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ABSTRACT

Multiple Query Points Parallel Search Algorithm (Comb Algorithm)
for MultiMedia Database Systems

In this project, we introduce and present a new search method for fast nearest-neighbor
search in high-dimensional feature space, which is called Comb algorithm. Most
similarity search techniques map the data objects into high-dimensional feature space.
The similarity search corresponds to a nearest-neighbor search in the feature space. Fagin
and Threshold algorithms are two known methods that perform for nearest-neighbor
search with one query point. On the other hand, the method we present works on parallel
systems that are identical. We provide an alternative solution with several query points
searching in parallel identical systems in as many copies as query points are defined. The
algorithm is a trade-off between space storage (multiple copies of the multidimensional
system), computation resources, and query execution time.
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1. Introduction
1.1 Overview of the Multimedia Databases.

Multimedia data is represented by digital images, audio, video, graphics, and animation
objects. The acquisition, generation, storage, and processing of multimedia data in
computers and transmission over networks have grown tremendously.

This fast growth has occurred due to three main factors. First, the recent technological
advances have spread the use of personal computers with increased computational power.
Moreover, we now have more affordable high-resolution devices to capture and display
multimedia data (monitors, printers, digital cameras, scanners, etc) and high-density
storage devices. Second, high-speed data communication networks have been developed;
the WWW has proliferated, and software to manipulate data is now available. Finally, the
third factor is the increasing use of multimedia data in many existing applications and
also new ones under development.

This fast development is expected to continue at an even faster pace in the coming years.
Multimedia data can provide more effective dissemination of information in science,
engineering, medicine, biology and social sciences. It also facilitates the development of
new paradigms in distance learning and interactive personal and group entertainment.

Databases have been developed to gather and manage huge amounts of data in different
applications. Databases provide security, availability, consistency, concurrency, and
integrity of data. From a user point of view, they provide three main functionalities.
These are the easy manipulation, query, and retrieval of relevant information from huge
amounts of stored data. The retrieval is done by abstracting the details of storage access.
Until recently, most data handled by computer applications were textual data. Therefore,
the traditional databases have been designed and optimized to manage them [1].

Multimedia Database Systems (MMDBS) must deal with the increased usage of huge
amounts of multimedia data in several and diverse applications. These applications
include: digital libraries, manufacturing and retailing, art and entertainment, journalism,
and so forth. Some inherent functions of multimedia data have direct and indirect impacts
on the design and development of a muitimedia database [2].

MMDBS need to have all the functionalities of traditional databases. In addition, they
must have new and enhanced functionalities and features. Broadly, MMDBS are required
to provide unified frameworks for storing, processing, retrieving, transmitting, and
presenting a variety of media data types in a wide variety of formats. At the same time,
they must adhere to numerous constraints that are in traditional databases.

Therefore, a Multimedia Database System is a system that can store and retrieve
multimedia objects, such as gray-scale medical images in 2-d or 3—d (e.g., MRI brain



scans), one —dimensional time series, two-dimensional color images, digitized voice or
music, traditional data types, video clips, like "prod-id’, *date’, ’title’, and any other user-
defined data types.

This project is focusing on the design of a fast searching algorithm by content. A typical
query by content would be for example ‘in a collection of stamps, find all the stamps with
the image of a car’.

Some specific applications include the following [3]:

Image databases are very much used to support queries on shape, color, and
texture.

Scientific databases with collections of sensor data. In this case, the objects are
time series, or more general, vector fields, that is, tuples of the form, e.g.,
<x.y,z.t,pressure,temperature,...>. For example, in the weather data, geological,
environmental, astrophysics databases, etc., we want to ask queries of the form,
"find past days in which the air temperature and wind patterns are similar to
today’s pattern’ to help in the prediction of the weather.

Marketing, financial, and production time series (for example, sales patterns,
stock prices, etc). In these types of databases, the typical queries would be ‘find
companies whose stock prices move likewise® or ‘find cases in the past that
resemble last year’s sales pattern of our products’.

Medical databases that store 1-d objects (e.g. ECGs), 2-d images (e.g., X-rays)
and 3-d images (e.g., MRI brain scans). Ability to retrieve quickly past cases with
similar symptoms would help us to determine a diagnosis; moreover, these can be
also used for medical teaching and research purposes.

Multimedia databases with audio (music, voice), video etc. Users might want to
retrieve for example, similar video clips or music scores.

Photograph and text archives, digital libraries with ASCII text, bitmaps, gray-
scale and color images.

Electronic encyclopedias, electronic books, and office automation.

DNA databases where there is a large collection of long strings (hundred or
thousand characters long) from a four-letter alphabet (B,E,C,D); a new string has
to be matched against the old strings, to find the best candidates. The distance
function is the editing distance (smallest number of insertions, deletions and
substitutions that are needed to transform the first string to the second).



A Multimedia Database System needs to manage several different types of information
pertaining to the actual multimedia data. These are broadly classified as follow:

1) Media Data. This is the actual data. For example, this refers to images, audio,
and video that are captured, digitized, processed, compressed and stored.

2) Media format data. This contains information pertaining to the format of the
media data after it goes through the acquisition, processing and encoding phases.
For example, this contains information such as the sampling rate, resolution,
frame rate, encoding scheme, etc.

3) Media keyword data. This contains the keyword descriptions, usually related to
the generation of the media data. For example, for a video, this might include the
date, time, and place of recording, the person who recorded, the scene that is
recorded, etc. This is also referred to as content descriptive data.

4) Media feature data. This contains the features derived from media data. A
feature characterizes the media data. For example, this could contain information
about the distribution of the colors, the kinds of textures and the different shapes
present in an image. This is also referred to as content descriptive data.

The last three types are called ‘meta’ data [4]. This is because they constitute the
information describing several different aspects of the media data. These are derived
from the original data as presented in Fig. 1.

Media )
Format data

\.

J

Media
Keyword
data >

[ Multimedia data
Automated

Analysis

Media
Feature
data

Fig.1 Metadata generation process
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The media keyword data and media feature data are used as indices in the search process.
The media format data is used in the presentation of retrieval results. Multimedia
databases require several functionalities that are not present in traditional databases.

These are presented in the boxes in Fig.2.

Data from various
kinds of devices

Content-based
Queries

Media processing: imedi

Digitation g;l; edia

Quantization

Integration

Automated Metadata

Data Used as Index

Analysis

glmﬂ;l' Ranked list of
earc search results

Compression Stored Data

Query ) Structured

Pre-processing Queries

Search Results

Synchronization and
Presentation

Final result
presentation

Fig. 2 Salient functions of MMDBS not in traditional databases.
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The major activities in managing the data in multimedia databases are the following:

1)

2)

4)

5)

6)

8)

Data acquisition: In addition to conventional means, data can be input to the
database from newer kinds of devices such as scanners for image data;
microphones, synthesizer, musical instruments for audio data; video cameras,
VCRs and frame grabbers for video data.

Data formats: These are scores of file formats. Examples include GIF, TIFF,
JPEG, etc. for images; au, wav, midi, etc. for audio; and MPEG, etc. for video.

Data storage: The data for images, audio and video are huge in size and are
usually stored in compressed form. Various forms of stripping and other storage
schemes are used for efficient access to data.

Index organization: The index organization requires multi-dimensional
structures such as R-trees, hB-trees, Grid files, etc.

Query: Keyword-based queries are inadequate for multimedia data. Novel
schemes like query-by-example and query-by-content are required.

Search and retrieval: The search is more likely to be a similarly search. The
query result is a ranked list of data items similar to the query rather than exact
matches. Relevance feedback from the user to the search engine. based on
retrieval results, is required.

Transmission: There are more stringent real-time, Quality of Service (QoS) and
synchronization requirements on the transmission due to the time-dependent
nature of audio and video for the retrieved data to be meaningful.

Presentation: Newer devices need be integrated into the system. For example,
speakers for audio, high resolution monitors for images and video. The
presentation should handle ranked results and different media.

Therefore, in a collection of multimedia objects, we can find queries of special interest.
The most frequent types of queries are the following [5]:

1)

Range query: For example, “find all lakes in Canada” or “find all cities within 50
kilometers of Toronto”. In this case, the user specifies a region (the region
covered by Canada or a circle around Toronto) and asks for all the objects that
cross this region. The query point is a special case of the range query, when the
query region collapses to a point.
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Typically, the range query requests all the special objects that intersect a region;
similarly, it could request the spatial objects that are completely contained, or that
contain the query region.

In this project, we mainly focus on the “intersection” variation; the remaining two
can usually be answered by slightly modifying the algorithm for the “intersection”
version.

2) A second type of query would be the nearest neighbor query, a slight
generalization of the nearest neighbor query for secondary keys. For example,
“find the 5 nearest grocery stores to our house.” Again, the user specifies a point
or a region, and the system will return with k closest objects. The distance is
typically the Euclidean (L2 norm), or some other distance function (e.g., city-
block distance L1, or the Loo norm).

3) Spatial joins, or overlays. For example, in CAD design, “find the pairs of
elements that are closer than € (and thus create electromagnetic interference to
each other). Or, given a collection of rivers and a collection of cities, *“find all the
cities that are within 15km of a river.”

Therefore, records with k£ numerical attributes can be visualized as k-dimensional points.
Spatial access methods are designed to handle multidimensional points, lines. rectangles,
and other geometric bodies. There are two proposed methods:

1) Methods that use space-filling curves (also known as z-ordering or linear quad-trees);
2) Methods that use treelike structures: R-tree and its variant.

In this project, we will focus only on the R-tree method. Next, we will present the R-tree
structure.

1.2 R-Tree

Guttman proposed the R-tree [6]. The R-tree can be seen as an extension of the B-tree for
multidimensional objects. A spatial object is represented by a minimum-bounding
rectangle (MBR).

In the R-tree, we can distinguish two types of nodes: leaf nodes and non-leaf nodes. Leaf
nodes contain entries of the form (obj-id,R) where obj-id is a pointer to the object
description, and R is the MBR of the object. On the other hand, non-leaf nodes contain
entries of the form (ptr,R), where ptr is a pointer to a child node in the R-tree; R is the
MBR that covers all rectangles in the child node.

In the R-tree, the parent nodes are allowed to overlap, and this can be considered as the
main innovation of this kind of three. In fact, the R-tree can assure good space utilization
and remain balanced as the same time. Fig. 3 illustrates data rectangles (solid boundaries)
organized in an R-tree with fan-out=3. Fig. 4 shows the file structure for the same R-tree,
where nodes correspond to disk pages.

13
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Fig. 3 Data (solid-line rectangles) organized in an R-tree with fan-out =3
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Fig. 4 The resulting R-tree on disk

The main focus of the R-tree is to improve the search time. Guttman [6] proposed a
packing technique that minimizes the overlap between different nodes in the R-tree for
static data. This packing technique consists in ordering the data in ascending x-low value
and scanning the list, filling each leaf node to capacity. On the other hand, based on the
Hilbert curve, another packing technique is proposed. This is much more improved, and
in this case, the idea is to sort the data rectangles on the Hilbert value of their centers.
Trying to minimize the dead space that an MBR may cover, a more general minimum
bounding shapes is considered. Gunther [7] proposed the cell trees, which introduce
diagonal cuts in arbitrary orientation. There have been suggested minimum bounding
shapes that are concave or even have holes (e.g. , in the hB-tree).
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One of the most important ideas in R-tree research is the idea of deferred splitting:
Beckmann et al. proposed the R*-tree [8], which was reported to outperform Guttman’s
R-trees [6] by approximately 30%. The main idea is the concept of forced reinsert, which
tries to defer the splits to attain better utilization. When a node overflows, some of its
children are carefully chosen. After that, they are deleted and reinserted, usually resulting
in a better-structured R-tree. This idea of deferred splitting was also exploited in the
Hilbert R-tree; there, the Hilbert curve is used to impose a linear ordering on rectangles,
thus defining who the sibling of a given rectangle is, and subsequently applying the 2 to3
(or s-to-(s+1)) splitting policy of the B*-tree. Both methods attain higher space utilization
as well as better response time (since the tree is shorter and more compact) than
Guttman’s R-tree [6].

The analysis of the R-tree performance has attracted lot of interest: Faloutsos et al.[9]
provide formulas, which assume that the spatial objects are uniformly distributed in the
address space. Faloutsos and Kamel [10] relaxed the uniformity assumption; there it was
shown that the fractal dimension is a very good measure of the nonuniformity, and that it
leads to accurate formulas to estimate the average number of disk access of the resulting
R-tree. In addition, the fractal dimension helps to estimate the selectivity of spatial joins.

Algorithms

Insertion. When a new rectangle is inserted, we traverse the tree to find the most
suitable leaf node; we extend its MBR if necessary, and store the new rectangle there.
If the leaf node overflows, we split it.

Split. Regarding the performance of the R-tree, the split is one of the most important
operations. Guttman [6] suggested several heuristics to divide the contents of an
overflowing node into sets and store each set in a different node. As mentioned in the
R*-tree [8] and in the Hilbert R-tree [12], deferred splitting will improve the
performance. As in B-trees, a split may propagate upwards.

Range queries. In this case, the tree is traversed (comparing the query MBR with the
MBRs in the current node); accordingly, nonpromising and potentially large branches
of the tree can be pruned early.

Nearest Neighbors. The algorithm follows a “branch and bound™ technique similar
to nearest-neighbor searching in clustered files. Given the query point Q, we examine
the MBRs of the highest-level parents. We proceed in the most promising parent,
estimate the best-case and worst-case distance from its contents, and using these

estimates, we prune out nonpromissing branches of the tree. Roussopoulos et al. [11]
give the detailed algorithm for the R-tree.

Spatial Joins. Given two R-trees, the algorithm builds a list of pairs of MBRs that
intersect. Then, it examines each pair in more detail, until we reach the leaf level.
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By considering all these, we can draw the conclusion that R-trees [6] are one of the
most promising spatial access methods. Among its variations, the R*-trees [8] and the
Hilbert R-trees [12] seem to achieve the best response time and space utilization, in
exchange for more elaborate splitting algorithms.

Further on, we should mention the “dimensionality curse”. Unfortunately, all the
spatial access method which are design to handle multidimensional objects will suffer
for high dimensionalities n: for the R-tree, as the dimensionality n grows, each MBR
will require more space; thus the fan-out of each R-tree page will decrease. This will
result in a taller and slower R-tree. However, R-trees have been successfully used for
20-30 dimensions. Most research in exploring the multi-dimensional spaces is
concentrated on low dimensional data-structures, such as R-tree. These structures can
be extended to higher dimensions, but this results in performance degradation. The
performance degrades because as the dimension increases, the querying cost often
increases exponentially. The index structures deployed become less effective as a pre-
filter for selections and join operations.

1.3 Nearest Neighbor Queries

As previously mentioned, a very common type of query is to find the k nearest
neighbor objects to a given point in space. Processing such queries requires
significantly different search algorithms than those for location or range queries.

Roussopoulos [11] proposed an efficient branch-and-bound R-tree traversal algorithm
to find the nearest neighbor object to a point, and then generalized it to find the k
nearest neighbors. We can explain this by first introducing two metric definitions:
Minimum Distance (MINDIST) and Minimax Distance (MINMAXDIST).

Minimum Distance (MINDIST). The first metric we introduce is a variation of the
classic Euclidean distance applied to a point and a rectangle (MBR). If the point is
inside the rectangle, the distance between the rectangle and the point is zero. On the
other hand, if the point is outside the rectangle, we use the square of the Euclidean
distance between the point and the nearest edge of the rectangle. We use the square of
the Euclidean distance because it involves fewer and less costly computations. In
order to avoid any misunderstanding, whenever we refer to distance, we will be using
the square of the distance, and the construction of our metrics will reflect this.

Minimax Distance (MINMAXDIST). In order to avoid visiting unnecessary MBRs,
we should have an upper bound of the NN distance to any object inside an MBR. This
will allow us to prune MBRs that have MINDIST higher than this upper bound. The
following distance construction (called MINMAXDIST) is being introduced to
compute the minimum value of all the maximum distances between the query point
and points on the each of the n axes respectively. The MINMAXDIST guarantees
there is an object within the MBR at a distance less than or equal to MINMAXDIST.

16



In Fig. 5 we illustrate MINDIST and MINMAXDIST in 2-space.

MBR
MBR IST
MBR  MINDIST=0 D|'
MINDIST . MIND
< uery point _»l
MINMAKDETE———p
MINMAXDIST MINDIST
MBR

Fig. 5 MINDIST and MINMAXDIST in 2-Space

Further on, we will present the algorithm for the Nearest Neighbor Algorithm for R-trees.
More specifically, we will present the branch-and-bound R-tree traversal algorithm to
find the k-NN objects to a given query point. Firstly, we will discuss the benefit of using
the MINDIST and MINMAXDIST metrics to order and prune the search tree. Secondly,
we will present the algorithm for finding 1-NN, and finally, generalize the algorithm for
finding the k-NN.

MINDIST and MINMAXDIST for ordering and pruning the search.

Branch-and-bound algorithms have been studied and extensively used in the area of
artificial intelligence and operations research. In fact, if the ordering and pruning
heuristics are chosen well, they can significantly reduce the number of nodes visited in a
large search space.

Search Ordering. The heuristics we use in this algorithm are based on orderings of the
MINDIST and MINMAXDIST metrics. While the MINMAXDIST metric is the
pessimistic (though not worst case) choice, the MINDIST ordering is the optimistic one.
In fact, since MINDIST estimates the distance from the query point to any enclosed MBR
or data object as the minimum distance from the point to the MBR itself, it is the most
optimistic choice possible. On the other hand, MINMAXDIST produces the most
pessimistic ordering that need ever been considered due to the properties of MBR and the
construction of it.

17



By applying a depth first traversal to find the NN to a query point in an R-tree, the
optimal MBR visit ordering depends not only on the distance from the query point to
each of the MBRs along the path(s) from the root to the leaf node(s), but also on the size
and layout of the MBRs (or in the leaf node case, objects) within each MBR. In
particular, one can construct example in which the MINDIST metric ordering produces
tree traversals that are more costly (in terms of nodes visited) than the MINMAXDIST
metric.

This is shown in Fig. 6. MINDIST metric ordering will lead the search to MBR1 which
would require the opening of M11 and M12. If on the other hand, MINMAXDIST metric
ordering is used, visiting MBR2 results in a smaller estimate of the actual distance to the
NN (which will be found to be M21) which will then eliminate the need to examine M11
and M12. The MINDIST ordering optimistically assumes that the NN to P in MBR is
going to be close to MINDIST(M,P), which is not always the case. Likewise,
counterexamples could be constructed for any predefined ordering.

Ml11
Query Point M21
MBR1 D L ]
M21 MBR2
, Mi2

1. MINDIST ordering: if we visit MBR1 first, we have to visit M11, M12,
MBR2 and M21 before finding the NN.

2. MINMAXDIST ordering: if we visit MBR2 first, and then M21, when we
eventually visit MBRI1, we can prune M11 and M12.

Fig. 6 MINDIST is not always the better ordering

As previously mentioned, the MINDIST metric produces most optimistic ordering, but
that is not always the best choice. Many other orderings are possible by choosing metrics
that compute the distance from the query point to faces or vertices of the MBR which are
further away. The most important feature of MINMAXDIST(P,M) is that it computes the
smallest distance between point P and MBR M that guarantees the finding of an object in
M at a Euclidean distance less than or equal to MINMAXDIST(P,M).

Search Pruning. There are three main strategies to prune MNRs during the search:

1) An MBR M with MINDIST(P,M) greater than the MINMAXDIST(P,M") of
another MBR M’ is discarded because it cannot contain the NN.
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2) An actual distance from P to a given object O which is greater than
MINMAXDIST(P,M) for an MBR M can be discarded because M contains a
object O’, which is nearer to P.

3) Every MBR M with MINDIST(P,M) greater than the actual distance from P to a
given object O is discarded because it cannot enclose on object nearer than O.

Even tough we specified only the use of MINMAXDIST in pruning strategy no. 1, in
practice, there are cases where it is more recommended to apply MINDIST (strategy no.
3). For example, when there is no dead space (or at least very little) in the nodes of the R-
tree, MINDIST is a much better estimate of [|(P,N)]|, the actual distance to the NN than is
MINMAXDIST, at all levels in the tree. So, it will prune more candidate MBRs than will
MINMAXDIST.

Nearest Neighbor Search Algorithm

The nearest neighbor search algorithm presented here implements an ordered depth first
traversal. This starts with the R-tree root node and proceeds down the tree. Initially, our
guess for the nearest neighbor distance (call it Nearest) is infinity. During the descending
phase, at each newly visited nonleaf node, the algorithm computes the ordering metric
bounds (e.g. MINDIST) for all its MBRs and sorts them (associated with their
corresponding node) into an Active Branch List (ABL). Then, we apply two pruning
strategies 1 and 2 to the ABL to remove the unnecessary branches. The algorithm iterates
on this ABL until the ABL is empty: For each iteration, the algorithm selects the next
branch in the list and applies itself to the node corresponding to the MBR of the branch.
At a leaf node (DB objects level), the algorithm calls a type specific distance function for
each object and selects the smaller distance between current value of the Nearest and
each computed value and updates Nearest appropriately. After that, we take this new
estimate of the NN and apply pruning strategy 3 to remove all branches with
MINDIST(P,M) >Nearest for all MBRs M in the ABL.

Generalization: Finding the k Nearest Neighbors

This algorithm that we presented above can be generalized to answer queries of the type:
find The k Nearest Neighbors to a given Query Point, where k is greater than zero.

There are only two differences:

There is a need of a sorted buffer of at most & current nearest neighbors, and

The MBRs pruning is done according to the distance of the furthest nearest neighbor in
this buffer.
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2. Fagin’s Algorithm

Ronald Fagin [13] introduced an algorithm that has a direct applicability for the
Multimedia Middleware System. Such a system may often be “middleware” due to the
many varieties of data that a multimedia database system must handle. In other words, the
system is “on top of” various subsystems, and integrates results from the subsystems. A
good example of such a middleware system would be the Garlic [18] system of the [BM
Almaden Research Center. In fact, Garlic [18] is integrating data that resides in different
database systems as well as a variety of non-database data servers. A single Garlic query
can access data in a number of different subsystems. An example of a nontraditional
subsystem that Garlic accesses is QBIC [19]. QBIC can search for images by different
visual characteristics (e.g., color, texture, etc).

Some of the problems associated with middleware systems include dirty data (caused by
multiple sources having conflicting information), schema integration, security concerns,
etc.

The database systems were previously required to store only small character strings, such
as the entries in a tuple in a traditional relational database. In this case, the data was
entirely homogeneous. However, now we want the database systems to be able to deal
not only with character strings (both small and large), but also with a heterogeneous
variety of multimedia data (such as images, video, and audio). What is more, the data that
we want to access and combine may reside in a variety of data repositories, and therefore,
we may want our database system to serve as middleware that will access such data.

A very significant difference between multimedia data and small character strings is that
multimedia data may have attributes that are inherently fuzzy. For instance, we do not
have the case of a given image which is simply “blue” or “not blue”. Instead, there is a
degree of blueness, which ranges between 0 (not at all blue) and 1 (totally blue).

One way to deal with this kind fuzzy data is to use an aggregation function t. If Xi,....Xm
(each in the interval [0,1]) are the grades of object R under the m attributes, then
t(X1,....Xm) is the overall grade of object R. These aggregation functions are useful in
other contexts as well.

Two popular choices for the standard aggregation functions are min and average (or the
sum, in contexts where we do not care if the resulting overall grade no longer lies in the
interval [0,1]). When the choice is min, we have the following situation: under the
standard rules of fuzzy logic, if object R has grade x; under attribute A, and x, under
attribute A,, then the grade under the fuzzy conjunction A|AA; is min (X, X2).

We can define an aggregation function t as monotone if t(Xi,.... Xm) < (X'1,...; X'm)
whenever x; < x’; for every i. The monotonicity is a reasonable property to require from
an aggregation function: if for every attribute, the grade of object R’ is at least as high as
that of object R, then we would expect the overall grade of R’ to be at least as high as
that of R.
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Let us give few definitions:

If x is an object and Q is a query (called atomic query), let us denote by pq(x) the grade
of x under the query Q. This is possible by considering the standard rules of fuzzy logic,
as defined by Zadeh [14]. A graded set is consisting of all pairs (x; pai(x)), where x is a
retrieved object and pai(x) is the grade of x under query Ai. Now the monotonic property
of query Ft(A,B) is as follow:

If pa(x) < pa(x’), and pp(x) < pa(x’), then pryasy(X) < pras)(X’) ,
where ppya)(X) = t(Ha(X), Ha(X)), where the aggregation function t is called triangular
norm and satisfies the following properties :

a) Conservation: t(0,0) = 0; t(x,1) =t(1,x) =x.

b) Monotonicity: t(x;,X2) S t(x;".x2") if x; < x;" and X, < ;.
¢) Commutativity: t(x;,X2) = t(x2,X1).

d) Associativity: t(t(xi,X2),X3) = t(x1,t(x2,X3)).

e) Strictness: t(x1,x) = | iff x;=1 for every i.

f) Monotonicity: t(x;,x2) < t(x;’,x2") if x{ < x;” for every i.

The above properties can be upgraded to any number of retrieved objects and atomic
query (A and B in the above example).

In other words a graded set consists of retrieved objects which have scores assigned to
them depending on how well they satisfy an atomic query.

Let us consider the query: color = ‘blue’. We can assume that the subsystem will output
the graded set consisting of all objects, one by one, along with their grades under the
subquery (query that refers to a subsystem), in sorted order based on grade, until Garlic
tells the subsystem to stop. Later, Garlic [18] could tell the subsystem to resume
outputting the graded set where it left off. Alternatively, Garlic could ask the subsystem
to sort let’s say the top 12 objects along with their grades, then, request the next 12, etc.
This type of access can be referred as “sorted access”. On the other hand, Garlic can
interact with the subsystem in another way. More specifically, Garlic could ask the
subsystem the grade (with respect to a query) of any given object. This can be referred as
“random access”.

Considering all these limited ways of access to the subsystems, we can state that the
issues of efficient query evaluation in a middleware system are very different from those
in a traditional database system. In fact, it is not even clear what “efficient” means in a
middleware system.

Following, we will present the cost of an algorithm. This cost represents the amount of
information that an algorithm obtains from the database.

21



The sorted access cost is the total number of objects obtained from the database under
sorted access. For example, if we have two lists (corresponding in the case of conjunction
to a query with two conjuncts), and some algorithm requests altogether, the top 100
objects from the first list and the top 20 objects from the second list, then, the sorted
access cost for this algorithm is 120.

The random access cost is the total number of objects obtained from the database under
random access. The middleware cost is taken to be c1*S + c2*R, where S is the sorted
access cost, R is the random access cost, and ¢l and c2 are positive constants. Since it
ignores the costs inside of a “black box” like QBIC [19], the middleware cost is not a
measure of total system cost. There are some situations (for example, in the case of a
query optimizer), where there is a need of a more comprehensive cost measure. Finding
such a cost measure is an interesting open problem.

The middleware cost is taken for convenience to be simply the sum of the sorted access
cost and the random access cost, S + R. Both “formulas” of middleware cost (S + R and
c1*S + ¢2*R) are within constant multiples of each other, and therefore. the same results
hold in the “big O" notation.

Algorithms for Query Evaluation

Following, we will present an algorithm for evaluating monotone queries [13]. This
algorithm is optimally efficient up to a constant factor, under some particular
assumptions. Most probably, the most important queries are the queries that are
conjunctions of atomic queries.

Let us presume for now that the conjunctions are being evaluated by the standard min

rule. An example of a conjunction of atomic queries is the query (Artist="Beatles’) A
(AlbumColor="red’).

In this example, the first conjunct Artist="Beatles’ is a traditional database query, and the
second conjunct AlbumColor="red’ would be addressed to a subsystem such as QBIC.
Consequently, in answering this query, two different subsystems (in this case, perhaps a
relational database management system to deal with the first conjunct, along with QBIC
to deal with the second conjunct) would be involved.

In this situation, in order to answer the query, Garlic has to gather the information from
both subsystems. Under the assumption that there are not many objects that satisfy the
first conjunct Artist="Beatles’, a good way to evaluate this query would be to first
determine all objects that satisfy the first conjunct (call this set of objects S), and then to
obtain grades from QBIC (using random access) for the second conjunct for all objects in
S. We can therefore obtain a grade for all objects for the full query. If the artist is not the
Beatles, then the grade for the object is 0 (since the minimum of 0 and any grade is 0). If
the artist is the Beatles, then the grade for the object is the grade obtained from QBIC in
evaluating the second conjunct (since the minimum of 1 and any grade g is g).



At this point, we should note that the result of the full query is a graded set, where:

- the only objects whose grade is nonzero have the artist as the Beatles, and

- among objects where the artist is the Beatles, those whose album cover are closest to
red have the highest grades.

Further on, let us consider a more difficult example of a conjunction of atomic queries,
where more than one conjunct is “nontraditional”. An example of this would be the query
(Color="red’) A (Shape="round’).

In this case, we can assume that one subsystem deals with colors, and a totally different
subsystem deals with shapes. Let Al represent the subquery Color="red’, and let A2
represent the subquery Shape="round’. The grade of an object x under the query above is
the minimum of the grade of x under the subquery Al from one subsystem and the grade
of x under the subquery A2 from the second subsystem.

Once more, Garlic must combine the results from two different subsystems. Let us
assume that we are interested in obtaining the top k answers (such as k = 10). This means
that we want to obtain k objects with the highest grades on this query (along with their
grades). If there are ties, then we want to arbitrarily obtain & objects and their grades such
that for each y among these & objects and each z not among these & objects, () 2 o(z)
for this query Q.

Following, we will present an obvious naive algorithm [13]:

1. Have the subsystem dealing with color to output explicitly the graded set consisting
of all pairs (x; pa; (x)) for every object x.

2. Have the subsystem dealing with shape to output explicitly the graded set consisting
of all pairs (x; pa: (x)) for every object x.

3. Use this information to compute for every object x:

Haaa2(x) = min{pai(x), pa2(x)}

For the k objects x with the top grades pa1.a2(X), output the object along with its grade.
For this algorithm, the middleware cost is linear in the database size (the number of
objects).

Let us generalize beyond the query (Color="red’) A (Shape="round’), which is the
conjunction of two atomic queries, and consider conjunctions AIA...AAm of m atomic
queries. An important case arises when these conjuncts are independent (as they are at
least intuitively in the above query). We shall be somewhat informal here. The next
theorem [17] shows that we can do substantially better than the naive algorithm.

23















































































































