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Abstract

Modeling and Formal Verification of a Telecom System
Block Using MDGs

Md Hasan Zobair

Simulation-based verification cannot uncover all errors in an implementation because
only a small fraction of all possible cases can be considered. Formal verification is a
different technique that can alleviate this problem. Because the correctness of a formally

verified design implicitly involves all cases regardless of the input values.

This thesis demonstrates the effectiveness of Multiway Decision Graphs (MDG) to
carry out the formal verification of an industrial Telecom hardware which is
commercialized by PMC-Sierra Inc. To handle the complexity of the design, we adopted a
hierarchical proof methodology as well as a number of model abstraction and reduction
techniques. Based on the hierarchy of the design, we followed a hierarchical approach for
the equivalence checking of the TSB. We first verified that the RTL implementation of
each module complies with the specification of its behavioral model. We also succeeded to
verify the full RTL implementation of the TSB against its top level specification. Besides
equivalence checking, we furthermore applied model checking to ascertain that both the
specification and the implementation of the TSB satisfy some specific characteristics of the
system. To measure the perfofmance of the MDG verification, we also conducted the
verification of the same TSB with Cadence FormalCheck. The experimental results show
that in some cases, the MDG based modeling with abstract state variables allows more

efficient verification than that of the boolean modeling in FormalCheck.
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Chapter 1

Introduction

1.1 Motivation

Design errors in digital designs are destructive. The devices are manufactured in vast
quantities and errors cannot be remedied in the field by patching. Recently discovered
errors in several industrial designs demonstrate that these concerns are not academic. In
addition to economic considerations, the degree of design correctness is necessary to the
use of digital systems in critical applications. As IC chips grew from tens of thousands of
gates in the eighties to more than 10 millions today, designers and verifiers of these massive
new circuits face a pair of conflicting goals. They must find ways to contain the expansion
of verification time, effort, and cost. They also must increase verification coverage and

quality to ensure single-pass success [34].

Simulation-based method is currently used by the industrial community for system-level
verification, since it can handle the entire design at a time. When a simulation trace exposes
a design error, a verifier analyzes the trace and rectifies the design. However, the
rectification might be inadequate because the trace shows only one specific behavior of the
system and one cannot confirm that no other trace exposes the error. This handicap is the

motivation for the need of new methods to achieve economical and reliable verification of



digital systems. Formal verification technique had paved a path, showing the utility of
finding bugs early in the design cycle. It now affords some promising new methods for the
validation of digital designs. Some automatic formal verification techniques are gradually
finding their place in the verification process as complement to logic simulation. FSM-
based automatic verification techniques have proven to be successful formal verification
technique that can be applied to real industrial design. However, since it requires the design
to be described at the boolean level, they often fail to verify a large-scale design because of
the state space explosion problem caused by the large datapath. On the other hand while
scalable to large designs, theorem proving based interactive verification techniques require
a great expertise by the verifier.

Thus, the motivation behind this work was to investigate Multiway Decision Graphs
(MDGs) in verifying a large-scale industrial design, and proposes a hierarchical approach
for organizing the verification of the investigated design using MDGs. We also provide a
comparative evaluation of the experimental results from the model checking of the

proposed design using Cadence FromalCheck and the MDG tools.

1.2 Background and Related Work

A comnerstone of many of the Asic CAD suites is the ability to design hierarchically.
Complex designs need a mechanism to reduce their complexity for both the designer and
verifier. It is difficult to understand a design with hundreds of components; it is easier to
understand the same design with only a few components. Using hierarchies to handle
complexities is an old methods. It does not mean that the design becomes less complex
(sometimes it becomes more complex instead), but it becomes easier to understand for

both the designer and verifier. To accelerate the design flow and assure the correctness of



complex digital systems, a hierarchical design approach is usually adopted by the indus-

trial community (see Figure 1.1) [29].

Concept
Design .
Validation @@
Behavioral Specification
RTL . )
Verification @l Synthesis

RTL Design

Logic - -
Verification C Logic Synthesis

Netlist (Logic Gates)

y

Layout

Verification Layout Synthesis

ki

Layout (Masks)

Pro.ducu.on Manufacturing
Verification

Finished Product

y

Figure 1.1: Flow of hierarchical design and verification



The system architect first manually derives the requirements of the system as the system
behavioral specification. This specification is then refined manually or using CAD tools
(e.g., Synopsys) into more detailed descriptions such as register-transfer (RT), logic and
mask level descriptions. As the late detection of design errors is largely responsible for
unexpected delays in realizing the hardware design, it is extremely important to ensure
correctness in each design step. With correct-by-construction design style, automatic tools,
such as behavioral and logic synthesis techniques can be used to ensure behavioral and gate
level design correctness. However, the refinement process from high-level specification to
synthesizable design usually requires manual fine tuning to achieve high performance.
More progress is needed to automate the design process at higher levels in order to produce
designs of the same quality as is achievable by hand. It is thus essential that the
specification (or behavior) and the intermediate design stages be verified for consistency
and correctness with respect to some user-specified properties or a previous level of the
specification, thus making post-design verification essential. Formal verification
techniques are useful in verifying designs between different levels of hierarchy. Such as
using sequential equivalence checking, we can verify that whether the RTL model of the
design satisfies its specification or not. We can also apply formal verification techniques to
verify the gate level netlists of the design. Currently combinational equivalence checking
is used in post synthesis design verification where often manual design changes focus on
speed, power or testability considerations. In order for a combinational equivalence
checker to work, the designs must have a one-to-one mapping of registers/flip-flops. Model
checking can be applied to prove temporal properties, i.e., specification, on a design model

under all possible and allowable conditions. Here the design under verification can be an



RTL model or a behavioral model. Formal verification techniques, however, cannot be
applied to detect a fabrication fault resulting from layout defects during the fabrication

process, which may lead to an incorrect behavior of the design.

1.2.1 Formal Verification

Formal verification technique is the mathematical demonstration of consistency
between specification and implementation of a design. The ability of formal verification is
to check “corner-cases”, which are difficult or infeasible to test through simulation. These
include especially complex scenarios unanticipated by the designers. Decreased time to
market comes from the ability to apply formal verification earlier in the design cycles and
thus find bugs sooner than is possible with simulation. Verifiers who adopted formal
verification methods cut the time required to verify a complex design’s implementation
from months to weeks or days. Because formal verification techniques consider all cases
implicitly, a verifier does not need to generate test cases to verify a design which takes much
of the verification time during traditional simulation phase. Due to the above reasons formal
verification is growing as a powerful complementary approach to simulation in the

industrial community [39].

1.2.2 Formal Verification Techniques

In general, formal verification consists of mathematically establishing that an imple-
mentation satisfies its specification. The implementation refers to the system design which
is to be verified. This entity can represent a design description at any level of the system

abstraction hierarchy. The specification usually refers to the property with respect to



which correctness is to be determined. It can be expressed in a variety of ways, such as
behavioral description, an abstract structural description, a timing diagram which reflects

the behavior of the system at different time points, a temporal logic formula, etc.

Formal verification techniques naturally group themselves into theorem proving meth-

ods and automated FSM state enumeration based methods [31, 37].

1.2.2.1 Theorem Proving

Theorem proving is the most general verification technique, in which a specification
and its implementation are usually expressed as first-order or higher-order logic formulae.
Their relationship, equivalence or implication, is regarded as a theorem to be proven
within the proof system using a set of axioms and inference rules. Theorem proving have
had their greatest successes in verifying datapath dominated circuits as it supports the ver-
ification of parameterized datapath dominated circuits [51]. It has high abstraction and
powerful logic expressiveness capabilities. Using theorem proving, designs can thus be
represented at different abstraction levels rather than only at the boolean level [35]. There-
fore, it allows a hierarchical verification methodology which can effectively deal with the
overall functionality of designs having complex datapaths. However, in contrast to more
automated formal verification methods, such as model checking or equivalence checking,
it is currently a memory and time consuming methods. This is specially so when a real
industrial design is to be considered. Users need expertise to verify any design using theo-
rem proving which is the major difficulty for applying the method on industrial designs.
Some of the widely used theorem prover in the hardware verification community are HOL

(Higher-Order Logic) [30], PVS (Prototype Verification System) [46], Nqthm (a Boyer-



Moore theorem prover) [8], ACL2 (Industrial strength version of the Boyer-Moore theo-

rem prover) [36].

1.2.2.2 FSM-based Techniques

Automated finite state based methods can also be classified into the following catego-

ries [31]:

* Model Checking: The specification is in the form of a logic formula, the truth
of which is determined with respect to a semantic model provided by an imple-
mentation.

* Equivalence Checking: The equivalence of a specification and an implemen-
tation is checked, e.g., equivalence of functions, equivalence of finite-state
automata, etc.

Model checking [17, 18] is an automatic technique for verifying finite state concurrent
systems. It has a number of advantages over traditional approaches to the problems that
are based on simulation and deductive reasoning. The method has been used successfully
in practice to verify complex sequential circuit designs and communication protocols. In
model checking, ideally the verification is completely automatic. There are two main
approaches within model checking — logic based and automa-based [37]. The logic para-
digm is based on remporal logics [10, 27]. On the other hand, the automata paradigm is
based on language containment [38]. These two are not at all fundamentally same and
each can be described in terms of the other.

A Model checker provides means for checking that a model of the design satisfies a
given specification, but it is impossible to determine whether the given specification cov-

ers all the properties that the system should satisfy. The main challenge in model checking



is dealing with the state space explosion problem [13]. This problem occurs in systems
with many components that can interact with each other or systems that have data struc-
tures that can assume many different values, e.g., the datapath of a design. In such cases
the number of global states can be enormous. One successful technique which attempts to
reduce the state space explosion problem is known as symbolic model checking [22, 23].
In this technique, the transition and output functions as well as the sets of states generated
during the reachability analysis are encoded by Bryant’s Reduced and Ordered Binary
Decision Diagrams (ROBDDs) [11]. A number of ROBDD-based verification tools have
been developed which are used by the hardware verification community are VIS (Verifica-
tion Interacting with Synthesis) [9], SMV (Symbolic Model Verifier) [44]. Both of these
tools are based on CTL [8]. However, the ROBDD-based methods are not capable to ver-
ify designs having non-trivial datapaths [23, 16]. Other tools like, FormalCheck [7] per-
form model checking based on  -automata [33] which is commercialized by Cadence
design systems. It has some built-in localization reduction algorithm that can handle large

size industrial design [7, 14].

Equivalence checking [37] is used to proof the functional equivalence of two design
representations modeled at the same or different levels of abstraction. It can be divided
into two categories: one is combinational equivalence checking, and the other is sequential
equivalence checking. Equivalence checking verifies for all input sequences that an imple-

mentation has the same outputs as the specification.

In combinational equivalence checking, the function of the two descriptions are con-
verted into canonical forms which are then structurally compared. The major advantage of

BDDs is their efficiency for a wide variety of practically relevant combinational circuits.



Two combinational designs functionally modeled by the Boolean functions are proven
equivalent by compairing their normal forms. If ROBDDs are used which have the canon-
ical form property, it is sufficient to test both graphs for isomorphism. Subject to a reduc-
tion criterion and for a fixed variable ordering, BDDs are a canonical representation for

Boolean functions, in the sense that the BDDs for two functions f; and f; are isomorphic
iff f; = f5. Current designs which are clock-driven synchronized designs, need to be sepa-

rated into small portions. The tool then maps each register of one model into another and

compares their combinational circuits between every two consecutive registers.

Sequential equivalence checking is used to verify the equivalence between two sequen-
tial designs at each state. Sequential equivalence checking considers just the behavior of
two designs while ignoring their implementation details such as register mapping. It can
verify the equivalence between RTL and netlist or RTL and behavioral model which is
very important in design verification. To verify the equivalence of these models, we need
efficient representation for the manipulation of next-state and output functions and the set
of states. Two models are considered equivalent iff for each input sequence, both machines
generate the same output sequence. The problem of showing that two machines are equiv-
alent can be reduced to the problem of finding the reachable state set of a product
machine. The reachable state set of sequential circuit can be computed using a fixpoint
calculation, where the next-state relation derived from the next-state function and current
inputs to the circuit. The number of iterations required to compute the reachable state set
can be linear in the number of states for the circuits that have “long” cycles of states. The
disadvantage of sequential equivalence checking is that it cannot handle a large design

because it encounters state space explosion problem very fast.



Recently, a number of ROBDD extensions such as BMDs [12], HDDs [19] and
K*BMDs [26] have been developed to represent arithmetic functions more compactly
than ROBDDs to accelerate the verification of complex arithmetic circuits. EOBDDs (can
be improved by labelling the leaf nodes with terms containing abstract sorts. MDGs (Mul-
tiway Decision Diagrams) [20], successor of EOBDDs (Extended Ordered Binary Deci-
sion Diagrams) [42], include the labelling of edges to be first order terms and non-terminal
nodes to be abstract variables. ROBDDs, a special cases of MDGs, can be turned into
MDGs by transforming them from graphs representing functions into graphs representing
relations. In this thesis, we will use MDG-based verification. Details on MDG are

described in Chapter 2.

1.2.3 Related Work

In this section, we review several existing related works on the formal verification of
different moderate sized digital systems using FSM-based methods. Some of these case
studies are used to illustrate the limitations of current formal verification technique in ver-
ifying industrial like designs. Among these limitations, state space explosion is the well-
known problem faced by the FSM-based methods when verifying designs with a substan-
tial datapath. Researchers of these works had presented different reduction and abstraction
techniques to cope with this limitation.

Chen ez al. at Fujitsu Digital Technology Ltd. [16] identified a design error in an ATM
(Asynchronous Transfer Mode) [32] circuit using the SMV tool [44] by verifying some
properties expressed in CTL [8]. When the circuit was manufactured it showed an abnor-

mal behavior under certain circumstances. Identifying the specific error during simulation,

10



they established an abstracted model to cope with the state space explosion and verified
the abstracted model by SMV. The design error was detected during the model checking.
However, the ATM model was reduced and abstracted a lot from the original design
according to the specific error, and the same ATM model may not be used to verify other

properties of the original design.

Garcez [28] has also verified some properties on the implementation of the Fairisle
ATM switch fabric [41] using HSIS [3] model checking tool. The author described the
netlist implementation of the ATM switch fabric using a subset of Verilog, and checked
properties on submodules of the fabric using model checking. During the model checking,
he did not consider the whole switch fabric to avoid state space explosion. Moreover, he

changed the implementation of the fabric to ease the verification process.

Lu and Tahar [42, 41] verified a the Fairisle ATM switch fabric [41] using VIS [9].
Since they did not succeed in using the original switch fabric to verify relevant liveness
and safety properties (due to srate space explosion) they abstracted the model by datapath
reduction technique. After this reduction in the model, they successfully verified several
properties, but the verification time of each property was unreasonably long. To reduce the
verification time, they applied property division and latch reduction techniques. They also
conducted equivalence checking between the behavioral and structural specifications of
the submodules written in Verilog HDL. The VIS tool failed to complete the equivalence
checking of even a very reduced model of the whole switch fabric due to state space

explosion.

Hong and Tahar [49] used an ATM Bit Error Rate Monitor (BERMON) design to illus-

trate their methodology for the compositional verification of IP-block based designs using

11



VIS tool. In this work, they focused on the reasoning of the compositional verification of
the IP based design and on the issue of how interface behavior should be provided with an

IP block to make the verification feasible.

Rajan et al. [50] used a combination of theorem proving, model checking and simula-
tion to verify a high-level ATM model. They used model checking to verify some control
components in the design, and applied exhaustive simulation to verify some operational
components. Theorem prover was applied to verify the whole ATM model. They discov-

ered bugs in the high-level ATM model which was assumed correct during simulation.

Barakatain and Tahar [5] applied model checking techniques for the formal verification
of a SCI-PHY Level 2 protocol (a super set of UTOPIA Level 2 protocol [2]) Engine.
They used Cadence FormalCheck [14] to formally verify the RTL implementation of the
Receive Slave SCI-PHY mode of the Transmit Master/Receive Slave (TMRS) design [48].
The TMRS is an existing industrial design of PMC-Sierra Inc., with a 7500 equivalent
gate-count. During the verification process, they used several model abstraction and
reduction techniques within FormalCheck to avoid state space explosion, and then verified
a number of relevant liveness and safety properties on the TMRS. They succeeded the dis-
covery of a number of mismatches between the TMRS RTL design, document specifica-

tion and UTOPIA Level 2 protocol description.

Xu et al. [53] verified a Frame Multiplexer/Demultiplexer (FMD) chip from Nortel
Semiconductors using Cadence FormalCheck [14]. The FMD chip is part of a system used
in multiplexing/demultiplexing framed data between various channels and a SONET line.
The authors constructed a non deterministic model to simulate the normal operating envi-

ronment. Tool guided model reduction was used to build an abstracted model which in

12



turn reduced the state space of the original design. During the verification process, they

detected two errors in the implementation of the FMD model.

Tahar er al. [52] verified the Fairisle ATM switch fabric [41] in an automatic fashion
using MDGs by property and equivalence checking. The original design was modeled in
Qudos HDL,, containing 4200 equivalent gate-count. They used model abstraction tech-
niques to reduce the state space of the gate level netlist. Using the abstract sort and unin-
terpreted functions within MDG, they were able to verified the whole switch fabric

without having any srate space explosion problem.

Zobair et al. [60] used the Fairisle ATM switch fabric [41] to investigate the impact of
design changes on formal verification using the MDG tools [59]. In this work, they
showed that design for verifiability can have significant effect on the speed of verification
using automated decision diagram based technique. The same result was obtained by Cur-
zon et al. [25], using interactive proof with the HOL theorem prover [30] for the same
design verification. The difference in nature of these two verification methodologies sug-

gests design for verifiability can be widely applicable as design for restabiliry.

Z. Zhou et. al [58] demonstrated the MDG-based formal verification technique on the
example of the Island Tunnel Controller ITC) design. In this work, they studied in detail
the non-termination problem of abstract state enumeration and presented a heuristic state
generalization technique to solve this problem. They also provided comparative experi-
mental results for the verification of a number of safety properties using two weli-known

ROBDD-based verification tools SMV [44] and VIS [9].

Balakrishnan and Tahar [4] verified an Embedded System of a Mouse Controller

named PIC 16C71 from Microchip Technology Inc. using MDGs [20]. They modeled the
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system at different levels of design hierarchy, i.e., the microcontroller RT level, the micro-
controller Instruction Set Architecture (ISA), the embedded software assembly code level
and the embedded software flowchart specification. The verification was conducted using
equivalence checking and property checking. They detected inconsistencies in the assem-

bly code with respect to the specification during the verification phase.

1.3 Scope of the Thesis

In this thesis, we present a methodology for the formal verification of a real industrial
design using Multiway Decision Graphs (MDGs) [20]. The design we considered is a
Telecom System Block (TSB) — Receive APS Control, Synchronization Status Extraction
and Bit Error Rate Monitor Telecom System Block (RASE TSB) which is a commercial
product of PMC-Sierra Inc. [47]. The main aspect of this work is to illustrate the ability of
the Multiway Decision Graphs (MDG) tools to carry out a verification process of a large
industrial design. Equivalence checking and model checking have been carried for the ver-
ification process. The RASE TSB processes a portion of the SONET [6] line overhead of a
received SONET data stream. It processes the first STS-1 of an STS-N data stream which
can be configured to be received in byte serial format at 6.48 Mbps (STS-1) or 19.44 Mbps
(STS-N).

As observed from the examples described in the related work section, the Fairisle ATM
switch fabric (with its 4200 equivalent gates) is the largest design to be modeled and veri-
fied by the MDG tools. In contrast, the RASE TSB design contains 11400 equivalent gates

which is much larger than any other design verified by the MDG tools.
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The outline of this thesis is as follows: Chapter 2 gives a brief introduction to Multiway
Decision Graphs and its related verification techniques. Chapter 3 illustrates, through sim-
ple examples, the hierarchical proof and abstraction methodologies for the modeling and
verification of a Telecom System Block (TSB) using MDGs. Chapter 4 describes the
functionality of the RASE TSB and applies the proposed modeling and verification
approaches on the target TSB. In Chapter 4, we also present a comparison of experimental
results obtained using MDG and Cadence FormalCheck. Conclusions and ideas on future

work are presented in Chapter 5.
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Chapter 2

Multiway Decision Graphs

Multiway Decision Graphs (MDGs), a new class of decision graphs, have been proposed
[20] as a solution to the state space explosion problem of ROBDD based verification tools.
These decision graphs subsume the class of Bryant’s reduced ordered binary decision
diagrams (ROBDD) [11], while accommodating abstract sorts and uninterpreted function
symbols. MDGs are thus much more compact than ROBDDs which enhances its capability

to verify a broader range of circuits [52].

2.1 Multiway Decision Graphs

The underlying formal system of MDGs is a subset of many-sorted first-order logic
augmented with a distinction between abstract sorts and concrete sort. Concrete sorts
have finite enumerations, while abstract sorts do not. The enumeration of a concrete sort
o is a set of distinct constants of sort . The constants occurring in enumerations are
referred to as individual constants, and the other constants as generic constants and could
be viewed as 0-ary function symbols. The distinction between abstract and concrete sorts

leads to a distinction between three kinds of function symbols. Let fbe a function symbol

of type 0t X Oy X... X O, —> Oy If O, is an abstract sort, then fis an abstract function

symbol. If all the ;... O, are concrete, then fis a concrete function symbol. If O, is
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concrete while at least one of the &, ... 0 is abstract, then fis referred to as a cross-opera-

tor. Concrete function symbols must have explicit definition; they can be eliminated and
do not appear in MDGs. Abstract function symbols and cross-operators are uninterpreted.
An MDG is finite, directed acyclic graph (DAG). An internal node of an MDG can be a
variable of concrete sort with its edge labels being the individual constants in the enumer-
ation of the sort; or it can be a cross-term (whose function symbol is a cross-operator). An
MDG may only have one leaf node denoted as T, which means all paths in the MDG are
true formulae. Thus MDGs essentially represent relations rather than functions. In MDG,
a data value can be represented by a single variable of abstract type rather than by concrete
(e.g., 32 bits) boolean variables. Variables of concrete sorts are used for representing con-
trol signals. Using MDGs, a data operation is represented by an uninterpreted function
symbol. As a special case of uninterpreted functions, cross-operators are useful for mod-

eling feedback from the datapath to the control circuitry.

In MDG, a state machine is described using finite sets of input, state and output
variables, which are pairwise disjoint. The behavior of a state machine is defined by its
transition/output relations including a set of reset states. An abstract description of the state
machine, called Abstract State Machine (ASM) [21], is obtained by letting some data input,
state or output variables be of an abstract sort, and the datapath operations be uninterpreted
function symbols. As ROBDDs are used to represent sets of states and transition/output
relations for finite state machines (FSM), MDGs are used to compactly encoded sets of
(abstract) states and transition/output relations for ASMs. This technique replaces the

implicit enumeration technique [22] with the implicit abstract enumeration [15].
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The notion of abstract description of state machines is hence a theoretical fundament
for a verification methodology that makes it possible to verify sequential circuits
automatically at the RT level using abstract sort and uninterpreted function symbols. In this
sense, we can say that the verification method is applicable to designs where the data
operations are viewed as black boxes [57]. Such a verification process fits well in the
verification of RTL designs generated by high-level synthesis. This is because high-level
synthesis algorithms schedule and allocate data operation without being concemed with the
specific nature of operations. In the next sections, we describe the modeling and
verification features of the MDG tools. Interested readers are referred to [15, 20, 21, 54, 56,

57, 59] for more details on the MDG algorithms and tools.

2.2 Modeling Hardware with MDGs

MDGs describe circuits at the RT level as a collection of components interconnected by
nets that carry signals. Each signal can be an abstract variable or a concrete variable. The
input language for MDG based applications is a Prolog-style HDL, called MDG-HDL.
This hardware description language allows the use of abstract variables for representing
data signals and uninterpreted function symbols for representing data operations. MDG-
HDL supports structural description, behavioral ASM descriptions, or a mixture of struc-
tural and behavioral descriptions. A structural description is usually a netlist of compo-
nents connected by signals. A behavioral description is given by a tabular representation
of the transition/output relation or the combinational function block. A complete reference

of MDG-HDL can be found in [59].
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For logic gates, the input and output signals are always of concrete sort, i.e., boolean
type. Figure 2.1 shows an OR gates and its MDG representation for a specific ordering of

the variables. Boolean MDGs are essentially the same as ROBDDs.

Feedbacks from datapath to control circuitry are represented using cross-operators.
Figure 2.2(a) shows a comparator that used for the control portion of a circuit. The com-

parator produces a control signal y from two data inputs x; and x,. Both x; and x; are vari-
ables of abstract sort while y is a boolean variable. An uninterpreted function symbol eq of
type [wordn,wordn] — bool L is used to denote the functionality of this comparator. If

the meaning of eq matters, rewrite rules, such as eq(x, x) — 1should be used. An MDG

of the comparator is shown in Figure 2.2(b).

x/

i

(a)

Figure 2.1: The MDG for an OR gate

1. The notation £ [ot — ] implies that the function f has argument of sort o and range of sort B.
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x] —=

“ O W
x2 ——»

0 I

(@) (b)

Figure 2.2: The MDG for a comparator

Using MDGs tabular construct, we can represent an ITE (If -Then-Else) or CASE for-
mulas. It is analogous to directed formula where a row gives the symbolic values of the
variables in the head of the table as a disjunct cf the directed formula. Figure 2.3(a) shows
a tabular description of a sample ASM, where x is a boolean input, a is an abstract state
variable and a’ is its next state variable. It performs inc operation (an uninterpreted func-

tion) when x = 1. Figure 2.3(b) shows its MDG representation.

0 1

T
1 inc(a) a o inc(a)

(@ (b)
Figure 2.3: The MDG for an ASM
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2.3 MDG-based Verification Techniques

The MDG software package includes algorithms for disjunction, relational product,
pruning-by-subsumption (PbyS), and reachability analysis. Except for PbyS, the operations
are a generalization of first-order terms of algorithms on ROBDD, with some restrictions
on the appearance of abstract variables in the arguments. In the reachability analysis
procedure, starting from the initial set of states, the set of states reached in one transition is
computed by the relational product operation. The frontier set of states is obtained by
removing the already visited states from the set of newly reached states using the pruning-
by-subsumption (PbyS) operation. If the frontier set of states is empty, then the reachability
analysis procedure terminates, since there are no more unexplored states. Otherwise the
newly reached states are merged (using disjunction) with the already visited states and the
procedure continues where the next iteration with the states in the frontier set as the initial
set of states. A facility to carry out simple rewriting of terms that appear in the MDGs is
also included. This allow us to provide a partial interpretation of an uninterpreted function
symbol. For example, if zero is an abstract generic constant of sort wordn and eqgz(x) a
cross-operator of type [wordn—>bool], then we could provide a partial interpretation of egz
using the rewrite rule eqz(zero)—> 1, indicating that equal-to-zero is 1 when the argument
is zero (but not revealing anything about the other values). User selected rewrite rules are
applied anytime a new term is formed during MDG operations. In general, rewriting
simplifies MDGs and helps to remove false negatives during safety property checking.
Thus likely avoiding non-termination of the reachability analysis procedure for designs
that depend on interpretation of operators for correct operation. A detailed description of

the operations and algorithms can be found in [15, 20, 21, 57]; some possible solutions to
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the non-termination problem are addressed in [1, 58]. The following sub-sections describe

the verification techniques provided by the MDG tools.

2.3.1 Combinational Equivalence Checking

The MDGs representing the input-output relation of each circuit are computed using the
relational product of the MDGs of the components of the circuits. Then taking advantage
of the canonicity of MDGs, it is verified whether the two MDG graphs are isomorphic.
Using this technique, we can verify the equivalence of two combinational circuits. This
technique can also be used to compare two sequential circuits when a one-to-one
correspondence between their registers exists, e.g., equivalence checking between RTL
model and gate level netlist of a design. However, combinational equivalence checking
cannot handle the equivalence checking between RTL and behavioral models because these
models are developed separately and it is not possible to map each register in the RTL

model to that of the behavioral model.

2.3.2 Invariant Checking

Using the symbolic reachability analysis technique, the state space of a given sequential
circuit is explored in each state. It is verified that an invariant, i.e., a logical expression,
holds over all reachable states. The transition relation of an ASM is represented by an MDG
computed by the relational product algorithm from the MDGs of components which are
themselves abstract machines. In other words, the relational product computes the
(synchronous) product machine of the components ASMs. Using invariant checking, we

can verify safety properties of a digital system.
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2.3.3 Sequential Equivalence Checking

The behavioral equivalence of two sequential circuits can be verified by checking that
the circuits produce the same sequence of outputs for every sequence of inputs. This is
achieved by forming a circuit from two circuits feeding the same inputs to both of them and
verifying an invariant asserting the equality of the corresponding outputs in all reachable
states. It can verify the equivalence between RTL and gate level netlist or RTL and
behavioral model which is very important in design verification. The drawback of this
technique is that it cannot handle a large design due to state space explosion problem. With
the increasing number of state components in synchronous digital design, the state space
grows exponentially, which is more severe in the product machine generated for sequential

equivalence checking.

2.3.4 Model Checking

MDG model checker provides both safety and liveness property checking facilities
using the implicit abstract enumeration of an abstract state machine [54]. In MDG model
checking, the design is represented by an ASM and the properties to be verified are
expressed by formulae in the first-order ACTL-like temporal logic called Ly [55]. The
ASM model of Lgzpgis composed of the original model along with a simplified invariant
[55], and the simplified invariant is checked on the composite machine using the implicit
abstract enumeration of an ASM. However, only universal path quantification is possible

with the current version of MDG model checker.
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2.3.5 Counterexample Generation

Using counterexamples, a user can trace errors in the design during a verification
process. If an invariant is violated at some stages of the reachability analysis, a
counterexample facility generates a sequence of input-state pairs leading from the initial

state to the faulty behavior.
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Chapter 3

Modeling and Verification Methodology

Abstraction and hierarchical proof can simplify the verification process vastly. To
accelerate the design flow and assure the correctness of a complex digital system, a
hierarchical design approach shown in Figure 1.1 (Chapter 1) is usually anticipated. This
approach has many advantages and is commonly used in practice. It is particularly useful
in the context of formal verification. In addition to hierarchical proof, one must use
abstraction mechanisms for relating formal descriptions of hardware designs at different
levels of design hierarchy [45]. The following two sub-sections will present more about
these two methodologies and their applications to the modeling and verification of a

Telecom System Block (TSB) using MDGs.
3.1 Hierarchical Proof Methodology

When a design to be proved correct is large, formal method is usually applied
hierarchically [24]. The design is structured into a hierarchy of modules and sub-modules,
and specifications that describe “primitive components” at one level of the hierarchy then
become specifications of the intended behavior at the next level down. The structure of the
proof mirrors this hierarchy: the top-level specification is shown in Figure 3.1 to be
satisfied by an appropriate connection of modules. At the next level down, each of these
modules is shown to be correctly implemented by a connection of sub-modules, and so on

— down to the lowest level of the hierarchy. Hierarchical organization of a design not only
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makes the verification process natural, it also makes the task tractable. Dealing with the
complexity of a complete system description of even modest size, by standards today, is
out of bounds for most verification techniques. By splitting this large problem into smaller
pieces that can be handled individually, the verification problem is made mangeable. It

effectively increases the range of circuit sizes that can be handled in practice.

Top level Specification —>

Level 1
Model: M:=S;AS,

Correctness:
M satisfy S

Correctness:
!I satisfy S,

f 2 satisfy 82

Level 3

Conclude:
81/\ 82/\ 83/\ B4 satisfy S

ﬂ = Behavicral Specification
D = Structural Specification

Figure 3.1: An example of hierarchical proof

We can illustrate the hierarchical proof methodology by using Figure 3.1 with a small

example. The design we considered is structured into a three-level hierarchy of modules.
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At the top level, i.e., Level 1, there are two modules S; and S, interconnected by internal
signals. At this level these modules are considered to be primitive devices. The description
M implements the behavior of the entire system at this level. It is constructed by composing
the modules S; and S; and hiding the internal signals. The correctness statement at this level
of the proof asserts that the model M satisfies the specification of the whole system,
represented by symbol S. At the next level down, i.e., Level 2, §; and S, become
specifications of required behavior for the two sub-systems implemented by I; and I,.
These models are constructed from the specifications of the primitive modules at Level 3,
i.e., B;, B, By and B,. At level 2, we have two separate correctness theorems to prove (see
Figure 3.1). These theorems assert that the sub-systems modeled by I; and I, correctly
implement the abstract behaviors given by the specifications S; and S5, respectively. We
can conclude from this, and from the correctness result for M proved at the top level, that
integrating the two sub-systems modeled by /; and I, give a concrete implementation of the

entire design which is correct with respect to the top-level specification S.

A hierarchical proof of correctness usually has many intermediate levels between the
concrete design model and the top-level specification. At each level, correctness theorems
relate each sub-module to an abstract specification at the next higher level. In general,
there may be many separate theorems at each level, one for each different kind of module
used at that level. To obtain a completed proof, we must integrate all these intermediate
correctness results into a single correctness theorem that relates a fully concrete model of
the entire design to the top-level specification of the intended behavior. There are three

separate theorems in the hierarchical proof shown in Figure 3.1.
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They are as follows:
Theorem I: M satisfies S

Theorem 2: 1 satisfies S|
Theorem 3: I, satisfies S,

Proving these theorems shows only that each module in the hierarchy is correct with
respect to its specification. To complete the proof, we must derive a theorem stating the
correctness of the entire design with respect to the top-level specification. To do so, the

following theorem must be proved.

Theorem 4: B1 A 32 A % A B4 satisfies S

This theorem states that a complete and fully detailed design model constructed from the

primitive modules B, B,, B3, and By satisfies the top-level abstract specification S. This

hierarchical approach to hardware verification is possible in logic because design models
and specification use the same language (syntax). Both of them are simply boolean terms,
and the model-building operation of composition (A) can be applied to both of them.
Terms used as abstract specifications at one level in a hierarchical proof can therefore be
treated as models at the next higher level. In a formalism in which specifications and mod-
els are syntactic entities of two distinct types, this direct approach to hierarchical verifica-
tion is not possible.

This hierarchical proof approach has the added advantage that if we reuse sub-modules
in the other modules we do not repeat work unnecessarily. Also if we change the imple-
mentation of the some modules, we do not need to reverify the whole design. We just need
to prove correctness theorems for the new implementations of the modules and recombine

the correctness theorems. A further advantage is that separate subtrees of the design can be
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verified independently by different people. The interface between teams occurs at the
point where the subtrees are joined. Here, provided the behavioral specifications of the

modules are agreed on, the upper levels can also be verified independently

3.2 Abstraction and Reduction Techniques

As the complexity of a functional blocks increase, the default setting used by most for-
mal verification tools may not be sufficient. We need some kind of abstraction techniques
in order to reduce the state space of the design under verification. The more extensive the
reachable states, the more CPU time and memory it takes to verify a system. Abstraction
is the process by which the important properties of a complex object are isolated for fur-
ther use and the remaining ones ignored as being irrelevant to the task at hand. An exam-
ple is the process of procedural abstraction in high level programming languages.
Programming languages support this abstraction for dealing with the complexity of pro-
gramming. In a similar way, abstraction plays an important role in hardware verification.
Here, an abstraction mechanism establishes a relationship of abstraction between a com-
plex description of hardware behavior and simpler one. This provides a means for control-
ling the complexity of both specifications and proofs of correctness. By suppressing the
irrelevant information in detailed descriptions of hardware behavior, and thereby isolating
the properties of these descriptions which are most important. An effective abstraction and
reduction mechanism helps to reduce the size and complexity of the design at each level in
the hierarchically-structured design. There are four different kinds of abstraction tech-

niques used in hardware formal verification [45].
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3.2.1 Behavioral Abstraction

Behavioral abstraction involves proving the correctness of designs with respect to par-
tial specifications of intended behavior. Partial specification does not completely define
the full range of behavior that a system can exhibit, but only defines its behavior in envi-
ronments or states that are of particular interest. In logic, specifications are expressed by
constraints on the values allowed on the external signals of a design. The range of behav-
ior defined by a specification is given by the set of values that satisfy these constraints. A
partial specification constraints a design’s signals to have certain values in situations that
are significant or relevant, but leaves unconstrained the signal values in all other situations.
This means that in the situations of “undefined” behavior, the predicate defining a partial
specification will be satisfied by signals values that would not be allowed by a more com-
plete specification of the system. Thus, the partial specification of a system imposes
weaker constraints on its signal values than a complete specification would. For example,
in a target system there are several components, e.g., register file and input/output multi-
plexor, in addition to the main block which controls the main functionality of the system.
Also assume that only the verification of the main block is of interest. In that case, the
additional blocks can be removed from the top-level of the design, provided that this
removal does not change the behavior of the system. The inputs of the main block which

are fed by the removed blocks, can be set to primary inputs of the system.

3.2.2 Structural Abstraction

Structural abstraction is the most fundamental abstraction technique to hardware verifi-

cation. It suppresses information about a design’s internal structure, i.e., only the behavior
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of the external inputs and outputs of a module is of interest. The basic idea of structural
abstraction is that the specification of a device should not reflect its internal construction.
To illustrate this abstraction technique, we can have an example of a BYTE_EXTRACTOR
from our case study (see Chapter 4). To keep our description simple, we are taking only a
portion of the byte extraction circuit.

In Figure 3.2, the behavioral description of the BYTE_EXTRACTOR does not contain
any information about its internal structure. It reflects only the characteristics of the exter-
nal signals. All the internal signals, (e.g., cl, ¢3, crl, cr3, cr and sl), are hidden in the
description of specification. But the implementation contains explicit information about

the internal structure.

Specification in HDL model: case r1 = 1:

if (stl and cll) then
next(out[7:0]) = in(7:01]
else next(out{7:0)]) = *“00000000"
case r3 = 1:

if (st3 and cl3) then
next{out([7:0]) = in{7:0]
else next(out[7:0]) = 00000000~

Structural Model of BYTE_EXTRACTOR:

St —>»
cl1 —3»

r

St3 —>»
ci3 ——>»

Figure 3.2: An example of structural abstraction
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3.2.3 Data Abstraction

The formal description of a system can be more abstract than its realistic model. The
specification of intended behavior for a system may be expressed in terms of an abstract
notion of the types of values it operates on. The free variables in such a formal description
will not stand for the values actually present on the external wires of a design. Instead it
will represent more abstract externally observable quantities. The description of a system
can be expressed in terms of operations appropriate to these abstract quantities, rather than
the operations carried out by the actual hardware on a more concrete representation of these
values. The logical types of the variables that represent these abstract values will therefore
generally differ from those of the variables in the original design model. A satisfaction
relation based on data abstraction must therefore relate concrete variables of one type in the
model to more abstract variables of another type in the specification. Both the model and
specification express a constraint on free variables that directly correspond to physical
wires, but use different logical types to represent the range of values that can appear on
them. The model and specification will then be terms of the forms M[c), ¢, . ., ¢,] of type
Jc and S[a), a; . ., a,] of type f,, respectively. In this case, each variable g; in the
specification represents the same externally observable value as the corresponding variable
¢; in the implementation. The specification, however, is expressed as a constraint on
abstract values of type f,, instead of the concrete values of type f. that represent actual
physical values in the implementation. To formulate a correctness statement that relates
these two specifications, we need an appropriately-defined data abstraction function to map

these two different descriptions. Given such a mapping function £ L - fa , a correctness
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statement which expresses a relationship of data abstraction between the model and the

specification can be formulated by the following theorem [45]:

M[ CIr CZ) ==y Cn ] satiSﬁes S[ﬂcl)r ﬂCZ)’ soey ﬂcn) ]
This theorem states that every combination of values c|, ¢; . ., ¢, that corresponds to the

model M, actually appears on the external wires of the system is a concrete representation

at a lower level of data abstraction for a combination of more abstract values f(c,), f{ c;) .
-» flcy) which is allowed by the specification of that system. The resulting correctness

statement asserts that the operations on concrete variables actually carried out by the
model correctly implement the required operations on abstract values expressed by the
specification. The advantage of data abstraction is that it allows specifications of intended
behavior to be written in terms of abstract sigh-level operations on data, without having to

specify precisely how this data is represented.

In this thesis, we use MDG-HDL, which is the input language of the MDG tools, to model
the design under investigation. One of the major advantages in using MDGs is the ability to
handle abstract descriptions. This avoids all the ponderous procedure of defining each bit of a
vector of boolean variables. Rather, a vector of boolean variable can be viewed as a single
abstract variable. Thus a 24-bit frame-counter can be modeled as a variable of abstract sort
worda24 instead of a concrete sort with enumeration {0, 1, .. ., 16777215}. Another advantage
in using MDG:s is the ability to represent data operations by uninterpreted function symbols.
This enables the arithmetic and logical blocks to be viewed as black boxes. As a special case of
uninterpreted function, cross-operators are useful for modeling feedback from the datapath to
the control circuitry. We can illustrate the idea of data abstraction in MDGs using an example

(see Figure 3.3) from our case study. The circuit in the example is performing data operations
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over two operands of different size. It is concatenating 5-bits for matching the size of the oper-
ands to be used for addition and extracting twelve bits from the least significant bit positions of
the output by truncating the upper bits. Using MDG-HDL, we can abstract the width of the
datapath as well as the functionality of the original model. The data operations (e.g., addition,
concatenation) can be modeled using uninterpreted function symbols (e.g., Add_17 of type

[wordal7, wordal7] — wordalT), applied to the operands.

Original Structural Modei:

dqcount

dcount

Abstracted Model:

n
dgcount ————> c2
) | Add_17 7 turncat_5 —+—— dcount
zero —7/—> <L n q
concat_5
scount —~7—> - B
q
MDG-HDL model:
Definitions:

var (dgcount, wordal’7)
var (scount,wordal2)
var(cl,wordal’)
var(c2,wordal?7)
var (dcount,wordal?l)
constant (zero,wordn)

f(add_17, inputs[wordal7,wordal’7], output[wordal7])
f{concat_5, inputs[wordal2, wordn], output [wordal7])
f (turncat_5, inputs [wordal7], output [wordal2])

HDL Model:
concat_5{inputs([zero,scount}), output(cl))
add_17 (inputs{ [dgcount,cl]), output(c2))
turncat_5 (inputs([c2]), output(dcount))

Figure 3.3: An example of data abstraction
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3.2.4 Temporal Abstraction

In temporal abstraction, the sequential or time-dependent behavior of a system is viewed
at different grains of discrete time. An example of temporal abstraction is the unit delay or
register, implemented by an edge triggered flip flop. At the abstract level of description the
device is specified as a unit delay, i.e., one unit of discrete time corresponding to the clock
period. This type of abstraction technique has not been applied to our case study as the

design is not pipelined and every function is taking one clock period to complete.

3.2.5 Model Reduction

In our case study (Chapter 4), we applied the model reduction technique to abstract the behav-
ior of the telecom system block by removing some modules, provided that the main functionality
of the system will not be changed. Besides five main functional blocks, the design has one com-
mon-bus-interface module and two input/output multiplexors. The common-bus-interface mod-
ule is used mainly for configuration and testing the interface of the telecom system block. This
module contains several read/write registers to store the outputs of other four functional blocks
and the interrupt signals are generated by reading these registers. The input/output multiplexors
are used for simulation purposes. In our modeling and verification of the Telecom System Block,
we can eliminate these three modules which have no effect on the functionality of the system. The
system is modeled in such a way that all the intermediate signals between the common-bus-inter-

face and other five modules are to be considered as primary inputs/outputs of the system. We can
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conclude from the above descriptions that model reduction of the telecom system block

does not change its main functionality at all.
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Chapter 4

Modeling and Verification of RASE TSB: A Case
Study

The commercial design that is investigated in this work is a Telecom System Block
(TSB) named Receive Automatic Protection Switch Control, Synchronization Status
Extraction and Bit Error Rate Monitor (RASE) which is commercialized by PMC-Sierra
Inc. [47]. In this Chapter, we apply the hierarchical verification and abstraction
methodologies described in Chapter 3 on this TSB. We also present experimental results

using MDG and FormalCheck.

4.1 The RASE Telecom System Block

The RASE Telecom System Block (TSB) [47] consists of three types of components:
Transport overhead extraction and manipulation, Bit Error Rate Monitoring (BERM) and
Interrupt Server (see Figure 4.1). In addition to these blocks, it has an interface with
Common Bus Interface (CBI) block which is used mainly for the configuration and testing
the interface of the TSB and two inputs/outputs multiplexors. The transport overhead
extraction and manipulation functions are implemented by three sub-modules (transport
overhead bytes extractor, automatic protection switch control and synchronization status
filtering). In this study, all the above modules are of interest except the CBI block and

inputs/outputs multiplexer which were used for simulation purposes.
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The RASE TSB extracts the Automatic Protection Switch (APS) bytes, i.e., K1 and K2
bytes, and the Synchronization Status byte, i.e, S1 byte, from a SONET frame (see Figure

4.2). After extracting the above bytes, it processes them according to some requirements set

by the SONET standard [6].

Transport Overhead,;
mode ——> Processor

Rf Byte Extractor —1
P Module

Rclk
RIN [7:0] > - S1Filtering [—S1 [7:0]
Module

—=S1i

1

'
! 1
! 1

1
! 1
' 1
' 1
' 1
! |
1 P .
! 1
' i
! i
! 1
! 1
! I
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L) | = coapsi

—psbfi

Bit Error Rate —>= sfberv
|—== sfberi

BIP = Monitor (BERM) == sdberv
Module = sdberi

Control & Status

BSB — >

Internal Registers
10] = >
CBi[18:0] Interrupt

Server

—> int

Figure 4.1: The RASE telecom system block

The TSB also performs Bit Error Rate Monitoring using the BIP-24/8 line of a frame,
i.e., B2 bytes (Figure 4.2). The received line Bit Interleaved Parity (BIP) error detection
code is based on the line overhead and synchronous payload envelope of the received data
stream. The line BIP code is a bit interleaved parity calculation using even parity. The
calculated BIP code (pre-defined by programmable registers) is compared with the BIP

code extracted from the B2 bytes of the following frame. Any differences indicate that a
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line layer bit error has occurred and an interrupt signal will be activated in response to this
error. A maximum 192000 (24 BIP/frame x 8000 frames/second) bit error can be detected
for Synchronous Transport Signal (STS) -3 rate and 64000 (8 BIP/frame x 8000 frames/
second) for the STS-1 rate. The RASE TSB contains two BERM blocks. One BERM is
dedicated to monitor for the Signal Failure (SF) error rate and the other BERM is dedicated
to monitor for the Signal Degrade (SD) error rate. They work on the same module and offer

the same functionality.

1 2 3
Section 1
Overhead 2
y 3
A g

5/B2 | K1 | k2
Line 6
Overhead 7
8

y 9[s1
Transport

Overhead

SPE

Figure 4.2: The STS-1 SONET frame structure

The Automatic Protection Switch (APS) control block filters and captures the receive
automatic protection switch channel bytes (K1 and K2), allowing them to be read via CBI
bus. These bytes are grouped and filtered for 3 frames before being written to these
registers. A protection switching byte failure alarm is declared when 12 successive frames
have been received without 3 consecutive frames having the same APS bytes. When 3
consecutive frames have identical APS bytes, the alarm will be removed. The detection of
invalid APS codes is done in software by polling the APS K1 and K2 registers, which is

not of interest in the current study.
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The synchronization status filtering block captures and filters the S1 status bytes,
allowing them to be read via CBI bus. This hlock can be configured to capture the S1 nibble
of eight consecutive frames and filters the nibbles/bytes for the same value. It can also be

configured to perform filtering based on the whole S1 byte.

The interrupt server activates an interrupt signal if there is a change in APS bytes, a
protection switch byte failure, a change in the synchronization status, or a change in the
status of Bit Error Rate Monitor (BERM) occur.

The Common Bus Interface (CBI) block provides the normal and test mode registers.
The normal mode registers are required for normal operation while the test mode registers
are used to enhance the testability of the TSB. The input test multiplexer selects normal or

test mode inputs to the TSB. The output test multiplexer selects the outputs modes.

4.2 Behavioral Modeling of the TSB using MDGs

The description of a system can be a specification or an implementation. A specification
refers to the description of the intended behavior of the hardware design. An
implementation refers to the hardware design of the system which can be at any level of the
design, i.e., in RT level or gate level netlist. In the MDG system, an abstract description of
a state machine (ASM) can be used to describe a specification or an implementation. We
adopt a hierarchical approach to model the TSB behavior at different levels of the design
hierarchy which in turn enables the verification process to be done at different levels. Figure

3 represents a tree showing the level of design hierarchy of the RASE TSB.

Inspired by [47], we derived a behavioral model of the RASE TSB which consists of five

main functional blocks — Transport Overhead Extractor, Automatic Protection Switch,
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Synchronization Status Filtering, Bit Error Rate Monitoring and Interrupt Server. These are
the basic building blocks of the TSB. We composed the behavioral model of each basic
building block in a bottom-up fashion until we reached the top-level specification of RASE
telecom system block. In the following sub-sections, we represent the behavioral model of

each basic module of the TSB which will be composed to form the complete behavior of

the TSB.
Top Level up
of
RASE TSB A
Processor
TOH
Bottom
— ]
TOH Extractor APSC S1 Filtering BERM Interrupt
Server

Figure 4.3: The hierarchy tree of the TSB

Examples of sorts and uninterpreted functions that are used to model the RASE TSB are

as follows:
* concrete sort bool = {0, 1}.
e abstract sort worda8 (used to represent 8-bits word).
e generic constant zero of sort wordn.
e cross-operator eq_ex of type ([worda8, worda8] — bool) is used to compare the

equality.
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* uninterpreted function symbol inc of type [worda8 — worda8] is used as an

incrementer of 8-bits.

* cross-operators bit0,.., bit3 of type ([worda8] — bool) are used to extract the boolean

value from an abstract variable.

4.2.1 Transport Overhead Extraction

To derive the behavior of transport overhead extraction, we need to have a look into the
structure of a SONET frame in Figure 4.1 and the locations of S1, K1, K2 and B2 line
overhead bytes within that frame. The basic signal of SONET is the STS-1 electrical signal.
The STS-1 frame format is composed of 9 rows of 90 columns of 8-bits bytes, in total 810
bytes [6]. The byte transmission order is row-by-row, left to right. At a rate of 8000 frames
per second, that works out to a rate of 51.84 Mbps. The STS-1 frame consists of Transport
Overhead (TOH) and Synchronous Payload Envelope (SPE). The Transport Overhead is
composed of Section Overhead (SOH) and Line Overhead (LOH). The SPE is divided into
two parts: the STS Path Overhead (POH) and the Payload. The first three columns of each STS-1
frame make up the TOH and the last 87 columns make up the SPE. The SPE can have any
alignment within the frame and this alignment is indicated by the pointer bytes in the LOH which
is not of our interest in this work. The behavior of the extraction module is based on a row and a
column counting abstract state machine (ASM) rather than finite state machines and an extractor
which extracts the specific byte (i.e., RIN, receive input data stream) within a SONET frame. The
column counting ASM has five states — SO, S1, S2, S3 and S4 (see Figure 4.4), while the row
counting ASM has three states — S0, S1 and S2 (see Figure 4.5). The symbols ‘&&’, ‘||’, and

‘~’ in all the figures, denote logical AND, OR and negation of the signals, respectively.
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clk, reset

~ clk, ~ reset
n_column = INC(column) n_column = zero n_column = INC(col_sync) n_column = SUB(col_synec, five)

Figure 4.4: The column counting ASM

The column counting state machine accepts five signals clk, rst, rfp, sts and col_eq as its
input control signals (see Figure 4.4). The presence and absence of a frame is indicated by
rfp signal at high. A SONET frame can be either in STS-1 or STS-3 mode which is
indicated by the signal szs. An abstract state variable column represents the current count
number of the columns. At each time, the counting state machine has a transition to
different state according to the control input signals. In this abstract description of the
counter, the count column is of an abstract sort, say wordn. The input control signals, (e.g.,
clk, rst, rfp and sts), are of concrete sort bool with the enumeration {1, 0}. The
uninterpreted function inc of type [worda8 — worda8] denotes the increment-by-one
operation. The cross-operator eq_ex(column,constant_signal) of type
([worda8, worda8] — bool) is used to model the feedback to the column counting state
machine. This cross-operator represents a comparator which accepts two operands of
abstract sort, i.e., column and constant_signal, and sets the control signal col_eq =1’

whenever the inputs are equal. State SO is the reset state from there can be four transitions
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depending on the input control signals. In state S1, a data operation will be performed to
adjust the column number as per frame modes and the result of the operation will be
assigned to the count value. In state S2, the constant signal column_sync will be
incremented by one to adjust the frame mode i.e., STS-1, STS-3 and the incremented value
will be assigned to the count value. State S3 is the counter roll-over state which depends on
the control signal col_eq and resetr. In state S4, the counter will be incremented by one in
each clock cycle if no other transitions are possible and it will remain in that state unless a

transition is possible to other state depending on the inputs.

row = init_val

clk, reset
col_eq, ~row_eq

n_row = INC(row) n_row = 2ero

Figure 4.5: The row counting ASM

The row counting state machine, having three states, uses col_eq and row_eq control
signals generated by the eq_ex cross-operator to increment or roll-over the row counting
variable row (Figure 4.5). State SO is the initial state where the variable row initialize by its
reset value init_val. Any frame start pulse rfp or both col_eq =’1’ and row_eq =’1" makes
a transition to state S2 where state variable row assigned to be zero which is a generic
constant of abstract sort wordn. The abstract state variable row, in state S1, will be

incremented by one using the uninterpreted function symbol inc of type
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[worda8 — worda8]. Whenever two control signals col_eq =1’ and row_eqg = ‘0’, given
by the cross-operators eq_ex(column_count, constant_signal) and eq_ex(row,

constant_signal), the abstract state variable row increments by one. The symbol ‘||, ‘&&’

and ‘~’ denote logical OR, AND and negation of the signals, respectively.

Flowchart:

v b

INC(column) INC(row)

)

S1_OUT -<«— zero

V

row = s1_row

S1_OUT <<—Rin

v

MDG-HDL model: initialize column = zero
initialize row = zero
next (column) = INC (column)
next (row) = INC(row)
if (column = sl_column)
then if (row = sl_row)
then next (S1l_out)
else next (S1l_out)
else next (Sl _out) = zero

RIN
zero

Figure 4.6: Flowchart specification of byte extractor and its MDG model
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The behavior of an extractor can be described using a flowchart and its model in pseudo-
MDG-HDL as shown in Figure 4.6. We can see from Figure 4.6 that the extraction of the
line overhead byte from a frame is performed by comparing the count values, from the
column and row counting ASMs (Figures 4.4 and 4.5), with two constant values
representing the index of byte’s location within a frame. The transport overhead bytes (i.e.,
S1, K1 and K2) are extracted from the received data stream (RIN) of a SONET frame. In
Figure 4.6, the column and row counters initialized by variables a and b on each clock cycle
and compared with an index to locate S1 byte within a SONET frame. If row_eq and col_eq
are true then the byte will be extracted from a SONET frame. Otherwise the value of

S1_byte will be zero and the value of both counters will be increased by one.

An abstract state machine can have an infinite number of states due to the abstract
variable and the uninterpreted nature of the function symbols. The reachability analysis
algorithm of MDGs is based on the abstract implicit state enumeration. The major draw
back of this algorithm is that a least fixed point may not be reached during reachability
analysis. Because of this limitation, a non-termination of abstract state enumeration may
occur when computing the set of reachable states. To illustrate this limitation of MDG-
based verification, we can have an example of Figure 4.6, where state variables column and
row of abstract sort represent the column and row counter of a SONET frame, a generic
constant zero of the same abstract sort denotes the initial value of column and row, and an
abstract function symbol INC describes how the counters are incremented by one. The
MDG representing the set of reachable states of the column/row counting ASM (see

Figures 4.4 and 4.5) would contain states of the form

(row, INC(. . . INC(zero). . .))
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for the number of infinite iterations. As a consequence, there is no finite MDG
representation of the set of reachable states and the reachablility algorithm will not
terminate. This typical form of non-termination can be avoided by using some techniques
described in [1, 20, 58]. For instance, in [20] the authors present a method based on the
generalization of initial state that causes divergence, like the variable column/row in Figure
4.6. Rather than starting the reachability analysis with an abstract constant zero as the value
of column/row, a fresh abstract variable (e.g., a or b) is assigned to column/row at the
beginning of the analysis. As a consequence, the initial set of states represented by column/
row thus represents any state, hence any incrementing of column/row leads the ASM to a
state where the new value of column/row is an instance of its arbitrary value of the initial
state. We can also terminate the reachability analysis of abstract implicit state enumeration
by using rewrite rules for the cross-operator. Rewrite rules for cross-operators shrink the
size of MDG. For example, if there is a path in an MDG which has cross-operator eq_ex(X, X)
= 0 with eg_ex intends for equality. We can use the cross-term rewrite rule eg_ex(X, X) ->1 to

eliminate this path in the MDG.

In [58], the authors present a heuristic state generalization method based on the
following observation: reachability analysis terminates if we generalize any state within a
processor-like loop. Once we generalize a state in a loop, it covers all the abstract states
having the same control state values, thus a termination is possible. In [1], the authors
propose another solution to the non-termination problem based on retiming and additional
circuit transformations that preserve the design’s hebavior. In retiming, the registers are

placed in appropriate positions, so that the critical paths they embrace are as short as
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possible. Moreover, the retiming corresponds to minimizing the overall number of

registers.

4.2.2 Automatic Protection Switch Control

The Filtering and Triggering behavior of the Automatic Protection Switch Control
(APSC) module is cyclic for every frame. In each frame, it does the following tasks.

* Waits for the transport overhead bytes (K1 and K2) ready to be processed which is
indicated by the control signal ok =1, inserted by the extraction module.

e Filters the K1 and K2 bytes according to their specifications mentioned in [6].

* Generates two interrupt signals whenever these two APS bytes do not meet their
specifications.

The Filtering abstract state machine, having two states (SO and S1), is shown in Figure 4.7. The
symbols reset, toh and k_eq denote active low reset, arrival of transport overhead bytes
from extraction module and comparison between current and previous values of K1 and K2
bytes, respectively. According to [6, 47], the K1 and K2 bytes must be the same for three
consecutive frames before a new value is accepted. The algorithm can be derived by an
abstract state machine where SO is the reset state. The abstract state will remain in state SO,
if two consecutive frames do not contain identical K1 and K2 bytes. Whenever two
consecutive frames contain identical K1 and K2 bytesi.e., k_eq = 1, a transition to state S1
will possible. It will remain in the same state, if the next frame contains identical K1 and
K2 bytes, unless it will back to state SO. While in state S1, the filtered K1 and K2 bytes
need to be checked. Any change to the current filtered bytes with respect to the previous

value, will cause an interrupt which indicates the change of automatic protection switch

bytes
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~k_eq 1) k_eq && toh St k_eq
M &&
~ reset toh

Figure 4.7: Filtering ASM for K1 and K2 bytes

The automatic protection switch failure monitoring is a complex behavior of the system.
According to [6,47], whenever any of the K1 and K2 bytes does not stabilized over a period
of twelve consecutive frames, where no three successive frames contain identical K1/K2
bytes, the automatic protection switch failure alarm will be set to high. A set of abstract
state machines shown in Figure 8, is used to model this failure alarm monitoring. Among
two ASMs, one generates a 12-frames window and another detects the equality of K1 or
K2 bytes within three consecutive frames of a 12-frames window. On each state, the frame
generator will wait for the transport overhead bytes to be ready, i.e., £ = 1. Whenever all
other control inputs set to ‘1’ (¢ and r), there will be a transition to next state and it will
continue until reaching state S12. From state S12, it returns to its initial state S1 and waits
for the transport overhead bytes to be ready. Detection of equality among K1 or K2 bytes
within three successive frames can be modeled by an abstract state machine called
ASM_match (see Figure 4.8) which has three states — S1, S2 and S3. In each state, it waits
for the transport overhead bytes to be ready (indicated by roh = 1). State transition between
two consecutive states depends on the equality of K1 or K2 bytes within two successive
frames, i.e., k_eq = 1. If no equality is detected, i.e., k_eq = 0, there will be a transition to

state S1 from any other state. To simplify the presentation in Figure 4.8, the symbols &, ¢
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and r denote the arrival of overhead bytes ready to be processed, system clock and active

low reset, respectively.

ASM_match: detecting identical K-bytes

|
k,c,r k,er mk,c,r k,c,r k,c,r k,c,r
-S1 S2 S —-------- s10 S11 S$12
O o\ 319 3

Frame-generator: generating a 12-frames window
~k,~¢,~r

Figure 4.8: Set of ASMs to declare the APS failure alarm

The automatic protection switch failure monitoring is performed by the combination of
two ASMs in Figure 4.8. A graphical representation with MDG modeling of the
methodology to activate the automatic protection switch failure alarm is shown in Figure
4.9. In a 12-frames window, if we do not find any identical K1 or K2 bytes between
frame#10 and frame#11, frame#12 does not take into account to activate the failure alarm.
Because it is sure that we will not find two more matches within next two frames (frame#11

and frame#12). So, considering only 11 frames, the failure alarm can be activated.
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Activation of APS failure alarm:

famet —~ 1 | 2 (3] 4 |[5]] ¢ [[71] 8 |B]] 1o |OJ} 12 |
ASM_match ASM_match ASM_match ASM_match ASM_match
MDG-HDL model: initialize frame = 0
initialize state_aps = SO
case frame = 0: next(frame) = 1
case frame = l: next(frame) = 2
case frame = 2: next(frame) = 3

3:if state_aps = S3
then alarm 1 = 0
else if state_aps = S0
then alarm 1 =1
next (frame} = 4

case frame

case frame = 12:next(frame) = 1

Figure 4.9: Example to model an APS failure alarm

Figure 4. 9 shows that ASM_mazching is looking for identical K1 or K2 bytes among 3
frames within a 12-frames window which can be divided in 5 over-lapped sub-windows.
Each of the sub-window consists of 3 frames. By using the state variable S3 of the
ASM_matching at the intersection points of 5 sub-windows (shaded points 3, 5, 7,9 and 11
in Figure 4.9), we can determine whether any of the 5 sub-windows containing identical
bytes or not. Taking the conjunction of the results at these 5 points, we can determine
whether a failure has been occurred or not. The failure alarm will be set if the result of this
conjunction is ‘1’. An interrupt will be triggered if there is a change in the present alarm

condition with respect to its previous value.
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4.2.3 Synchronization Status Filtering

The behavior of this module is cylic for every frame. In each frame, it waits for the
transport overhead byte (S1 byte) ready to be processed according to their specification in
[6, 47]. The network elements will be synchronized if S1 bytes are identical for eight
successive frames before a new value is accepted. Whenever there are no identical S1 bytes
within eight consecutive frames, an interrupt needs to be triggered. Based on this
specification, we can represent the behavior of this module using an abstract state machine

naving eight states — S0, S1, S2, S3, S4, S5, S6 and S7 (see Figure 4.10).

Figure 4.10: Abstract state machine to filter the S1 bytes

In each state, whenever a match between two consecutive S1 bytes is found, a transition
to next state is possible. After the roh signal goes high, it performs several routine tasks,
i.e., comparing present and previous values of S1 byte, updating the filtered S1 byte and
generating an interrupt, if necessary. The symbols to/1 and u« in Figure 4.10, represent the
transport overhead byte ready to be processed and the result of comparison between present

and previous values of S1 byte, respectively.

4.2.4 The Interrupt Server
The interrupt server has a very simple characteristic. Whenever a change in the auto-

matic protection switch, a protection switch failure, a change of the synchronization sta-
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tus, or a change of tbe BERM status alarm is detected on its event capturing input, the
interrupt line inr goes high, otherwise it remains low forever. The behavior of an interrupt
server can be described using a flowchart and its model in pseudo-MDG-HDL as shown in
Figure 4.11. We can see from Figure 4.11 that the interrupt line of the TSB will go high,
i.e., int=1I, whenever any of the sub-modules’ (e.g., APSC, SSF and BERM) interrupt line
sets to high. The interrupt line will be low, if all the interrupt lines from sub-modules are

low.

Flowchart:

from SSF module

from APSC module

from APSC module

from BERM module Yes

No

int=0 int=1

MDG-HDL model: initialize int = 0
if s1li =1

then next (int) 1

else if coapsi = 1
then next(int) = 1
else if psbfi =1
then next(int) =1
else if beri = 1
then next(int)
else next(int)

"non
’...I

Figure 4.11: Flowchart specification of interrupt server and its MDG model
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4.2.5 Bit Error Rate Monitoring (BERM)

The Bit Error Rate monitoring is performed by a sliding window algorithm [47]. The
evaluation period for the sliding window has a variable length which can be chosen by the
users. This evaluation period is broken into eight sub-accumulation periods. Thus, the
BERM status is evaluated many times per evaluation period and not only once. This gives
a better detection time as well as a better false detection immunity. The sliding window
algorithm is selected to keep track of the history of the BIP count. In order to add the new
BIPs at one end of the window and subtract them at the other end, the queue of the BIPs
count needs to be stored in a history queue register. This algorithm is chosen for its superior
performance when compared to other algorithms. It offers a lower false declaration
probability at the expense of a more complex behavior. The window is progressing by hops
that are much smaller than the window size. It is broken into eight sub-intervals which is

forming a queue of BIP’s history (see Figure 4.12).

History queue B ey Qs Window
wrap around N . '
ondition 3 |5 |7 | 2|4 |3 |40 | 28: 28:
BIP counting 3 5 7 2 4 3 4 i 28 ' 29
condition = ! : , :
accumulation — ‘ :
period reached _~,. | 3 5 7 2 4 3 4 |4 28 ., 32 .
condition ‘ ' : ‘

e IR
W - ' ' '
co:gi?i?nund — | 5 |7 |2 |4 |3 |4 o | 29 29

4
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\

M| .
accumiation
S Acenoad
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Figure 4.12: BERM sliding window algorithm
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After initialization, the Bit Error Rate Monitoring can be done by following sequence of steps:

* Counting of frames for a given sub-accumulation period.

* Accumulates BIP errors over a declaration period of time which is the number of frames.

* Compare the accumulated count of line BIP against a programmable declaration
threshold value which indicates the BER to be monitored.

* When the accumulated count of line BIP exceeded the threshold value, the BERM
declaration status alarm goes high.

e Then, the BERM starts to monitor the clearing threshold. If the BER goes under a
clearing threshold, the BERM status alarm goes low.

An interrupt is triggered, whenever there is a change of the current BERM status from
its previous value. The BIPs accumulation is done in the eighth sub-interval of the sliding
window (see Figure 4.12). When the frame counter is reached to a certain threshold value,
the latest BIP count will be put in the history queue. The summation of eight sub-interval
BIPs stored in the history queue is periodically compared against a declaration or clearing
threshold value to set or reset the BERM status alarm. Whenever the BERM status alarm
condition is set, it will be compared against the clearing threshold value. On the other
hand, if the alarm is in the reset condition, the declaration threshold value is used for mon-
itoring and comparing. To keep our description simple, we are presenting only the BIP

counting abstract state machine and its pseudo-MDG-HDL model in Figure 4.13.
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ASM of the BIP line counter:

~ reset

Bcount = init_val

bip
Bcount = st
bip

Bcount = st

Bcount = st
n_Bcount = INC_12(Bcount) n_Bcount = Beount

MDG-HDL model: initialize Bcount = C
initialize state = S0
case state = S0: if bip =1
then next(state) = S1
Bcount = INC_12 (Bcounf
else if Bcount = st
then next(state) = S2
Bcount = Bcount
case state = Sl1: if bip =1
then next(state) = S1
Bcount = INC_12 (Bcounf
else if Bcount = st
then next(state) = S2
Bcount = Bcount
case state = $S2: if Bcount = st

then next(state) = S2
Bcount = Bcount
else next(state) = S0

Figure 4.13: An ASM to count the BIP line and its MDG-HDL model

The BIP line counter has three possible states — SO, S1 and S2. The state variable
Bcount stores the count value of BIP line. The symbols sz and bip are the inputs to the state
machine. They represent the saturation threshold value of the counter and the received BIP

line, respectively. In state SO, the counter has been initialized to zero which is a generic
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constant of abstract sort. After initialization, if the input bip = ‘1’ then the next state will
be SI1. In state SI, using the uninterpreted function symbol inc_I2 of type
[wordal2 — wordal2] the count value Bcount will be incremented by one. When the count
value is equal to the saturation threshold value sz, there will be a transition to state S2. In state

S2, the value of the counter will remain unchanged until Bcount is not equal to st.

An abstract state machine can have an infinite number of states due to the abstract
variable and the uninterpreted nature of the function symbols. The reachability analysis
algorithm of MDGs is based on the abstract implicit state enumeration. The major draw
back of this algorithm is that a least fixed point may not be reached during reachability
analysis. Because of this limitation, a non-termination of abstract state enumeration may
occur when computing the set of reachable states. To illustrate this limitation of MDG-
based verification, we can have an example of Figure 4.13, where state variable Bcount of
abstract sort represents the BIP counter of a SONET frame, a generic constant zero of the
same abstract sort denotes the initial value of Bcount, and an abstract function symbol INC
describes how the counters are incremented by one. The MDG representing the set of

reachable states of the BIP counting ASM (see Figure 4.13) would contain states of the form
(Bcount, INC(. . . INC(zero). . .))

for the number of infinite iterations. As a consequence, there is no finite MDG
representation of the set of reachable states and the reachability algorithm will not
terminate. This typical form of non-termination is due to the fact that the structure of MDG
can be arbitrarily large, and it can be avoided by using some techniques described in [1, 58].
In those papers, the authors present one of the methods based on the generalization of

initial state that causes divergence, like the variable Bcount in Figure 4.13. Hence, rather
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than starting the reachability analysis with an abstract constant zero as the value of Bcount,

a fresh abstract variable (e.g., C) is assigned to Bcount at the beginning of the analysis.

4.3 Modeling of the RTL Implementation of the RASE TSB

In this section, we give a brief description of the RASE TSB at the RT level. We
translated the original VHDL models into very similar models using the Prolog-style
MDG-HDL, which comes with a large number of predefined basic components (logic
gates, multiplexers, registers etc.) [59]. To handle the complexity of the design which
consists of a network of 11400 equivalent gates, we adopted the abstraction techniques

described in Chapter 3.

For example, we can take the BERM module which is the largest component of the
RASE TSB to illustrate the data abstraction technique (see Figure 4.14). This module
contains registers with variable widths which can be 12-bits, 17-bits, 24-bits, or 7x12-bits
wide. As the MDG system can handle abstract data sorts, it avoids all the cumbersome
procedure of defining each bit of a register. Rather, a register can be viewed as an abstract
variable of n-bit word i.e., wordn. Such high-level words are arbitrary size, i.e., generic
with respect to the word sizes. We can define each of the datapaths of this module, i.e., 12-
bits, 17-bits and 24-bits, as wordal2, wordal7 and worda24 of abstract sort. An immediate
consequence of modeling the data as a compact word of abstract sort is that we can simplify
the modeling of the BERM block by using generic registers of arbitrary size and abstract
the functionality of the Declare BIP Adder unit (Figure 4.14) using an uninterpreted

function symbol add_17 of type [wordal7 — wordal7]. Likewise, we can increment the
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Figure 4.14: Module abstraction of the BERM block
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value of an abstract variable using an uninterpreted function symbol inc of type
[wordn — wordn] which in turn reduces the probability of state space explosion. We
abstracted the functionality of the frame and BIP counter modules (Figure 4.14) using two
uninterpreted function symbols inc_12 of type [wordal2 — wordal2] and inc_24 of
type [worda24 — worda24], respectively. The intermnal control signal fp_rollover is
generated by the frame counter module which is an abstracted module, i.e., all the data used by this
module are abstract sorts. To generate a control signal which is of concrete sort, we need some sort
of decoders that accept abstract data and give an output of concrete sort. MDG-HDL provides this

type of decoding technique by using cross-operators. A cross-operator is an uninterpreted function

of type ([wordn] — bool) or ([wordn, wordn] — bool) which may take one or more
abstract variables and gives an output of concrete sort. Here bool is a concrete sort with enumeration
{0, 1} and is used by the control signal fp_rollover. Using a cross-operator of type
(Iworda24, worda24] — bool), the control signal fp_rollover can be generated by the
abstract frame counter. In all of these cases, data operations are viewed as black-box

operations.

In the original design, a history queue register of 7x12 bits wide is used to store the
accumulated values of BIPs for seven clock cycles. In each cycle, the content of each
register within the history queue register is updated from its previous stage, e.g., stage-1
will be updated from stage-0. The content of the register in stage-6 is used to calculate the
BER using sliding window algorithm described in Section 4.5. As the current version of
MDG-HDL does not support any declaration of multidimensional arrays, we need to adopt

a technique to cope with this limitation.
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We describe our technique as follows (see Figure 4.15): The history queue register is
segmented into seven different registers, (e.g., reg_index0, reg_index1, etc.). Depending on
the control signals, each segmented register can have four possible values which can be
implemented by seven 4x1 multiplexors along with one MDG table. The input selection is
controlled by the signal cond which is the output of the MDG-table, containing all the

required conditions that need to be satisfied. In each cycle, each segmented register will be
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updated by its previous stage provided that multiplexors’ third inputs are selected by the
MDGe-table. In the next stage, all the indexed registers are connected to a 7x1 multiplexer.
The inputs of the multiplexer are controlled through a counter based pointer. The pointer is
incremented in each cycle by one. The input registers are selected by the position of the
pointer which is the current value of the counter. Whenever an indexed register is selected,
the history queue register is connected to that indexed register, e.g., at the 7th cycle when
the counter value is 6, register reg_index6 will be connected to history queue register and

thus can be used to calculate the BER.

4.4 Hierarchical Verification of the RASE TSB

Based on the hierarchy of the design, we adopted a hierarchical proof methodology for
the verification of the proposed design as described in Chapter 3. To illustrate our
hierarchical proof methodology, we can have a system having three sub-modules, named
B, B, and B3, which may or may not be interconnected between them by control signals.
In the verification phases, first we proved that the implementation of each sub-module (i.e.,

B where j = 1,.., 3) is equivalent to its specification, i.e., Bj [spec] = B, (impl] which

j [impl}

can be done automatically within the MDG system. Then we derive a specification for the

whole system as a conjunction of the specification of each sub-module, i.e., Sige =

/\ B

4 Similarly, we also derive an implementation of the whole system as a
J:l.ng

ilspecl

conjunction of the implementation of each sub-module, i.e., Sy = /1\ Bitimpn- The
J:l..ng

current version of the MDG system does not support an automatic conjunction procedure

of sub-modules. To cope with this limitation, we need manual interventions to compose all

of the sub-modules (both specification and implementation) until the top level of the system
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is reached. Finally, we deduce that the specification of the whole system is equivalent to the

top level implementation of the system, i.e., S = S[ impl]- We must ensure that the

[spec]

specification itself is correct with respect to its desired behavior given by a set of properties.

A graphical representation of this method is illustrated in Figure 4.16.

Figure 4.16: Hierarchical proof methodology

The RASE TSB has five modules, each module in the design was verified separately
using both property and equivalence checking facilities provided by the MDG tools. At
first, we applied property checking on the block level of the TSB. While applying property
checking on the block level, we sorted the properties according to the features that are
generated by the specific block. To illustrate this idea, we can have an example in Figure
4.16, where properties Py, P, and P, are the features for the block B;, B,, and B,
respectively. To perform a hierarchical verification, first we will verify all of these

properties on their specific blocks. Finally, we will merge all of these properties into a set
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of properties to be checked on the top level of the design, i.e., Sspec and Siyp. In the
following two sub-sections, we describe the verification process for the Telecom System

Block using equivalence checking and model checking techniques.

4.4.1 Equivalence Checking

We follow an hierarchical approach for the equivalence checking of the RASE TSB. We
verified that the RTL implementation of each module complied with the specification of its
behavioral model. Thanks to the data abstraction features in MDG, we also succeeded to
verify the top level specification of the RASE TSB against its full RTL implementation. To
verify the RTL implementation against the behavioral specification, we made use of the
fact that the corresponding input/output signals used in both descriptions have the same sort
and use the same function symbols. The two machines are equivalent if and only if they
produce the same outputs for all input sequences. Experimental results, including CPU
time, memory usages and number of MDG nodes generated, for the equivalence checking
between the behavioral model of each module including top level specification of the TSB

against their RTL implementation are given in Table 4.1.

The verifications of the first four modules consumed less CPU time and memory,
because they have less complexity and abstract state variables and cross-operators than
those of the last three modules (see Table 4.1). The BERM module consumed more CPU
time and memory during the verification as it performs complex arithmetic operations on
abstract data. On the other hand, the verification of the TOH Process module consumed
less CPU time and memory, even though it needs more MDG components to model than
the BERM module. This is because of the fact that, TOH Process module is a state

machine based design and in contrast to BERM does not perform any complex data opera-
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tion. To model the complex arithmetic operations of the BERM, we need more abstract
state variables and uninterpreted functions, specially cross-operators, which have signifi-
cant effects on the verification of this module. As the top level of the design comprises all
the bottom level sub-modules, it takes more CPU time and memory during the verification

process than the other modules.

Table 4.1: Experimental results for equivalence checking

Module name (insecond) | (mMB) | nodes generated
TOH Extraction 3.88 233 2806
APSC module 17.37 7.91 9974
Synchronization Status 2222 6.81 14831
Interrupt server 0.48 0.09 180
BERM module 80.53 21.31 35799
TOH Process module 89.03 27.79 60068
Top level of RASE TSB 437.15 47.36 135658

4.4.2 Validation by Property Checking

We applied property checking to ascertain that both the specification and the
implementation of the telecom system block satisfy some specific characteristics of the
system. The properties are statements regarding the expected behavior of the design, and
significant effort is spent in their development. The properties should be true for the design
at any level regardless of the verification technique. It can include details of certain
situations which should never occur and others which will happen eventually. The former
are called safety_ properties and the later liveness properties [17]. We describe several

properties and their verification in the following two sub-sections.
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4.4.2.1 Properties Description

In order to describe the properties of the system, we need to define a proper environ-
ment of the system. As we explained before, we are interested in five control blocks only.
During our modeling of the RASE TSB, we eliminated those blocks which have no effect
on the functionality of the telecom system block. The environment is built in such a way
that it allows a non-deterministic choice of values on the primary inputs. After establish-
ing a proper environment, we consider twelve properties of the RASE TSB, including
safety and liveness properties. While using MDG for property checking, the properties are
described using a property specification language called Lysp, [55, 56] which is a subset
of Abstract-CTL that supports abstract data representations [54]. Both safety and liveness
properties can be expressed in Lysp, however, only universal path quantification is possi-
ble. In the following Abstact-CTL expressions, the symbols “!”, “&”, “|”, “->”, “=>"
denote logical “not”, “and”, “or”, “imply” for safety properties, and “imply” for liveness prop-
erties, respectively. In the properties descriptions, AG, X and F mean that always for all paths,
in the next cycles and sometimes in the future, respectively. In the following, we present two
safety and one liveness properties of the TSB and the rest of the properties are given in Appen-

dix A.
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Table 4.2: Properties and their corresponding modules of RASE TSB

Property Module

Property 1 Synchronization Status Filtering (SSF)
Property 2 Automatic Protection Switch Control (APSC)
Property 3 Automatic Protection Switch Control (APSC)
Property 4 Automatic Protection Switch Control (APSC)
Property 5 Transport Overhead Processor
Property 6 Transport Overhead Byte Extractor
Property 7 Bit Error Rate Monitoring (BERM)
Property 8 Bit Error Rate Monitoring (BERM)
Property 9 Transport Overhead Processor, BERM and Interrupt Server
Property 10 Transport Overhead Processor and BERM
Property 11 Automatic Protection Switch Control (APSC)
Property 12 Bit Error Rate Monitoring (BERM)

Property 1: According to the specification of SONET Transport System in [6]: The filtered
S1 byte of a SONET frame needs to be identical for eight consecutive frames. If eight
consecutive frames do not contain identical S1 bytes an interrupt is generated to indicate
that the filtered S1 value has changed. When the TSB is in state_ssd = 6, it means that no
7 consecutive frames contain identical S1 bytes. If the next frame does not have identical
byte, interrupt sli will go to high in the next cycle. In Lyps this safety property is
expressed as follows:

AG( (! (rstb=0)&(rclk=1l)& (toh_ready=1)&(((sl_cap=l)&(state_ssd=6)&
(sl_in=sl_last_reg)&(!(sl_in=sl_filter_reg))))) -> (X(sli=1)) );
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Property 2: According to the specification of the SONET Transport System in [6]: The APS
bytes, i.e., K1 and K2 bytes, should be identical for 3 consecutive frames. If there is a change in
these APS bytes within 3 consecutive frames, an interrupt will be generated to indicate that a
change in APS bytes has occurred. When the TSB in state_aps = 1 and the current values of
APS bytes are not identical with their previous filtered values, the interrupt will go to high to

indicate a change in APS bytes. In Ly, this safety property is expressed as follows:

AG( (! (rstb=0)&(rclk=1l)&(toh_ready=1l)&(state_aps=1)&(! (k1_fil_reg =
kl_in) |!(k2_fil_reg=k2_in)) )-> (X(coapsi=1l)));
Property 12: When the value of BERM declaration threshold alarm is stable, we need to
make sure that the interrupt lines related to this value eventually goes low. In Lyps this
liveness property is expressed as follows.

AG( ((berv=berv_last_reg) & (! (rstb=0)) &(bipclk=1))=>(F(beri=0)) );

4.4.2.2 Properties Verification

The verification of the properties has been carried out using the model checking facility
of MDG tools [59]. We checked in each reachable state if the outputs satisfy the logic
expression of the property which should be true over all reachable states. The experimen-
tal results from the verification of all properties stated in Section 4.4.2.1 for both specifica-
tion and implementation, are given in Table 4.3 and Table 4.4, respectively. All
experimental results were obtained on a Sun Ultra SPARC 2 workstation (296 MHz / 768
MB) and include CPU time in seconds, memory usage in megabytes and the number of

MDG nodes generated.
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Table 4.3: Experimental results of property checking on the specification

propery | Moaue | Crdime [ Wemon [ He ot
Property 1 SSF 5991 13.22 21690
Property 2 APSC 71.43 13.70 21333
Property 3 APSC 55.39 12.46 20984
Property 4 APSC 56.67 12.01 21060
Property 5 TOH Proc. 45.59 13.19 51527
Property 6 TOH B. Ex. 53.59 14.50 20837
Property 7 BERM 52.76 12.92 21243
Property 8 BERM 44.83 14.34 21060
Property 9 RASE 56.28 12.37 21036
Property 10 RASE 54.06 13.29 51253
Property 11 APSC 54.99 12.59 1214
Property 12 BERM 87.66 12.46 21178

As we discussed in Section 4.2.1, when a design is dependent on a particular interpreta-
tion of the function symbols which are uninterpreted in the model, a non-termination of
reachability can occur. In our case, we used several uninterpreted functions and abstract
variables in the abstracted model of the RASE TSB which created a non-termination prob-
lem during the reachability analysis. To cope with the non-termination problem of abstract
state exploration, we used initial state generalization technique described in Section 4.2.1.

In the case of uninterpreted functions, the non-termination problem has been resolved by
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providing a partial interpretation through rewrite rules. For more details about non-termi-

nation and rewrite rules readers are referred to [1, 58].

Table 4.4: Experimental results of property checking on the implementation

Property Module C(li’nU st;:;a h(l::n&oar;' No;‘g;:;DG
Property 1 SSF 82.47 15.60 53139
Property 2 APSC 82.62 14.98 52375
Property 3 APSC 5431 17.12 51832
Property 4 APSC 78.05 15.24 51354
Property 5 TOH Proc. 76.57 15.53 51533
Property 6 TOH B. Ex. 81.65 15.80 52094
Property 7 BERM 82.54 15.86 51482
Property 8 BERM 64.30 15.72 51410
Property 9 RASE 78.06 16.65 51330
Property 10 RASE 58.41 16.12 51277
Property 11 APSC 81.42 16.22 51530
Property 12 BERM 85.72 15.98 51564

4.4.3 Comparison between Cadence FormalCheck and MDG Model checker

One of the motivations of this work was to compare the model checking of the RASE
TSB using MDG model checker with an existing commercial model checking tools. We
chose Cadence FormalCheck as a commercial one to compare with MDG. The

performance criteria of the caparison were CPU-time, memory usages and state variables.

FormalCheck is a model checking tool developed and distributed by Cadence Design

Systems, Inc. [14]. The tool accepts VHDL and Verilog HDL as its input language
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provided that RTL design should be modeled in synthesizable VHDL or Verilog HDL
code. FormalCheck has an intuitive graphical interface which makes it users friendly. This
model checker verifies that a design model exhibits specific properties that are required by
the design to meet its specifications. Properties that form the basis of a model are termed
as Queries in FormalCheck. FormalCheck supports constraints on the design to be verified
to limit the input scenarios which in turn reduce the state space of the design model that is
to be verified [7].

As explained in Section 3, we are only interested in five modules of the RASE TSB.
Before checking the properties, we need to setup an environment of the system which will
reduce the state space and speed up the verification process. To do so, we eliminated the
CBI block and two input and output multiplexors from the original VHDL code. The sig-
nals related to these modules are used as primary inputs and outputs of the system that
allows a non-deterministic choice of values on the inputs. During our verification in For-
malCheck, we used the same verification methodology as with the MDG system. Starting
from the lower level modules, we reached the top level structural model which includes
the whole design of the RASE TSB. We defined all the properties stated in Section 4.4.2.1
using FormalCheck property language. A full description of these properties is included in
Appendix B. In all properties, we used reset signal rszb as the default constraint where rszb
is used to initialize the registers. As the RASE TSB uses asynchronous active low reset,
the reset input rstb starts with low for duration of 2, and then goes to high forever.

Depending on the functionality, the modules of the TSB are running under the control of
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each of the two different clocks — rclk and bipclk. During our verification in Formal-

Check, we constrained these clocks depending on the properties.

Table 4.5: Property checking on the top level implementation using FormalCheck and MDG

MDG model checker FormaiCheck model checker

Property (i'lll‘uSl:ec.) lzilx?ll\l;]g vasrtijltl:le (i: l;:::.) lz/i[x:lll\’lfBr;, v:rtiaatl‘)"le
Property 1 82.47 15.60 57 60 16.08 54
Property 2 82.62 14.98 57 32 12.81 71
Property 3 54.31 17.12 57 44 14.45 43
Property 4 78.05 15.24 57 44 14.49 44
Property 5 76.57 15.53 56 * * *
Property 6 81.65 15.80 55 10 11.75 28
Property 7 82.54 15.86 57 * * *
Property 8 64.30 15.72 57 * * *
Property 9 78.06 16.65 55 * * *
Property 10 58.41 16.12 55 * * *
Property 11 81.42 16.22 56 9 2.66 42
Property 12 85.72 15.98 56 * * *

The summary of the comparison between these two verification systems with respect to
CPU time, memory usages and number of state variables are given in Table 4.5, where ‘*’
means that the verification did not terminate within a substantial verification time. All of
the experiments have been carried out on a Sun Ultra SPARC 2 workstation with 296 MHz
and 768 MB of memory. While performing the property checking on the top level model of
the RASE TSB using FormalCheck, some of the properties verifications (Properties 5, 7,
8, 9, 10 and 12) did not terminate. Although those properties were verified with a

reasonable CPU time on a modular basis. These properties were taking too much CPU time
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and memory, even though we used different tool guided reduction and abstraction

techniques in FormalCheck.

Properties 7, 8 and 12 belong to the BERM module which is the largest and most
complex module of the RASE TSB. The BERM module has several control state variables
which perform complex arithmetic operations between large sized data. The verification of
Properties 7, 8 and 12 did not terminate within a substantial CPU time as these three
properties are dealing with control signals having width of 24 bits to 12 bits. Moreover,
some complex data operations between large sized state variables were involved. In
general, if the control information needs n bits, then it is impossible to reduce the datapath
width to less than n. Hence, in this case ROBDD-based datapath reduction technique is no
more feasible. On the other hand, using the MDG-based approach, we naturally allow the
abstract representation of data while the control information is extracted from the datapath
using cross-operators. Because of this, all of these properties were verified within the MDG

system without any complexity.

Properties 5, 9 and 10 did not terminate on the top level structural model as these
properties are verifying the integrated functionalities of several modules. As the control
circuitry naturally modeled as FSM, automata-oriented methods are more efficient in
handling FSM-based designs than designs with complex arithmetic data operations. Our
experimental result shows that FormalCheck whose underlaying structure is automata
oriented [33] is more efficient in verifying FSM-based design, i.e., concrete data, than the
MDG tools. Table 4.5 shows that, Property 1, 2, 3, 4, 6 and 11 takes less verification time

in FormalCheck than in the MDG tools. These properties are related to the APSC,
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Synchronization status and TOH Extraction modules which are completely FSM-based
designs (see Table 4.2).

Human effort to formal verification of any design is an important issue to the industrial
community. In FormalCheck, we do not need manual intervention for variable ordering
while the MDG tools need manual variable ordering since no heuristic ordering algorithm
is available in the current version. During the verification of the RASE TSB, much of the
human time was spent on determining a suitable variable ordering in MDG. Because the
verifier needs to understand the design thoroughly, the time spent on understanding and
modeling the behavior of the design in MDG-HDL was about three man-months. The
translation of the original VHDL .design description to a similar MDG-HDL structural
model took about one man-month. In contrast to this, no time was spent on the RTL
modeling for FormalCheck since it accepts the original VHDL structural model as its input
language. Time spent on checking the equivalence of the RTL implementation with its
behavioral specification using MDG, was about one man-week. In the property checking,
the time required to setup twelve properties, to build the proper environment and to conduct
the property checking both on the implementation and the specification was about three
man-weeks. On the other hand for FormalCheck, property checking on the implementation

took about two man-weeks.
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Chapter 5

Conclusions and Future Work

BDD-based symbolic model checking and equivalence checking have proven to be
successful formal verification techniques that can be applied to real industrial design.
However, since it requires the design to be described at the boolean level, they often fail to
verify a large-scale design because of the state space explosion problem caused by the large
datapath.

This thesis investigates the formal verification using Multiway Decision Graphs
(MDGs) of a Telecom System Block from PMC-Sierra Inc. We studied the effectiveness
of Multiway Decision Graphs (MDGs) tools in verifying a large-scale industrial design.
The design we considered is a TSB named Receive Automatic protection switch control,
Synchronization status extraction, and Bit Error Rate Monitor (RASE). The design
contains 11,400 equivalent gates which is much larger than any other design verified by
MDGs before this work.

The specific contributions of this work are as follows:

1. We suggested a hierarchical approach for organizing the verification of a large-scale
industrial design using MDGs. Our hierarchical approach simplifies a large modeling and
verification problem into smaller pieces that can be handled on a modular basis. The
hierarchical approach is applicable on a partially defined design instead of waiting for the

entire design model.

2. Based on the product document provided by PMC-Sierra Inc., we derived a behavioral
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model in MDG-HDL of the TSB. The specification was given as English text which was
modeled in terms of Abstract State Machines using MDG-HDL. Our behavioral

modeling was based on the different levels of design hierarchy.

3. As the complexity of data operations increases, the default setting used by most formal
verification tools may not be sufficient to avoid state space explosion. We applied data
abstraction to handle the complexity of state space in datapath orientated module. We
developed a generic model of datapath orientated modules using abstract data sorts. We
succeeded to verify the whole TSB using the MDG tools. The verification process had
been carried out by equivalence checking as well as model checking. The validity of our
hierarchical approach for organizing the verification of a real industrial design was

demonstrated by the experimental results obtained with MDG tools.

4. We compared the model checking of the RASE TSB using MDG model checker with an
existing commercial model checking tool, here, Cadence FormalCheck. While
performing the property checking on the top level model of the design using
FormalCheck, the verification of some of the datapath oriented properties did not
terminate. As the MDG-based approach allows the abstract representation of data while
the control information is extracted from the datapath using cross-operators, all of these
properties could be verified in MDG. Our experimental result shows that FormalCheck is

more efficient in verifying FSM-based design, i.e., concrete data, than the MDG tools.

The experimental results in this thesis suggest that a hybrid MDG-FormalCheck model
checking approach can be applied to improve the efficiency of formal verification in an

industrial setting. This hybrid approach can be widely applicable in verifying a class of
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designs where the control portion is composed of FSM-based and datapath orientated
modules. Because our experimental results showed that FormalCheck is more efficient in
verifying FSM-based module while MDG-based model checking is less efficient in
verifying designs with concrete data. On the other hand, MDG-based model checking
showed their efficiency in verifying design with abstract datapath.

MDGs open the way to the development of a wide range of new formal verification
techniques. The goal of formal verification is to improve the industrial design verification
process. To achieve this objective, we need to verify a variety of industrial designs to
evaluate and improve the performance of the MDG-based verification techniques. For
instance, the present work could be extended to investigate the compositional verification

of the RASE TSB with other system blocks.
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Appendix A

Properties Description for MDG Model Checking

Property 1: According to the specification of SONET Transport System in [1]: The fil-
tered S1 byte of a SONET frame needs to be identical for eight consecutive frames. If
eight consecutive frames do not contain identical S1 bytes an interrupt is generated to indi-
cate that the filtered S1 value has changed. When the TSB is in state_ssd = 6, it means that
no 7 consecutive frames contain identical S1 bytes. If the next frame does not have identi-

cal byte, interrupt sli will go to high in the next cycle. In Ly;ps this safety property is

expressed as follows:

AG( (! (rstb=0)&(rclk=1l) & (toh_ready=1)&(((sl_cap=1)&(state_ssd=6)&

(sl_in=sl_last_reg)&(!(sl_in=sl_filter_reg))))) -> (X(sli=1l)) );

Property 2: According to the specification of the SONET Transport System in [1]: The APS
bytes, 1.e., K1 and K2 bytes, should be identical for 3 consecutive frames. If there is a change in
these APS bytes within 3 consecutive frames, an interrupt will be generated to indicate that a
change in APS bytes has occurred. When the TSB in state_aps = I and the current values of
APS bytes are not identical with their previous filtered values, the interrupt will go to high to

indicate a change in APS bytes. In Lysp; this safety property is expressed as follows:

AG((! (rstb=0)&(rclk=l)&(toh_ready=1l)&(state_aps=1)&(!(kl_fil reg

= kl_in) |!(k2_fil_reg=k2_in))) -> (X(coapsi=l)));
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Property 3: According to the specification of SONET Transport System in [1]: An alarm
for the automatic protection switch failure will be triggered, i.e., psbfv = I, whenever the
TSB receives 12 frames in which 3 consecutive frames do not contain identical K1 or K2
bytes. In Ly,p this safety property is expressed as follows:

AG( ((state_psf = 10) & (state_aps = 0) & (! (rstb =0) ) & (rclk=1l)&

(toh_ready=1)) - (X (psbfv=1l)) };

Property 4: The TSB generates the protection switch failure interrupt, i.e., psbfi = 1, if the
protection switch failure alarm is not stable. This means that an interrupt will never be
triggered whenever the current alarm value does not differ from its previous value, i.e., in

stable condition. The expression of this safety property in Lysp¢ is as follows:

AG( ( ( (psbfv = 0) & ( psbfv_last_reg = 1) ) | ( {(psbfv = 1) &

((psbfv_last_reg = 0) ))) -> (X{(psbfi = 1)});

Property 5: The roh_ready input is used as a synchronization signal. It must be high for
only one clock cycle per SONET frame. The kl_in, k2_in and sl_in inputs are observed
only when toh_ready is high. When this signal is low, eventually all the inputs related to

the transport overhead processing of the TSB will be low. The Lypq expression of these

liveness properties are as follows:

AG( (toh_ready=0) => (F((sli = 0)&(coapsi = 0))) )

Property 6: In this property, we define the overhead byte extraction behavior of the TSB.

As the Lypi syntax does not support abstract variables in the left hand term of the for-

mula, we need to create a concrete variable using original signals related to design ele-
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ments and a MDG table. A cross-operator eq_ex of type ([worda8, worda8] — bool])
and two abstract variables indicating the location of the overhead bytes are used to create
this extra variable of concrete sort. In the following formula, sI_rin_equal is a concrete
signal generated by two cross-operators eg_ex(column, zero) and eq_ex(row, eight). The
variable s_rin_equal =1, if both of the cross-operators give an output equal to 1. The
non-filtered value of S1 bytes will be available on the output port, i.e., sI_tsb, if the byte
extractor extracts the overhead bytes from the first column of the ninth row within a frame.

In Lysp this safety property is expressed as follows:
AG( (! (rstb=0)&(rclk=1l)&(sl_rin_equal=1l)) -> (sl_tsb = rin) ) :

Property 7: The function of the BERM is to monitor the BIP error line over a defined dec-
laration period and set an alarm if the declaration threshold is exceeded. When the calcu-
lated BER exceeds a declaration threshold value, i.e., declare_th, the BERM status alarm
berv goes high. If the calculated BER value is under the clearing threshold, the alarm will
reset. To check this threshold value, i.e., dcount, the BERM module needs to perform sev-
eral arithmetic operations which include additions and incrementing of larger sized data
(see Figure 12 and 14). In the following expression, we use expressions declare_thm = 1
and mclear_th = 0 instead of (declare_th < = dcount) and (count > = clear_th), respec-
tively. Because the Ly;p; syntax does not support relational expressions like, X > ¥ or
M < Nin the formula. To get the value of declare_thm and mclear th, we use an additional

MDG table which contains cross-operator to compare the input signals. In Lypg this

safety property is expressed as follows:
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AG((! ( rstb = 0) & (bipclk = 1) & (berten = 1) & (declare_thm = 1)

& (mclear_th = 0) ) -> ( X (berv = 1)) );

Property 8: The TSB generates an interrupt, whenever the berv status is changed, i.e.,
unstable. This means that the interrupt will never be triggered, i.e., beri =1, if the current

value of berv does not differ from its previous value, i.e., stable condition. In Ly,p this

safety property is expressed as follows:

AG(( !(rstb = 0) & (bipclk = 1) & { (( berv = 1) &(berv_last_reg=0

) )| ( (berv = 0) & (berv_last_reg = 1)))) -> (X(beri=1l)) );

Property 9: When an event occurs on the inputs of the interrupt server, the interrupt out-
put of the TSB goes high. The inputs of the interrupt server are connected to the interrupt
lines of the BERM, APSC and Sync_Status modules. Whenever any of these interrupt lines,
1.e., beri, psbfi, s1i and coapsi, goes high, the interrupt line of the TSB will be set, i.e., int = 1.

In Ly, this safety property is expressed as follows:

AG( (! (rstb=0)&(int_rd=0) &((rclk=1)&((sli=1) | (coapsi=1) | (psbfi=1)))
&((biclk=1l) &(beri=1)) -> (int = 1) );
Property 10: This reset property checks the reset behavior of the TSB. When the

asynchronous active low reset line is active, i.e., rszb =0, all the outputs of the TSB should

remain low. In Ly this safety property is expressed as follows:

AG( (rstb=0)-> (s1li=0)&(coapsi=0)& (psbfi=0)& (psbfv=0)& (berv=0)

& (beri=0));
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Property 11: When the values of an APS failure alarm are stable, we need to make sure that

the interrupt line related to this value eventually goes low. In L,p; this liveness property is

expressed as follows:
AG( ( (psbfv=psbfv_last_reg)&(! (rstb=0))&(rclk=1)) =>(F(psbfi=0)));

Property 12: When the value of BERM declaration threshold alarm is stable, we need to

make sure that the interrupt lines related to this value eventually goes low. In Ly this

liveness property is expressed as follows.

AG( { (berv=berv_last_reg)&(! (rstb=0)) & (bipclk=1))=>(F (beri=0}));

4
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Appendix B

Properties Description for FormalCheck Model Checking

1. Constraints for Property Checking in FormalCheck:

Clock Constraint: Rclk
Signal: pm5209:Rclk
Extract: No
Default: No
Start: Low

1st Duration: 1
2nd Duration: 1

Clock Constraint: Bipclk
Signal: pm5209:Bipclk
Extract: No
Default: No

Start: Low
l1st Duration: 1
2nd Duration: 1

Reset Constraint: Rstb

Signal: pm5209:Rstb

Default: Yes

Start: Low

Transition Duration Value
Start 2 0
forever 1

2. Properties Description in FormalCheck:

Property 1:

Property: Property_ 1

Type: Always

After: (@sl_ready)and (pm5209:Toh_Process_Inst:Sync_Status_Inst:

Filter:Match_Count = 6)and

(pm5209: Toh_Process_Inst:Sync_Status_Inst:Templ = TRUE)and

(pm5209:Toh_Process_Inst:Sync_Status_Inst:Temp2 = FALSE)
Always: pm5209:Toh_Process_Inst:S1i = 1

Options: Fulfill Delay: O Duration: 1 counts of
pm5209 : Toh_Process_Inst:Rclk = rising
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Property 2:

Property: Property 2

Type: Always

After: @k_filter and @k_ready and @k_last

and
pm5209 : Toh_Process_TInst:Apsc_Inst:Filter Klk2:Match_Count=1

Always: pm5209:Toh_Process_Inst:Coapsi = 1

Options: Fulfill Delay: 0 Duration: 1 counts of pm5209:Rclk =
rising

Property 3:

Property: Property 3

Type: Always

After: @k_ready and (pm5209:Toh_Process_Inst:Apsc_Inst:

Psbf_Monitor:Mismatch_Count = 10) and

((pm5209 : Toh_Process_TInst:Apsc_Inst:Psbf_Monitor:Match_Cou
nt=0)

or (pm5209 : Toh_Process_TInst:Apsc_Inst:Psbf_ Monitor:Match_Co
unt=1 and @kl_neq))

Always: pm5209:Toh_Process_Inst:Psbfv = 1
Options: Fulfill Delay: O Duration: 1 counts of pm5209:Rclk =
rising

Property 4:
Property: Property_ 4
Type: Never

Never: pm5209:Toh_Process_Inst:Psbfi =1 and
(pm5209:Toh_Process_Inst:Apsc_Inst:Psbf_Monitor:Temp_Psbfv

pm5209:Toh_Process_Inst:Apsc_Inst:Psbf_Interrupt:Psbfv_Las
t_Reg) and @k_ready

Options: (None)

Property S:

Property: Property_ 5

Type: Eventually .

After: pm5209:Toh_Process_Inst:Toh _Ready = 0

Eventually: pm5209:Toh_Process_Inst:Coapsi = 0 and
pm5208:Toh_Process_Inst:S1i = 0

Options: (None)

Property 6:
Property: Property_ 6
Type: Always
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After: pm5209:Toh_Process_Inst:Toh_ Extract_Inst:Column = 0 and
pm5205 : Toh_Process_Inst:Toh_Extract_Inst:Row = 8 and
pm5209:Rclk = 1 and pm5209:Rstb /= 0

Always: pm5209:S1 = pm5209:S1_Tsb

Options: Fulfill Delay: O Duration: 1 counts of pm5209:Rclk =

rising

Property 7:

Property: Property_ 7

Type: Always

After: (@Enable_berm) and
(pm5209:Berm_Inst:Declare_Th <= pm5209:Berm_Inst:Dcount)

and
(pm5209 :Berm_Inst:Ccount_Tst >= pm5209:Berm_Inst:Clear_Th)
Always: pm5209:Berm _Inst:Berv = 1
Unless: (pm5209 :Berm_Inst:Declare_Th>=pm5209:Berm_Inst:Dcount)or (p
m5209 :Bexrm_Inst:Clear_Th <= pm5209:Berm_Inst:Ccount)

Options: (None)

Property 8:
Property: Property 8
Tvpe: Always

After: pm5209:Rstbh /= 0 and pm5209:Bipclk = 1 and
pm5209:Berm_Inst:Berv /= stable and @Enable_berm

Always: pm5209:Berm_Inst:Beri = 1
Options: Fulfill Delay: 0 Duration: 1 counts of pm5209:Bipclk =
rising

Property 9:

Property: Property_9

Type: Always

After: pm5209:Rstb /= 0 and pm5209:Int_Rd = 0 and (pm5209:Rclk = 1
and (pm5209:Toh_Process_Inst:Sync_Status_Inst:81i = 1 or
pm5209 :Toh_Process_Inst:Apsc_Inst:Coapsi = 1 or

pm5209 : Toh_Process_Inst:Apsc_Inst:Psbfi=1l))and
(Ppm5209:Bipclk=1 and pm5209:Berm_Inst:Beri = 1)

Always: pm5209:Int = 1
Unless: pm5209:Int_Rd = 1
Options: (None)

Property 10:

Property: Property_ 10
Type: Always

After: pm5209:Rstb = 0
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Always: pm5209:Toh_Process_Inst:Apsc_Inst:Coapsi = 0 and
pm5209: Toh_Process_Inst:Apsc_Inst:Psbfi = 0 and
pm5209 : Toh_Process_Inst:Apsc_Inst:Psbfv = 0 and
pm5209 : Toh_Process_Inst:Sync_Status_Inst:S1i = 0 and
pm5209:Berm_TInst:Berv = 0 and pm5209:Berm_Inst:Beri = 0

Unless: pmS5209:Rstb /= 0

Options: (None)

Property 11:
Property: Property 11
Type: Eventually

After: pm5209:Rstbh /= 0 and pm5209:Rclk 1 and
pm5209:Toh_Process_Inst:Apsc_Inst:Psbfv = stable

Eventually:pm5209 :Toh_Process_Inst:Apsc_Inst:Psbfi = 0

Options: (None)

Property 12:

Property: Property_ 12

Type: Eventually

After: pm5209:Rstb/=0andpm5209:Bip-
clk=landpm5209 :Berm Inst:Berv=stable
Eventually: pm5209:Berm_Inst:beri = 0

Options: (None)

3. Macros Expressions used in the Properties:

@s1_ready: ((pm5209:Toh_Process_Inst:Rclk = 1) and (pm5209:Toh_Process_Inst:Rstb /= 0))
and (pm5209:Toh_Process_Inst:Sync_Status_Inst:S1_Ready = 1)

@k_filter: (pmS5209:Toh_Process_Inst:Apsc_Inst:K1_In /=
pm5209:Toh_Process_Inst:Apsc_Inst:K1_Filter_Reg) or
(pm5209:Toh_Process_Inst:Apsc_Inst:K2_In /=
pm5209:Toh_Process_Inst:Apsc_Inst:K2_Filter_Reg)

@k_last: (pm5209:Toh_Process_Inst:Apsc_Inst:K1_In =
pmS209:Toh_Process_Inst:Apsc_Inst:K1_Iast_Reg)
and(pm5209:Toh_Process_Inst:Apsc_Inst:K2_In =
pm5209:Toh_Process_Inst:Apsc_Inst:K2_I.ast_Reg)

@k_ready: ((pm5209:Toh_Process_Inst:Apsc_Inst:Rclk = 1)
and(pm5209:Toh_Process_Inst:Apsc_Inst:Rstb = 1)) and
(pm5209:Toh_Process_Inst:Apsc_Inst:K_Ready= 1)

@k1_neq: pm5209:Toh_Process_Inst:Apsc_Inst:K1_In /=
pm5209:Toh_Process_Inst:Apsc_Inst:K1_Last_Reg

@Enable_berm: ((pm5209:Rstb /= 0) and (pm5209:Bipclk = 1)) and (pm5209:berten= 1)
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