating closed loop hysteresis.
And the hysteresis relationship can be described as,

AL =H, (u) (5.3)
where u denotes the applied voltage, and AL denotes the expansion of the piezoactuator.

H (") denotes the hysteresis function for the relationship of piezoactuator expansion via

applied voltage. It should be noted that the piezoactuator can generate force depending

on its stiffness and its expansion capacity.

F, =k AL =k, H, (1) (5.4)
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Hysteresis is known to be non-differentiable and severely limits the performance of the
system by causing undesirable chatter. Moreover, the hysteresis behaviour demonstrated
in the actuator signals makes it impossible to achieve a high accuracy positioning. Most
of the hysteresis models proposed [see, for example, Macki, et al (1993)] are very
complicated and it is still unavailable for designing the control scheme with a general

type of hysteresis.

For the sake of controller design, a continuous time dynamic backlash-like hysteresis [Su,
et al(2000)] as described in Chapter 4 is employed to describe the hysteresis
demonstrated in the relationship of force-expansion of piezoactuator,

dz

dH, () _ &z
dt

dt

(5.5)

L,z - H,(2))+ B,

where «, h, and B, are constants, satisfying 4, > B, .

As shown in [Su, et al(2000)], the solution of the backlash-like hysteresis (5.5) consists

of a linear function and a bounded nonlinearity,

H,(u)=hu+ f(u) (5.6)

with a uniform bound p such that
lf @) < . (5.7)
Thus, the expansion of the piezoacma}tor due to the applied voltage is 4, -u + f,(u), with
h, denoting the slope of the backlash-like hysteresis, and | f, ()] < p,, £, is 2 constant

bound.
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In this case, the force-expansion relationship F,(«) can be described as,
F,) =k, (h, -1+ f, () (5.8)
where k, is the stiffness of the piezoactuator. Therefore, in order for controller design,

the metal cutting system (5.1) can be simplified as,

mi+cx+kec=F, —k,(h, -u+ f,()) (5.9)

with F, in the description of (5.2).

And the block diagram illustrating the control system is as follows, where

G(s) =1/(ms* +cs+k).

Piezoactuator

- +
- f S~ 6 [T
* Cutting Tool &

Work Piece

LU U |

|

Figure 5.4 Block diagram of turning metal cutting system with piezoactuator
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Remark: The cutting system model illustrated in Figure6 is a complicated nonlinear
system involving hysteresis, which can lead to instability in closed-looped operation and

complicates the task of controller design and analysis [Gorbet et al (2001)].

Focusing on the above model, in the following, a robust adaptive control scheme for

control input #(¢) will be designed to suppress the chatter effect.

5.2 Adaptive Controller Design

As indicated in Figure 5.4, the metal cutting system displays hysteretic nonlinearities.
However, hysteresis is known to be non-differentiable and severely limits the
performance of the system by causing undesirable chatter. Moreover, the hysteresis

behaviour demonstrated in the actuator signals makes it impossible to achieve a high

accuracy positioning.

Before the controller design, the following assumptions are required,
(AS5.1) Time delay r remains constant during the cutting process;
(AS5.2) m,c,k ,k,,h, h, are bounded variables with
me [mm,.n,mmm;], ce [cmin ,cm], ke [km,kmx],
K, €[k, mins Kamax Js 7 € [Poin s Prna ) > P € [Prammins Pamae ]

amin ? ""amax
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B=Bo+AB with AB<pj

where M in > M ax 5 cmin’ Cmax’ kmin’ kmax’ kamin’ kamax’ hmin’ hmax’ hamin’ hamnx’ BO and

ppare known constants.

Remark: In the researches of chatter occurrence, it is commonly assumed that the
rotation speed is constant [Kaneko et al (1984)][Kondo et al (1997)]. Due to the fact that
m,c,k,k, ,h, h, are physical coefficients for the metal cutting system, subjecting to
internal changes or external disturbance, it is reasonable to assume that they are bounded

variables.

In order for the chatter suppression, a robust adaptive controller is proposed for the

regulation of x(z). Divided by m on both sides of (5.9) and with some manipulations,

we have the following second order function with nonlinearity,

ge-Li ki B khou K@) (5.10)
m m m m m

A filtered tracking error is defined as

s(t)=x+Ax with >0, (5.11)

Remark: It has been shown [Slotine and Li] that the definition (5.11) has the following
properties: (i) the equation s(¢£)=0 defines a time a hyper-plane on which the state x(¢)

decays exponentially to zero, (ii) if x(0)=0 and [s()|<& with constante, then
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x()eQ, ={x(@)||x [s}.'_le} for Vt>¢,, and (iii) if x(0)=0 and [s(9)|< &, then x«(t) will

converge to 2_with a time-constant 1/4.

Differentiating s(¢) with respect to time and substituting ¥ with (5.10), one has,

$(t) =¥+ A%
PR SRLA ISN A AL A M O)) (5.12)
m m m m m
Define
B

v>0
6,=2—(-5), 62:2_;,](’ 93=-k“: , 6, ={ Ko (5.13)

a'ta a’ta a’ta _k P v<(

Due to the boundedness of m, ¢, k, k,, h, we have 6, [eim,.n,e,.m], i=1,2,3,4, where
6. mins O:max € R are constants, and they can be easily obtained with the bounds provided

imin? “§

in assumption (A5.2).

Given the turning metal cutting system (5.10), the following control and adaptation laws

are presented:

u(t) =kys + 6, % +6,x +0,x + 0, x, +k'sign(s) G.14)
with
6, = projlB..g.) ¢5.15)

where
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k‘ - pB +karnaxpa

k, it

amin’ ‘amin

(5.16)

and g, are defined in the following. proj(-,-) is a projection operator, which are

constructed as follows:

[

projf6.g:)=

The different 6, and g, (i =1,2,3,4) are defined respectively as follows,

-

0

&

0

ifg, =6, andg, >0
Ol'él- = gimin
if 6 min

oré,. =@, .andg, <0

andg; <0

<6,<0..,

oré,. =6, ..andg, =0

if6, =6, ands x>0

orél=¢9 ands x <0

imin

proj(él,sj:)= isx if G, < él <0

-

(

proj(éz,s x)= J

0

s X

orf, =6, ands x <0

0“9.[ =6, ;,ands x>0

I min

if6, =6, ands x>0
ort9‘2 =6, ,ands x<0
if @

2min

<6,<6, .
ortsn’2 =6, ands x<0

oré2 =6, mands x=0
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(5.19)



0 iff, =6, andsx >0
or és =03, and s x. <0
projlf,,s x.)=14s x. if6,,, <6, <6, (5.20)
or¢9h3 =0 cands x, <0
or é, =6, ands x. =0

0 iff,=6,, ands >0

or 94 =6,..,ands <0

proj(é“s )= s if 6, < 634 <6, (5.21)
ort9“4 =6, ..ands <0
oré4 =6, ,ands >0

The stability of the closed-loop system described by (5.9) and (5.14)-(5.21) is established

in the following theorem.

Theorem: For the system model (5.9), the robust adaptive controller specified by

equations (5.14) — (5.21) ensures that all the closed loop signals are bounded; moreover,

the state x will converge to Q_ = {x(¢) || x|<A7'¢} for Ve 21,.

Proof: To establish the global boundedness, a Lyapunov function candidate is defined as

follows,

V() %{ k”; s (6)+ (6, —6,)* + (6, -6,)* + (6, - 6,)* + (8, —64>2J (5.22)

a-a

Differentiating V' (¢) with respect to time yields
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m

s $+(6,-6)6, +(6,-6,)6, + (6, -6,), + (8, - 6,)3,

V()=-
= ad S ((ﬂ.—i)x——/-c-x +i_ kﬂhd u _kaf:z(u)
kaha m m m m m
+(6,-6)8,+ (8, - 6,), + (6, - 6,)8; + (4, - 6,)6, (523)

In the following, the proof is constructed with the two conditions (i) v(¢) >0 and (ii)

v<O0;

(1) When v(¢) >0, by substituting F, = Av + B, one has,

m_ ((l_i)x_ix_{_h(x—;ar)-f-B _k,h, -u_kaf;(u))

V()=
@) k,h m m m m m

a

+(él —el)él +(éz —02)é2 "‘(és —93)53 +(é4 —94)é4

Noting that B =B, + AB,

m

V(z):kh

aa

s [(ﬂ,—i)i-i-h—kx-i- _‘Uh«\?, +—B—°+ AB —k“f:‘(u))—s u
m

m m m m m

+(6, —6,)6, +(8, —6,)8, + (6, - 6,)6; + (8, - 6,)0,

AB -k, f,(u) o
kaha

=0sx+6,5s x+6;5sx, +6,5 + Su

+(6,-6,)8, + (6, —6,)6, + (8, — 8,)6, + (6, - 6,)6,

And using the property (é,. -6) proj(é,., g:)=s (é,. ~8,)-g;, we have,
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AB—k f,(w)  _
kaha

V()<6s +0,s x+6,5 x_+0,5 + su

+(6,-0,)s +(6, —8,)s x+(6, - 6,)s x, + (6, —6,)s

AB -k, fu(w)  _
kaha

=0sx+6,s x+6;5s x, +0,5s + Su

Using the adaptive law, one obtains,

V() <- s s —k"s sign(s) +P:;CL;;WP,,_ B

amin’ “amin

B+ka
k, . h

amin’*amin

=—k,s* —k'ls l-{- P max Pa lssl

2
<-k,s

(5.24)

(i) When v <0, by substituting F, = hv— B, and using the same proof process, it is

clear that by using the control law (5.14),

V() <—k,s*

(5.25)

Therefore, for all the conditions, V' (¢) < —k,s?, and all signals in the system are bounded.

Since s(¢) is uniformly bounded, by the standard filter theory and the definition of s(z)

in (5.11), it can be shown that both x(¢) and x(:) are also uniformly ultimately bounded.

To complete the proof and establish asymptotic convergence of x(¢), it is necessary to

show that s(z) - 0 as ¢ — . This can be accomplished by applying Barbalat's Lemma

to the continuous, nonnegative function:

V() =V ) - [P @) + ks> @)dr with V,(0) =—k,s*(0)
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It can easily be shown that every term on the right side of (5.26) is bounded, hence $(r)
is bounded. This implies V;(¢) is a uniformly continuous function of time. Since ¥ (¢) is
bounded below by 0, and Vl (£)<0 for all ¢, use of Barbalat's lemma proves that
V.(t) >0 as t — oo and hence from (5.26) thats(f) — O as 7 —> o . Remark for equation

(5.11) indicates that x(f) - Q_as f — o . This completes the proof. =

Remark: The above theorem proves the convergence of x(f), that is, the chatter effect

will be significantly suppressed in metal cutting with the proposed adaptive controller.

5.3 Simulation Results

We have the following typical experimental data for turning metal cutting system [Liu et

al (1998)].
The equivalent mass, damping coefficient and spring coefficient are respectively, m = 15
kg, c =3 x 10° kg/s, k=6 x 10’ kg/s>. And we can have a reasonable range for these

system coefficients as, m €[10, 20] kg, ¢ €[2, 4] x 10° kg/s, k €[5, 7] * 10" kg/s%.

For the hysteresis model for cutting force, we have the following,

A=4x10°N/mand B=20N
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with #€ [3, 5] x 10° N/m and Be [10, 30] N.

For the piezoactuator hysteresis, we have,
ha=2.5x10°m/V, B,=0.1 x 10® m, & =0.02

with A, € [2.0, 3.0] x 10® m/V and using the backlash-like hysteresis description (5.5),

we have the following hysteresis illustration for the piezoactuator.

uo"

I 2 L I L z z L
] 100 200 300 400 500 800 700 800 900 1000

Voltage (V)

Figure 5.5 Hysteretic relationship between piezo expansion and applied voltage

The simulation in Figure 5.6 illustrates the turning cutting system with initial tool

deflection 10 um, and it is in chattering condition in the presence of active hysteresis.
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x(£) x19° Meter
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0 0.00S .01 0.015 oo a.025 Qo3 0.035 0.04 Q.045 [

Time (sec.)

Figure 5.6 Turning cutting system without control (chattering)

It is easy to obtain 6, =-3.2x10°, 6, =-12x10°, 6, =-4x107,

tmin

=-4x10’, 6, =0, 6,,=-200, 6,. =200 and

max

(7]

2max

= 4X 107’ 63min

P, =12x10°. And we are taking the initial data as, 6, =—-2000, 6, =0.8x10",

6, =-12x107, 6, =100, k, =40, and k" = 60.

x(t) s x10° m,

Offset Chip Thickness

[} 0.01 0.02 0.03 0.04 0.05 0.06 eo07 o.08 0.09 0.1
Time (sec.)

Figure 5.7 Turning cutting system with proposed adaptive controller
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In metal cutting, because what we concern about most is the offset chip thickness x(z),
we should choose proper A of the tracking error s(f) so that x(¢f) is much more
“sensitive” to the adaptive control than %(f). A =100 is considered in the tracking error

equation. And the simulation of the turning system with the adaptive controller is shown
in Figure 5.7, which shows clearly that the proposed adaptive controller results in

suppression of chatter.

5.4 Summary

In this paper, in order for chatter suppression, a piezoactuator characteristic of hysteresis
is introduced for the regulation of the machine tool displacement and metal cutting
system is modeled as a class of uncertain linear system with hysteresis and time delay. In
order to overcome the chatter due to the hysteresis and time delay during the cutting
process, an adaptive controller for the metal cutting system of ultra-precision is

presented. The simulation results show that the proposed adaptive controller significantly

eliminates the chatter phenomena.
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Chapter 6

Chatter Suppression of Turning System with Tool

Holder Dynamics

Adaptive Confrolle’r Design —3

Introduction — In this chapter, in order for chatter suppression, a piezoactuator with
hysteretic relationship is introduced for the regulation of the machine tool displacement.
The cutting system model involves the cutting tool dynamics and piezoactuator
dynamics, while the piezoactuator exhibits nonlinear hysteretic actuation. An adaptive
controller for the metal cutting system of ultra-precision is presented. The simulation
results show that -the proposed adaptive controller significantly eliminates the chatter

phenomena.

6.1 Turning System with Tool Holder Dynamics

Considering the piezoactuator as an independent free mechanical body with the cutting

. tool, we have the following illustration for the cutting dynamics.
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Figure 6.1 Dynamic model of turning cutting system with piezoactuator

In Figure 6.1, the equivalent mass of the cutting system is m, the stiffness is &k, and the
damping coefficient of the cutting system is ¢. And m_, c,, k, are respectively the
equivalent mass, stiffness, and damping coefficient of the piezoactuator. F, represents
the cutting force fluctuation of the machine tool and is, as will be clear later, a nonlinear
function with respect to the chip thickness fluctuation. F, represents the force generated
by the piezoactuator, which will also be given detailed analysis in the following section.

And F, is the reaction force between the piezoactuator and cutting tool. In Figure 6.1,

F, is represented by the force generated by the spring-damper structure. From Figure

6.1, the piezoactuator dynamics is,

myx, +c,x, +kyx, =F, —F,(u) (6.1)
where x, represents the displacement of the piezoactuator with « denoting the voltage
applied on the piezoactuator. And the dynamics of the cutting system can be described

as,

m% +ck+hx=F, —F, (6.2)
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While the reaction force F, can be described as,
F,=c,(x-x,)+k, (x—x,) (6.3)
In the above dynamic functions, x(¢) represents the fluctuating part of the depth of cut,

or so called offset chip thickness. In metal cutting system, what we concern about most

is the offset chip thickness x(¢), for it directly reflects the surface quality of the
workpiece being machined, and the vibration of x(¢f) reflects the chatter occurrence

during the dynamic cutting process. The objective of the controller design is to regulate

the offset chip thickness x(¢) so that x—>0 as t—>o. To achieve this control

objective, we need to investigate the detailed descriptions for both F, and F,.

With the hysteresis relationships of F, via v and F, via u, we can illustrate the turning
metal cutting system (6.1)-(6.3) with a block diagram as Figure 5, where

G(s) =1/(ms* +cs+k), G,(s) =1/(m,s* +c,s +b) and G, (s)=1/(c,s +k,) .
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Figure 6.2 Block diagram of turning metal cutting system with piezoactuator

Remark: The cutting system model illustrated in Figure 6.2 is a complicated nonlinear
system involving hysteresis, which can lead to instability in closed-looped operation and

complicates the task of controller design and analysis [Gorbet et al (2001)].

Focusing on the above model, in the following, a robust adaptive control scheme for

control input «(¢) will be designed to suppress the chatter effect.

6.2 Adaptive Controller Design

As indicated in F igure 6.2, the metal cutting system displays hysteretic nonlinearity.

However, hysteresis is known to be non-differentiable and severely limits the
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performance of the system by causing undesirable chatter. Moreover, the hysteresis
behaviour demonstrated in the actuator signals makes it impossible to achieve a high

accuracy positioning.

The hysteresis in cutting force can be approximately described as Figure 6.3 because of

its resemblance in profile with the various experimental results.

F, (A
4 3
B

d _
/

v(t)

Figure 6.3 Backlash hysteresis model

In Figure 6.3, the line segments 1 and 3, 2 and 4 are parallel, and the hysteresis model of
cutting force — chip thickness can be described in terms of 4 and B.

Fy,()=H(v(2))=H(h,B)
h-vit)+B, v()>0
=<h-v(t)-B, v()<0
F,(t) v(t) =0

(6.4)

where £ is the slope of the hysteresis lines and B > 0 is the backlash distance.
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Force F, generated by piezoactuator serves as the force provided by the active vibration

control.

Expansion

1
]

h
>

Voltage

Figure 6.4 Hysteresis curves of a piezoactuator

Figure 6.4 is a typical relationship graph of expansion — voltage for piezoactuator. As
can be seen, the expansion of a piezoactuator is not exactly proportional to the electric
field strength, demonstrating closed loop hysteresis. And the hysteresis relationship can
be described as,
AL=H,(u)

where u denotes the applied voltage, and AL denotes the expansion of the piezoactuator.
H_(-) denotes the hysteresis function for the relationship of piezoactuator expansion via
applied voltage. And the pushing or pulling force can be excited and it is described as,

F, =k,AL =k, H,(x) (6.5)
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Backlash hysteresis model is discontinuous itself and may not be amenable to controller
design for the nonlinear systems. A continuous time dynamic backlash-like hysteresis is

employed to describe the hysteresis demonstrated in the relationship of force-expansion

of piezoactuator [Su et al (2000)],

(ho-H,()+B,Z (66)

dH ,(z) _ a’g
dat dt

where «, h, and B, are constants, satisfying 4, > B, .
As shown in [Su et al (2000)], the solution of the backlash-like hysteresis (6.6) consists
of a linear function and a bounded nonlinearity,
H,(u)=hu+ f(u) (6.7)
with a uniform bound p, such that
Gl < o, (6.8)
In this case, sum up (6.1) and (6.3) to eliminate F, in the dynamic functions and the
turning cutting system can be described as,
mi + ck + ke + mE, +c,%, +k,x, = F, —k,(h, -u+ f,(u)) (6.9)

with F, in the description of (6.4).

Before the controller design, the followfng assumptions are required,
(A6.1) Time delay r remains constant during the cutting process;

(A6.2) m,c,k, k,,h, h,,and B are bounded variables with
m e[’nn'u'n”nmzl;c.]’ ce [cmin’cmax]’ k € [kmin’kmax]’
k E[/C kamax]’ h e[hmin’hmax]’ ha e[hamin’hamax]

a amin
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B=B¢+AB with AB<pj

where m;., M5 Coins Coaxs Kamins Koaxr Komins Kamxs Pmins Prmacs Pomins Pomac » B are

known constants.

In order for the chatter suppression, a robust adaptive controller is proposed for the

regulation of x(¢). Divided by m on both sides of (6.9) and with some manipulations,

we have the following second order function with nonlinearity,

ol Kk _m i —Sei _k—“)c‘z + L kP u kS (w) (6.10)
m- m m m m m m m

A filtered tracking error is defined as

s(t) = x+Ax with 1>0, 6.11)

Differentiating s(¢) with respect to time and substituting ¥ with (6.10), one has,

$(f) =¥+ Ax
ca-Sypky My Gy b B _Khiu K@) g9
m m m m m m m m
Define
m c h—k Lh
6, = A-—) 6,= o, =
: kaha( g kh, > kh,
b kB;z v>0
m C
6, =—=2 @, =—2 @ = g, ={ "aa
! kaha ’ kaha ° kaha ) - B v<0
kaha
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Due to the boundedness of m, c, k, k,, k, h,, we have 6, [0, _,0. ], i=1,....7,
where &, .6, €R are constants, and they can be easily obtained with the bounds

imin? >§

provided in assumption (A6.2).

In order to avoid undesirable high frequency chatter phenomena caused by the designed

adaptive controller, in stead of deriving the adaptive law with the filtered error s(¢), we

introduce a tuning error, s_, as follows,

s, =s— ssaz(ij (6.13)
&

where ¢ is a positive constant subject to the choice of designer and sar() is the

saturation function.

Given the turning metal cutting system (6.9), the following control and adaptation

laws are presented:

u(t)y =k,s+ 6,5 +0,x+6;x, +0,%, +0.%, +0.x, +O,x. +k'sat(>)  (6.14)
£

with
6, = projé,. 2.) 6.15)
where
p* = Pot Kam (6.16)
k _.h

amin’“amin

and k, >0. proj(-,) is a projection operator, which are constructed as follows:
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(0 ifd, =6, _andg >0
or é,. =6,..and g, <0
proj(é,.,y,.g,.)=J v:8: ifé6, . < é <6 6.17)
or 6, =6...,and g, <0
or 6'?‘,. =6, .andg, =0

.

where y, >0 (i=1,...7) are constants, and the different g, (i=1,.,7) are defined

respectively as follows,

g[ =S£x’ g2 =S:x’ g3 =St:xr’ g4 =scxa’ gS =sexa’ g6 =s¢:xa’ g7 =S£

Remark: It can be easily proved that the projection operators for é, satisfies 1)

6,(8) € [Bimin Brmax ] If 6,(0) €80 By 15 and i) (6, —6,) proj(6,,2,) < (6, -6,)-g,.

The stability of the closed-loop system described by (6.9) and (6.14)—(6.17) is established

in the following theorem.

Theorem: For the system model (6.9), the xobust adaptive controller specified by

equations (6.14) — (6.17) ensures that all the closed loop signals are bounded; moreover,

the state x will converge to Q, = {x(¢) || x|<A "¢} for Vi =>1¢,.

Proof: To establish the global boundedness, a L yapunov function candidate is defined as

follows,

V(t)=—;-[ - sz(z>+271(9‘,.—9,~)2J (6.18)

ka a e=17¢

110



Since the discontinuity at |s| =& is of the first kind and since s, =0 when |s|<¢, it

follows that the derivative ¥ exists for all s, and given by

V(t)=0 when |s|]<¢

When ls[ > &, notice the fact that s s, =s,§, and differentiating V' (¢) with respect to

time yields

7. 2
V() = k"}’z s.5+.(8.-6,)86,

a’ta i=l

== s,_.((,l—i)x_ﬁx_ Myg Cayz b, B Kb ou _kafa(u))
k. h, m m m m m m m m
LA x
+2.(6, 69, (6.19)
i=1

In the following, the proof is constructed with the two conditions (i) v(¢) >0 and (ii)
v<O;
(1) When v(z) > 0, by substituting F, = Av + B, one has,

c k m c b
) . . -
sl (A-—)t——x——2%, ——=%%, ——x,
m m m m m

m
k,h

a’"a

V()=

-— . 7 A A
-+ h(x ‘uxr)+B _ kaha u _k“f;(u))'*'z_l_(ei _01)61’
m m m

i=l i

Noting that B = B, + AB,

h-k m,. ¢, . b
x——x, ——“%x,-—x
m m m m

)=

a a

s, ((,1 ~Syi+
m
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7 - X
—su+>L(6,-6)6

=l /i

+——x +=2
m m m m

- B +A3_kafa(u))

=05, X+ 0,5, x+0;5.x, +0,5.%, +6:5,%, +0s5.x, + 60,5,

+ AB—kaf;(u)S

7 ~ A
s s +> L@ -6)4

i=l /¢
And using the property (6, ~6,)proj(4,.7.g,) < (6, —6,)-7,g,, we have,

V(t)<Os.x+0,5.x+6:5.x +6,5,%, +0;5,%, +6s,.x, +6,s,

LBk S
kaha

e —Su+ (él —-6,)s.x+ (éz -6,)s . x+ (633 —6;)s.x,
+ (é4 -6,)s.%, + (és —65)s %, + (és —6)s.x, + (é7 —6;)s,

=05 X +0,5,x+6;5,.x +0,5.%, +6s5.%, +6,s,.x,

+8,s JABk S )

S .U
£ & £
k,h,

Using the adaptive law, one obtains,

V() 5 ks =5 sat(2) + L2 Kammeley |

amin’*amin

+kﬂmﬂx a
o+ St |

amin’“amin

=—k,s> -k’

< —k,s? (6.20)

(ii) When v <0, by substituting F, = hv - B, and using the same proof process, it is easy

to achieve by using the control law (6.14),

V() < —k,s? (6.21)
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Therefore, for all the conditions, V' (£) < —k,s?, and all signals in the system are bounded.
Since s(¢) is uniformly bounded, by the standard filter theory and the definition of s(t)
in (6.11), it can be shown that both x(¢) and %(¢) are also uniformly ultimately bounded.
To complete the proof and establish asymptotic convergence of x(z), it is necessary to
show that s(¢) — 0 as ¢ — oo. This can be accomplished by applying Barbalat's Lemma

to the continuous, nonnegative function:

Vi0) =V (e)= [(P(2) +kys2(m)dr with V() = ~k,s2(0) (6.22)

It can easily be shown that every term on the right side of (6.22) is bounded, hence $(¢)
is bounded. This implies Vl(t) is a uniformly continuous function of time. Since ¥,(¢) is
bounded below by 0, and V, (¢) <0 for all ¢, use of Barbalat's lemma proves that
V, (#) >0 as £ — o and hence from (6.22) thats, () — Oas ¢ — . Remark for equation

(6.10) indicates that x(¢) — Q_as ¢ — 0. This completes the proof. |

Remark: The above theorem proves the convergence of x(f), that is, the chatter effect

will be significantly suppressed in metal cutting with the proposed adaptive controller.
6.3 Simulation Results

The equivalent mass, damping coefficient and spring coefficient for the metal cutting

system are,
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m=15kg,c=3 x 10’ kg/s, k=6 x 10" kg/s°.
And we can have a reasonable range for these system coefficients as, m €[10, 20] kg,

c €[2, 4] x 10° kgfs, k <[5, 7] x 10" kg/s%

For the piezoactuator,

ma=2 kg, c;=1 x 10° kg/s, b=5 x 10" kg/s® and k, = 7 x 10" kg/s*

with & €[6, 8] x 10" kg/s>.

For the hysteresis model for cutting force, we have the following,

h=4x10°N/mand B;=20 N

with Ze [3, 5] x 10° N/m and pz=10 N.

For the piezoactuator hysteresis, we have,
ha=2.5%x 10° m/V, B,=0.1 x 105 m, & =0.02

with &, e [0.9, 1.1] x 10°® m/V and using the backlash-like hysteresis description (6.6),

we have the following hysteresis illustration for the piezoactuator (Figure 6.5).
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Figure 6.5 Hysteresis relationship between piezo expansion and applied voltage

The simulation in Figure 6.6 illustrates the turning cutting system with initial tool

deflection 10 um, and it is in chattering condition in the presence of active hysteresis.

100 um

x(t) 1 T ™ T T T T T T ™
n

Offset Chip Thickness

—_— 2 2 2

2 : : : n
[} 0.005 0.01 a.01s 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (sec.)

Figure 6.6 Turning cutting system without piezoactuation
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It is easy to obtain 6,,, =0.8x10*, 6, =32x10°%, 6,... =—-6x107, 8, =-1x107,

é

3min

=-5x10%, By ==1x10°, G, =0, 6, =2, 6. =300, 6, . =1000,

6,

Gmin

=3x107, G =5x107, ;... =20, 6, . =20. And we are taking the initial
data as, 6, =1x10%, 6, =-3x107, 6; =2x10°, 6, =1, 6, =600, 6, =4x107, 6, =0,
and the controller parameters y, =5x10°, y, =5x10", 7, =5x10", y, =1x10?%,

ys=1x10%, ys =1x10"7, 3 =1, k, =1,and & =40 and e =1x107".

pm

"™

3 L . 2z 1 —_

! " : :
[} 0901 e.02 0.03 0.0¢ 0.05 0.06 0.07 0.08 .08 0.1

Time (sec.)

Figure 6.7 Turning cutting system with proposed adaptive controller

In metal cutting, because what we concern about most is the offset chip thickness x(z),
we should choose proper A of the tracking error s(¢) so that x(¢) is much more
“sensitive” to the adaptive control than x(¢). A =2000 is considered in the tracking

error equation. And the simulation of the turning system with the adaptive controller is
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shown in Figure 6.7, which shows clearly that the proposed adaptive controller results in

suppression of chatter.

6.4 Summary

In this paper, in order for chatter suppression, a piezoactuator is introduced for the
regulation of the machine tool displacement and metal cutting system is modeled as a
class of uncertain linear system with hysteresis and time delay. In order to overcome the
chatter due to the hysteresis and time delay in the cutting process, an adaptive controller
for the metal cutting system of ultra-precision is presented. The simulation results show

that the proposed adaptive controller significantly eliminates the chatter phenomena.
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Chapter 7

Chatter Suppression of Cutting System with 2-DOF via
Nonlinear Piezoactuation

Adaptive Controller Design — 4

Introduction — In this chapter, type A and type B chatters are considered in the cutting
system with two degrees of freedom. In order to suppress the chatter, the piezoactuator is
introduced for the ultra-precision control, and a robust adaptive control scheme is
proposed for regulation of machine tools. Simulation results show significant reduction

of chatter.

7.1 Turning System of 2-DOF

As discussed in Chapter 3, for a metal cutting system, a general machine tool structure

can be described as follows,

Mi+Cx+Kx=F (7.1)
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where the local mass M , damping C, and stiffness X matrices are R>?, and the force
vector F e R™. xeR¥. For a two degree-of-freedom cutting system, it can be

illustrated in Figure 6.1

Y2
A X b2
2 y. 1
\2
] },l
] >
] xz

Figure 7.1 Cutting system with 2 degrees of freedom

In Figure 7.1, x, and x, represent the relative displacement between the cutting tool and

the workpiece in the reference directions, which are normal to the workpiece surface and

along with the cutting direction, respectively. And y, and y, are the displacement of the

tool in the directions of freedom.

As discussed in the modeling of the cutting system, for the hysteresis model of

cutting/thrust force, the backlash hysteresis model is introduced in place of the actual

hysteresis model.
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Figure 7.2 Backlash hysteresis model

And we have the description functions for the forces in the cutting force direction and

thrust force direction.

laroroo &
where
Fa(@)=H (V@) =H_(h,B,.)
h.-v(t)+B,, v()>0 (7.3)

=<h, -v(t)+B_,, v({)<O0’
Foa(t2) V() =0
where 4, is unknown constant and h, €[k, k. ), B. =B, +AB, and

B., =B, +AB_,,while C, and C,, are constants. And v(¢) = x,(¢) — x,(t — ) denotes

the chip thickness variation. And
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F,(t)=H,(v(t))=H,(h,,B,)
h -v()+B,, v()>0
=4h -v()+B,, v()<0’
F,(t) v(t) =0

(7.4)

B,=B,,+ AB, and

lmnx]’

where 4, is unknown constant and &, e[h,min,h

t

B, =B,, +AB,,, while C,, and C,, are constants.

For the dynamic contact force model, a triangular hysteresis model is intxoduced to

describe the actual hysteresis model,

Figure 7.3 Triangular hysteresis model

And the contact force due to the flank contact is described as follows,

F,=T(x,)
[h(xa-T) %>0 (7.5)
- 0 %, <0

and
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F, =k T(x,)
_ keh(x, —1)) x,>0, (7.6)
0 x, £0

where 7, is the maximum displacement of x,, and h;, T,, k, are unknown constants,

with hi e[himin’himax]’ 2'; E[Z;min’z;max]’ and kf e[kfmin’kfmax]’

For the piezoactuator with hysteretic relationship between expansion and applied voltage
as illustrated in Figure , we would like to consider using the backlash-like hysteresis

model.

Expansion

Y

Voltage

Figure 7.4 Hysteretic relationship between expansion and applied voltage

In order for amiable controller design, we are using backlash-like hysteresis as,

dH,(2) _ Jdzl, d .
0 _C_?'dt (h,z—H,(2))+B, " (7.7)

where &, &, and B, are constants, satisfying &, > B, .
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In summary, the block diagram of the turning metal cutting system is demonstrated as

follows,

G, >
Piezoactuator
U
ka < li E ¢—
G, >

Figure 7.5 Block Diagram of turning metal cutting system of 2-DOF with

piezoactuator

As the backlash hysteresis model described in (7.3) and (7.4) is so complicated that it
would be tedious for the adaptive controller design. In this chapter, we will introduce the

backlash-like hysteresis model in place of the backlash hysteresis demonstrated in the

cutting dynamics.
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7.2 Adaptive Controller Design

As in Chapter 4, using the expression of backlash-like hysteresis to replace the backlash

hysteresis model, we have

Foo =H (v(1) = hv(2) + f.(v), (7.8)

where 4, is an unknown constant with &, €[A . h ], and [fO0)|<p., p. is a
constant bound. And v(¢) = x,(¢) - x,(t —~7) denotes the chip thickness variation,
HE [O,l] is the overlap factor. Also for the thrust force model, we have,

Fy =H,(v(t)) =hv(®) + f,(v), (7.9)

where £, is an unknown constant with &, €[4, ., 4,...] and |£,(v)[ < p,, p, is a constant

bound. While the contact/frictional forces are described as (7.5) and (7.6), respectively.

Thus the metal cutting system (7.1) can be described as,

AF, - F, (u)sina
AF, - F, (u)cosa

| A f. k, _ sina
—l:h::l(xl "'#xlr)'*'[f;:,"'l: 1 ]T(xz) [cosa]F“(u) (7.10)

As a matter of fact, the relationship of the expansion of the piezoactuator and the applied

M35+C5c+Kx=[

voltage demonstrates the hysteresis. As discussed in chapter 3, noting the properties of

backlash-like hysteresis, the force-expansion relationship F, («) can be described as,

F,(u)=k,(h, -u+ f,()) (7.7)
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where u is the applied voltage, k, is the stiffness of the piezoactuator, and 4, is the

slope of the piezoactuator hysteresis. k, and 4, are constants and | £, (w)] < p, .

As a result, we have the following system description,

Mot Co . Ko [h‘:,(xl S )+ [fc(v)] . [kf:!T(xz) _ ,:sin a:lkahau _ [sin a]kaf; @

h, f,(v) 1 cosa cosa

(7.8)
Noting the fact that rank(M) =2, left multiplying M ™" on both sides of (df-2), one has,

¥=-M"'Cx-M"'Kx

[h h k
+ M l:thxl - M"[h‘:,,wcl, +M“[ lf :IT(xz)

s ([fc(”)J - [Sin “]k,f,, (u)J S [ s “]k,,hau (7.9)
fi(v)| |cose cosa

Define a filtered tracking error as the follows,

s=p x+ApTx (7.10)

where 1 € R and p € R™ are given by the designer.

Remark: In metal cutting, what we concern about most is the offset chip thickness x,(¢),

for it directly reflects the surface quality of the workpiece being machined, and the

vibration of x,(¢) reflects the chatter occurrence during the dynamic cutting process,

while thé vibration of x,(¢) has no direct detrimental effect on the workpiece quality. As
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a result, in order for the chatter suppression, we choose the p to be [l 0], so that a

robust adaptive controller is proposed in the following for the regulation of p”x(¢), i.e.,

x,(2).

Differentiating s(¢) with respect to time and substituting ¥ with (7.9), one has,
§)=p"¥+Ap"x .

=-pT(M'C- A% - p™M™Kx

h A k
+ p’M"[;}n -pTM"[h‘}#xu +pTM"‘[ {JT(XZ)

[4

+pTM afc(v)] - [Sin“Jka £, (u)J - pTM'l[Sina]kahau (7.11)

f.v) cosx cosc

In order to eliminate the chatter phenomena aroused, we introduce a tuning error, s, ,
s
s, =§—¢&sat(—) (7.12)
£

where ¢ is an arbitrary positive constant and saz(-) is the saturation function.

sing

Define [ = (prM"[
cosa

]kaha) and 6 (i=1,...,6),

h
91 =-l—lpT(M-lC—/1[) , 62 ____l—lpTM-lK’ 93 =l—lpTM-l[hc],
- pTar| t, >0 I"'p"™M™ krnr %50
I"'pM lhi Xy > 6, = p 1 il X

_ h
6, = "IQIPTM_I[ C}U, g =
. 0 x, <0 0 %<0

h‘
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Due to the boundednessof M, C, K, k,, h,, h,, h;, £ and T,, we have

gimax]

L)

{min

7

imax

where 6, € R (i=l,...,6) are constants.

imin?

Given the metal cutting system, the following control and adaptation laws are presented:

u(t) =k,;s+0,%+6,x+0,x, +6,x,, +6,x, + 0, + k‘sat(f) (7.13)
with
6, = proj{é..<.) (7.14)
where
k* =7 |, max(p,.p.) +[7.| . . (7.15)

And proj(-+) is a projection operator, which are constructed as follows:

(0 ifd =6, andg, >0
or é,. =60, ,andg, <0
proj(é,., g,.)= 18 0, < 6. <6, . (7.16)
orf, =6, andg, <0

oré‘. =6, ,andg, =0

The different g, (=1,...,6) are defined respectively as follows,

gl =Sex’ g2 =Ssx3 g3 =S5x1’ g4 =Sexlr’ g5 =S£x2’ g6 =S€ (7'17)

The stability of the closed-loop system described by (7.8) and (7.13)-(7.17) is established

in the following theorem.
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Theorem: For the system model (7.8), the robust adaptive controller specified by

equations (7.13) — (7.17) ensures that all the closed loop signals are bounded; moreover,

the state p”x will convergeto Q_ ={p"x(¢) || pTx [ X'} for Vi2y,.

Proof: To establish the global boundedness, a Lyapunov function candidate is defined as

follows,

=l

V() = %[r‘sg(t) + i(é,. - 9,.)2} (7.18)

Since the discontinuity at |s|=¢ is of the first kind and since s, =0 when [s|<e¢, it

follows that the derivative ¥ exists for all s, and given by

V(t)=0 when [s| <& (7.19)

When [s| > £, notice the fact that 5,5, =s,§, and differentiating ¥(f) with respect to
time yields
. 5§ . 2
Viey=I"ss+Y.(6,-6,)76,
i=l

=I"'s, - pT(M'C-AD)i - p"M™'Kx

[ h k
+p'M™ c:lxx _PTM-l,:hc:'/“lr +PTM-{ {]T(xz)

+ Tf.()] [sina i sinaj,
P M l:f,(v)]—[cosa]k"f"(u)J p M l:cosa kahgu

\
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6§ . 2
+Z(6i —ei)rei
i=l

- 61TS‘5C + ezrsfx + 6’3Ts€xl + 94T55x1r + ZSgT(xz) + Sgalr[f;(‘))}

fi(v)

6 . 2
+5,.8,f, () —s.u+ Y (6, -6,)76,

i=l

And using the property (6, - 6,)proj(é,,g;) < (6; —6,)- g;, we have,

V()<OTs x+07s.x+61s x +6s,x_+s.7, )
v
4

""[f‘(")]mﬁzﬁ ) 5.

~ s . A
+s5.0T(x,) +Z(0‘. —9,.)T¢9,.

i=5

=—k,s.5— k'sesat(fi) + sea'lr[f‘ (V)} +5,.4,/, (1)
£ S
+ ScZT(xz) —SUr + (és = gs)rés + (és - 96)756

where u(r) = 6,x, + 6, + k'sat(i) . Since |s,| = s,sat(>) for Is|> &, and from the fact
£ £

that |s| > £, it is easy to see [s| >|s,|, so one has,

V() <—k,s2—k|s,|+]s.]

a[r"m ma'x(pc’pl)'*-lse"aZ,m pa
+ 5, TT(x,) = s,up + (6, —6,)7 0, + (6, - 6,)7 6

< —k,s? +5,1T(x,)—5,up + (05 —60,)7 0, + (6, — 6,)7 6,

In the following, we will construct the proof under the conditions of x, 20 and x, <0.
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(1) Under the condition of X, >0, substituting T(x,)=h,(x,~7,), we have the
following inequality,
V(t) < ks + 5,5 R (%, = T,) =5,y + @py —0p,) 6y, + (61, —6,,)7 61,
Once again, using the property (é,. -6) proj(é,., g:)< (é,. —6.)-g;,we have,
V(t) < —~ks2 +655,.x, + 65, —sup + (05 —6,) s,.x, +(0, - 6,)s,

= —k,s? (7.20)

(2) Under the condition of % <0, in the same process, it is easy to see that,

V() < —k,s? (7.21)

Therefore, for all the conditions, ¥ (¢) < —k,s2, and all signals in the system are bounded.
Since s(¢) is uniformly bounded, by the standard filter theory and the definition of s(¢),
it can be shown that bothx(z) and #(s) are also uniformly ultimately bounded. To
complete the proof and establish asymptotic convergence of x(¢), it is necessary to show
that s,(¢) - 0 as ¢ — «. This can be accomplished by applying Barbalat's Lemma to the

continuous, nonnegative function:

V.(6) =V () — I(V(r)ucdsg ()M with V,(£) = —k,s2(t) (7.22)

It can easily be shown that every term on the right side of (7.22) is bounded, hence $(¢)
is bounded. This implies. ¥;(¢) is a uniformly continuous function of time. Since V;(z) is

bounded below by 0, and ¥,()<0 for all ¢, use of Barbalat's lemma proves that
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Vl (#) >0 as t — o and hence from (7.27) thats_(t) - Oas ¢ — « . Remark for equation

(7.10) indicates that p” x(¢) > €, as t — oo . This completes the proof. =

Remark:  The above theorem proves the convergence of p“x(¢). As we choose
p=[l 0], it would lead to the convergence of x,(2), that is, the chatter effect will be

significantly suppressed in metal cutting with the proposed adaptive controller.

7.3 Simulation Results

0 0
We are taking the system coefficients to be, M =[m° ], C =l:i)” J,

k. O
K=| ° .
[O kl]
The equivalent mass, damping coefficient and spring coefficient for the metal cutting

system are,
me = 15 kg, c.=3 x 10° kg/s, k.= 6 x 107 kg/s?
- m,=1kg, ¢, =3 x 10° kg/s, k= 6 x 10°kg/s?
And we can have a reasonable range for these system coefficients as, m.€[10, 20] kg,
c.€[2, 4] x 10° kgfs, k€[5, 7] x 10" kg/s?, m,€[0.5, 1.5] kg, c,€[2, 4] x 10* kg/s, kg[S, 7]

x 10° kg/s%.

For the piezoactuator,
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ko =7 x 10" kg/s* with k, €[6, 8] x 107 kg/s>.

For the hysteresis model for cutting force, we have the following,

he=4x10°N/mand B.y=20N

with a.€ [3, 5] x 10° N/m and p=10 N.

And the hysteresis model for contact/frictional force, we have the following,
h,=2x 10°N/m, T; = 1x 10 and k=5 x 10°

with ie [1, 3] x 10° N/m, T, € [0.5, 1.5] x 10°®, and & € [3, 4] x 10°.
For the piezoactuator hysteresis, we have,
he=25%x 108 m/V, B,=0.1 x10°m, a =0.02

with A, € [0.9, 1.1] x 10° m/V.

The simulation in Figure 7.6 illustrates the turning cutting system with initial tool

deflection 10 um, and it is in chattering condition in the presence of active hysteresis.
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Figure 7.6 Turning cutting system without control

We take the following limits as, 6., =0, 6., =5x10*, 6, =-5x107, 6, . =0,

Osia ==5%10°, G0, =0, G, =0, 6, =2, 6, =100, 6, =1000,

3min

Osain =2%10°, G4, =6x10°.  And we are taking the initial data as, 6, =2x10°,

6min

6, =-3x10", 6, =2x10°%, 8, =1, 6, =300, 6, =4x10°, and the controller parameters

k,=1,and k' =40 and £ =1x10", A =500.
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Figure 7.7 Turning system with proposed adaptive controller

And the simulation of the turning system with the adaptive controller is shown in Figure
7.7, which shows clearly that the proposed adaptive controller results in suppression of

chatter.

7.4 Summary

In this chapter, type A and type B chatters are considered in the cutting system with two
degrees of freedom. In order to suppress the chatter, the piezoactuator is introduced for
the ultra-precision control, and a robust adaptive control scheme is proposed for

regulation of machine tools. Simulation results show significant reduction of chatter.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, hysteresis models for metal cutting process are considered and incorporated
into the adaptive controller design for chatter suppression. Becausé of the small
amplitude (as small as several microns), high frequency properties of chatter, it requires
active vibration control providing a force to the cutting system to overcome the chatter
effect. Recently, with the advent of piezoelectric devices, more and more attention in
metal cutting system is attracted to the application of piezoactuator, which has a
prominent characteristic of fast expansions with small response time. With the
application of piezoactuator, in order to design a proper control scheme for the chatter
suppression, it is necessary to investigate thoroughly over the dynamic cutting process, or
the relationship of cutting force and chip thickness. And ultra-precision control requires
much more accurate model in metal cutting where nonlinearity dominates. In this thesis,
rather than using the commonly accepted linear Merchant model, the relationship of
cutting force variation and chip thickness variation is treated as a nonlinear hysteresis
model, which has been proved to be able to explain the norﬂinearity of the turning metal

cutting process in a way that is much more accurate. In this thesis, the turning cutting
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systems is described as a class of uncertain systems with hysteresis and time delay.
Piezoactuator with the fast response property has been introduced into the cutting system
as an important controllable positioning element for the ultra-precision control; however,
piezoactuator also displays hysteretic behavior and the hysteresis actuation relationship
imposes a still open problem of developing control scheme with unknown hysteresis
actuation. In this paper, considering type A and type B chatters, different metal cutting
dynamics structures, and linear or nonlinear piezoactuation, robust adaptive control
schemes for the chatter suppression in metal cutting are developed, as well as to ensure
global stability of the turning metal cutting system. The novelty is that hysteresis model
is for the first time incorporated into the controller design for metal cutting system. The

simulation results for controller design show significant reduction of chatter by the

proposed adaptive controller.

8.2 Future Work

1. Itis indicated in the references [Fabris and D’Souza (1974), Szakovits and D’Souza
(1976)] that the demonstrated hysteresis is frequency dependent. However, there are
still problems about how the hysteresis changes as the cutting conditions change. For
example, whether or not and how the slope and distance of hysteresis change as the
vibration magnitude is changing. In order to obtain a much more accurate hysteresis
model for ultra-precision control, more experiments should be performed to find out

the determinants for the hysteresis in the cutting process and to find out a much more

accurate hysteresis model.
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2. Robust adaptive control schemes are proposed in the thesis, and through simulations
they prove to be successful in chatter suppression. Owing to the complexity of metal
cutting, more intelligent control methods may be employed for chatter suppression,

including fuzzy control, neuro-networks, etc

3. Chatter suppression is discussed mostly in the one dimensional system, with focus on
the offset chip thickness variation, which directly reflects the chatter marks on the
workpiece. This work is extended to the two dimensional system in Chapter 6,
though with simplicity. Furthermore, the modeling and controller design can be

extended to three dimensional turning system in the future research.

4. Linear cutting system dynamics are considered in this thesis, however, there are a lot
of references [for example, Lee et al (1995), Tarng et al (1994)] indicating that one of
the most important chatter mechanisms is the process damping force which has a
great influence on the cutting process stabilization. The complex and highly

nonlinear process damping force in chatter vibration should be given more attention

in the future system modeling.
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