INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Graph-oriented Query Language for
Semi-Structured Data: Theoretical and Practical Analysis

Jimmy Elkada

A Major Report
in The Department of Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

©Jimmy Elkada
February 2001

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

3ag5 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rélérence
Our file Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forrne de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou aufirement reproduits sans son
permission. autori sation.

Canada

0-612-59321-5

ABSTRACT

A Graph-oriented Query Language for
Semi-Structured Data: Theoretical and Practical Analysis

Jimmy Elkada

This study examines the theoretical foundations and the practical aspects of the
graph-oriented query language for the semi-structured data (SSD) proposed in
[KINS99]. SSD is a data model that is designed for heterogeneous data sources.
It allows for information integration and information sharing over the Internet.
Several query languages for the SSD model have been proposed but none has
been standardized yet. This paper analyzes the graph-oriented query language
proposal, and suggests ways in which it can be further improved to fit the SSD
model.

1ii

Acknowledgements:

First and foremost, [would like to thank my supervisor, Professor Goste Grahne,
for taking me on as a student about two years ago, even though he knew little
about me. He has been a role model to me in his dedication and professionalism.
My choice of career has been greatly influenced by Mr Grahne and I hope that I
can live up to his high standards.

v

Table of Contents
LASEOF FIGUIES ...t cee e e cese e e s e e se e mn e s s ameee e memmaeessennns 7

| IRTI R 0) A Lo} [USSR U R 7

Part 1: Paper Summary and Analysis

LR T8 (0 6 17 Lo o) o H U U U U RR 8
2 Query Languages and Semi-structured Data 9
2.1 SSD OVEIVIEW <ot e e eeeeee e e e e s ee e e eeen e e e san e anenn 9
2.2SSD Query LanguUagescccooooimmmieieceee e et e e e 9
2.2 SSD QUETY LanGUAZESoooeeeieiieeiecieeeceee e cee s e ee et e oo e e e e 10
D2 T LOREL.....ooooeoeeeeeeeeeeeeeeeeee et e e e e ee e ee e e enmammm s mssmne e e e eneeae e eene 11
2.2 2 XML QL et e e n e e ennaeeen s eaaaeeeneennesannnnne 11
N X € (0] DU U 12

3 Graph—oriented Query Model e 12
T) 17 5 SOV 12
3.2 SEIMANTICS ..o ee e e e e eeeeeeneeeesee e e s ee e e e esssnoneeeeeeemmnmenrreneateeeaeannnnns 13
3.2.1 Search CONSIIAINTSoon oo eee e eeeeeee e meeeeeeaeee s mememeeneseee e e nnnnenes 13
RIS 10T gl 00 151 0 ¢: 1T 1 iSO 16
B3EXAMPLE ..ot e e e e s e e e e e naeeenn 17

4 Query Evalu@tion PrOCESSoooiiiiiiiiiieieeeeie et e e et e e e s e e e e 19
4.1 SeArCR PRASE ...ooooeeeeeeeeeeeeeeeeeeeeeeeee et e e e eeen 19

i 30 B B (=101 €1) W USSP 19
4.1.2 Acyclic graph (dag).......oco.ooenmee e 20
EvalDagQuery for WEAK SEMaNtiCS .. .coovveeemiiineiieeeeticeeeiceeeeeeeceeeenecee e ennnnee s 20

B FIIET PRASE. e e e e e e ae e e e e e e e e e e e e e e ae e e e ean 21

5 Query COMAIMIMENT.ooioieiiiiieiieiiieeee e e e et e eeeeee e etes e eumeeeme e n e emames s rmneeeneeeeeas 22
5.1 Optimization NOBODS.ccooeceioe ettt e e e e e e ee 22
5.2 Containment under AND-SEMANTICSc.ooriiiiiieeieieiiiieiieeeeeeeeee e eeeeeeereeeeseemannanes 22
5.3 Containment under OR-SEMANTICSeeoiemiiiiie e ees e eeeeeeeeem e 23

6 Criticism and Future Research...... ... 25

Part 2: Software Document

7 Software Requirement SPeCifiCations.............ccooeeooeoreeeeeeee e 29
7.1 General DeSCTIPtONottt e e e e n e e e e e e e 29
Tl L PUDPOSE. - e e e e e et cetaseee e e m e e seeese oo enmneaaeesnnaasaeaeenean 29

AR TP 01 11 (5> « SO U U 29

A B B LT ¢ UV USSR 29

7.2 GlOSSATY ..ot e e eemm e e nee s r e e e ame s e ee e eeteeat e r e e ees 30
T3 System MOdeloo e e e 31
7.4 Functional ReqQUITEMENTS ...t e e eccceee e e e e e 32
7.5 Non Functional Requirements ... ee e ee 34

8 SOftWAre DESIEIot e et ce e e e e et e e et aeeeeens 35
8.1 System ATCRItECIUTEooo oo ce e e st ea e e e eees 35
8.2 Object-oriented Modelo et 37
821 Class HICTarChyoii ettt e e e 37
8.2.2 Object INtETaCtONS ...eoeieeeiiiioeeceeiieeee e et e e e eee e s e e eee e 39

8.3 DAta SLTUCLUTES ...t eeee e e e e e e e aeeeesmnm e mame e e eemammsamses e nnm e eeees 40
LI N K200 914110 1 -SSP TRRURORt 42
.S ULDESIGI ..o eeeeemee e e e e e e e e e e e e e eeemee e eeaee e eenmn e enn 44

B 5. 1 USEr Profile ...t 44

8.5 2 UL REQUITEMENL.eeeeeieeiiiiee e e en e ne e e eee e e e meeenee 45
8.53 Interface GUIAEINES ..oooo.voimie e e e 45

8.6 Database StOTAZE............oiiiiiieeeeeee ettt enn e e 46

9 Verification and Validation.................ooiiii e e 47
9.1 Evaluation ODJECHIVESo.oomiiiieeeeeeee et e e e e e et e e e e e e 47
9.2 Evaluation PrOCEAUTIEoooooiiiiiiiiiieeeece et cre e e e ee e e e e e e e e ecene 48
DO CONCIUSION ..o eeeeee e e e e ee e e e e e eeaeeeaneanneenemean 53
L RO OTEIICES ..ot e e e e et ee e aaae 54
12 S0UNCE COAE ...t e e e e e eeeaee e mmenceeean 55

List of Figures

Figure 1: The Hebrew University database ..
Figure 2: Query graph asking for course teachers and lab mstructors

Figure 3: Query graph asking for the first and last names of people who are

teachers chairmen in the university ...
Figure 4: Query that asks for books’ titles and pnces
Figure 5: Query asking for all staff members at any depth

Figure 6: High-Level data flow diagram for GQL processing...--
Figure 7: Block diagram for modeling the system structure
Figure 8: Call Return diagram for modeling system control flow
Figure 9: Class diagram for modeling the query processor sub system............
Figure 10: Sequence diagram for modeling object interaction.......................

List of Tables

Table 1: Maximal matchings for the graph query in figure 2 .

Table 2: Maximal matchings for the query in figure 3 under AND semantlcs .-
Table 3: Solution set for the query in figure 3 under AND semantics

Table 4: Answer set for the query in ﬁgure 3 under AND semantics .
Table 5: Monitor log table.

...15

17

..18
cee.. 18
.51

Part1: Paper Summary and Analysis

1 Introduction

Semi-structured data (SSD) has recently emerged as an important topic of study in
database for a variety of reasons. First, there are heterogeneous data sources such
as the Web, which we would like to treat as databases and cannot be constrained
by a schema. Second, due to information sharing in both the commercial and the
academic fields, it is desirable to have an extremely flexible format for data
exchange between disparate data sources. Third, it may be helpful to view
structured data as semi-structured for the purposes of web browsing and web
information sharing.

There are several query languages that have been proposed to deal with the SSD
model, such as LOREL and XML, most of which resemble one another and
follow the SQL format that was developed for the relational model. A different
kind of query language for SSD is now emerging, one in which the query has a
graph format. This graph-oriented query language seems to be more natural to a
SSD model, which is also represented as a graph. The database graph is queried
according to a query graph template (with graph variables) by finding maximal
possible matchings and then filtering them according to the user’s request.

In [KINS99], Queries with Incomplete Answers over Semistructured Data, the
authors suggest such a graph-oriented query language. This query language
allows for partial answers to a query, in that it does not require that all graph
variables be matched to the database graph. Incomplete answer should be an
important feature of any SSD query language since such a language deals with
non-structured heterogeneous data, which does not abide by a strict and complete
schema. The above paper also discusses other aspects unique to a graph-oriented
query language such as containment mapping (homomorphism) which lays the
ground for query optimization.

The main purpose of Part 1 of the document is to discuss SSD query languages in
general and the suggested graph-oriented query language in particular. It will
summarize, analyze and then criticize the above research paper ([KNS99]). The
summary explains the key ideas in the paper in a simple, intuitive manner.

Part 2 of this document describes the implementation of the graph-oriented
language proposed in Part 1. This part is structured according to software
engineering principles on which the program was developed, and thus, includes
requirement specification, software design, implementation and testing. The
program is available for use on the web at: www cs.concordia.ca/~grad/elkada/project
This document is available online at: www.cs.concordia.ca/elkada/project/docs/report.doc

2 Query Languages and Semi-structured Data

2.1 SSD Overview

Semi-structured data (SSD) is often referred to as a “schemaless” data model, in
which there is no separate description of the type or the structure of the data. The
data consist of label-value pairs such that the label is the “attribute” of the data.
The main advantages of using such a data model, where data and metadata are
mixed, are data heterogeneity and data integration, which are basic features of the
data used over the Internet. The label-value pairs of data can be graphically
represented as nodes in a graph with labeled edges that connect the data nodes.

Figure 1: The Hebrew University database (example of a SSD)

university

Hebrew
university

department

department

e '

name name
chemistry course Jab course course
/ Math J

chairman
name name
teacher mstructor name name
narne teacher /
e teacher\ instructor
° 6 ° ° ° ° a @ last
specto polymers calculus logic databases
seniority last
seniority last last first
lasl first
Cohen 15 Efcat 20 Ruth Efrat David Ben-Yishay Halevi

2.2 SSD Query Languages

The development of query language (QL) for semi-structured data is very much in
its infancy and currently there is 7o standard SSD query language. There are
several proposed query languages for SSD such as LOREL, UnQL and XML-QL,
discussed shortly. These are similar in terms of syntax and semantics, but each
one contributes different aspects to the research of SSD query language. They all
use syntax similar to SQL (select-from-where) but their semantics are slightly
different.

One of the main features of SSD QL is the ability to reach to an arbitrary depth in
the data graph. To do this a SSD query language needs to exploit, in some form,
the notion of path expression. David Maier [Mai86] laid out the features common
to any query language for SSD. These include the following:

Regular path expressions — the SSD model is represented as a graph whose
nodes are the data to be queried. Therefore, a SSD QL should be able to fetch
information stored at any level of the database graph. Regular expressions
with elaborated wildcard features are major component of any QL that deals
with a database graph representation.

Expressive power — another important QL feature is the ability to support all
kinds SQL or RA operations. Since most databases today are based on the
relational model, and these databases can be viewed as a SSD graph, the
success of a SSD QL would depend on its ability to perform common SQL
operations, most notably, the join operation.

Precise semantics —~when the meaning of each QL operation is well defined,
query transformation and optimization can take place. A QL should enable its
user to express the same query in different ways. Such query equivalence is
the key to an efficient DBMS that perform intelligent optimizations.
Compositionality — in relational database the output of a query is also a
database from which another query can be composed. It would be desirable
that the same idea be applied to a SSD QL. When the output of SSD query can
used as input to another, more elaborated QL operations can be defined.
Structure conscious —a SSD QL should be able to infer and exploit the
database schema. As the name suggests, SSD is partly structured and not
entirely non-structured. Since a well-defined schema does not exist in SSD, a
QL should take into account the general structure of the data and be able to
use this information to optimize its search mechanisms.

Program manipulation — any SSD QL should have a simple and clear but
verbose core language. A QL that supports many operations allows for better
query optimization.

10

The above features can be used, among other database principies, to evaluate the
contribution of the proposed graph-oriented query language to this recent topic of
research. However, in order to investigate, analyze and compare the various SSD
query languages a brief review of the current trend is needed. The following
sections describe common SSD query languages. This description is neither
formal nor complete. The syntax and the semantics are demonstrated using
examples that are based on the Hebrew University database graph given
previously in figure 1 (for more refer to [Abi97]).

2.2.1 LOREL

LOREL (Lightweight Object REpository Language) is a query language in
LORE, a system for managing SSD developed at Stanford, which was derived by
adapting OQL (Object Query Language) to querying SSD. LOREL is based on
the syntax of OQL and makes substantial use of regular path expressions that
allow reaching an arbitrary depth in the data graph. The following is an example
of a query in LOREL that asks for all the teachers’ last name in the CS
department of the Hebrew University.

select result: X last
from university. *.teacher X
where university.department.name = “CS”

2.2.2 XML-QL

XML-QL (Extensible Markup Language — Query Language) is a query language
for the World Wide Web, which combines XML/HTML syntax with SSD QL
techniques. It uses variables to which data is bound ($N in the example below)
and an output template to construct the result, which is also in XML. Like
LOREL, XML-QL also uses path expressions to match a sequence of edges. It
uses where-construct syntax, which is similar to the select-from-where syntax of
SQL and OQL. The construct clause corresponds to select whereas the where
clause combines the from- where parts of the query. Also, it deals with optional
elements through nested queries. The following is a simple example of a query in
XML-QL that asks for all teachers’ family names in the CS department.

where <*teacher> <family name> $N </></>,
<university>
<department> <name> $D </> </>
</>, $D =“CS”
in “www.somewhere/db.xml”
construct <result>
<family name> $N </>
</>

11

2.2.3 GQL

In the graph-oriented query language (GQL) proposed in [KINS99] the query takes
on a graph format, in which the pattern used in the query is more “visual”. It is
claimed that a graph-oriented query model is more natural and intuitive for graph-
oriented database model. In this model the query is a graph whose nodes are
variables that need to be bound (matched) by database values, according to some
given constraints (filter constraints).

Thus, queries are evaluated in two phases: (1) match phase and (2) filter phase. In
phase 1, the database is searched for the pattern/template specified in the graph
query and the result is a list of possible answers that are matched from the
database. These are called maximal matching since they reprresent the maximal
possible information that can be obtained from the given quzery. In phase 2, these
maximal matchings are filtered in order to output only these matches that are
needed according to the filtered constraints given by the user. Section 4, Query
Evaluation, discusses these two phases in more detail and provides some
algorithms and examples.

3 Graph—oriented Query Model

This section describes the syntax and the semantics of the graph-oriented QL
proposed in [KINS99] and provides some examples that demmonstrate the
mechanisms of the GQL. The following notations and definitions are simple and
intuitive and their purpose is to provide some theoretical background and
terminology, so that the GQL model can be further explored in and analyzed in
the coming sections.

3.1 Syntax

As mentioned earlier in the introduction, the focus of this paper is to summarize
and analyze the graph model, therefore a detailed definition and a precise notation
with comprehensive theorem proofs are not needed here. However, some notation
is needed for the algorithms and theorems described in later sections.

A label directed graph (LDG) over a set of nodes N is denoted as G = (N 9
where ‘@ associates with each label l€L a binary relation I & N x N between the
nodes. For example, in the database graph given in section 2.1 ‘G associates with
the label “department” the binary relation {<1,3> <1,4> <1, 5>}. Also, the binary
relation € can be viewed as a function 1°° N — 2~ . In the above example 1 —
{3, 4, 5}, also denoted as 319(1), 4e19(1), 5€1°(1) .

Thus, the notation for an ldg is G = N, 9.

12

A rooted ldg G is denoted as a triple G = (N, 1G, ‘%) where reeN is the root node.
A database D is denoted as the 4-tuple D = (O, 1p, D o) where a is a function
that maps each terminal node to an atom (for example, in the university database
o maps the terminal node 26 to the atom “Cohen”). Here O is the set nodes in the
database graph, which are actually a set of object id.

A query Q is the triple Q = (G, F, x) where G is a query graph whose nodes are
variables, F is a set of filter constraints, discussed later (see section 3.2.2), and x is
a tuple of variables occurring in N (a sub set of the nodes in the query graph),
which is the output of the query (in figure 1 example, these are x1 and x2).

The query graph G = (N, Ig, ‘%) can be viewed as a set of constraints over N
denoted as Cons(G). Therefore, an edge constraint ulv is in Cons(G) if there is a
label | fromuto v. (i.e. uelG(v)). The constraints in Cons(G) are called search
constraints and are used to search for maximal matching (in the example on the
following page (u, lab, w) is an edge constraint in the set Cons(G))

An assignment p is a2 mapping/binding of the query variables to the database
objects. A variable v is bound if p(v) = L (null). An assignment p satisfies an edge
constraint ulv if p(u) e 19(u(v)), i.e. the database graph contains the pair (u(u),
1(v)). In the example of figure 1, there is an assignment p that satisfies the edge
constrzca,}int (y, first, x1) because there exists a database edge (20, first, 30) such that
30 € 17(20).

3.2 Semantics

There are four types of query semantics that can be applied to the database graph:
STRONG matching, WEAK matching, AND-matching and OR-matching. These
semantics express different levels of strictness in which variables are bound to
database objects allowing for a more flexibility in incorporating incomplete
matching to the query variables. The actual algorithms for implementing them are
given later. The following is description and explanation of these semantics using
the query example in figure 2.

3.2.1 Search Constraints

STRONG matching

An assignment p is a STRONG matching if u satisfies every edge constraint in
the query graph. Therefore, it requires a total assignment. For the query in figure
1, there would be no matchings under this semantics since there is no
corresponding y node in the database graph, such that all of its children x1, x2, x3
exist. STRONG semantics can be used in the filter phase to assure that node
variables exist in the solution set. Since SSD is inherently incomplete this
semantics is not usually used in the search phase.

13

WEAK matching

An assignment p is a WEAK matching if u satisfies every edge constraint in the
query graph whenever it is defined. Therefore, it requires only partial assignment.
The strict requirement of STRONG semantics, that an assignment p must satisfy
all constraints, is loosened to an assignment that satisfies all constraint only if
they exist in the database. WEAK matching requires that if it is defined for u and
v then p has to satisfy the constraint ulv. This semantics is explained later in the
example of figure 2.

AND-matching

An assignment p is an AND-matching if p satisfies a/l incoming constraints of a
node y whenever p(y) # L. Therefore, in the maximal matching set, database
nodes which have more than one incoming edges are included only if all of these
incoming edges are matched. In the figure 1 example, the query node y is matched
only to node 23 from the database. Node 23 is the only y node that actually has 2
incoming edges in the database. Under AND-semantics, the query in figure 1 asks
for people who are both course teachers and lab instructors.

OR-matching

An assignment pt is an OR-matching if u satisfies some incoming constraints of a
node y whenever p(y) # L. Therefore, in the maximal matching set, database
nodes which have more than one incoming edges are included if at least one of
these incoming edges are matched. In the figure 1 example, y is never assigned a
null value because at least one of its incoming edges exists. Under OR-semantics,
this query asks for people that are either course teachers or lab instructors.

The sets of STRONG, WEAK, AND and OR matchings denoted as Mats(Q),
Mat-«(Q), Mat-~(Q), Mat-_(Q) respectively, have an interesting property:
(this property does not apply to maximal matchings)

Mats(Q) = Mat-~(Q) < Mat-w(Q) = Mat-(Q)

14

Figure 2: Query graph asking for course teachers and lab instructors.

t u A w y X1 X2 X3

AND (1) 1 3 9 10 1 1 L L
(2) 1 4 11 1 1L 1 L L

3 1 4 12 1 1 1 L L

4) 1 5 12 13 23 32 33 1

(5) 1 5 14 13 1 1 1 L

OR) 1 3 9 10 17 1 26 27
) 1 3 9 10 19 1 28 29

3) 1 4 11 1 20 30 31 1

4) 1 4 12 1 23 32 33 1

%) 1 5 12 13 23 32 33 L

(6) 1 5 14 13 23 32 33 L

Table 1: Maximal matchings for the graph query in figure 2 (search phase).

15

3.2.2 Filter Constraints

Filter Constraint Types

As mentioned in section 3.1, a query Q is the triple Q = (G, F, x) where G isa
query graph, F is a set of filter constraints and x is the set of the output variables
(subset of N — the set of all graph variables). Filter constraints F reduce the set of
maximal matching to a set of solutions, and output variables reduce the set of
solutions to a set of answers. There are three types of filter constraints that can
appear in F:

Atomic Constraint — constraints of the form u =v v or u #v v where u 1s a query
node and v is a database. For example, x1 = “David”.

Object Comparison — constraints of the form u1 =o u2 or ut #o u2 where u1 and u2
are objects in the database. For example, x1 = x2 requires that the person’s first
name be equal to the last name.

Existence Constraint — denoted as !v requires that a variable v be bound. For
example, !x1 in figure 1 requires that the first name be in the solution.

Filter Constraint Satisfaction

Strong Satisfaction - a filter constraint is strongly satisfied, denoted as p |=s C.if
the variable in this constraint is defined/bound and the equality/inequality is true.
For example, in table 1 with the atomic filter constraint xt = “David” under AND
semantics with strong satisfaction, no matching will be included in the solution
set (x1 is either not defined or not equal to “David™).

Weak Satisfaction - a filter constraint is weakly satisfied, denoted as p [=w C. if the
variable in this constraint is undefined/non-bound (but if the variable is defined,
then the equality/inequality must be true for the constraint to be weakly satisfied).
For example, in table 1 with the atomic filter constraint x3 = “20” under AND
semantics with weak satisfaction matching (4) will be included in the solution set
since this variable is undefined.

Existence Constraint - an assignment . strongly/weakly satisfies an existence
constraint !v if p(v)# L, i.e. if the variable v actually exists in the database.

As mentioned earlier, the solution set (obtained from the filter phase) is
eventually reduced to the answer set according to the x set in the query Q = (G, F,
X). x is the set of output variables. For example, if x = {x1.x3}for the query in
figure 1 under OR semantics and weak satisfaction of the constraint x3 = “20” the
answer set would be: { <L, 29>, <30,1>, <32, 1>}

16

3.3 Example

As mentioned earlier, the query evaluation process is performed in two steps. In
the first step, the search phase, we retrieve as many matchings that are as full as
possible. In the second step, the filter phase, we filter out the unneeded matchings
according to the filter constraints and then obtain the output variables as answers.
The following graph-oriented query in figure 2 asks for the last name of a person
that is both a course teacher and department chairman in the university. The query
implies AND semantics and the output variable vs (last name). Lets assume that
there is also an existence constraint v3! which means that the person node v3 must
exist in the filter phase.

Figure 3: the query asks for the first and last names of people who are both
course teachers and department chairmen in the Hebrew university.

In the search phase the maximal matching set under AND-semantics would be:

Vo Vi V2 V3 V4 Vs
(1) 1 3 9 17 1L 26
) 1 4 11 1 L L
Q) 1 4 12 I L L
@ 1 5 12 23 32 33
) 1 5 14 1 L 1

Table 2: Maximal matchings for the query in figure 3 under AND semantics

17

In the filter phase, we have to examine the filter constraints. We have an existence

constraint v which means that person node must exist in the solution set. Thus,

only matchings (1) and (4) from table 2 will be included in the solutions as shown

in table 3: (the other matchings are not included since node vs is assigned null):

Vo Vi v2 V3 V4 A4
) 1 3 9 17 I 26
) 1 5 12 23 32 33

Table 3: Solution set for the query in figure 3 under AND semantics

Finally, the answers are obtained from the solution by keeping only the output
variables, which is vs for the given query.

VS (last name)

@9)

26 (Cohen)

2

33 (Ben-Yishay)

Table 4: Answer set for the query in figure 3 under AND semantics

In the above example we would have obtained the same results under WEAK

semantics since WEAK semantics requires that if nodes vi and v3 are bound then

there must exist a “chairman” edge. If node v3 had 3 incoming edges (teacher,

instructor and chairman) then under WEAK semantics the query would ask for all

people who are chairman and either a teacher or an instructor.

18

4 Query Evaluation Process

The query evaluation process includes two phases: (1) search phase, in which the
maximal matching set is found, and (2) filter phase, in which the solution set is
constructed (by filtering the maximal matching set). These two phases are detailed
next, in sections 4.1 and 4.2. Note that each phase contains several mechanisms in
order to produce the matching/solution set. These are the techniques that provide
the proposed GQL with its particular feature of obtaining incomplete/partial
answers to SSD queries. As mentioned in the Introduction, one of the objective of
the GQL in [KNS99] is create a QL flexible enough to deal with non structured
database graph.

4.1 Search Phase

The following sections describe the algorithms that are used in the search phase in
order to compute the set of maximal matchings for tree and acyclic graphs under
the different semantics. The proofs of thie algorithms for cyclic graphs are NP
complete are not included here. The first case, which is the simplest, is tree query
graph. The second case, acyclic query graph, is an extension/generalization of the
tree graph algorithm.

The algorithms use the notion of topological order Vo< Vi< ... < Vk which is
the sorting or ordering of the graph nodes such that Vi < Vj if there is an edge
from Vito Vj.

4.1.1 Tree graph

When the query graph looks like a tree, then the query result is the same for
WEAK, AND and OR semantics since only one incoming edge is allowed. The
following algorithm, EvalTreeQuery, describes how to find the set of maximal
matching for a query that is a tree graph-

EvalTreeQuery

Let Vo< Vi< ... < Vkbe a topological order
S = {Vo/ra}
fori=1tokdo
for each ue S do
if (Vi-, 1, Vi)
then S=SuU {u® [Vi/o] |oel9(Vi)}
else S=SuU {u® [Vi/L]};
return S;

1@ [Vi/o] means: bind Vi to the database object o, in addition to the variables
already bound in .

19

4.1.2 Acyclic graph (dag)

In a dag query graph there may be more than one incoming edge for a node and
hence, unlike tree graphs, the query result depends on the semantics used. The
idea in EvalDagQuery algorithms is to extend the previous EvalTreeQuery such
that nodes which have more than one incoming edges need to be
assigned/matched according to the semantics used in order to be included in the
maximal matching set.

The following describes the rest of the algorithms that can be used in the search
phase. Since these are extensions of EvalTreeQuery, only the main ideas of the
other algorithms are provided here (see [KINS99] p.13-21 for details).

EvalDagQuery for AND/OR semantics

We can use the same algorithm for AND/OR semantics, with parameter G

e {u,N}, indicating which semantics AND/OR is used. Like EvalTreeQuery, in
EvalDagQuery we start by establishing a linear ordering of the query nodes Vo <
Vi< ... < Vk. For every query node Vi, we extend the set of maximal matchings
with assignments to database object that correspond to that node. The difference
is that in EvalDagQuery, depending on the given semantics ¢ €{\U,M}, a node Vi
will be included in the result, if it there is an assignment which satisfies some or
all of Vi incoming nodes.

Thus, EvalDagQuery introduces a new notation, Ext-o(V1) where ¢ € {{u,n}, to
check the incoming nodes of Vi according to o, the given semantics. In the case
of AND semantics, Ext-o(Vi) = & if not all incoming edges are satisfied, and in
the case of OR semantics, Ext-o(Vi) = & if none of the incoming edges is
satisfied.

EvalDagQuery for WEAK semantics

As mentioned earlier, WEAK semantics require that if p is defined foruand v
then u has to satisfy the constraint ulv. Thus, in EvalWeakDagQuery, when a
query node Vi is processed, all the incoming edges Ei need to be considered.
Whenever a query edge Ei appears in the database graph, the source node V’, in
V’EiVi, needs to be bound in the assignment pi-1. If V” is defined and bound, then
Vi/o is added to pi. Otherwise all the paths leading to Vi need to be reset to L
since it does not pass via V’ which is not bound.

20

4.2 Filter Phase

As mentioned earlier, there are three types of filter constraints: atomic, object
comparison and existence. The filter phase algorithm is given only for existence
constraint in tree query graph. For all other cases, proofs are given to show that
the problems complexity function is NP complete which suggests that they cannot
be solved in a polynomial time.

An existence constraint !V in a graph query requires that a query node V be
bound to a non-null value in the solution. Clearly, the path to V should also be
non-null. Therefore, all paths to existence constraints should be fully matched to
objects from the database. These existence paths of the query tree compose the
strongly evaluated subtree of the query since they need to be evaluated under
STRONG-semantics.

The suggested algorithm, EvalStrongTree computes the set of strong matchings
for the strongly evaluated subtree of the query, in two phases: (1) create binary
relation for each edge in the strongly evaluated query, such that each binary
relation contains all database edges that satisfy the query edge and (2) compute
the join of all the relations created using the algorithm for computing an acyclic
join by a semi-join program.

21

5 Query Containment

The previous section explained the mechanisms behind one of the main features
of the proposed GQL, the ability to obtain incomplete answers for a schema-less
database. Another important contribution of the proposed GQL is in the area of

query optimization. Query optimization is applied in DBMS in order to enhance
performance and thus, render the QL more practical.

5.1 Optimization Notions

One of the important features of any query language, as discussed in section 2.2,
1s precise semantics that allows query optimization. This section summarizes
some of the optimization notions for the proposed GQL such as containment,
equivalence and mapping, and then uses these concepts to discuss the containment
proofs, under the different semantics.

Let Q1 and Q2 be two graph queries.

The following notions can be defined for GQL:

Containment: Q1 <o Q2 if Ans-«(Q1) = Ans-s(Q2) where o= {S, W, U, N}
Therefore, Q1 is contained in Q2 under ¢ semantics, if for every al e Ans-+(Q1)
there is an a2 e Ans-«(Q2) such that al < a2.

Equivalence: Q1 =Q2 iff Ql <o Q2 and Q2 < Q1 where o= {S, W, U, N}
Clearly, 2 queries are equivalent if and only if they subsume each other with
respect to .

Mapping: mapping ¢ from Q1 to Q2 is homomorphism if:

(1) ¢ maps root to root (i.e. (ri)=r2) and

(2) @ maps output variables to output variables (i.e. (Xi1)=Xiz, XieX) and
(3) @ maps edge constrains to edge constraints (i.e. @(u)lo(v) = ulv)

The proofs of the homomorphism theorem for graph queries under AND-
semantics and OR-semantics are given in [KINS99], so the following sections only
state the theorem and then informally discuss and summarize the proofs, in a
point-form easy-to-understand manner (homomorphism means that query
mapping implies containment and vice-versa).

The abbreviation C.M used below stands for Containment Mapping

5.2 Containment under AND-semantics
Theorem: (containment under AND-semantics)

Let Q1 and Q2 be two graph queries.
Q1 c Q2 iff there i1s a C.M from Q2 to Q1 under AND-semantics.

22

Proof® the proof is very similar to the classical proof for conjunctive queries as in
[U1189], which shows:

(1) if (Q2)p=Q1 then Q1cQ2 and

(2) if Q1=Q2 then (Q2)p=Q1.
Part (1) is proven by composing the set of maximal solutions u2 =u1°6, and
showing that Q2 produces the same answer as Q1. Part (2) is proven by
evaluating both Q1 and Q2 over G1 (the query graph of Q1) which produces
answers al and a2, then showing that there must be C. M. from a2 to al.

5.3 Containment under OR-semantics

The main idea for checking if one query is contained in another, under OR-
semantics, is to decompose each query to many tree queries and then compare
them. Each sub tree of the query graph is called a spanning tree and the set of all
spanning trees of a query is called the tree expansion of the query. The tree
expansion of a query Q is defined as:

o= {(T,x)| T is a spanning tree of Q}

In order to prove the theorem of containment under OR-semantics, the following
corollary and proposition are defined and proven:

Corollary: (containment among free queries)

This corollary is similar to the theorem from the previous section except that it
applies only to tree queries, instead of general queries, but for all types of
semantics.

Let Q1 and Q2 be two tree queries.

Q1 = Q2 iff there is a C.M from Q2 to Q1 under WEAK, AND and OR-
semantics.

Proof: we know already that the corollary hold for AND-semantics because tree
query is sub case of general query. Since for tree queries we get the same query
answer under all semantics, the corollary holds under WEAK, AND and OR-
semantics.

Proposition: Let Q = (G, x) be a query, and I'q be the tree expansion of Q.

Then we have Ans-{(Q) = U Ans-u(Qi) VQiel'q
Proof* Intuitively the theorem means that the union of all the answers of the
spanning query trees is the same as the answer of the general query. Let the
answer to the general query Q=(G, x) be a=n(x). Let the spanning tree queries be
Q1=(G,x1), ... , Qu=(G,xn) and let the answers to these queries be ai=pi(x1), ...,
an=[a(Xn).
Since X = X1 U ... U xa We can conclude thata=ai1 v ... U an.

Theorem: (containment under OR-semantics)

Let Q1 and Q2 be two graph queries.
Q1 c Q2 iff there is a C.M from Q2 to Q1 under OR-semantics.

23

Proof: very similar to the classical one for conjunctive queries as in [Ul189],
which shows that both (1) if (Q2)p=Q1 thenQ1<=Q2 and (2) if Q1=Q2 then
(Q2)p=Q1 hold.

Part (1) is proven by decomposing Q1 and Q2 to I'qt and 'qa.

Using the proposition:

Ans-(Q1) =U Ans-AQi) VQiel'ai and Ans-(Q2) =uU Ans-(Qi) VQielqz.

Since there is a c.m. from Q2 to Q1, then I'q1 < I'q2, which means that
(UAnNs-(Q1) VQielql) € (UANs-(Q1) VQielq2).

Thus, Ans-(Q1) = Ans-(Q2) and Q1 < Q2.

Part (2) is proven by decomposing Q1 and Q2 to 'qt and ['qa.

Using the proposition:

Ans-o(Q1) =uU Ans-(Q1) VQiel'ql and Ans-o(Q2) =y Ans-o(Q1) VQielq.

If Q1c=Q2 then Ans-.(Q1) < Ans-(Q2) and also
(U Ans-o(Q1) VQielqi) < (U Ans-u(Q1) VQiel'@2), and using the corollary
above: for each Qiel'qi and for each Qiel'q2, (Q12)p=Qil, so (Q2)p=Ql.

6 Criticism and Future Research

This section describes the strengths and weaknesses of the GQL proposed in
[KINS99], and discusses which features of the model should be further studied
and/or improved. The following criticism is based on examining the basic features
of any query language for SSD, comparing the GQL with other current query
languages for SSD and verifying that the objectaves stated in the Introduction and
in the Abstract were actually met. In addition, some suggestions will be given in
order to improve the proposed GQL.

One of the main advantages of having a graph-oriented query language is its
support for incomplete answers. Partial answers are achieved through the use of
weak search and filter constraints and the various semantics that allow different
levels of strictness in the way that database elerments are bound to the graph
variables. As mentioned in section 1, Introduction, any query language for SSD
should take into account partial answers to queries since SSD is heterogeneous, 1t
has no fixed schema and many of its elements may be optional.

To illustrate how the proposed GQL supports better incomplete answers
compared to XML-QL for example, consider the following query. Assume for
simplicity that there is a books database, in SSD format, with a <BOOK>
clements that can have two sub elements <TITLE>and <PRICE>. Assume also
that we want all book titles and, where available, book prices too. The following
is a straightforward solution in XML-QL:

where <BOOK>
<TITLE> $T </TITLE>
<PRICE> $P </PRICE>
</BOOK> in "www.ex-books.xml”,
construct <RESULT>
<BOOKTITLE> $T </ BOOKTITLE>
<BOOKPRICE> $P </BOOKPRICE>
</RESULT>

Such a query in XML-QL will result only complete answers since the pattern
insists that <PRICE> be present. Thus, books without a price are not reported.
XML-QL uses nested queries format to deal with optional elements, and the
correct solution would be:

where <BOOK> $B </BOOK> in ”"www.ex-books.xml”,
<TITLE> S$T </TITLE> in $B
construct <RESULT>
<BOOKTITLE> $T </BOOKTITLE>
where <PRICE> $P </PRICE> in $B
construct <BOOKPRICE> $P </BOOKPRICE>
</RESULT>

Obviously, the way XML-QL deals with incomplete answers, through nested
queries, is quite cumbersome even for this simple query. It is difficult to read and
maintain such a format and it seems its too complicated for the given simple

query.

The graph-oriented query in figure 3 is much more clear, Book
simple and intuitive. Since it is a tree query it gives the
same answer under the different semantics.

GQL uses algorithms that assume that in most cases
answer are incomplete because data is heterogeneous.

Figure 4: a query that asks for books” titles and prices

Another advantage related to the proposed GQL, which simplifies the query
format, understanding and manipulation, is the case of union such as the query in
figure 2 under OR-semantics. In the current SSD query languages it is impossible
to write a union operation in one simple query. In fact, in the XML-QL proposal
in [DFFLS98] and [ABS99] this is not possible at all. In a graph-oriented QL
union is achieved easily using the OR and WEAK semantics.

An additional strength of the proposed GQL is query optimization. As mentioned
in section 2.2, one of the important features of a query language for SSD is a
precise and simple semantics that enables query optimization. Unlike other
current QLs for SSD, the suggested GQL sets the foundation for query
optimization by defining and proving the homomorphism theorem for graph-
oriented queries under the different semantics (see section 5). Optimization
notions are difficult to define in languages like XML-QL since they use syntax
similar to SQL, which is designed relational database not SSD. In this respect,
GQL is more appropriate for a graph-oriented database in the same way that SQL
1s appropriate for a relational-oriented database.

The main advantage of the graph-oriented model could be also viewed as a
weakness. The proposed GQL although more natural and intuitive for graph
databases, stands in contradiction to the principle idea in databases of three levels
of abstraction.

Actually, this constitutes a problem for all SSD query languages, which do not
distinguish between logical and physical levels of abstraction. However, this
distinction is further blurred with a GQL since both the query language and the
database rely on graph mechanisms for storing the data and exploring it. The
difficulty in designing a modular three level architecture model for SSD emanates
from the fact that the middle level (logical/conceptual level) requires the existence
of a schema that allows for query manipulation regardless of the actual data.

26

Another point, related to the three-level architecture in database systems, is the
need for a mathematical foundation for query manipulation and transformation.
One of the reasons that the relational model is so popular is that it achieves this
kind of abstraction. Query transformation and optimization is based on relational
algebra and set theory. Therefore, SQL has a strong theoretical foundation, taken
from mathematics, which gives it its expressive power as a query language. On
the other hand, GQL is not based on such theoretical foundations (maybe graph
theory from mathematics) that abstract it from the database.

Section 2.2, SSD query languages, discusses the features that any SSD QL should
have.

The main feature missing in the GQL proposal is regular path expressions. GQL,
in its current format, doesn’t allow reaching an arbitrary depth in the database
graph. In LOREL, for example, we can write in the “from” clause the expression
“university._*.name”, and in the “where” clause the expression name=“Cohen”,
in order to find a path of any depth that starts with “university” as the root and
ends with the name “Cohen”. This is not possible in the proposed GQL because
queries have fixed depth. Regular path expressions must be integrated into any
GQL so that it can be used for SSD. One way this can be achieved is discussed
shortly.

Structure consciousness is another feature of a QL for SSD, mentioned in section
2.2. It refers to the ability of the QL to infer and to exploit the database schema.
The proposed GQL does not discuss the reality that in many cases the SSD has a
general or a basic structure that is distinguished from the optional elements. SSD,
as the name suggests, is partly structured and not completely non-structured and
any SSD QL should address this issue. XML-QL, for example, provides a simple
and useful structure conscious mechanism through the optional use of DTD.

An additional feature mentioned in section 2.2 is expressive power, the ability of
the QL to support of all kinds of SQL or RA operations. Since most databases
today are relational, a SSD QL would have to be compatible with relational
database systems. This implies that when the input to the GQL. processor is
relational database (and not SSD), the correct result will be produced. Clearly,
this is not the case in the proposed GQL since its algorithms search graphs and
not tables. This, however, can be solved by converting the tables into graphs. But
even then the GQL processor cannot perform all SQL equivalent operation, most
notably the join operation.

Other structure conscious QLs, such as LOREL, do support join operations. The
LOREL query on the next page computes the natural join of r1 and r2 (the
common attribute is b) and projects on attributes a and c. The relations are
represented by the following SSD instance:

27

{rl: { row: {a:1, b:2}, row: {a:1, b:3} },
r2: { row: {b:2, c:4}, row: {b:2,c:3} } }

% Query g-join
select a:A, c:C
from rl.rowX,
r2.row Y,
XaA XbB,YbB,YcC
where B=B’

The above join operation is not possible in GQL since it has no reference to
metadata. Future research is required to suggest new ways in which two SSD
graphs can be joined. The main difficulty stems from the lack of schema on which
join operations are based.

Unlike the proposed GQL, LOREL allows for both label and path variables. [n a
GQL, node variables are allowed, but not edge variables. One way to incorporate
regular expressions into a GQL would be to allow edge variables to exist. These
could be combined with wildcards in order to reach an arbitrary depth in the
database graph. Figure 4 shows such an example in which the depth of the graph-
oriented query is not fixed. The star denotes one or more occurrences of an edge
that leads to a person node p that has a first and a last name. Clearly, the
algorithms would have to be modified accordingly.

Finally, although query containment is discussed in [KINS99], which lays the
foundation for GQL optimization, the paper does not discuss graph operations by
which query manipulation and transformation can take place. As mentioned
earlier, such graph operations would require a sound theoretical background.

L

department
name u
*

Figure 5: a query asking for all staff members at any depth.

28

Part 2: Software Document

Part 2 documents the software development process and includes the main stages
that are employed in most software system developments according to well-
known software engineering principles [Som97]. It starts with section 7, Software
Requirement Specifications, which describes, in high-level terms, the services that
the system provides and the constraints under which it operates. Section 8,
Software Design, specifies various system components and their relations, using
different models of different level of abstraction. Section 9, Verification and
Validation, describes the software testing process and ensures that it meets the
user requirements and the specifications laid out in section 7. Finally, section 10
concludes the GQL proposal from a more practical standpoint, and revisits the
theoretical results in Part 1, using the empirical results from part 2.

7 Software Requirement Specifications

7.1 General Description

7.1.1 Purpose

The main purpose of the software product is to implement the graph-oriented
query language proposed in [KNS99], Queries with Incomplete Answers over
Semistructured Data. The program will enable users to query the university
database described earlier in section 2, using a graph query format. Users can
select the graph nodes to be matched to the database graph and enter some filter
constraints in order to get a more specific query result. The program is publicly
available on the World Wide Web at www.cs.concordia.ca/elkada/project).

7.1.2 Context

The software product is independent of other related resources. It operates in the
context of the World Wide Web. The database that users can query will be
provided on a separate web page (www.cs.concordia.ca/elkada/project/db.html).
User parameters are sent to the server where query processing takes place and the
query results are sent back to the user in a table form, with possibly empty cells,
to emphasize the query’s language support for incomplete answers.

7.1.3 Users
The program would be mostly used for academic purposes. People interested in
SSD and their query languages would be able to experiment using the GQL tool

and analyze its contribution to this domain of study. Thus, most users are
computer literate and have both domain-specific and system knowledge.

29

7.2 Glossary

Semi- structured data (SSD) — “schemaless™ data model, in which there is no
separate global description of the structure or the type of the data. The data
consist of label-value pairs such that the label is the attribute/description of the
value. It is a heterogeneous model in which the same data content is represented
in various structures (as graphs).

Graph-oriented query language — a query language for SSD in which the query is
represented by a graph, very much like the database itself (see section 3.1)

Query graph — graph in which the nodes are variables that represent data values to
be matched to the database graph. The edges in the query graph, which connect
the nodes, are also to be matched to the database graph (see section 3.1).

Query Semantics — the level of strictness in which a query graph can be matched
to the database graph. These are described in part 1 section 3.2

Matching — correspondence between query nodes/edges and database
nodes/edges. The matching result depend on the semantics used.

Search Phase — the first step of graph query processing in which the set of
maximal matching is found depending on semantics used.

Filter Phase — the second step of graph query processing in which the solution set
is obtained (and from which output variables are given as a final answer).

Filter Constraints — the filtering parameters of the second phase. For examples,
name = “Cohen”, seniority > 18, t! (the teacher node exists) etc.

Incomplete Answer —answer in which not all the nodes in the graph query are
matched. This is an important feature for the heterogeneous SSD model. This
achieved using different semantics in both the search and the filter phases.

Server — the host on which query processing takes place. Invisible to the user, user
submits a query request, which is sent to the server which, in turn, searches the
database graph (located persistently at the server).

Client — user host from which the query parameters are submitted. Many clients
can send query requests to the server simultaneously.

7.3 System Model

The following data flow diagram charts how data flows through a sequence of
processing steps. The user or the program carries out these steps, denoted by
rounded rectangles. The client process performs some of these steps while the
server process performs others. Also, the data stores, denoted by rectangles,
represent input/output files that the server program accesses. The server program
initially retrieves the database files in order to find the given query matchings and
finally the program writes the query answer to a log file. All these files are located
at the server host/machine. The diagram is simply the first of many steps. It
provides a high level abstraction for the system and it hides many of the details
that are discussed in section 8, Software Design.

database log file

database log file

details

SERVER
LEVEL
process
query
parameters
sent
CLIENT
LEVEL
show query
enter query answer Enter k_)g
parameters file option
Query
requested log file

requested

Figure 6: High-Level data flow diagram for GQL processing

7.4 Functional Requirements

R1: The system should enable the user to query the database using a graph query.
Rationale: the database is also given as a graph and the goal is to evaluate and
analyze the proposed graph-oriented query language discussed in Part 1.

R1.1 The system should enable the user to select graph nodes in the query.
Rational: different query types allow analyzing different features.

R1.2 The system should enable the user to select the semantics under
which the query is evaluated.
Rational: different semantics result in different answers to the same query.

R1.2.1 The system should enable the user to select no semantics.
Rational: Semantics is meaningless for tree queries.

R1.2.2 The system should enable the user to select OR semantics.
Rational: This semantics results in maximal answers.

R1.2.3 The system should enable users to select AND semantics.
Rational: The user might ask for specific search constraints.

R1.2.4 The system should enable users to select WEAK semantics.
Rational: This semantics enables special query meaning.

R1.3 The system should enable the user to enter filter constraints.
Rational: Users should be able to narrow down their search criteria.

R1.3.1 The system should enable the user to select an existence

constraints.
Rational: The user should be able to enforce node variables.

R1.3.2 The system should enable the user to select a comparison
constraints.
Rational: Users should be able to search for specific information.

R1.4 The system should inform the user of erroneous input.
Rational: Users might have entered invalid input/query parameters.

R1.5 The system should enable users to perform a query without selecting.
Rational: The program should provide for default query parameters.

R2: The system should provide the user with the query answers.
Rationale: the user can then verify the answers against the database.

R2.1: The system should provide users with answers in a table format.

Rationale: The examples in Part 1 of this document are given in a table
format. It is clear and easy to understand and to verify.

R2.2: The system should inform the user if query result is empty.
Rationale: The program should provide clear messages for all cases.

R2.3: The system should provide the user with incomplete answers.
Rationale: one of the main features of the proposed graph query is the
ability to support incomplete answers. Thus, this aspect has to be tested.

R3: The system should provide users with access to the database graph any time.
Rationale: The user should be able to see the database both before querying (to
know what to query) and after query processing (to verify the results).

R4: The system should provide users with the query and its answers in a log file.
Rationale: The user should be able to analyze the query results off-line and
compare many different query structures.

R4.1: The system should allow the user to download the log file any time.
Rationale: The user should have access to the answer log file any time.

RS: The system should enable users to restart the program at any time.
Rationale: User should be able to easily recognize the restart/home option and do
so at any given time. This feature provides more user control.

R6: The system should enable users to exit the program at any time.
Rationale: User should be able to easily recognize the close/exit option and do so
at any given time, which provides some degree of user control .

R7: The system should enable users to modify their graph query parameters.
Rationale: The system should support reversal of action and interface flexibility.

R8: The system should operate with consistent a sequence of actions.
Rationale: Repetitive operations, that results identical action for identical
situations, help to achieve system ease-of-use and learnability.

R9: The system should provide users with informative feedback about the system
Rationale: System status gives the user control and helps in system learnability.

R10: The system should provide users with help about the system operation.
Rationale: User should be able to learn how to use the system without human help

R10.1 The help should explain the terminology used in the program.
Rational: Users should be able to understand the domain-specific terms.

R10.2 The help should explain the different options in selecting the query
semantics and the related parameters.
Rational: Users should be aware of meaning of search/filter constraints.

R10.3 The help should provide a tutorial for performing a query.
Rational: Users should be able to understand the query input and output.

R11 The system should provide ways to contact the application developers.
Rationale: User might have questions or feedback conceming the application.

R12 The system should enable users to give feedback about the program.
Rationale: User feedback is needed to better examine, analyze and compare the
graph-oriented query language with other query languages for SSD.

7.5 Non Functional Requirements

1.0 The program should be available on the World Wide Web.
Rationale: maximum feedback is needed in order to examine this domain-specific
research area the program is exploring (query languages for semi-structured data)

2.0 The database graph should be stored persistently.
Rationale: modification and updates to the databases would be easily possible.

3.0 Experienced users should be able to use the system after 30min of training.
Rationale: system that is easy to use will attract more users, so more people can
join in the discussion of the issues the program is dealing with.

4.0 After 30min training, the average number of errors made by an experienced
user should not exceed 2 per hour.
Rationale: this usability goal proves that the system is easy to learn and use.

5.0 Time to restart the program after failure should not exceed 1 min.
Rationale: users might abandon the program altogether.

8 Software Design

This section is based on the requirement specifications described in the previous
section and it serves as a basis for the next step of the actual implementation and
testing. The design process includes several stages that are detailed in the
following sections. First, general system architecture is given, in order to structure
and organize the user requirements. This is achieved mainly by dividing the
system into several sub systems. Then, a more detailed object-oriented model is
designed which includes the main data structures and algorithms at the core of the
program. A separate section is then dedicated to user interface design, which uses
some heuristics that promote system learnability and ease of use. Finally, the last
section discusses how the SSD database is stored. As it turns out, this issue
remains an open one in the SSD study.

8.1 System Architecture

As mentioned earlier, the system can be decomposed into two major interacting
entities: the client and the server. These constitute the main sub-systems. Each can
be further decomposed as the following block diagram demonstrates. The
following architectural block diagram represents an overview of the system
structure. Each box represents a different sub system and in itself can include
other boxes or sub-systems. The arrows show that data and/or control are passes
from one sub system to another in the direction of the arrow.

SERVER
v v v
Query HTML < Log file Database ——»{ File
processor { ™} generator | manager loader viewer
i !
CLIENT
Query Request File
handler [< handler < » manager

35

The previous structural model did not, and should not, include control
information. The following control model, a call return diagram, is concerned
with the control flow between different sub systems. This control model uses a
centralized control approach in which one sub system is designated as the system
controller and has the responsibility of managing the execution of other sub
systems. It may devolve control to other sub systems but it will expect to have the
control returned to it. Each box represents a sub system that will be eventually
implemented as a routine. Therefore, when a sub system requests a service from
another one, it does so by calling the associated routine.

mainServ
A 4
viewDB userQuery viewLog
readDB evalQuery W‘tdog getlog

showResult

Figure 8: Call Return diagram for modeling system control flow

Each of the above routines belonging to a sub system can be further refined into
sub routines. In particular, evalQuery is a complex routine that is implemented by
the query processor sub system, and makes several other routine calls. It is not
discussed at this point, since only an abstract high-level decomposition is given
here. Instead, it is described in the next section, after specifying the system
objects, using a service usage diagram.

36

8.2 Object-oriented Model

The design strategy used in modeling the system is object-oriented design (OOD).
The OOD approach, whereby the identified requirements are implemented, views
the system as a set of interacting objects, rather than as a set of functions sharing a
global state. In OOD, each object is an independent entity with its own private
state, data and operations or services, some of which are available to other
objects.

Object-oriented systems are easy to maintain, as objects are independent.
Changing the implementation of an object or adding to it new services should not
affect other system objects. Therefore, OOD results in a more maintainable and
loosely coupled system. By encapsulating the data and the operation allowed to
manipulate it, objects become reusable components. This normally reduces
implementation and testing costs. Encapsulation also entails information hiding, a
principle idea in OOD according to which objects hide their internal data and
operation from other objects. Again, this enhances maintainability, reusability and
reduces software errors.

The object-oriented system modeling is done in several stages. First, the different
classes are identified along with their attributes and operations. Second, these
classes are organized into an aggregation hierarchy, which shows how objects are
part-of other objects using association relationships and multiplicity information
that specify the number of instances that participate in the relationship. Finally,
object-use diagrams are constructed to show how objects of these classes interact
for some main scenarios.

The following sections describe some data structure and algorithms that
implement the above OOD.

8.2.1 Class Hierarchy

The major complex sub system that implements the graph-oriented query
language is the query processor sub system. Since the graph-oriented query
language was built upon the idea that the database has a graph format, one
obvious class that could be used to initialize both the database object and the
query object, is the graph class. A graph consists of many node objects and in
particular the root node. The graph class uses two auxiliary classes, which are
used in the query evaluation process: a queue and a stack classes. The result of the
query evaluation process ts matching/pairs lists, in which each query node is
matched to a database node (or to null if corresponding database node does not
exist). These relations are described in the following class diagram in figure 2.4.

37

(. \

pair

gNode
dbNode
next

nit()
print()

id

value
edges{]
visited
next

parent

—

child

list

head
tail

part-of

part-of

has

popQ
print()

graph

root

initQ)

reset()

print()

top_order()

eval()
uses

uses
aielne
head
tail
add()
remove()

I print()

Figure 9: Class diagram for modeling the query processor sub system

—

38

8.2.2 Object Interactions

The following sequence diagram shows interactions between objects from a
temporal standpoint. It focuses on message chronology as time progresses. The
message type used here is synchronous broadcast for which the transmitter blocks
and waits until the called object has finished processing the message. Objects are
represented by rectangles and the messages exchanged are represented by
horizontal arrows drawn from the sender to the recipient. The vertical rectangle
represents object activation, that is, the time during which an object performs an
action. In that case there is an implicit return at the end of the execution of the

operation.

User log:file html:file
db:graph
> g:graph
Submit query
>
Submit query

Evaluate query

Write answers

Display answers Write answers

X

X

Figure 10: Sequence diagram for modeling object interaction

39

8.3 Data structures

The following are the data structure prototypes to be used in the implementation
phase. Some of these structures are encapsulated in others in order to achieve
information hiding and loosely coupled program, easy to maintain and modify.

class node{
// member functions
node();
node(int id1, char* valuel ="");
void setEdge(char* str, node* n);

void visitAll();

void show();

// data members

int id;

char value[MAX STR]; // value in case of a leaf node

char edgeName[MAX EDGE}MAX STR]; // array of outgoing edge labels

node* edgePtrfMAX EDGE]; / pointers correspond to

edgeName

bool visited; // used in matchings functions

node* pNext; /l used 1n stack and queue structures

}

class list{ // list of pairs

class pair{ // pair of matching
// member functions

pair();
void print();
// data members
node* qNode;
node* dbNode;
pair* pNext;
}

// member functions

list();

void add(node* qNodel, node* dbNodel = 0);

void remove();

void copy(list* I);

pair* find(int id);

bool empty() { return 'pHead; };
void print();

// data member

pair* pHead;

pair* pTail;

40

class graph {

/I stack used for searching a node in a graph //
class stack{
stack() { pHead =0; };

void push(node* n);

node* pop();

void print();

// data member

node* pHead;

}s

/l queue used in topological sort //
class queue{
queue() { pHead =0; pTail =0; };
void add(node* n);
node* remove();
bool empty() { return 'pHead; };
void print();
/! data member
node* pHead;
node* pTail;

}s

// member functions

graph();

node* find(int id); // used in constructing the db graph
void topOrder(node** arr);

void reset();

void print();

void eval(graph* q, list** I);

void evalOr(graph* g, list** 1);
void evalWeak(graph* g, list** 1);
void evalAnd(graph* g, list** 1);
void evalStrong(graph* q, list** 1);
// data members

node* root;

41

8.4 Algorithms

The algorithm which is the main focus of the program, and the most complex, is
the matching algorithm eval(), which evaluates the given query graph against the
db graph.

After eval() is called the maximal matchings are reduced to the matchings under a
given semantics. Semantics 1s meaningful only for dag queries as explained in
section 4.1.1, Tree Quertes. eval() returns an array of pointers to lists, where each
list contains pairs of matching (binding of a query node to a database node).

The eval() algorithm calls first the toplogicalOrder() function, described below,in
order to arrange the query nodes in a topological sort before searching the
database graph.

void topologicalOrder(node** arr){

queue openQ, closeQ;
node* ptr;

reset();
openQ.add(root);

while (!openQ.empty()){
ptr = openQ.remove();
closeQ.add(ptr);
for(int 1 = 0; ptr -> edgePtr{i] && i < MAX_EDGE; i++)
if (Iptr -> edgePtr[i] > visited) {
openQ.add(ptr -> edgePtr[i]);
ptr -> edgePtr[i] -> visited = true;
3
}// end while

// reverse the closeQ order to get the topological order

for(int i = 0; 1 < MAX NODE; i++) arr{i] = 0;

for(int i = 0; !closeQ.empty() && i < MAX NODE; i++) arr[i] =
closeQ.remove();

}

42

void eval(graph* q, list** match){
grap

node* orderfMAX NODE]; // the query nodes in topologigal order

int nextMatch = 0; // next position in match[] to add a newly created list
int lastMatch; // last position in match[] before new lists were added
pair* pairPtr;

int edgeNum; // num of child edges with the same name

bool found; // indicates if order[n]'s child edge was found

toplogicalOrder(order); // arrange query nodes in a topological order
for (int i =0; 1 < MAX_LIST; i++) match[i] =0;

// assign the db root to the query root
list* | = new list();

1 -> add(q -> root, root);
match{nextMatch++] =1;

// for each node n in the topological order
for(int n = 0; order[n] && n < MAX NODE; n++){
// for each edge e of the above n
for(int € = 0; order[n]->edgePtr[e] && e < MAX_ EDGE; e++){
// for each matching m in the matching lists
for(int m = 0; m < lastMatch; m++) {
pairPtr = match{m] -> find(order[n] -> id);
if (pairPtr){
found = false;
/I for each child edge of the of n's db node
for(int c = 0; pairPtr->dbNode->edgeName[c]; ct++)
1f(!strcmp(pairPtr->dbNode, order[n])){
found = true;
edgeNum-++;
if (edgeNum = 1)
match{m] -> add(order[n], pairPtr->dbNode);
else { // more than one edge with same name
list* newList = new list(*copyList);
newList -> add(order[n], pairPtr->dbNode);
match[nextMatch++] = newList;

}
} // end if (strcmp())
if (found) match[m] -> add(order{n]->edgePtr{e], 0);
} //if (pairPtr)
} /fend for(int m)
} /fend for(int e)
} // end for(int n)

8.5 UI Design

This section analyzes the user interface (UI) requirements with respect to the
target user. The GQL processor will be available on the web and thus, the Ul has
to generally fit the look-and-feel of this environment. However, the type Ul
elements needed may vary depending on the target user and the Ul requirements.
Therefore, first, the user profile is determined. Knowing the type of user who is
going to use the application is important in order to design an effective user
interface which is easy to learn and to use. Second, the Ul requirements are
defined, which describe the Ul elements needed from a functionality point of
view. Finally, in order to fine-tune the UI design, some usability heuristics are
provided. In section 9, Verification and Validation, a usability test is proposed in
order to verify that indeed the Ul is easy to use and to learn.

8.5.1 User Profile

User Characteristics: The GQL application will be used by users in the
academic field, users that are interested in the study of query languages for SSD.

User’s characteristics:

- Motivation: high.

- Attitude: positive.

- Cognitive style: analytical and intuitive.

Design goals:

- Easy to use: consistent interfaces “look and feel™.

- Easy to learn: similar functionality for similar interface elements.
- Powerful: include many design features with many options.

Physical Environment: private with low level of noise. Since the hardware is
simply a PC, there are no design implications as far as input and output devices,
glare control and the physical location in which the computer is placed.

Knowledge and experience factors: the web site is useful for a small range of
users who are interested in the study of databases, and in particular, SSD. Clearly,
most users are computer literate with a lot of experience with Internet

applications.

Knowledge and experience characteristics:
- Education: university level.

- Native Language: English.

- Computer Literacy: usually high.

- Application Experience: high level.
- System Experience: moderate level.

Implications for UTI design:

- Informative messages: no need for extensive status and help messages
- Error prevention: simple help option with small tutorial will suffice.

- Efficient commands: database search should easily be performed.

- Familiar interface: similar to other web based applications

Task Factors — the UI considerations related to operating the GQL web site.

Task characteristics:

- Frequency of use: low frequency, less than two days a month.

- Primary training: none, neither needed nor required.

- System use: Discretionary. It is the user’s decision to use the product.

UI design goals:

- Easy to learn and remember: short term memory rule (5-7 items/interface)
- Simple Interface: no fancy graphics.

8.5.2 UI Requirement

The following are requirements specific to user interface functionalities. Some
appear in the higher-level requirements specified in section 7.4.

1.0 The system will have a main menu from which the user can select next step.
2.0 The system will have a welcome screen, which explains the general purpose
of the application and how to start using it.
3.0 The system will have a query interface with a button to submit the query.
4.0 The system will enable the user to select search criteria (semantics) from a
pre-defined list in order to minimize user eITors
5.0 The system will enable the user to select filter criteria (constraints) from a
pre-defined list in order to minimize user errors
6.0 The system will have a help screen
6.1 The system will have a FAQ list (Frequently Asked Questions)
6.2 The system will have a step-by-step tutorial
7.0 The system will enable the user to restart the application at any ime.
8.0 The system will clearly display the query results in a table format
9.0 The system will enable the user on-line and off-line view of query results.

8.5.3 Interface Guidelines

In order to have a well-designed user interface it is important to take into account
both the user profile discussed in section 8.5.1 and the UI design principles
discussed below. The application’s interface has to meet some basic usability
factors: (1) effective: users are able to perform the identified tasks in section 7.4,
(2) efficient: users can perform tasks easily and in a timely manner, (3) fun:
interfaces are natural, intuitive, predictable and let the user be in control (4) safe:
interfaces provide reversal of actions and eliminate errors and confusion.

45

Since the application is meant to be used as a web site over the Internet, the user
interface design also considers differences between Web and GUI design such as
the Back button being part of the browser and not the application, implementation
of link as navigation tools, minimizing graphic images due to network delays and
consistency with web site format in order to enhance familiarity and
predictability. Other Ul guidelines include the following:

Consistency - the different screens/pages should have the action buttons in the
same location, shape, color and font. The command operates in a consistent
manner and the same sequence of action is used in similar situations.
Familiarity - the interface design should allow users to build on previous
knowledge such as using hyperlinks and familiar buttons.

Simplicity - the user interface should be simple and straightforward. Too many
graphics and advanced options would distract users from performing their
frequent tasks. The basic functions should be immediately apparent. The STM
(short term memory) rule of 7+2 items should be respected.

User Control - the system should allow the user to freely navigate through the
web site pages and search for the desired information. A feeling of stability is also
established using the Home button, which allows the user to restart the application
at any time.

Encouragement - the interface should be designed to make user actions
predictable and reversible. Users are encouraged to initiate actions and feel
confident to explore them, knowing that they can try an action, see the result and
undo the action if needed.

Versatility - the system should support alternate interaction techniques allowing
users to choose between input devices (mouse or keyboard) and allowing
shortcuts, abbreviations, accelerator keys etc.

Error Handling - the system should be designed to avoid user errors. When such
errors happen, it should provide clear and simple error messages. The system also
provides on-line help in order to eliminate error and confusion.

Informative Feedback - the system should offer feedback, using messages. For
every action there should be feedback, especially for infrequent critical actions.

8.6 Database Storage

The SSD database is stored in separate text files, each corresponding to a database
edge. Each file is a binary relation as explained in section 3.1, Syntax. Thus, each
file contains a list of pair of nodes representing the two nodes that the edge
connects. The first node in each pair is the source node and the second one is the
destination node. If the second destination node is a leaf node, a value
corresponding to that leaf node might appear next to it. For example, the file
“name.txt” for the database shown in section 2.1 includes a pair such as {3 6
chemistry} meaning that there is an edge called “name” from node 3 to node 6
and since node 6 is a leaf node it has a value “chemistry”.

46

9 Verification and Validation

Usability evaluation methods (system testing) vary, depending on the system
characteristics, the target user and the available human resources. This section
presents the evaluation process of the GQL processor. It is based on the user
profile and the system requirements presented earlier. After the evaluation
objectives are discussed, the evaluation procedure is set up. Before the proposed
evaluation takes place it is recommended to verify the requirement specifications
from section 7.4 as a preliminary step.

The usability evaluation procedure, designed and detailed in this section, is based
on both actual user testing and expert inspection (heuristic evaluation). It seems
that combining empirical tests and inspections achieves the best results in
detecting usability defects since it involves both actual performance of end-users
and the expertise of usability specialists [NM94]. These two usability techniques
complement one another and work well together in terms of detecting usability
defects. The reason is that heuristic evaluation, which is done by an expert, better
detects major/high-level problems with the application whereas testing normally
better detects minor or low-level problems.

9.1 Evaluation objectives
Quantitative Goals

Percentage of tasks completed correctly without assistance should be at least 75%.
Percentage of tasks completed correctly the first time should be at least 75%.
Time to perform a query successfully after 20 min should be less than 2 min.
Number of errors should be 2 or less per task.

Average number of help calls should be 2 or less per task.

Average number of negative comments should be 2 or less per task.

Time to perform a search effectively should be less than 2 min.

Qualitative Goals

Achieve a satisfaction rate 3.75 (75%) or greater, on a S-point satisfaction scale.
Number of suggestions to improve the system should be 3 or less.

Percentage of critical errors should be in the range of 0%-10%

Achieve an evaluator rating 3.75 (75%) or greater, on a 5-point satisfaction scale.

47

9.2 Evaluation procedure

Setup
The following details the evaluation plan in terms of its structure, participants and

evaluation measures. The actual tests, performed by both the evaluators and end-
users are presented later. Thus, the GQL usability evaluation process is divided
into two main parts:

Expert Evaluation - the evaluator examines the systems interface twice, once with
a focus on a flow and once with a focus on individual dialog elements.

End user Testing - end-users are presented with a list of tasks to perform while
interacting with the application. A monitor takes notes using a log table. The user
tasks have to be completed within a given time.

Measures

This section of the test plan provides an overview of the types of measures that
will be collected during the test, both in terms of performance and preference. The
precise usability objectives are specified in section 4. However, the following list
of measurements is the basis of the Tasks Test and the Satisfaction Questionnaire,
and therefore, reinforces the evaluation process.

Performance Measures:

MCT - Max Completion Time - the maximal time for completing a task (min)
SCT - Successful Completion Time - time the user can complete a task (min).
EN - Errors Number - the number of error performed during one task.

RT - Recovery Time - the time it takes the user to recover from an error (min).
MRT - Maximal Recovery Time — the time allowed recovering from error (min).
NIS - Number of Incorrect Selections - the number of times the user selected an
incorrect/inappropriate option/selection during one task.

NHC - Number of Help Calls - the number of times monitor/system help needed.
NNC - Number of Negative Comments - the number of times the user has
expressed negative comments Or mannerism.

Average Completion Time (ACT): factored SCT average of all tasks of one user.
Average Errors Number (AEN): factored EN average of all tasks of one user.
Average Recovery Time (ART): factored RT average of all tasks of one user.
Average Incorrect Selections (AIS): factored NIS average of all tasks of one user.
Average Help Calls (AHC): factored NHC average of all tasks of one user.
Average Negative Comments (ANC): factored NNC average of all tasks of one
user.

Preference Measures: (1 to 5 rating scale where 1 is the worst and 5 is the best)
Degree of ease of use.

Degree of ease of learning.

Degree of satisfaction.

Degree of usefulness of the product.

Type of error (Simple, Possible, Critical).

48

Inspector Evaluation Form

Use the scale below to rate the following statements (circle only one number):

1 2 3 4 5
Strongly Disagree Sometimes Agree Strongly
disagree agree agree

(1) Consistency - the different screens always have the action buttons in the same
location, shape, color and font. The command operates in a consistent manner and
the same sequence of action is used in similar situations.

1 2 3 4 5

(2) Familiarity - the interface design allows users to build on previous knowledge
such as using hyper links, familiar search options and familiar web concepts.

1 2 3 4 5

(3) Simplicity - the user interface is straightforward. There are not too many
graphics and advanced options that would distract users from performing their
frequent tasks, and the basic functions are immediately apparent. The STM rule of
7+2 item 1s respected.

1 2 3 4 S

(4) User Control - the system allows the user to freely navigate through the web
site and search for the item or information desired. A feeling of stability is also
established using the Home button allowing the user to restart the application at
any time.

1 2 3 4 5

(5) Encouragement - the interface is designed to make user actions predictable
and reversible. Users are encouraged to initiate actions and feel confident to
explore knowing that they can try an action, see the result and undo the action if
the result is unacceptable.

1 2 3 4 S

(6) Versatility - the system supports alternate interaction techniques by allowing
users to choose between input devices (mouse or keyboard) and by allowing
shortcuts, abbreviations, accelerator keys etc.

1 2 3 4 5

(7) Error Handling - the system is designed to avoid user errors, and when they
happen provide a clear simple error message. The system also provides on-line
help in order to eliminate error and confusion.

1 2 3 4 5

(8) Informative Feedback - the system offers feedback using messages and the
status line. For every action there should be feedback, especially for infrequent
critical actions.

1 2 3 4 5

49

User Test Form

The following tasks could be given to representative end-user. Each participant
gets the same test but the tasks are arranged in different order. Before each task

the participant is given various instructions concerning the task such as

requirements, scenario, starting time and finishing time. The test monitor records

the task related information as in the Monitor Log Table.

Task 1 (Simple Search)
Task code and name: S1, search with no semantics.
Task Description: Find all department names in the university.

Task 2 (Advanced Search)

Task code and name: S2, search using AND semantics.

Task Description: Find staff members that are both course teachers and lab
instructors.

Task 3 (Simple View)
Task code/name: M1, view query results.
Task Description: After a given search is performed view the log file.

Task 4 (Advanced View)

Task code/name: M2, view and verify query results.

Task Description: After search is performed check the results vis-a-vis the
database.

Task 5 (Simple Select)
Task code/name: L1, select a query with chairman edge.
Task Description: Find chairmen that also teach course.

Task 6 (Advanced Select)
Task code/name: L2, perform a query whose result is not a leaf node.
Task Description: Find if there are labs in the math department.

Task 7 (Simple Help)
Task code/name: H1, use the help option.

Task Description: Find and verify the tutorial example from the Help option.

Task 8 (Advanced Query)
Task code/name: Q2, teacher node existence with negation.
Task Description: Find all courses that do not have teachers.

50

Monitor Log Table

The following table contains the information the monitor records while

supervising the users. The table contains eight rows, which represent the eight
tasks presented to the user (see User test). The table contains ten columns, which
represent each task’s information. The table heading acronyms are explained

below.
Task | Task MCT | SCT MRT | RT NIS NHC | NNC
No Code
1 St 2 min 1 min
2 S2 3 min 3 min
3 Ml 2 min 1 min
4 M2 3 min 3 min
5 L1 2 min 2 min
6 L2 3 min 3 min
7 H1 4 min 4 min
8 Q2 4 min 4 min

Table 5: Monitor log table

MCT - Maximal Completion Time - the maximal time to complete a task (min).
SCT - Successful Completion Time - the time a user completes a task (min).

EN - Errors Number - the number of errors performed during one task.

RT - Recovery Time - the time the user recovers from the last error (min).
MRT - Maximal Recovery Time - the maximal time to recover from error (min).

NIS - Number of Incorrect Selections - the number of times the user selected an

incorrect/inappropriate option/selection during one task.
NHC - Number of Help Calls - number of times monitor/system help were needed
NNC - Number of Negative Comments - the number of times the user has
expressed negative comments Or mannerism.

51

User Satisfaction Questionnaire

Use the satisfaction scale below to rate the following statements (circle only one):

1 2 3 4 5
Strongly Disagree Sometimes Agree Strongly
disagree agree Agree

1. The application is easy to use and I did not have major difficulties.
1 2 3 4 5

2. The application is enjoyable to use and I had fun using it.
1 2 3 4 5

3. I did not have many errors performing the tasks.
1 2 3 4 5

4. The error messages that were given by the system were clear and helpful.
1 2 3 4 5

5. Once [learned how to use one screen, it was easy to use the other screens.
1 2 3 4 5

6. The system is generally interesting and I enjoyed exploring on my own.
1 2 3 4 5

7. The application provides shortcuts and accelerator to speed up operations.
1 2 3 4 5

8. I could perform all the operations [wanted with few or no errors.
1 2 3 4 5

9. It was easy to cancel or undo operations and go back to the previous step.
1 2 3 4 5

10. I would recommend this web site to many of my collegues.
1 2 3 4 5

Please write in your own words your general impression of the application and
how you would improve it in terms of both interface presentation and available
operations.

10 Conclusion

The main feature missing from the proposed GQL is regular path expressions and
the ability to reach an arbitrary depth in the database graph. One solution,
mentioned in section 6 “Criticism and Future Research™, is to allow path vanable
to range over edges. Other query languages for SSD use this concept in an SQL-
like format. Incorporating regular expressions into a GQL would require
revisiting the suggested algorithms.

The visual query graph is helpful in analyzing the GQL for research purposes,
such as for establishing weak and strong matchings and for query optimization.
However, from a practical point of view (see
www.cs.concordia.ca/~grad/elkada/project) only users with domain-specific
knowledge can query a SSD model using such a graph format. Therefore, some
mechanisms are needed to internally convert conventional Ul search elements
(edit boxes, list boxes, radio buttons etc.) to a graph representation.

Finally, the proposed GQL is yet another step in exploring semi-structured query
languages. The paper’s intention was not to develop a concrete GQL but to
explore how such a language allows for incomplete answers. In this respect, the
objectives set at the beginning were achieved. The GQL model provides several
mechanisms for dealing with incomplete answers such as partial matching, weak
search and filter constraints, semantics with different levels of binding etc. An
approach that combines a graph-oriented QL and other SSD-QLs aspects is
needed for a practical GQL implementation.

53

11 References

[Abi97] Serge Abiteboul, “Querying semi-structure data”, [n F.N. Aftrati and Ph.
Kolaitis, editors, Proc. 6™ International Conference on Database Theory, Volume
1186 of Lecture Notes in Computer Science, pages 1-18, Springer-Verlag,
(Delphi Greece), 1997.

[ABS99] Serge Abiteboul, Peter Buneman, Dan Suciu, “Data on the Web — from
relational to semistructured data and XML”, Morgan Kaufmann Publishers,
(California USA), 1999.

[DFFLS98] Alin Deutsch, Mary Frenandez, Daniela Florescu, Alon Levy, Dan
Suciu,“A Query Language for XML”, ACM Press, 1998.

[KNS99] Yaron Kanza, Werner Nutt and Yehushua Sagiv, “Queries with
Incomplete Answers over Semistructured Data”, ACM Press, (Philadelphia USA),
1999.

[Mai86] D.Maier. A logic for objects. In Workshop on “Foundations on
Deductive Database and Logic Programming”, pages 6-26, 1986.

[NM94] J. Neilsen & R.L.Mack, “Usability Inspection Methods“, John Wiley and
Sons, New York (New York, USA), 1994.

[Reu94] J.Reuben, “Hand book of usability testing - How to Plan, Design and
Conduct effective tests™, John Wiley and Sons, (California USA), 1994.

[Som97] [an Sommerville, “Software Engineering”, Addison-Welsley, Harlow
(England) fifth edition 1997.

(UlI89V1] J. Ullman, “Principles of Database and Knowledge-Base systems”, Vol
1:The New Technologies. Computer Science Press, New York (New York,
USA), 1989.

[Ul189V2] J. Ullman, “Principles of Database and Knowledge-Base systems”, Vol

2:The New Technologies. Computer Science Press, New York (New York, USA),
1989.

54

12 Source Code

55

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

LI/ S/ 77777 77777777 777 7/
// Global Constants

LIS 7 I/ 2777777/ / 7 7 S /777 77777 7/
const MAX STR 20; // maximal string length

const MAX EDGE 5; // maximal outgoing/incoming edges
const MAX NODE 40; // maximum nodes in a query graph

const MAX LINE 80; // maximal string line length

const MAX LIST 20; // maximal matching lists

int debug = 1;

L1777 777777777777 7777777 7777777777777 77

// Global Variables
VSRS A A A A A AN NIV N v i s A d v 4
FILE *logFile, *debugFile; // output files

char fileLine[MAX LINE]:; // output line
char params[MAX NODE]:; // node variables
bool chairEdge; // chairman edge selected

char semantics, filterl, filter2; // query constraints

L1777 7 777777777 S 7 7 S /7 /7777777777
// A node represents an element in the semi-structured data graph
// Each node has an array of outgoing edges (name and pointer)
// which represent the sub elements name and address
L1777 7777777777777 /777 77777/ 777777 /77777
class node({

public :

// member functions

node () ;

node (int idl, char* valuel = ""};

void setEdge (char* str, node* n);

void visitAll():

void copy(node* n);

void print () ;

void printAll();

// data members

int id;

char value[MAX STRI]; // value in case of a leaf node
char edgeName [MAX EDGE] [MAX STRI; // array of outgoing edge labels
node* edgePtr[MAX EDGE]; // pointers correspond to edgeName

bool visited;
node* pNext:;
|

L1777 77777777777 /7777 7S /7777777
// pair of matchings between a query node and a database node
VOSSP S A I A A I NI I IS NS e i i 4
class pair{

public :

// member functions

pair (node* gNodel, node* dbNodel = 0);

// data members

node* gNode;

node* dbNode:;

pair* pNext:

VISR IS SNSRI I A A s i il 4
// list used in constructing the pairs of matchings

L1077 7777777 77 S Prr il /777 77777777/
class list{

public :
list () { pHead = pTail = 0; }:
list (const lists 1);
void add{node* gNodel, node* dbNodel = 0);
void remove();
void copy(list* 1);
pair* find(int id);
bool empty() { return !pHead; };
void print(char ch):;
// data member
pair* pHead;
pair* pTail;
}:

LI/ 7777777777777 7777 /7777777777777
// Graph structure is used for storing the semi-structured database,
// the user queries and the query results generated by the program.
VLSRNV IO III eI P eIy
class graph {

// stack used for searching a node in a graph //
class stack({
public :
stack() { pHead = 0; };
void push(node* n):;
node* pop();
void print():;
// data member
node* pHead;
};

// queue used in topological sort //
class queue{
public :
queue () { pHead = 0; pTail = 0; };
void add(node* n):
node* remove () ;
bool empty() { return !pHead; };
void print():;
// data member
node* pHead;
node* pTail;
}:

public:
// memkber functions
graph(){ root = new node(l); }:
node* find(int id):
void topOrder (node** arr):
void reset():
void print();
void eval (graph* q, list** 1);
void evalOr(graph* g, list** answer):;
void evalAnd(graph* q, list** answer);
void evalWeak(graph* q, list** answer):;
// data members
node* root;

/*****i—*****:l'*****************************t**********t**************/

/******* GLOBA‘L FUNCTIONS PROTOTYPE ****#****t*********/
/t***********#*********i—*##*kr*r**r***t#**#***#****f**************#i—/
graph* readDB({();

graph* query():

void readFile (char* edgeName, graph* db):

void openFiles({):;

void closeFiles():;

void writeFile(char* str, char ch);

void getParams{():;

void checkParams () :

bool isTree (char* params):;

void filter(list** answer):

void showlLists(char* params, list** 1, int step):;

void printLists(list** answer, int step);

char **getcgivars{():;

char x2c(char *what);

void unescape_url (char *url);

void terminate (char* message);

/i******i—**********************i’**r*x’r**#**i’*******i:’r**i—*************/

/*t***** THE MAIN FUNCTION *f***f*#t*****t***#/

/**********************k*#*******************i********k***f*********/

int main{() {
list* answer [MAX LIST]:;
openFiles();

// read SSD graph from text files
graph* db = readDB({);

// get and check the query params
getParams () ;
checkParams () ;

// create the query graph from params
graph* q = query();

// step 1: search phase
db —-> eval{qgq, answer):;
printLists (answer, 1):
showLists (params, answer, 1)

~e

// step 2: filter phase

filter (answer) ;

printLists (answer, 2);
showLists (params, answer, 2);

closeFiles():

return 0;

/******i’*********i—**************************************i—i-***i-*i‘***k/

Vo GLOBAL FUNCTIONS DEFINITION HAEIE S XA A AL)

/*****************i‘**i—*************k**********i—*******#*************/

LLLLLLTLL SIS 7 77 L 7SS 7 7 7 7 7/
// Read the database and return a graph with the semi-structured data
// Data is stored in text files as described in the documentation
LTSI 777777777 S 7 /777777777777 7/
graph* readDB() {

graph* db = new graph():;
writeFile("readDB(): start of function.\n", 'd'):;

readFile {"department", db);
readFile ("course", db):;
readFile ("1lab", db):
readFile ("chairman", db);
readFile ("teacher”, db):
readFile ("instructor”, db);
readfFile ("name", db):
readFile("first", db):
readFile("last", db):;
readFile ("seniority", db):

writeFile("readDB(): end of function.\n", 'd'):
db -> print(); // print the db graph into debug file

return db;

LIS LSS I S I 7 IS IS A7 7S 7 77
// Read the given edge file name into the given database graph
VLA A A A A A AN AN VNI S A A PP S I I 4
void readFile(char* edgeName, graph* db){

FILE* £;

char* fileName = new char [MAX STRI]:
char* strlLine = new char [MAX LINE];
int sourceld, destId;

char value[MAX STR];

node *pNcde, *destNode;

writeFile("readFile(): start of function.\n", 'd"):

if (!strcmp (“"department", edgeName)) strcpy{(fileName, "dept"):

else if (!strcmp("seniority”, edgeName)) strcpy(fileName, "senior"):;
else if (!strcmp("instructor”, edgeName)) strcpy(fileName, "inst"):;
else strcpy(fileName, edgeName}):;

strcat (fileName, ".txt"):;
if (((f = fopen(fileName, "r")) == NULL))
terminate("error in readFile{): file missing or cannot be open"):

while (!feof(f)){
strcpy(strLine, "");
strcpy (value, "");
sourceld = destId = O0;
fgets(strLine, MAX LINE, f):
sscanf (strLine, "td %d %s", s&sourceld, s&destId, &value):
if (sourcelId){ // input line has non white char
pNode = db -> find(sourceld);
if (pNode) {
destNode = db -> find(destId):;
if (!destNode) destNode = new node (destId, wvalue);
pNode -> setEdge (edgeName, destNode):;
} // end if pNode
} // end if sourceId
} // end while

sprintf(fileLine, "readFile(): file %s was read.\n", fileName);
writeFile("readFile(): end of function.\n", 'd'):
fclose(£f) ;

VIR NI AR SRR A A s i i i a4
// constructor - initializes the graph as a QUERY graph according to params
// the full query graph consist of the nodes variables udncbpvwxyz.
VOSSN A N A R N A A AR A A A A S S N S A A S A A S I A A S 9 S I 4
graph* query(){

graph* g = new draph():

N

node* department = new node(101)
node* deptName = new node(102);
node* course = new node(103);
node* lab = new node (104);

node* courseName = new node(333)
node* labName = new node (444);
node* person = new node (105);
node* first = new node(777):
node* last = new node(888);
node* seniority = new node(999);

A1)

writeFile("query(): start of function.\n", 'd'};

g -> root -> id = 100;
q —> root -> setEdge ("department"”, department):;
g -> root -> print{);

if (params[2] == 'n') department -> setEdge ("name", deptName);
if (params[3] == 'c¢') department -> setEdge("course", course):’
if (params([4] == 'b') department —-> setEdge("lab", lab):
if (params([5] == 'p'){
if (params([3] == 'c') course -> setEdge("teacher", person):;
if (params([4] == 'b') lab -> setEdge("instructor", person):;
if (chairEdge) department -> setEdge("chairman", person);
}
if (params[6] == 'v') course —-> setEdge("name", courseName):;
if (params{[7] == 'w') lab -> setEdge("name", labName):;
if (params([8] == 'x') person -> setEdge("first”, first):
if (params[3] == 'y') person -> setEdge("last", last):
if (params{10] == 'z') person —-> setEdge("seniority”, seniority):
writeFile("query({): end of function.\n", 'd'):

q —-> print():; // print the query graph into debug file

return g;

LI7 7777777777 77777 SIS/ IS/ 777777777777

// Eliminate some of the lists according to the filter constraints (global vars)
// filterl is the existance constraint and filter2 is the comparison constraint
VORS00 0 A N NN A 02 A A A A A S A i i s e g e i a4

void filter (list** match) {

int id;

char str[MAX STR]:;

pair* p;

writeFile("filter(): enter function.\n", ‘d');

// filterl (existance constraint) specifies the node variable
// that must be bound to db element, otherwise eliminate match

id = 0;
switch (filterl)(
case 'n':id = 10z2;

break ;

case 'c':id = 103;
break ;

case 'b':id = 104;
break ;

case 'p':id = 105;
break ;

case 'v':id = 333;
break ;

case 'w':id = 444;
break ;

case 'x':id = 777;

break ;

case 'y':id = 888;
break ;

case 'z':id = 999;
break ;

} // end switch

if (id)
for(int i = 0; match[i] && i<MAX_LIST; i++) (
p = match[i] -> f£ind(id);
if (!p->dbNode) match(i] = 0; // p must exist

// filter2 (comparison constraint) specifies the node variable
// that must be bound and eaual to db element, otherwise eliminate match
id = 0;
switch (filter2){
case 'c':id = 102;
strcpy(str, "Chemistry"):
break ;
case 'm':id = 102;
strcpy(str, "Math"):;
break ;
case 's':id = 102;
strcpy(str, "CS"):
break ;
case 'd':id = 777;
strepy(str, "David"):;
break ;
case 'r':id = 777;
strcpy(str, "Ruth");
break ;
case 'h':id = 888;
strcpy(str, "Ben-Yisahy"):;

break ;
case 'b':id = 888;
break ;
} // end switch
if (id)
for (int i = 0; i<MAX_LIST; i++) {
if (!match(i]) continue ; // some were eliminated in filterl

p = match([i] -> find(id):;
if (p && p—->dbNode) {
sprintf(fileLine, "filter(): p->dbNode->value: %$s.\n", p—->dbNode->val

ue) ;
writeFile(fileLine, 'd'):
sprintf(fileLine, "filter(): str: %s.\n", str):;
writeFile(fileLine, 'd'"):
if (strcmp (p->dbNode~>value, str)) matchii] = 0;
}
else matchli] = 0;

} // end for(int 1i)

writeFile("filter(): end of function.\n\m", 'd'):

VPRI AN R A AR R N i R R A i R R A a i s e s e iais
// Create, open and initialize "debug.txt"” to which execution results are written

// and log.txt to which query results are writ ten.
L1777 7777777 S S 7777777777/

void openFiles() {

if (debug){

if ((debugFile = fopen("debug.txt", "wb")) == NULL)
terminate ("Error opening debug file. \n"):
writeFile ("openFiles () : debug file was opened. \n", 'd'};
}
if ((logFile = fopen("log.doc", "wt")) == NULL)
terminate ("Error opening log file. \n"):
writeFile("openFiles(): log file was opemed. \n", 'd");

printf ("Content-type: text/html\n\n");
printf ("<html>\n");

printf ("<head> </head>\n"):;

printf ("<body bgcolor=FFFFFE>\n");

VO i i il idsids

// close all output files
VIR0 102 A A A A A A N A A AN A A A S A A A A A v A A S

void closeFiles () {

if (debug) fclose(debugFile):;

fclose({logFile) ;

// put ending tags of html screen

printf ("</body>\n")

printf ("</htmi>\n") :

writeFile("\ncloseFiles(): all files were closed.\n", 'd');

VIR0 A A AR N A A A VA A AV A A s i s s e i
// Write the string into the file given by ch. ch=d/1 means debug/log
LI7L 70777 7S 7 7 77277 7777777777
void writeFile(char* str, char ch){

int len = strlen(str):

if (ch == '1') fwrite(str, 1, len, logFile);
else if (ch == *'d' && debug) fwrite(str, 1, len, debugFile):;

VLI 220220 AN AN VA A A A AN AR L AN VA A A s a i s
// Write the query answers (given in 1) to the html file in a table form
VIR0 AN A AR A A A VLI A A i s e i
void showlLists{char* params, list** 1, int sStep){

char temp[10] = "";
int ans = 1;
writeFile ("showLists () : start of functionm.\n", 'd"):;

if (step ==1) {
printf ("
Query Results:
\n"):
printf("To save the query results select Log file from the main menu
\n"

printf("To perform another query select Query from the main menu
\n"):;

printf("To view the guery parameters click the Back button on your browser<
BR>
\n") ;

printf ("
The match phase results are:<
BR>
\n") ;

}
else printf ("
The filter phase results are:</FON

T>

\n") ;

// before start displaying make sure not all answers are empty
bool found = false;
for (int i = 0; !found && i<MAX LIST; i++)
if (1[i]) |
found = true;
brezak ;
} // end iIf

if (!found) {
printf ("The query result in this phase is empty.\n");
printf ("
try another query or see tutorial from Help option\n");
return ;

printf ("\t<TABLE BCRDER=1 CELLPADDING=12>\n");

// write the node variables in bold in the first row
printf ("\t<TR>\n\t\£<TD>.</TD>\n") ;
for (int i = 0; params[i] && 1i<MAX NODE; i++){

if (params{i] == '*') continue ; // next iteration

sprintf(fileLine, "\t\t<TD>%c", params(il]):
if (params[i] == 'n') strcat(fileLine, "
dept");
else if (params[i] == 'v') strcat(fileLine, "
course");
else if (params{i] == 'w') strcat(fileLine, "
lab");
else if (params{i] == 'x') strcat(fileLine, "
first"):;
else if (params[i] == 'y') strcat(fileLine, "
last"):;
else if (params[i] == 'z') strcat(filelLine, "
seniority");
else strcat(fileLine, "
."):

strcat (fileLine, "</TD>\n"):
printf(fileLine);

}

printf ("\t</TR>\n\n") ;

// write each answer list on a separate row
for (int 1 = 0; 1 < MAX LIST; i++)({
if (!'1[{i]) continue ; // if empty matching go to next

pair* ptr = 1[{i] -> pHead:
sprintf(fileLine, "\t<TR>\n\t\t<TD>answerid</TD>\n", ans):;
printf(fileLine);
strcpy(filelLine, "");
while (ptr){
strcpy(fileLine, "\t\t<TD>");
if (ptr->dbNode) {
strcpy(temp, ""):
sprintf (temp, "%d", ptr -> dbNode -> 1id);
strcat (filelLine, temp):
}
else strcat(fileLine, "—-"):
strcat (filelLine, "
");
if (ptr -> dbNode && ptr -> dbNode -> value)
strcat(filel.ine, ptr -> dbNode -> value);
strcat (fileLine, ".");
strcat(fileline, "</TD>\n"):
printf(filelLine);
strcpy(filelLine, ""):

ptr = ptr -> pNext;
} // while(ptr)
ans++;
strcpy(fileLine, "\t</TR>\n\n"):;
printf(fileLine);
} // end for(int i)

printf ("\t</TABLE>

\n") ;

writeFile("showLists(): end of function.\n\n", 'd');

VI 200 N A N A A A N NI S A S A I A A S I NI I A I I 4

// Read the database and return a graph with the semi-structured data
// Data 1is stored in text files as described in the documentation
VPR NNV A N A A AN AR S AV N VA A S A A I A I A S S S o a o i
void printlLists(list** answer, int step){

writeFile("printLists{): start of function.\n", *d'):

if (step == 1) (

writeFile ("\nThe query parameters are:\n \n\n",
)

sprintf(fileLine, "node variables: %s\n", params):
writeFile(fileLine, '1');
sprintf(fileLine, "chairEdge is: %d\n", chairEdge):
writeFile(fileLine, *1');
sprintf(fileLine, "semantics is: %c\n", semantics):
writeFile(fileLine, '1'}:;
sprintf(fileLine, "filterl is: %c\n", filterl):
writefFile(fileLine, '1');
sprintf(fileLine, "filter2 is: %c\n", filter2):
writeFile(filelLine, '1');
writeFile("node codes: u=100, d=101, n=102, c=103 b=104 p=105\n", '1%);
writeFile(" v=333, w=444, x=777, y=888 z=999 \n\n\n", '1'});
writeFile ("Query Results:\n \n\n*, '17);
writeFile ("The match phase evaluation results are:\n", '1");

}

else writeFile("The filter phase evaluation results are:\n", ‘1');

writeFile("=== ========= \n", *1');

// before start printing make sure not all answers are empty

bool found = false:;

for (int i = 0; !found && i<MAX LIST; i++)
if (answer([i]) {

found = true;
break ;

} // end if

if (!found) {
writeFile("\nThe query result in this phase is empty.\n", '1"):
return ;

}

for (int 1 = 0; i < MAX LIST; i++) ({
if (!'answer([i]) continue ; // if empty matching go to next
sprintf(fileLine, "list %d: ", 1i);
writeFile(fileLine, '1");
answer[i] -> print('l'):
}
writeFile("\n\n", '1'});

writeFile("printLists(): end of function.\n\n", 'd'}:;

ll'

L1777 7777 777 S/ 7 /7777 77777777
// Display the given message and exit the program

L2077 7777777777777/ 7S 7/ 777 777 7777777 7
void terminate (char* message) {

if (debug) writeFile (message, 'd’):;
exit (0);

L7777/ 7777777777777 77 77/ 77
// get the parameters from the form in param.html and verify them
VOSSNV A I S VAV SN S N VA AN N S A SR NS A A A 2
void getParams () {

int 1, v;
char **cgivars ;

writeFile("\ngetParams(): start of function.\n", 'df):
cgivars = getcgivars() ; // get the CGI vars into list of strings

i=v=20;
Strcpy(params, "*****************");
while (cgivars([i] && i < MAX NODE)
switch (cgivars([i][07)({
case 'l1':// nodes variables

i++;
params{[v++] = cgivars{i++][0];
break ;
case '2':// chairman edge
i++;
if (cgivars[i++][0] == 'n') chairEdge = false;

else chairEdge = true;

sprintf(fileLine, "getParams(): chairEdge is: $d\n", chairEdge)

writeFile(fileLine, 'd'):

break ;
case '3':// semantics
i++;
semantics = cgivars[i++] [0},
sprintf(fileLine, "getParams(): semantics is: %c\n", semantics)

writeFile(fileLine, 'd'"):;
break ;
case '4':// filterl
i++;
filterl = cgivars{i++][0];
sprintf(filelLine, "getParams(): filterl 1is: zc\n",
writeFile(fileLine, 'd'"):;
break ;
case 'S':// filter2
i++;
filter2 = cgivars({i++][0]:;
sprintf(filelLine, "getParams(): filter2 is: zc\n",
writeFile(fileLine, 'd"):;
break ;

filterl);

filter2):;

default :terminate ("getParams(): switch case not found.\n"):

}

if (params[0] == 'a') { // default case
strcpy(params, "udncbpvwxyz");
semantics = 'o';
}
sprintf(filelLine, "getParams(): params are: %s\n", params):

writeFile(fileLine, 'd'):

/** Free anything that needs to be freed **/

for (i=0; cgivars([i]; i++) free(cgivars([i]) :
free(cgivars) ;

writeFile("getParams () : end of function.\n\n", 'd'):

VL2020 RN R ANV AN A iR R VNI A P A A S A A A A A S I I 4
// verify the node variables and arrange them in the order: udncbpvwxyz
// if any of these characters are missing place an asterik instead

// 1f the parameters are invalid send an error message and exit.

VLV L0000 RN VA A NS A A A SRSV A S SIS I
void checkParams () {

bool check = true:;
char temp[MAX_NODE]:

writeFile ("checkParams(): start of function.\n", 'd"):

strcpy (temp, params):;
Strcpy(params, "*****************“);

// arrange in the topological order: udncbpvwxyz
for (int i = 0; temp{i] && i < MAX NODE; i++)
switch (temp({i]) {

case 'u':params([0] = temp[il]:
break ;

case 'd':params([l] = temp{il]:
break ;

case ‘n':params{2] = temp(i]:
break ;

case 'c':params({3] = temp(i]:
break ;

case 'b':params([4] = temp[il]:
break ;

case 'p':params{5] = temp{il]:
break ;

case 'v':params([6] = temp([i]:
break ;

case ‘'w':params(7] = templ[i]:
break ;

case 'x':params[8] = templi]:
break ;

case 'y':params(9] = temp(i]:
break ;

case 'z':params{10] = temp(il;
break ;

}
sprintf(fileLine, "checkParams(): params are: %s\n", params);

writeFile(fileLine, 'd'}:;

// check that selected nodes are consistent

if (params(0l!='u' || params{l]!='d') check = false;
if (params(2]=='n' || params{3]=='c' || params[4]=='b' || params[(5]=='p')
if (params([l]!='d') check = false;
if (params([6]=='v' && params([3]!='c') check = false;
if (params{7]=='w' && params{4]!='b') check = false;
if (params[8]=='x' || params[9]=='y' || params[l0]=="z")
if (params([5]!='p') check = false:;
if (params([5]=—='p' && params([3]!='c' && params{4]!='b' && !chairEdge) check
false ;
sprintf(fileLine, "checkParams(): for node variables check is: %d\n", check)

N

writeFile(fileLine, 'd'}:;

if (!check) ({
printf ("Error in selecting the query parameters\n"):
printf ("

Please verify that the selected nodes create a graph\n")

printf ("

Click again the Query option from the Main Menu or \n"):;
printf ("

Click the Help option and follow the Tutorial 1link\n");
terminate ("\ncheckParams () : invalid node variables.\n");

if (!isTree(params) && semantics =='0") {
printf ("Error in selecting the semantics parameter\n");
printf ("

The selected nodes create an acyclic graph so semantics
must be selected\n"):;
printf ("

Click again the Query option from the Main Menu or \n"):;
printf ("

Click the Help option and follow the Tutorial link\n"):
terminate ("\ncheckParams(): invalid semantics parameter.\n"):

}

if (filterl != "0'){
char * found = strchr(params, filteri);

if (!found) {
printf("Error in selecting the first filter parameter\n"}:

printf ("

The selected filter does not exist in the selected qu

ery nodes\n");
printf ("

Click again the Query option from the Main Menu or \n

"y

printf ("

Click the Help option and follow the Tutorial link\n"

terminate ("\ncheckParams(): invalid semantics parameter.\n"):

writeFile ("checkParams () : end of function.\n\n", 'd'):

VAP0 RN AR A S A A i S A AN A N A A A S A A A A A I 4
// Return true if the graph query is a tree graph or false otherwise

// i.e. non tree graph with a node that has more than one incoming edge.
// The only such node in the full query graph udncbvwpl23xyz 1is p.
VL0004 00 i 0 0 A RIS P i A A i S A i s o a
bool isTree (char* params) {

bool tree =
int count = 0

writeFile("\nisTree(): enter function.\n", 'd'}:
if (params[S] == ‘p"){

if (params[3] == 'c') count ++;

if (params{4] == 'b'}) count ++;

if (chairEdge) count ++;
if (count > 1) tree = false:;

}

sprintf(fileLine, "isTree(): bool var tree is %d.\n", tree);
writeFile(fileLine, 'd'):
writeFile("isTree(): end of function.\n\n", 'd'):

return tree;
}

VP22 000N AR N A R I i RS A A A S A A S A A VA o o4
// Convert a two-char hex string into the char it represents
L1207 7707777 7 7SI/ 77777/ 777777777

char x2c(char *what) {

register char digit:;

digit = (what([0] >= 'A' 2 ((what[0] & Oxdf) - 'A')+10 : (what[0O] - '0'});
digit *= 16;
digit += (what[1l] >= 'A' 2 ((what([l] & Oxdf) - 'A')+10 : (what[l] - '0')}:

return (digit);

LI/ 1 707777 7SS /S 77 7S 777 77 77777 777/
// Reduce any $xx escape sequences tc the characters they represent
L1117 70777777 S SIS A 77 7777 7 777777777
void unescape_url (char *url) {

register int i,7:;

for (1=0,3=0; url(j]l; ++i,++3) {

if ({(url(i] = url([j]) == "%") {
urlf{i] = x2c{(&urlj+1l) :
=2
}
}
urlfi] = "\0' ;

LI/ 77777 IS 7S Il /77 /777 7777777777
// Read the CGI input and place all name/val pairs into list.

// Returns list containing namel, valuel, name2, value2, ... , NULL.
VORI ARSI RN A R VAR N 0 0 A NN s s NI a4
char **getcgivars() {

register int i ;
*request method :;
content length;
*cgiinput ;
**cgivars ;
**pairlist
paircount ;
*nvpailr ;

char *edgpos ;

it

M
o]
t

4

writeFile("getcgivars(): start of function.\n", 'd'):

// Depending on the request method, read all CGI input into cgiinput
request_method= getenv ("REQUEST METHOD") :

if (!request_method)
terminate ("getcgivars(): request method is NULL.\n") ;

if (!strcmp(request_method, "GET") || !strcmp(request method, "HEAD")) {
cgiinput= strdup (getenv ("QUERY_STRING")) ;

}
else if (!strcmp(request method, "POST")) {

if (strcasecmp(geteﬁﬁ(“CONTENT_TYPE"), "application/x-www—form-urlencode

d"))
terminate ("getcgivars () : Unsupported Content-Type.\n")
if (!(content length = atoi(getenv ("CONTENT_ LENGTH"))))
terminate ("getcgivars(): No Content-Length sent with POST reque
st.\n")
if (!(cgiinput= (char *} malloc(content_length+1l)))
terminate ("getcgivars(): Could not malloc for cgiinput.\n") ;
if (!fread(cgiinput, content_length, 1, stdin))

terminate ("Couldn't read CGI input from STDIN.\n");

cgiinput[content lengthl='\0"' -

}
else terminate("getcgivars(): unsupported REQUEST METHOD\n")

// Change all plusses back to spaces
for (i=0; cgiinput(i]; i++) if(cgiinput{il == '+') cgiinput({i] ="' ' ;

// First, split on "&" to extract the name-value pairs into pairlist

pairlist= (char **) malloc(256*sizeof (char **)) ;

paircount= 0 ;

nvpair= strtok(cgiinput, "&")

while (nvpair) {
pairlist[paircount++]= strdup{(nvpair) :

if (! (paircount%256))
pairlist= (char **) realloc(pairlist, (paircount+256) *sizeof (char **))

-
r

nvpair= strtok(NULL, "&") ;

}
pairlist(paircountj= 0 ; // terminate the list with NULL

// Then, from the list of pairs, extract the names and values
cgivars= (char **) malloc((paircount*2+1)*sizeof (char **)) ;
for (i= 0; i<paircount; i++) {
if (egpos=strchr(pairlist(i], '=')) {
*egpos= *\0' ;
unescape_url (cgivars[i*2+1]= strdup(egpos+l}) :

}
else unescape_url (cgivars[i*2+1]= strdup("")) ;
unescape_url(cgivars([i*2]= strdup(pairlist[i])) -

}

cgivars({paircount*2]j= 0 ; // terminate the list with NULL

// Free anything that needs to be freed
free (cgiinput) ;
for (i=0; pairlist{i}]; 1i++) free(pairlist[i]) -

free(pairlist)

writeFile ("getcgivars(): end of function.\n", 'd"'):
return cgivars ;

/i’*******i‘*i‘#****i'*****f****************#***i’********************#**/

/******* node CLASS E‘m’CTIONs *****i—****#********/

/***********t***********i—**#*i*f*******tt****i’k*f*****************k*/

L1007 0777777777 777777777 7S 77777/ 777777777777
// constructor - create an empty node with all values zero or null
LIS 77777777777 77777 77 7777777777

node: :node () {

id = 0;

strcpy (value,

for (int i = 0; i < MAX EDGE:; i++) edgeName[i] [0] = O0;
for (int i = 0; i < MAX EDGE; i++) edgePtrli] = O;
visited = 0;;

pNext = 0;

"")'.

VOSSR A S A A AN A AR R A A S A A S A I I I I I 4
// constructor - default of value string is null (for internal node)

// all edge names and pointers are initially null
L0770 7777 777777777 777777777777777777777777777777777777/77/777777777/7777
node: :node (int idl, char* valuel) {

id = id1:;
strcpy (value, valuel); // default value is null (func header)
for (int 1 = 0; i < MAX EDGE; i++) edgeName{i] [0] = O;
for (int i = 0; i1 < MAX EDGE; i++) edgePtr[i] = 0;
visited = false;
pNext = 0;
);

LI 777777777777 77 777/ /7 /777 7S 777777/

// set the node's 2 edges arrays in the next available position

// to the edge’'s name and and its corresponding edge (node) pointer
VLSRR A AR NV SISV

void node::setEdge (char* str, node* n) {

int i;

for (i = 0; edgePtr(i] && i < MAX EDGE; i++);
strcpy (edgeName{i], str):;
edgePtr(i] = n;

}

SO0 7777 SIS LSS/ /7S 7777777/
// copy the id and value of current node into the given node n
VOISO IO I I
void node: :copy (node* n) {

n -> id = id;
strcpy(n -> value, value):;

VLR ANV RSN A S VNS PR RN N S A S AR IR VA N R A AR A A A A4
// Reset the node's visited data member (and its descendnts)

// to false recursively, so that it can be used for more queries
VOSSRV VA i PP NSNS R AN I A P A S e i a4
void node::visitAl11(){

visited = false:;
for (int i = 0; edgePtr[i] && i < MAX EDGE ; i++)
edgePtr[i] -> visitAll():

L1777 7 7777777777 77 SIS
// display the screen the node information

L1777 77777 SIS/ 7777777777
void node::print () {

sprintf(fileline, "\nid: %d\n", id):
writeFile(fileLine, 'd');

strcpy(fileLine, "value: ");

if (strcmp("", value)) strcat(fileLine, value):;
else strcat(fileLine, "no wvalue"):;

strcat (fileLine, "\n");

writeFile(fileLine, 'd‘):

writeFile ("outgoing edges:\n", 'd');
if (edgePtr({0]){
for (int i1 = 0; edgePtr[i] && i < MAX EDGE ; i++){
sprintf(fileLine, "\t %d: %d %s %s\n",

i, edgePtr{i]} -> id, edgeName([i], edgePtr[i]

writeFile(fileLine, 'd");
}
}
else writeFile("no outgoing edges\n", 'd'):
writeFile("\n", 'd'):

~-> value) ;

LI LLI LSS S S SIS IS S S S 7777/ 7777777 7
// display the screen the node information

LILLLS LSS LSS 7S 77 77 7 S 7/ 7 777 7)
void node::printAll () {

if (visited) return:

sprintf (fileLine, "id: %d\n", id):
writeFile(fileLine, 'd');

strcpy(fileLine, "value: "};

if (strcmp("", value)) strcat(fileLine, value):;
else strcat(fileLine, "no value™);

strcat (filelLine, "\n"):

writeFile(fileLine, 'd');

writeFile ("outgoing edges:\n", 'd'):;
if (edgePtr([0])({
for (int 1 = 0; edgePtr[i] && i < MAX EDGE ; i++){
sprintf (fileLine, "\t %d: %d %s %s\n",
i, edgePtr[i] -> id, edgeName[i], edgePtr(i] -> value):
writeFile(fileLine, 'd'):
}

}
else writeFile("no outgoing edges\n", 'd'):

writeFile ("\n", 'd");
for (int i = 0; edgePtr[i] && i < MAX EDGE; i++) edgePtr(i] -> printAll():

visited = true:;

/****#**********************************i’**i—*******************i’*i’**/

/******* graph CLASS FUNCTIONS *******************/

/*****i‘***i’****i’#f**************'*************f*****#****#*********#*/

L1777 7 7777777777777/ 777777/ 77/ 77777 /7777777777777
// Resets all visited data members in the database graph to false

// Used in order to procees a new query
L1777 777 7777777777 /7777777 77 7777777777777

void graph::reset{){

root —-> visitAll () ;
}

L7077 7777777777777/ 77/ 777 /77777 7 77 77777/ 7777
// Sorts the graph nodes in a topological order

LIPS S S 77 S 7 77 77777/ /7777
void graph::topOrder (node** arr) {

queue openQ, closeQ;
node* ptr;

writeFile("graph::topOrder(): start of function.\n", 'd'):

reset () ;
openQ.add (root) ;

while (!openQ.empty{)) {
ptr = openQ.remove () :
closeQ.add (ptr):
for (int i = 0; ptr -> edgePtr[i] && i < MAX EDGE; i++)
if (!ptr -> edgePtr{i] -> visited){

openQ.add(ptr -> edgePtr({il);
ptr -> edgePtr({i] -> visited = true:;
}
} // end while

// reverse the closeQ order to get the topoclogical order
for (int 1 0; i < MAX NODE; i++) arr{i}] = O:

for (int i = 0; !closeQ.empty() && i < MAX NODE; i++) arr(il = closeQ.remove ()
writeFile ("graph: :topOrder(): topological order: ", 'd'):
for(int i1 = 0; arr([i] && 1 < MAX NODE; i++){
sprintf(fileLine, " %d", arr[i] -> id):
writeFile(filelLine, 'd');
}
writeFile("\ngraph: :topOrder(}: end of function.\n\n", *‘d'}:

VISP N SR A A A A S A VAN A NV S A A N VA A 2 A N i 24
// Returns a pointer to the node which has the given id.

// Returns null if the given id was not found in the graph.
VSRS R A A N A A S A A A A A N N A A A A A A S A N N h d a i
node* graph::find(int id){

bool found = false ;
node *nAns = 0, *pNode:;
stack* s = new stack():

s -> push(root):;
while (! found && s -> pHead){ // while not found and stack not empty
pNode = s -> pop();
if (pNode -> id == id) (
found = true:
nAns = pNode;
}
for (int i = 0; !found && pNode -> edgePtr{i] && i < MAX EDGE; i++)
if (pNode -> edgePtr([i] -> id == id) {
found = true;
nAns = pNode -> edgePtr[i}]:;
}
else s -> push(pNode -> edgePtr[il]):
} // end while

return nAns;

L7707 77777777777 7SS 77777 77777/ 77777777
// Evaluate the given query graph against the db graph for maximal matchings
// Return an array of pointers to lists, where each 1list contains matchings
// (in topological order) of query id and its corresonding database id
VOSSR AR AR S VA AN AR A NS S N AN VI S A S A A R A S A A A i A4
void graph::eval(graph* q, list** match) {

node* order[MAX NODE]l; // the guery nodes in topologigal order

int nextMatch = 0; // next pos in match([] to add a new created list

int lastMatch; // last pos in match[] before new lists were added
pair* pairPtr;

int edgeNum:; // num of child edges with the same name

bool found; // indicates if order[n]'s child edge was found

writeFile ("graph::eval(): start of function.\n\n", °‘d'):;

// arrange query nodes in topological order (t.o)
q —-> topOrder(order);

// initialize all matchings lists to null
for (int i = 0; i < MAX LIST; i++) matchli] = 0;

// assign the db root to the query root

list* = new list ()
1 -> add(g —-> root, root);
matchnextMatch++] = 1;

// for each node n in crder (t.o)
for (int n = 0; order[n] && n < MAX NODE; n++){
// for each edge e of n
for (int e = 0; order([n]->edgePtr(e] && e < MAX EDGE; e++}{

lastMatch = nextMatch;

// for each matching m of match[]
for(int m = 0; m < lastMatch; m++) {

pairPtr = match{m] -> find(orderinl -> id):;
if (pairPtr) {
edgeNum = 0;
list* copyList = new list(*match[m]); // list before changes
found = false;
// for each child edge of the of n's db node
for (int ¢ = 0; pairPtr->dbNode && pairPtr->dbNode->edgeName|c] &&

c < MAX EDGE; c++){
if (!strcmp (pairPtr—->dbNode—->edgeName[c], order[n]-—->edgeName [

el {
found = true;
edgeNum++;
if (edgeNum == 1)
match{m] -> add(order([n]->edgePtrle]l, pairPtr->dbNo

de—>edgePtricl):;
else { // more than one edge with same name

list* newlList = new list(*copyList):;
newList —-> add(orcder{n]->edgePtr(e], pairPtr->dbNode->edg

ePtricl):
match[nextMatch++] = newList:;
}
if (debug) {
writeFile ("\nThe matching lists are:\n", 'd'};
for(int 1 = 0; i < nextMatch; i++) match[i] -> print ("
da');

writeFile("\n", 'd"):
} // end if (debug)
} // end if (strcmp())
} // end for (int c)
if (!found) match[m] —-> add(order(n]->edgePtrie], 0);

} //if (pairPtr)

} //end for(int m)
} //end for(int e)
} // end for(int n)

writeFile ("graph::eval(): end of matching.\n\n", 'd');
if (!isTree(params)) {
if (semantics == fo') evalOr(qg, match):;
else if (semantics == 'a') evalAnd (g, match);
}
writeFile("graph::eval(): end of function.\n\n", 'd'):

L0777 0 7770777777077 LI 7L 7777777777777/

// evaluate the query results under OR semantics. For each list first remove
// any null bindings, then remove duplicates and finally create another list
// for more that one person node before removing it from match
L1772/ 7777 7777 77/ 777/ /7777777777
void graph::evalOr (graph* q, list** match) {

int dbId;

pair* p;

list* add{MAX LIST]:;
int addIndex = 0;

writeFile ("\n\ngraph::evalOr(): start of function.\n", 'd");

// initialize all matchings lists to null
for (int 1 = 0; i < MAX LIST; i++) add([i] = O;

// remove all null matchings except first
// first is the t.o position and must not be removed
for (int 1 = 0; match[i] && i<MAX LIST; i++){
pair* pFirst;
bool first = true;

for (int j = 0; (p = match[i] -> £ind(105)) && j < 4; j++){
if (first) {
pFirst = p;
first = false;
}
else {
if ((p -> dbNode) && ! (pFirst->dbNode))
pFirst->dbNode = p->dbNode;
else match(i] -> remove();
} // end if (first)
p —-> gNode->id = 99;
} // end for (int j)

for (int j = 0; (p = match([i] -> find(99)) && J < 4; j++)
p —-> gNode->id = 105;
} // end for (int 1)

// remove duplicate matchings (no null ones)
for (int i = 0; match(i] && i<MAX LIST; i++)({
bool first = true;
for (int j = 0; (p = match[i] -> find(10S5)) && 3 < 4; j++)({
if (first) {
dbId = p -> dbNode -> id;
first = false;
}
else if (p—->dbNode->id == dbld) match[i] -> remove(}:
p —> gNode->id = 99;
}
for (int j = 0; (p = match(i] -> find(99)) && J < 4; j++)
p —-> gNode->id = 105;
}

int i;
// create additional lists for non null non duplicate matchings
for (i = 0; match{i] && i<MAX LIST; i++){
bool first = true:;
for (int j = 0; (p = match(i] -> £ind(105)) && j < 4; J++)
if (first) {
p —-> gNode->id = 99;
first = false:;
}
else {
dbId = p->dbNode->id:;
match{i] -> remove():
list* newlList = new list():;

match[i]l -> copy(newList);
add[addIndex] = newList:;
p = add(addIndex] -> find(99);
p—>dbNode->id = dbid;
node* n = find(dbId):
// update cildren
for (int c¢ = 0; n->edgePtr[c] && c<MAX EDGE; c++)
if ((p = add{addIndex] -> £ind(777)) && !strcmp("first", n->edgeNa

me[c])){
p—>dbNode—->id = n->edgePtr(c]->id;
strcpy (p~->dbNode—->value, n->edgePtrcl->value);
}
for (int ¢ = 0; n->edgePtr(c] && c<MAX EDGE; c++)
if ((p = add{addIndex] -> find(888)) && !strcmp("last", n->edgeNam
efcl)){

p—>dbNode->id = n->edgePtr{c]->id;
strcpy (p—>dbNode->value, n->edgePtrlc]j->value);
}
for (int c = 0; n->edgePtr([c] && c<MAX EDGE; c++)
if ((p = add[addIndex] -> find(999)) && !strcmp("seniority”, n->ed
geName [c])) {
p—>dbNode->id = n->edgePtr{c]->id;
strcpy (p~>dbNode->value, n->edgePtric]->value);
}
addIndex++;
} // end if (first)
}

for (int index = 0; index < addIndex; index++)
match[i+index] = add[index]:

for (int i = 0; matchl[i] && (p = match[i] -> find(99)) && i < MAX LIST; i++)
if (p) p -> gqNode->id = 105;

writeFile("graph::evalOr(): end of function.\n\n®", 'd"):;

LLLLL7 7777777 77 7 7 P 77 77 7 S 7777777 7 77
// evaluate the query under AND semantics. For each list, all person

// nodes (with id=105) must be matched/bound to the same database node
// such duplicate pairs are removed from the current match list

LILL L7777 LSS P77 77 S S /P77 77 S 777777777777
void graph::evalAnd(graph* g, list** match){

int dbId;
bool valid:;
pair* p;

writeFile("graph::evalAnd(): start of function.\n", 'd'):
for (int 1 = 0; match[i] && i<MAX LIST; i++) {

valid = true; // assume list is AND semantics valid
dbIid = 0; // assume first db match does not exist

// find first query node with id=105 and check if it has a db match
pair* pFirst = match({i] -> find(105);

if (pFirst->dbNode) dbId = pFirst->dbNode->id:

else valid = false;

pFirst->gNode->id = 99; // dummy value, so next 105 can be found

// find second query node with id=105 (must exist for dag)
pair* pSecond = match({i] -> find(105):

if (!pSecond->dbNode) valid = false;

else if (pSecond->dbNode->id != dbId) valid = Ffalse:;
match[i] -> remove(); // remove anyway, only 1 copy in answer

// find third query node with id=105 (not always exist) and remove it
pair* pThird = match{i] —-> f£ind(105);
if (pThird){
if (pThird->dbNode && pThird->dbNode->id != dbId} valid = false;
match[i] -> remove(); // remove anyway
}

if (tvalid) {

pFirst->dbNode = 0; // null, does not satisfy AND semantics
p = match([il -> £ind(777); // reset p node children to null
if (p) p—->dbNode = 0;

p = match{i] -> find(888); // reset p node children to null
if (p) p—>dbNode = 0;

p = match{i] -> find(999); // reset p node children to null
if (p) p—->dbNode = 0;

}

pFirst->qNode->id = 105; // restore original value of query id

} // end for(int i = 0)

writeFile ("graph::evalAnd(): end of function.\n\n", 'd"'}:

LIS 777 777777777777 7777777777777/ 7777/
// display all graph nodes, starting with the rcot, recursively
L0/ 777 7777 LIS S I 77777777777
void graph::print(){

writeFile ("\nGRAPH DATA IS: \n", 'd");
writeE‘ile("************** \n\n", 'dl);
root -> printAll():

/*****i‘******'***********************f******r********i—*****#***i’*****/

/************i’****#****#***i’i‘**************t******t************k****/

LILS77 7777777777 SIS/ 7777/
// add a node always at the BEGINING of the queue

LI/ 7770777777777 7777777777777
void graph: :queue::add (node* n}{

if (!pHead) pTail = n;
n -> pNext = pHead:
pHead = n;

L1777 7777777777777 77777777/ /7777777777777 7777
// Remove a node always from the END of the queue

L1777 /777777777777 77 S/ 77/ 77777
node* graph: :queue: :remove () {

node* pNode = pTail;

if (!pHead)
terminate ("queue: :remove () -~ empty queue, cannot removeln"):

if (pHead -> pNext){ // more than one node in the queue
node* ptr = pHead:;

while (! (ptr —> pNext == pTail)) ptr = ptr -> pNext:;
pTail = ptr;
ptr —-> pNext = 0;

}

else pHead = pTail = 0; // exactly one node in the gueue

return pNode;

/*i’**#***********#***********************************#*#****#*#*****/

JEEEE AR graph::stack CLASS FUNCTIONS KAEEREA A ARk]

/i‘*****#*****i’****#***********i—*****i’****i’********#*****#******##*##/

L1070 777 77777777777 I 7777777/ /7777777777
// add a node always at the BEGINING of the stack

L1770 77 7777707777777/ 77777777777/
void graph::stack: :push(node* n) {

n -> pNext = pHead;
pHead = n;
3

LI/ LL7 7SS SIS/ 7 7777777/
// Remove a node always from the BEGINING of the stack

L107 7777777777777 7 77/ 77777/
node* graph::stack::pop () {

node* pNode = pHead:

if (pHead) pHead = pHead -> pNext;
else terminate("stack::pop() - empty stack, cannot remove\n"):;

return DpNode;

/*****t*********************************#***k***********k*********i—*/

/******* pair CLASS FUNCTIONS ***********Y?******/

/*i‘*****i’*****i’*******i’**************************i’*i—#**********f**#*/

L1777 7777777777 77 S
// Contructor of the pair class, id2 has 0 default value
VPSSR PN VA N AP S A VPV S N N I N A i
pair::pair (node* gNodel, node* dbNodel) {

gNode = gNodel;
dbNode = dbNodel;
pNext = 0;

/i—**#*i—**********************#*********i’*****#*******###**********i-*/

/******* list CLASS FWCTIONS *******************/

/*****************#***********i—********************i—**i—i—i’***********/

L1007 7 0707777777777 777777/ 7777
// Copy contructor - return copy of the given list

LI LI /77777777777 777/ 777/
list::list(const list& 1) {

pHead = pTail = 0;
if (1l.pHead) {
pair* ptr = l.pHead;

do {
add(ptr -> gNode, ptr -> dbNode):
ptr = ptr -> pNext;
} while (ptr):
}

L0077 7 77777770 S S 7777777777777 777777
// add a pair always at the END of the matching list

// add a copy the query node since multiple matcings might exist
VORISR VNI NI IO OIS i
void list::add(node* gNodel, node* dbNodel) {

node *copyNode = new node{):;
gNodel -> copy(copyNode) ;
pair* p = new pair(copyNode, dbNodel) :;

if (pHead) pTail -> pNext = p:
else pHead = p;
pTail = p;

VOSSR R VA A AR A NS VA SN AR I A A A AR P i N R i e A
// Remove the first pair with id=105 from the list. This duplicate
// palr must exist in the list because of the calling function
LIS/ 7777777777/ 77 /77777
void list::remove() {

palr *ptr, *prev = 0;
bool found = false:;

ptr = pHead;

while (! found)
if (ptr->gNode->id == 105) found = true;
else {
prev = ptr;
ptr = ptr -> pNext;
}

if ({found) terminate("list::remove() — id 105 not found"):;
else {
prev —> pNext = ptr -> pNext;
delete ptr;

LIS LSS 77/ /7777777777
// Find the pair in the list which has the given query id

// Return a pointer to this pair in the list or null if not found
VRSN A0S S RN SNV OIS I I I I TIPS I
pair* list::find(int id)({

pair *ptr, *pReturn = 0;

ptr = pHead;
while (ptr && !pReturn){
if (ptr -> gNode -> id == id) pReturn = ptr:
ptr = ptr -> pNext:;
}

return pReturn;

L7177 7 7777777777777 77777777 7777777777 77777777777/ 77777777777777/77777777
// copy the current list into the given list 1. copy only the nodes id
// and value by calling node::copy (). only for semantics purposes

VSRS A AN i A A N SN N N SN S N S N R RN S N S R N i a s d d d i

void list::copy(list* 1)({

if (!pHead) terminate("error list::copy(): the list to copy is empty”):

palr* ptr = pHead;
do {
node *gNode = new node():;
node *dbNode = new node();
ptr -> gNode -> copy (gNode) ;
if (ptr -> dbNode) ptr -> dbNode -> copy (dbNode):
else dbNode = 0;
1 -> add(gNode, dbNode):;
ptr = ptr -> pNext:;
}
while (ptr):

VOSSNSO IS SISOV IOV IA
// write file all pair ids in the list. ch=1/d means log/debug file
LILSI 7077777 7777 S 7S 77/ 777777777777
void list::print{(char ch) {

char temp[10] = "";
pair* ptr = pHead:;

if (!ptr) writeFile("\n\n empty list \n\n", ch):

while (ptr) {
sprintf(fileLine, " (%d,", ptr -> gNode -> id):;
if (ptr -> dbNode) {
if (ptr -> dbNode -> id < 10} strcat(filelLine,
strcpy(temp, ""):
sprintf(temp, "%d", ptr -> dbNode -> id):
strcat(filelLine, temp):;

" IY) ;

}
else strcat(fileLine, "--");

strcat (£ileline, ") ");
writeFile(fileLine, ch):
ptr = ptr -> pNext;

}

writeFile ("\n", ch):;

Java Source Code

import java.awt.*;
import java.applet.*;
import java.lang.*;
import java.util.*;

L1171 1171717777077 0770177777707 77777 077777777777 0777777777777/777777
// A node represents an element in the semi-structured data graph
// Each node has an array of outgoing edges (name and pointer)

// which represent the sub elements name and address

L1177 7 7777777777777 7 7777777777777 77777777777777777777777777777777

public class node extends Applet {
int MAX STR = 80;
8;

int MAX EDGE =
int MAX NODES = 15;

int 4 = 25; // diameter of node's circle
int xText= 12; // x coordinate of text with respect to circle
int yText = 15; // y coordinate of text with respect to circle

int xNode; // x coordinate of the node

int yNode; // y coordinate of the node

int xMax; // max distance between first and last child nodes
int yDiff; // distance between parent/child nodes

String id; // mandatory for each node
String value; // for leaf node
int edgeNum; // number of edges a node has

String edgeName{] = new String[MAX EDGE]; // children edge labels

String edgeld[] = new String[MAX EDGE]:; // children ids
correspond to edgeName

String edgeValue[] = new String[MAX EDGE]; // children values
correspond to ids

class childCoor {
String id;
int x;
int vy

}:

childCoor child([] = new childCoor [MAX NODES];

L1707 17 7770777777777 77 7707777777777 7777777/7/77777777777777777777777/7
// node class constructor
L1771 777777777777 77777777777777777777777777/7777777777777777777777/7

public node (String paramsNode) {

// get the node's data: id, value and all its edges

StringTokenizer params = new StringTokenizer (paramsNode,
Il'");

id = params.nextToken(); // get node's id

value = params.nextToken(); // get node's value

edgeNum = MAX EDGE;
// get node's children info
for (int i = 0; 1 < MAX EDGE; i++){

edgeName{1i] = params.nextToken();

if (edgeName[i].compareTo ("empty") == 0){
edgeNum = 1i;
break:

}
edgeId{i] = params.nextToken();
edgeValue([i] = params.nextToken():;
}
for (int i = 0; 1 < MAX NODES; i++)
child[i] = new childCoor{():

} // end of node()
L1107 7777777777777 7777777 7777777777777 7777/777777772777777777777/7777

L1177 0777707777707 77 0770707777777 7707777777770777777777770777/07777777
// return the x or y coordinate of the given id nocde

L11TI7777 0777777707777 0777777777777777777777777777777077777/7777777
int find(String id, char coordinate) {

int answer = 0;
boolean foundNode = false;
int i;

for (i = 0; !foundNode && i1 < MAX NODES; i++)

if (child[i].id.compareTo(id) == 0) foundNode = true;
if (foundNode)
if (coordinate == 'x') answer = child[--i].x;

else answer = child[--i].y:;
return answer;

} // end int find{()
L1717 777107777 7777777777707 77777777077777777777777777/77707/77/7777777777

L1717 7707777 7077777770 777777777777777777777700777777777777777777/777
//

L1001 1007 7077070777077 770777777777 77 7770777777777 77770777777777777
public void paint (Graphics g, int paramsDraw[]) {

// get the node's drawing parameters

xNode = paramsDraw{0]; // the node's X coordinates

yNode = paramsDraw([l]:; // the node's Y coordinates

xMax = paramsDraw([2]:; // max distance between first and

last child nodes

yDiff paramsDraw([3]; // vertical distance between parent

and child node

child)

int xMin= xNode - xMax/2; // first child node
int xDiff = 0; // distance between 2 child nodes (0 if one

int xPos, yPos; // coordinates of current node child
int xOLine, yOLine, xlLine, ylLine; // edge line coordinates
int xEdge, yEdge; // edge name coordinates

g.setColor(Color.black);
Font £ = new Font("Ariel”, Font.BOLD, 10);
g.setFont(£f):;

// display the given node
g.drawOval (xNode, yNode, 4 , d):;

g.drawString(id, xNode+xText, yNode+yText):;

// display the node's chlidren

if (edgeNum == 1) xMin = xNode;

else xDiff = xMax / (edgeNum - 1);

vPos = yNode + yDiff; // xPos is modified inside loop

x0Line = xNode + (d/2)};
yOLine = yNode + d;
ylLine = yPos; // xlline is modified inside loop

yEdge = yNode + (yDiff - 10);

int childIndex = 0;

for (int i = 0; i1 < edgeNum; i++) {
xPos = xMin+ (i * xDiff);
g.drawOval (xPos, yPos, d, d):
g.drawString (edgeId{i], xPos+xText, yPos+yText):
xlLine = xPos + d/2;
g.drawlLine (x0Line, yOLine, x1Line, ylLine);
xEdge = xPos + xText:
g.drawString (edgeName{i], xPos, yNode+yDiff-10);
if (edgeValue[i] .compareTo("val”}) != 0)

g.drawString(edgevaluel[i], xPos-10, yPos+d+10);

child[childIndex].id = edgeId[il;
child[childIndex].x = xPos;
child([childIndex++].y = yPos:

}

} // end of void paint{()
L1107 07 7777777770771 777777777777777777777777777777777777007777777777

} // end of class node

import
import
import
import

java.awt.*;
java.applet.*;
java.lang.*;
java.util.*;

public class query extends Applet

{

child)

int MAX NODES = 15;
int totalNodes = MAX NODES;
String paramsNode([] = new String(MAX NODES];

node nodes[] = new node[MAX NODES]:

L1117 1777 177777770077 7777707707777770777770777077777/0770777777/77777

// read applet parameters
JI11 77777777777 777770777777707777777777777/7777777777777777777/77777

public void init () {

for (int 1 = 0; i < MAX NODES; i++) {

paramsNode[i] = getParameter ("node" + 1i):
if (paramsNode[i] == null) {

totalNodes = i;

break;
}
//System.out.printlin("i is: " + 1i);
//System.out.println (paramsNode[il]):
nodes[i] = new node (paramsNodef[i]):;

}
} // end of void init ()
L1177 701777777777 77 7777777777777 7777777777777777777777/77777777

L1777 1777777 777777777777 7777177777770077777777777777777777707777777
// paint the query graph, uses node.paint

L1117 7 777777707077 7777777777777777777777777777770777777777/7777777/7
public void paint (Graphics g} {

g.setColor(Color.white);

int d = 25;

int nodeNum = 0;

int edgeNum = 0; // num of edges of the current node

int paramsDraw[] = new int{4];

int xNode = 200; // node's X coordinates

int yNode = 20; // node's Y coordinates

int xMax = 160; // max distance first and last child

int yDiff 50; // distance between parent/child nocdes

int xDiff 0; // distance between 2 child nodes (0 if one

nn

// draw the root node u

paramsDraw([0] = xNode;
paramsDraw[1l] = yNode:
paramsDraw[2] = xMax;

paramsDraw[3] = yDiff;
nodes [nodeNum++] .paint (g, paramsDraw) ;

// drwa node d (department)
paramsDraw[0] = nodes[0].find(nodes[nodeNum] .id, 'x'):

20):

20);

paramsDraw{l] = nodes{0].find(nodesi{nodeNum].id, 'y'):
paramsDraw{2] = xMax;

paramsDraw([3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw):;

// draw node c (course)

paramsDraw[0] = nodes[1l].find(nodes{nodeNum].id, 'x');
paramsDraw{1] = nodes(l].find(nodes[nodeNum].id, 'v"):
paramsDraw{2] = xMax;

paramsDraw (3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw):;

// draw node 1 (lab)

paramsDraw[0] = nodes[l].find(nodesi{nodeNum].id, 'x');
paramsDraw([l] = nodes[l].find(nodes[nodeNum].id, 'y'):;
paramsDraw([2] = xMax;

paramsDraw{3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw);

// draw node t (teacher)

paramsDraw([0] nodes 2] .find (nodes[nodeNum].id, ‘x');
paramsDraw[1] nodes [2] . find (nodes[nodeNum] .id, 'y'):

paramsDraw[2] xMax/2+50;
paramsDraw{3] yDiff;
nodes [nodeNum++] .paint (g, paramsDraw):;

g.drawString ("teacher", paramsDraw[0]-40 , paramsDraw([l]-
g.drawString("instructor", paramsDraw([0]+30 , paramsDraw(1l]-

g.drawString ("chairman”, paramsDraw[0], paramsDraw{1]-50}:
g.drawlLine (nodes[1] .xNode+ (d/2), nodes{l].yNode+d, nodes

[1] .xNode+(d/2), nodes([4].yNode);

(d72),

int nXPos
int nYPos

nodes [0] .xNode—-xMax+ (d/2) ;
nodes[l] .yNode + 40;

g.drawOval (nXPos, nYPos, d, d):;
g.drawString("n", nXPos+10, nYPos+15);

g.drawlhine (nodes({1] .xNode+ (d/2), nodes{l].yNode+d, nXPos+

nYPos) ;

g.drawString ("name", nXPos+d, nYPos-d/3}:

} // end void paint
L1170 70077777777707777707707777707777777777770777/7777777/77777/777777777

import java.awt.*;
import java.applet.*;
import java.lang.*:
import java.util.*:;

public class db extends Applet
{
int MAX NODES = 40;
int totalNodes:;
String paramsNode([] = new String{MAX NODES]:;
node nodes[] = new node[MAX NODES];

LTI 7 1770770077707 7 7707770777707 7707777777770 777777777777777777

// read applet parameters

II11777771777777777707777777777777777770777777777777777777777777777

public void init () {

int totalNodes = MAX NODES;
for (int 1 = 0; i < MAX NODES; i++)({

paramsNode[i] = getParameter("node" + 1i);
1if (paramsNode[i] == null){

totalNodes = 1i;

break;

I3
//System.out.println(paramsNode[i]):
nodes{i] = new node (paramsNode{i]) ;
}
} // end of void init ()

L1717 777 7777777777777 7 077777777777 7777777777777777777777777/77777

L1777 7770077777777 777777777777 077777777777707777777777771777

// paint the database graph, uses node.paint

LIIT7L077 700707777777 777777070777707777177777007171770777777771777

public void paint (Graphics g) {

int 4 = 25;

int nodeNum = 0;

int edgeNum = 0; // num of edges of the current node
int paramsDraw{[] = new int[4]:;

int xNode = 320; // node's X coordinates

int yNode = 20; // node's Y coordinates

int xMax = 450; // max distance first and last child
int yDiff = 85; // distance between parent/child nodes

// draw the root node

paramsDraw[0] = xNode;
paramsDraw[1l] = yNode;
paramsDraw{2] = xMax:;
paramsDraw([3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw) ;

// draw 3 department nodes

for (int 1 = 1; i < 4; i++) {
paramsDraw[0] = nodes[0].find(nodes([nodeNum].id,
paramsDraw([l] = nodes[0].find(nodes[nodeNum].id,
int dXPos = paramsDraw([0];
int dYPos = paramsDraw[1l];

<"

—
AT Y

20);

}

paramsDraw[2] = xMax/3;
paramsDraw([3] yDiff;
nodes [nodeNum++] .paint (g, paramsDraw) ;

// draw department's id=3 sub nodes

for (int i = 1; i < 3; i++) {
paramsDraw[0] = nodes[1l] -find(nodes[nodeNum]}.id,
paramsDraw[l] = nodes([l] .find(nodes[nodeNum].iqd,
paramsDraw[2] = xMax/8-20;
paramsDraw[3] = yDiff;

}

nodes [nodeNum++] .paint (g, paramsDraw) ;

// draw department's id=4 sub nodes

for (int 1 = 1; i < 3; i++) {
paramsDraw[0] = nodes([2] .find(nodes[nodeNum].id,
paramsDraw[l] = nodes[2] -£find(nodes[nodeNum].id,
paramsDraw[2] = xMax/8-20;
paramsDraw([3] = yDiff;

}

nodes [nodeNum++] .paint (g, paramsDraw):;

// draw department's id=5 sub nodes

for

}

g.drawLine (nodes([3] .xNode+d/2,
[7] .xNode+d/2,

(int 1 = 1; 1 < 4; i++) {
paramsDraw[0] = nodes{3] -find{nodes[nodeNum].id,
paramsDraw[l] = nodes{3].find(nodes{nodeNum].id,
paramsDraw[2] = xMax/8-20;
paramsDraw([3] = yDiff;

nodes [nodeNum++1 .paint (g, paramsDraw) ;

nodes [7] .yNode) ;

nodes{3].yNode+d, nodes

- -
- -

—
Ne wy

<K

—
~ e

g.drawString ("course", nodes{7] .xNode+50, nodes[7].yNode-

// draw course's id=9 sub node

paramsDraw{0] = nodes[4].find(nodes[nodeNum].id, 'x'):;
paramsDraw{l] = nodes[4].find(nodes[nodeNum].id, 'y'):
paramsDraw{2] = xMax/8-20;

paramsDraw({3] = yDiff:;

nodes [nodeNum++] .paint (g, paramsDraw) ;

// draw lab's id=10 sub node

paramsDraw[0] = nodes{5].find(nodes[nodeNum].id, 'x"):
paramsDraw[1l] = nodes([5].find(modes[nodeNum].id, ‘y'):
paramsDraw([2] = xMax/8-20;

paramsDraw([3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw) ;

// draw courses's id=11 sub node

paramsDraw[0] = nodes[6].find(nodes[nodeNum].id, 'x'}:;
paramsDraw[l] = nodes[6].find(nodes{nodeNum].id, 'y'):;
paramsDraw{2] = xMax/8-20;

paramsDraw([3] = yDiff:;

nodes [nodeNum++] .paint (g, paramsDraw);

// draw courses's id=12 sub node
paramsDraw[0] = nodes[7].find(nodes[nodeNum].id, 'x');

paramsDraw[l] = nodes[7].find(nodes[nodeNum]} .id, ‘y'):
paramsDraw{2] = xMax/8-20;
paramsDraw{3] = yDiff;

nodes [nodeNum++] .paint (g, paramsDraw);

g.drawLine (nodes[8] .xNode+d/2, nodes[8].yNode+d, nodes

{141 .xNode+d/2, nodes([14].yNode) ;
g.drawString("instructor”, nodes[14] .xNode+25, nodes

{14] .yNode—-30) ;

// draw chairman edge from node3(id=5) to nodeld (id=23)
g.drawLine (nodes[3] .xNode+d/2, nodes[3].yNode+d, nodes

[7] .xNode+d*2, nodes{7].yNode);
g.drawlLine (nodes[7] .xNode+d*2, nodes[7].yNode, nodes

[{14] .xNode+d/2, nodes[14].yNode):;
g.drawString ("chairman”™, nodes[14].xNode+10, nodes[7].yNode+

25);

// draw chairman edge from nodel (id=3) to nodell (id=17)
g.drawlLine (nodes{1l] .xNode+d/2, nodes[1].yNode+d, nodes

[4] .xNode+d*2, nodes(4].yNode):;
g.drawLine (nodes[4] .xNode+d*2, nodes(4].yNode, nodes

[11] .xNode+d/2, nodes[1l1l].yNode) ;
g.drawString(“*chairman", nodes([4].xNode+30, nodes{4].yNode+

40);

} // end void paint
L1111 717 7770007070777 077777770177777777777777777770777777777/77777

} // end class db

Interfaces

glapli-uliclicd qidy ldiaguagc — [Mdin incru aamec nic/ieyprgjccvmenu. nun:

Main Menu

Home

Que!;y

Database

Log File

Document

Contact

Help

lof'L 4/17/01 11:37 PM

graph-oriented query language - welcome frame mic/// yprgjecvwelcome. nmt

Welcome to the GQL Processor

Graph-oriented Query Language processor

Instructions: To start using the application, please select an option from the main menu on the
left. In order to use the application effectively and to understand how to perform valid meaningful
queries it is highly recommended that first time users use the tutorial from the "Help” option in the
main menu on the left. In order to simplify interaction with the application, it is recommended that you
first use it without filter constraints (default option). At any time, you can restart the application by
selecting the "Home" option from the main menu.

Purpose: This web site explores the practical aspects of a graph-oriented query language (GQL) for
semistructured data (SSD). SSD is a schemaless data model in which there is no separation between the
data and the metadata. It allows representation of heterogeneous data, information sharing and
information integration. SSD is a data model represented as graph and a GQL seems to be a natural way
to a query SSD graph. GQL is one way to query SSD and the project documentation discusses and
analyzes this topic from both the theoretical and the practical points of view. For more select the "Help"
option from the main menu.

Context: This web site is a product of a M.Cs graduation project and is part of the database group at
Concordia University. It is based on: Yaron Kanza, Werner Nutt and Yehushua Sagiv, "Queries with
Incomplete Answers over Semistructured Data", 1999, (Philadelphia USA) ACM Press. Since this is a
theoretical research paper, the main focus of the project is the theoretical aspect (that can be found in
the accompanying documentation) rather than the practical aspect provided here. However, such a
partial implementation is important in order to analyze the proposed GQL, to compare it to other SSD
query languages and to suggest new ways to improve it. To learn more about me and the people who
guided and assisted me, select the "Contact” option from the main menu.

Users: This web site and the acoompanying research paper are targeted to a computer science person
who wishes to learn what the SSD model is, and what the available query languages are by which this
data model can be queried. The research paper explains why GQL is an appropriate query language for
SSD, in what ways it fails to meet the SSD requirements and hence, how it can be improved to meet the
SSD needs. For the full discussion of these issues, select (and download) the "Document” option from
the main menu. The GQL web site is especially interesting for people who specialize in databases, the
SSD model in particular. I gladly welcome any questions or comments. For feedback, you are
encouraged to select the "Contact" option from the main menu.

lofl 4/17/01 11:38 PM

query parameters

Page lot 1l

Query Parameters:

To make multiple selections, hold the Ctrl key while clicking.
To cancel a selection, click again while holding the Ctrl key.

u
d

Query nodes: {" i (nodes u and d should be selected)

Yes

Sersrsrr®

chairman edge: (in case nodes d and p were selected)

Query semantics: (in case node p has more than 1 edge)

In (dept name}
lc (course}

Filter constraints: |'b (l2b) ;

(existance) (comparison)

file://C:\project\param.html

4/17/01

semi-structure data query language rage lofl

The Hebrew University Dtabase

file://C:\project\theDb.htmi 4/17/01

graph-oriented query language - log file frame me///Cl/projecviog. niml

To save the recent query's input and output click here

Lofl 4/17/01 11:41 PM

5GP UITULILLIAS WL ldlipuaps> = Wiviidl

of 2

AU STy LU WU UV A

Project Document

The project document discusses the graph-oriented query language (GQL) proposal in [KINS99] from both
theoretical and practical points of view. It is accordingly divided into two part: (1) review and analysis of
the GQL proposal and (2) implementation and discussion of the GQL operation. You can download a
Miscrosoft Word copy of the document by clicking here. The following is the document's table of
contents.

Table of Contents

Part 1: Paper Summary and Criticism
1 Introduction

2 Semi-structured Data and Query Languages
2.1 SSD Overview
2.1 SSD Query Languages
2.2.1 LOREL
2.2.2 XML-QL
2.23 GQL

3 Graph-oriented Query Model
3.1 Syntax
3.2 Semantics
3.2.1 Search Constraints
3.2.2 Filter Constraints
3.3 Example

4 Query Evaluation Process
4.1 Search Phase
4.1.1 Tree Graph
4.1.2 Acyclic Graph
4.2 Filter Phase

5 Query Containment
5.1 Optimization Notions
5.2 Containment under AND-semantics
5.3 Containment under OR-semantics

6 Criticism and Future Research

Part 2: Software Document

7 Requirement Specifications
7.1 General Description
7.1.1 Purpose
7.1.2 Context

4/17/01 11:41 PM

grapn-oricnica quity language - wioral {LC//iILyprojecvaoc. nanl

7.1.3 Users
7.2 Glossary
7.3 System Model
7.4 Functional Requirements
7.5 Non Functional Requirements

8 Design

8.1 System Architecture

8.2 Object-oriented Model
8.2.1 Class Hierarchy
8.2.2 Object Interactions

8.3 Data Structures

8.4 Algorithms

8.5 User Interface
8.5.1 User Profile
8.5.2 Ul Requirement
8.5.3 Interface Guidelines

8.6 Database Storage

9 Verification and Validation
9.1 Evaluation objectives
9.2 Evaluation procedure

10 Conclusion

11 References

12 Source Code

[KNS99] Yaron Kanza, Werner Nutt and Yehushua Sagiv, Queries with Incomplete Answers over Semistructured Data, 1999,
(Philadelphia USA) ACM Press.

 of 2 4/17/01 11:41 PM

SAApPUITULIGLIILL QULl) ldiibudadpy ™ vulllavt Lauss LULJiIIy LUJGU VUL LAV L UL

Please send your feedback / questions/ comments to:

Jimmy Elkada: elkada@cs.concordia.ca

My home page: www.cs.concordia.ca/~grad/elkada

My Supervisor: Prof. Grahne Goste grahne@cs.concordia.ca

My Adyvisor: Alex Thomo thomo@gcs.concordia.ca

| of 1 4/17/01 11:41 PM

SLAPLU~ULIGLUILAL QUALY laliplUapt = Uulp dalllv AULJAH LUV LI i

FAQ: (Frequently Asked Questions)
1. What is semi-structured data (SSD)?
2. What is a query language for SSD?
3. What is a graph-oriented query language (GQL) for SSD?

4. Where can I get more information about SSD and GOL?
5. How does the GOL work behind the scenes?

6. How do I query the database?

7. How do I view and verify the query resuits?

8. What are the different query semantics?

9. What are filter constraints?

10. How does GOL query translate into natural language?

11. What are the advantages/disadvantages of a GOL?
12. Where can I find the documentation for this project?
13. What does the project's document include?

14. Who are the people behind this project and web site?
15. How do I send questions. comments or feedback?

TUTORIAL.: (the steps for using the application)
stepl: select "Query"” option
step2: select query nodes
step3: select chairman edge
step4: select query semantics

stepS: select filter constraints
step6: submit the guery
step7: verify the query results

Tutorial example

FAQ: (Frequently Answered Questions)

1. What is semi-structured data (SSD)?

SSD has recently emerged as an important topic of study in database. This data model enables
heterogeneous data sources such as the Web to be treated as databases. Such sources cannot be
constrained by a fixed schema. Also, due to information sharing and information integration in both the
commercial and the academic fields, it is desirable to have an extremely flexible format for data exchange
between disparate data sources. SSD is represented as labeled-edge graph in which nodes represent data
objects and edges represent data attributes. Select "View database” from the main menu to see a SSD

graph.

2. What is a query language for SSD?

A SSD query language is a programming language by which the semistructured database model can be
searched and queried. Any SSD query language should maintain certain features such as path expressions,
expressive operations, precise semantics, composionality, structure conscious and verbose language. Some
current SSD query languages are XML-QL Lorel and UnQL which all use SQL like format. Unlike these
query languages, this project explores a graph-oriented format as a query language.

3. What is a graph-oriented query language (GQL) for SSD?

| of 4 ' A/17/01 11:41 PM

ydpu-uuculnu LY idliptdp> ALY dallih

2 of 4

Al Wy piVvwU LI AlMARAL

In the proposed GQL, the query takes on a graph format. It seems that a graph-oriented query model is
more natural and intuitive for the graph-oriented database model. In this model, the query is a graph
whose nodes are variables that need to be matched by database values, according to given filter
constraints.

4. Where can I get more information about SSD and GQL?

More information about SSD and GQL is provided in the project document. In this document, you can
find analysis, summary and examples of both topics. For an even more detailed discussion refer to the
"References" section of the project document.

5. How does the GQL work behind the scenes?

In the proposed GQL, queries are evaluated in two phases: (1) the search phase and (2) the filter phase. In
phase 1, the database is searched for the pattern specified in the query graph (by the node variables). The
result is a list of possible answers (pairs of query nodes and corresponding database nodes). These are
called maximal matchings since they represent the maximal possible information that can be obtained
from the given query. In phase 2, these maximal matchings are filtered in order to output only those
matches that are needed according to the filter constraints given by the user.

6. How do I query the database?

To perform a query, simply select the "Query” option from the main menu and then enter the query
parameters. If you just click the "Submit" button without entering any parameters, the default query is all
query nodes under OR semantics.

7. How do I view and verify the query results?

After you click the "Submit"” button, the query will be processed. The results will be displayed on the
screen. At that point, you can select the "Database” option from the main menu to verify the results. The
query results can be then viewed again by selecting the "Log file" option from the main menu. You can
even download and save the query parameters and results for future reference.

8. What are the different query semantics?

For a tree query graph, all three semantics OR, AND and WEAK give the same answers. For an acyclic
query, that has some nodes with more than one incoming edge, the query semantics depends on which one
of these incoming edges must exist in the database in order for the node to be in the matching set.

- OR semantics - at least one of the query's node incoming edges must exist in the database in order for
that node to be included in the answer.

- AND semantics - all of the query’'s node incoming edges must exist in the database in order for that node
to be included in the answer.

- WEAK semantics - a query's node incoming edge and the source node of that edge must exist in the
database in order for that node to be included in the answer.

9. What are filter constraints?

Filter constraints are restrictions on the query parameters that reduce the matching set to the solution set,
such as the constraint department="Math". STRONG and WEAK constraint satisfaction and the three
types of filter constraints are exaplained in the document. For simplicity, this project deals only with
STRONG satisfaction in which all of the selected filter constraints must be satisfied.

10. How does GQL query translate into natural language?

There is no direct translation such as in SQL or XML-QL. In GQL, the graph query specifies desired
path(s). In this sense, GQL is not programmer-friendly and certainly not user-friendly. Simple Internet
users are not normally familiar with notions such as graph structures, paths, nodes and edges. However,

4/17/01 11:41 PM

grapn-onented query language - nCip mame nle//rC/project/nelp.ntmi

the intuitive graph format compensates in visualizing how the query relates to the database but not in the
natural language translation. Also, see next answer.

11. What are the advantages/disadvantages of a GQL?
Select the "Document” option from the main menu and view section 6 "Criticism and Future Research” for
a detailed discussion.

12. Where can I find the documentation for this project?
Select the "Document” option from the main menu. You can then view the table of contents of the present
project documents and download it.

13. What does the project's document include?

The project document discusses the GQL proposal in *[KINS99] from both theoretical and practical points
of view. It is accordingly divided into two parts: (1) review and analysis of the GQL proposal and (2)
implementation and discussion of the GQL operation. To view the document's table of contents select the
"Document” option from the main menu on the left.

14. Who are the people behind this project and web site?

As mentioned in the web site's home page, this site is part of my masters degree graduation project (Major
Report) at Concordia University, Montreal, Canada. The project's title is "Graph-oriented Query Language
for Semistructured Data”. Select the "Contact” option from the main menu to learn more about me and the
people who assisted me in this project.

15. How do I send questions, comments or feedback?

Your comments and suggestions are important for the future existence of this web site. Select the
"Contact" option from the main menu to send any feedback and to learn more about me and the people
who assisted me in this project.

TUTORIAL: (strongly recommended for first time users)

Note: (1) In any step, to make multiple selections hold the Shift key while clicking the Ctrl key and to
cancel a selection click the Ctrl key again.
(2) Each step 1s explained later (click tutorial example link after step 7).

Stepl: select ""Query" option

To perform a query first select the "Query" option from the main menu on the left. You will then see the
screen split into two parts. The upper part is the query guide, which is the largest query graph the user can
select. The lower part is the area where users can enter the query graph criteria (Note that for simplicity
and time constraints, users cannot create their own graph although more sophisticated user interface
allowing that would be appropriate).

Step2: select query nodes
Select from the list box the graph nodes. Note that these selection create path patterns that can be then

matched to the database. Nodes u and d should be selected in order to create meaningful queries.

Step3: select chairman edges
If you have selected node p, then you could specify chairman edge as one of its incoming edges. If node p

3of4 4/17/01 11:41 PM

grapa-oricnica query 1anguage - ncip iramec fle///CY/project/help.ntml

has more than one incoming edge, then the query graph becomes an acyclic graph instead of tree graph. In
this case the next parameter, query semantics, is meaningful.

Step4: select query semantics

In case node p is selected and it has more than one incoming edge, the query graph becomes acyclic.
Query semantics should be selected. The defauit semantics is Or semantics which gives the largest
matchings set. The meaning of the three possible semantics is explained in FAQ#8.

StepS: select filter constraints

Select from the two types of constraints in order to narrow your search. This step is optional. The default
is no filter constraints at all. For simplicity only STRONG satisfaction of two simple filter constraint types
is implemented. The meaning of filter constraints is explained in FAQ#9.

Step6: click the ""Submit" button
To send your query for processing, click the "Submit" button. The query answers will be then displayed on
the screen and will be available from the "Log file" option in the main menu.

Step7: verify the query results

In order to understand the evaluation process and analyze the results you should verify what nodes are
returned in the solution set. By selecting the "Database” option in the main menu, you can review the
database SSD graph. You can also select the "Log file" option from the main menu in order to view and/or
save the query parameters and its solution.

Tutorial example

*[KINS99] Yaron Kanza, Werner Nutt and Yehushua Sagiv, "Queries with Incomplete Answers over Semistructured
Data",1999, (Philadelphia USA) ACM Press.

4 of 4 4/17/01 11:41 PM

grapn-oricnicd qucry 1language - fcip (€Xampic) rdge 1 Ol £

Example: Query Input and Output

Note: If at any point the graph drawing is fuzzy (unclear), go to the middle of that graph and click the
"Refresh" button on your browser

stepl: select ""Query'' option
First select the "Query” option from the main menu.

step2: select query nodes
Suppose you select nodes u,d, n,c, v, p, X, y.

step3: select query edges

Nodes p and ¢ were selected so "teacher” edge is added automatically to the query graph. In this step
you can add an additional edge "chairman" by selecting "Yes" and then the query graph become a
dag instead of a tree. For simplicity, suppose you select "No" for chairman edge in this step.

just selected is the following:

step4: select query semantics
Node p was selected but with only one incoming edge so ignore this step. This is because for tree
graphs all three semantics give the same result.

stepS: select filter constraints

This step is optional, but suppose you want an existance constraint !x (node x, first name, must exist)
and an object comparison constraint n="MATH". Thus select these from the two list boxes of the
Filter constraints parameters. At this point the query can be phrased in natural language as follows:
"give me teachers' first and last names in the Math department (where first name exists)"

step6: '"'submit' the query

Click the "Submit" button to send the query paramrters for processing. If you wish to renter the
parameters click the "Clear" button. Few seconds later you will get the query solutions (filtered
matching sets in a form of a table). For the above query you will get the following table:

file://C:\project\example.html 4/17/01

graph-oriented query language - Help (example) PageZot 2

u d n c v p X y

. . dept . course . first last
answer 1 1 4 7 11 21 20 30 31

. . Math . Cal . Ruth Efrat
answer 2 1 4 7 12 22 23 32 33

. . Math Logic . David || Ben-Yishay

step7: verify the query results

You can verify that in the Math department there are two matchings that satisfy the above query. In
this case the existance filter constraint has no effect becuase both matchings have first name in the
Math department.

If the above query did not have the comparison constraint n="Math", then the answer would be as
below (note that the database course is not included because it does not have a teacher node and thus
the existance constraint !x is not satisfied) :

u d n c \4 p X y

. . dept . course || . first last
answer 1 1 3 6 9 16 17 - 26

Chemistry || . Specto . i Halewvi

answer 2 1 4 7 11 21 20 30 31

. . Math . Cal . Ruth Efrat
answer 3 1 4 7 12 22 23 32 33

. i Math Logic . David Ben-Yishay
answer 4 1 5 8 12 22 23 32 33

. . Cs Logic . Dawvid Ben-Yishay

file://C:\project\example.html 4/17/01

