INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be remcred, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Pure Java Implementation of a
Scalable Web Server with a

Integrated Servlet Container

Qing Jiang Lee

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

Friday, April 20, 2001
©Qing Jiang Lee, 2001

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre rélérence

Our fle Nolre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-59332-0

Abstract

Pure Java Implementation of a
Scalable Web Server with a
Integrated Serviet Container
Qing Jiang Lee

As the Internet continues to grow. e-commerce has become a new way of doing business
within almost every industry. Today, some popular Web sites are handling thousands -
and even tens of thousands - of Web page requests per second. Web server technology is
central to the current Internet client/server model, since the performance of the server

directly attects the performance of the Web site using it.

In this thesis, I present a survey of contemporary commercial Web servers, describe the
general concepts of Web server and Servlet container, then describe my own design and
implementation of a purely Java-based scalable Web server that is integrated with a
Servlet container. The purpose of this Web server implementation is to provide a
commercially viable, purely Java-based scalable Web server that is fully HTTP 1.1-
compliant and integrated with a Servlet container that is fully compliant with the Java

Servlet Development Kit (JSDK) 2.1.

This Web server, the functionally equivalent to the Apache Web server, supports the latest
HTTP protocol (version 1.1) and incorporates a built-in Servlet container that is the
equivalent of a JServ or Tomcat Servlet container. The built-in Servlet container supports
CGI scripts by using a CGI handler Servlet. The scalability of this Web server
implementation considers two ways of scaling: Transparent and Redirect. In both cases, it

acts as a master and can use any Web server or itself as a slave.

Acknowledgements

[would like to express my cordial gratitude to Dr. Lixin Tao. Dr. Tao has given me great
support in my studies and maximum scheduling flexibility. Most of my consultations and
discussions with Dr. Tao occurred after working hours and on weekends. This thesis
would not have been completed without Dr. Tao's compassionate support. advice and

encouragement.

My thanks also go to the Comp 628 team: Dr. Lixin Tao, the Instructor; Li An, Aimin
Han, Man Bao, Cheng Xing, Daofeng Zhang, and Liusong Yang. They provided a good

basis for the Graphic User Interface design work used in the project Implementation.

[am grateful to the professors and administrative staff in the department of Computer
Science, especially Dr. Ahmed Seffah, who gave lectures in interface design, and Ms.
Halina Monkiewicz, whose friendliness and administrative support have made my

academic life easier and more rewarding.

I would also like to thank my parents for providing the emotional and financial support I required.

iii

Table of Contents

LiSt of FigUrescccccveenienicsncssncisisascssisensonssssssnsnssnsssssassascssssssecsassssssanss Vil
LiSt 0f Tablescccciiesnicninincircsnssarsnssnsonsansnsnssnsassosssssssssasssasacsassansss Vil

Chapter 1 Introduction.........nicvccnnevcnscnscassasnann. 1

LT HTTP SEIVET .ttt s e sn e st st 1
1.2 APPLCAtION SEIVET ..ottt 2
1.3 Servlet and Serviet CONtAINETcccovveevievrernireeeeerereee ettt sreeaens 7
1.4 Challenge, Objective and Contribution...........cceeueveueiriiieiinerrenie e 9

Chapter 2 Literature SUrvey........n 12

Ll WED SEIVELS .ottt st en e 12
211 Price and operating system of commercial Web Servers......ccocccceveernceeecnvnnens 13
2,12 Commercial Web Server Performance Analysis.........cooceveenmnvirescenmmnncrnssnnnenee. 13
213 ADPACHE WED SEIVET......cvoreirricrririitierenisiresesessiessssesssesssesesessscsssscsescnsessneseesesses 16
214 Microsoft [nternet Information SEIVET.........vvevrrceeerenerieirise e 17
2.2 ApPliCation SEIVETS......ccooviririririeriiirrrtsise et esre s ettt ee e e sesneneesen 19
221 Application Server EVOIUtON ...ttt 20
222 Web Application Approaches..........cceinemnciecssecniiiencesens 21
223 Serviet AQVANTAZESccveecirierrririniineser et b 28

Chapter3 Web Server Concept..........ccouuvevsrrucescerensens 30

3.1 Network and DNS StIUCIUIEccvevvvvueiiiriieiccireetee e ere e e svsesseere s eenns 30
3.2 TCP/IP CONMNECHONccvveceeenrieiiiereestececerir et esveseeseebeesessesbenssassaassassennnns 31
3.2.1 SOCKEL ...eveveetertieieteteetetrteeeeresne e tebe et b e s s e s b sssassas s satssasesnssesonsrassesnssanans 32

3.22 POTL.cceerceetsrete e irte e te et ssess s aebese bbb et s e rasa s senssve s e se s st s s b e et s e nnbani 32

3.3 Hypertext Transfer Protocol (HTTP)......ccccovevmerieeireerereenmireeeeesrecceneseneeane 33
3.3.1 OVEIVIEW...coeeeerreretrienirree i e erese et st bss st essse s sasssaesbsesesssnsessnssrssnssasossassasonns 34

33.2 HTTP 1.1 versus HTTP 1.0......cvoeeeeeeeeereerseesssaesssesssessssecssnsesssssssennons 35

3.3.3 HTTP CONNECLION.....cccueereereerieereee et tsseas s seesessensessessosssssssanssssnsnsssesses 36

3.34 Persistent COMMECHONecrveerrererenreiniseisnssssessssissssesessssassessasanesssssuesencmeensases 37

335 HTTP REQUESL.......erereeereneitrineistress s nsssssasesesssssssescsssesesssssssasessssssssssasens 38

3.3.6 HTTP RESPONSE ..cuutereriineecnineneseeesissisnrssess e s esssssssasessssssassessstsnsassssssesosess 46

3.3.7 Stateless feature Of HTTPceveeinineiiscsesessssssssssrseessasssscscessossssnssennsasanss 50
Chapter4 Servlet Container Concept........c.ccccoeseerueennc 53
4.1 SEIVIEL SEIVEToveeieeeeeeeeeceee sttt seb bbb es et ersssns e sesasssessassessanes 53

iv

4.2

Servlet State (Session) Management Approaches..........ccccooeeeviiniviiinnicnnncne. 54
4.2.1 HTTP SESSION c.vvvveveereenereresieeereentrereeeeenesestsemseeisssssasisssssssesssassesessassnansacssenes 55
422 COOKIE...eeuremerererenesarenseereesesiessestinestssesesnisesesnssissnsssisssissseassessasessnssonssssssssssesnassess 57

Chapter 5 Web Server Implementation61

5.1

(¥ /]
(9%

Project OVETVIEWccecveieeieeriiinettctetrcreie st es 61
5.1.1 ODJECEIVEL e eererrecrecreerente e esee st rassasa s bbb bbbt st ne e 61
5.1.2 REIEASES ..ottt e 61
5.13 JAVA SUPPOLL. ..ottt bbb e s 61
5.14 Installation and configUrationccccccveeeecvmnccnnni e 62
Project UML and Package StruCturecoooveveiciiinnmnnineneeeenec 62
5.2.1 Package com.chinapromotion.aws...........ceeveiiiissssseieiessnsnesenses s 62
5.2.2 Package Servietmanagement ..o 64
523 Package com.chinapromotion.aws.Util.........c..ccciveienivnnininneeiniennnne. 66
524 Package com.chinapromotion.aws.ServIets.........iininieiecninencencnnes 68
5.2.5 Package com.chinapromotion.aws.SErVICe.......c.vuuimereinminnisesisreeseerenisrenenees 68
Web Server EXecution FIOWcccoveevivrereiiinneiiiccneeeennns 70
5.3.2 Web Server FIOW Charl.....c..ooiieevcinrcreierecimi s sessssseseesennene 71
5.3.3 Client Side Cachingccccevrereerrrecereeniisrniesereimies et ssssnesesnesseene 75
5.3.4 Servlet Management implementation ..o iesrenens 75
535 Session Management implementation ... 76

Chapter 6 Servlet Container Implementation...........77

6.1

Servlet Implementation BasiC........cccccveveirecrrinecnicnie e 77
6.1.1 GENETICSEIVIBL ...veericererereenrieene sttt et s s snesaenaes 78
6.1.2 HEPSEIVIEL ..ottt et sa s e an s saestane 78
Handle HTTP Servlet Request and Response...........ccoccvverveineninncciencncncnne 79
State Management Of AWSc.oooiiminncc s 83
6.3.1 COOKIE: o erereerertresniernsssnssesentonsnssenesasassesemsesresesisss s ssrsssssent s srasstsinasnsbossasestoue 83
6.3.2 SBSSION: oottt et s s e e e R R b bbb 84

Chapter 7 Graphical User Interface For Windows ..86

7.1
7.2
7.3
7.4
7.5
7.6

General Features and Usagescoccveereereereniniinicieesreensssesssse s 86
ConNECLION TADooveetieiieeeecte et st ae e ane 90
SHE TAD oot ettt sn e s r s s as s 91
Server INFO TaD......oovveececieeeeeeecre et sr e e s saaesane 93
SEIVIELS TAD...ocveveeieciieeceecrrteetee et ste et s e sae e e s e saes b e e s ssnesunasesene s 94
SESSION TADecveeeeereirececcce ettt st st sre st easbt e e e et 96

Chapter 8 Scalability Model............ veres 98

8.1

Transparent SCaling..........c.cccuerrirerniceereneneeneiesieise st eresn s 98

8.2 Redirect SCAlINg......ccoviruiiriireietetet ettt 99

8.3 Transparent vs Redirectcoeveuvririiniecenecinciccesctec e 100
8.4 Slave Assignment AlOrithImcceeeeinererncrinei e 102
Chapter9 Performance Analysis......cccvvurnevecncsennnnee. 104
9.1 USAbIIEY TESL c.eveeieieeieiteeeet ettt e e st b s s sae e sb e n e e saans 104
9.2 Performance ANALYSISccceeveerrernreereersiesreireereeet ettt 107
Chapter 10 Conclusion and Future Work.............. vesenes 112
10.1 CONCIUSION ..ernvinirierirrerir ettt eeneas 112
10.2 FUtUTE WOTK ..ottt 113
Reference....... ceresensesnasasane cestesesssssanensasens cressasennens ceeesesnsecannsansssanae oo 119
Appendix A Extensive Survey on Application Servers......... 120
Appendix B AWS installation and configuration manual.... 138

vi

FIGURE |

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18
FIGURE 19
FIGURE 20
FIGURE 21
FIGURE 22
FIGURE 23
FIGURE 24
FIGURE 25
FIGURE 26
FIGURE 27
FIGURE 28
FIGURE 29
FIGURE 30
FIGURE 31
FIGURE 32
FIGURE 33
FIGURE 34
FIGURE 35

List of Figures

THE APPLICATION SERVER MODEL......coovreereirerrisnenssinssessesensesssssmsesessesessessnssans 4
THREE TIER STRUCTURE OF AN APPLICATION SERVERc.uctrmreenccnerisenresseeneereenens 6
PERFORMANCE ANALYSIS OF COMMERCIAL WEB SERVER (1-PROCESSOR) 14
PERFORMANCE ANALYSIS OF COMMERCIAL WEB SERVER (2-PROCESSOR) 13
APPLICATION SERVER EVOLUTIONcccvrvirrrieressereniseseeseseesmsacnssessssssesaseseasansnns 20
PHYSIC STRUCTURE OF WEB AND DNS TRANSLATE PROCESScuceveenenrneeerernnnnns 31
WEB SERVER PORT ASSIGNMENT ...ovvverrecenrnerinssseessrsssessescssesessaesssrssssssesssessesesens 33
HTTP REQUEST AND HTTP RESPONSE HEADERSvoeueeeeeererereescuererenenrecneseesnsaens 36
UML DIAGRAM: PACKAGE COM.CHINAPROMOTION.AWS.....ovvieirimirinienniesissrnenenens 63
UML DIAGRAM: PACKAGE SERVLETMANAGEMENTcvuvvrinrurerercmeresnsesseseeneonsennns 64
UML DIAGRAM: PACKAGE COM.CHINAPROMOTION.AWS.UTILcvevrrrirecrcrennann 67
UML DIAGRAM: PACKAGE COM.CHINAPROMOTION.AWS.SERVLETScoeeevrvennnen 68
UML DIAGRAM: PACKAGE COM.CHINAPROMOTION.AWS.SERVICE......ocueueevemrnnnen. 69
PROJECT FLOW CHARTocovretreereretee e tsesassnseessseisesense e nssasssnssassesnesssssenensonsanes 70
HTTPSERVLETREQUEST AND HTTPSERVLETRESPONSEc.ovovicnenererienneenernerernns 80
THE CONNECTION PROPERTIES TAB......cucvovrvinveriensensciseseissersensesessssnsesssessnssssnsannens 86
THE HELP WINDOWoeviieierereresirrenesnsessmessssssssesssssenrussatsssesesossessessrsesssasssssssensen 87
TOOL TIP OF TRAY ICON .vvvivieeerenerirerereresessssesessssssssssssssnsssssesemsessssassrasssssssesansnens 88

THE TRAY ICON IN SYSTEM WINDOWouvrrererincnrnieserisescssssessesmseseorssssssessssesesons 89
THE POP MENU AND THE ABOUT WINDOW ...oocornrtnnreneiessrnerassessrnsessssessassessesens 89
WARNING MESSAGE FOR THREAD PRIORITYcvreereereecrieretenamsesssereeusecsesienesnasasns 91
FILE CHOOSERcucviveeeterresesasensaetsssssasssessssessssssssssssesesssasmsssessssssasessssssasessesssnaes 91
SITE PROPERTIES TAB....c.vcvevivereeereerereenssnesiessisssstsenssssssssesssessssesssssssenssessessassssesaes 92
SERVER INFO TAB ..ucuruiteirieeecesecissesssssesonssssssesesssessessssenssssssnasssssesssesessassesensasnes 93
SERVLETS TAB co.cuticeeeiteseteeece ettt ss st s ssssssssssssse s ssnssssessssssesssessssesessssesanes 95
SESSION TAB ..ecvevuieiereeereresissseressessssssessssessssssssssssssssessesocsessssasecssssbessssssessesissssssanes 96
TRANSPARENT SCALING ...cvvvrriernererensisenersessssessessessessamsssssesessssossssssossssssnesasensass 98
REDIRECT SCALING ...veevrrrerterrecneseesesenssnenssssssesssesssassssnsessesessssesessssstaensassessereesn 99
TRANSPARENT SCALING CONNECTION MODELcervernesirennensessssnnissiesssssesonse 100
REDIRECT SCALING CONNECTION MODELcuvueineurersrsensenasnmsesessssesssonsessossseasne 101
CLASSIC WEB SERVER AND SERVLET CONTAINER MODEL ...cvoveeririseisannencssrnenes 113
ASPOS STAGE | oceereerererecreceerecrne s e stsessnsssssssssssssntssessssssesesessesasssnsusassenssass sasas 114

vii

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE S
TABLE 6
TABLE 7

List of Tables

COMMERCIAL WEB SERVER OSS AND PRICES......cccvvtrerireresiseererensmissnsasnsssssancenens 13
APACHE SERVER FEATURESevveviviererenseressreersssseserosesseessssseseersesestocnsesessensosssasans 16
MICROSOFT IS FEATURESooveveririereererererenseresasaseessssesassessessmssesesesenesmssensasssssnsenes 18
HTTP RESPONSE STATUS CODE AND REASON-PHRASE......ccccvetrreeeeererrensecerrnnsannns 48
USABILITY TEST 1.vuiveeeriverriresesereseereissessssssesensessesasssssssssesssssesessessesesssesessasssnsssons 107
PERFORMANCE ANALYSIS ON WINDOWS PLATFORM ...coeueviverenicencnreerseenererennrnns 108
PERFORMANCE ANALYSIS ON LINUX PLATFORM ...ocvereeererenrcnenereescnerencnesisiensanne 111

viii

Chapter 1| Introduction

Most applications running on the Internet are client/server applications. A server
application is a system program that uses a pre-defined protocol to serve a number of
clients and to complete certain tasks. Some commonly used server types on the Internet
are the HTTP server, the FTP server, the mail server and the news server. Each kind of
server uses a different protocol. For example, HTTP servers use the HTTP protocol, and
FTP servers use the File Transfer Protocol (FTP) protocol. The current World Wide Web
is based on a protocol that uses the HTTP server as the server type and a Web browser as

the “client™ software.

1.1 HTTP Server

HTTP servers use the Hypertext Transfer Protocol (HTTP), which is an application-level
protocol for distributed, collaborative, hypermedia information systems. It is a generic,
stateless protocol that can be used for many tasks other than hypertext, such as name
servers and distributed-object management systems and. through extension of its request

methods, error codes and headers [1].

The HTTP server, also called Web server, is the server that provides Web service. Any
Web page we see through a Web browser is fetched from an HTTP server by specifying
its: URL (Uniform Resource Locator). HTTP protocol is designed to be the
communication protocol between the servers and the clients (the browsers). The Apache

Web server and the Microsoft Internet Information Server (IIS) are two typical and

widely used Web servers. Apache is mainly used on the Unix/Linux platform; Microsoft
[IS is mainly used on the Window NT/9X platform. We discuss details of these Web

servers in Chapter 2 (Literature Survey).

HTTP servers are designed to serve many clients. Browser applications, which run on the
client side, use the HTTP protocol to communicate with these servers. A browser first
sends a Web page request to the server through the network. Then the server fetches the
Web page from the local disk or calls a Servlet to construct a dynamic page. Finally, the

Web page is sent back to the browser.

1.2 Application Server

The requirements for Web site development have grown considerably more complex over
the past few vears. Web sites started out as Internet destinations that offered only static
content, mainly words and images, and Web site development meant no more than
creating HTML files and simple CGI scripts. Today, however, the World Wide Web has
become the preferred user interface to handle a host of new application types. As a result,
Web developers have to deal with many of the same requirements and problems

associated with traditional application development.

Many of the problems that current Web site developers face have nothing to do with
deployment rather than development. The challenge of building Web sites with qualities
of reliability, scalability, stability, and manageability is just now being addressed. As Web
sites begin to handle more business-critical applications, the systems management and

operational issues associated with Web development is becoming crucial.

Dynamic contents on a Web page had proved attractive for users of the Internet, but the

old Web server approach is not sufficient to support dynamic contents. For example, chat
rooms and online BBS need to be supported by dynamically updated Web pages. All
valid user inputs need to be shown on the Web page after the users submit their inputs.
Some real-time content such as stock prices and real-time news updates are presently
popular on the World Wide Web. Since this content is presented in real time, it is not
possible to create a static page every time the stock price changes or news breaks. Some

techniques are necessary to create this dynamic. real time content.

At the same time, today's business applications deeply rely on the support of databases.
A business Web site usually needs to support large amount of data that can be organized
in response to a database query. For example, a Web site providing stock quotes must be
supported by large amount of historical stock data that is stored in a database. and can be
queried to construct diagram of stock histories for research purposes. The old Web server
model, which can only support static HTML pages, is not enough to support such

dynamic SQL queries on a Web page.

Moreover, because of the stateless nature of HTTP, static pages alone cannot meet the
demands of a “session”. Today's e-business solutions involve a highly flexible
exploitation of a session. For example, while shopping an online e-commerce Web site. a
user may need to create a shopping cart and add an item to that cart. then continue to
browse other pages on the same site. Information about the previous additions to the cart
needs to be kept until the user logs out. Using a traditional static Web server alone cannot

achieve this.

A new model for Web development has evolved to address these development and
deployment issues. New types of Web application, such as Netscape Application Server
(formerly Kiva Server) 2.1 and NetDynamics 4.0, have come to market. They are called

“application servers” because they form a clear level of separation between the Web

server and data access layers. As Figure | shows, Web sites built using the application
server model consist of at least three back-end layers: the Web server layer, the
application server layer, and the data layer. In this model, most or all application logic
exists in the middle tier, where the application servers handle all data manipulation and

HTML page-creation functions.

Application servers, the next logical step in the development of commercial Web sites,
developed from the need to have mission critical applications consistently available to an
ever-growing number of clients. These applications needed to be secure and reliable so
that regardless of the number of people accessing the system or the source of data, the
application server would always be up and running. Prior to the introduction of
application servers, Web applications often ran on Web servers that were only designed

to serve Web pages. Running and developing applications was slow and complex.

Wab Browsezs Web Servers Application Servers Databases
Client Neb Server Appligation Servprs

Web Serper Agplication fervers

I e 2

=

1 I Data

3k
20 S o

(]

Client Neb Servex Appligaticn Servprs

Application Server

Database Layer
Layer

Web Clients Web Server Layer

Figure 1 The Application Server Model

Application servers are part of a multi-tiered architecture in which there is a physical
separation between the client that requests information, the programs that process the

request and the data that is operated upon. The multi-tiered architecture evolved from the

mainframe where client, data and process were centralized in the one place. GUI
(Graphical User Interface) interfaces were rare and remote multiple database access was
difficult. The mid 1980’s saw the introduction of client/server computing model, which
divided processing between a client (a PC) and a server (a mainframe computer). A
relational database system on the mainframe usually handled requests in queries and the
PC applied the presentation and business logic after receiving processed data from the
mainframe. This system allowed for modular development and a GUI but deployment

proved problematic.

Three-tier computing then separated the presentation logic from the business logic [8].
This separation meant that the business code was independent of how and where it was
presented. The business logic layer, now in the middle tier, was not concerned with what
type of client displayed the data. Three-tier computing was more portable, worked across
different types of platforms and allowed for the balancing of requests from clients across
multiple servers. Security was easier to implement since the application software was no
longer on the client side and costs were substantially reduced. However, providing the
underlying functions of the middle layer — functions such as transaction processing.
security and accessing of the data layer — was still complex. The emergence of
development tools and a runtime environment to solve this problem came together in the

Application Server.

Application Server is the middleware between enterprise data sources and the clients that
access those data sources. Business code is stored and processed on the Application
Server rather than on the clients. An application is deployed and managed in a single

location, and the application is accessible to large numbers of heterogeneous clients.

Application Server applications run in a distributed, multi-tiered environment. This

means that an enterprise system might consist of several application servers —

computers running the application server software — along with multiple database
servers and Web servers. Application code can be distributed among the application
servers. Overall, the machines and software involved are divided into three tiers, as

shown in Figure 2:

Client Tier Server Tier Data Tier

|
'
!
!
!
|

Database

=

_ |
v — ’ Enterprise Apps
- / — i

/ - 4 d

S Va0 t

Application Server ™\ ¢ i
;c j ; Legacy System

i |

: .

Rich Client

Figure 2 Three Tier Structure of an Application Server

® A client tier; the user interface. Requests for data originate here, represented by

Web browsers or thin-clients (such as a Java application).

@ A server tier represented by a Web server such as Apache Web Server and an
application server, such as Netscape Application Server, that runs the business

code.

@ A data tier, represented by databases or other back-end data sources.

1.3 Servlet and Servlet Container

Abao Web Server (AWS) is a web server implementation that extends its capability by
selects Java Servlets as the application server layer. We will cover our reasons for
selecting Java Servlets in Subsection 2.2.2. The following chapters of this thesis are in
two parts, those that deal with the HTTP server and those that deal with the Servlet

container,

Servlets are small Java programs that run on the server side of a Web server/Web client
connection. The Servlets employed here use the standard HTTP communications that
ordinary static Web pages use to communicate with the client’s Web browser. From the
point of view of the browser. Web pages produced by Servlets look no different from

ordinary static HTML pages.

Java Servlets are small. platform-independent Java programs that can be used to extend
the functionality ot a Web server in a variety of ways. Java applets are small programs
compiled to binary code that can be loaded dynamically to extend the capabilities of the

browser. Servlets are to the server what applets are to the client.

Servlets differ from applets in that Servlets do not run in a Web browser or with a
graphical user interface. Instead, Servlets interact through requests and responses with
the Servlet container running on the Web server. This request-response paradigm is

modeled on the behavior of the Hypertext Transfer Protocol (HTTP).

A client program, which could be a Web browser or some other program that can make
connections across the Internet, accesses a Web server and makes a request. Once the
Web server gets the request, it parses the request to determine if it is a Servlet request or
not. Usually this is done by comparing the request URL to some pre-registered pattern. If

it is a Servlet request, the Web server calls a Servlet container to handle the incoming

7

request. The Servlet container is a server-side program that manages all Servlets. It
selects a Servlet that handles the request. The Servlet then processes the request and

returns the response to the client.

From the point of view of the client, the dynamic HTML generated by a Servlet is
indistinguishable from static HTML pages. In functionality, Servlets lie somewhere
between Common Gateway [nterface (CGI) programs and proprietary server extensions
such as the Netscape Server Application Programming Interface (NSAPI). Unlike CGI
programs and NSAPI modules, one does not need to modify Servlets to make them

conform to either a platform or a server.

A Servlet container is a server side program that needs to work together with a Web
server to provide Servlet API. There are many Servlet APIs, however, Sun’s Servlet API
— the JAVA Servlet Development Kit (JSDK) — is the most popular Servlet API on the
market. The AWS project implements the JSDK 2.1 standard, the latest Serviet API when
the project began. However, at the time of my writing of this thesis. Sun has deployed the

new JSDK 2.2 standard, which is slightly different from version 2.1.

The application server is designed to make it easier for developers to isolate the business
logic in their projects — usually through components — and develop three-tier
applications. Many application servers also offer additional features such as transaction

management, clustering and fail-over, and load balancing.

The AWS project (see Section 5.1) integrates an HTTP server and a Servlet container to
make an application server. The goal of the AWS project is to provide application server
solutions based on the Java platform and Java Servlet technology. It is part of the first

stage of my ASP OS project as described in Section 10.2 of this thesis.

A number of companies, including Microsoft, Netscape, Sun, and IBM, make application

servers, but user’s choices may be limited by both the platform on which the application

server is to run, and the types of components the application server supports.

Most application servers support code written to their API using C++, Java, or both.

However, if the developer’s code is encapsulated in a standard component (typically

approach will work too. Usually migrate an existing application to applications running
on an application server depends on how the code is packaged and which application

server is chosen.

Mission-critical software aimed at the enterprise is generally more expensive than
software designed for consumers. For this reason. the pricing of application servers
varies widely. with those offering clustering or fail-over capabilities costing more.
Microsoft’s Transaction Server comes free with Windows NT Server, and other

lower-end application servers are also not costly.

1.4 Challenge, Objective and Contribution

Application hosting servers need to support tens of thousands of concurrent service
sessions with high availability and low response time. Unlike Web servers that are
mainly used to support stateless HTTP connections requesting Web contents, ASP
application servers need to support connection sessions during which some state
information (usually session data) must be kept on the servers. Such sessions may last

hours or days, and servers cannot predict the connection patterns.

For Web servers, the main techniques currently used to improve server performance

include Redundant Array of Independent Disks (RAID); server farms based on dozens of

processors interconnected by buses or shared memories; and extensive caching. For
example, Yahoo uses an array of around 50 high-performance server processors, and
Windows 2000 can support a limited number of server processors. Non-preemptive
scheduling algorithms are used to balance the workload among the processors. Some
application service providers also support external caching as a generic approach to
boosting Web server performance. Today’s Web server market is mainly based on
proprietary ad hoc techniques, which cannot support the level of service quality needed

by ASP.

A server is designed to serve many clients at the same time and produce fast response
time and large amount of throughput. With the revolution of the Internet and World Wide
Web, commercial Web sites like Yahoo! now serve millions of Web requests per day.
thousands of requests per second. Web servers can easily become bottlenecks in network
performance, and for this reason performance is probably the most important factor to be

considered when choosing a Web server application.

Web servers and application servers play the central role in all Internet applications. For
future studies, we need to know how Web servers and application servers work. However,
due to copyright issues and a competitive business environment, the codes emploved by
many commercial Web servers are not open source. Documentations and books about
these servers are mainly based on their installation, configuration and user manual.
Therefore, in order to study the architecture of Web servers and application servers, I
decided to base my thesis on the survey and implementation of an application server. |
designed and implemented the AWS, which integrated a small Java Web server and a
Java Servlet container. Based on the AWS project, I designed the four-stage architecture
of the ASPOS project, which is a complete solution for Application Service Providers. I
have had discussions with some venture capital sources, and I am looking forward to

undertaking this project.

AWS is implemented using pure Java; and can therefore be compiled and run on any
platform that supports Java. It supports the latest HTTP standard (HTTP 1.1), which
introduces the “‘persistent connection” whereby one connection is used to fulfill many
HTTP requests. A client and a server can use persistent connection to pipeline requests

and responses. AWS also uses the newest Servlet API from Sun, JSDK 2.1.

AWS is designed and tested to handle hundreds or even thousands of connections per
second. It uses multi-thread instead of multi-process to achieve that goal. Multi-thread is
more efficient that multi-process since thread consumes less system resources than
process. Many other commercial Web servers such as the Sun Java Web Server and

Apache server also use muliti-thread approach.

AWS also integrates Servlet container and CGI support to achieve better performance.
The Servlet container API is integrated with the connection class of the AWS Web server;
thereby sharing variables and other resources and improving the Servlet container’s
performance. Therefore. less memory is consumed for every thread. If there are one
thousand concurrent connections, a 1k increase in memory for each connection should

results a IM increase for the whole process.

Parsing of incoming requests is also fine-tuned. All the protocol logic is pushed directly
to a deeper level of the AWS server by implementation of a specially designed
inputstream object. This means a request is parsed immediately after it is read. An extra

storage structure and at least one loop through the incoming stream can be saved thereby.

Scaling can improve the server’s performance by sharing computing resources among a
group of machines. AWS has two scalable modules that can be easily integrated with a
customer-designed load-balance technique and provides two types of scaling that can be

extended to more customer types.

11

Chapter 2 Literature Survey

As the Internet grows and e-commerce becomes more popular, the World Wide Web has
increasingly become part of our daily lives. The Web server lies at the core of WWW
technology, and as a critical part of all commercial Web sites, directly affects their overall
performarnce. Giant Web sites such as those operated by Yahoo!, AOL, and Amazon, deal
with thousands or even tens of thousands of requests per second. This volume poses a
challenge to both hardware and software. Hardware development and improvement is a
long and relatively costly process. and improvements may not be that obvious. The
evolution of Pentium 100M to Pentium III 1G took more than 5 vears, though the
performance of a Web server running on the newer machine may not have improved by
as much as a factor of 10. However. within a specific hardware environment.
appropriately chosen OS and Web server. may mean performance improvements as great
as 100 times. The Microsoft Internet Information Server (IIS) benefits from its
integration with the Windows NT/2000 platform, therefore outperformed all other Web

servers in our survey.

2.1 Web Servers

ZD Net’s lab conducted a study to compare ten Web servers from nine vendors running
eight operating systems on five hardware platforms {13]. On Intel-based hardware and
under Windows NT 4.0, they evaluated the Lotus Domino, the Luckman’s Web

Commander, the Microsoft Internet Information Server, the Netscape Enterprise, the

Netscape FastTrack Server, and the O’Reilly & Associates’ WebSite Professional. They

also considered Enterprise and FastTrack running Solaris 2.5.1 on a Sun Netra, running

12

Irix on an SGI WebForce Origin200, and running Digital Unix on a Digital Alpha. They

tested the public-domain version of Apache under RedHat Linux on a Compaq with Intel

processors. They also looked at IBM Internet Connection Secure Server on Intel

hardware running OS/2 Warp, Novell Web Server under IntranetWare 4.11, and

StarNine’s WebStar on a PowerMac running Mac OS.

2.1.1 Price and operating system of commercial Web servers

Table 1 Commercial Web server OSs and prices
Web Server (0N Price
Apache NT/Unix Free
Microsoft Internet Information Server NT/Unix Incl. Win NT
Lotus Domino Win NT $995
Netscape Enterprise Win NT $1295
O’Reilly & Associates’ WebSite Win NT $499
IBM Internet Connection Secure Server 0S/2 Warp Incl. OS/2 Warp
Novell Web Server IntranetWare Incl. IntranetWare
StarNine’s WebStar Mac OS $799

2.1.2 Commercial Web Server Performance Analysis

Figure 3 and Figure 4 shows the performance analysis done by ZD net lab. Figure 3

13

shows the performance of 1-processor platforms. Figure 4 shows the performance of
2-processor platforms. The x-axis of each diagram represents the number of clients
accessing the server at the same time. The y-axis of each diagram represents the number

of kilobytes per second total throughput by the server platform.

1-Processor Throughput (Static HTML) BEST
15,000
I
E
12.500
=
g 10,000)
3 : ',
2 7500 ,?’i“/
£ T/
= 5,000 2 G
—— e o —— S K
T A
H -
2.500 - L
o c
o
B
D
0 P
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Clients
= (A) Apache (Linux) === () Netscape Enterprise Server
= (B) Internet Connection Secure (Windows N
Server (05/2) == (J) Netscape FastTrack Server
emms (C} Lotus Domino (Windows NT) (Digital Unix)
= (D) Luckman's Web Commander e (K) Netscape FastTrack Server (irix)
(Windows NT) — FastTrack Server (Solari
e (E) Microsoft Internet Information (L) Netscape Fastirack Server (Solaris)
Server (Windows NT) == (M) Netscape fastTrack Server
~—— (F} Netscape Enterprise Server (Windows NT)
G f\?'g'ta' U"E'x) e s e (N) Novell Web Server (IntranetWare)
©) ("ei::)sc ape trterprise Server = (0) WebSite Professional (Windows NT)
e (H) Netscape Enterprise Server w== (P) WebStar (Mac OS)
(Solaris)
Figure 3 Performance analysis of commercial Web server (1-Processor)

14

15.000

12,500] d

2-Processor Throughput by Server Platform (Static HTML) BEST

e

= 10.000
S 7.500 N
3
b= G
2
= 5000 A
R
2
_H
2.500 e e}
B
0 ' P
1 4 B 12 16 20 24 28 32 36 40 44 48 52 56 60
Clients
= (A) Apache (Linux) === () Netscape Enterprise Server
w (B) Internet Connection Secure (Windows NT)
Server (0S/2) = (J) Netscape FastTrack Server
amme (C) Lotus Domino (Windows NT) (Digital Unix)
e (D) Luckman's Web Commander === (K) Netscape FastTrack Server (Irix)
(Windows NT) — FastTrack S Sol
e (£} Microsoft Internet Information (L) Netscape Fastlrack Server (Solaris)
Server (Windows NT) = (M) Netscape FastTrack Server
~= (f) Netscape Enterprise Server (Windows NT)
G (ND'Q'ta' U”é") _ «=ma (N) Novell Web Server (IntranetWare)
@ (|r?,§)sc ape trterprise Server - (0O} WebSite Professional (Windows NT)
- (H) Netscape Enterprise Server e (P) WebStar (Mac 0OS)
(Solaris)
Figure 4 Performance analysis of commercial Web server (2-Processor)

From this analysis, we see that in both diagrams, Microsoft Internet Information Server

achieves the best result. When client numbers are low, all Web servers exhibit about the

same result. When the number of clients increases to 30, only Microsoft IIS’s result

continues to rise until the client number reaches 50. We can also see from this diagram

that 2-processor architecture does not make significant change to results of most Web

servers. Only Netscape Enterprise Server on NT platform showed a real improvement; at

15

30 clients, it achieves results that are almost the best in this test.

We can also see from this diagram that the operating system is very important to the Web
server’s performance. Netscape Enterprise Server performed very differently as it ran on
3 different platforms — Window NT, Irix and Solaris. It best results were seen on the
Windows NT, where it almost doubled its performance compared to that on Irix, and

tripled its performance compared to that on Solaris.

2.1.3 Apache Web Server

The Apache Web server benefits greatly from the Linux and open source revolution, and
has become the most widely used Web server on the Internet. It offers a powerful and
customizable approach for any Unix/Linux-based server. However. Apache’s greatest
strength is also its biggest shortcoming. Experienced Unix users enjoy the control they
have over the Web server, which has its own API. Users may download Apache from
their Web site and get all the Apache core and module source code, which can be
modified to suit their needs. Creating their own Web servers by rewriting code are not,

however, what newcomers to Unix are looking for.

Table 2 Apache Server Features
“ S0 Power Ease
:Pgé} N Fair
Good Poor
Good Poor
N/A N/A
Fair Fair

16

The Apache Project is a collaborative software development effort aimed at creating a
robust, commercial-grade, featureful, and freely available source code implementation of
an HTTP (Web) server. The project is jointly managed by a group of volunteers, located
around the world, who use the Internet and the Web to communicate, plan, and develop
the server and its related documentation. These volunteers are known as the Apache
Group. In addition, hundreds of users have contributed ideas, code, and documentation to

the project [9].

The newest version of Apache, Apache 2.0, improved the scalability problems we saw in
the previous performance study. The 2.0 delivers POSIX threads support on the Unix
platform; it can now run in a hybrid multiprocess, multithreaded mode. The system has
been rewritten from scratch to be based on autoconf and libtool. These modifications
makes Apache’s configuration system easier to use and more similar to that of other

packages.

Table 2 gives a ZD Net evaluation on the Apache server based on Apache 1.1.3 [14].
Even though the 2.0 release of Apache greatly improved the server in these aspects, it
remains weak when compare to Microsoft IIS. Since Apache is an open-source project,
support for it is not that great, documentation i not well organized, and overall, the

system is not intended for the general user.
2.1.4 Microsoft Internet Information Server

Microsoft Internet Information Server (IIS) benefits tremendously from its integration
with the Microsoft Windows NT operating system [15]. The result is a comprehensive

solution that will surely help Windows NT take a bite out of the Unix-dominated Web

17

server pie. IS uses Windows NT’s User Manager to maintain users and groups, saving
the Web administrator the trouble of maintaining multiple sets of network and Web site
users. The server also utilizes Windows NT’s Event Viewer and Performance Monitor to
view such items as bytes sent per second and current CGI requests. Web administrators
get tighter security, better reporting, and the ability to use their Windows NT user
database for Web server access control. The integrated package includes a rich suite of
bundled tools. including FrontPage 2000 for Web page creation and management, Crystal
Reports for reporting, and Index Server and Net Show for search capabilities and

multimedia, respectively.

wag,r Easer
Documentatlon '. ‘,; g Excellent Good
Installatlon/configuratlon S Good Excellent
Maﬁﬁgégﬁél;?admii;isfration ': Excellent Excellent
Contentandsnte gﬁénagé'mént Good Excellent

Excellent Excellent

Table 3 Microsoft lIS Features

IIS is an extremely capable performer all around, one that would suit the requirements of
any Web site. It performed well serving static pages and handling ISAPI (Information
Server API) processing on the server side. Depending on the client load, IIS held its own

against or outperformed Netscape servers on any platform with static pages and ISAPL

18

IIS began to outshine its competitors as we increased the load to 56 and then 60 clients

with static pages. This bodes well for its scalability.

[IS needs an external package to support Servlets. Only few packages can be found on
the Internet that providers IIS Servlet support. Performance of these packages is
relatively poor. Documentation and support for these packages is poor. IIS, designed and
integrated to run Microsoft series of Web applications, is not a good choice for running a
Servlet. Active Server Page is one possible substitute for Servlet on IIS.The latest version
of IIS is version 5.0. It comes free with Windows 2000. Compared to other products, it is
well documented and well supported. Support can be found on both the Microsoft Web
site and through the worldwide Microsoft customer supporting service. IIS benefits from
the new release of Windows NT 2000, is more reliable and robust and delivers a good
performance. It provides developers of commercial Web sites (which mostly running on

Unix/Linux platform) a choice on both OS and Web Server.

2.2 Application Servers

Application Servers run the software between browsers and data. For example, when a
customer fills out and enters an order from a browser, a Web server sends the request to
the application server, which executes the logic and also retrieves and updates customer
data from back-end sources. The application server, rather than the client (browser, rich
client), Web server or back-end system, runs the business programs in the middle
between a client and an enterprise’s data and other applications. The application server
physically separates the business logic from the client and the data, and creates an
architecture known as multi-tier computing. Application servers enable businesses to

develop and deploy applications quickly and easily and increase the quantity of users

19

without reprogramming. The separate tier is the key to this additional functionality.

2.2.1 Application Server Evolution

Figure §

l 1
CGl & Proprietary . Application
Web Server AP Java & VB script Server
) Mission critical
Static Text and Dynamlc pages Business process applications for
with Database
Images Content support extended
‘ enterprise
i
CGI- slow i .
Limiting ¢ API -Difficult to . Difficult to scale Reliable, scalable
. and fast
implement

Application Server Evolution

As shown in Figure 5, before application servers were introduced, Web servers served

only static text and images. Later, in response to fast growing Web application needs,

CGI and server API were added to Web servers to allow dynamic pages and database

content. However, CGI was slow and server API, with no general standard. was relatively

difficult to implement. Server side Java script and VB script were introduced in an effort

to replace CGI and server API and, indeed, server side Java script and VB script can suit

business process needs in case of small applications. They are difficult to scale, however.

The application server soon became the major solution for commercial Web application

development, and provided reliable and scalable support for mission-critical applications.

We will discuss a few commonly used Web application server approaches in the

following section.

20

2.2.2 Web Application Approaches
Most applications on the Web today are one of following general types:

Server-based CGI forms
Web server APIs

Active Server Pages
Client-based Java applets
Java Server Pages

COBRA

Enterprise JavaBeans (EJB)

Microsoft DNA

Servlets

CGI

An early Web solution was the CGI interface. Developers wrote individual programs to
this interface, and Web-based applications called the programs through the Web server.
This solution has significant scalability problems — each new CGI request launches a
new process on the server. If multiple users access the program concurrently. these
processes may consume all of the Web server’s available resources and the performance

slows down considerably.

One typical example of CGI is CGI forms, CGI forms are quick to download and allow
developers to use heavy processes located on back-end servers to calculate/query results.
Their disadvantage is that they require the user to hit the Submit button to get anything to
happen, don't offer intuitive navigations between data fields, and are slow to regenerate

the results screen. In general they are not friendly to use.

Security is another big concern. Most CGI scripts written in Perl use the command shell

to execute OS commands with user-supplied data, for instance to send mail, search for
information in a file, or just leverage OS commands in general. This use of a shell opens
up many opportunities for a creative hacker to make the script remove all files on the
server, mail the server’s password file to a secret account, or other undesirables

outcomes.
Web Server Proprietary APIs

The Web server vendors defined APIs to solve some of these problems. but an
application written to a proprietary APIs such as Apache API is dependent upon its
particular server vendor. If a developer needs to migrate this application to a server from
another vendor, the development process would have to start from scratch. A further
problem is that APIs typically support C/C++ code executing in the Web server process.
[f the application should crash, due to, say, a bad pointer or division by zero, it brings the

Web server down with it.
Active Server Pages

Microsoft’s Active Server Pages ™ (ASP) technology makes it easier to create dynamic
content on a Web page, but only works with Microsoft IIS or Microsoft Personal Web
Server. ASP is a proprietary technology developed by Microsoft, and limits deployment
to their own Web server. It utilizes a subset of the non-portable Visual Basic language,
and is not suitable for commercial-quality development of Web applications for a number
of reasons, including performance, database portability and access, and the structure of

the language itself.
Java Applets

Java applets, on the other hand, usually download the business logic to the client

machine and run what is essentially a little application there. Once downloaded they are
quick to respond and can offer a more application-like user interface. However, applets
can be painfully slow to download initially and they cannot easily access server-side
processes. User must endure a slow download for each new piece of functionality in the

overall application.
Java Server Pages (JSP) Technology

For the creation of pages with dynamically generated content. Java Server Pages (JSP)

constitutes a good choice. This solution addresses the limitations of other alternatives by:

€ Working on any Web or application server.
€ Separating the application logic from the appearance of the page.
€ Allowing fast development and testing

€ Simplifying the process of developing interactive Web-based applications.

The JSP specification is the result of extensive industry cooperation between vendors of
Web servers, application servers, transactional systems, and development tools. Sun
Microsystems developed the specification to integrate with and leverage existing
expertise and tools that support the Java programming environment, such as Java
Servlets and JavaBeans™. The result is a new approach to the development of
Web-based applications that extends powerful capabilities to page designers through the

use of component-based application logic.
Java Servlets

Java Servlets is a technology that is rapidly replacing CGI scripts as the preferred choice
for dynamic Web sites server-side processing. As Web sites get more and more

interactive, customized and dynamic, developers turn to technologies that allow them to

23

do more than what the first-generation of Web tools could handle.

One of the advantages over CGI is that a Servlet can retain information between requests
and share common resources. When CGI is used, performance and scalability are big
problems since a new process is created for each request, quickly draining a busy server
of resources. Sharing resources such as database connections between scripts or multiple

calls to the same script leads to repeated execution of expensive operations.

Java Servlets are based on a simple API supported by virtually all Web servers and even
load-balancing, fault-tolerant application servers. They solve performance problems by
executing all requests as threads in one process. or, in the case of a load-balanced system.

in one process per server in the cluster. Servlets can easily share resources.

Security is improved by using Servlet in many ways when compared to CGI. First of all,
the Java APIs provide access to all commonly used functions. and we rarely require that a
shell execute commands with user-supplied data. We can use Java Mail to read and send
email; Java Database Connect (JDBC) to access databases; the File class and related
classes to access the file system; RMI, CORBA and Enterprise Java Beans (EJB) to
access legacy systems. The Java security model makes it possible to implement
fine-grained access controls, for instance, allowing access only to a well-defined part of
the file system. Java’s exception handling also makes a Servlet more reliable than
proprietary C/C++ APIs: a divide by zero is reported as an error instead of crashing the

Web server.

Servlet-based applications avoid a lot of processing overhead. Using threads instead of
processes means that a Servlet can retain data between requests. For instance, multiple
requests can share a pool of database connections and frequently requested information
can be cached. Threading and persistence make it easier to develop high performance

solutions.

24

Performance and scalability are important concerns when selecting a technology for Web
site development. A popular site can receive an enormous number of requests per day.
With inherited threading and techniques such as database connection pooling and caching,

Servlet-based solutions are well able to handle the pressure.

CORBA

Common Object Request Broker Architecture (CORBA) [2] is the dominant distributed
component model for ASP applications for which the components need to be deployed
across various types of networks and on various platforms. The Object Management
Group (OMG), an industry consortium consisting of over 800 [T companies, with the

notable exception of Microsoft. specified CORBA.

CORBA uses Object Request Broker (ORB) to provide network connectivity for its
components, and uses a neutral Interface Definition Language (IDL) to separate interface
specification and the implementation of a component. CORBA components support
universal reference. network interoperability, introspection. Currently all Netscape Web
browsers have a built-in ORB to support CORBA-based applications embedded in Web

contents.

A special feature of CORBA is that it can easily wrap up legacy code in CORBA wrapper

components, thus providing a fast-track approach to adapt legacy code to the ASP model.

The ultimate goal of CORBA is system integration. OMG uses IDL to standardize the

specification of vertical and horizontal common facilities for system integration [5].

Enterprise JavaBeans (EJB)

Java, developed by Sun Microsystems, has become the foundation of a powerful

environment for developing and running server-based applications [3]. Enterprise

25

JavaBeans (EJB) is a component-based infrastructure framework that forms the basis of
many high-end application servers. While JavaBean is the Java component model that
mainly runs on a client machine, an EJB is a specialized, non-visual JavaBean that runs
on a server. The EJB server-side component architecture brings together most of the

properties and services we described for our component reference model.

Since its introduction over two years ago, Enterprise JavaBeans technology has
maintained unprecedented momentum among platform providers and enterprise
development teams alike. That's because the EJB server-side component model
simplifies development of middleware components that are transactional, scalable. and
portable. Enterprise JavaBeans servers reduce the complexity of developing middleware
by providing automatic support for middleware services such as transactions, security,

database connectivity, and more.

EJB by itself can only support the integration of Java components. But EJB and CORBA
are complementary. CORBA has become the implementation technique of EJB Remote
Method I[nvocations (RMI). EJB has provided CORBA with a friendlier user-interface.
EJB augments CORBA with declarative transactions, a server-side component
framework, and tool-oriented deployment and security descriptors. CORBA augments
EJB with a distributed object framework, multilingual client support. and I[IOP

(Internet-Inter-ORB Protocol) interoperability.

To integrate an existing CORBA component into an EJB framework. we only need to use
the 1DL-generated JavaBean proxy to represents the original CORBA component. It is

very easy, therefore, to take advantage of both these component models [5].
Microsoft DNA

While CORBA and EJB are both based on open standards, Microsoft Distributed

26

interNetwork Applications (DNA) is a proprietary technology based on Microsoft’s
COM+ [4]. DNA represents Microsoft’s vision of networked computing; it is an
application architecture to compete with CORBA and EJB. The objective of DNA is to
fully embrace and integrate the Internet, client/server, and PC models of computing to
support the development of scalable, multi-tier business applications that can be

delivered over any network.

The most significant difference between Windows DNA and CORBAJ/EJB is that
Windows DNA is a proprietary product supported by a single vendor, whereas
CORBA/EJB is an open industry standard supported by a variety of middleware vendors,
each of which are providing implementations for the standard. The cornerstone of
Windows DNA is COM+, a language-independent technology used to build re-usable
components. COM+ is an enhanced version of (Distributed) Component Object Model
(COM/DCOM) integrated with Microsoft Transaction Server (MTS), the supporting
environment for COM components. Unlike CORBA and EJB, COM is a binary standard

to support the interaction among component instances with pointers to interfaces.

The main strengths of COM+ are its position as a mature core-supporting technology for
Windows applications in the last decade; close integration with Windows applications:
and user-friendly development environments. Therefore it is 4 very attractive platform
for developing ASP applications for servers and clients using Windows. The
disadvantages of COM+ are that it is basically native to Windows platform; that,
compare with CORBA, it currently offers limited services for distributed computing and
scalability; and that it lacks competition that would compel the perfection of the
technology. Even though Microsoft has made effort to port COM to other platforms,
MTS, the supporting environment for COM, proved to be a big obstacle to this effort due
to its high platform dependency. In recent years Microsoft tried to use interoperability

to compensate for COM’s platform dependency. With DCOM/CORBA bridges, COM

27

component instances running on Windows can interact with CORBA/EJB component
instances running on other platforms. Microsoft supports Java, but only as a language,

not as a platform [5].

2.2.3 Servlet Advantages

Servlets have the following advantages over other common server extension

mechanisms:

® They are faster than CGI scripts because they use thread instead of process.

® They use a standard API that is supported by many Web servers.

® They have all of the advantages of the Java language. including ease of
development and platform independence.

® They can access a large set of APIs available for the Java platform (e.g.
database access, email, directory servers. CORBA. RMI. Enterprise

JavaBeans and others).

All business logic runs on the back-end server. which means that it is never downloaded
to the user machine and can easily access server processes, such as database queries, and

multi-processor calculation engines.

“Java is a great platform for writing the server side of your Web-based application.
Servlets are emerging as the preferred way of creating highly dynamic WWW services

linked to real backend applications and databases. See the growing trend at

http://wwwservlelcehlral. com.” (7]

“Java makes it easy to develop and deploy all parts of a professional, maintainable

distributed system application. The Servlet API provides you the fastest way to start

28

using Java Server technology in your networked applications. You can start with
applications that involve clients and a single server, and gradually create multi-tier
enterprise applications which integrate the power and flexibility of Java throughout your
existing network ... because Java Servlets run on the software and hardware you've

already installed.” [7]

The AWS project selected Java Servlet as an application server approach due to the
above reasons. After all, AWS is not a commercial product and we have designed AWS
more for research purpose: it is a prototype that will allow readers of this thesis to
understand application servers better. Java is a pure object oriented language. Java
applications are easy to implement and easy to read. Our use of Java Servlets as an
application server approach will help readers better read and understand the

implementation and structure of AWS.

29

Chapter 3 Web Server Concept

The term “Internet” applies to a collection of networks, including the Arpanet, NSFnet,
regional networks such as NYsernet, local networks at a number of University and
research institutions, and a number of military networks. The subset of them managed by
the US Department of Defense is referred to as the "DDN” (Defense Data Network), and
includes some research-oriented networks, such as the Arpanet. as well as those of a
purely military character. (Because the DDN organization provides much of the funding
for Internet protocol development, the terms Internet and DDN can sometimes seem

equivalent.)

All of these networks are connected to one another. Users can send messages from any of
them to any other. except where there are security or other policy restrictions on access.
TCP/IP (Telecommunication Protocol/Internet Protocol) is a family of protocols that
provide low-level network functions needed for many applications. Other protocols
perform specific tasks, e.g. transferring files between computers. sending mail, or finding
out who is logged in on another computer. Initially TCP/IP was used mostly in
communications between minicomputers or mainframes. These machines had their own

disks, and generally were self-contained.

3.1 Network and DNS Structure

As shown in Figure 6, a sample site called samplesite.com server, with an IP address of
123.456.789.123, is connected to the Internet. A Web server application is running on this

machine. Many client machines are also connected to the Internet, and a Web browser

30

application is running on each of these machine, The client machines may use two
methods to access the samplesit.com Web server: by using the [P address
123.456.789.123 or by using the domain name samplesite.com. If a client uses the IP
address, the connection is done directly, if the client uses domain name, a Domain Name
Server (DNS) will translate the domain name to the IP address before connecting to the

site.

/ e - ',_'
Client 1

lhtgrnet

%
123.345.7g9.
123

123.456.789.123

Samplesite.com
server

Client 3

Figure 6 Physic Structure of Web and DNS Translate process

3.2 TCP/IP Connection

An Internet TCP/IP connection is a point-to-point bi-directional connection. When Client

31

1 requests a Web page on the samplesite.com server, a connection between Client 1 and
the samplesite.com server will be established. Client 1 can send the page request and

receive the response page data through this connection.

3.2.1 Socket

A socket is an endpoint for communication between two machines. There are in general
two types of sockets. One is connection socket, which is an established connection
between a client and a server. This connection socket can be read from and written to just
like a file. The other type of socket is listening socket, which is a server-side socket that
is not connected to any specific client, but rather listens to a certain port (see Subsection
3.2.2). The listening socket listens for any incoming new requests from that port. Once a
new request comes in, a peer-to-peer connection is established. This creates a new
connection socket on another port, and keeps the original socket listening for incoming

connections on the defined port.
3.2.2 Port

A port is a communication channel through which client and server can be connected and
exchange data. It is a “logical connection place™ and specifically, when we use the
Internet’s protocol (TCP/IP), a port is the way a client program specifies a particular
server program on a computer in a network. Higher-level applications that use TCP/IP,
such as the Web protocol, HTTP, have ports with preassigned numbers. These
“well-known ports” have port number assigned by the Internet Assigned Numbers
Authority. Other application processes are given port numbers dynamically for each
connection. When an Internet service is initially started, it is said to bind to its designated
port number. Any client program that wants to use that server must request to bind to the

designated port number [5].

32

Port numbers are from 0 to 65536. Ports 0 to 1024 are reserved for use by certain
privileged services. For the HTTP service, port 80 is defined as a default and it does not
have to be specified in the Uniform Resource Identifier (URI). The most common form
of URI is the Web page address, which is a particular form or subset of URI called a

Uniform Resource Locator (URL) [[16]].

80
81
82
83
84

Web Server 1000
1001
1002

Figure 7 Web Server port assignment

In the Example shown in Figure 7, a Web server is running on samplesite.com and
listening to port 80. Client 1 requests a Web page from samplesite.com by sending an
HTTP request through port 80 of [P 123.1.1.1. The listening socket on the server will
accept this request and assign a free port (usually randomly selected) to the client. Client
| receives the number of the free port, port 1000 in this case, and establishes a socket
connection to port 1000 of IP 123.1.1.1. Then client and server can communicate with

each other through this communication channel.

3.3 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

33

collaborative, hypermedia information systems. It is a generic, stateless, protocol that can
be used for many tasks beyond its use for hypertext, such as name servers and distributed
object management systems, through extension of its request methods, error codes and
headers. A feature of HTTP is the typing and negotiation of data representation, allowing

systems to be built independently of the data being transferred.

3.3.1 Overview

HTTP has been in use by the World Wide Web global information initiative since 1990. .
The first version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data
transfer across the Internet. HTTP/1.0, as defined by RFC 1945, improved the protocol
by allowing messages to be in the format of MIME-like messages, containing Meta
information about the data transferred and modifiers on the requesi/response semantics.
However, HTTP/1.0 did not sufficiently take into consideration the effects of hierarchical
proxies. caching, the need for persistent connections. or virtual hosts. In addition, the
proliferation of incompletely implemented applications calling themselves “HTTP/1.0™
necessitated a protocol version change in order for two communicating applications to
determine each other’s true capabilities. The current version, HTTP 1.1, includes more
stringent requirements than HTTP/1.0 in order to ensure reliable implementation of its
features. Practical information systems require more functionality. including search.
update, and annotation, than simple retrieval. HTTP allows an open-ended set of methods
and headers that indicate the purpose of a request. It builds on the discipline of reference
provided by the Uniform Resource Identifier (URI), as a location (URL) or name (URN),
to indicate the resource to which a method is to be applied. Messages are passed in a
format similar to that used by Internet mail as defined by the Multipurpose Internet Mail

Extensions (MIME).

HTTP is also used as a generic protocol for communication between user agents and

34

proxies/gateways to other Internet systems, including those supported by the Simple Mail
Transfer Protocol (SMTP), Network News Transfer Protocol (NNTP), FTP, Gopher, and
Wide Area Information Server (WAIS) protocols. In this way, HTTP allows basic

hypermedia access to resources available from diverse applications.

3.3.2 HTTP 1.1 versus HTTP L.OHTTP 1.0

1. HTTP/1.0 does not sufticiently take into consideration the effects of
hierarchical proxies, caching, the need for persistent connections, and

virtual hosts,

[

Closing the connection causes loss of congestion information

3. Connection opens may congest low bandwidth links, due to a lack of flow

control on TCP opens and closes
4, Poor user-perceived performance (most connections in slow-start)

5. Workaround has been to open multiple simultaneous connections, with

resulting congestion problems
6. Servers have thousands of connections in close & wait state

7. Cost is primarily memory, on systems running reasonable TCP

implementations

8. Large scale servers with HTTP result in big servers using 100’s of L.P.

addresses and consequential routing headaches

9. Caching model is primitive, and broken enough that content providers often defeat

cachingHTTP 1.1

1. Reduces HTTP’s impact on the Internet, and make HTTP a ‘well behaved’

35

Internet protocol
2. Improves user-perceived performance

Reduces load and increase performance of HTTP servers

(U8]

4. Enables reliable applications in the face of caching

Should help congestion and other operational problems of parts of the

(¥ [

[nternet

6. Decreases load of HTTP on the Internet

3.3.3 HTTP Connection

i HTTP Request W

| get /index html HTTP 1.1 |
" HOST samplesite.com |]

i

AN . \!

' Socket Connection
B - Client running IE
Samplesite.com— N

HTTPserver | wrTP Response

200 OK
Content-Type: texthtmi %
Content-Length: 2056 ;

b

Figure 8 HTTP request and HTTP response headers

Once a socket connection is established, two sockets, on both the server side and the
client side, communicate with each other by using HTTP protocol. HTTP protocol can be

separated into two parts: HTTP request and HTTP response. An HTTP request is send to

36

the HTTP server by a client that contains the client’s request information; HTTP response
is the server’s response to that request. Figure 8 shows a typical HTTP request and
response set. Through a socket connection, an HTTP request has been sent to the server
requesting a Web page: /index.html. The HTTP server finds the Web page and informs
the client that this resource is available and will be sent after the response header.

Content type of this Web page is text and html; content length of this Web page is 2056.

3.3.4 Persistent Connection

Prior to persistent connections, a separate TCP connection was established to fetch each
URL, increasing the load on HTTP servers and causing congestion on the Internet. The
use of inline images and other associated data often require a client to make multiple

requests of the same server in a short period of time.

A typical Web page in current days contains at least 5 files. In HTTP 1.0. to fetch these 5
files, at least 5 connections will be established and 5 file requests will be send through
these 5 connections. With HTTP 1.1 support, in a default setting, a client browser will

open at most 2 connections to one server location. Client and server may pipeline the

request and response. Persistent HTTP connections have a number of advantages:

- Opening and closing fewer TCP connections saves CPU time in routers and
hosts (clients, servers, proxies, gateways. tunnels, or caches), and. in hosts,

saves memory used for TCP protocol control blocks.

- HTTP requests and responses can be pipelined on a connection. Pipelining
allows a client to make multiple requests without waiting for each response,
allowing a single TCP connection to be used much more efficiently, with

much less elapsed time.

- Network congestion is reduced by reducing the number of packets caused by

37

TCP opens, and by allowing TCP sufficient time to determine the congestion

state of the network.

- Latency on subsequent requests is reduced since there is no time spent in

TCP’s connection opening handshake.

- HTTP can evolve more gracefully, since errors can be reported without the
penalty of closing the TCP connection. Clients using future versions of
HTTP might optimistically try a new feature, but when communicating with

an older server, retry with old semantics after an error is reported.

3.3.5 HTTP Request

An HTTP request message from a client to a server includes, within the first line of that
message, the method to be applied to the resource, the identifier of the resource. and the

protocol version in use.

Request = Request-Line
*(header CRLF)
CRLF

[message-body |

Request-Line

The Request-Line begins with a method token, followed by the Request-URI and the
protocol version, and ending with CRLF. The elements are separated by SP (space)

characters. No CR or LF is allowed except in the final CRLF sequence.

38

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Example of a request line:
get /index.html

post /countercgi HTTP 1.1

HTTP 0.9 does not implement the HTTP version token. Therefore the first line of the
example is using HTTP 0.9. The later versions, HTTP 1.0 and HTTP 1.1, support the

token and a request line will be like the second line of the example.

Method

The Method token indicates the method to be performed on the resource identified by

the Request-URI. The method is case-sensitive.
Method ="GET"|"HEAD"| "POST"| "PUT"| "DELETE"

All general-purpose servers MUST support the methods GET and HEAD. All other
methods are OPTIONAL.

GET

The GET method means retrieve whatever information (in the form of an entity) is
identified by the Request-URI. If the Request-URI refers to a data-producing process,
it is the produced data that shall be returned as the entity in the response and not the

source text of the process, unless that text happens to be the output of the process.

39

The semantics of the GET method change to a “conditional GET” if the request
message includes an If-Modified-Since field. A conditional GET method requests
that the entity be transferred only under the circumstances described by the
conditional header field(s). The conditional GET method is intended to reduce
unnecessary network usage by allowing cached entities to be refreshed without

requiring multiple requests or transferring data already held by the client.

HEAD

The HEAD method is identical to GET except that the server must not return a
message-body in the response. The metainformation contained in the HTTP headers
in response to a HEAD request should be identical to the information sent in
response to a GET request. This method can be used for obtaining metainformation
about the entity implied by the request without transferring the entity-body itself.
This method is often used for testing hypertext links for validity, accessibility, and

recent modification.

The response to a HEAD request may be cacheable in the sense that the information
contained in the response may be used to update a previously cached entity from that
resource. If the new field values indicate that the cached entity differs from the
current entity (as would be indicated by a change in Content-Length, Content-MD35,

ETag or Last-Modified), then the cache must treat the cached entry as stale.

POST

The POST method is used to request that the origin server accept the entity enclosed
in the request as a new subordinate of the resource identified by the Request-URI in
the Request-Line. POST is designed to allow a uniform method to cover the

following functions:

40

@ Annotating existing resources;

® Posting a message to a bulletin board, newsgroup, mailing list, or similar

group of articles;

® Providing a block of data, such as the result of submitting a form, to a

data-handling process:

® Extending a database through an append operation.

The actual function performed by the POST method is determined by the server and
is usually dependent on the Request-URI. The posted entity is subordinate to that
URI in the same way that a file is subordinate to a directory containing it, a news
article is subordinate to a newsgroup to which it is posted, or a record is subordinate

to a database.

The action performed by the POST method might not result in a resource that can be
identified by a URL In this case, either 200 (OK) or 204 (No Content) is the
appropriate response status, depending on whether or not the response includes an

entity that describes the result.

Responses to this method are not cacheable, unless the response includes appropriate
Cache-Control or Expires header fields. However, the 303 (See Other) response can

be used to direct the user agent to retrieve a cacheable resource.

Header Fields

Header Fields could be combination of request headers, entity headers and general
header.

The request-header fields allow the client to pass additional information about the request,

and about the client itself, to the server. These fields act as request modifiers, with

41

semantics equivalent to the parameters on a programming language method invocation.

request-header = Accept| Accept-Charset| Accept-Encoding| Accept-Language
| Authorization| Expect| From| Host| If-Match| If-Modified-Since
| If-None-Match| If-Range| If-Unmodified-Since| Max-Forwards

| Proxy-Authorization| Range| Referer| TE| User-Agent

Request-header field names can be extended reliably only in combination with a change
in the protocol version. However. new or experimental header fields may be given the
semantics of request- header fields if all parties in the communication recognize them to

be request-header fields. Unrecognized header fields are treated as entity-header fields.

Entity-header fields detine metainformation about the entity-body or, if no body is
present, about the resource identified by the request. Some of this metainformation is

optional: some might be required by portions of this specification.

Entity-header = Allow| Content-Encoding| Content-Language| Content-Length|

Content-Location| Content-MDS| Content-Range| Content-Type|

Expires| Last-Modified| Extension-Header

The extension-header mechanism allows additional entity-header fields to be defined
without changing the protocol, but these fields cannot be assumed to be recognizable by
the recipient. Unrecognized header fields SHOULD be ignored by the recipient and

MUST be forwarded by transparent proxies.

There are a few header fields which have general applicability for both request and
response messages, but which do not apply to the entity being transferred. These header

fields apply only to the message being transmitted.

42

General-header = Cache-Control| Connection| Date| Pragma| Trailer|
Transfer-Encoding | Upgrade| Via| Warning

General-header field names can be extended reliably only in combination with a change
in the protocol version. However, new or experimental header fields may be given the
semantics of general header fields if all parties in the communication recognize them to

be general-header fields. Unrecognized header fields are treated as entity-header fields.

Examples of Request Header:
Host Header

The Host request-header field specifies the Internet host and port number of the
resource being requested, as obtained from the original URI given by the user or
referring resource (generally an HTTP URL). The Host field value must represent
the naming authority of the originating server or gateway given by the original URL.
This allows the origin server or gateway to differentiate between internally
ambiguous URLSs, such as the root */* URL of a server for multiple host names on a

single [P address.
Host = "Host: " host ["':" port]

A “host” without any trailing port information implies the default port for the service
requested (e.g., “80” for an HTTP URL). For example, a request on the origin server

for <http://www.w3.org/pub/WWW/> would properly include:

GET /pub/WWW/ HTTP/1.1

43

Host: www.w3.org

A client must include a Host header field in all HTTP/1.1 request messages. If the
requested URI does not include an Internet host name for the service being requested.
then the Host header field must be given with an empty value. An HTTP/1.1 proxy
must ensure that any request message it forwards does contain an appropriate Host
header field that identifies the service being requested by the proxy. All
Internet-based HTTP/1.1 servers must respond with a 400 (Bad Request) status code

to any HTTP/1.1 request message that lacks a Host header field.

If-Modified-Since

The If-Modified-Since request-header field is used with a method to make it
conditional: if the requested data has not been modified since the time specified in
this field. an entity will not be returned from the server; instead, a 304 (not modified)

response will be returned without any message-body.

If-Modified-Since = "If-Modified-Since: " HTTP-date

An example of the field is:

[f-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

A GET method with an If-Modified-Since header and no Range header requests that
the identified entity be transferred only if it has been modified since the date given
by the If-Modified-Since header. The algorithm for determining this includes the

following cases:

® [f the request would normally result in anything other than a 200 (OK)

status, or if the passed If-Modified-Since date is invalid, the response is

44

exactly the same as for a normal GET. A date that is later than the server’s

current time is invalid.

® [f the data has been modified since the If-Modified-Since date, the response

is exactly the same as for a normal GET.

® If the data has not been modified since a valid If-Modified-Since date. the

server should return a 304 (Not Modified) response.

The purpose of this feature is to allow efficient updates of cached information with a

minimum amount of transaction overhead.

Note: [f-Modified-Since times are interpreted by the server, whose clock might

not be synchronized with the client.

Note: When handling an If-Modified-Since header field, some servers will use an
exact date comparison function, rather than a less-than function, for
deciding whether to send a 304 (Not Modified) response. To get best
results when sending an If-Modified-Since header field for cache
validation, clients are advised to use the exact date string received in a

previous Last-Modified header field whenever possible.

Note: If a client uses an arbitrary date in the If-Modified-Since header instead of
a date taken from the Last-Modified header for the same request, the
client should be aware of the fact that this date is interpreted in the
server’s understanding of time. The client should consider
unsynchronized clocks and rounding problems due to the different
encoding of time between the client and server. This includes the

possibility of race conditions if the document has changed between the

45

time it was first requested and the [f-Modified-Since date of a subsequent
request, and the possibility of clock-skew-related problems if the
If-Modified-Since date is derived from the client’s clock without
correction to the server’s clock. Corrections for different time bases

between client and server are at best approximate due to network latency.
3.3.6 HTTP Response

After receiving and interpreting a request message, a server responds with an HTTP

response message.

Respoﬁse = Status-Line
*(header CRLF)
CRLF
[message-body |

Status-Line

The first line of a Response message is the Status-Line. consisting of the protocol version
followed by a numeric status code and its associated textual phrase, with each element

separated by SP characters. No CR or LF is allowed except in the final CRLF sequence.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and
satisfy the request. The Reason-Phrase is intended to give a short textual description of
the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase

is intended for the human user.

46

The first digit of the Status-Code defines the class of response. The last two digits do not

have any categorization role. There are 5 values for the first digit:

-1xx: Informational - Request received, continuing process

- 2xx: Success - The action was successfully received, understood, and accepted

- 3xx: Redirection - Further action must be taken in order to complete the request

- 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

-3xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for HTTP/1.1, and a sample set

of corresponding Reason-Phrase’s, are presented below. The reason phrases listed here

are only recommendations -- they may be replaced by local equivalents without affecting

the protocol.

Status-Code | Reason-Phrase

Status-Code

Reason-Phrase

=% Continue

sl Switching Protocols

'gg.OK

2% Created

Accepted

Non-Authoritative
Information

| No Content

Reset Content

Partial Content

Multiple Choices

Moved Permanently

Found

See Other

Not Modified

47

: Use Proxy

Temporary Redirect

: : Bad Request

4 Unauthorized

,: | Payment Required

1 Forbidden

i
! Not Found

5| Method Not Allowed

Not Acceptable

Proxy Authentication

: Required

Request Time-out

Conflict

Gone

!l Length Required

Precondition Failed

| Request Entity Too Large

Request-URI Too Large

1 Unsupported Media Type

Requested
satisfiable

range

not §:-

1 Expectation Failed

Internal Server Error

Not Implemented

Bad Gateway

| Service Unavailable

| Gateway Time-out

HTTP Version not supported

Table 4

HTTP response status code and Reason-Phrase

HTTP status codes are extensible. HTTP applications are not required to understand the

meaning of all registered status codes, though such understanding is obviously desirable.

However, applications must understand the class of any status code, as indicated by the

first digit, and treat any unrecognized response as being equivalent to the x00 status code

of that class, with the exception that an unrecognized response must not be cached. For

example, if the client receives an unrecognized status code 431, the client can safely

48

assume that there was something wrong with its request and treat the response as if it had

received a 400 status code.
200 OK

The request has succeeded. The information returned with the response is dependent

on the method used in the request, for example:

GET: An entity corresponding to the requested resource is sent in the

response.

HEAD: The entity-header fields corresponding to the requested resource are

sent in the response without any message-body.
POST: An entity describing or containing the result of the action.

TRACE: An entity containing the request message as received by the end

SErver.

304 Not Modified

If the client has performed a conditional GET request and access is allowed, but the
document has not been modified, the server should respond with this status code.
The 304 response must not contain a message-body, and thus is always terminated

by the first empty line after the header fields.

49

400 Bad Request

The server could not understand the request due to malformed syntax. The client

should not repeat the request without modifications.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the
request.

Response Header Fields

The response-header fields allow the server to pass additional information about the
response that cannot be placed in the Status- Line. These header fields give information

about the server and about further access to the resource identified by the Request-URI.

response-header = Accept-Ranges| Age| ETag| Location| Proxy-Authenticate

| Retry-After| Server| Vary| WWW-Authenticate

3.3.7 Stateless feature of HTTP

HTTP is a stateless protocol. A protocol is said to be stateless if it has no memory of prior
connections and cannot distinguish one client’s request from that of another. FTP is a
stateful protocol because the connections is not opened and closed with every request.
After the initial login, the FTP server maintains the user’s credentials throughout the

session. On the other hand, due to its stateless nature, there is no inherent method in

50

HTTP for tracking a client’s traversal of a Web site. Every request uses a new connection
from an anonymous client. State is extremely useful for secure sites that require a user to
login or for electronic commerce sites that provide customers with a virtual shopping

cart.

The stateless nature of HTTP is both its strength and a weakness. It is strength in that its
stateless nature keeps the protocol simple and straightforward. It also consumes fewer
resources on the server and can support more simultaneous users since there are no client
credentials and connections to maintain. The disadvantage is the increased overhead
required to create a new connection with each request and the inability to track a single

user as he traverses a Web site.

Each command of HTTP is executed independently, without any knowledge of the
commands that came before it. This is the main reason that it is difficult to implement
Web sites that react intelligently to user input. This shortcoming of HTTP is being
addressed by a number of new technologies, including ActiveX. Java, JavaScript and

cookies,

When a user browses the World Wide Web, which is based on HTTP protocol. each
request for a new Web page is processed without any knowledge of previous pages
requested. This is one of the chief drawbacks of the HT TP protocol. Because maintaining
state is extremely useful, programmers have developed a number of techniques to add
state to the World Wide Web. These include server APIs, such as NSAPI and ISAPI, the

use of cookies (see Section 4.2.2) and Servlet sessions (see Sectiond.2.1).

After the server has responded to the client’s request, the connection between client and
server is dropped and forgotten. There is no “memory” between client connections. The
pure HTTP server implementation treats every request as if it was brand-new, i.e. without

context.

CGI applications (see Section 2.2.2) get around this by encoding the state (or a state
identifier) in hidden fields, in the path information, or in URLs in the form being
returned to the browser. In a CGI form submission, the first two methods always return
the state or (its id) when the ucer flick Uie submit button. On the other hand, the method
of encoding state into hyperlinks (URLSs) in the form only returns the state (or id) if the

user clicks on the link and the link is back to the originating server.

It’s often advisable not to encode the whole state but to save it. for instance, in a file, and
identify it by means of a unique identifier, such as a sequential integer. Visitor counter
programs can be adapted very nicely for this - and thereby become useful. It is then
necessary only to send the state identifier in the form, which is advisable if the state
vector becomes large, thus saving network traffic. However the Web administrator must

then take care of the periodic housekeeping of the state files.

52

Chapter 4 Servlet Container Concept

4.1 Servlet Server

Just as regular Web pages are “served” by a Web server application, Servlets are also
provided to the client via a Web server. This can be the same Web server used for static
pages (as is the case with Sun’s Java Web Server). or an entirely different product (such
as JRun) that runs on either the same or a different server. Running Servlets on a Web

server requires a Servlet container, which can also be called as Servlet container.

In a typical situation, the user of the system first browses through static Web pages,
which act as a navigation guide to the various parts of the system (much like menus in
legacy systems). The user then clicks a link that refers to a Servlet, and some action takes

place as a result of the link being activated.

Today, Serviets are a popular choice for building interactive Web applications.
Third-party Servlet containers are available for Apache Web Server, iPlanet Web Server,
Microsoft IIS, and others. Servlet containers can also be integrated with Web-enabled
application servers, such as BEA WebLogic Application Server, IBM WebSphere, iPlanet

Application Server, and others.

A Servlet container should implement the Java Servlet Development Kit (JSDK) APIL.
The latest version of JSDK is 2.1. Sun will continue responsibility for the Servlet API
and JavaServer Pages (see Subsection 2.2.2) specifications, which are being developed

under the Java Community Process.

The Apache Server does not support Servlets directly; the Jserv project is designed as

53

add-on to the Apache as a Servlet container. However, Jserv supports only Java Servlet
Development Kit API 2.0. The Apache group rewrote the Jserv from scratch with JSDK
2.1 support and named it Jakarta Tomcat. It is the most popular Servlet container on the
Apache server. It is the official reference Implementation for the Java Servlet 2.1 and

JavaServer Pages 1.1 Technologies.

AWS supports Servlets with a build-in Servlet container. which is easier to maintain and
configure. The Servlet container benefits from its integration with the Web server and
performs very well in the ZD Net Web Bench test. It supports the latest JSDK 2.1.
However, it does not support the JSP API. The next version of AWS will have this

feature.

4.2 Servlet State (Session) Management Approaches

There is more than one definition of the term “session”. In the traditional sense, a session
is a persistent network connection between two hosts (usually a client and a server) that
facilitates the exchange of information. When the connection is closed, the session is
over. However, a Servlet session is not this kind of session. It is also called a virtual
session, because it involves a virtual connection between the client and the server rather
than a physical connection. A typical HTTP transaction goes like this: the client
establishes a connection to the server, issues a request, receives a response, and then
closes the connection. The server’s tie to the client is serverd once the connection is
closed. If the same client issues a new request, the server cannot associate this connection
with the client’s previous one. The fact that the server “forgets about” the client after the
connection is closed presents significant challenges to the HTTP protocol. If not

remedied, this disconnect between client and server can lead to the following problems

54

and limitations:

o If the server requires client authentication (e.g. a client must log in), the
client must reauthenticate with every request. The server does not realize that
it has already authenticated this client because the connection between the

two was lost.

e Storing user-specific information such as the contents of a shopping cart or
user-defined preferences is not possible because the server cannot distinguish

one client from another.

The solution to these problems is to establish a persistent “virtual connection” between
the client and the server. A virtual connection associates each request received by the
server with the client that issued it. This association is accomplished by requiring the
client to return a piece of state information with each new request. The server uses this
piece of information (usually called a session ID or user ID) to uniquely identify the
client and associate the current request with the client’s previous requests. By allowing
the server to identify the client, virtual connections alleviate the problems presented
above. These virtual connections are commonly referred to as sessions. Sessions are used

to maintain state and client identity across multiple requests.

4.2.1 HTTP Session

HTTP Session vs. Traditional Session

In a traditional session, all client requests are associated by virtue of the fact that they
share the same network connection. In contrast, an HTTP session associates client

requests by virtue of the fact that they all share the same session ID. A traditional session

55

refers to the duration of time that a network connection is open. Similarly, an HTTP
session refers to the duration of time that a virtual connection is active. In short, an HTTP
session is a series of associated requests in which the client can be uniquely identified.
This association between the HTTP client and the HTTP server persists across multiple

requests and/or connections for a specific period of time.

The traditional type of session expires when the network connection is closed. However,
since an HTTP session persists between requests (with each request opening and closing
a connection), the duration of an HTTP session is configurable on the server. A common
approach is to instruct the server to discontinue any sessions that have been inactive for
more than a specified amount of time, say fifteen minutes. In this case, the session will
persist between a client’s requests as long as they are received no more than fifteen
minutes apart. If the client waits more than fifteen minutes before issuing a new request,
the server will end the client’s session and the client will be required to log in again (The
server usually issues a valid session [D with each login). Automatically ending sessions
after a period of inactivity ensures that server resources are not consumed by old

sessions.

When a session expires, it means that the unique session ID used to identify a client is
removed from storage along with any associated data (e.g., shopping cart contents).
Session IDs are usually stored in memory or in a database. Once a session ID expires and
is removed from storage, the client that utilized this session ID must log in again in order

to be assigned a new session ID.

In AWS implementation, a session manager automatically creates new session objects
whenever a new session starts. In some circumstances, clients do not join the session, for

example, if the session manager uses cookies and the client does not accept cookies.

The session ID generator, which is used for Servlet sessions, employs a unique random

56

number generation algorithm. AWS uses the same approach as Apache Jserv to generate

session IDs.
How Do Servlets Access Session Data?

To access the state information stored in a session object, your Servlet can create a new

session as follows:

/l request is an HttpServletRequest that is passed to the Servlet

SessionClass session = request.getSession(true);

The Servlet can call any of the public methods in javax.servlet.http.HttpSession on the

session object.

4.2.2 Cookie

Cookies present the simplest way to store state information on the client. A cookie is a
simple mechanism that allows the server to instruct the client to store small amount of
state information. When an HTTP server receives a request, in addition to the requested
document, the server may choose to return some state information that is stored by a
cookie-enabled client. This state information includes a URL range within which the
information should be returned to the server. The URL range is composed of the server’s
domain and some path information. Whenever the client issues an HTTP request, it
checks the URL of the request against the URL ranges of all stored cookies. If a match is
found, the state information is included in the client’s request. In this way, the server can
effectively overcome the stateless nature of the Web and track a client from request to

request.

57

The advantages of using cookies are many. First, cookies are the simplest way to store
state information on the client because this information need only be stored once. The
server does not have to keep returning this information to the client, as is the case with
rewritten URLs and hidden variables. And unlike storing the session ID in the URL path,
either relative or absolute URLs may be used without losing state. Also, in contrast to
either of the previous two methods, cookies do not require paring of the requested URL
or the HTML document. Cookie information can be extracted from the client request
using a very simple Servlet API method. Thus, server-side processing is kept to a
minimum. Cookies provide a simple, low-overhead method of maintaining state and

session.

Despite the many benefits provided by cookies, there is one distinct disadvantage: they
are not supported by all browsers. This lack of cookie support may result from one of
two causes: either the client is using an older browser that does not recognize cookies or
the user has instructed the browser not to accept cookies. Some users may., often out of
ignorance, turn off cookie support in their browser for fear that cookies may somehow
compromise security or exhaust their system'’s resources (or some other unfounded fear).
Considering that virtually all current browsers support cookies, the chance that a user is
running a browser that does not recognize cookies is small. The possibility that a user
might manually disable cookie support and, in turn, disable a Web site’s mechanism for
state and session management is of greater concern. Some sites may therefore choose to

use an alternate session management mechanism.
Memory-based cookies

There are two types of cookies, the memory-based cookie does not save any information
to your hard disk once your browser is terminated or closed. Or the disk-based cookie

will be stored in a predefined cookie directory. The default settings for most [E and

58

Netscape browsers have memory-based cookies enabled. Even by increasing the level of
security to the maximum, memory-based cookies are still accepted without notification

(only by going into custom settings can memory-based cookies be disabled in IE).

How cookie works

The main purpose of cookies is to identify users and possibly prepare customized Web
pages for them. In a typical situation, when you enter a Web site using cookies, you may
be asked to fill out a form providing such information as your name and interests. This
information is packaged into a cookie and sent to your Web browser, which stores it as a
text file for later use. The next time you go to the same Web site, your browser will send
the cookie to the Web server. The server can use this information to present you with
custom Web pages. For example, instead of seeing just a generic welcome page, you

might see a welcome page with your name on it.

How do Servlets create and set cookie data?

After a cookie is created, it can be set by using the addCookie method in

HttpServietResponse.

// response is an HttpServletResponse that is passed to the Servlet

Cookie cookie =new Cookie("'cookiename', "cookievalue');

response.addCookie(cookie);

The Servlet can call any of the public methods in javax.servlet.http.Cookie on the

Cookie object.

59

How do Servlets access cookie data?

After a cookie is set, when the next request from the same client comes in, the cookie can

be fetched by using the getCookies method in HttpServietRequest.

// request is an HttpServletResponse that is passed to the Servlet

Cookie [] cookies = request. getCookies();

The Servlet can call any of the public methods in javax.servlet.http.Cookie on the Cookie

object.

60

Chapter S Web Server Implementation

5.1 Project Overview

5.1.1 Objective:

In order to understand Web server and HTTP better, I implemented a pure Java Web
server — the Abao Web Server (AWS). The objective of the AWS project is to develop a
commercial-grade, full Java compliant, easy to use and easy to configure, open-source

Web server.

5.1.2 Releases

The project began in January 2000; the first Beta release of AWS was available in middle
of May 2000. Version 1.0 was released in late August and in November 2000 the latest
release of AWS, version 1.5 was released. This version has enhanced support for Servlets
and sessions. It fully supports most HTTP 1.1 features: persistent connection, CGI,
Servlet, etc. It also has a GUI when running on the Windows platform to make user
configuration easier. AWS does the same job as Apache + Jserv or Apache + Jakarta

Tomcat. It has a build-in Servlet container that can speed up the Servlet response.

5.1.3 Java Support

This package is done with JDK 1.3. It uses and supports the Java Servlet development kit

61

(JSDK) 2.1 Standard. Documentation and Specifications of JDK 1.3 and JSDK 2.1 can
be found on the Java’s home page on Sun Microsystem’s Web site. Because it uses pure
Java, AWS can be used on any platform. It has been tested on two platforms: Windows

95/NT and Unix/Linux.

5.1.4 Installation and configuration

The completed package is about 150K in size. The deployment package contains only 4
files: 1 jar file for complied source and library, and three .conf files for configurations.
The .conf file follows the same rule as Apache .conf files. It is very simple to install and
configure. Details for compiling, installation and configuration are in Appendix B

AWS installation and configuration manual).

5.2 Project UML and Package structure

5.2.1 Package com.chinapromotion.aws

Figure 9 shows the structure of the AWS project. The AWS class and all other packages
shown on this diagram is under the package com.chinapromotion.aws. The name of
package follows the general rule of com + company name + project name. China
Promotion is a company I registered in Hong Kong. The source of this project and future
projects will be supplied as open source projects on the company’s Web site once [go

back to Hong Kong.

In this diagram, we can see one class and six packages. The AWS class, which is the

main class of the project, controls the initialization of program and loading of

62

configuration. [t responsible for restarting and shutdown the program, and also contains
the implementation of main class, which will parse the command line parameter. The
only command line parameter AWS supports now is “-c” parameter, which gives out the
path of the installation path of the AWS project. This parameter is later used to load
configuration files and log any event and error to a log file. The program will exit and the
usage function will be called to print out the correct format of command line parameter

whenever there is an error while parsing the command line parameter.

—) —
servlatmanagement net service
+ServletManager rServerContext rRemoteService
+ServletSession rSexveriaputStream +LocalService
+SessionManager +ServerQurputStream +ServiceManager
ExtendServlietConfic +ServeConnection +ConnectionService
+PipedSocket
——_I AWS l
utils - @ " " win3i2
+ExtendedProperties ~theAWSPath:Stringa". ." +TrayIconButton
+WildcardDictionary - £3:Confiqurat] =null ~MyHelpFrame
+Configurations _ ver:ServerContex: ~AWSconfFrame
+Emt -serv]etManager;ServletManag MyHelpPanel
+Utils - i onM er:Sessi anag +AboutBox
+CenfigurationsRepcsitory -logStr :PrintStream PageLcader
-log:boolean tServletConfPanel
——__]) - () :void +ConnecticnPanel
servliets - £(): iqurations +ServerInfoPanel
+CgiServle +getAWSPath() :String +SessionPanel
+getServerContext () :ServerCor +GeneralCptionPanel
+rget ; a). ion +SitePanel
+ <] () v +tiTabPanel
+save) :veid
trestart () :void
+ {):void
+log (megsage:String) ;void
+ ion:Exceptd
+ zin W '
+majin(argg:String (1) :void
Figure 9 UML diagram: Package com.chinapromotion.aws

63

5.2.2 Package Servletmanagement

';': HtrpSessy

ServletSaession

HezgSessicnCen
Runnabl

SessionManager

Eb ServietCont

klastAccessTime:long
-sessionData:Hashtable
-manager:SessionManager

-isMew:bcolean

~ServletSession(id:Strin
setSessionContext{mana:S
~invalidate () :void
~putValue (name:String, va
~getValue(name:String):0l
~removeValue (name:String
~access () :void
-checkState():void
-iog(channel:String,msqg::
-readCbject (stream:Obiec
-writeObject (stream:0Obje
id:java.lang.String
sessionContext:HttpSess
creationTime: long
lastAccessedTime:long
valueNames:String(]
new:boolean
valid:boolean
maxInactivelnterval:int

~sessionUseCookies:bgole.

Servletlon
ExtendServletConfig
~context:ServletContext
-initargs:ExtendedProper
+ExtendServietConfig(con
+getServlietContext():Ser
+getlinitParameter (name:$S
tgetInitParameterdames()

Figure 10

-segsionCount:int=0
-lastTimeVal: long=0
-sessionTimeout;long

-gessi [l vl

¥ s 1o
-newSessionTimeout:long
-randomSou ;java.util.)
rmaxRandomLen: long=21767:
~ticD fference:long=2000
rmaxSessionlifespanTicy:
#sessionldentifier:Strim
#sessions:Hashtable

#confs:Confiqurations

+SessicnManager{con:Conf
+tinit():void
+getUrlSessionid(querySt
+getCockieSessionld(cook
+createSession(response:]
+createSession{response:]
=gecldentifieri):String
-gezIdentifier(id:String
+getSession(sessionld:St
+removeSession(s:Serviet:

+run() :void

+save () :void
+cerC () :C jgyration:

ids:Enumeration
maxInactivelnterval:lon:

ServietManager

-servliets:Hashtable
—confs:Configurations
=R et . i_n
+ServletManager (con:Conf
+addServlet(urlPat:Strin
+addServliet (urlPat:Strin
raddServliet (urlPat:Strin
+addServlet(urlPat:Strin
+addServliet(urlPat:Strin
+addServliet (urlPat:Strin
+addServlet{urlPat:Strin
+addServliet(urlPat:Strin
+~addDefaultServliets () :vo
+~addDefaultServliets (thro
+destroyAllServiets():vo
+log(message:String) :voi:
+log(e:Exception,message
~lecg(message:String,t:Th
~removeAttribute (name:St
+~setAttribute (name:Strine
~getAttripute (name:S5trin
~getRealPath(path:String
+getServlet(name:String)
rgetServlietFromCriMatch (v
+getRequestDispatcher(ur
~getPescurceAsStream(pat]
~getResource(path:String
~getMimeType (pfile:Strin
+~getContext (uripath:Stri;
+save():vaid
+getCenf () :Configuration:
registry:com.chinapromo
attributeNames:Enumerat
serverInfo:String
servletNames:Enumeratioc
servlets:Enumeration
minorVersion:int
majorVersion:int

UML diagram: Package Servletmanagement

As Figure 10 showes, the servletmanagement package contains four classes:This package

is responsible for management of the session and the Servlet container.

64

ExtendServletConfig is a class that extends the standard JSDK ServletConfig class. It

contains information and initial parameters about the Servlet.

The ServletManager class is the class that manages all Servlets. It loads and initializes all
the Servlets when the Web server starts. Information about these Servlets is stored inside
the servlets.conf file. Usually two parameters about a Servlet are required: the Servlet
class name and the Servlet URL pattern. A Servlet class must be a subclass of the
HttpServlet class. It is a standard Java Servlet API class. A Serviet URL pattern is used to
match the request URL to the particular Servlet. The ServletManager class maintains a
wildcard dictionary that maps Servlets’ URL pattern to its initialized instance. The URL
pattern is the key to this dictionary. [t can be a wildcard that allows the user to use “*”
and **?” to replace all strings and characters. A utility function inside the Utility
package can match an input wildcard string with a wildcard pattern. When an HTTP
request comes in, the server will call the utility function to match the incoming URL path
with all registered Servlets. If a match is found, this means it is a Servlet request. The

corresponding Servlet is called to handle the incoming request.

The ServletSession class is the class that extends standard HTTPSession from Java
Servlet APIL. It maintains a hashtable to keep all objects related to the session. After a
Servlet gets a ServletSession object, it can get and put objects into the session. It also

contains function to create and invalidate a session.

Session Manager is the class that manages all the sessions created by servlets. The AWS
class contains a private instance of the session manager. It is initialized when the AWS
class starts; it is shut down when the AWS class shuts down. The init function of this
class loads all parameter from the session configuration object, which is already loaded
from the Session.conf file by the AWS class. The save method is called when AWS is

shutting down or restarting. This method saves back to the Session.conf file all

65

parameters that might be changed during the run. It implements the HttpSessionContext
interface that is defined in the JSDK 2.1 API. It also has several createSession methods
for creating a ServletSession object with a different input parameter. ServletSession is the
object that stores the actual data of a servlet session. A Hashtable is maintained to keep a
reference to all created ServletSession objects. The SessionManger class has its own
housekeeping thread that uses the session.checkFrequency parameter to detect session
timeouts. The value stored in the session.checkFrequency parameter is the activation
frequency of the housekeeping thread. which checks the validation of all existing

sessions stored in the Hashtable.

5.2.3 Package com.chinapromotion.aws.Util

Figure 11 shows the com.chinapromotion.aws.Util package, This package contains
several utility classes and classes for configurations.ConfigurationRepository,
Configuration and ExtendedProperties are three classes used to manage configuration
files. AWS supports the same format of configuration files as Apache. Three
configuration files are used by AWS: one for general setting, one for Servlets settings and
one for sessions. These files are text files; each line of the file represents a directive. The
format of each line is directive name = directive value. These parameters are used to
change some variable without recompiling the code. Configuration files are loaded when
AWS starts, and it can be modified by a text editor or through the GUI of AWS under
Windows. The wildcard dictionary is a utility class that extends the Dictionary class; it
supports the ‘*’ and ‘?’ as wildcard references to the dictionary. CookieUtils contains

utility functions on cookie manipulation, such as a function for parsing cookie headers.

66

Cﬁ Dict:iong
MildcardDictionary

-xeys:VecTor
-elerents:Vector
+WildcardBictionary()
*s1ze():int
+keys () :Enumeraticn
+elements () :Enumeraticn
+geZ key:0Object) :3bject
+put (key:Cbject,element: O}

sremove (key:Obiect) :Obrec:

erpty:boclean

Hashtabl
ConfiguraticnsRepository

#f:le:S%ring

$model:String

sCcnfiquraticnsRepository
+Canflguraticnsiepesitory
+ConfiquraticnsRepositsry
scombine (hash:Hashtabie;:*
~load(input:lnputsStream):v
*save (cutput:QutputStream,
*3ave () void

emcaify(key:Object,value:C

i

ﬁ ExtsndsdPropertias
singiude-String=tinc.ude”

+ExtancedPrcperties(;
+ExtendedProperties(file::
e.caatinput:Inputstream;:*
+save (output:CutputStream
*save () :vord
+modifykey:Obiect, value:t
PropertiesReader
PropertieaTokenter

include:String

UrlUesls

~bé4EncodgTa igh -

+pla: 2 : url:
spla:nurliyristr:String) !

tbaselrplSrr(urlsStr:String

sfixDipUPISET (Ur St Sty
[M It H rine
syrl e Turei{pe .
*a 1 ! H
surldecoderistr:String} : St
sURLERcOd® tatr:SEZAng) :St.
» 4 H il
+ 84Enco:

~b64DacodeTable: nt flai I

Figure 11

Cﬁ Configurations

-defaults:Configurations
-recos:tory:Confiquration:

«Confiqgurations()
eConflquraticns (propertie:
sConfiqurationsidefaults:t
eContiguraticns{propertie:
+Save (output:QutputStream,
+save () :vold

emcdify (key:Cbject, value:t
+qetKeys (prefix:Stringi:Dr

8=

sgetString(key:Sering) :S%.
+getsString(key:String, def.
+getPropersiesikey:String
-getProperties key:String,
+getSTringArraykey:strin
+Jetlist(xkey:String) :Enum
rgetVector(key:String) :Ve:
+getVector (key:sString, def,
+getBocleankay:String) :be
+getBcolean (key:String, de
+get8ccleankey:String, de
+getByte key:String; :byte
+getdyteikey:String, defau
+getByteikey:String,defau
sgetShcrt ikey:String) :sho
«getShceret tkey:String, defa
sgetShort (key:String, jefa
sqezlnteqger (key:String): it
sgetlnteqertkey:String, de
«qetinteger key:String,ce
~gqetlongikey:String;:laong
~qetlong.key:String, defau
+getlong 'key:String,defau
+getFloaz (key:string):flo.
rgetFloat (key:String, defa:
sgetFloat (key:String, defa
+qetDouble (key:String) :day
+getDcouble ik String,del.

sgetDoub.e (key:String, de!,

P

1214 Utilse
+ZFant-l +INT SECOND:long=1000L
2Liinte2 ¢INT MINUTE: longelN
sHX:tn%=4q +INT HCUR:long=INT MINUTE
20C:1nced +INT DAY:longewINT HCUR ¢ .

—WN:inte=l6

+fmt b:byte: :String

»fmt {b:byre minWidth:1at)

+1 WEEK:] NT s
L3 MONTH; INT .
+INT YEAR:long=INT DAY *

sfmt b:byte minWidth:int

«{mtis:shortlisString

re minWidsn:int

LS ¢:ANE HH

sfmt (s:shere minWidsh:int
sfxriiiing)isString
igiint, minW iint)

sfptiiang minWiden: s

+fmr(l:lonqliString

sfmtil:lcng,minWidrh:int)

{ +INT DECADE:long=INT DAY

+lslasestridare:Datre) Sty
+pluralsStrin:jlongl}:String
sintervalStrip.nterval:ion
+3trSpanistr:S-ring ,chars

sgrrsc { .5 n harS

sstrCSpan(str:String,char:
smatch pattern:String, 37r

2fmztlziong, minWideh: IRt
efmsif:flcat):String

sfmg f:2icag minWidth:int

ssameScantstri:-String, a5z,
sgharCounttatr:String, grcl

ssplitStriscr:Sering} Sty

sfme g e ninW H

- :£:27 oW
«facid:doytle):String
+fmt d:coutle, minWids
sfxtrd:doub minWidse
sfxtidgideyble, minWigdsh: in

sf{mt'ciohar :String
stmr(c:char, minWidth: 1nt)

simricich minWidshiin

simtin:Oblacs! iString

e mirWidEh:tn

eimt o -

+fmt c:Chlrecs, pinWidth: 1nt

«Ipsig:3iringl String

ninW: Siint
W

efm* ' g:Skr:

-51gFigfixts:String, stqft

sdoubloloStr.ngipdidoub e

saplitStriscr:String del:t

. - - e n

sgcor® . 133 .

sindexCefSsring strings: St
rindexQfSrringiqnorecase
Srr
spow/pa:leong,pk:lorg)lens
sparselnt (srr:String, def:
spazselong(atr:Siring, def
2APTAVTOSLIAngioiObact) i

.a anasl:se

vip #(o:abtecs, 21: 2

savenn:leong' :tccliean
soddin:long) :koolean
sooynnOneginibyte) tir
scoyatonesin: }iint
scountOnespr:ionql:int
*readiin: inputstraam, »:byl

reposizery:Hasntable
keys:Znumeraticn

67

CookieUtile

sroad lyidd;inpytotroan
sarraycontaingtargyyiobies
s3/3temicmd:SEring) (int

*pop rgnd:String) tInput:
k) anw gmd: H) ousoy
v ounCe (omd: ST 1P
+fakeccpyStrean{cut : Quspu’
szopysStreamizn: [nputStrear

2ggpyStrean (in:Repdeg, oyt
sccpvStraam(in:[npusseren

+parseCcoxieteader (cookiel]

sencodeGookie {290k

-»

-

:Czok
! H » 4

1@ A olal

scopyStreamiin:Roeader, out
sdurpstackip:PrintStraam)
soumpStack(tivcid

ecar - ° rg o

UML diagram: Package com.chinapromotion.aws.Util

5.2.4 Package com.chinapromotion.aws.servlets

[-J-: HitpSemviet
CgiServiet

+semvice{req:HitpServietRequest res:HitpServietResponse)void
-dispatchPathname(req:HttnServietRequest res:HitpServietResponse path:Sinng pathname:String) void
-servefile(req:HitpServietReguest res HitpServietResponse, path:String,filename:String, file:File):void

me;String.valye:String):Strin

-makeListivec:Vecior). Stringf]

semvietinfo:String

Figure 12 UML diagram: Package com.chinapromotion.aws.servlets

The Server.Serviet package contains only one class CgiServlet. It is the only default
Servlet deployed with the release V1.5. This class handles all CGI requests. [t uses the
URL pattern *.cgi, which means all requests ending in .cgi will be handled by this

Servlet.

This package is also the place to put all later implementation of other default Servlets,

such as JSP supporting Servlet.

5.2.5 Package com.chinapromotion.aws.service

As Figure 13 shows, the com.chinapromotion.aws.service package contains the scaling
module of AWS. There are two kinds of services that AWS could provide. LocalService
class implements the local service that parses and handles incoming requests on a local
machine. RemoteService class implements the remote service that handles an incoming
request on a slave machine. Both service classes implements the ConnnectionService

interface, which has an abstract method named startService. Once a slave machine is

68

registered, a new RemoteService object is initialized and added to the service list that the
ServiceManager object maintains. When a request comes in, with a slave assignment
method, the ServiceManager object decides if a local service or remote service will be
invoked. Then the startService of the assigned service object will be called to handle the

incoming request. Details of the scaling module can be found in Chapter 8.

ServiceManager interface
-cService:ConnectionServ. 0;. ConnectionService

-serviceCount:int=0
+startConnecticn(socket:5¢

-sContext:ServerContext
+ServiceManager (serverCal Z& Zx

+serviceSelecter(skt:Soc

[!
J [
| I
! !

Runnabl
. RemoteService LocalService
PipedSocket]
) -host:String -childPriority:int
-inSocket:Socket] .
. -port:int —confs:Configqurations=nu
-QutSocket:Socket
]) -sccket:Socket -RE VED _NUMBER OF CONMI
+PipedSocket (pinSocket: S
. -transparent:boolean=tru - k: k=new Stack/(
+run () :void -]
tRemoteService (phost:Str. -threadpool:Thread []
+tRemoteService (phost:Str. -connectionrool:ServeCon
tstartConnecticn(skt:Soc +LocalService ()
ttransparentConnection (s +startCornection(skt:Soc
+redirectCeocnnection(skt:: +pushBack (¢h:ServeConnec:

Figure 13 UML diagram: Package com.chinapromotion.aws.service

69

5.3 Web Server Execution Flow

Failed lLoading
File

taad Success

“Aceapt
"+ Connection

o roms -
. Connection”’

a,
Peprt

Return

Figure 14 Project Flow Chart

70

5.3.2 Web Server Flow Chart

Under the Server directory, there are three files: AWS java, ServerContext.java, and
ServerConnection.java. These three classes make up of the whole process of a Web
server. Figure 14 illustraes the flow chart of that process, with the three classes shown in

different colors.
AWS, java

AWS is the main class that runs when the program starts. It parses the command line
arguments and initializes all the variables. There is only one command line argument in
AWS release 1.5, *-c”, which indicate the configuration file path. This argument is used
if the configuration file is not in the default location. Then AWS loads the configuration
file. If the configuration file is not found or contains errors, AWS will exit the program.
After successfully loading the configuration file, AWS initializes the ServerContext

object and calls the server() function of that object.
ServerContext.java

ServerContext is responsible for accepting and handling socket connections. It maintains
a connection pool if the connection pool size directive is set in the configuration file.
Every ServerConnection object is bound to a thread. For all pool connections, both the
ServerConnection object and the Thread object are initialized and kept in a stack.
Therefore when a new connection comes in, this class will check if there is a connection
available in the stack. If the stack is not empty, a connection thread is popped out of the
stack and been assigned to handle the incoming connection. If the stack is empty, a new
ServerConnection object and Thread object will be created to handle the connection. All
pool connections are recycled after completing the response; they will be pushed back to

the connection stack. All other connections and threads will be destroyed and collected

71

by the garbage collector. Once a ServerConnection is in a service state, the thread which
hasbeen bound to it will take charge of the later process and return control to the main
thread. The main thread will then free to handle the next incoming connection. This
accept—service-return process will loop until the AWS server is instructed to shut down.
Priority of the main thread and all child threads can be set up as a directive in the

AWS.conf file.

ServerConnection.java

Every ServerConnection object is bound to a Thread object. Threads are used to
simultaneously handle multiple connections. Every ServerConnection handles a socket
connection, reads input from the input stream of the socket and writes output to the
output stream of the socket. The ServerConnection object also handles persistent
connection: once a connection is established, it will loop forever unless the connection is

closed by the client or the client uses the header:
Connection: Close

The client can pipeline requests to speed up the process. For every request, the following

steps are performed:

Step 1: Parsing of the request line.

The HTTP request line format is shown in Section 3.3.5 (HTTP Request). AWS
fine-tunes the parsing of the request line by pushing the error handling and parsing
process down to the stream reading phase. The URL line parameter is also parsed

and stored in vectors.

Step 2: Parsing of the request headers.

72

Since request headers have an unknown number of lines, an empty line indicates the
end of headers. This process loops until an empty line is read. Details of the request
header can be found in Section 3.3.6 (HTTP Response). As in Step 1, this process is
also pushed down to the stream reading phase. A special inner class
ServelnputStream is designed to optimize the performance. This process stores the

request method and request URL path for later usage.
Step 3: Parse parameters and cookies

There are two ways that the client can use to pass parameters to the server. First,

client can append “name=value” pairs in URL after a ‘?’ symbol. For example:
http://www.samplesite.com/counter.cgi?color=red& font=large

Second, if a Content-Length header is read from step one, which indicates that the
incoming request line comes with some parameter, these parameters are in name =
value format. These name and value pairs are read, parsed, and stored as two vectors,
one for all the names and another for all the values. These parameters will be merged
with the URL line parameters if necessary. The two methods of passing parameter,
through URL line and through Request body, are treated identically in HTTP.
Session Information and cookies are also stored as the format of parameter. Sessions

and cookies are discussed in Section 4.2.
Step 4: Matching the URL pattern

After all headers and parameters are read, a utility function will be called to
determine if the income request is a Servlet request. For instance, in AWS
implementation, a default Serviet — CGIServlet — will handle all CGI request. This
Servlet uses the URL pattern *.cgi. Therefore, the CGIServlet will be called to

73

handle all request URL paths that end with .cgi. If no matches are found (which
means it is a file request), the process will continue to handle it as a file request. If a
match is found, the Servlet which registered this particular URL pattern will be

activated by calling the Service() function in the HTTPServlet interface.

Step S: File Service‘

In a classical Web server design, the file service of the Server should be in a module
separate from the module containing the ServerConnection object. However, AWS
integrates the file service module with the ServerConnection module. Because most
requests are file requests, putting the file service module in the ServerConnection
class can improve performance by saving a lot of function calls and passing of
parameters. This placement will also improve the later implementation of file
caching. In this procedure, a virtual URL path is mapped into a real path on the
server. At this point, there are two cases and an exception to be considered. The two
normal cases are those in which the request URL path is a file or is a directory. The
exception is when the request URL path does not exist. In the configuration file, a
directive called Default Filename is used when a directory is found and, in this
situation, the file service appends the default filename to the end of the directory.
Since this directive allows multiple filenames, the program tries file names one by
one until a default file is found. If a default file is found, that page will be sent to the
client. Otherwise, if the Directory Indexing directive is enabled, a Directory

Indexing service is called to list all files in the directory.

Step 6: Write response to the client

A response status is sent to the client; the response status code can be found in
Section 3.3.6 (Status Code and Reason Phrase). Then a few response headers are sent.

If a persistent connection is used, a Content-Length header is sent to give the client

74

information about the page size. Then, after all headers and an empty line, the

requested page is sent to the client as requested.

AWS also implements many features that either optimize the overall performance or

support some new functionality.

5.3.3 Client Side Caching

Client side caching is used when handling file requests. If a page is already in the client’s
cache, when the browser sends the request, a Last-Modified-Since Header is sent with
the request. The File Service procedure in ServerConnection object first locates the
requested file on local file system. The modified time is checked with the timestamp
obtained from the client request header. If the file has not been modified since the time of
the client’s request, a 204 (No Modified) status and no body content of this file will be

sent. This feature is done inside the ServerConnection object.

5.3.4 Servlet Management implementation

The ServletManager, which initializes when the AWS main class initializes, manages all
the Servlets in the serveltmanagement package. The ServletManager reads Servlet
registration information from the Servlet.conf file, load and initializes all the Servlets and
registers their URL pattern in a wildcard dictionary. This dictionary is used by the URL

pattern matching process of the ServerConnection object.

75

5.3.5 Session Management implementation

The SessionManager object, which initializes when the AWS main class initializes,
manages the session in the serveltmanagement package. The SessionManager reads
session registration information from the Session.conf file. It maintains all sessions in a
hashtable used by those Servlets that request a session. We will discuss details of the

Servlet and session management in the following chapter.

76

Chapter 6 Servlet Container Implementation

6.1 Servlet Implementation Basic

A Servlet is a small Java program that runs within a Web server. Servlets receive and
respond to requests from Web clients, usually across HTTP, the Hypertext Transfer
Protocol. To implement this interface. Java programmers can write a generic Servlet that
extends javax.servlet.GenericServlet or an HTTP Servlet that extends

javax.servlet.http.HttpServlet.

This interface defines methods to initialize a Servlet, to service requests, and to remove a
Servlet from the server. These are known as life-cycle methods and are called in the

following sequence:

1. The Servlet is created, and then initialized with the init method.

9

Any calls from clients to the service method are handled.

The Servlet is destroyed with the destroy method, and then finalized and

(3]

garbage collected.

In addition to the life-cycle methods, this interface provides the getServletConfig method,
which the Servlet can use to get any startup information, and the getServletinfo method,

which allows the Servlet to return basic information about itself, such as author, version,

and copyright.

77

6.1.1 GenericServiet

GenericServlet is an abstract class, which defines a generic, protocol-independent Servlet.
To write an HTTP Servlet to use with a Web site, HttpServilet must be extended.
GenericServlet implements the Servlet and ServletConfig interfaces. A Servlet usually
extend GenericServlet or its subclass HttpServlet, unless the Serviet needs another
superclass. If a Servlet needs to extend a class other than GenericServiet or HupServlet,

the Servlet must implement the Servlet interface directly [11].

GenericServlet makes writing Servlets easier. [t provides simple versions of the lifecycle
methods “init” and “destroy” and of the methods in the ServletConfig interface.

GenericServlet also implements the log method, declared in the ServletContext interface.

To write a generic Servlet, it is necessary only to override the service method, which is
declared as an abstract method with no body. When writing a Servlet container. it should
override getServletInfo and specialize the init and destroy methods if the engine will

manage expensive Servlet-wide resources.

6.1.2 HttpServlet

HTTP Servlet provides an abstract class that users can subclass to create an HTTP
Servlet, which receives requests from, and sends responses to, a Web site. When users
subclass an HttpServlet, they must override at least one method, usually one of these:

® doGet, if the Serviet supports HTTP GET requests

® doPost, for HTTP POST requests

® doPut, for HTTP PUT requests

78

® doDelete, for HTTP DELETE requests

® init and destroy, which you override as a pair if you need to manage

resources that are held for the life of the Servlet

® getServletinfo, which the Servlet uses to provide information about itself

The service method in HTTP Servlets usually does not need to be overridden. Service
handles standard HTTP requests by dispatching them to the handler methods for each
HTTP request type (the doxxx methods listed above).

Likewise, doOptions and doTrace methods usually also do not need to be overridden.
The service method supports HTTP 1.1 TRACE and OPTIONS requests by dispatching

them to doTrace and doOptions.

Servlets typically run on multithreaded servers, so a Servlet must be prepared to handle
concurrent requests and synchronize access to shared resources. Shared resources include
in-memory data such as instance or class variables and external objects such as files,
database connections, and network connections. See the Java Tutorial on Multithreaded
Programming on Sun’s Web site for more information on handling multiple threads in a

Java program.

6.2 Handle HTTP Servlet Request and Response

The service method in HTTP Servlets requests two parameters, an HttpServletRequest
and an HttpServletResponse. These two parameters are interfaces defined by JSDK APL
In the AWS project, the ServerConnection object implements both these methods.

HttpServletRequest contains all information about the HTTP request, which can be used

79

by the Servlet through a pre-defined method of this interface. HttpServietResponse

contains information about the Http response.

Figure 15 shows the relationship among HttpServletRequest, HttpServletResponse,
Servlet and client. [n AWS implementation, the ServerConnection class implements both
HttpServletRequest and HitpServletResponse interfaces. It is a thread that will call the
service function of the Servlet to handle a Servlet request. When the Servlet needs
information about the Request, it calls the getReader and/or other functions of the
HttpServletRequest interface. When the Servlet needs to write information to the
Response, it calls the getWriter and/or other functions of the HtpServletResponse.
Reader and Writer are then mapped to Input and Output Streams of the socket connection.
In this way a Servlet can communicate with the client through a Servlet container, which

in the case of AWS, is the ServerConnection object.

ServerConnection
y | f ‘
i Service() | Service : Runnable ‘
i | I |
1 o - L, ‘
! f\ getReader HttpServietRequest <Servletlnput$tream ;
N N

|

S N J
! getWriter V HitpServietResponse ServletoutputStrean/\,
| - | e

i v

i Serviet A N : N client

Figure 15 HttpServletRequest and HttpServletResponse

A few useful methods in HttpServletRequest API are:

getCookies:

80

Returns an array containing all of the Cookie objects the browser sent with this

request. This method returns null if the browser did not send any cookies.

getHeader:

Returns the value of the specified request header as a String. If the named
header wasn’t sent with the request, this method returns null. The header name is

case insensitive. You can use this method with any request header.

getMethod:

Returns the name of the HTTP method with which this request was made, for

example, GET, POST, or PUT.

GetRequestURI:

Returns the part of this request’'s URL from the protocol name up to the query

string in the first line of the HTTP request.

getSession:

Returns the current session associated with this request, or if the request does

not have a session, creates one.

getReader:

Returns the body of the request as a BufferedReader that translates character set

encodings.

81

A few useful methods in HttpServletResponse API are:

addCookie:

Adds the specified cookie to the response. It can be called multiple times to set

more than one cookie.

sendError:

Sends an error response to the client using the specified status code and
descriptive message. If setStatus has previously been called, it is reset to the
error status code. The message is sent as the body of an HTML page, which is
returned to the user to describe the problem. The page is sent with a default

HTML header; the message is enclosed in simple body tags (<body></body>).
setHeader:

Adds a field to the response header with the given name and value. If the field
had already been set, the new value overwrites the previous one. The
containsHeader method can be used to test for the presence of a header before

setting its value.
setStatus:

Sets the status code for this response. This method is used to set the return status
code when there is no error (for example, for the status codes SC_OK or
SC_MOVED _TEMPORARILY). If there is an error, the sendError method

should be used instead.

getWriter:

82

Returns a PrintWriter object that you can use to send character text to the client.

6.3 State Management of AWS

6.3.1 Cookie:

AWS supports cockies by using two data structure in ServerConnection class. One is
an array of Cookie objects that stores incoming cookies from the client; another is a
vector of cookies that stores outgoing cookies from Servlets and other server side
programs. AWS uses different structures for incoming and outgoing cookies because
it knows the number of incoming cookies but not the number of outgoing cookies.
As long as the request-response process is not finished. the number of cookies from
the server side is not determined. New cookies may be added to the outgoing cookie
vector at anytime by a server-side program. Therefore using an array for incoming
cookies and a vector fur vutgoing cookies is more efficient in respect to both

memory and performance.

Incoming cookies are received in terms of cookie header. The cookie header has the

following format:
Cookie: name=value;name=value;name=value

This string is parsed by the parseCookieHeader method in the Util class. This
method parses the cookie header into a array of Cookie objects. Every Cookie object
inside the array contains a name=value pair from the cookie header. This array is
then stored as a private member of the ServerConnection class and is available to all

Servlets through the standard getCookie method of JSDK 2.1 APL

When the Servlet needs to send the client a cookie, the cookie is added to the

83

outgoing cookie vector through the setCookie method of JSDK API. This vector is
kept in the ServerConnection class until headers are sent. At that time, a Set-Cookie
header is generated and all name=value pairs inside the cookie vector are appended
to the header. Then the header, together with other headers, is sent to the client. If the
client receives the cookie header, cookies are parsed and stored on the client side.

The cookie will be sent back to the server when client next requests the same URL.

6.3.2 Session:

A session is more a complex technique than a cookie. Cookies still use the stateless
HTTP protocol and all state information is stored on the client side as text files. A
session stores state information on the server side, which aliows server side
programs to store more complex data types in a session. A typical session may have
a database connection object attached, which is very hard to be serialized into a
string object that might be used by cookie. Therefore the implementation of session
handling requires a server side data structure to manage all client sessions. The
session manager object inside the servletmanagement package manages a hashtable
that stores all session objects with the session ID as a key. Session ID is generated by
applying the current time and IP address to a special algorithm: every session ID is

unique.

For a typical client session, all user-state objects are kept in a session object; the API
of session object is detined by the JSDK standard. The session manager uses the
session ID to hash all session objects into a hashtable. Each session object maintains
a hashtable to keep a reference to all user-state objects. The session object has a
timeout value that can be setup by the session.timeout parameter in Session.conf file.
This value represents the number of milliseconds that elapse (during which no

request on that session occurs) before the session times out. In AWS implementation,

84

a housekeeping thread is used to do session-validation checks at frequent intervals.
The frequency of validation checks can be defined through the

session.checkFrequency directive in Session.conf file.

Once a session is created by any Servlet, a session ID is generated and passed on to
the client in the form of URL line parameter or cookie. The client will send this
session ID back to the server when requesting the same URL. The server receives the
session ID and can use it as a key to fetch a session from the hashtable. which is
managed by the session manager object. Whenever a Servlet makes a getSession
request, the found session will be returned. The Servlet can then access any object

associated with the client’s previous session.

85

Chapter 7 Graphical User Interface For Windows

7.1 General Features and Usages

Once the program executes, AWS displays the main window (Figure 16). The main
window is a tabbed panel where users can choose the option. “Connection™ is the default
option panel, which contains information about the port number that AWS is listening;
the maximum number of connections allowed. the connection pool size, the main thread

priority and priority for child threads.

EJ server configuration - o ; 2 ;IC] l_x_l
e . : - N

’ Pqﬂ-uurﬁber:‘ :
—NumberofConnecﬁomr-

IMaxuo.urConnemons - [rooo —t

"ﬁ:ﬁ' Cannection

Figure 16 The connection properties tab

86

Buttons

As Figure 16 illustrates, there are three buttons at the bottom of the main window: OK,

Cancel and Help.
Button “OK”

The “OK” button is used to save the server parameter values in the boxes. After
changing the values of any boxes, the user presses the “OK™ button to save the
values. If the user modifies the values of a parameter text box and does not click

“OK”, the values that the user has entered will not be saved, even though the users

can see changes of the related text boxes.

Figure 17 The Help Window

Button “Cancel”

Afier users have changed the values in the boxes, they can cancel, that is, not save

87

the change by pressing the “Cancel” button.

Note: the “Cancel“ button is disabled if nothing is changed in any box, but enabled if

any change has been made in the text boxes.

Button “Help”

The “Help” button is used to help familiarize users with this program. After pressing

the “Help” button, a help window is displayed as Figure 17.

From the help window, users can choose available help pages by clicking the button “Start”,

“Back”, “Forward”, and "End”. Users can also click the links in each page to get the help they

require.

Close the Main Window

By clicking the closing button of the main window. it will be minimized to the

system tray as an icon, shown in Figure 18.

The tool tip of the icon indicates that the server is running (the icon is a red maple

leaf).

Figure 18 Tool tip of tray icon

88

Figure 19 The tray icon in system window

By clicking the right mouse button on the tray icon, a menu will pop up, as Figure 20

Figure20 The Pop Menu and the About Window

From the pop menu,

89

¢ Show: The show option restores the main window.
e About: The About window appears, as in Figure 20;
o Restart AWS: The server will restart and load new settings.

o Exit: The server will exit execution.

7.2 Connection Tab

As shown in 7.1Figure 16, all parameters and corresponding values are displayed in this
window. Users can modify these parameters by changing the values in the corresponding

text fields. The Connection Tab contains settings about the connection.

Port Number

“Port Number™ is the number of the port that the server is currently using to listen. A
valid value for Port Number is an unsigned positive integer. Characters cannot be

entered or displayed. Nothing appears in this box if users enter characters.

Number of Connections

“Max Connections” refers to the maximum number of connections the server is
allowed and the “Connection Pool Size” means the number of connections that have

been reserved.

Valid values of “Max Connections” and “Reserved Connections” are unsigned
integers. Characters cannot be entered or displayed. The value in the box of

Reserved Connections box should always be less than the value in the Max

90

Connections box.

»
I3

Figure 21 Warning message for thread priority

Thread Priority

Thread Priority is used to assign a priority value to threads. The valid values of both main
threads and child threads are 1 to 9. If users enter a character, therc will be no responsc in the
boxes. If users enter a number less than 1 or greater than 9, for example. -1 or 10, a warning

message window will pop up (Figure 21)

7.3 Site Tab

As Figure 23 shows, the site properties tab contain the following settings:

91

Host Name

Host Name is the [P address of this server. The default value is displayed in the box

and users can change it according to their needs.

1 lindex.ntmi
-lindex.htm

Figure 23 Site properties tab

Root Path

A Root Path can be selected through a file chooser. It is the directory where, mapped
as “/”, the root directory of this Web site is located. For example, if a root path is set
to be “c:\htmlserver”, then the HTTP request “get /index.html” is mapped to

“c:\htmliserver\index.html”.

92

Default Filename

Default filename is a collection of ordered filenames that is used when a directory
request is received. For example, if two default filenames are registered, “index.htm”
and “index.html”, when a request “get /” comes in, “/index.htm” is checked. If no

file is found, the next filename, ““/index.html” is tried.

rver Canfiguration

Figure 24 Server Info Tab

7.4 Server Info Tab

Logging

As shown in 7.3Figure 24, the logging check box represents a boolean value

93

determining whether or not to enable system logging. If logging is enabled, errors
and exceptions will be written to a text file under the log directory of the AWS
installation directory. Logging requires both CPU and IO resources and will reduce

the overall Web server performance.
Directory Indexing

If directory indexing is enabled, AWS will generate a directory indexing when no

default files are found for a directory request.

CGI

When CGI is enabled, the cgi Servlet is loaded and ready to handle CGI request.

Otherwise, CGI requests will be treated as normal file requests.

7.5 Servlets Tab

As Figure 25 shows, the Servlets tab contains all information needed to register a Servlet

* on the AWS server.

URL Pattern

This is a wildcard pattern that maps an incoming URL to the Servlet, i.e. *.CGI will

map to the CGI Servlet all URL ending with “.cgi”.
Servlet Class Name

This field is for the class name of the Servlet, for example,

com.chinapromotion. AWS.CGlservlet. In order to run a Servlet on AWS, users must

94

to ensure that the path of the Servlet class is included in the classpath environment

variable.

D Server Conhguration

1 Gerviat Class Name:. - 00T
R 1

" 'I'Serviet init Arguments: S B £

] |

ok | [Comew |0 [

Figure 25 Servlets Tab

Servlet Initialize Argument

Here the user can input the initializing argument for the particular Servlet.

Servlets

This is where the user can select, add, and delete Servlets. After a Servlet is selected.

the user can modify its URL pattern, classname, and initialize arguments.

95

7.6 Session Tab

DS«'rw'r fanhiguration

1800000
80000

Ficure26 Session tab

Timeout

This integer value indicates the number of seconds until the session times out.

New Session Timeout

This integer value indicates the number of seconds until a new session times out. A

new session is a session that is created but not accessed.

Session Check Frequency

This determines the number of seconds that the housekeeping thread of the session manager

96

object is scheduled to run. Every time the housekeeping thread runs, it traverses all the sessions,
discovering any invalid sessions and garbage collecting them. The housekeeping thread
consumes system resources. If its frequency is set too high, it will lower the system’s
performance. If its frequency is set too low, a session may remain valid for a long time after it

had timed out.

97

Chapter 8 Scalability Model

8.1 Transparent Scaling

/| 3 IIE]

L Slave Socket Output : Client Socket input =l

| L =

Slave Socket Iant \> Client Socket Output \>U[ﬂ[?
==k P L

AWS Serve Client

Figure 27 Transparent Scaling

With respect to transparent scaling, the AWS server acts like a proxy: the AWS server is
“transparent” to clients. This means that the actual request from the client is sent to a
slave through another socket connection, and the response from the slave machine is
received by the AWS server and sent back to the client. There can be many slave
machines registered on the AWS server and each of them can have a Web server running.
Whenever a client connection comes in, the AWS server will assigns a slave machine to
handle the incoming request. It establishes a socket connecdion to the assigned slave
machine. The AWS acts like a server to the client, and like a client to the slave machine.
All requests that AWS receives from the client will be sent the slave machine. All
responses from the slave machine will be sent back to the client by AWS. For each slave
the AWS server act like two pipes, with two new threads created to handle both pipes,
one for connecting the client output to the slave machine’s input, the other one for

connecting the slave output to the client machine’s input. Throughout the whole process,

98

the AWS server does not parse any request or response. It does not need to understand

the meaning of either requests or responses.

8.2 Redirect Scaling

oS
~,’/ 000 :[>
/ Client

Figure 28 Redirect Scaling

In redirect scaling, AWS server acts like a redirecting server. The AWS server redirects
clients to a new location, just as, when we using http://vahoo.com to access YAHOO!,

the server redirects us to a new location http://www.vahoo.com. The user on the client

side will not notice the redirection since the client Web browser does it automatically.
There can be many slave machines registered on the AWS server, and each one of them
may have a Web server running. However, every client machine must have an Internet

connection and an individual IP address. Whenever a client connection comes in, the

99

AWS server assigns a slave machine to handle the incoming request and redirects the
client to the assigned slave machine’s new location by responding to the client with a
redirection header. Once the redirection header is sent, the client will contact the slave

machine directly by the redirection IP included in the redirection header.

Typical redirect header:
HTTP/1.1 302 RD

Location: http://www.vahoo.com/

8.3 Transparent vs Redirect

[
[==}

B

Client

Figure 29 Transparent Scaling Connection Model

Figure 29 depicts the connection model of the transparent scaling approach. From
this figure we can see that the major advantage of transparent scaling is that the slave
machines do not need to have an Internet connection. The slave machines and AWS

must be on the same Local Area Network (LAN). All slaves share the same IP as

100

AWS on the Internet but a different IP on the LAN. This approach involves a lot of
computing resources on the AWS server, since all clients and slaves communicate
through the AWS server. With this approach the number of threads running on the
AWS server is doubled since AWS must use two threads to handle two
communication channels. The hardware requirement for the AWS server is therefore
relatively high. This approach is best for run AWS on a gateway machine that all
slave machine connect to through a LAN connection. This approach is more efficient
if number of concurrent connections is low, but each connection consumes a lot of
CPU and memory resources. As the number of connections grows, the load on the
AWS server increases since more threads must be created and more CPU and
memory resources are consumed on the AWS server. Since slave machines handle
the actual requests, requests that demand large amounts of computing resources

benefits from this scaling model.

il
=

Client

AWS Server //

Figure 30 Redirect Scaling Connection Model

Figure 30 depicts the connection model of the redirect scaling approach. The major

101

advantage of this approach is that it requircs minimum resources on the AWS server. No
extra threads need to be created; no parsing and processing of requests need to be done
by the AWS server. The AWS server simply writes the redirect header to the client
without any knowledge of the incoming request. However, with this approach. every
slave machine needs to have an Internet connection and a static IP address on the Internet.
This is usually costly because static [P address on the Internet is a very expensive
resource. This approach does not require the AWS server to be strong in terms of
performance. For requests that require both large and small amount of CPU time and
memory, this approach does not make any difference. The overall performance of this

approach is more closely related to the strength of slave machines.

8.4 Slave Assignment Algorithm

The slave assignment algorithm is mission-critical. AWS uses the random algorithm to
select slave machines for handling requests. Different applications running on different
slave machines need to be evaluated before implementing an assignment algorithm. A
load-balanced algorithm can be implemented by custom according to the performance
analysis of that particular computing environment. For serving static pages. with
relatively equal distributed page sizes and relatively equal computing power for each
slave machine, random algorithms might be the best, since load-balance algorithms incur
a large amount of overhead. Overhead results from both the load-balance algorithm itself
and network transmission. A typical load-balance algorithm will require the slave
machine to send a “heart beat” to the master machine in order to provide updated CPU
and memory usage information to the master machine. Fetching system information
every few seconds and sending it to the master may require a new thread. Moreover, if

one slave is loaded with many tasks (threads) and needs to transfer a few tasks to another

102

slave machine that is idle, there is extra overhead entailed in copying all the state and
partially completed data to the other machine. Most PCs of today can handle more than
100 typical Web requests per second, which means 1 request uses only 1% of the CPU
resources when the CPU is busy. Migrating a request from one machine to another
requires the slave machine to prepare data, the master machine to determine which slave
is idle, another slave machine to receive the data. This may result in far more load on the
system than would be entailed in allowing the request to be processed by the slave
machine alone. However, the overhead is almost fixed for any request and transferring a
small static Web page request needs approximately the same amount of overhead as
transferring a large computational request. As the resource requirement gets larger and
larger, the load-balance algorithm becomes more and more efficient. For example, if an
application server can handle 1000 processes at the same time, each process requires
0.001 seconds to complete, using a random algorithm might be more efficient. If, on the
other hand, the server can handle 5 processes at the same time, and each process requires

2 seconds to complete, a load-balance approach might be more efficient.

No matter what algorithm the server uses, a pertormance analysis and a prediction of

incoming requests is necessary before we can design a good slave assignment algorithm.

103

Chapter 9 Performance Analysis

9.1 Usability Test

A usability test is done to test the following feature of AWS:

Roesult of test

T

T el
.J.;f 'ifﬁ-i"
"

Y NOL

- TV Uy
et o LTI
=

T

Y4

S
Rk J"f"
nd:thessource

&

R

o

el
A

L

AvLL M LU A

R
wigdt
Ry

€2
R R
5 %
S HTME
forge i -

o] s
':\;:,"."'“‘
Vi

B O O R)
= : "H.ag
time=]

S e 0l e Tk
e o i

Table 5 Usability Test

9.2 Performance Analysis

This performance test is in the following test environment:

AMD Athlon 700Mhz, 256M Ram, Dlink-10/100 Network card, Quantum 7200RPM
Hard Drive.

Windows 2000 professional, IIS 5.0, Apache Tomcat 3.2.1, Redhat Linux 6.1, JSDK web

server 2.1

[n all tests, two machines are used, one for the server and one for the client. Numbers in
the table are the numbers of requests completed per 5 minutes. Number of thread in each

test means number of attacking thread generated by the stress test software.

AWS(Sun VM) | AWS(MS VM) [(IIS5.0 | Apache

Tomcat

Single static file, 144135 37629 55423 45098
threads

Single static file, 544575 37635 56017 | 44637
threads

107

Single static file, 100 | 44359 37485 55873 | 44062
Threads

Servlet generated page, 1 | 41825 35528 N/A 40751
thread

Direct reject connection* | 51772(Rejected) | 47049(Rejected) | N/A N/A

* Note: “Direct reject” means reject connection directly without sending any contents

after a socket connection is accepted.

Table 6 Performance Analysis on Windows platform

In the Windows platform performance analysis. [compared AWS with Micorsoft IIS and
Apache Tomcat. We also used two different Java virtual machines run AWS: the Sun Java

VM comes with JDK 1.3, and the Microsoft Java VM comes with Visual J++ 6.0.

Sun Java VM vs Microsoft Java VM

The result of AWS running on different virtual machines was quite surprising. The Sun
Java virtual machine outperformed the Microsoft one by almost 20%. Even through the
AWS project is compiled into .exe format by using J++, the result made no improvement
at all. This is a proof that the J++ executable Java format does not compile the Java
source into machine code. It may be still in Java binary format and simply run by a

integrated Java VM executable.

108

AWS vs Microsoft IIS 5.0

Even through Microsoft has poor support for Java and slow Java virtual machine, its
Internet Information Server gives unbelievable performance results. AWS and Apache
Tomcat did not even come close to its results in all tests. A gap in performance excess of
25% between AWS and Microsoft IIS pertains to many aspects. Java itself is not as
efficient as C++. Moreover, IIS benefits tremendously from its integration with the
Microsoft Windows NT operating system. However, IIS does not support Servlets
directly. Support for Servlet on [IS needs an external Servlet container. Not many Servlet
containers could be found on the Internet supporting IIS. None of them are free or open

source.

AWS vs Apache Tomecat

Apache Tomcat is the most commonly used Servlet container. The results between
Tomcat and AWS were not that obviously different. In most static page tests, Tomcat
outperformed AWS. However, AWS got better results in Servlet-generated pages due to
its integration of Servlet container and Web server: there is no interface between Web
server and Servlet container. Parameter passing and communication between these two
are minimized in AWS. AWS and Tomcat both have connection pooling, which may
smooth the performance in test with large number of threads. An increase in number of

attacking threads does not produce a dramatic change in result.

Windows vs Linux

Both AWS and Apache Tomcat were tested on both Windows 2000 and the Linux

109

platform. Results for the Linux platform were much better than the results for Window
2000 platform. By using Linux Java virtual machine both server result about 10% gain in
all tests. Since both servers uses the same set of source codes on both platforms, this

performance gain is solely due to fast Linux kernel and Java virtual machine.

AWS vs Sun JSDK Web server

AWS outperformed Sun JSDK Web server in all tests. Since the JSDK Web server has no
Servlet container, we did not use it to test the Servlet-generated page. When we
compared three JAVA Web server implementations. AWS, JSDKws, and Tomcat, we
found their performance lie in the almost the same level. Only about 10% variance
among the three is due to implementation. Most important, however, was the
performance of Java virtual machines. In contrast to the 10% implementation difference,
we compared results using AWS on three virtual machines, Sun on Windows, Microsoft

on Window, and Sun on Linux, it gives us more than 30% difference in performance.

Performance Limit

Performance of the virtual machine is the most important aspect of the Java Web server
performance. No matter how good the Web server design is, there is a limit to its
performance. The direct reject connection test is done to determine this limit of the
virtual machine. In our test, a connection is rejected right after it is accepted without any
manipulation, which means it represents the performance result of an ideal Web server
that can use zero instruction to handle an incoming HTTP request. This perfection cannot

be reached no matter how well the Web server is designed. Within 300 seconds of test

110

period, Microsoft’s Java virtual machine completed 47049 requests, Sun virtual machine
completed 51772 requests on Windows platform and 59426 requests on the Linux
platform. This test shows exactly how fast the virtual machine is. The best performance
is resulted by to Sun virtual machine on a Linux platform, exceeding the Microsoft

virtual machine on Windows platform by almost 30%.

AWS Sun JSDK Web | Apache
Server Tomcat
Single static file, 1 threads | 48923 44582 50098
Single static file, 5 threads | 48575 44672 49749
Single static file, 100 | 48155 43785 48507
Threads
Servlet generated page, 1 | 46436 N/A 56163
thread
Direct reject connection* 59426 N/A N/A
(Rejected)

Table 7 Performance Analysis on Linux platform

I

Chapter 10 Conclusion and Future Work

10.1 Conclusion

We may conclude that the AWS project is a successful project that delivers a Web server
and Servlet container. It is an application server that supports JAVA Servlets, CGI and
the latest HTTP and Java Servlet API 2.1. It supports scalability and is ready for further

changes.

In the AWS project, my major contributions are:

1) Research on, and a survey of. a Web server and an application server.
2) Evaluation of application server technology

3) Implementation of a pure Java Web server

4) Integration of the Java Web server with a Servlet container

5) Implementation of two scaling model of the application server

112

10.2 Future Work

AWS is part of a bigger project — the ASP OS — that I am working on with Mr.
Frederic Simard for the University of Quebec at Montreal. We are seeking venture
capital to finance this project. The goal of the ASP OS project is to develop a low cost,
easy-to-implement, commercial-grade solution for Application Service Providers (ASP).
Before we source funds to complete the project at full throttle, we plan to proceed in four

stages.

The application server model used by most companies is a Web server plus an

application service container, as shown in Figure 31.

Serviet ;
|
T - ; | :
i Serviet Web ‘ © . Web
Serviet | ‘Container | Server o ‘ ’ Client
] 2
i Servlet

Figure 31 Classic Web Server and Serviet Container model

This model is also used by AWS, though it is not sufficient to meet the rapidly growing
needs of the ASP industry, especially small and medium size companies. These ASP
companies need hundreds of thousands of dollars to develop ASP applications and
millions of dollars to cover operating and marketing costs. By using the ASP OS model,

which requires less development and management, these companies could save more

113

than 80% of the cost of developing their Web applications.

Four Stages of the ASPOS Project

Stage 1: Visual Web Component Library (VWCL)

|] . ‘
Serviet I web . Web
Container | . Server a HTTP 7 { Client
| C P
) E T -
- VWCL . t VWCL L VWCL !
~ Web Page . . Servlet Web Page |
. VWCL

' Web Page

Figure 32 ASPOS stage 1

In Stage 1, nothing on the client side changes. A client would still use a Web browser
such as IE and Netscape to browse a Web page. On the server side, the Web server and
Servlet container would also remain unchanged. Any general-purpose Web server and
Servlet container could do the job. In addition, a Visual Web Component Library (VWCL)
— a Servlet that supports the JSDK 2.1 API so that it can be run as any other Serviet —
is designed to support VWCL pages. VWCL is a Servlet that supports the JSDK 2.1 API
so that it can be run as any other Servlet. The VWCL reads a XML page that contains

layout information about a dynamic Web page, where the dynamic parts of the page are

114

SQL queries will replace these by the query result with a designed format. VWCL
supports multi-user and multi-language, so different users will see different content on
the same page, even in different language. For example, if a page contains some
information about a user’s curriculum, a different login name will result in a different
query to the database, which will generate different results. If two users use different
languages, the curriculum page will be displayed in a different language. The function of
VWCL is similar to function of JSP, Servlet and ASP, which have become the current
standard on the Web. However, it delivers stronger features and it is much easier to use. It
does not need the user to have any programming background. A user who knows HTML

and XML design is competent to do the job.

Stage 2: ASPLet

i Web | — o ’{ Web
Server |] Client

i
ASPLet ——— ASPLet _ \ sopigt

Container

Figure33 ASPOS Stage 2

Stage 1 does not support any action and manipulation of data on a static page. For
example, a curriculum Web page might show user all courses in which a student client

has registered. If the client needs to add a course or drop a course, or if he needs an alarm

s

10 minutes before a course starts, product from Stage | will not be sufficient to support
these requirements. Stage 2 extends the Servlet API to an ASPLet API. Users can use the
ASPLet API to design ASPLets. Like Servlets, ASPLets are small server-side programs.
They use the VWCL and XML input, as Stage | does. They also support user-defined
actions and functions on any VWCL components and HTTP requests. By using ASPLets,
VWCL can handle user-designed actions and manipulations on inputs. By this means, a
Web page will be more than a static page. It can contain both dynamic contents and
dynamic actions. It will more like an application than a Web page. Many commercial
products, such as Portal and Portlet technology from Oracle, are trying to achieve similar

goals.

Stage 3: ASP Server-Client module

ASP /'L o ASP |
~ Server | ASFP k’ Client

i ASPLet
[——quQntaine -—— ASPLet
L r i

' I
E ASPLet |

_ ASPLet

{
—_ e

Figure 34 ASPOS stage 3

The product from Stage 2 is not sufficient to handle all ASP application needs. It will be
limited by the current Web browser technology and the poor efficiency of the HTTP
protocol. A new ASP client should be developed together with an ASP server, both
supporting a new protocol — ASPP. ASPP will no longer be stateless and will be in

binary format instead of the text format used by HTTP. By using binary format,

116

request/response overhead is saved, therefore result less data transfer through the
network. The main feature of an ASP client will be to support dynamic visual component
creating. By using a Web browser. the whole graphical user interface is limited to the
browser window and only HTML components can be created on the page. Web browsers
do not support complex components such as tabbed list boxes. Implementing an ASP
client, which will allow the server application to create any Java GUI component on the
client’s machine, will solve these limits. It will also transfer the event and event handling
between server and client, since all GUI events occur on the client side and are handled
on the server side. No commercial products currently have this feature. The industry is
using Java applications to develop individual client-server applications, such as many
types of banking software. The advantage of Stage 3 products is obvious: They would be
easier for clients, since clients would only need to install one application for all ASPs to
which they subscribe. Stage 3 products would also easier for developers, since no
network communication modules are needed in an ASPLet. which is handled by ASP

server and client.

Stage 4: ASP OS
I i V_
! - X :
. _ASP ASP OS [ASPP '| ASP Client
. Application £ [/|
| /\ | 3
ASP ASP

Application Application

Figure35 ASPOS Stage 4

117

The final goal of the project is to create an “operating system” for ASP. ASP applications
can run on the server side of ASP OS. Clients can use the ASP client application to visit
any ASP Web site and run any ASP application remotely. This approach can save much
development time of client-server applications. Since the network communication details
are handled by the ASP OS, developing an ASP application will like developing a normal
application. The ASPOS will have all functions mentioned in stage 3 and, moreover, it
will have several new modules such as user management, disk management, and memory
management that will take care of all aspects of ASP application. This operating system
is not like the classic operating systems such as Windows and Unix: it does not manage
physical resources and detailed hardware. But in terms of application development, it is a
platform like an operating system for which applications can be developed. Users on the
client side can run the abplication from anywhere on the Internet. Starting an ASP client
would be like “booting” a machine and loading the OS. Browsing an ASP site would be

like running an application. Users will not see the details of server-client connection.

118

6]
(7]
(8]
(%]

Reference

UC Irvine et al., Hypertext Transfer Protocol -- HTTP/1.1 , RFC 2616, 1 April
1998.

Thomas Mowbray and Ron Zahavi, “The essential CORBA: systems integration
using distributed objects,” Wiley, 1995

James Gosling et al., “Java programming language, second edition,” Addison
Wesley, 1998

David S. Platt, “Understanding COM+,” Microsoft Press, 2000

Lixin Tao, “Application Service Providers Model: Perspectives and Challenges”
invited paper for International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet (SSGRR-2000), July 31
-- August 6, 2000, L'Aquila, Italy

“Port”, http://whatis.techtarget.com, 9 August 2000

““Java Servlet API White Paper”, http://sun.java.com, 2000

Cheryl Gilbert, “3-tier application”, http://whatis.techtarget.com, 02 August 2000
*About the Apache HTTP Web server project”,

http://httpd.apache.org/ABOUT APACHE.html, February 1999.

[10] Dustin R. Callaway, “Inside Servlets”, Addison Wesley, 1999

[11] *Java Servlet Development Kit 2.1 AP Documentation”, http://sun.java.com, 2000
[12] “Cookie™, http://www.whatis.com, 13 October 2000

[13] Todd E. Columb, “Web Servers Beyond Unix”,

http://www8.zdnet.com/pcmag/features/Webserver/_open.htm, PC Magazine, 1999

[14] Heath H. Herel, *“Apache Web Server Review”,

http://www8.zdnet.com/pcmag/teatures/ Webserver/iwsrl.htm, PC Magazine, 1999

[15] Todd E. Columb, “Microsoft Internet Information Server Review”,

http://www8.zdnet.com/pcmag/features/ Webserver/iwsr2.htm, PC Magazine. 1999

[16] Frank Norman, “Uniform Resource Identifier”, http://whatis.techtarget.com, 05

September 2000

119

Appendix A Extensive Survey on Application

Servers!

Vendor

‘ Allaire Corp.
888-939-2545
www.allaire.com

| Apple Computer
' 800-879-6398
| www.apple.com

Product

ColdFusion

WebObjects

Description

ColdFusion is a Web application server for building |
and delivering scalable applications that integrate !
browser, server and database technologies.i
ColdFusion includes visual programming, database
and debugging tools in an integrated development;
environment, ColdFusion Studio. It features openE
integration with databases, e-mail. directories, XML,
and enterprise systems. ColdFusion Server features.
JIT compilation and caching. The deployment
platform supports multi-server clusters with native .
load balancing and fail over to serve high volume,:
transaction intensive applications. ColdFusion offersf
database connectivity including support for ODBC, :
OLE DB and native database drivers for Oracle and '
Sybase, and is extensible with technologies such as
COM and CORBA. ColdFusion has security services
on every level from development through

deplovinent.

Apple’s WebObjects is an application server;’
environment that comes with tools for building:
Java-based network applications. WebObjects :
supports drag-and-drop construction of user interfaces
and direct connections to existing applications and ;
data resources. It features graphical development
tools, a palette of prebuilt, reusable components, and
seamless integration with all kinds of enterprise
information systems. WebObjects handles application
server requirements—including load balancing, state
manasement. HTMT. generation. and Java client

' “Guide to Application Servers”, APP Server Zone, http://www.appserver-zone.com/guide.asp, 2000

120

‘ Applied Reasoning Classic Blend
919-851-7677

| www.appliedreasonin

 g.com

Art Technology Dynamo

Group Application

' 617-859-1212

P www.atg.com

,
H
1
i
:
1
i

i
1
!
!

BEA Systems
800-817-4232
www.beasvs.com

Bluestone Software
609-727-4600

www.bluestone.com

Server

BEA WebLogic

Total-e-Server

interoperability. WebObjects 4 runs on UNIX and NT :
(and will also run on Mac OS X and HP-UX), and |
works across applications, business systems, and |
existing business logic. @

|
Classic Blend brings VisualWorks applications to the |
Web using a thin-client Java applet. It allows|
Smalltalk applications to be deployed over theE
Internet with a Java front-end. With Classic Blend. :
existing Smalltalk applications are re-architected from ;
a client-server to a three-tiered application, resulting !
in a highly scalable, serv>r-based distributedi
architecture. :

Dynamo Application Server is a Java Web application
server that features dynamic load distribution,
automatic failover, and session recovery. The product '
supports assembling server applications from
server-side JavaBeans components and Java Servlets,
allowing an open, modular, and reusable architecture. -

BEA WebLogic is an extensible server for
assembling, deploying, and managing distributed Java '
applications. With BEA WebLogic, Java business
components can be interconnected with .
heterogeneous databases, network information '
resources, and other Java business components. Youg
can manage your application components by using :
BEA WebLogic’s graphic Java console to ensure,
security, scalability, performance, and transactioni

integrity.

Total-e-Server is an enterprise-class infrastructure that |
fully supports current open technology standards such
as J2EE and XML. It delivers the core capabilities
you need for a successful e-business. It offers
scalability and fault tolerance through a combination
of load halancing. data caching <tate manasement

Borland Inprise
+ 408-431-1000
- Wwww.inprise.com

] BulletProof

' Corporation

: 408-374-2323

- www.bulletproof.com

i
i

Inprise

Application
Server

JDesignerPro

and reliable transaction processing.

The Inprise Application Server enables developers to .
readily build new, platform-independent applications, '
taking advantage of open industry standards such as
CORBA and Java. It provides an integratedf
end-to-end solution for developing, integrating,j
deploying, and managing distributed-object%
applications that support multiple thin clients,?
mid-tier business logic, and standards-based database
and legacy access. Features include open and’
extensible architecture based on industry standards '
such as CORBA, C++, Java, and HTML; and support
for the Sun Solaris, HP-UX, IBM AIX, and Microsoft |
Windows NT platforms. Inprise Application Server
also includes Sun’s Java Web Server, and supports
other major Web Servers, including Netscape.
Microsoft, and Apache. VisiBroker Integrated
Transaction Service (ITS), a flexible
distributed-object-based transaction service that offers .
full support for the Java Transaction Service (JTS)
standard, and AppCenter, a distributed.
applications-level management tool, are also
included.

JDesignerPro is a 100% Java development and
deployment solution for building data-driven Web .
business applications. Visually design interactive .
database applications deployable through any:
browser. JDesignerPro includes an application server |
to distribute applications to users. It has a visual '
layout manager which allows point & click;
development and database access. JDesignerPro§
includes advanced Wizards that require no knowledge |
of Java to build and deploy finished applications.i
Other features include a user access control system, |
JDBC/ODBC database connectivity and connection |
pooling, remote management and a complete GUI |
designer with components.

122

i

| Chili!Soft
| 425-957-1122
‘ www.chilisoft.com

. Data Access WebApp Server

- Corporation
305-238-0012
; www.dataaccess.com

- Day Interactive

| 323-938-9888

; +41 61-226-98-98

' www.davnetwork.co
m

Chili!Soft ASP

Product Suite

Communiqué

Chili'Soft ASP is a Web application server based on |
the Active Server Pages (ASP) architecture. With
versions for both NT and UNIX, ChililSoft ASP|
allows you to build and host Web applications across '
multiple platforms. Chili!Soft ASP is available forE
Netscape, Apache, and Lotus Web servers oné
Windows NT, Solaris, and soon HP-UX and 0S/390. |

1
|
|
i
1

|
The WebApp Server Product Suite consists of two
components: WebApp Server and WebApp Studio.%
WebApp Studio is a complete suite of visual tools for :
building Web applications. WebApp Server is a,
business logic engine, a powerful application server :
that provides Microsoft 1IS/ASP developers with |
enormous capabilities for controlled. intelligentg
database integration, and centralized business rule and i
business process execution. WebApp Server extends
Microsoft’s dynamic internetworking archltecture;
(DNA) by providing a place to store business logic in ! |
DNA’s middle tier. WebApp Server provides a clean :
separation between the application interface and the '
application logic. Through the combination of a
three-tier architecture, open database integration,§
robust business rules, and rapid development tools for §
high performance browser applications, the WebApp |
Server is truly designed for developing database
applications on the Web. '

Communiqué 2.0 is an application server w1th‘
enhanced content management functionality desngned |
to provide total Web information managementl
solutions. Core functionality includes a ,

browser-based, content-management system,;
completely dynamic Web servers; and scripting host.
Additional characteristics include

platform-independent, multithreaded, unlimited
scalability; stable under heavy workloads; modular
and object-oriented scripting language (ECMA Script,

aka JavaSecrint): and nonforking Features include a

123

. The dbXML Group, Juggernaut

'LL.C. Application
j 480-421-1215 Server

- www.dbxmlgroup.co

'm

!

|

' Delano Technology Delano

{ Corporation e-Business

, 905-947-2222
| www.delanotech.com

Dynalivery
314-205-8995
www.mobileapps.com

Interaction Suite

Parallel Crystal

fully browser-based WYSIWYG content management
system; syndicated/subscriber-oriented content |
replication across servers and sites; true load
balancing across multiple servers and sites (even |
across various platforms); scriptable, ultrafast XML
integration; a real-time, full-text linkchecker
(site-internal and site-external); and w1re1ess|
application protocol support. Supports XML- Object
and FastDOM for application information mterchange ;
and database connectivity to mySQL, Oracle,?
Informix, Sybase, MSSWL, any ODBC source,’
LDAP integration, session support for e-commerce,
and other profiled applications.

Juggernaut is an application server designed to'
provide a flexible Web application architecture. The
architecture is a component-based, plug-and-play. and |
extensible framework. It is a complete product, open, :
customizable, and scalable. Juggernaut is primarily az
platform for experimentation. Some have called it the .
“Anti-App Server,” because it does not directly§
support Sun Microsystems’ standards such as°
Servlets, JSP, and Enterprise JavaBeans. (Juggernaut:
Application Server was formerly maintained by
Beach Dog Software.)

The Delano e-Business Interaction Suite is an-
application platform that enables companies to;
rapidly develop and deploy e-business applications |
that leverage e-mail and the Web to interact w1thi
customers, partners, suppliers, and employees. Thei
platform includes a rapid application bunlder,
environment and a highly scalable server that enables
companies to deploy e-business applications.

|

Parallel Crystal Report Engine (PCRE) provides a!
scalable server solution for your report generation :
needs. Mobile Application Servers, Inc. developed§
PCRF under a license from Seacate Software. and is;

i

124

!

i
1
|

' Esemplare Galileo
' Development Application
- 718-698-0070 Server

: esemplare.com

- Fujitsu Siemens PRIMERGY

Computers Servers
+49 (89) 636-47691

- www.fujitsu-siemens.
: com/en/

GemStone Systems GemStone/J
800-243-9369
 www.gemstone.com GemStone/S

based on the C++ and Microsoft Foundation Classes !
(MFC) in the Crystal Reports run-time or “print
engine.” I

The Galileo Application Server is a developments
system designed to allow developers to create
dynamic database-driven applications through the use
of custom HTML tags. It has been designed tof
simplify the design, development, deployment andf
maintenance of Web based applications. Galileo was '
written in Java and will run on any platform that’
supports the Java Virtual Machine, including .
Windows 95/98, Windows NT, SPARC Solaris, '
HP-UX and Linux. '

Fujitsu Siemens Computers’ PRIMERGY server
systems are based on Intel architecture, ensuring a-
high level of standardization and a good cost-benefit,
ratio. They also have a wide range of standard.
applications.

GemStone/] is GemStone's application server for
deploying and managing distributed Java applications
in a three-tier environment. It is an integrated
transactional server for Java and CORBA based on:
distributed JavaBeans and an array of enterprise
services. It uses siandards such as CORBA/IIOP and |
JDBC to ensure interoperability with other systems
and integration with all data sources. GemStone/J is a .
JavaSoft-certified, Java-compatible system that canf
run all 100% Pure Java applications on the server. f

GemStone/S application server provides a highly§
advanced platform for developing, deploying, and |
managing scalable, high-performance, multi-tier
applications. GemStone/S is based on a mature |
industry-standard language—Smalltalk. GemStone/S |
provides seamless integration with existing Smalltalk
annlications hecanse its ohiect madel is the same as

125

HAHT Software HAHTsite
, 888-438-4248 Scenario Server
: www.haht.com

Halcyon Software [nstant ASP
-408-998-1998

www.halcyonsoft.com
' IBM Corp. WebSphere
f 800-426-4968 Application
; www.ibm.com Server

[COM Informatics Winsurf
512-335-8200 Mainframe
www.icominfo.com Access

the Smalltalk object model.

The HAHTsite Scenario Server is a standards-based
e-business server that offers platform features such as |
scalability, high availability, security and extensibility.
The Scenario Server also offers integration features '
that provide a framework for intra-enterprise and:
extra-enterprise integration. |

Instant ASP is a 100% Microsoft ASP-compatible
server engine, it enables Web/enterprise developers to :
deploy ASP applications. Develop data-driven,::
Web-enabled, enterprise-class applications that can be !
deployed across multiple Web Server and Operatingi
System platforms. Written entirely in Java, Instant
ASP runs on Linux, Novell, Sun, MacOS, HPUX,"
SGI, SCO, DEC Alpha, IBM 0S/2. RS/6000, AS/400, -
$/390, and Windows. It supports Apache, "
FastTrack/Enterprise servers, Sun WebServer, Javai
WebServer, IIS, WebSphere. Lotus Domino, and most
Web servers. '

[BM WebSphere Application Server combines a
runtime environment for Java Servlets with%
connectors to common database formats,
industry-standard object request brokers, and
enterprise middleware. It runs on major industry .
HTTP servers. :

Winsurf Mainframe Access (WMA) is a Web-to-host
connectivity solution that integrates Internet, intranet, ;
and extranet technologies into mainframe |
environments. WMA provides Web-based access to a |
range of IBM $/390, AS/400, DEC/UNIX, and Bull !
hosts. It also provides mainframe access connectivity
without requiring changes to host applications. ;

b
'
¢

Installed on a2 Windows NT server eaninned with§

126

I
t
|
i
{
1
|
|
|

] [ona Technologies
| 781-902-8000
| www.iona.com

888-786-8111
: www.iplanet.com

' +64 3-365-2500
- www.discoverjade.co

Application

Application

Corporation

t

Microsoft Internet Information Server (IIS), WMA |
ensures the administration of users who accessi
host-based applications. !

|
The Iona iPortal Application Server is an EJB 1.1 l
Server/Container combined with a graphical interface :
for the assembly, deployment and administration of ’
Enterprise JavaBeans. It includes all the services:
required by the EJB 1.1 standard, including support -
for session and entity beans. Java Naming andj
Directory Interface (JNDI), EJB Security and
RMI-IIOP. Container and bean-managed persistenceﬁ
is supported by XA conformant JDBC 2.0 technology |
for connectivity with more than 100 databases. i

iPlanet Application Server provides a J2EE:
e-commerce platform for delivering application
services to servers, clients and devices. It enables .
rapid-time-to-market, the ability to handle unplanned 1
success, and the ability to leverage information .
systems and business processes across the extended
enterprise. :

JADE is an application programming technology used ’
to build enterprise-class. transaction-based business
systems, particularly high-volume e-commerce
applications. JADE comprises both a rich, seamless |
development environment and a unique distn'butedé
computing environment. JADE has a single |
development environment that contains all the?
functionality necessary to build an entire system
integrated together so that development integrity and
quality are improved. It also uses a single language, |
eliminating the need for multiple languages in one
system, greatly improving initial development and
maintenance. JADE can integrate external parts
(ActiveX controls, external methods, and relational
database access) and be integrated into external
svstems (ODRC. multinle lanpuase APIS) .IADF-‘.E

127

distributes and manages the execution of your system
across Windows NT platforms and through
LANs/WANSs and the Internet. JADE Server can also
run on IBM RS/6000 under the AIX operating system.
JADE 5 is the recently released enterprise-class

version of JADE. .

|

?Level 8 Systems, Inc. Geneva Geneva Enterprise Integrator (EI) is a
- 800-499-7337 Enterprise memory-resident operational resource manager, !
“www.level8.com Integrator delivering real-time information integration. Geneva

EI uses distributed object technology to integrate |
applications, information flows, and data into an |
active model (structure and state) of an enterprise. |
The active model is also a platform for implementing |
new enterprise applications. 3

: Lotus Development ~ Lotus Domino The Lotus Domino Application Server is an open.é
1 800-343-5414 RS Application secure platform optimized to support rapid delivery of |
* www.lotus.com Server collaborative Web applications that integrate
| enterprise systems with dynamic business processes. |
It allows you to leverage current information assets;
with built-in connection services for live access to
relational databases, transaction systems and ERP,

| applications.

?Lutris Technologies Enhvdra The Lutris Enhydra application server offerings,i
| 831-471-9753 Application Lutris Enhydra Standard and Lutris Enhydra’
: www.lutris.com Servers Professional, are tools for building comprehensive

Web and wireless applications. At the center of both
Standard and Professional is the Enhydra Java/XMLi
application server development and deployment I
environment. :

Math Wizards Inc. MathXplorer/JS MathXplorer/JS is a Java RMI distributed Math

619-552-9031 (application) server for the Web that provides

www.mathwizards.co software developers and Web designers distributed :

m and platform-independent numerical computing !
services.

128

|
I
I

Merant Micro

800-872-6265
- www.merant.com

j Microsoft Microsoft
- 800-426-9400 Transaction
' www.microsoft.com Server

Internet
Information
Server

Miva Corporation Miva Mia

619-490-2570

wWww.miva.com

|

| ObjectSpace, Inc. Vovager

| 800-OBJECT-1 or Application

i 972-726-4100 Server

Server Express

1

Focus Server Express, a Micro Focus COBOL product for£

UNIX, is a platform for deploying e-business and |
distributed applications. It is specifically designed to
support high-volume transaction processing :
applications. Server Express accelerates enterprise |
COBOL application performance. |

Microsoft Transaction Server (MTS) s ag

component-based transaction processing system for '
building reliable, scalable, distributed Internet and'
Intranet applications. MTS is a feature of Microsoft:
Windows NT operating system that simplifies the;
development and deployment of server-centrici
applications built using Microsoft Component Object ,
Model (COM) technologies. '
I[nternet Information Services (IIS) 5.0, the most,
important Web technology integrated with Windows
2000 Server, makes the platform a powerful Internet .
and intranet Web application server. IIS extends the |
Web capabilities of server operating systems by
letting users share information. build and deploy -
business applications, and host and manage sites on .
the Web. :

Miva Mia is a desktop server for running applications
written in Miva Script, an XML (tag based) server
side scripting language. A desktop Web server and:
xBase compatible database are fully integrated into |
Miva Mia. Applications developed using Miva Mla,
are fully cross platform and can be run on any;
Windows NT or Unix Web server that has been‘
enabled with Miva Empresa, the enterprise andi
hosting service edition of Miva Mia.

Voyager Application Server offers the means to build ,
scalable, secure, distributed, transaction-oriented i
applications. Because Voyager embraces the standard ;

j

129

| www.objectspace.com
|

i
|

i

' Oracle Corp.

|
|

Oracle
- 800-672-2531 Application
“www.oracle.com Server
' Orbware OrCAS
; www.orbware.com Enterprise
| Server

|

Java server component model, Enterprise JavaBeans,
application developers have access to the burgeoning i
market of off-the-shelf, server-side application'
components. Voyager also allows applicationz
developers to concentrate on business logic, not!
infrastructure. The details of transactions, security,é
threading, and distribution are handled transparently. !
Voyager’s advanced graphical tools also simplifyf
application deployment, = management, and%
monitoring. Voyager is the only application server:
that has a universal container. ‘

I

Oracle Application Server (OAS) integrates all of the |
core services and features required for building, |
deploying, and managing high performance, n-tier,
transaction-oriented, Web applications within an open |
standards framework. These essential capabilities
include HTTP Web server and support for popular
Web servers; database and legacy access middleware
for connection to all major databases; CORBA ORB
support for scalable, cross platform, distributed object
deployment; TP monitor capability for load balancing, -
pooling and transactions; network services like
security and directory; and message-oriented :
middleware for extensibility that simplifies the§
enabling of new applications. OAS offers.
cross-platform support for all types of network clients
(HTML, Java, CORBA), Web servers, and databases,
which preserves existing investments in legacy and "’
client/server systems. ’

|
i
OrCAS Enterprise Server is a pure Java EJB:
application server from Orbware, a J2EE licensee. |
OrCAS is a full implementation of the EJB 11|
specification and is also available as a full J2EE
platform. An ASP Edition is available with support for
virtual hosting of J2EE applications. The product is
supported on Windows NT, Linux, and Solaris.

130

| Persistence Software PowerTier
| 650-372-3600
| WWW. persistence.com

_Pervasive Software Tango 2000

- 800-287-4383 Application
www.pervasive.com Server

“PortalSphere Inc. PortalSphere

1 613-722-7389 Application
www.portalsphere.co Server

'm

|
PowerTier is an application server with multiple%
patents in performance, scalability, and developer |
productivity. With PowerTier’s shared transactional !
object cache, data is moved into memory and away}
from the database, eliminating processing strains on!
the back-end and speeding up response times by as!
much as 50 times. With PowerSync, PowerTier!
synchronizes the caches of distributed servers, so%
users have real-time, local access to current data from
the closest PowerTier server. And PowerTier
automatically generates EJBs, JSPs, and XML code
with object modeling tools such as Rational Rose or!
Together Control Center reducing the learning curve |
for developers. 1
Tango 2000 provides a complete suite of products for .
the development, deployment and maintenance of.
business critical Web applications. Tango Application
Server dynamically creates HTML output based on.
what’s contained in your databases at a given1
moment. Think of the Application Server as a:
powerful broker between the client display logic and .
an organization’s information systems—everything'
from the database to e-mail. Failover detection:
ensures site availability.

PortalSphere Application Server is a powerful’
CORBA-based development and executioné
environment for e-business. It supports client-sideg
development in HTML, ASP, Java/JavaScript, Visual?
Basic/VBScript, ActiveX, Macromedia, Microsoft%
Office (Word, Excel), and C/C++. Applications run on |
Linux (UNIX) with simultaneous native access to

multiple databases, including Oracle, Sybase, and '

MySQL. It supports real-time event processing.

131

i
i

fPramati Technologies Pramati Server
and Studio for
J2EE

:Ltd.
+91 40-374-3295

| www.pramati.com
|

 Progress Software Open AppServer

’ Corp.
| 781-280-4000
| www.progress.com

Sagent Technology
800-782-7988

wWwWw sagent com

AddressBroker

|
t

Server object library includes Excel-compatible |
spreadsheets, XML, LDAP, and (facilitates
development of reusable components. Delivers fuil
real-time event processing; benchmarks up to 100

times faster than HTTP/CGI.

Proton is a Web application server written in Java. |
Proton supports multi-tier Web applications with !
HTML for presentation layer, Java objects forg
business logic, and interfacing to enterprise
information servers. Proton now supports large-scale |
enterprise applications ~ with high-performance |
features, dynamic load balancing, failover;
management, automatic restart, remote administration
and monitoring. Proton provides complete access to
Java objects from HTML pages. User interface
developers can use simple HTML tools without:
worrying about the complexity of the businessf
processing on the application layer. Proton uses 100%
Pure Java and will run on any platform with Java 1.1 :
or higher. ‘

Progress Open AppServer supports distributed Future |
Proof enterprise applications that leverage existing -
investments, support new technologies, and:
communicate with other applications as needed. An;
integrated application server for both Progress 4GL§
Version 9 and WebSpeed 3 Web-based applications, f
Progress Open AppServer forms a middle tier!
between an application’s user interface and fits
database. Invisible to application users, Open
AppServer allows interoperability with virtually anyf
client and data source. i

AddressBroker is an enterprise server designed for
client/server environments that handle high-volume
cnstomer data record reanests. Featires inclnde laad

132

r

)
|
t

!
|
|
[
|
|
]
I
|

{
'

i

www.sagent.com

Secant Technologies Secant Extreme

Inc. Enterprise_
| 216-595-3830 Server

www.secant.com

' Servertec iServer

i
i
P
1

P
1
i

201-998-1048
wWwWw.servertec.com

SilverStream SilverStream
781-238-5400 Application

www.silverstream.co Server
m

balancing, multiprocessing, and a Handle Manager. C,
C++, Java and ActiveX provided. Connectivity is
available through HP/UX, IBM’s AIX, Sun Solaris
and Digital Unix. as well as Windows NT.

Secant Extreme is an Enterprise Object Application;
Server environment for developing scalable multi-tier |
applications. Built on top of Secant’s Persistent |
Object Manager (POM) Server, which maps Java and
C++ objects to relational databases, Extreme provides !
a complete Enterprise JavaBeans framework and'
implementation of CORBA services including |
transactions, security, events, concurrency, and‘E
locking. Coupled with Rational Rose98, developers !
can use Extreme to model. partition, and generate the
framework of a multi-tier application. Extreme
includes deployed application management, extensive -
object services, automatic state, and session .
management for Web applications and dynamic load
balancing. 3

Servertec iServer is an independent Web server
written in Java that can serve static Web pages and
generate Web pages using Java Servlets, iScript, CGI ‘
and Server Side Includes. Provides a scalable
platform to establish a Web presence and deploy
cross-platform Internet and extranet applications. !
Features include platform independence, open
standards, and extensible architecture.

!
i
|
i
i
i
'

SilverStream Application Server is an enterprise :
application server that allows corporations to build!
and deploy complex Java and HTML applications on !
which they can run their businesses. It is designed and ;
optimized for the Intra/Inter/Extranet, and delivers |
both client- and server-side Java and client-side |
HTML. SilverStream integrates business logic,f
extensive database access, content creation,i

[
i

nublishine. collahnration. and communications in ane |

133

i
i
!
[
|

|

i
!

SoftQuad Inc.

| 416-544-8879

www.softquad.com

|

|

ESun Microsystems Java Embedded

|

i
t
i

HoTMetal
Application

Server

Inc.
512-434-1591
www.sun.com

Sybase Inc.

800-879-2273
www.svbase.com

Tempest
212-624-4156
www.tempest.com

Server

EAServer

SiteShield

solution. j

SoftQuad’s HoTMetal Application Server is a
server-based engine for hosting and deploying
dynamic, browser-independent Web applications with :
complete security and low maintenance. HoTMetaL |
Application Server can be used for deploying:
data-driven customer service, e-commerce, and
personalized content applications developed using
Miva Markup Language (MML). a standards-based, !
tags-oriented language. Supports UNIX, BDSL |

Solaris, Linux (CGI), Windows NT.

|

|
Java Embedded Server is a small-footprint network?
server that enables rcal-time deployment and '
installation of applications to remote embedded !
devices. Powered by the modular architecture of the
JavaServer Engine and the JavaServer Services, the
Java Embedded Server allows remote devices tof
upload, download, activate, and deploy customized
services and applications precisely when they are .
needed. Employing the Java Embedded Server means :
that services can be built, rebuilt, added. removed,!
customized, and utilized on a real-time and variable !
basis. ’

Sybase’s EAServer, a scalable application server for§
e-portal and Internet solutions, provides a set of.
services for deploying Web and distributedf
applications using core Java 2, J2EE technologies.!
EAServer also offers broad support for applications, i
including those based on CORBA, XML, HTML,E
DHTML, any ActiveX client, PowerBuilder, COM, C |
and C++.
SiteShield is a “plug and play” software solution?
consisting of the SiteShield Server and the SiteShield |

Bridge that secures Web-based information exchange. |
|

134

" Tomahawk

- Technologies Inc.
1613-257-4141
www.tomahawktech.c

1
(om

I

| Unify Corporation
972-871-4600

- www.unify.com

o

SteelArrow

Unify VISION

T'he product keeps enterprise application data securely |
behind a firewall closed to all incoming connections.
This technology allows you to close all inbound ports
in your firewall while authorizing controlled access to
your Web server behind your firewall. The product |
enables multiple partners to exchange information |
from these Web servers. :

SteelArrow is an easy-to-use Web Application Server |
offering dynamic database connectivity and a’
feature-rich HTML embedded markup scripting
language. WebHawk. the editor bundled with:
Steel Arrow, offers Database and HTML-table wizards |
that allow Web developers to produce dynamic Web .
applications in a snap. The WebHawk editor
(Win95/98/NT) also allows developers to test and
debug scripts on-the-fly while editing, a true benefit .
for Road Warriors. SteelArrow provides automated .
e-mail and e-news support, timed script execution, -
database connectivity, database connection and,
session pooling, data scraping from other Web pages, :
dynamic file creation, user- and group-level security, :
conditional logic evaluation and looping, and:
integration with other Web technologies. SteelArrow .
offers developers full Web application development
functionality and run-time reliability. It operates as an
extension to Microsoft IIS and Netscape Enterprise
servers, providing true scalabilty and costé
effectiveness. ‘

!
Unify VISION App Server is an open,!|

standards-based Internet application server thati
enables [T organizations to bridge legacy,f
custom-built and packaged applications with the
Internet. Its universal client architecture enables users
to access any application, anywhere, anytime. Unify |
VISION AppServer’s Parallel Dynamic Scaleable |
Architecture offers server replication, load balancing,
fail-aver and recoverv. and nmublish-and-subscribe

135

Unify Corporation
972-871-4600
" www.unifv.com

. Unify Corporation
1 972-871-4600
- www.unifv.com

!
' VelociGen Inc.
' 858.622.1164

- www.velocigen.com

Versata Inc.
800-984-7638
| Www.versata.com

ServietExec

Unify eWave

Engine

VelociGen

Application
Server

Versata
E-Business
Automation

capabilities, all based on a fully asynchronous!

messaging architecture. Integrated application |
management services lower total cost of ownership by !
allowing organizations to effectively manage their !
applications from a single point of control. |

ServletExec is a Java-based Web application server ;
that featurcs complete implementation of the Java;
Servlet API 2.0, including Session Tracking; Servlet :
Aliases, Chains, and Response Filters: Remote?
Serviets. It supports JavaServer Pages (JSP) as:
defined by Draft Specification 0.91. It supports major
Web servers and operating systems, includingi
Microsoft 1IS & PWS, Netscape FastTrack &
Enterpise (UNIX & Windows), Apache (UNIX &
Windows), and Mac OS Web servers.

Unify eWave Engine is a scalable, enterprise-caliberf
Java application server designed for e-Commerce and
Web portals. It features a high-performance, scalable
architecture; support for COM, DCOM, RMI, HTTP;
replication; automatic load balancing; automatic :
failover; and role-based security. |

VelociGen is a Perl-driven application server for !
distributing Web applications. Features include :
advanced templating based on custom HTML tags,§
script compilation and caching, persistent database;;

connections, and built-in XML support. |

The Versata E-Business Automation System enables
the rapid deployment and evolution of complex,f
business-to-business, transaction-based Web |
applications. Versata Logic Server (an open, scalable
platform to compile and execute business rules),
Versata Studio (a team-based development
environment that defines business rules and the
e-commerce nresentation laver). and Versata

136

Connectors (links for the e-business applications to
legacy resources) comprise the Versata E-Business
Automation System.

Zope Zope Zope is an open source application server and portal |
+ 540-371-6909 toolkit used for building high-performance, dynamic i
WWW.Zope.org Web sites. This object-based Web application |

platform allows you to build dynamic Web |
applications easily. Zope is completely managedg
through the Web and uses the Web object model as its '
design. Zope's framework provides a safety net,,
including access control, undo, private versions, and :
more. Zope is based on Python, and offers support for ‘
CORBA, COM, XML, and leading databases. "

i
i
l

|

137

Appendix B AWS installation and configuration

manual
Complier and Installation of AWS
Downloading AWS

Information on the latest version of AWS can be found on the AWS Web site at

http://www3 svmpatico.ca/abao. If you downloaded a complied distribution, skip to

Installing AWS. Otherwise read the next section for how to compile the server.

How to compile AWS

Step 1:

Make Sure a JDK1.3 and JSDK 2.1 is installed. JDK1.3 and JSDK 2.1 can be
found on Sun’s Web site. Set up the JAVA_HOME environment variable to be

the path where JDK 1.3 installed using the following DOS command:

Set JAVA_HOME=c:\IDK1.3

Step 2:

Unzip the AWS.zip file. You should see a directory called AWS.

Step 3:

Under AWS/bin type make.bat to compile the AWS server.

138

Step 4:

If you run AWS under windows platform, the tray icon GUI will be showed.
This requires support of Dynamic Link Library. There are two .dll file located under
AWS/lib which are required for supporting tray icon. Copy these two files into your

Windows/system or Winnt/system32 directory to enable these libraries.

Install AWS

The next step is to edit the configuration files for the server. This consists of setting up
various directives in up to three central configuration files. By default, these files are
located in the AWS/conf directory and are called AWS.conf, Servlet.conf and
Session.conf. Read the comménts in each file carefully. AWS.conf contains
configuration about the Web server; Servlet.conf contains configuration about the
Servlet container; Session.conf contains configuration about Session. Failure to setup

these files correctly could lead to your server not working or being insecure.

Configuration and directives of AWS
AWS, conf

In this file, you can set up many attributes of the AWS server.

Port:
Default format:
port = 80

139

This directive set the port that AWS will listen to. The default HTTP port is 80.

MAX_NUMBER_OF_CONNECTIONS:
Default format:
MAX_NUMBER_OF_CONNECTIONS=1000

This is to set up the maximum number of connections allowed at the same time.
Detault value is 1000

RESERVED_NUMBER_OF_CONNECTIONS:
Default format:

RESERVED_NUMBER_OF_CONNECTIONS =100

This is to set up the connection pool size. A connection pool is a set of connection
objects that is already initialized and waiting for connections. Once a connection
comes in, the scrver will assign a connection object to it. After a connection is closed,
it will be return to the connection pool and ready for reuse. It is an optimization to

Web server.

ROOT_PATH:
Default format:

ROOT_PATH = c:\htmlserver

This directive set the root directory of the Web server. In this default example, it uses

c:\htmlerver as the root directory. Therefore if the Web site domain is

140

http://www.AWS.com by typing http://www.AWS.com/index.html in the URL line

of your Web browser. You will get the file c:\htmiserver\index.html on the server.

Host:
Default format:
HOST = http://localhost

This directive set the domain name for the Web site.

MainThreadPriority:
Default format:
MainThreadPriority = 9

MainThreadPriority directive set thread priority of the Web server main thread.

ChildThreadPriority:
Default format:

ChildThreadPriority = 6

ChildThreadPriority directive set thread priority of the Web server child thread.
There is only one main thread but many child threads. Main thread controls the
whole program and assign connection object to a new child thread when a

connection comes in.

141

Session_Configuration_File:
Default format:

Session_Configuration_File=.\Session.conf

Session_Configuration_File directive gives out the path of Session.conf file. This

needs to be modified to the conf path you installed AWS.

Serviet_Configuration_File:
Default format:

Servlet_Configuration_File=.\Session.conf

Servlet_Configuration_File directive gives out the path of Servlet.conf file. This

needs to be modified to the conf path you installed AWS.

serverName:
Default format:

serverName = AWS

This directive does not need to be modified, it is only for changing the name of the

AWS server when send response to a client and display an index page of a directory.

serverVersion:
Default format:

serverVersion = v1.50

142

This directive does not need to be modified, it give out a version number when

displaying an index page of a directory.

serverUrl:
Default format:
serverUrl = http://www3.sympatico.ca/abao/

This directive does not need to be modified, it give out a link to the AWS home page.

Directory_Indexing:
Default format:

Directory_Indexing = true

This directive enables or disables the directory indexing when a default page cannot
be found on the requested path. The default value is true. Set false will disable the

directory indexing.

Default_Filename:
Default format:

Default_Filename=index.html

This directive set up the default page name, usually index.html and index.htm. When
a default page cannot be found on the requested path the default page is showed.

This directive can have multiple lines for different names.

143

ENABLE_CGI:
Default format:
ENABLE_CGI=true

This directive enables CGI support. Set to a false value will disable the server’s CGI
support function.

Servlet.conf

Servlet:
Default format:

servlet=SampleServlet

This directive register a name of Servlet, is name is used to fetch more information

about that Servlet in a serviet. NAME.ATTRIBUTENAME format.

servlet.SampleServlet.code:
Default format:

servlet. SampleServlet.code= SampleServlet

This directive gives out a class name of the Servlet. Java Virtual Machine will look
for this class in all class paths. Before you register a Servlet, you should include the
path of the .class file of the Servlet in the classpath. In a default situation, you should
always include the ROOT_PATH/Servlets path in your classpath. Where
ROOT_PATH is setted up in AWS.conf. Then you should copy the .class file of your

144

Servlet into that directory.

servlet.SampleServlet.urlpattern:
Default format:

servlet.SampleServlet.urlpattern = SampleServlet

This directive gives out a URL pattern such as *.cgi and ?sample.???. It can be used
as a wide card marching from a URL to the Servlet. Most Servlet uses its own name

as a urlpattern.

servlet.SampleServlet.initarg:
Default format:

servlet.SampleServlet. initarg = SampleServlet.conf

This directive gives out a file name which contains the initial argument of the Servlet.

Session.conf

session.timeout:
Default format:
session.timeout = 60000

This directive set up the time out of a Servlet session in milliseconds.

145

session.newtimeout:
Default format:

sessicn.timeout = 60000

This directive set up the time out of a new Servlet session in milliseconds. A new

Servlet session means that session has been created but not used.

session.checkFrequency:
Default format:

session.checkFrequency = 5000

This directive set up the time period that how frequently the session manager will

check all sessions for timeout.

session.useCookies:
Default format;

session.useCookies = true

There is two ways to obtain a session. One way is to save the session ID as a cookie.
Another way is pass it through URL parameters. Use cookie is a preferred way,

which is safer for a client to pass the session [D as a cookie.

All three configuration files are very important to set up AWS on a Web site. The server

will not functioning well unless it is properly set. Usually editing a text file is a boring

work to do. A graphical user interface is developed under help of the Concordia COMP

628 class group to configure the server easier.

146

Run AWS

Under AWS/bin type startup.bat

147

