INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Towards an Integrated Model for
Specifying and Measuring Quality in Use

Mohammad K. Donyaee

A Thesis
In
»The Department
Of

Computer Science

Presented in partial fulfillment of the requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March 2001

©Mohammad K. Donyaee, 2001

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Weliington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Youwr file Votre référence
Qur—file Notre rélérence
The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale «du Canada de
reproduce, loan, distribute or sell reproduire, préter, distrabuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/ilm, de
reproduction sur papier- ou sur format
électronique.
The author retains ownership of the L’auteur conserve la pmopriété du

copyright in this thesis. Neither the droit d’auteur qui prote.ge cette these.
thesis nor substantial extracts from it Ni la thése ni des extraiits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

|

Canada

0-612-59319-3

ABSTRACT

Towards an Integrated Model for Specifying and Measuring Quality in Use
Mohammad K. Donyaee

Although usability has received widespread attention within the software
engineering community, there are few agreed software quality models that capture
our current meaning of usability. The Human Computer Interaction community ﬁas
also developed different models for specifying or measuring usability. Howevér,
HCI models are not well integrated within the software engineering models. Another
problem with those models is the lack of tools that makes them hard to use and
apply. These limitations are the main motivations for our Quality in Use Integrated
Model (QUIM). |

In this thesis, the similarities and differences of various standards and models
for defining usability, specifying, measuring or predicting quality in use are
reviewed, and a comparison between the software engineering approaches and the
HCI standards is committed. Then, we describe the rationale and foundations of
QUIM, an integrated framework that aims to integrate these diverse models while
supporting the main activities related to quality in use during the software lifecycle,

including specification, testing, measurement and improvement.

iii

Table of contents

Chapter 1: From system quality to usability and quality in use

I.1. The concept of qUality.....co.oimiiitii e, 1
1.2. Usability as a quality factor...........ocooiiiiiiiiiiiiiiiiii e eeenne, 4
1.2.1. Usability as a high-level quality objective................cccevnnen.. 4

1.2.2. Usability as an independent contribution to software quality....... 5

1.2.3. Usability versus quality in US€..........coieiimiiiniiiiiiiienennnnnn. 6

1.3. Cost justifying usabilitycooiiiiiiiii e 8
1.3.1. Software risk management and usability...............cccoovveenann... 8

1.3.2. Lack of usability ENZINEETINE . . .teiniitttiiaareieaeieaaieeeeennnanes 10

1.4 Current usability assessment methods................c.c.oociiiiii, 12
LS SUummary... ..ot e 15

Chapter 2: Survey on Metrics, Quality Models, Standards, and Tools

2.1. Software metrics and mMeEaSUrEMENt -..........coevreeinieeiniieenneeeeannnn. 17
2.1.1. Metrics CAtEZOTIS . u ittt iit e e et eeee e 20
2.1.2. Metrics plan.... ..ot 22
2.1.3. Metrics validation......c..oueiiiiiiiii i, 25
2.1.4. Domain dependency of metrics.......cvvieiiiiineiniiieiiinnanne, 27
2.1.5. Objective and subjective MEASUIeS..........ccceereennineneinnneennnn. 29
PV BL7:15) 151878 111501 o (o P 31
2.2.1. External view of usability measurement..........c.cccoveveinnennnne. 32
2.2.2. Webusability Metrics.....cc.viiiiiir i, 33

iv

2.3, Data. ... e 39
2.4. Usability in software quality assurance models and standards............. 42
2.4.1. ISO/IEC 9126; .. 53
2.4.2. ISOMEC 14598-1L. . it e, 56
2.5. Usability Assessment TOOIS........ooiiiniiiiiii i, 58
2.5.1. SANe. .. e 58
2.5.2. DRUM. ... e 59
2.5.3. AIDE. ... e 60
2.5.4. GLEAN. ... e e 61
2.6. Lessons learned from software measurement programs..................... 63
2.7, SUMIMATLYot ittt et et e et et ee e 68

Chapter 3: QUIM - Quality in Use Integrated Model

3.1. Requirements and justifications.......cc..cooovveiimiiiiiiiii i, 69
3.2. Design principles of QUIM.o 76
3.3. QUIM structure and deSCHPHONc.evtiieiiinniieiiiieeeeeeeannn. 77
3.3.1. Quality in Use. .o e 78
CJRC T o Tel () - J R 79
CCTRC T @ o (- o £ F U 79
O G Y (<1 o (o2 81
3.3.5. Dala....ee s 85
34. QUIM AppHCations.uuiueiiii ittt e e 86
3.4.1. Usability specification...........cccoeiiiiiiiiiiniiiiiieiiinienannns 87

3.4.2. Usability Testing and Prediction..................cooiiiiiiiiiiiianon. 88

3.4.3. Other potential applications.cooceiiiiiiiiiiiiiiiee... 88
3.5, QUIMEGItOL.coeii it e et 89
3.6 SUMINAIY.......oiiiiiii et eeeae 90

Chapter 4: Conclusion and Further Investigation
4.1. Advantagesof QUIM..... ... 91
4.1.1. Viewing several MELTICS AL ONCE «.veeeeeeeeeneee e 92
4.1.2. Coupling QUIM with other quality in use models....................95
4.2. Future WOIKS.oimoiiii it et 97

4.2.1. Formalizing the validity of the relationships between factors, criteria

and metrics....... e 97
4.2.2. Extending the list of factors, criteria and metrics.................... 97
4.2.3. Developing a wizard for creating e-commerce web sites........... 99
References
- Papers and Journals................ e e 101
- Related Web Sites.... ..o e 108
Appendices
= Al —-General Metrics. ..oooiiiniit i e e 109
= A2-Metrics for Web... oot 112

- A.3 —Potential relationships between factors, criteria and metrics...........113

- A.4 - Specification of QUIM database and tool..........c.c..ccoeneiiani.... 115

List of Figures

Figure 1: Approaches to software qUality........ccooviiiiiiiiiiiiiiiiiiiiiiiiaieel 7
Figure 2: A model of engineering.ccoeuemmiiiiiiiiiie i eeeeeeeenneen, 11
Figure 3: The role of data collection in software measurement........................ 40
Figure 4: McCall software quality model.......... ... 44
Figure 5: Boehm software quality model..................oooiiiiiiiiiiiiiii 45
Figure 6: The example of QFD matriX.....oouiiniiiiii i, 50
Figure 7: IEEE software quality metrics model...................c.oo.ooiiiiiiii... 52
Figure 8: ISO/IEC 9126-1 qualitymodel...... ... i, 54
| Figure 9: The examples of metrics from ISO 9241-11...............l 71
Figure 10: The hierarchy of QUIM. o i 76
Figure 11: One view of the user interface of Blender.............................. ... 82
Figure 12: One view of 3DStudioMax.................. ettt 82
Figure 13: An example tree of relationship between QUIM components............. 85
Figure 14: One view of QUIM editor.................... O 88
Figure 15: Kiviat diagram with three metrics.........ooooiiiiiiiiiiiiiiiiiie i, 90
Figure 16: Example of multiple metrics graph............ccooooiiiiiiiiiiiiiiinn... 93
Figure 17: Refinement on example of multiple metrics graph......................... 93
Figure 18:Steps and Tools used in Performance Measurement Method.............. 94
Figure 19: Entity-Relationship diagram for QUIM database......................... 113

vil

List of tables

Table 1: Example of subjective measurements..................ooooimiiioioiiiiooo. . 29
Table 2: Example of metrics problems. .. o..oc.oveeiiie i 37
Table 3: The correspondence of terminolo gy between quality models................ 73
Table 4: List of General MetriCs.cooven toiimiii e, 107
Table 5: List of metrics for web applications..........o.ooviniinoeiienneeian e 110
Table 6: Potential relationships between Factors and Criteria........................ 111
Table 7: Potential relationships between Criteria and Metrics........cccoeueen....... 111

viki

Chapter 1:

From System Quality to Usability and Quality in Use

Every day we use the word “Quality” as an attribute for a human made
product just to compare it with other products in the same category, we say it has a
high quality or that one has a low quality. We use it, but never pay attention to the
fact that this concept is likely vague. Kitchenham notes that “quality is hard to
define, impossible to measure, easy to recognize”[16], Gillies states that quality is
“transparent when presented, but easily recognized in its absence[17]. By today we
have numerous solutions and methods in hand, to control a production process and
acquiring the required quality on the final product. But there are lots of problems
with every solution. No- quality assurance method is perfect. Because in every
method, we are dependent on its deﬁnition of quality. Using every method needs its
required experiences and has its own expenses. We are confronted with the same
problem in software quality and more specifically in system usability quality.

In this chapter, we will take a look at different definitions of quality. Also we
will review software quality, usability and quality in use. Finally we will present

briefly how people in software industry, today evaluate the usability of a product.

1.1 The concept of quality
1- ISO 9000 says the degree of quality of a product is how it satisfies its

requirements. So even if a product from scratch has no appropriate requirements,

still it could be a high quality product. Garvin called it “Manufacturing

quality”[15].

ISO 8402 says quality is the totality of features and characteristics of a product
or service that bear on its ability to satisfy stated or implied needs. It means the
presence of specified features. This is a product orientation view, i.e. an inherent
characteristic of the product determined by the presence or absence of

measurable product attributes. Garvin calls it “Product quality”[15].

It is obvious that if we want to be satisfied while using a product, it is supposed to

present both types of quality. So every quality expert believes that we need to

develop rules and evaluation methods and to apply them to both, Product and

Production processes.

Now let’s take a look at different definitions of software quality:

1-

IEEE 1061-1998 says software quality is the degree to which software possesses
a desired combination of quality attributes. And in turn a quality attribute is a
characteristic of the software.

ISO/IEC 9126 says software quality is the totality of features and characteristics
of a software product that bear on its ability to satisfy stated or implied needs.
Schulmeyer and McManus define software quality as “The fitness for use of the
total software product™[18].

There are different views to the quality. Garvin has defined five views:

The transcendental view: This view sees quality as something that can be
recognized, but not defined, e.g. what an ugly interface.

The user view: The user sees quality as fitness for his/her purpose.

- The manufacturer view: The user observes quality as conformance to
specification.

- The product view: This view sees quality as tied to inherent characteristics of
the product.

- The value-based view: This view sees quality as dependent on what a customer
is willing to pay for it, i.e. a software product could exist without any fault and
with the highest degree of quality in any sense, but for what price?

ISO/IEC 9126 has defined three perspectives of software quality:

(1) User view: The definition of quality in ISO 8402 reflects the user view. The user
is mainly interested in using the software, its performance and the effects of
using it. Then the user is not interested in internal aspects of the product. The
user just sees observable external attributes of the software. Or one may say user

is interested in final product quality.

(2) Developer view: The developer is interested in internal attributes of software. Of
course there are some common attributes for user view and developer view, but
they see the common attribute in different ways. As an example user and
developer both are interested in performance of the software, but user could see
this attribute as response time to the event entered by him, and developer thinks

of it as data structure depth or path length.

(3) Manager view: A manager likely is interested in the overall quality rather than

in a specific characteristic or attribute. The managers’ view of software quality is

pragmatic and relatively simple. From this perspective a high quality software is
the one that “works well enough” to serve its intended functions and is “available
when needed” to perform those functions. Managers concern about risk
assessment in software quality. Sometimes managers balance the quality

improvement with management criteria such as schedule delay or cost overrun.

1.2 Usability as a Quality Factor

Two approaches for usability assurance are recognized. One is a "top-down"
approach that is concerned with usability as a broad quality objective: the ability to
use a product for its intended purpose in a specified context. The other is a product-
oriented "bottom-up” view that is concerned with attributes of the user interface that
make an interactive system easier to use.

1.2.1 Usability as a high-level quality objective
Disciples of this approach relate to usability as a high-level quality objective,
and usability is defined in this way in the ISO 9241-11 standard as:
The extent to which, a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified
context of use.
ISO 9241-11 supports the following activities:
- Specification of usability goal and metrics as well as evaluation against these
requiremnents (ISO 9241-11 and ISO/IEC 14598-1)
- Definition of the activities necessary in the development lifecycle for achieving

quality in use (ISO/IEC 13407).

1.2.2 Usability as an independent contribution to software quality
In the product-oriented view, usability is seen as an independent factor to
software quality. It deals with attributes of a software product, mainly its user
interface that makes it easy to use. Usability is defined in this way in ISO/IEC 9126
as:
A set of attributes of soﬂw&re that bear on the effort needed for use and on the
individual assessment of such use by a stated or implied set of users
The standard in its revision ISO/IEC 9126-1 defines usability as [62]:
The capability of the software to be understood, learned, used and liked by the
user when used under specified conditions.
This definition can be used in the following ways:
- To specify details of the look and feel as well as the behavior of the user
interface
- To provide detailed guidance on the design of easy to use user interface
- To provide metrics/goals for the evaluation of an interactive product
Even if it appears that, the first definition of ISO/IEC 9126 and ISO 9241-11 are
opposite, they are in reality complementary. The interactive system has no intrinsic
usability, only a capability to be used in a particular context of use. The ISO 9241-
11 standard on usability guidance can be used to help understand the context in
which particular attributes specified in ISO 9126 may be required. The definition of

usability in ISO 9126-1 is closer to ISO 9241-11.

1.2.3 Usability versus Quality in Use

ISO 9241-11 explains how usability can be measured in terms of the degree of
excellence in use: effectiveness (the extent to which the intended goals of use are
achieved), efficiency (the resources that have to be expended to achieve the intended
goals), and satisfaction (the extent to which the user finds the use of the product
acceptable). ISO 9241-11 also emphasizes that usability is dependent on the context
of use and that the level of usability achieved will depend on the specific
circumstances in which a product is used. The context of use consists of the users,
tasks, equipment (hardware, software and materials), and the physical and social
environments which may influence the usability of a product in a work system.
Measures of user performance and satisfaction thus assess the overall work system,
and, when a product is the focus of concern, these measures provide information
about the usability of that product in the particular context of use provided by the
rest of the work system.

It is important to note that while this definition provides a practical way to
measure usability, it is also measuring the consequences of other software quality
characteristics such as the functionality, reliability and the efficiency of the computer
system. Changes in these characteristics, or other components of the work system,
such as the amount of user training, or improvement of the lighting, can also have an
impact on user performance and satisfaction. For this reason, early drafts of ISO
9241-11 also defined a broader concept:

Quality of use: the extent to which specified goals can be achieved with

effectiveness, efficiency and satisfaction in a specified work system.

However, this was removed from later drafts, as an unnecessary complication. The
concept of the quality of a product in use did, however, provide the link between the
ISO 9241-11 and ISO/IEC 9126 views of usability. Quality in use was incorporated
as a high level quality objective into the revision to ISO/IEC 9126-1, and the related
ISO/IEC 14598-1 standard (Software product evaluation - General guide):
Quality in use: the extent to which a product used by specified users meets their
needs to achieve specified goals with effectiveness, productivity and satisfaction
in a specified context of use.
The revised ISO/IEC CD 9126-1 now distinguishes three broad approaches to
improving the quality of a product (Figure 1) [62]:
e Set criteria for process quality: attributes of the software development processes,

e.g. by application of ISO 9001, or ISO 15504 .

e Set criteria for product quality: attributes of the software (internal measures) or

the behaviour of the software when tested (external quality).

e Set criteria for quality in use: the extent to which the code meets user needs for

effectiveness, productivity and satisfaction in use.

process quality product quality quality in use

Vol w ;/
mternal external contexts of use
mensures measureas

resquurces

Figure 1: Approaches to software quality

1.3 Cost justifying usability

Not very long ago, most users of computers were programmers. Today, most
computers are seen as tools that magnify a person’s ability to perform all kinds of
tasks that were formerly done without computers. So people are not trying to use
computers, rather than they are trying to get their jobs done. Today, interactive
facilities play an ever-increasing part in the application areas of computers. Software
production is a business and like any business field has its own risks. Usability is one
of the high risk items in software production.

1.3.1 Software Risk Management and Usability

Like many fields in their early stages, the software field has had its share of

project disasters. The frequency of these software project disasters is a serious

concern, a survey of 600 firms indicated that 35 percent of them had at least one

runaway software project [47]. Most postmortems of these software projects have
indicated that their problems would have been avoided or strongly reduced if there
had been an explicit early concern with identifying and resolving their high-risk
elements.
Webster’s dictionary defines “risk” as the “possibility of loss”. This definition can
be translated into the fundamental concept of risk management: risk exposure,
sometimes also called “risk impact” or “risk factor”. Risk exposure is defined by the
relationship:
RE =P(UO) xL(UO)
Where RE is the risk exposure, P(UO) is the probability of an unsatisfactory
outcome and L(UO) is the loss to the parties affected if the outcome is
unsatisfactory. To relate this definition to software projects, we need a definition of
“unsatisfactory outcome”. Given that projects involve several classes of participants
(customer, developer, user and maintainer), each with different but highly important
satisfaction criteria, it is clear that unsatisfactory outcome is multidimensional:
e For customers and developers, budget overruns and schedule slips are
unsatisfactory.
e For users, products with wrong functionality, user interface shortfalls,
performance shortfalls, or reliability shortfalls are unsatisfactory.
¢ For maintainers, poor quality software is unsatisfactory.
Here we are not going into the details about risk management, and how a manager
could determine the probabilities of losses, we would just like to mention two of

software risk management steps:

* Risk identification: produces lists of the project-specific risk items likely to
compromise a project’s success. Typical risk identification techniques include
checklists and decomposition. One of the top ten software risk items is
developing the wrong user interface [47].

e Risk analysis: assesses the loss probability and loss magnitude for each identified
risk item, and it assesses compound risks in risk-item iteration. Typical
techniques here include quality factor analysis such as reliability and usability.

The above discussion just came to see how usability can affect the risks of a

software. According to Boehm [47], risk management techniques to reduce the risk

on user interface could be prototyping, scenarios, task analysis and user
participation. Then if we can have a technique giving us objective decision criteria, it
is obvious that, how it could reduce the risk of software on this item.

1.3.2 Lack of usability engineering

Tom Gilb [25] gives the definition of engineering as:

“Engineering is the use of principles to find designs that will meet multiple

competing objectives, within limited resources and other constraints, under

conditions of uncertainty.”
The Institute of Electrical and Electronics Engineers (IEEE) defines software
engineering , in IEEE Std 610.12, as:

“(1)The application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software, that is, the application of

engineering to software. (2) The study of approaches as in (1).”

10

Engineering can be viewed as a closed feedback loop as shown in Figure 2.
An engineering process consists of related activities performed in response to a
statement of needs and consuming resources to produce a product. In order to
manage or improve the process, one must exert control. Control is a decision-making
mechanism that considers goals and constraints in the formulation of action that is
intended to direct or modify the process. The decision to take action is based on
measurements and quantitative evidence regarding the state of the process.
Measurements can be made of conditions inside the process, products of the process,
and the satisfaction of users of the products.

Building usability into a product requires an explicit engineering process.
That engineering process is not logically different from any other engineering
process. It involves empirical definition, specification of levels to be achieved,
appropriate methods, early delivery of a functional system, and the willingness to
change that system. Together these principles convert usability from a “last minute
add on” to an integral part of product development.

We would expect usability standards, guidelines and maps to contribute to
such a model of engineering, with respect to the development, operation and

maintenance of interfaces.

11

Goals
—
Constraints Control
—————)]
>
Measurement Action
Needs Product
I Process ——————*
IResources

Figure 2: A model of engineering

1.4 Current usability assessment methods

Usability assessment techniques vary in their degree of formality, rigour and
user involvement depending on the environment in which the evaluation is
conducted. The choice is determined by financial and time constraints, the stage of
the development lifecycle and the nature of the system under development. The
INUSE project [64] has set up a network of European Usability Support Centres for
the information engineering industry. These centres provide a portfolio of state-of-
the-art usability services to support the development of systems that meet user’s
needs and have quality in use. They provided a framework for assessing the usability
of a software product, consisting of five broad categories of evaluation methods.
Those broad methods are usability context analysis, heuristic evaluation, user-based
evaluation, design guidance and model-based assessment. Here we have a review of

these methods.

12

Usability Context Analysis (UCA) [64]: is the prerequisite method for any
assessment. It is a paper based questionnaire and a guide to ensure that the
circumstances in which a prototype or product is assessed match the intended
circumstances of eventual use.

The UCA Guide provides firstly a simple method for describing key features of:

e Users: for whom a system is designed ;

* Tasks: for which a system is designed to help users achieve ;

* Environments: in which a system is designed to operate - these are technical,
physical and organizational.

Using a questionnaire format gives the evaluator a structured method for
describing the users, tasks and environment in which the system is intended to be
used. It then helps the evaluator to document which aspects of the context will be
useful in the assessment, and enable a reviewer to judge, how accurately this
matches the intended context of use.

Heuristic: (sometimes known as ‘rule-based’ evaluation) is usually carried out by
human factors specialists, possibly supported by task experts. It can be fast and
economical and is good for identifying major problems but might not be sufficient to
guarantee a successful interactive system. Experts are not considered to be able to
predict all the problems that end users will experience. The following list is a typical
list of heuristics that the product can be assessed against:

e use simple and natural dialogue,
e speak the users language,

e minimize user memory load,

I3

e be consistent,

e provide feedback,

e provide clearly marked exits,
e provide shortcuts,

e provide good error messages,

e prevent errors.

User-based evaluation: will generally include evaluation of the users’ performance
and attitudes. The assessment of usability should normally include analysis of both
the users’ performance and attitudes as these provide complementary information.
User-based evaluation can be used to provide feedback at any stage of design. In the
early stages, users may be involved in the evaluation of scenarios, simple paper
mock-ups or partial/rapid prototypes. As design solutions become more developed,
evaluations involving users will be based on progressively more complete and
concrete versions of the system. Required data in this method are collected through
the questionnaires and videos, which are recorded when the user is using the system
or prototype.

Design guidance: evaluation against design criteria is an established technique
which can contribute to usability. These criteria are contained in design guides,
collections of ergonomic guidelines and standards. In the INUSE project, a guide is
devoted specifically to Design the “Design Guidelines”, focusing on what the
product shall be used for, thus it is a higher level approach than many collections of
style and interface guides. Guidelines specify attributes of a product which have

been shown to improve usability. Some guidelines are at a surface level, e.g. screen

14

layout of a menu, and others state higher level objectives, e.g. consistency. In many
cases the usability of a product will be improved by redesigning the interface to be
consistent with guidelines. But a much bigger improvement to the usability can often
be made by considering whether the task can be carried out more effectively by a
more fundamental redesign e.g. avoiding the use of menus to search for information
by supplying a unique key which gives direct access.
Model-based assessment: takes place against a theoretical model of human abilities,
and the specification of how the human-computer interface is going to operate. The
nature of the models used, is usually quite generic and does not guarantee that the
end users will react in the same way to the product. Tools for this kind of assessment
are still in an early stage of development. They depend on a central description of
the system, the tasks to be carried out with, and characteristics of users, which are
together known as the model. A run-time system then executes the interface and
accepts user input from the model database. Developers fine-tune the system by
improving the interface features and looking at the resulting predicted user
performances.
1.5 Summary

Today almost every developer uses design guidelines to create a user
interface for the system and then they evaluate the results, find some problems,
redesign and again the same story. This costs money. What if we have a tool that let
us to assure some aspects of final product’s quality from early stages of production.
Obviously the existing models and solutions could not act properly in usability area.

We will see the reasons in this research. Then we need a solution that gives us the

15

confidence of having the quality in use in the final system, but not at a very high
price. Also we need to fill the gap between software engineers and human —computer
interaction experts. If we have a usability tool that we can integrate it into the
software production process, the goal of HCI people will get clearer to software
engineers and software developers. Through this research we will see how QUIM

(Quality in Use Integrated Model) can help us to achieve those goals.

16

Chapter2:

Survey on Metrics, Quality Models, Standards, and Tools

In this chapter we are going to talk about software metrics and metrics plan.
We will discuss the scope of software metrics and how to validate a metric. A metric
could be a generic one or highly dependent on the domain knowledge. How to
collect data to calculate a metric? What are the problems with metrics? What are the
metrics impacts on usability? How may we measure objectively or subjectively?

Also we will have a look at different quality models that have been so far
presented and have been used in the software industry world. What is the role of
usability in these models? Finally, we will see the lessons learned from measurement
programs and quality models.

2.1 Software metrics and measurement
“What is not measurable make measurable.” Galileo Galilei (1564-1642)

A clear definition of measurement makes the use of metrics easier.
Measurement is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to clearly
defined rules. Formally we define measurement as a mapping from the empirical
world to the formal, relational world. Consequently a measure or metric is the
number or symbol assigned to an entity by this mapping in order to characterize an
attribute [40]. Then the real world is the domain of the mapping and the
mathematical world is the range. When we map the attribute to a mathematical

system, we have many choices for the mapping and the range. We may use real

17

numbers, integers, or even a set of non-numeric symbols, such as what we ask
softwaré user in a subjective questionnaire.

The IEEE metrics standard defines a software quality metric as follows: “ A
software quality metric is a function whose inputs are software data and whose
output is a single numerical value that can be interpreted as the degree to which
software possesses a given attribute that affects its quality “[42].

Using metrics to have a good judgment on software quality is not a very
recent topic. To justify the usage of metrics we would like to bring you a discussion
from Cavano and McCall (1978)[30]: “The determination of quality is a key factor in
everyday events, wine tasting contests, sporting events, talent contests, etc. In these
situations, quality is judged in the most fundamental and direct manner. Side by side
comparison of objects under identical conditions and with predetermined concepts.
The wine may be judged according to clarity, color, bouquet, taste, etc. However this
type of judgment is very subjective. To have any value at all, it must be made by an
expert. Subjectivity and specialization also apply to determining software quality. To
help solve this problem, a more precise definition of software quality is needed as
well as a way to drive quantitative measurements of software quality for objective
analysis. Since there is no such thing as absolute knowledge, one should not expect
to measure software quality exactly, every measurement is partially imperfect.”

Metrics are used to provide visibility to engineers and managers, to assess
adherence to standards, guidelines and principles, to estimate and predict, and to
accept the product [27]. Metrics can provide visibility and insight to decision-

makers. In large projects, the total amount of inherent information is often much

18

more than a decision-maker can digest and understand. Therefore, to make an
informed decision, a decision-maker needs summary information. Quantitative
metrics can be used to summarize information needed to make distinctions, to isolate
software characteristics, or to detect trends. Metrics can be used to assess adherence
to a well-defined and documented standard, guideline or principle. Adherence
metrics can be employed to measure deviations which in turn can be used in a
management feedback loop to recover to an acceptable level. Adherence metrics
provide a mechanism for assessing adherence to guidelines that are difficult or
impossible to express and establish as a standard.

Metrics can be used as input into a model designed to estimate or predict
software parameters, timing, effort or utilization of a resource. Finally metrics could
be used as a standard for acceptance of a software product produced under a
contractual agreement. Adapting a metric as an acceptance criterion implies that
producer have a high degree of confidence based on past experiences in the
relationship between the metric and desired properties of the system. Very few
metrics are well understood. However, it is possible to integrate weaker metrics into
a meaningful metrics policy.

There are several important characteristics that are associated with useful
software metrics. Software metrics must be [46]:
e Simple to understand and precisely defined in order to facilitate consistency both
in the calculation and the analysis of metric values.
e Objective as much as possible in order to decrease the influence of personal

judgment to the calculation and analysis of metric values.

19

Cost effective in order to have a positive return on investment (the value of the
information obtained must exceed the cost of collecting the data, calculating the
metric, and analyzing its value).

Informative in order to ensure that changes to metric values have meaningful

interpretation.

2.1.1 Metrics categories

Software metrics can be classified under different categories, although it is not

unusual that the same metric belong to more than one category. A classification of

metrics based on their intended use is as follows [46]:

Process metrics: are those that can be used for improving the software
development and maintenance process, e.g. efficiency of inspection.

Product metrics: are those that can be used for improving the software product.
Project metrics: or resources metrics are those that can be used for tracking and

improving the project, e.g. programmer productivity.

Another classification of software metrics is based on the product itself [46]. In this

way we divide them into two categories, i.e. external and internal.

External software metric: is a quantitative scale and measurement method, which
can be used for measuring an attribute or characteristic of the software product
derived from the behavior of the system of which it is a part. External metrics are
applicable to an executable software product during testing or operating in later
stages of development and after entering to operation process.

Internal software metric: is a quantitative scale or measurement method, which

can be used for measuring an attribute or characteristic of a software product,

20

derived from the product itself, either direct or indirect (it is not derived from
measuring a behavior of the system). Internal metrics are applicable to a non
executable software product during designing and coding in early stages of
development process.

There are different potential audiences of software metrics and their primary

Interests in using metrics are also different [46]:

e Software users are interested in the quality and value of the software products.

e Senior managers are interested in overall control and improvement across the
projects in the business unit.

® Software engineers are interested in control and improvement of the specific
software project activities and work products in which they are involved.

e Software process engineers and software quality assurance are interested in a
cross section of what the three previous audiences are interested, depending on
whether they are working at the business unit, or the project level.

A software metrics initiative must address the needs of all those potential metric

audiences and users by [46]:

¢ Defining metrics and obtaining consensus/acceptance by the user community.

e Training metrics users and providing consulting support for implementation.

e Automating the data collection, analysis, and feedback process.

Such an initiative must also account for the different levels of measurement,

examples of such levels include, but are not limited, to the following [46]:

e The company or business unit level, at which data across several projects may be

lumped together to provide a view of attributes such as productivity, and quality.

21

e The project level, at which data within the project is tracked and analyzed both
in-process and post mortem in order to plan and control the project, as well as to
improve similar projects across the business unit.

e The component level, at which data within a component, e.g. subsystem, of a
project is tracked and analyzed for managing the development of that

component, as well as improving its quality over time.
2.1.2 Metrics plan

It is important to remember that the primary responsibility of any developer
is to produce a product, not to collect measurement data. Thus, it is essential that the
job of metrics data collection and analysis be made as simple and unobtrusive as
possible by using tools, models and standards. Models help us understand how the
metrics relate to one another. Standards provide counting and collection rules to
ensure consistency and completeness in our data. And by automating as much as
possible, tools help to speed up and standardize both collection and analysis. In
particular, we can embed standards in our tools, allowing our counts to be as
objective and consistent as possible.

A metrics plan or according to some references a metrics program, is much
like a newspaper article. It must describe the who, what, where, when and why of
metrics. With answers to all of these questions, whoever reads the plan knows
exactly why metrics are being collected, how they are used, and how metrics fit into
the large picture of software development. The plan usually begins with the why.
The plan lays out the goals and objectives of the project, describing what questions

need to be answered by project members. For example, if usability is a major

22

concern to the developers, then the plan discusses how usability will be defined and
what reporting requirements are imposed on the project, later sections of the plan can
then discuss how usability will be measured and tracked.

Next, the plan addresses what will be measured. In many cases, the measures
are grouped or related in some way. For example, productivity may be measured in
terms of two component pieces, size and effort. So the plan will explain how size
and effort are defined and how they are combined to compute productivity.

At the same time, the plan must lay out where and when during the process
the measurements will be made. Some measurements are taken once, while others
are made repeatedly and tracked over time. The time and frequency of collection are
related to the goals and needs of the project, and those relationship should be made
explicitly in the plan.

How and who address the identification of tools, techniques, and staff
available for metrics collection and analysis. It is important that the plan discusses
not only what measures are needed but also what tools will be used for data capture
and storage, and who is responsible for those activities.

The plan must state clearly what types of analysis will be carried out with the
data, who will do the analysis, how the results will be coﬁveyed to the decision
makers, and how they will support decisions. Thus the metrics plan or metrics
program paints a comprehensive picture of the measurement process, from initial
definition of need to analysis and application of the results.

Software metrics plan is a term that embraces many activities, all of which

involve some degree of software measurement [40]:

23

e Cost and effort estimation
® Productivity measures and models
e Data collection
® Quality models and measures
e Reliability models
e Performance evaluation and models
e Structural and complexity metrics
e Capability-maturity assessment
e Management by metrics
e Evaluation of methods and tools

The author of the above list and some other experts such as Littlewood [40]
believe that even though most quality models include reliability as a component
factor, but the need to predict and measure reliability itself express the need of a
separate specialization in reliability modeling and prediction. Reliability is a high
level, external product attribute that appears in all quality models. The accepted view
of reliability is the likelihood of successful operation during a given period of time.
Many users view reliability as the single most important quality attribute to consider.
So Littlewood and others provide a rigorous and successful example of how a focus
on an important product quality attribute has led to increased understanding and
control of our products. Now one may ask this question: “is the importance of the

usability of a software product less than its reliability on the user opinion?”

24

2.1.3 Metrics Validation

Validation is the process of building objective evidence that a metric is
effective in meeting its stated purpose. For example validation could involve
determining that a visibility metric is useful to- decision makers or that an adherence
metric accurately reflect adherence to the stated standard, guideline or principle [27].

Validating a software measure is the process of ensuring that the measure is a
proper numerical characterization of the claimed attribute by showing that the
representation condition is satisfied [40].

IEEE Std 1061 defines the validation of a software quality metric, like this:
“The act or process of ensuring that a metric reliably predicts or assesses a quality
factror”. So based on this standard a validated xnetric is one whose values have been
statistically associated with corresponding quality factor values. It is necessary to
remind that a quality factor may be affected by multiple variables. Then a single
metric may not sufficiently represent any one quality factor if it ignores these other
variables. The standard considers six validity criteria to assess whether a metric is
valid. Those criterions are as follows:

1. Correlation: The variation in the quality factor values explained by the variation
in the metric values. This criterion assesses whether there is a sufficiently strong
linear association between a quality factor and a metric to warrant using the
metrics as a substitute for the quality factor, when it is infeasible to use the latter.

2. Tracking: If a metric M is directly related to a quality factor F, for a given
product or process, then a change in a quality factor value from FT1 to FT2, at

times T1 and T2, shall be accompanied by a change in metric value from MT1 to

MT2. This change shall be in the same direction. This criterion assesses whether
a metric is capable of tracking changes in product or process quality over the life
cycle.

Consistency: If quality factor values F1, F2 corresponding to products or
processes 1, 2, have the relationship F1>F2, then the corresponding metric values
shail have the relationship MI1>M2. This criterion assesses whether there is
consistency between the ranks of the quality factor values of a set of software
components and the ranks of the metrics values for the same set of software
components. This criterion shall be used to determine whether a metric could
accurately rank, by quality, a set of products or processes.

Predictability: This criterion assesses whether a metric is capable of predicting a
quality factor value with the required accuracy.

Discriminative power: A metric shall be able to discriminate between high-
quality software components and low-quality software components. The set of
metric values associated with the former should be significantly higher (or
lower) than those associated with the latter. This criterion assesses whether a
metric is capable of separating a set of high-quality software components from a
set of low-quality components. This capability identifies critical values for
metrics that shall be used to identify software components that have
unacceptable quality.

Reliability: A metric shall demonstrate the correlation, tracking, consistency,
predictability, and discriminative power properties for at least P% of the

application of the metric. This criterion is used to ensure that a metric has passed

26

a validity test over a sufficient number or percentage of applications so that there

shall be confidence that the metric can perform its intended function consistently.
For information on the above methodology of validating, calculation methods and
statistical techniques used, one may refer to Schneidewind[31], Conover[32],
Gibbons[33], Kleinbaum and Kupper[34].

2.1.4 Domain Dependency of Metrics

To show how usability of a software and quality in use metrics could be
related tightly to the domain, we adopt the following example.

The idea for hypertext (where documents are linked to related documents) is
credited to Vanner Bush’s famous MEMEX idea from 1945 [35]. Ted Nelson coined
the term “hypertext” in 1965[37]. Mosaic, the first popular hypertext browser for the
World Wide Web was developed at the University of Ilinois’ National Center for
Supercomputer Applications (NCSA). Having the foundation from the above
concepts, today the structure of the web is rapidly evolving from a loose collection
of web sites into organized marketplaces. We are talking about the term ‘“e-
business”, good business practice dictates the use of effectiveness measurements to
guide the design of all web site features. An interesting question is what metrics are
the best for evaluating the effectiveness of web site features? A good example of
measuring effectiveness comes from the online ad banner industry. E-marketers rely
on ad banners to direct visitors to their web sites, and the ad banner companies set
their prices based on click-through and look-to-buy metrics, both of which measure
effectiveness. Click-trough metric, measures the ratio of clicks to impressions, where

an impression is simply the display of an ad banner on a web page. A high click-

27

through rate means visitors who see the ad click on it frequently, therefore the ad is
bringing many visitors to the site. Look-to-buy data compares ad banner impressions
with sales transactions and revenue directly attributable to the ad banner. Look-to-
buy rates are shown on a graph such as scattering graph. The X-axis of the diagram
represents product impressions, and the Y-axis represents purchases. Every product
on the chart is shown by a colored rectangle, its width represents the profit margin of
the product and its height represents the product’s retail price. Products in the lower-
right corner of the graph are over-promoted, since there are many lookers and
relatively few buyers. Products in the upper-left corner may be under-promoted,
since the few shoppers who see these products tend to buy them. The required data
to create such a graph are gathered from the web, when the visitors just click [38].

Using this kind of metrics to glean the overall effectiveness of the site can be
viewed from the perspective of the web site owner and the perspective of the site
visitor. From the business perspective, metrics may suggest where improvement may
be made with regard to the design, layout, and navigation issues. Metrics can also be
used to create visualizations that demonstrate visitor’s behaviors such as user profile.
For example, the number of times a product appears on the site compared to the
number of times people actually bought a product.

Finally, in a word, using the mentioned metrics to improve the features of
web site, results in better usability of the site interface, and in turn it results in

higher profit for the e-commerce site.

28

2.1.5 Objective and Subjective Measures

When measuring attributes of entities, we strive to keep our measurements,
objective. By doing so, we make sure that different people produce the same
measures, regardless of whether they are measuring a product, process or resource.
This consistency of measurements is very important, because it gives us the ability
of comparison. Although no measurements is truly objective (because there is
always some degree of subjectivity about the entities and attributes) some measures
are clearly more subjective than others. Subjective measures depend on the
environment in which they are made. The measures can vary with the person
measuring, and they reflect the judgment of the measurer. What one judge considers
bad, another may consider good, and it may be difficult to reach consensus on
attributes such as process, product or resource quality [40].

Nevertheless, it is important to recognize that subjective measurements could
be useful, as long as we understand their imprecision. For example, suppose we want
to measure the quality of the interface requirements, before we turn the specification
over to the test team, who will then define test plans from them. We may ask the test
team to read and scale each requirement on a scale from 1 to 5, where 1 means “ I
understand this requirements completely and can write a complete test script to
determine if this requirements is met” and 5 means “ I do not understand this
requirements and can not write a test script for it.” Suppose the result of the

assessment is like the table 1:

29

Requirement Rating 1 2 3 4 5

Number of Interface Requirements | 3 4 6 7 1

Table 1: Example of subjective measurements

In the example we see 6 interface requirements have been assigned rating 3
by the test team. And only 3 of the whole interface requirements are clear. Even
though the measurement is subjective, the measures show us that we have problems
with our interface requirements, perhaps the interface requirements should be
reviewed and rewritten before proceeding to test plan generation or even to design.

In a process, a product or a resource, we may distinguish between two categories
of measurable attributes, internal and external. The definitions of Internal and
External attributes have been presented in the previous chapter.

Examples for internal attributes of a software could be the number of
modules, size of a module, and these are the attributes which usually developers are
interested in. But a project manager is interested in cost of development which is an
external attribute. The end user is not interested in knowing how many modules exist
in the software, but rather he/she is interested in the number of nested levels of a
menu or in the other words depth of menu. The user doesn’t pay attention to the
complexity of the code but the complexity of the user interface is very important for
him or her.

It is sometimes difficult to define the attributes in measurable ways with
which every one agrees. For example, we all want to build and purchase systems of

high quality. But we do not always agree on what we mean by quality, and it is often

30

difficult to measure quality in a comprehensive way. Thus we tend to define these
high level attributes in terms of other, more concrete attributes that are well defined
and measurable. The McCall model and Boehm Model are good examples of this
phenomenon (the models will come in the next sections), where software quality is
defined as a composite of a large number of narrower, more easily measurable terms.
And this is exactly what we need to do for usability attributes. That is one reason
why we need to have such a model, so the model, enables us to predict the usability,
to assess it and to improve it on a software product.

One thing more that we have to consider here is that there is a clear need for
internal attribute measurements to support measurement and decision making about
external attributes. One of the goals of software measurement research is to identify
the relationships among internal and external attributes, as well as to find new and

useful methods for measuring directly the attributes of interest [40].
2.2 Usability Metrics

Usually, to evaluate the usability of an user interface, we expect the user to interact
with the system over time based on an operational profile. In this way we may assess
the usability by the external attributes of the system. But this requires extensive and
careful data collection. We seek a simpler approach. One technique is to look for
internal characteristics that we think lead to good usability [40], such as the
complexity of code which can affect the task execution time. Unfortunately it is not
easy and convenient to define the explicit relationship between internal attributes
and the external notion of usability. Task execution time is affected by the

arrangement of items on the display, too. In the literature, we find that proposed

31

measures of usability encompass both measures of internal attributes (believed to

affect particular views of usability) and measures of particular views of (the external

attributes) usability.

2.2.1 External View of Usability Measurement
Here we may see some examples or previous works on decomposing usability

into more fundamental attributes so that we can measure them. Following Gilb’s

approach , we can identify some measurable attributes of usability, each of which

must be assessed by the user on a particular type of product [40]:

* Entry level: This attribute could be measured in terms of experience with similar
classes of applications (especially pertinent for popular applications such as
word-processing systems or spreadsheets), or simply age (in the case of, for
example, a junior school teaching program).

® Learnability: This attribute could be measured in terms of speed of learning, one
measure might be hours of training required before independent use is possible.

e Handling ability: This attribute could be measured in terms of speed of working
when trained, or errors made when working at normal speed.

Another approach is COQUAMO (COnstructive QUAlity MOdel) which
provides automated support for setting targets for usability and measuring usability.
This method is invented by Kitchenham and Pickard in 1987. It provides a set of
templates to be filled in. The approach is concerned with the effort required for
learning and operating the system. Although this approach does not produce
definitive, objective measures, clear measurable objectives can be set, and we can

decide whether the objectives have been met.

32

The MUSIC (Metrics for Usability Standards in Computing) project was
specifically concerned with defining measures of software usability [41]. The project
proposed a number of user performance measures, such as Task Effectiveness,
Temporal Efficiency and Productive Period. But the performance view of usability
can not capture any notion of user satisfaction, convenience or ease of use. The most
direct way to measure user satisfaction is to survey actual users. The MUSIiC project
developed a standard 50 items questionnaire to assess user satisfaction. The
completion of the questioner takes 10 minutes. It is called Software Usability
Measurement Inventory (SUMI) and it provides an overall assessment and usability
profile that breaks the overall assessment down into five attributes: Effectiveness,

Efficiency, Helpfulness, Control and Learnability.
2.2.2 Web usability metrics

Unless a web site meets the needs of the intended users, it will not meet the
needs of the organization providing the web site. Web site development should be
user-centered, evaluating the evolving design against user requirements. The
simplest usability metric is the success rate when performing a representative task:
record the percentage of test users capable of accomplishing what they were asked to
do. Many users will give up after a certain amount of struggle, though sometimes it
is necessary to specify a maximum duration of the study and count users as having
failed if they didn't achieve the goal within that time.

Success rates provide a best-case estimate of the true success rate for
customers who are not part of a usability study. The very fact that users are part of a

test means that they will continue longer and try harder than normally. Test users

33

often don't give up until they have tried everything they can think of. When people
are not part of a test, they will abandon a site once it becomes clear to them that
using the site is too difficult.

One benefit of the success rate measure is that it can be collected while
running a traditional thinking-aloud study where you ask the users to verbalize their
thoughts and tell you what they are thinking at each step of the way. With this
method, you can continue to collect qualitative insights while you collect a formal
usability metric.

Unfortunately, most other usability metrics only work if you stop asking the
users questions and let them concentrate on using the site without interruptions. This
is particularly true for any time measures: you want to know how fast people can
perform tasks when they simply do them and not when they spend half their time
chatting with you in order to explain and talk about every small thing they are doing.

Because of this variation, it is often necessary to run two sets of usability
studies, one to collect the numbers and another to get insight into the users’ behavior
and thinking. The first study gives you the hard-hitting numbers; the second study
gives you the information you need to redesign.

In addition to success rates, the two main usability measures are [61]:

® Task performance: usually measured by the amount of time it takes an
average user to perform an average task with the site.

* Subjective satisfaction: usually measured by the user’s answers to a
questionnaire with statements like "I felt completely in control of everything

that happened while I was using this Web site."

34

It is also possible to measure the quality of the outcome of the user’s task. For
example, if the task is to book the cheapest airline ticket to London, you can
measure:

» whether the user ever ends up with a ticket to London (success rate)

® how long it takes the user to book the ticket (task performance)

® how much the user enjoyed the experience

e whether, in fact, the ticket was the cheapest or if not, how it compared to

other ticket prices.

Most of the usability measures can be collected for both novice users and
experienced users. You almost always find much better scores for experienced users.
For example, a travel agent would typically be much faster at booking the ticket to
London than somebody who was using a travel site for the first time.

On the Web, it is important to get good usability measures for novice users since
people dont hang out at any individual Web site long enough to become very
experienced in its use. By contrast, Intranet applications and certain extranet sites
may have a large amount of repetitive use and thus require special attention to
measuring expert user performance [61].

Jakob Nielson believes that to improve a design, insight is better than
numbers[21]. He says usability metrics let you track progress between releases and
applying metrics can cost four times as much as conducting qualitative studies. But
we believe this is not the only case, before measuring the usability of a web site
involving real user which is an expensive method, we need something that can help

us in predicting its usability during design process. Everybody agrees that the design

35

of a web site should take into account the established guidelines for web writing
style, navigation, site structure and page design. The problem with guidelines is that,
they provide subjective information to the developer, for example they say
“minimize the need for scrolling” [63]. An experienced web site designer can
imagine it, but if we provide objectives, i.e. measurable attributes, so every
developer can use it. Let’s say the length of a page and the number of alphabetical
characters on a page both can have target values in specification of user interface, to
achieve that goal. We have identified some metrics which are useful to acquire the
quality in use in the context of hyper media. The list of those metrics is presented in
the appendix A.2.
2.2.3 Potential problems with usability metrics
Before talking about problems with measurement and metrics, first let us clarify
the different categories for expressing a value. To express values and animate them,
we use different scales. For a complete classification and properties of measurement
scales, one may refer to reference number [40].
e A Ratio scale has the following characteristics:
1. It is a measurement mapping that preserves ordering, the size of intervals
between entities, and ratios between entities.
2. There is a zero element, representing total lack of the attributes.
3. The measurement mapping must start at zero and increase at equal intervals,
known as units.
4. All arithmetic operations can be meaningfully applied to the classes in the range

of the mapping.

36

Examples of this scale could be: Time interval, Length.

* A Nominal scale has two major characteristics:

1. The empirical relation system consists only of different classes, there is no
notion of ordering among classes.

2. Any distinct numbering or symbolic representation of the classes is an acceptable
measure, but there is no notion of magnitude associated with the number of
symbols.

Example: we may classify software fault types into, data faults, controls faults , ...

¢ An Ordinal scale is defined using the following characteristics:

1. The empirical relation system consists of classes that are ordered with respect to
the attribute.

2. Any mapping that preserve the ordering (That is, any monotonic function) is
acceptable.

3. The numbers represent ranking only, so addition, subtraction, and other
arithmetic operations have no meaning.

Example: ordering software failure by severity, i.e. negligible, marginal, critical,

catastrophic.

Measuring usability is suffering from a case of "physics envy", because
usability is so difficult to measure. A major problem is that a measurement result of,
say, 12% decrease in task time might mean 12% better productivity, but could just as
well mean 12% more time wasted on other activities or 12% more stress for the

users. So we do not necessarily have a true ratio scale for usability measurements.

37

We also have difficulties with the simpler types of measurement scale. It may
actually be hard to achieve a nominal scale for usability problems, even though
nominal scales are the weakest form of measurement scale and only require us to be
capable of deciding when two usability problems are the same. Unfortunately, it is
hard to know to what extent two observations are really cases of the same underlying
usability problem, and we do not even have a good enumeration of usability
problems with which to match observations.

Using the somewhat more ambitious ordinal scales to measure usability
problems, we face the counting problem. We would like to know whether one
interface is better than another (the ordering of the ordinal scale) based on counting
the frequencies of various usability problems in the two systemns. Assume, for
example, that we have measured the frequencies of usability problems A, B, and C

as it comes in table 2:

Problem A Problem B Problem C
System 1 1 | 8
System 2 2 1 1

Table 2: Example of metrics problems

It may initially seem as if System 2 is much better than System 1, but that is
only true if Problem C is actually a key problem. It could be the case that Problem A

is a usability catastrophe that keeps users from ever getting to use the system,

38

whereas Problem C is a triviality that slows down users a second or so. Then it

would obviously be preferable to use System 1[19s].

2.3 Data

Having the right measures is only part of a measurement program. We can not

make good decisions with wrong data. We said measures or metrics should be well

defined and valid, i.e. they should reflect the attributes we claim they do. But even

when we have a well defined metric that maps a real world attribute to a formal

relational system in appropriate ways, still we need to ask several questions about

the data [40].

I.

Correctness: the data were collected according to the exact rules of definition of
the metric. A measure of task duration is correct if time is measured from a
specified activity and ends at the completion of another specified activity.
Accuracy: refers to the difference between the data and the actual value. Time
measured using an analog clock may be less accurate than time measured using a
digital clock.

Precision: deals with the number of decimal places needed to express the data.
Task duration need not be reported in tenths of second.

Replication: data are often collected to support surveys, case studies and
experiments. These investigations are frequently repeated under different
circumstances, and the results are compared. Then, project histories and study
results are stored in a database, so the baseline measures can be established and

organizational goals can be set.

39

5. Consistency: data should be consistent from one measuring device or person to
another. Thus two evaluators should calculate the same value for the same
measure at the same circumstances. Finally it means that data should be captured
in the same way, so for different circumstances the results of measures are
comparable.

Thus it is very important to assess the quality of data and data collection before
data collection begins. The measurement program must specify not only what
metrics to use, but also what precision is required, and what rules govern the data
collection. For example, whether a particular tool or questionnaire will be used to
capture the data.

There are really two kinds of data with which we are concerned :

e Raw data (countable): results from the initial measurement of process, product or
resources.

e Refined data (calculable): extracted essential data elements from raw data.
Deciding what to measure is the first step. We must specify what direct measures

are needed, and also what indirect measures may be derived from the direct ones.

Sometimes we begin with the indirect measures. From a GQM (Goal, Question,

Metric) analysis (the explanation will come in the next sections), we understand

which indirect measures we want to know, and from those, we must determine what

direct measures are required to calculate them. Figure 3 shows the role of data

collection in the software measurement program.

40

Process
Product
Resource

Direct
Measure

3

Raw Data

Data Collection

Direct Measure Attribute

Values
Y

Direct

Measure Extraction

Analysis

y

Refined Data

Indirect Measure

Figure 3: The role of data collection in software measurement

Most organizations are different, not only in terms of their business goals but
also in terms of their corporate culture, development preferences, and staff skills.
The differences also are happening between different software products. So a GQM
analysis of apparently similar projects and products may result in different metrics at
different companies, and also it could lead to different metrics at the same company
for different products. That is exactly the reason that, GQM is preferable to a “one-
size-fits-all” standard measurement set [40]. But still most organization and most
software products share some problems.

Since the production of software is an intellectual activity, the collection of data
requires human observation and reporting. Managers, system analysts, programmers,
testers and users must record raw data on forms. This manual recording is subject to
error, omission and delay, deliberately or unconsciously. Therefore automatic data
capture is desirable, and sometimes essential, such as recording the number of nodes
to be passed to do a specific task in a web site, or the completion time of a specific

task. Unfortunately, in many instances, there is no alternative to manual data

41

collection. To ensure that the data are accurate and complete, we must plan our

collection effort before we begin to measure and capture data. Ideally we should:

Keep procedures simple
Avoid unnecessary recording
Train the responsible staff to record data and procedures

Validate all data collected

The last point is especially important, otherwise we will go to the wrong direction.

Basili and Weiss, examined data from NASA’s Goddard Space Flight Center in

Maryland [44]. They found half of the data collected were corrupted in some way

and therefore not useful for analysis.

2.4 Usability in Software quality assurance models and Standards

In this section, we look at software quality models that have gained

acceptance within the software engineering community, and some of them address

the usability explicitly.

L.

McCall model: This model uses a decomposing approach to describe software
quality. Figure 4 shows the structure of McCall model.

This model includes 41 metrics to measure the 25 quality criteria generated from
the quality factors. We review an example to see how the model could be used.
Measuring any factor requires us first to consider a checklist of conditions that
may apply to the requirements (R), the design (D), and the implementation (I).
The condition is designated “yes” or “no”, depending on whether or not it is met.
To see how the metrics and checklists are used, consider measuring the criterion

“Completeness” for the factor “Correctness”.

42

Use Factor Criteria

Operabil;
] Usability Training
< ==
r Integrity L0 vok
O rate
PM‘F‘ [Efficiency —I Access control
operavion Access audit
L Correctness Storage cMiciency :
Execution efficvency
{ Reliability Traccabilit
C v
[Mainainability A
Ervor tol ‘ Metrics
Product f Tesubility P
[Semplicity
| Flexibility | c
| Reusability] Expandibiiny]
Product — G i
transition r Porability J Self-descnp
Moduladity
| incroperabitity _———
S/w gysiem independ
Comms lity
Data commonality

Figure 4: McCall software quality model

The checklist for completeness is:

Unambiguous references (input, function, output) for R, D, and [

All data references defined, computed or obtained from external source for R, D,
and I

All defined functions used for R, D, and I

All referenced functions defined for R, D, and I

All conditions and processing defined for each decision point for R, D, and I

All defined and referenced calling sequence parameters agree for D, and [

All problems repoxts resolved for R, D, and I

43

Design agrees with requirements for D
Code agrees with design for I
Notice that there are six conditions that apply to requirements, eight to design
and eight to implementation. We can assign a 1 to a “yes” answer and 0 to a “no”
answer, and we can compute the completeness metric in the following way to
yield a measure that is a number between O and 1:
(1/3)X((Number of yes for R/6)+(Number of yes for D/8)+(Number of yes for
1/8))
since the model tells us the “Correctness” depends on “Completeness”,
“Traceability” and “Consistency”, we can calculate analogous measures for the
latter two. Then, the measure of “Correctness” is the mean of their measures:
Correctness = (x +y + z)/3
Where x, y and z are the metrics for “Completeness”, “Traceability’” and
“Consistency”, respectively. In this example, all of the factors are weighted the
same. However it is possible to use different weightings, so that the weights
reflect importance, cost or some other considerations which are important to the
evaluator.
In this model Usability has come as a factor and it is decomposed into criteria
Operability, Training, Communicativeness, I/O volume and I/O rate. It defines
usability as the effort required to learn, operate, prepare input, and interpret the
output of a program.
Unfortunately many of the metrics defined by McCall, can only be measured

subjectively [52]. The metrics may be in the form of a checklist that is used to

44

grade specific attributes of the software. The grading scheme proposed by
McCall is a 0 (low) to 10 (high) scale. The definition of some criteria for factor
usability which are used in the model is as follows:

Operability: the ease of operation of a program.

Training: the degree to which the software assists in enabling new users to apply

the system.

Boehm model: This is one of the first quality models for software defined by
B.W.Boehm in 1978. He proposed a multilevel hierarchy or a tree of software
criteria. He used a different terminology for levels of tree, i.e. Primary uses,
Intermediate constructs, Primitive constructs and finally Metrics (Figure 5). He
suggested that a software has General Utility if it is Portable, Maintainable and,
and in turn at the next level he decomposed those attributes into the others:
Maintainability: Testability, Understandability, Modifiabiliry.

As is Utility: Reliability, Efficiency, Human Engineering.

Boehm has not anything about usability in his model, just he talks about Human
Engineering as an intermediate constructs and decomposes it into

Communicativeness and Accessibility.

45

Primary uses Intermediste constructs Primitive constructs

Device independence]-—-——
Completeness p———of
| Pomabilry AaEe ‘
//{ Reliability Consistency | e—
As is utilit
Y Device etficiency e
Efficiency
o Accssibulity | Ems—
General utilicy Human engineering Metrics
Communicativeness f———
\dm’mainabili(Tesiability Structuredness |t
Understandability Self descripiveness f————i
Conc S }
Modifiability

Legibility

Augmentabulity

Figure 5: Boehm software quality model

3. GQM model: It stands for Goal-Question-Metric. This is a goal oriented
approach. The fundamental idea is a simple one; managers proceed according to
the following three stages:

1) Set goals specific to needs in terms of purpose, perspective and
environment.

2) Refine the goals into quantifiable questions that are tractable.

3) Deduce the metrics and data to be collected (and the means for
collecting them) to answer the questions.

GQM is more a philosophy than a model. It is a top-down approach. The

goal/question/metric paradigm is intended as a mechanism for formalizing the

characterization, planning, construction, analysis, learning and feedback tasks. It
represents a systematic approach for setting project goals, tailored to the specific

needs of an organization, and defining them in an operational and tractable way.

46

Goals are refined into a set of quantifiable questions that specify metrics. This
paradigm also supports the analysis and integration of metrics in the context of the
questions and the original goal. Feedback and learning are then performed in the
context of the GQM paradigm.
The process of setting goals and refining them into quantifiable questions is complex
and requires experience. In order to support this process, a set of templates for
setting goals, and a set of guidelines for deriving questions and metrics has been
developed. These templates and guidelines reflect the experiences of Basili and his
colleagues [48] from having applied the GQM in a variety of environments such as
NASA, IBM and AT&T. Of course they do not claim that these templates and
guidelines are complete. Different sets of guidelines exist for defining product-
related and process-related questions. Product-related questions are formulated for
the purpose of defining the product such as physical attributes, context and defining
the quality perspective of interest such as reliability and user friendliness.
¢ Guidelines for product-related questions: for each product under study there are
three major sub goals that need to be addressed: 1) definition of the product, 2)
definition of the quality perspectives of interest, and 3) feedback related to the
quality perspectives of interest. Definition of the product includes questions
related to:
1. Physical attributes, i.e. a quantitative characterization of the product in
terms of physical attributes such as size, complexity, etc.
2. Cost, i.e. a quantitative characterization of the resources related to this

product in terms of effort, time, etc.

47

3. Changes, i.e. a quantitative characterization of the adaptations,

enhancements related to this product.

4. Context, i.e. a quantitative characterization of the customer community

using this product and their operational profiles.

Guidelines for metrics, data collection, and interpretation: the choice of metrics
is determined by quantifiable questions. The guidelines for questions
acknowledge the need for generally more than one metric, for objective and
subjective metrics, and for associating interpretations with metrics. The actual
GQM models generated from these templates and guidelines will differ from
project to project and organization to organmization. This reflects their being
tailored for the different needs in different projects and organizations. Depending
on the type of each metric, we choose the appropriate mechanism for data
collection and validation.

Many metrics programs begin by measuring what is convenient or easy to
measure, rather than by measuring what is needed. Such programs often fails
because the resulting data are not useful to the developer, designer or maintainer
of the software. There are lots of metrics that are easy to measure in usability
field, such as the number of individual items on the screen. Reduction in the
number of items on the screen reduces memory load of the user, but where to put
what the user needs, or in the other word, how to make things accessible to user?
Then for our goal, i.e. reducing user memory load, developer may use metrics
such as Task visibility and Layout uniformity, that are of course more difficult to

determine.

48

4. Quality Function Deployment: QFD is a technique that evolved from total
quality management principles, it aims at deriving indicators from the user’s
point of view. QFD consists of activities supported by its defined matrices and
tables: House of Quality, Part Deployment, Process Planning and Production
Planning. The approach helps to make the product developer sure, about which
of the quality characteristics or technical parts of the product should be
increased, starting with analyzing customer requirements. The method was
introduced for industrial and consumer products in Japan in 1972, this approach
has been successful in different areas such as telecommunication, and has been
adopted to give service in software industry. Here the basic idea is to translate
customer requirements into the appropriate technical requirements for each stage
of product development and production. The customer’s requirements are
expressed in their own terms and the technical counterparts are expressed in
measurable terms. These technical counterparts to customer quality requirements
represent final product control characteristics. Consequently they should directly
affect customer perceptions. Because they are expressed in measurable terms the
relevant units of measurement must be determined as well as target values. The
measures are used for assuring that the required quality is achieved. QFD can be
applied for planning, production and control, that is, throughout the whole
process. The hierarchical structure of the matrices helps in the stepwise process
to reach detailed and precise information starting from rather vague and abstract

user requirements.

49

Figure 6 shows the first matrix concluded form analyzing the user requirements
for an information management system in medical organization [67]. The matrix
represents mapping customer requirements to the software characteristics. The
type of relationship at each cross point is determined by an expert, resulting from
his experiences, previous empirical jobs and meeting with the customer. At the
next step, software characteristics on figure 6, are mapped to the terms that are
commonly used by software engineers. These terms are called production
features. Again the new matrix determines the relevancy of every cross point.
Finally, at the third step, those product features are mapped to the metrics. Then
through three steps, by creating three matrices, we have followed system
requirements to the measurable metrics. As an example, on figure 6, response
time is mapped to time behavior with strong relationship, in the second matrix
time behavior will be mapped to size of source code with a strong relationship.
And finally, in a third matrix, size of source code is determined by LOC (Lines
Of Code).

There is a well known problem with this method. It requires a lot of experimental

results to establish reliable rules, and also it needs an experienced developer.

50

Software charocteristics

2
& > S > S
3 g =3 5 S
= -~ & < = .
g 3 § Q & .
(< S & 3
D ' & & & .
i
i
)
L
]
8
§_ -
g > 2
= = o
x Strong relationship 4 3 312 St
: : = a 2l =zie > el=
O Some relationship k] RISIE| 3l niZ i > 215 »
. N - © gf=Z|al<:e|=ioi=] nl2lel = >
& Negative reigtionship o .5 Sis5|38 ; § § = Zie 235 > 31 .
giSig2leidi3|lS215i=13|8|5i5]
BEEHEREEHEHEE IR EE
Customer raquirements SO+ TS| Zid|eja|nlc
Required test resuits S : x
Test Ease of use 4 1x 0
rasulfs Accuracy 5 i ; xixlz x
Security 9 alai x
Adgptability 3 x| xix '
Response time 4 al x i)
Req. patient profiles 5 i R x
Patisnt Ease of use 3ixixix o 7 =
profiles Aceuracy s i x lxix x
Sacurity 3 &l o x
o e e i
.« o o v e '
Cost 4 '
System . Q.C Q O
considergticns} Oevelopmen? fime 2 | ! o o
LN 2R J t ’
|] j 1 |

Figure 6: The example of QFD matrix

5. IEEE Software Quality Metrics Methodology [42]: This standard provides a
methodology for establishing quality requirements, and identifying,
implementing, analyzing and validating process and product software quality
metrics. This methodology applies to all software at all phases of any software
life cycle. This standard does not prescribe any specific metric. The model
suggests a hierarchy including different levels for quality factors, quality sub
factors and metrics as well.

The standard expresses that the use of software metrics reduces subjectivity in
the assessment and control of software quality by providing a quantitative basis

for making decisions about software quality. However, the use of software

51

metrics does not eliminate the need for human judgment in software assessment.
The use of software metrics within an organization or project is expected to have
a beneficial effect by making software quality more visible. More specifically,
the use of this standard’s methodology for measuring quality enables an
organization to:

Assess achievement of quality goals

Establish quality requirements for a system as its outset

Establish acceptance criteria and standards

Evaluate the level of quality achieved against the established requirements

Detect anomalies or points to potential problems in the system

Predict the level of quality that will be achieved in the future

Monitor changes in quality when software is modified

Assess the ease of change to the system during product evolution

Validate a metric sets .

Software quality of systam X

/

Quality factor Quality factor Quality factor
Direct metric(s}) Direct metric(s) _l Direct metric(s)

[| |
Quality subfactor Quaiity subfactor Quality subfactor

] [=

Figure 7: IEEE software quality metrics model

52

6. Define-Your-Own-Model: The define-your-own-model approach has been
pioneered by Gilb and also by Kitchenham and Walker. Gilb’s method can be
thought of as “design by measurable objectives”, it complements his philosophy
of evolutionary development. The software engineer delivers the product
incrementally to the user, based on the importance of the different kinds of
functionality being provided. To assign priorities to the functions, the user
identifies key software attributes in the specification. These attributes are
described in measurable terms, so the user can determine whether measurable
objectives, in addition to the functional objectives, have been met. This simple
but powerful technique can be used on projects of all sizes. It is the antithesis of
the more traditional “big-bang” development approach, where an entire system is
delivered in one go, and there are no priorities assigned to the several functions
[40].

The COQUMO (COnstructive QUality MOdel) approach of Kitchenham and
Walker extended Gilb’s ideas and supported them with automated tools as part of
an ESPRIT (European Community) project [45].

2.4.1 ISO/IEC 9126
The standard originally was introduced in 1991 and called Software Product

Evaluation — Quality Characteristics and Guidelines for their use. ISO/IEC 9126

breaks software quality down into six broad categories of characteristics of the

software. Later revision of this standard is considering quality in use as part of its

model.

53

ISO/IEC FDIS 9126-1 (2000) Software Engineering - Product quality - Part I:
Quality model specifies a two-part model for software product quality (Figure 8)

[69]:

a) internal quality divided into six characteristics: functionality, reliability,
efficiency, usability, maintainability and portability. External quality is
manifested when the software is used as a part of a computer system, and is

the result of internal software attributes.

b) quality in use characteristics: effectiveness, productivity, safety and
satisfaction. Quality in use is the combined effect for the user of the six

software product quality characteristics.

The other parts of this standard are:

ISO/IEC PDTR 9126-2 (2000) Software Engineering - Product quality - Part 2:
External metrics. These metrics are used when the software is operated.

ISO/IEC PDTR 9126-3 (2000) Software Engineering - Product quality - Part 3:
Internal metrics. These metrics can be used when inspecting a specification.
ISO/IEC PDTR 9126-4 (2000) Software Engineering - Product quality - Part 4:
Quality in use metrics. This report contains metrics for effectiveness, productivity,

safety and satisfaction.

54

quality in use

effectiveness, productivity, safely, satisfaction
functionality reliability
accuracy maturity
suitability faulttolerance
interoperability recoverability
security availability
usability efficiency
understandabili i .
learnability time behaviour
operability resource
attractiveness utilisation
maintainability portability
analysability adaptability
changeability instaliability
stability cc-existence
testability replaceability

Figure 8: ISO/IEC 9126-1 quality model

As we see in the structure of model, quality in use is decomposed into Effectiveness,
Productivity, Safety, and Satisfaction. Example of metrics from the standard is the
following measure [70]:

Task completion = Number of tasks completed / Total number of tasks attempted
The metric is defining what proportion of the tasks are completed. It has a value
between 1 and 0, and obviously the closer to 1 the better. This metric affects the
effectiveness.

Another example is:

55

Productive proportion = (Task time — Help time — error time — search time)/ Task
time

This metric affects productivity and shows what proportion of the time is the user
performing production actions. It takes a value between 0 and 1, the closer to 1 the
better. Productive proportion requires detailed analysis of a video tape of the
interaction between user and system. The problem with this model is the lack of
prediction power.

2.4.2 ISO/MEC 14598-1

This standard is called Information Technology — Evaluation of Software
Products — General Guide. The ISO/IEC 14598-1 suggests a model for studying and
measuring quality in use from the internal software attributes in a particular context.
Software quality attributes are the cause, quality in use the effect. Quality in use is
(or at least should be) the objective; software product quality is the means of
achieving it.

The user’s needs are expressed as a set of requirements for the behavior of
the product in use (for a software product, the behavior of the software when it is
executed.) These requirements will depend on the characteristics of each part of the
overall system including hardware, software and users.

The requirements should be expressed as metrics that can be measured when
the system is used in its intended context, for instance by measures of effectiveness,
efficiency and satisfaction.

External quality can only be assessed for a complete hardware/software

system of which the software product is a part. External metrics are applied when

56

executing the software. The values of external measures necessarily depend on more
than the software, so the software has to be evaluated as part of a working system.
Software that performs satisfactorily in one environment may show quality defects
in another environment. External evaluation of quality characteristics should
therefore take place under conditions that emulate as closely as possible the expected
conditions of use. External measurements of characteristics are made when the code
is complete, though as it may not be possible to emulate the exact conditions of use
(e.g. network environment and user characteristics), external measures are often only
indicators of the actual quality in use.

The required values of these external metrics provide goals for design. To
achieve these goals the internal attributes of the system can be specified as internal
requirements. These attributes of the software can be evaluated to produce internal
metrics verifying how closely the internal requirements have been met. Although
these attributes contribute to achieving quality in use, users and tasks vary so much
that conformance to requirements for internal metrics is rarely sufficient to ensure
quality in use.

If the external quality requirements are not achieved, the results of the
evaluation can be used as feedback to modify the internal software attributes in order
to improve the external quality, thus supporting a continual improvement process.
And again this standard is a guideline and implementing it is another story, which is

not covered by the document.

57

2.5 Usability Assessment Tools

In the following section we provide a review of user interface measurement
and development tools.
2.5.1 SANe
SANe (Skill Acquisition Network method) is a method for analytic

evaluation of the quality of use of interactive devices [64]. The SANe user
interaction model describes user tasks, the dynamics of the device, and user
procedures for the execution of user tasks.
In the measurement procedure a task model and a device model are developed and
linked together. Then user procedures are simulated automatically for the linked
model. 60 measures are calculated with a subset of 24 complexity measures related
to reference values grouped to quality measures. Five quality measures are produced.
e Efficiency

Efficiency is determined by the length of user procedures and the cost of

executing user procedures
e Learning

Learning cost is determined by the amount of states and state transitions.
e Adaptedness

Adaptedness describes the adequateness of the functionality of the device for a

given application domain.
e Cognitive workload

This measure is determined by controllability, decision complexity and memory

load. Controllability is the amount of states and the state the user must know.

58

Decision complexity is the alternatives from which the user can choose. Memory
load is the information about the state variables the user must remember while
using the device.
e Effort for error correction
This describes the robustness of a device and the cost for error recovery.
To conduct SANe evaluation expert HCI evaluators are needed. SANe can be
used in the process of developing new software products, in procurement projects

and for test of conformance with standards and guidelines.

2.5.2 DRUM

The Diagnostic Recorder for Usability Measurement (DRUM) helps evaluators
to organize and analyze user-based evaluations, and to deliver measures and
diagnostic data. DRUM consists of four modules [65]:

* management of data through the various stages of observational evaluation

* task analysis, and representation of classes of events and usability problems

* video control and creation of interaction logs of evaluation sessions

* analysis of logged data and calculation of metrics (log processor)

The Log Processor performs the calculation, from any log in the DRUM
database, of performance measures and performance-based usability metrics,
including:

* task time - total performance time for each task being studied (with a facility

for subtracting times when the task is suspended)

* snag, help and search times - measures of the time users spend having

problems, seeking help or unproductively hunting through a system

59

» effectiveness - derived from measures of the quantity and quality of task
output, this is a measure of how fully, and how well, users succeed in
achieving their task goals when working with a system

» efficiency - this relates effectiveness to the task time: it is a measure of the
rate of producing the task output

* relative efficiency - a measure of how efficiently a task is performed by a
specific user or group of users, compared with experts (or with the same task
on another system)

* productive period - the percentage of task time not spent in snag, help and
search. This indicates how much users of a system spend their time working
productively towards their task goals.

Results are displayed in numerical and graphical form, and can be saved in the

database for grouping of data from different subjects, for further statistical analysis.

2.5.3 AIDE

AIDE stands for semi-Automated Interface Designer and Evaluator [28].
This tool demonstrates the potential of incorporating metrics into the interface
development process. It is capable of generating initial interface layouts and
evaluating some aspects of a design. With this tool the burden of making the final
decisions will still lie with the designer. AIDE is intended to demonstrate, how
metrics may be applied to user interface design process. The tool focuses on
providing advice to designers, not replacing them. In this way, AIDE facilitates rapid
prototyping and may reduce costs by decreasing decision times. This tool integrates

task-sensitive metrics as well as task-independent metrics. Task-sensitive metrics

60

incorporate task information into the development process ensuring that the user’s
tasks guide the semantic design of the interface. Task-independent metrics tend to be
based on principles of graphic design and help to ensure that the interface is
aesthetic. The example for task-sensitive metric is Layout Appropriateness [20].
AJDE focuses on a single aspect of the design process which is organizing the items
(e.g. buttons, menus, text boxes, ...) on the screen, once they have been chosen, and
is intended to be one of many tools that a designer may use while developing an
interface. Designer specifies weights for the metrics and AIDE displays a layout that
optimizes the weighted metrics. Then the designer can interactively evaluate and
alter the design. The tool uses five metrics, i.e. efficiency (this is the same as Layout
Appropriateness), alignment, horizontal balance, vertical balance and constraints.
Efficiency evaluates how far the user must move a cursor to accomplish the task.
Alignment evaluates how well aligned objects are both vertically and horizontally.
The balance metrics evaluate how well balanced the screen is both vertically and
horizontally. Constraints provide a quick overview of the status of any designer
specified constraints. The example for constraints could be, the designer wants to put
an element onto a specific location on the screen, so that location is a constraint

represented by its x and y.

2.54 GLEAN

Before talking about GLEAN, we would like to recall some words on GOMS
and engineering models of human performance [54]. Engineering models for
usability are analogous to the models used in other engineering disciplines in that

they produce quantitative predictions of how well humans will be able to perform

61

tasks with a proposed design. Such predictions can be used as a surrogate for actual
empirical user data, making it possible to iterate through design revisions and
evaluations much more rapidly. The overall scheme for using engineering models in
the user interface design process is as follows: following an initial task analysis and
proposed first interface design, the interface designer would then use an engineering
model to find the applicable usability problems in the interface.

The major extant form of engineering model for interface design is the
GOMS model. GOMS stands for Goals, Operators, Methods, and Selection rules
[54]. A GOMS model is a description of the knowledge that a user must have in
order to carry out tasks on a device or system. Briefly, a GOMS model consists of
descriptions of the methods needed to accomplish specified goals. The methods are
series of steps consisting of operators that the user performs. A method may call for
sub-goals to be accomplished, so the methods have a hierarchical structure. If there
1s more than one method to accomplish a goal, then selection rules choose the
appropriate method depending on the context. Describing the goals, operators,
methods, and selection rules for a set of tasks in a formal way is called a GOMS
analysis, or constructing 2 GOMS model. GOMS models and techniques could be
used for predicting key aspects of usability of an interface. In particular, execution
time can be predicted by simulating the execution of the methods required to
perform a task. The time to learn how to operate the interface can be predicted from
the length of the methods and transfer of training from the number of methods or

method steps previously learned. One important feature of these GOMS models is

62

that the “how to do it” knowledge is described in a form that can actually be
executed either by analyst or by a computer tool.

GLEAN stands for GOMS Language Evaluation and Analysis. In essence, it
is a facility for simulating the interaction of a simulated user who interacts with a
simulated device (the computer interface) to execute a set of benchmark tasks. To set
up the simulation, the designer supplies three representations contained in simple
text files and expresses in defined notation. The first one gives the description of the
tasks, the second one gives the user’s procedural knowledge, i.e. GOMS model, and
third one expresses the behavior of the simulated interface, e.g. location of icons and
their behaviors in response to user input. Then running GLEAN, the
Evaluator/Interpreter generates measures of usability from the GOMS model such as

the predicted procedure learning time.

2.6 Lessons learned from Software Measurement Programs

As software become more pervasive and software quality more critical,
measurement programs will become more necessary. In 1990, Rubin reported that
300 US information technology companies (companies with at lest 100 IT staff) had
implemented measurement programs [40]. Among them he determined that sixty
were successful, where success means:
¢ The measurement program results were actively used in decision making
¢ The results were communicated and accepted outside of the IT department
¢ The program lasted more than two years
Rubin’s colleague, Verdugo, suggests several reasons for failure in the remaining IT

companies:

63

Management did not clearly define the purpose of the program and later saw the
measures as irrelevant

Systems professionals resisted the program, perceiving it as a negative
commentary on their performance

Already burdened project staff were taxed by extensive data collection
requirements and cumbersome procedures

Program reports failed to generate management action

Management withdrew support for the program, perceiving it to be mired in

problems and no-win situations

Grady and Caswell list ten steps [40] to success for a measurement program, based

on their experience at Hewlett-Packard (1987):

1.

2.

9.

Define the company and project objectives

Assign responsibility to each activity

Do research

Define the initial metrics to collect

Sell the initial collection of these metrics

Get tools for automatic data collection and analysis
Establish a training class in software measurement
Publicize success stories and encourage exchange of ideas

Create a metrics database

10. Establish a mechanism for changing the standard in an orderly way

To have a successful usability measurement, we adopt some of the above lessons as

follows:

1. Define the usability objectives of the project

2. Define the metrics regarding to the objectives

3. Keep the metrics simple and easy to understand

4. Automate data collection and analysis as much as possible

5. Create a metrics database
The following is the list of lessons learnt from experiences on measuring and

evaluating software engineering processes and products in a variety of project
environments, by Victor Basili and Dieter Rombach [48]. They declared those
lessons as measurement principles. The first four measurement principles address the
purpose of the measurement process, i.e. why should we measure, what should we
measure, for whom should we measure. The remaining ten measurement principles
address metrics and the overall measurement process, including characteristics of
metrics, i.e., what kind of metrics, how many are needed, and characteristics of the
measurement process, i.e., what should the measurement process look like, how do
we support characterization, planning, construction, learning and feedback.

1. Measurement is an ideal mechanism for characterizing, evaluating, predicting
and providing motivation for the various aspects of software construction
processes and products. It is a common mechanism for relating these multiple
aspects.

2. Measurements must be taken on both the software processes and the various
software products. Improving a product requires understanding both the product

and its construction processes.

65

3.

There are a variety of uses for measurement. The purpose of measurement
should be clearly stated. We can use measurement to examine cost, effectiveness,

maintainability, efficiency, user friendliness, etc.

Measurement needs to be viewed from the appropriate perspective. The

corporation, the manager, the developer, the customer’s organization and the
user each view the product and the process from different perspectives. Thus
they may want to know different things about the project and to different levels
of details.

Subjective as well as objective metrics are required. Many process, product and
environment aspects, can be characterized by objective metrics (e.g., product
complexity, number of defects or effort related to processes). Other aspects can
not be characterized objectively yet (e.g., experience of personnel, type of
application, understandability of processes and products), but they can at least be
categorized on a quantitative (nominal) scale to a reasonable degree of accuracy.
Most aspects of software processes and products are too complicated to be
captured by a single metric. For both definition and interpretation purposes, a set
of metrics (a metric vector) that frame the purpose of measurement needs to be
defined.

The development and maintenance environments must be prepared for
measurement and analysis. Planning is required and needs to be carefully
integrated into the overall software engineering process model. This planning
process must take into account the experimental design appropriate for the

situation.

66

8. We can not just use models and metrics from other environments as defined.
Because of the differences among execution models (software engineering
models) the models and metrics must be tailored for the environment in which
they will be applied and checked for validity in that environment.

9. The measurement process must be top-down rather than bottom-up in order to
define a set of operational goals, specify the appropriate metrics, permit valid
contextual interpretation and analysis, and provide feedback for tailorability and
tractability.

10. For each environment there exists a characteristic set of metrics that provides the
needed information for definition and interpretation purposes.

11. Multiple mechanisms are needed for data collection and validation. The nature of
data to be collected determines the appropriate mechanism, e.g., manually via
forms or interviews, or automatically via analyzers.

12. In order to evaluate and compare the projects and to develop models we need a
historical experience base. This experience base should characterize the local
environment.

13. Metrics must be associated with interpretations, but these interpretations must be
given in context.

14. The experience base should evolve from a database into a knowledge base,

supported by an expert system, to formalize the reuse of experience.

67

2.7 Summary

Today, it is proved that measuring and using metrics is a convenient type of
control method that we can apply in an engineering process. This type of process
control has been applied for several years in software production. Experts have
provided their experiences, and we will use those experiences for developing QUIM,
our model to assess the quality in use of software products. Also there are
weaknesses with every model or guideline which is used today by software

developers to evaluate the quality in use. We will try to remove those problems in

QUIM.

68

Chapter 3:

QUIM - Quality in Use Integrated Model

In this chapter we will examine the rational for QUIM and its structure. We

will see also, how we may use the model.

3.1

10.

Requirements and Justification

The following are the main reasons for developing QUIM:

The importance of quality in use in a software product, so far the proper attention
has not been paid to the usability in software quality models.

Assuring the quality in use objectively rather than subjectively, because numbers
are stronger than words.

Reducing the risks of software product regarding the user interface.

Reducing testing time and testing expenses of a software product.

Incorporating quality in use assurance into the first stages of software
development.

Making the acquiring of quality in use easy for all developers with different
levels of experience.

Making the acquiring of quality in use more consistent between developers.
Helping the developers to create more consistent software products.

Providing a dynamic quality model.

Creating a collection of usability metrics that are developed so far by different

developers and organizations.

69

1. Facilitating the integration of usability into the software engineering models.

12. Filling the gap between Human-Computer Interaction experts and software
engineers.

13. Integrating all usability attributes of a software that have been recognized into
one model.

Here we would like to discuss some aspects of the above reasons.

For the assessment of the quality in use of a software interface, we may
distinguish two broad classes of methods. One class requires direct participation of
the end user and the other applies just to the attributes of the graphical interface. We
may use first class methods to evaluate the product, but for prediction, we are forced
to use the second class. The second category includes expert evaluation, analytical
methods, usability inspection methods and so on. Usually in these methods, usability
experts are concerned with evaluating the conformance of interface’s attributes to
guidelines, principles, heuristics and standards. As an example, Smith and Mosier’s
1986 guideline [7], which is a good one, contains 944 instructions for designing a
user interface, they are stated in the form of single statements [55]. Some guidelines
use illustrated examples such as Macintosh human interface guidelines [56].
Conducting surveys on use of the guidelines [57], shows that the designers had
difficulties in locating the relevant instruction within the guideline assembly,
choosing which instruction to use and translating general guidelines into specific
design rules [58].

A comparison of four user interface evaluation techniques [60] in 1991, gave the

following results as their disadvantages.

70

¢ Heuristic evaluation needs skilled heuristic evaluator

® Software guidelines missed a large number of the most severe problems with the
user interface

e Cognitive walkthrough needs a task definition methodology, it is tedious to
implement, and it missed general problems

e Usability testing did not find all serious problems (evaluator gather data as
problems arise), also it missed consistency problems and is of a high cost
But the major drawbacks of those methods are the requirement of usability

expert and participation of the end-user.

Then to achieve the goal, i.e. quality in use, we need something more
concrete and reliable. We need something that provides coherent results over time,
and consistency among two or more designer or evaluator, and even non-expert in
usability can benefit from it. Also it could be applicable to all phases and artifacts of
development. That is a Metrics based model using quantitative entities.

Numbers always speak louder than words. If you can say that there are twice
as many customers who are capable of finding and ordering products after a redesign
of an e-commerce web site, then your message carries much more weight than if you
give a speech about the improved web navigation system and streamlined check out
process. It is useful to track the evolution in the usability metrics over time. Doing so
will tell you how much you are improving, or whether your latest great redesign
ended up hurting users.

The main advantage of the metrics-based model is that it provides a

definition of usability against which the system can be tested. Unfortunately, skilled

71

software engineers in usability are required and the measurements are made in
unnatural laboratory environments hence the context of the workplace is lost. Like
metrics in software engineering, they are difficult to interpret or translate into the
design solution.

Then if we make a model, i.e. arrange every thing formally, give the
definition of a metric, how to calculate it, how to interpret it, and how it affects the
product’s quality, it could be easier and more convenient to use those metrics.

There are a couple of software quality models, but not a usability model. In
every quality model usability is considered just as a small part of it, and nobody has
paid enough attention to this important aspect of a software product. We would like
to recall that usability is one of ten high-risk items in software production and it is
one of the three views to software quality. There is just one standard, i.e. ISO 9241-
11, called guidance on usability. It gives some guidance in considering context of
use in usability and usability objectives, also in its appendices it gives some
examples for usability metrics. Here we would like to mention a sentence from the
standard: “ISO 9241-11also provides a basis from which measures of usability can
be generated. Product developers can develop appropriate measures of efficiency,
effectiveness, and/or satisfaction”. Figure 9 shows a list from appendix B of the
standard. The problem is here, not every software developer has experience in
developing metrics. Developing a metric is not a very simple process. A metric
needs validation. This is time consuming. On the other hand we have certain
categories for software products and entities in each category may benefit from the

same set of measures. Then it is obvious that every software developer prefers to

72

use, ready to use metrics, to increase the quality of his job. Another problem with
suggested metrics in the standard is that, they are all useful for evaluating the
interface, it means they are used at the later stages of development. Finally, ISO

9241-11 1s a guidance for software metrics and quality model developers, not for the

software developers.

Usability objective

Effectiveness
measures

Efficiency measuras

Satisfaction
measures

Meets needs of
trainec users

Number cf power tasks
performad;

Percentage of relevant
functions used

Relative efficiency
compared with an expert
user

Rating scale for
satisfaction with
power features

Meets needs to
walk up and use

Percentage of tasks
compieted successfully
on first attempt

Time taken on first
attempt);

Relauve efficiency on
first attempt

Ra:e of voluntary
use

Meets needs for
infrequent or
ntermittent use

Percentage of tasks
completed successfully
after 2 specified pericd of
non-use

Time spent re-iearning
functions};

Number of persistent
errors

Frequency of reuse

Minirmization of
support
requirements

Numoer ct references 1o
documentation;

Number cf calls tc
support:

Number of accesses to
help

Productive time?}:
Time to leam to
criterion '}

Rating scaile for
satistacticn with
supooen facilities

Leamaoility

Number of functions
learned;

Percentage of users whe
manage tc learn to
criterion

Time to leam to
criterion);

Time to re-leam tc
criterion?): :
Relative efficiency wnile
leaming

Rating scale for
ease of leaming

Error tolerance

Percentage cf errors
correctec or reported by
the sysiem;

Numper of user errors
tolerated

Time spent on correcting
errors

Rating scale for
esrer handling

Legibility

Percentage of words
read correctly at normal
viewing distance

Time to correctly read a
specified nurmber of
characters

Rating scale tor
visual discomfon

1) Inlhese examples the resources should be measured in refalion 1o a specified level of eliectiveness.

Figure 9: The examples of metrics from ISO 9241-11

73

Now we analyze the existing software quality models. The previous chapter
introduced them in details. Here we would like to analyze their drawbacks and
strong points.

The problem with QFD (Quality Function Deployment) is that it needs lots of
experimental results and an experienced judge to assign software attributes to the
requirements. In fact every time matrices should be constructed from scratch.
Another problem with the model is providing the hierarchy in separate matrices, then
it is difficult to follow up the relationships and it is easy to miss some attributes and
metrics.

GQM (Goal, Question, Metric) is more a philosophy than a quality model.
The process of setting goals and refining them into quantifiable questions is complex
and requires experience. Of course in order to support this process, a set of templates
for setting goals, and a set of guidelines for deriving questions and metrics is
developed, but not on usability. Then it is necessary to define those templates for
usability.

ISO 9126, IEEE 1061, McCall and Boehm models are all of a hierarchical
shape, consisting of several layers. Table 3 shows the terminology used for different
layers in those models. We believe the tree shape is the best form to show the
relationships between several related entities. Then we adopt this form to create
QUIM. Of course those models are not useful by themselves in this context. There is
not any suggested metric with IEEE 1061. Metrics provided in ISO/IEC DTR 9126~
4 have no prediction power. There is nothing about usability in Boehm model. In

McCall model and ISO 9126, usability has come just as a quality factor. Measuring

74

many of the quality factors described in formal models, including McCall’s and
Boehm’s is dependent on subjective rating.

One difference between QUIM and those models, is the number of layers.
QUIM defines required data for calculating a metric in a separate layer. In this way

QUIM makes using a metric clearer and easier.

Layer | Boehm McCall ISO 9126 IEEE 1061

1 Primary uses | Use Software Quality Software Quality

2 Intermediate | Factor Characteristics Factor
constructs

3 Primitive Criteria Sub characteristics | Sub Factor
constructs

4 Metrics Metrics Metrics Metrics

Table 3:The correspondence of terminology between quality models

One problem with existing models and their metrics is the clarity. Fenton and
Pfleeger [40], define Portability as:
Portability = I- ET/ER

Where ET is a measure of the resources needed to move the system to the target
environment, and ER is a measure of resources needed to create the system for the
resident environment. Gilb recommends that the decision for setting measurable
targets for these attributes should be left with the user. The problem here is clarity, is
this user the developer, meaning the user of evaluation formula or he/she is the end
user of system. What are the possible entities for resources? We know that different
stack holders (Managers, Developers, Users) have different resources in interest.

Finally QUIM is an integrated model because;

75

e It supports quality activities during the whole development life cycle of software,
including specification, testing, quality improvement, and so on.

e It brings together both software engineering and Human Computer Interaction
quality models. Software engineering models view the quality problem from the
engineering view such as McCall or IEEE 1061, but HCI models mostly are
seeing the quality , subjectively and heuristically, such as Heuristic evaluation
method introduced in chapter 1. For example, the model says “Minimize user
memory load”, but using this model needs an experienced expert and sometimes
knowledge of human factors and psychology. In QUIM we provide the way to
achieve the goal, using an engineering approach, Interface shallowness or Visual
coherence can affect the user memory load. In addition we are able to determine
those metrics during the design phase, and if the result is not satisfactory,
developer can redesign his model.

e QUIM is an integration or a large repository of all factors, criteria and metrics
that are recognized and defined so far, for quality in use of a software product.

e QUIM is not independent of the other software quality views, i.e. Manager’s
view and developer’s view. It could be easily integrated into any larger software

quality model providing all perspectives of software quality.

3.2 Design principles of QUIM
The development of the model has been guided by the following goals:

e Decomposing attributes: Software consumers often express their needs in general

qualitative terms such as reliability and efficiency. So it is necessary to

76

decompose consumer-oriented attributes into technically-oriented attributes that
are more meaningful to software producers.

e Functionality: The model should cover the entire software development process.

® Usability: The model should help the software developer or interface developer
to assure, as early as possible, that the resulting system will be easy to learn and
easy to use.

e Maintainability: Since the software quality in use is directly dependent on the
context of use, then the model should be modifiable to reflect developer
organization needs.

® Automated support: The model should be supported by automated tool that

improves the process of software development and the resulting system.

3.3 QUIM Structure and Description

QUIM is a hierarchical model like most of software engineering models. The
difference is that it distinguishes five levels called factors, criteria, metrics, data and

artifacts (Figure 10). The relationship between these layers is an N-M relationship.

77

Criteria

Metries

Data

ow fidelity High fidelity
prototype prototype
Storvboard Paper prototype Computer prototype Final system

Secondary Artifacts

Task analysis Use case Specification document User manual User

Primary Artifacts

Figure 10: The hierarchy of QUIM

3.3.1 Quality in Use

In QUIM, we define quality in use as the end user perspective of software
quality. That is one of the three perspectives of software quality. The definition
of quality in ISO 8402 reflects the user view. User is mainly interested in using
the software, its performance and the effects of using it. Then the user has no
interest in internal aspects of the product. The user just sees observable external
attributes of the software. Or one may say that the user is interested in final
product quality. We may consider the definition of quality in use from the

revision to ISO/IEC 9126-1 and ISO/IEC 14598-1 as well. They say “Quality in

78

use is the extent to which a product used by specified users meets their needs to
achieve specified goals with effectiveness, productivity and satisfaction in a
specified context of use”. Then we define some characteristics that are applicable
as generic characteristics to all software products and leave the model open for

context specific characteristics.

3.3.2 Factors

In the context of this research, a quality in use factor is a user-oriented attribute
or characteristic of the user interface. This characteristic is easy to understand by the
user, and defines the quality of user interface in the user language. But it is not easy
to measure and specify. A factor could be refined into the sub-factors or criteria.
Currently, the list of Factors of QUIM consists of the following:

1- Effectiveness: The degree of accuracy and completeness with which user

achieves a specified goal. [4]

2- Efficiency: The amount of resources expended in relation to the accuracy and

completeness with which user achieves a goal. [4]

3- Satisfaction: Freedom from discomfort and positive attitude towards the use of

the software product. [4]

3.3.3 Criteria

A criterion is a sub factor or sub-characteristic of the user interface, and it is a
more technical attribute. Criteria are more difficult to understand by the user, and
define the quality in use in the language of user interface developer. A criterion
could be determined by more than a metric. The list of Criteria of QUIM consists of

the following:

79

1- Understandability: The extent bears on measuring the difficulty of user on
understanding software functions, operations and concepts while user has no
previous knowledge about software.

2- Operability: Measures the user’s effort for operation and operation control [3]

3- Attractiveness: measures the extent of which user likes the software during the

operation

&
1

Compliance: Attributes of interface that make it adhere to related standards or

conventions or regulations in laws and similar prescription [3]

5- Consistency: Attributes that bear on the visual uniformity of user interface [14]
6- Flexibility: Indicates the degree of possible modification to user interface by the

user, i.e. The user can adopt his/her preferences

7- Minimal Action: The extent to which user needs to take minimal effort to
achieve a specific task [14]
8- Minimal Memory load: The extent to which user needs to keep minimal

amount of information in mind to achieve a specified task [14)

9- User Guidance: Indicates How the interface helps the user to use the application
[14]

10- Accuracy: Indicators that bear on the provision of right or agreed results or
effects [3]

11- Completeness: The extent to which the user can complete a specified task

12- Resources: Attributes that bear on the amount of resources used and the duration

of such use in performing its function [3]

80

3.3.4 Metrics

The IEEE metrics standard [42] defines a software quality metric as “a
function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which software possesses a given
attribute that affects its quality *. In the context of this research, the output of a
metric function is a numeric value that summarizes the status of specific user
interface attribute. The advantage of using metrics is that they are faster, cheaper and
less ambiguous than other usability evaluation entities, actually in most cases using
these metrics does not require test users and additional usability experts. About
context specific metrics, care should be taken in generalizing the results of any
measurement of quality in use to another context which may have significantly
different types of users, tasks or environments.

We have identified about 40 usability metrics, some of them are functions
and some are just simple countable data. We may categorize the second group of
metrics in the data level of QUIM. As examples of metrics, we are going to
introduce and use one that is defined previously and has been validated, and also is
general enough, so it could be applied to most of software and context of use. To
have detailed explanation and examples of calculation one may refer to reference
[22].

Layout Uniformity measures selected aspects of the spatial arrangement of
interface components without taking into account what those components are and
how they are used. The metric is not task sensitive, i.e. it could not been affected if

the number of operations or their order to complete a task is changed. For developers

81

who do not have a graphic designer’s eye for layout, Layout Uniformity is a
structural metric that gives a quick handle on one important aspect of visual design.
It assesses the uniformity or regularity of the user interface layout. The rational is
that, usability is hindered by highly disordered or visually chaotic arrangements. Of
course complete regularity is not the goal. Too much uniformity not only can look
unappealing but also can make it harder for users to distinguish different features
and different parts of the interface. Layout Uniformity is defined as:
LU=100x(1-(((Nh + Nw + Nt + Nl + Nb + Nr) —M) /6 xNc —M))
Where Nc is the total number of visual components on the screen, a dialogue box or
other interface composites. Nh, Nw, Nt, NI, Nb and Nr are, respectively, the number
of different heights, widths, top-edge alignments, left-edge alignments, bottom-edge
alignments and right-edge alignments of visual components. M is an adjustment for
the minimum number of possible alignments and sizes needed to make the value of
LU range from O to 100 and is calculated by:
M=2+2x[VNc]

Layout Uniformity goes up when visual components are lined up with one another
and when there are not too many different sizes of components. The role of Layout
Uniformity can best be appreciated by the examples. Figure 11 shows one view of
the software called Blender and figure 12 represents a view of another software
called 3DStudioMax. Both software are applications for creating computer graphics
and computer animation. 3DStudioMax is a commercial product and Blender is a
Freeware. We have to consider that such software by nature are not easy to use, then

the job of quality in use model is more important in creating these kind of user

82

interfaces. I calculated Layout Uniformity on both views in figures 11 and 12, just
considering push down buttons. There are other visual components such as text
boxes and tabs. Data for Blender are Nc = 84, Nh = 5, Nw = 10, Nt = 16, Nb = 16,
NI =35, Nr = 33 and LU for this view is 81%. On 3DStudioMax data are Nc = 68,
Nh=5,Nw=6,Nt=13,Nb=13, Nl =53, Nr=54 and LU is 63%.
As we see Blender has more buttons than 3DStudioMax, but it gives higher value for
LU. The difference here is the distribution of buttons on the screen. In Blender all
buttons are placed on one partition but in 3DStudioMax, buttons are distributed
along with three edges of the screen.

The complete list of identified usability metrics has come in the appendices
A.l1 and A.2, including a brief description of every software metric, what is its

impact and how to calculate it.

83

H

Figure 12: One view of 3DStudioMax

84

3.3.5 Data

The lowest layer of QUIM is the list of data that are used to calculate metrics.

There are different methods to acquire the data, or in the other words we can have

different types of data:

Countable: Sometimes it is a countable entity, and in that case it could be
considered as a metric aﬁd directly related to a criterion. The example is, the
Number of individual items on the screen, or Time to complete a specific task.
The data gathered from questionairs are falling also in this category, and they
feed input of statistical function metrics.
Calculable: Some data are determined by calculation. For example, percent of
task completed. This data is going to be used in metric Task Effectiveness:

TE = Quantity x Quality / 100
In the formula quantity is the percent of task completed (analogous to
completeness) and quality is the percent of goal achieved (analogous to
correctness), e.g., when evaluating an information retrieval system the user
might retrieve specific items of information. This output is then analyzed to
measure how many of the specified items the user retrieved, and how well all
the retrieved items met the original requirements.

A metric generally needs different data that come out from different sources. The

following are some of the sources that are used in our model to gather data:

1-

2-

3.

User
Final system

User documentation

85

4- Use case
5- Task analysis

6

Prototypes including storyboard, paper prototype, computer prototype

7- Software process documents (specification, Design, Implementation)

3.4 QUIM Applications

QUIM as we mentioned before is not exactly a tree, because, for example, a
specific metric could affect more than one criteria and then is connected to more
than one criteria node. This is true for every level in QUIM. Figure 13 is an example
that shows those relationships. As we see in the example, the data “Number of visual
components” is an input to two different metrics “Visual Coherence” and “Layout
Uniformity”. Those metrics affect criterion “Minimal Memory Load” and the latter
in turn affects factors “Efficiency” and “Satisfaction”. Whatever is coming in the
example map is just to show that the relationship between components of QUIM can

be very complex.

86

Data Level Metric Level Criteria Level Factor Level

The number of related

visual component p airs\
Visual Coherence Efficiency
Thenumber of visual / \

components .
DAnimal Memory Load

Thenumber of different ——————— Layout Uniformin-

height
Satisfaction
The number of different /
width Aftractiveness
Interface Shallowness
The number of nodes —_—
Sum of interface distances
for che shortest path from

roat to nadei / Effectiveness

Task Concordance —————Completeness
Thenumber of tasks

Discordance score

Figure 13: An example tree of relationship between QUIM components

3.4.1 Usability Specification

If you start from top and you say I want to meet the user satisfaction, then the
model gives you all the criteria that should be met. In order for every criterion you
may find related measurable or metrics, and finally at the lowest level of hierarchy,
i.e. Data level, it gives you the list of required data and the ways of collecting them
to determine the value of a metric. Then the developer can put goal values on the

metrics and prepare his/her specification document or a test plan.

87

3.4.2 Usability testing and Prediction

The other direction of moving on the model is bottom-up. One may use it for
prediction of usability. Suppose you have the specification and you would like to see
how different goal values for a metric, or different combination of metrics can affect
your system’s quality in use. It is more clear if we go with an example (Figure 13).
Consider metric interface shallowness who affects criterion minimal memory load
and in turn the latter affects factor satisfaction. If we reduce interface shallowness
and so the users’ memory load, then we have increased the user satisfaction. Again
consider another path, that is metric Layout Uniformity who affects criteria
Attractiveness and Minimal Memory load, and those criteria affect factor
Satisfaction. It means if we increase Layout Uniformity, we have increased
Attractiveness and decreased the user memory load, and the final result of this
operation is increasing the user satisfaction. We see to acquire Satisfaction, Layout
Uniformity is more effective because they are related through twe paths. Then we
have to put more effort on Layout Uniformity rather than Interface Shallowness,
during the design phase.

3.4.3 Other Potential Applications

QUIM is designed to support all activities related to quality during the whole life
cyclé of software. The following list presents some of its potential applications:
- Controlling and improving the production process
- Deciding in the acceptance of a product
- Selecting a product among alternative products

- Creating quality in use model for specific products

88

- Conducting empirical studies in usability

3.5 QUIM editor
To help the user interface developer in using QUIM, we developed a tool. The tool is
called QUIM editor. It consists of two modules, i.e. User interface (Figure 14) and a
database. The user interface is developed in Java, and the CASE tool in development
process is Java Swing environment. The database module is developed in Microsoft
Access. The two modules are communicating together through the ODBC (Open
Data Base Connectivity, i.e. the technology from Micro Soft company that provides
the required connection between applications and databases) interface. QUIM editor
is running on Windows platform. This tool provides browsing functionality within
the model in two directions, one is top-down, i.e. starting from a Factor and going
towards the metrics and data, this direction in the tool is indicated by forward button.
This could be used for creating software requirements specification. The other
direction is bottom-up, which is used for testing and prediction purposes. The tool
provides the functionality for editing the database. The organization can add any
factor, criterion or metric to the database or remove from database. Using this
functionality, QUIM behaves as a dynamic model. The modular design of QUIM
editor provides the possibility of having different models in different databases.
Figure 19 in Appendix A.3 shows the E-R diagram of QUIM database. The
section above dashed line is the currently implemented part of database and the
lower section is the future extension to QUIM editor tool. This extension helps the
organization to deposit the project specific data about their metrics and values.

Those data repositories could be used in empirical studies of usability.

89

as

cessibility
Effectiveness
Efelances s : Gpersbilft B INumber of frames on aweb . [
Globalizability R ate of default values
Productivity i Understandability ssential Efficiency
Safety lexibility Functions
Satisfaction unction Understandabhility
Completeness |Goal completion
Compliance orizontal or Vertical Batance
Consistency)

DR T i*-i'ﬁ:'a‘téﬁ&:‘m:

Figure 14: One view of QUIM editor

3.5 Summary

QUIM has a hierarchical structure and it distinguishes more layers than the existing
models. It distinguishes required data for metrics and also the artifacts that can be
used to acquire the data in separate levels. This model provides the information
explicitly, then makes the job of developer easier. In this sense QUIM is a fixed
model, and at the same time it provides the ability of adding any desired quality
attribute to the model. Of course adding any additional attributes needs validation

and empirical studies by R&D or research department in the organization.

90

Chapter 4:

Conclusion and Further investigations

In this chapter, we present the advantages of QUIM over the existing models.
Also we provide a method to help the developer for analyzing the values obtained
from QUIM. Finally we will see a list of topics that could be taken under

investigation to complete this research.

4.1 Advantages of QUIM
Here we would like to express the advantages of QUIM over the other
models.

. QUIM is a dynamic model, it means the organization can add its own Factors,
Criteria and Metrics to the model. This is not true about models such as McCall
or ISO/IEC 9126. They are fixed models.

2. QUIM is as easy to use as a fixed model is. It helps any developer other than
usability experts to create a usable interface. This is not true for models such as
Quality Function Deployment and Goal-Question-Metric. Working with these
models needs experiences in usability.

3. QUIM offers the organization, the power of prediction. Because it is using
predictive metrics. Other models mostly just provide the power of evaluation.

4. QUIM makes the interfaces of different systems more consistent, because of the
nature of its metrics. This characteristic makes the job of both developer and

end-user easier.

91

4.1.1 Viewing several metrics at once

The model prescribes a set of metrics to reflect the product characteristics
that are important in controlling or evaluating all or part of user interface
development. Viewed in isolation, each metric describes a particular characteristic
that can be compared with a goal or norm. Examined individually over time, these
measurements can be helpful in noting trends and predicting future characteristics or
outcomes. However, viewed in combination, measurements can provide a picture of
the balance between factors that is often difficult to determine in other ways.

It has been known for a long time that when a set of characteristics is
important, optimizing on a single one usually leads to unacceptable results in the
others [49]. Thus, it is important to be able to view several metrics in context and to
be able to balance the goals of one against the others.

A technique for depicting combination of metrics is called “multiple metrics
graph” [50]. It is a variation of a Kiviat diagram or graph [51]. The Kiviat diagram,
originally used to depict characteristics reported in simulations, displays

characteristics on slices of a large, circular pie, as shown in figure 15.

Metric B Metric C

I\l

Metric A

Figure 15: Kiviat diagram with three metrics

92

The pie is divided into equal slices, one for each measurement or

characteristic to be presented. The inner circle represents a goal value or minimum
required value, and the outer circle represents a maximum possible value. A point is
placed on each line represents the measured value of metric, indicating its position
with respect to the goal. Finally the points are connected, so that the resulting
polygon is in some sense an indication of overall performamce.
In a multiple metric graph, unlike the Kiviat graph, the pie is divided into unequal
slices, so that the size of the slice represents the importance of the metric. The size of
slice is indicated by the number of degrees in the arc. Thus, the larger the slice, the
more important the metric. The small concentric circle represents the goal for each
metric. Within each slice, a point is placed in the center, having equal distances from
the adjacent radii, to represent the degree to which the goal is met. The center of the
pie represents the best case and outer edge of the pie shows the worst case. The goal
and radius are normalized among slices so that the goal arcs from a circle. Finally, a
line is drawn from the representative point to the intersection of the goal line and
radii forming each side of the pie slice.

How to analyze the graph? It is obvious that by cornecting points we have a
polygon. This polygon has its own area that could be comgpared with the goal circle
area. polygon area shows the view of multiple metrics. Drawing graphs using data
over time gives a good track of our job. Using different walues lets us to compare
generated graphs and to reach a compromise. Obviously, having points within the
goal circle, means we met the goal. And the smaller polygon means closer to the

target. By using the multiple metrics graph, we can see how we have improved and

93

where more work is needed. A single index number for the quality factor or a metric
can be generated, and it is directly related to the area of the overall polygon. We
would like to recall that a quality factor based on the model QUIM is depending on
several metrics, also a metric could be evaluated overall the whole software product.
Examples can make the concepts clear.

Suppose we have four different interface modules or views, e.g. A, B, C and
D, in our software product. We would like to reach a relatively good layout
uniformity in the whole software. The value of layout uniformity is in a range from O
to 100. We would like to recall from previous chapter that layout uniformity is based
on the rationale that usability is hindered by highly disordered or visually chaotic
arrangements of visual components. However complete regularity is not the goal.
Too much uniformity not only can look unappealing but also can make it harder for
users to distinguish different features and different parts of the interface. We can
expect that moderately uniform and orderly layouts are likely to be the easiest to
understand and to use. According to the experiences [22], the acceptable value lays
between 50 and 80. And suppose the layout uniformity of module B is the most
important and for the other three modules is of the same degree of importance. This
decision could be taken by customer, end user, developer or even project manager.
Then we give a weight of 40 over 100 to module B, and 20 to each of the other
modules. We can draw the multiple metrics graph with slices of 144 degrees
(0.40x360), and 72 degrees (0.20x360). Our goal value is 60, then if the radius of

circle is 1, the radius of goal circle is 0.6. Figure 16 shows the multiple metrics

94

graph for the values determined from the first design effort. From this, we can
realize that we have to improve layout uniformity in modules B and D.

Module C already has met the goal and module A is close to the goal. Then if
we improve modules B and D, i.e. trying to reduce the area of polygon and make it
closer to goal circle area, we can get the desirable layout uniformity for the product.

Figure 17 shows the desirable results after next iterations of design effort.

Module A
Layout Uniformity Modute D

Layout Uniformity|

Module B
Layout Uniformiey \odule C

Layout Uniformity

Figure 16: Example of multiple metrics graph

Module A

Layout Uniformity Module D

Layout Uniformity AModule C
Luyout Uniformity

Figure 17: Refinement on example of multiple metrics graph

4.1.2 Coupling QUIM with other quality in use models
Even QUIM could be integrated into the other usability evaluation methods.
Performance Measurement Method is a method developed at the National Physical

Laboratory, UK, and is a part of MUSIC project. MUSiC which stands for Metrics

95

for Usability Standards in Computing, is a project by Esprit, the European
information technologies program. The method gives the quantitative results for
usability testing of a user interface, and it follows the definition of usability in ISO
9241-11. It means the method consider the context of use in its input and output.
Figure 18 shows the steps of process and its required tools. At step 3 it deploys guide
and handbook to specify the usability targets. But, as we have seen before, using
guidelines is tedious, vague and requires experienced experts. So if simply we
substitute those tools with QUIM, it would be much easier to do the job, and every
developer can handle it. Specially if we enhance our tool to a knowledge base

system, instead of just a simple database.

Steps Tools
In the Performance Measurement Method supporting the Method
Step 1 Dcfine the product to be tested | wg—~—— Usability Context Analysis Guide
Step 2 Definc the Context of Use ~g@—— Usability Conicxt Analysis Guide

Specify the evaluation targets Usability Context Analysis Guide
Step 3 and Context of Evaluation ~ag~— Pecrformance Measurement Handbook

. DRUM: Scheme Manager
Prepare an evaluation that
Step 4 meets the specified Context | ~ag——— DRUM: Evaluation Manager
of Evaluation
Step 5 L th s The DRUM Kit
e Carry out the user tests —gp——
P DRUM: Recording Logger

Analyse the test data to derive Performance Mcasurement Handbook
Step 6 and interpret the metrics DRUM: Metrics Processor
Step 7 Produce a usability report ~s§——— DRUM: Evaluation Manager

Figure 18: Steps and Tools used in Performance Measurement Method

96

4.2 Future works

4.2.1 Formalizing the validity of the relationships between Factors,

Criteria and Metrics

When we say Layout Uniformity contributes to the criterion Minimal
Memory Load, does this relationship shows consistency across all products. If LU of
interface one is greater than LU of interface two, then does interface one creates less
memory load for user than interface two or not. We need to validate the metrics and
their relationships to the criteria. Informally, we say a metric is valid if it accurately
characterizes the criterion it claims to measure. It means, we have to compare the
model performance with known data, and this involves experimentation and
hypothesis testing. It is necessary to conduct empirical studies to validate potential
relationships between QUIM components. There are some methodologies presented
by researchers for validating software metrics. Those methodologies could be
deployed to validate quality in use metrics. I gave a brief description of methodology
provided by IEEE organization, in chapter two, and a detailed process has been

presented by Norman F. Schneidewind [68].

4.2.2 Extending the list of Factors, Criteria and Metrics

As we discussed in previous sections, QUIM is a dynamic model. Then one job
that is necessary to be done on it is the extension of model. Here are some
suggestions for new factors, but before adding them to the model they need some

investigation.

97

Accessibility: The degree to which software can be used comfortably by a wide
variety of people, including those who require assistance technologies like screen
magnifiers or voice recognition. For example, an accessible JFC application employs
the Java Accessibility API, enables its users to select an appropriate look and feel,
and provides keyboard operations for all actions that can be carried out by use of the
mouse.
Globalization: The degree to which software can be used for the global
marketplace, taking into account variations in regions, population stereotypes,
languages, and cultures.
Productivity: In our mind usually is equivalent to money, Oxford dictionary 2™
edition defines productivity in economics as:
“The rate of output per unit of input, used specially in measuring capital growth, and
in assessing the effective use of labor, materials and equipment.”
The idea is comparing input and output and in software engineering community it is
used to describe the effectiveness of a developer’s job. It is measured by, size over
effort or more precisely lines-of-code over person-months. Although, so far nobody
has talked about this concept as an attribute of software usability, it seems a quite
explanatory measure for a user interface, since the user prefers to get more output
while spending less input. Then it needs to work on the attribute “Productivity”, to
reach a proper definition and related metrics in usability engineering. It has to be
done as a general concept and context oriented concept.

In MUSIC project [66], the same concept has been considered as User

Efficiency. From a user's viewpoint, the amount of effort input may be quantified in

98

terms of the time spent carrying out the task, or the mental/physical effort required to
complete the task. The efficiency with which users make use of an IT product is
defined in the MUSIC Performance Measurement Method as their Effectiveness in

carrying out their task divided by the time it takes them to complete the task.

UE = Task Effectiveness / Task Time

Where Effectiveness is measured as described in appendix A.l. Task Time is the
time spent by a user completing a task, being measured by the technique described in
the Performance Measurement Handbook, or using GOMS models. GOMS model is
described in previous chapters.
This metric provides a measure of User Efficiency in a particular context. It is task-
specific. By itself, its value has little meaning unless there is another measure of
efficiency against which to compare it.
For example, it can be used to compare the efficiency of two or more:
* similar products, or versions of a product, used in the same context, i.e. by the
same user groups for the same tasks in the same environments
* types of users using the same product for the same tasks in the same environment
 ways of achieving given task goals when carried out by the same users on the

same product in the same environment.

4.2.3 Developing a wizard for creating e-commerce web sites

One of the QUIM applications that we propose, is using the model for
creating a wizard. This wizard could be designed for every knowledge domain, the

purpose of the wizard is to make it easy to create an application in any specific

99

domain for developers and software engineers who are not expert in Human-
Computer Interaction. Even we may make a wizard usable by ordinary people. The
example is a tool to help people to create their own web site. Today e-commerce or
electronic commerce is getting more popular and the number of electronic shops and
virtual malls is growing unbelievably. Unfortunately every body thinks that creating
a web page is an easy job. Usually, people think if they know HTML flags, how to
load an image file, and how to create a link to another page, it is enough to make a
web site. As we have seen, e-commerce web sites disappear as fast as they appear.
The problem is that, they can not attract users. One of the important reasons, is the
usability of the site. Usually, those sites are developed by people who are not
proficient in usability and Human-Computer Interaction. For sure, the user doesn’t
like to wait for loading huge images, or he/she doesn’t like to be lost in an ocean of
links. Then if we develop a wizard using attributes and metrics from QUIM, any
individual who is not familiar with the rules of thumb in web development, can
create his or her own web site. The wizard can provide goal values for metrics and
put restrictions on developer’s job. For example, it can restrict the number of links
on a page, the number of images and the size of them on a page. It can control the
length of text, and the dimensions of a page which is going to be appeared on the
web browser. Even the wizard can help developer to create graphical icons in proper
size with less number of colors. Using QUIM in creating wizards could be extended

to the other domains.

100

References

Papers and Journals

[1]Bevan, N., Usability is quality of use. In: Anzai and Ogawa (eds) Proceedings of
t‘he 6™ International Conference on Human Computer Interaction, Yokohama,
July 1995 Elsevier.

[2]Boehm, B.W_, Software Engineering Economics, Englewood Cliffs, New Jersey:
Prentice Hall, 1981.

[3]ISO 9126: Software product evaluation - Quality characteristics and guidelines
for their use, 1991.

[4]ISO/DIS 9241-11: Guidance on usability. Ergonomic requirements for office
work with visual display terminals (VDT), 1996.

[51ISO/DIS 13407 Standard on Human Centered Design Processes for Interactive
Systems, 1998.

[6]Karat, C., Cost-justifying usability engineering in the software lifecycle. In
Helander, M., Landauer, T., and Prabhu, P. (Eds), Handbook of Human-
Computer Interaction. Elsevier Science, Amsterdam. 1997.

[71Smith, S.L., Mosier, J.N., Guidelines for Designing User Interface Software, Rep.
No. ESD-TR-86-278, Mitre Corporation, Bedford, MA, 1986.

[8]Landauer, T.K., The Trouble with Computers: Usefulness, Usability and
Productivity. MIT Press, 1995.

[S]Martin, J. and McClure, C., Software Maintenance: The Problem and Its
Solutions. Englewood Cliffs, New Jersey: Prentice Hall, 1983.

[10]Mayhew, D.J., The Usability Engineering Lifecycle: A Practitioner’s Handbook

101

for User Interface Design, Morgan Kaufmanns Publishers, 1999.

[11]Norman, D.A., The Invisible Computer: Why Good Products Can Fail, the
Personal Computer is so Complex, and Information Appliances are the
Solution. MIT Press, 1998.

[12]Nielsen, J., Heuristic evaluation. In Nielsen, J., and Mack, R.L. (Eds.), Usability
Inspection Methods. John Wiley & Sons, New York, NY., 1994.

[13]Seffah, A., Hayne, C., Workshop Conclusions on Integrating Human Factors in
Use Case and OO Methods, 12" European Conference on Object-Oriented
Programming. Lisbon, Portugal, June 14-20, 1999. LNCS 1743 SpringVerlag

[14]Lin, H.X., Choong, Y.Y., Salvendy, G., A proposed index of usability:A method
for comparing the relative usability of different software systems usability
evaluation methods, Behavior and Information Technology 1997 v.16 n.4/5
p.267-278.

[15]Garvin, D., “What does quality Really mean?, Sloan Management Review, Fall
1984, p. 25-45.

[16]Kitchenham, B., and Pfleeger, S., Software Quality:The Exclusive Target, [EEE
Software, January 1996, p. 12-21

[17]Gillies, Alan C., Software Quality, Theory and Management, Chapman &Hall,
1992, p. 19-40

[18]Schulmeyer, G. and McManus, J., Handbook of Software Quality Assurance,
Second Edition. NewYrok: Van Nostrand Reinhold.,1992.

[19]Nielsen, 1., Usabilities Metrics and Methodologies,

http://www.useit.com/papers/tripreports/bcs _metrics.html, 1990.

102

[20]Sears, Layout Appropriateness: A Metric for Evaluating User Interface Widget
Layout, IEEE Transaction on Software Engineering, 1993.
[21]Nielsen, J., Usability metrics, 2001,

http://www.useit.com/alertbox/20010121 html

[22]Constantine, Lockwood, Software for Use, Addison-Wesley, 1999.

[23]Yamada, S., Hong, J. K., Sugita, S., Development and Evaluation of
Hypermedia for Museum Education: Validation of Metrics, ACM
Transactions of Computer Human Interface, Vol2, No 4, 1995.

[24]Szejko, S., Applying HoQ to Software Development, Dept. of Applied
Informatics, Gdansk Technical University, Poland, stasz@pg.gda.pl

[25]Gilb, T., “Level 6, Why we can’t get there from here”, IEEE Software, Vol 13,
No. 1, pp.97-98, Jan. 1996.

[26]Ephraim P. Glinert, Nontextual Programming Environments, Principles of
Visual Programming Systems, Shi-Kuo Chang, Editor, Prentice Hall Inc, PP-
195, 1990.

[27]Steven E. Keller, Laurence G. Kahn, Roger B. Panara, Specifying Software
Quality Requirements with Metrics, System and Software Requirements
Engineering, IEEE Computer Society Press Tutorial, pp 145-163, 1990.

[28]Sears, A., AIDE: A step toward metric-based interface development tools, UIST

1995 Pittsburgh PA USA, ACM 1995 0-89791-709-x/95/11.

[29]Tullis, T. Predicting the usability of alphanumeric displays, Ph.D. Dissertation,

Dept. of Psychology, Houston, TX: Rice University, 46-61, 1984.

103

[30] Cavano, J. P, and J. A. McCall, “A Framework for the measurement of

Software Quality,” Proc. ACM Software Quality Assurance Workshop, pp. 133-139,

Nov. 1978.

[31]Schneidewind, Norman F., “Methodology for Validating Software Metrics,”
IEEE Transactions on Software Engineering, vol 18, no 5, pp. 410-422, May
1992.

[32]Conover, W.J., Practical Nonparametric Statistics. New York: John Wiley &
Sons, 1971.

[33]Gibbons, J.D., Nonparametric Statistical Inference, New York: McGraw-Hill,
1971.

[34]Kleinbaum, D.G., and Kupper, L.L., Applied Regression Analysis and Other
Multivariable Methods. Boston: Duxbury Press, 1978.

{35]Bush, V. “As We May Think.”, 1945. Reprinted in Interactions, pp. 35-67,
March 1996. -

[36] Brad A. Myers, A Brief history of Human Computer Interaction Technology,

http://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html

[37]Nelson, T., “A File Structure for the Complex, the Changing and the
Intermediate,” in Procceding ACM National Conference, pp. 84-100, 1965.

[38]E. Schonberg, T. Cofino, R. Hoch, M. Podlaseck, S. Spraragen, Measuring
Success, Communication of the ACM, vol 43 No. 8, pp. 53-57, August 2000.

[39]Dix, Finlay, Abowd, Beale, Human Computer Interaction, 1993,

http://www.dcs.napier.ac.uk/marble/Usability/UsabilityMetrics.html

104

[40] Norman, E., Fenton, S.L., Pfleeger, Software Metrics A Regorous and Practical
Approach, International Thomson Publishing Company, 1997.

[41]Bevan, N., Measuring Usability as quality of use, Software Quality Journal,
4(2), pp- 115-30, 1995.

[42]IEEE Std. 1061, Software Quality Metrics Methodology, 1998

[43]Moor, J.W., Software Engineering Standards: A User’s Road Map, IEEE
Computer Society, 1998.

'[44]Basili, V.R. and Weiss, D., “A Methodology for Collecting Valid Software
Engineering Data”, IEEE Transactions on Software Engineering, SE-10(6),
pp. 728-738, 1984.

[45]Kitchemham, B.A. and Walker, J.G., “A quantitative approach to monitoring
software development”, Software Engineering Journal, 4(1), pp. 2-13, 1989.

[46]Daskalantonakis, M.K., A practical view of software measurement and
implementaion experiences within Motorola, IEEE Transaction on Software
Engineering, Vol. 18, No. 11, pp. 998-1010, Nov. 1992.

[47]Boehm, B.W., Software risk management: principles and practices, IEEE
Software, Vol. 8, No. 1, pp. 32-41, Jan. 1991.

[48]Basili, V.R., Rombach, H.D., The TAME project: Towards improvement-
oriented software environments, IEEE Transactions on Software Engineering,
Vol. 14, No. 6, pp. 758-773, June 1988.

[49]Weinberg, G. M., Schulman, E. L., Goals and performance in computer

programming, Human Factors, Vol. 16, No. 1, pp 53-65, 1974.

105

[SO]Pfleeger, S.L., Fitzgerald, J.C., Rippy, D.A., Using multiple metrics for analysis
of improvement, Software Quality Journal, Vol. 1, pp. 27-36, 1992.

[51Morris, M.F. and Roth, P.F., Computer performance evaluation, Van nostrand,
1982.v

[S2]Roger S. Pressman, Software Engineering A Practitionere’s Approach, McGraw
Hill, 1987.

[53]Brad A. Myers, A breif history of human computer interaction technology,

http://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html

[54]David E. Kieras, Scott D. Wood, Kasem Abotel, Anthony Hornof, GLEAN: A
computer based tool for rapid GOMS model usability evaluation of user
interface designs, ACM UIST, November 1995, pp 91-100, ACM 0-89791-
709-x/95/11.

[55]Smith, S.L., Mosier, J.N., Guidelines for designing user interface software, Rep.
No. ESD-TR-86-278, Mitre Corporation, Bedford, MA, 1986.

[56]1Apple Computer Inc., Macintosh Human Interface Guidelines, Addison Wesley,

Reading MA, 1992.

[57]Smith, S.L., Mosier, J.N., Application of guidelines for designing user interface,
Software Behavior and Information Technology , No. 5, pp. 39-46, 1986.
[5S8]Bastien, J.M.C., Scapin, D.L., Leulier, C., The ergonomic criteria and the

ISO/DIS 9241-10 dialogue principles: A pilot comparison in an evaluation

task, Interacting with Computers, No. 11, pp. 299-322. 1999 .

106

[5S91Bevan, N., Quality in use: Incorporating human factors into the software
engineering lifecycle, National Physical Laboratory, UK,

nigel@hci.npl.co.uk

[601Jeffries R., Miller J.R., Wharton C., Uyeda K.M., User interfqce evaluation in
the real world: A comparison of four techniques, Proceeding of ACM CHI
91, New Orleans, LA., 27 April 1991-2 May 1991, pp 119-124,

http://www.csc.vill.edu/~beck/csc8570/jim 1 .htm

[61] Nielsen J., Usability Metrics - How Good Are You? How to Measure Usability

http://www.zdnet.com/devhead/stories/articles/0.4413.2321381.00.html

[62]Bevan, N., Quality and Usability: A new framework, National Physical

Laboratory, UK, 1997, ftp://ftp.npl.co.uk/pub/hci/papers/qualusab.rtf

[63]Bevan, N., Usability issues in web site design, Proceeding of UPA’9S,

Washington DC, 1998, ftp://ftp.npl.co.uk/pub/hci/papers/Web-Usab.rtf

[64]Kirakowski, J., Barry, N., Usability assessment, version 1.2, November 1996,

INUSE project, http://info.lboro.ac.uk/research/husat/inuse/assess.doc

[65]Macleod, M., Rengger, R., The development of DRUM: A software tool for
video-assisted usability evaluation,

ftp://ftp.npl.co.uk/pub/hci/papers/DRUM.rtf
[66]Macleod, M., Bowden, R., Bevan, N., The MUSIC performance Measurement

Method, ftp:/ftp.npl.co.uk/pub/hci/papers/PMM.rtf

[67]Erikkson I, McFadden F., Quality Function Deployment: A Tool to Improve
Software Quality, Information and Software Technology, Vol. 35, No. 9, pp.

491-498, Sept. 1993.

107

[68]Schneidewind, N.F., Methodology for Validating Software Metrics, [EEE Trans.
Software Eng., Vol. 18, No. 5, pp. 410-421, May 1992.

[69]Bevan, N., ISO Usability Standards, Human Factors 2000 Symposium,
http://www.Iboro.ac.uk/research/husat/news/prog/nbpresentation.html

[70] Common Industry Format for usability, Test Reports, Version 1.1, Oct. 1999,

Industry USability Reporting project, http://www.nist.eov/iusr

Related Web Sites

[W1] http://www.useit.com/papers/tripreports/bcs _metrics.html

[W2] http://www.npl.co.uk/inuse

[W3] http://www.useit.com/alertbox/20010121 .html

[W4] http://www/blender.nl

108

Appendices

A.1 General Metrics

Table 4: List of General Metrics

Metric

Definition

Essential Efficiency (EE) [22]

This is a measure of how closely a given user
interface design approximates the ideal
expressed in the essential use case model.

EE=100 x S_essential / S_enacted

'S_essential = The number of user steps in the

essential use case narrative

S_enacted = The number of steps needed to
perform the use case with the user interface
design(rules for counting the number of
enacted steps has come-in the reference)

Weighted Essential Efficiency[22]

Shows the overall efficiency of a design for an
entire mix of tasks.

EE_weighted = 3. (Pi x EEi) Vi
Pi=Probability (or weighted importance) of
task I

EEi=Essential efficiency for task i

Layout Appropriateness (LA) [20]

This metric favors arrangements where visual
components that are most frequently used in
succession are closer together, reducing the
expected time (cost) of completing a mix of
tasks. Higher Layout Appropriateness means
better usability.

LA =100 x C_optimal / C_designed
C=2P;xD;; Vi#

P;; = Frequency of transition between visual
components i and j

D;; = Distance between visual components i
and j

Task Concordance (TC) [22]

This is an index of how well the expected
frequencies of tasks match their difficulty,
good design will generally make the more
frequent tasks easier (less steps or less efforts).
To calculate this first we have to list all tasks
ranked in order of descending expected
frequency, along with their number of user
steps in use case.

TC=100xD/P

P=N{N-1)/2

N=The number of tasks being ranked
D=Discordance score, i.e. The number of pairs
of tasks whose difficulties are in right order
minus those pairs whose difficulties are not in
right order(One could find example for this
calculation in the refernce)

Layout uniformity (LU)[22]

Shows how well visual components of
interface are arranged, This is a simplified
version of Layout Complexity[19].

LU = 100 x (1-(Nh+Nw+Nt+NI+Nb+Nr-M) /
((6 x Nc) - M)

M=2+2x[VNc1]

Nc=The number of components
Nh=the number of different heights
Nw=The numbert of different widths
Nt=The number of different
alignments

top-edge

109

Nb= The number of different bottom-edge

alignments
Nl= The number of different left-edge
alignments
Nr= The number of different right-edge
alignments

Task Visibility (TV)([22] TV=100x (1/S_total x ¥, Vi) Vi

Shows how many percent of necessary features
(objects or elements) to complete a task or use
case are visible to the user. It is reduced when
we get unnecessary features on the user
interface.

S_total=Total number of enacted steps to
complete the use case
Vi=Feature visibility (0 or 1) of enacted step i
(How to count enacted steps and allocate a
visibility value to them is defined by some
rules in the reference)

Visual Coherence (VC)[22]

Shows how well a user interface keeps related
components together and unrelated components
apart.

VC=100xG/(Nx(IN-1)/2)

G=The number of related pairs in the group
N=The number of visual components in the
group

Total Visual Coherence of a design for an
interaction context could be computed by
summing recursively over all the groups at
each level of grouping:

VC = 100 x (ZGk) / &Nk x Nk - 1) / 2))
Vk

K is a group of component

Interface Shallowness[23]

This metric is defined for hypermedia such as
web sites, and is applicable to other graphical
interface components such as menus as well.
The indicator doesn’t just show the depth of a
node from root, rather than it indicates the
degree of heaviness of the cognitive load on the
user.

ISh=n x(n-1)x(-1))/(nx(n- 1) - XIDpi)
n=The number of nodes (it is greater than 1)
IDpi=Sum of the values of IDs for the shortest
path from root to node I

IDsi,j=Interface distance (it is O if i and j are at
the same level, it is 1 if i and j are at different
levels)

Iconic Window Size (Wiconic) [26]

Wiconic provides a measure of the order of the
maximum number of icons that can be
displayed on a screen at one time in a non
overlapping manner. The goodness of this
measure of course depend upon the degree of
uniformity of icon size in the environment, and
will be best when all icons are of equal size.

Wiconic = (MD / M1)*™MA

MD=The diagonal measure, in centimeter or
pixels, of the display screen used by the
environment at hand

MI=The diagonal measure of the icons used in
the environment at hand, calculated in the same
units as MD

MA=The aspect ratio of the screen used in the
environment at hand

Horizontal or Vertical Balance[28]

The balance metrics evaluate how well
balanced the screen is both vertically and
horizontally. An optimal score for this metric is
100, and it means perfectly balanced.

Balance =200 x W1/ (W1+W2)

W1 = Weight of side one

W2 = Weight of side two

Weight of a side = Number of pixels used x
side’s distance from the center

Center = Halfway between the left edge of the
left-most visual element and the right edge of

110

the right-most element

Task Effectiveness (TE)

This metric comes from MUSIC project
(Bevan, 1995). For example, suppose the
desired goal is to transcribe a two-page
document into a specified format. We could
measure quantity as the proportion of
transcribed words to original words, and
quality as the proportion of non-deviations
from the specified format. Another example,
when testing a drawing package, the user might
reproduce a picture composed of different
shapes. The output is then analyzed to measure
how many of the shapes the user reproduced,
and how well those shapes match those in the
original picture.

TE = Quantity x Quality / 100
Quantity = Percent of task completed
Quality = Percent of goals achieved

Task Time [39]

Time to complete a specific task

Rate of default values (RDV)[Author]

RDV =N1/N2
N1 = number of inputs with default value
N2 = total number of inputs

Function Understandability (FU)[Author]

FU=NI1/N2

N1 = number of interface functions whose
purposes are correctly described by user

N2 = total number of functions available
from interface

Rate of message font (RMF) [Author]

RMF =N1/N2

N1 number of fonts used in message
boxes

N2 = total number of message boxes

Rate of message box size (RMBS)

[Author]

RMBS =N1/N2

N1 number of different sizes used for
message boxes

N2 = total number of message boxes

Flexibility Functions (FF) [Author]

The number of functions offered for
changing the interface environment

Rate of wizards (RW) [Author]

RW =N1/N2

N1 number of provided wizards for
complex operations

N2 = total number of complex operations

Rate of cancel (RC) [Author]

RC =N1/N2
N1 = number of provided cancel operation
N2 = total number of operations

Task completion [39] Percent of a task completed
Goal completion [Author] Percent of goal achieved
Task help frequency [39] Frequency of using help and

documentation for a task

11t

Task help time [39]

Time spent using help and documentation
for a task

Number of acronyms [Author]

Number of acronyms used on the interface
and are not found in a general dictionary

Number of icons [Author]

Number of different icons on the interface

Overall density [29]

The percentage of the display used to
present information

Local density [29]

The percentage of the space used within
each individual group of items

Number of items [29]

The number of individual items on the
screen

Number of groups [29]

The number of groups of items on the
screen

Number of commands [39]

The number of commands required to
achieve a specific goal

A.2 Metrics for web

Table 5: List of metrics for web applications

Metrics

Definition

Number of colors [Author]

This metric affects the load time

The number of colors used in every image

Number of characters [Author]

This metric affects reading time and
searching time over a page

The number of alphabetical characters
appear on a page

Number of frames [Author]

This metric affects the controlability of a
page, because at the same time browser can
show several pages in different frames

The number of frames on a view of the web
site

Images size [Author]

This metric affects loading time

The total size of all images on a page,
measures in Kbytes

Longest depth [Author] The number of links to the final page in a
web site, in the other word the length of
longest path in the web site

Page length [Author] The length of a page in the web site

This metric affects the amount of effort for
scrolling and searching over a page

112

A.3 Potential relationships between Factors, Criteria and Metrics

Table 6: Potential relationships between Factors and Criteria

Factor

Criteria

Satisfaction

User Guidance
Attractiveness
Flexibility
Understandability
Operability

Minimal Action
Minimal Memory Load

Efficiency

Understandability
Operability

Resources

Minimal Action
Minimal Memory Load

Effectiveness

Consistency
Completeness
Accuracy
Compliance

Table 7: Potential relationships between Criteria and Metrics

Criteria

Metrics

Understandability

Frequency of using help and
documentation (evaluation)

Time spent using help and
documentation (prediction, evaluation)
Number of acronyms which are not
found in a general purpose dictionary
(prediction, evaluation)

Function understandability (evaluation)

Operability

Number of commands (prediction,

113

evaluation)

Interface shallowness (prediction,
evaluation)

Number of frames on a web page
(prediction, evaluation)

Rate of default values (prediction,
evaluation)

Attractiveness e Layout uniformity (prediction,
evaluation)
e Horizontal balance (prediction,
evaluation)
e Vertical balance (prediction,
evaluation)
e User subjective rating (evaluation)
Compliance
Consistency e Rate of message fonts (prediction,
evaluation)
e Rate of message box size (prediction,
evaluation)
Flexibility e Flexibility functions (prediction,

evaluation)

Minimal action e Task time (prediction, evaluation)
e Number of commands (prediction,
evaluation)
e Task concordance (prediction,
evaluation)
User guidance e Rate of wizards (prediction, evaluation)
e Rate of cancel (prediction, evaluation)
e Visual coherence (prediction,
evaluation)
Accuracy e Task effectiveness (evaluation)
e Goal compilation (evaluation)
Completeness e Task completion (evaluation)
e Task concordance (prediction,
evaluation)
Resources e Essential efficiency (prediction,
evaluation)
e Weighted essential efficiency
(prediction, evaluation)
Minimal memory load e Visual coherence (prediction,
evaluation)
e Layout uniformity (prediction,
evaluation)

Interface shallowness (prediction,

evaluation)
e Number of
evaluation)

icons

(prediction,

A.4 Specification of QUIM database and tool

Factor

(s>

Data

DName
DPRelation

m

e

Project

m

<Definitiop

MInterpretatio

S

efinitio

Figure 19: Entity-Relationship diagram for QUIM database

115

