INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A COMPARISON OF DATA STRUCTURES IN C++

WEINING ZHOU

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE
PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2001

© WEINING ZHOU, 2001

il

National Library Bibliothéque nationale
of Canada du Cana
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Sl Votre réldrence
Our Sie Notre ritirence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-59346-0

Canada

ABSTRACT

A Comparison of Data Structures in C++

Weining Zhou

Since many C++ libraries have become widely-used by programmers. Pointers are one of
the most powerful and flexible features used in C++. Pointers are particularly important
for the analysis and design of data structures. The intention of this project is to compare
the two implementation methods, "Closed" and "Open" by using two C++ Libraries. In
this project, I designed and implemented a phonebook application by using a doubly
linked list and a binary search tree as common data structures in the C++ libraries: C++
Standard Template Library (STL) and C++ Data Object Library (OrgC++). In order to
explore the performance of the two styles of building data structure libraries in C++, I
performed an objective comparison of two implementation methods in terms of ease of
coding, time and space efficiency as well as the reliability. The applications were coded

in C++.

iii

Acknowledgments

Through many face-to-face discussions as well as exchanges of electronic mail, a number
of individuals have shaped my ideas on the project. For their contributions, first and
foremost, I gratefully acknowledge the encouragement, assistance and valuable opinions
of my supervisor, Dr. Peter Grogono, whose enthusiastic support and guidance enabled
me to successfully understand and complete the project on time. I also thank Yang
Wang, Weidong Sun, Xieming Hao and, Zhan Zhang for their valuable feedback and
their help in finding ways to present the ideas more clearly. Thanks to Chunbo Yang for
helping to straighten out the installation problems with the libraries. Thanks also to my
friends David Wilkins and Alan Yu for their encouragement during this project. Finally,
thanks to my dog, Muffy, who kept me company on many days and late nights of doing

the project.

iv

Table of Contents

LIST OF FIGURES vl
LIST OF TABLES vl
CHAPTER 1 INTRODUCTION 1
1.1 OBIJECTIVES |
1.2 MOTIVATION 2
1.3 OUTLINE OF THE PROJECT 2
CHAPTER 2 BACKGROUND 4
2.1 PROBLEMS WITH EXISTING SOFTWARE
2.2 CHALLENGES
2.3 THE BAsIC CONCEPTS 5
CHAPTER 3 DESIGN 7
3.1 EVALUATION CRITERIA DEFINITION
3.2 THE APPLICATION 9
3.3 THE DATA STRUCTURES 10
3.4 THE LIBRARIES 11
3.4.1 Standard Template Library (STL) 12
3.42 C++ Data Object Library (OrgC++) 13
3.5 TeST CORRECTNESS 14
3.6 COMPARING TIME AND SPACE EFFICIENCY 15
3.6.1 Calculating Time 16
3.6.2 Calculating Space 16
3.6.3 Definition of Time and Space Ratio 16
CHAPTER 4 IMPLEMENTATION 18
4.1 ENVIRONMENT 18
4.2 "OPEN" IMPLEMENTATION METHOD 19
42.1 [mplementing a Doubly Linked List 20

42.1 Implementing a Binary Search Tree

4.3 "CLOSED" IMPLEMENTATION

4.3.1 Implementing a Doubly Linked List
4.3.2 Implementing a Binary Search Tree

4.4 USER INTERFACE

4.4.1 Suspected Problems with OrgC++

4.42 UI for "Open" Implementation in STL
4.4.3 Ul for "Closed" Implementation in OrgC++

CHAPTER 5 RESULTS

5.1 USsABILITY - EASE OF CODING

5.2 TIME AND SPACE

5.2.1 Build Time Efficiency

5.2.2 Access Time Efficiency

5.2.3 Space Efficiency

5.3 INTERACTION WITH MFC

5.4 OTHER COMPARISONS

CHAPTER 6 CONCLUSIONS

6.1 THE ADVANTAGES OF STL AND ORGC++

6.2 FUTURE WORK

CHAPTER 7 BIBLIOGRAPHY

A. BOOKS AND ARTICLES

B. INFORMATION ON THE WEB

APPENDIX

A STLFUNCTOR.H

STLPERSON.H

STLPERSONHASIT.H

ORGCFUNCTOR.H

ORGCPERSON.H

mm o 0w

ORGCPERSONHASIT.H

vi

22
23
23
26
30
30
31
35

36

36
38
38
39
42

.. 43

43
45

45
47

48

49
50

50
51
53
54
55
57

List of Figures

FIGURE 1: LISTSINSTL

FIGURE 2: DOUBLE_RING IN ORGC++

FIGURE 3: DOUBLE_TREE IN ORGC++
FIGURE 4: THE MAIN WINDOW OF PHONEBOOK IN STL

FIGURE 5: UI FOR SEARCHING A RECORD IN STI

FIGURE 6: UI FOR INSERTING A RECORD IN STL

FIGURE 7: UT FOR DELETING A RECORD IN STL

FIGURE 8: Ul IN ORGC++

List of Tables

TABLE 1: BUILD TIME RATIO

TABLE 2: ACCESS TIME RATIO

TABLE 3: ACCESS TIME

TABLE 4: SPACE RATIO

TABLE S: COMPARISON OF THE TWO LIBRARIES IN OTHER CRITERIA

vii

20
23
26
31
32
33
34
35

39

41
42

Chapter 1 Introduction

As we know, there are many C++ libraries that are used by programmers. But each
library works better in different situations. Data structures are of interest since there are
some important performance problems in designing scientific class libraries. The
experience of working with various data structures may offer some useful insights about
performance of these data structures. In this section, [describe objectives of the project

and why I chose this topic. I also introduce the structure of this report.

1.1 Objectives

This project is an attempt to find out whether pointers should be inside objects or in
separate nodes. For example, with a linked list, there are two ways to implement it. In the
nclosed" implementation, each node has a pointer to the next node. In the "open"
implementation, the list nodes are separated from the data nodes; the data nodes have no
pointers. In order to explore the performance of two styles of building data structure
libraries in C++, [present an objective comparison of two methods of implementation in
terms of ease of coding, size of node, security, time/space efficiency and reliability. I
designed several applications using Linked List and Tree as the common data structures
on base class libraries such as STL and OrgC++ and not on UI libraries (such as

InterViews, StarViews, etc.).

1.2 Motivation

When Dr. Peter Grogono asked me in May 2000 whether [would feel like writing the
project to compare data structures in some C++ libraries, my first thought was: is this a
very interesting topic? Many books about data structures and algorithms were already
out at that time, but you could hardly find any references about comparison of these data
structures. [simply questioned the need for doing this project. I tried to look at this aspect
in different libraries to see if there was any related material, mostly in vain.
Unfortunately, it is very hard to find any books that compare data structures with C++
libraries. About two weeks later, I must admit, he convinced me. This project will be very
interesting and new to us. In summary, [enjoyed the project and hope it can provide
some valuable reference to people who are interested in further research of data structures

in C++ libraries.

1.3 Outline of the Project

The project starts off with an introduction in Chapter 1. It describes the objectives and
motivation of the project. Chapter 2 describes the background of the project, and what the
challenges are to the current technology as well as describing the existing problems with
software and the concepts of the "Open" and "Closed” implementation methods. In
Chapter 3, I present details about experimental design from many aspects including: the
application design, selection of data structures, and libraries. In addition, [define the

evaluation criteria which are used to compare the performance of the two methods later in

chapter 5. Chapter 4 gives the details of the implementation of the phonebook in the
different libraries and Chapter 5 presents the test results of the different implementations.
To compare the performance of each implementation [used the predefined criteria. [also
present the User Interface in Chapter 5. At the end I conclude the project and summarize
the two implementation methods in Chapter 6 and. [also give some recommendations for

further work on this project. References are listed in the Chapter 7.

Chapter 2 Background

In recent years there has been a proliferation of C++ libraries used by programmers but
there are few published comparisons of data structures with them. With most class
libraries today data structures are using "Open" implementation, such as STL. There are
few libraries using "Closed" implementation, such as OrgC++ from the Code Farm.

Definitions of "Open" and "Closed" implementation methods are in section 2.3.
p

2.1 Problems with existing software

Most of the problems with today’s software stem from poor management of internal data.
Data related errors such as dangling pointers may stay in the code unnoticed for a long
time and are often difficult to find. There are no generic, fully typed libraries for data
structures in C, and container based C++ libraries hide the critical data organization (data
structures) thus making the resulting code difficult to debug. They also cause
inefficiencies at run-time. Some libraries offer persistent objects but require custom
coded IO functions for every new class. Even highly recognized libraries such as the STL
or tools.h++ do not protect the programmer from accidentally destroyed objects or
messed up linked lists. For example, you cannot add/delete objects from a list while

traversing it with an iterator.

2.2 Challenges

The major challenge for present technology is to generate efficient software more
efficiently. Computers are being used in essentially all areas of human activities; even
products that seemingly have nothing to do with computers contain a significant portion
of computer related cost.

In general, more efficient software means three things:

e Coding and debugging programs faster;

¢ Generating programs with less errors,

e Producing cleaner, more readable code, which is easier to maintain.

2.3 The Basic Concepts

Here, I present a brief explanation of some concepts I used in this project.

with "Open" implementation method, as the name implies, the list nodes are

separated from the data nodes; the data nodes have no pointers to substructures. The data
structures are formed by auxiliary objects, usually called links, that point to the
application objects but do not add any pointers or other data to them. Each Link has a

pointer that leads to the object that participates in the list.

with "Closed” implementation method, the data structures are formed by

pointers stored inside the application objects. For example, in a linked list, each node has

a pointer to the next node.

All this seems so trivial that you may wonder why I are spending so much time
discussing it but there is more here than meets the eye. The problem is that the choice of
implementation has numerous consequences which are often neglected. For example, a
"closed" implementation is computationally more efficient, and permits bi-directional
access between the objects involved. On the other hand, lists using "open"
implementation method are easy to implement using templates, and they form the basis of

almost every existing container class library.

Chapter 3 Design

In this project my major interest is to explore the performance of two styles of building
data structure libraries in C++. [present an objective comparison of two methods of
implementation in terms of ease of coding, size of node, security, time/space efficiency
and reliability. Firstly, I need to choose the kind of application and what libraries and
common data structures are to be considered in this project. In addition, [also need to
consider two other important aspects which, are the correctness of the implementation
and comparison of the time and the space of each data structure in the two libraries. In
order to evaluate the performance of each implementation, I define evaluation criteria for

the experiments.

3.1 Evaluation Criteria Definition

The criteria defined are applicable to a class library in general or to its component classes
in particular to this project. The following have been defined:

e Usability

By this term [mean several aspects which, although difficult to quantify, are important,
such as the set of classes provided, the ease of use of a class, the kind of services
provided, and the simplicity and clarity of the interface. Of course, the more the interface

is simple and clear, the better.

e Time and Space
For a given data structures such set, list, tree, graph, etc., the programs could check the
time needed to build a list and search elements or the space occupied to build a list.
e Others
In deciding which C++ class library to use, other criteria can be defined, such as the
following:
e s it shareware or commercial (do we have to pay for it, is it provided in source or
object format) ?
e if it is provided in source format, are there problems to compile it with the
compiler [have ?

e s the class library supported by the vendor/developer ?

Of course, without vendor/developer support I have to take into account the risk of
finding bugs [then have to fix by myself.
e isiteasytoinstall?
e is there a suite of tests to be run in order to make sure that no problems will occur
when using the library ?

e isit reliable? Is it easy to crash when you do a large search?

There is something to add to the discussion made so far. The criteria defined till now are
somehow context-independent, in the sense that they are general criteria against which a

class library can be evaluated and found to be more or less "desirable".

However, other criteria could be defined which are more context-dependent, and could
arise from particular needs related to the kind of application that has to use the class
library. The definition of such criteria is not included in the scope of this project but

ought to be considered when making the final decision on which library (libraries) to use.

3.2 The Application

The application selected was a phone book. The phone book includes first names, last
names and phone numbers of people. I designed this application specifically for the

purpose of testing and comparing the performance of the selected C++ libraries.

It is not overly complex. [chose this application for two reasons:

e First, simplicity made it possible to write implementations in several C++ libraries in
a reasonable time.

e Second, the simplicity enhances data structures comparison because all the libraries

considered provide support for the set of features needed by the application.

The application can carry out the following basic functions:

e Insert: Input arecord which includes first name, last name and telephone number of a
person into the Phone Book.

e Search: Given a selected phone number, search for a person’s record (First name &

Last name.)

e Delete: Given a selected phone number, delete record that contains a person’s first
name, last name and this phone number. The phone number is used as a key to

associate with the first name and last name of a person from the phonebook.

3.3 The Data Structures

The application is implemented in different libraries using Double Linked List and binary

tree.

The reasons why I choose the above structures are:

(1) Both data structures are supported by both STL and Org C++.

(2) They are very common data structures in any class library. In other words, they can
represent many data structures.

(3) Due to time concerns, they are easy to implement.

(4) A linked list and a binary search tree require pointers for allocating their nodes
dynamically.

(5) I also considered other data structures, but found that the implementation of these
data structures do not add significant new aspects over the data structures [have
chosen. For example, the implementation of a single linked list is similar to a double
linked list; the implementation of a hash tale or a graph can use a single or double

liked list.

10

3.4 The Libraries

There are several libraries for containers and algorithms in C++. Each of them has
different characteristics of its data structures in the implementation. After searching and
studying many references about different libraries from different resources, I selected the

libraries considering the following factors:

e Availability: The libraries can be easily obtained. They can be either part of most
recent C++ implementations or can be downloaded free from web-sites.

e Common data structures: All libraries have the common support data structures such
as list, tree, etc.

e Different implementation: The libraries are able to represent "Open" and "Closed"
implementation methods.

In addition, I considered other criteria. In the end, based on these factors, I decided to

use STL and OrgC++ libraries in the project to do the comparison. You may wonder

why I selected STL and OrgC++. [describe them in the following sections.

Here, I will mention another Library, LEDA (Library of Efficient Data types and
Algorithms). LEDA is a library of the data types and algorithms of combinatorial
computing. At the beginning of the library selection, I considered LEDA. It is similar to
STL. Data structures of LEDA also are implemented using "Open" Implementation. It is
not public domain, for this reason and also concern about time, I dropped it from the

study.

It

It took quite a long time for me to geta complete "feeling" of the different and multifold

aspects of each library, although a "flavour” of it may be had in a shorter time.

34.1 Standard Template Library (STL)

As is well known, the C++ Standard Template Library (STL) is provided as a part of
most recent C++ implementations. It is a C++ library of container classes, algorithms,
and iterators. It provides many of the basic algorithms and data structures of computer
science. As its name suggests, the Standard Template Library is based on the
comparatively new subject of templates. The STL is a generic library, as implied by the
name, meaning that its components are heavily parameterized. Almost every component
in the STL is a template. The basic idea of templates is that they allow us to write
functions and classes in a very general way and then specialize them when they are

actually put to use.

The Standard Template Library is defined as a set of class interfaces. Individual vendors
provide their own implementations of the STL. Strictly speaking, the comparison [
describe in this report is between a particular implementation of STL (namely, the

implementation provided by Microsoft) and OrgC++.

The organization and design of the STL differs in almost all respects from the design of
most other C++ libraries. The most important difference between STL and all other C++
container class libraries is that most STL algorithms are generic; they work on a variety

of containers and even on ordinary C++ arrays. A key factor in the library design is the

12

consistent use of iterators, which generalize C++ pointers, as intermediaries between
algorithms and containers. Containers make iterators available, algorithms use them, and

this leads to a separation which allows an exceptionally clear design.

Therefore, iterators are central to generic programming because they are an interface
between containers and algorithms. Algorithms typically take iterators as arguments, SO a
container need only provide a way to access its elements using iterators. This makes it
possible to write a generic algorithm that operates on many different kinds of containers,

even containers as different as a vector and a doubly linked list.

34.2 C++ Data Object Library (OrgC++)

C++ Data Object Library includes the most extensive data structures on the market for

fast, automatic persistence and are ideal for large, complex C++ projects.

The C++ Data Object Library (OrgC++), is much more than just a class library. It is
based on the new concept of hyper-objects which are objects that store their data in other
objects, called carriers, carriers passively keep the data, but hyper-objects provide the
methods. OrgC-++ provides an additional abstract layer for the management of data. We
do not have to assemble the organization from library objects. The organization is
automatically generated in a way which provides optimum run-time performance.

Combined with automatic persistence and version control, OrgC++ provides a set of

13

powerful tools which are useful for a variety of tasks ranging from the mangagement of

internal data to the design of fast memory resident databases.

Compared to the C++ library, STL, OrgC++ is a library of intrusive data structures which
are formed by pointers stored inside the application objects, unlike container where
auxilliary objects form the required data structure and point only to the application
objects without adding any pointers or other data to them. Therefore, OrgC++ uses the

"closed" implementation and STL uses the "open" implementation.

3.5 Test Correctness

The main program of this project is the phonebook.cpp. A phonebook is defined as a list

and binary search tree in STL and as Double_Ring and Double_Tree in OrgC++. It is

used to test all the data structures implemented in this project, which include:

e Person: Defines a record of a person that includes the person’s firstname, lastname,
and phonenumber. It is used as a user defined data type later.

o Functor: Defines a random number generator. It is used to initialize a stream by a
given seed. In other words, it is used to generate each random data stream of
firstname, lastname and phonenumber of persons.

o PersonHaslt: is used to get a person’s record from a given phonenumber.

The following functionality is tested in the applications using STL:
e To search a record of a person in the existing phonebook. It returns an iterator to that

object if the given phonenumber is found, then [can get the record of that person.

14

e To insert a record of a person into the phonebook and provide confirmation whether
the record is inserted. I can also later use search to verify if the record is correctly
inserted.

e To delete a record of a person from the existed phonebook and check whether it can

be correctly removed from the phonebook.

3.6 Comparing Time and Space Efficiency

In order to analyze the time and space performance of data structures when building and
accessing a large tree and a list in both STL and OrgC++, [compare the results in STL to
equivalent results in OrgC++. I used the following code to create a random number
generator. It generates some large random numbers. [use them as records for the
phonebook. The large number is also used as the number of nodes for building trees and

lists and the number of times to access trees and lists.

long unsigned Functor::random_number()

{
ran = (ran * multiplier)%module;
if (ran <1000000)
ran += 3000000;
return ran;
}

15

3.6.1 Calculating Time

I use the function _ftime() to get the current time of the system: to measure the time for
building and accessing trees and lists.

To get the build time of a tree or a list, [call _ftime() right before and right after building
the tree or the list. Then I calculate the time difference between the two calls of _ftime().
Similarly, I get the access time of a tree or a list by calling _ftime() right before and right

after accessing the tree or the list for n times.

3.6.2 Calculating Space

[use sizeof(*this) to measure the space needed for each tree node or list node. I
implement a size() function in each full node class and calculate the space needed for an

entire tree or list.
3.6.3 Definition of Time and Space Ratio

In order to compare time and space performance of data structures in each library easily

and clearly, I define time and space ration as following:

Given a number n, [define

Time to build a data structure with nodes using STL

BuildTimeRatio (n) =
Time to build a data structure with nodes using OrgC++
Time to access a data structure with n nodes 10000 times using STL
AccessTi io (n) =
ce imeRatio () Time to access a data structure with n nodes 10000 using OrgC++
Space needed to build a data structure with n nodes using STL
SpaceRatio (n) =

Space needed to build a data structure with nodes using OrgC++

16

I use BuildTimeRatio (n), AccessTimeRatio (n), and SpaceRatio (n) to compare the time
and space efficiency of using STL and OrgC++. If the ratio is less thanl, it means that

using STL requires less time or space than using OrgC++.

I use 10000 loop iterations because I want to make the comparison of the performance of
two implementations in the same level. Although it takes a long time to access data in the
"Open" implementation, it is almost instant in "Closed" implementation if the number of

the loop times used is small.

17

Chapter 4 Implementation

In this section, I will give the implementation details of the phonebook in different

libraries. In order to show how the implementation can be generalized to work with any

data type without conflicts between STL (Standard Template Library) and OrgC++ (C++

Data object Library) in this project, all the classes head file names in STL start with ’stl’

and in OrgC++ start with the ‘orgc’.

There are three main classes defined through this application.

e Class Functor: It defines a random number generator. It is used to initialize a stream
by a given seed.

e Class Person: It defines a person's firstname, lastname and phonenumber. Class
ORGCPerson is used as a template parameter type in the file ORGCphonebook.cpp.

e Class PersonHaslt: It defines the function that is used to get a person’s record by a

given phonenumber.

For more implementation details of the classes, please refer to functor.h, person.h and

personhasit.h on page 50 to 57.

4.1 Environment

The different libraries have been installed on Windows 95. The tests have been carried

out on Windows95 using Microsoft Visual C++6.0.

18

4.2 "Open" Implementation Method

The Standard Template Library is a C++ library of container classes, algorithms, and
iterators. Container classes are very useful classes of data abstractions in the STL. A
container contains values of some kind or references to values of some kind. For
example, list is a kind of container and set is another kind of container. The difference
between a list and a set is that a list imposes a physical, though not necessarily a logical
ordering of the elements it contains, and a set imposes nothing on the values it contains
other than the fact of containment. STL also includes a large collection of algorithms that

manipulate the data stored in containers.

Another important data abstraction provided by the Standard Template Library are called
iterators. They are used to refer to the individual elements of containers and to provide

the means of applying operations to the contents of containers.

From the previous chapter 3.4.1, I know that a key factor in STL design is the consistent
use of iterators. Pointers themselves are iterators. So what is the purpose of iterators? In
the STL, very few of the algorithms needed to manipulate an abstraction are implemented
in the class corresponding to that abstraction. Instead, the class defines functions that
make certain information about the abstraction - here a list - available in such as way that
I can implement any needed algorithm without modifying the structure itself. In fact, it is
possible to build such algorithms in such as way that they work with other data
abstractions as well as the one for which they were originally designed. This is the

purpose of iterators.

19

In terms of inheritance, the Standard Template Library does not depend heavily on
object-oriented features of C++. Relatively little inheritance is involved in this library. In
contrast, other libraries use inheritance extensively, some to the extent that every class is
derived from a common base class. In fact, some other object-oriented languages

(Smalltalk, Modula-3, Java) make this a requirement.

4.2.1 Implementing a Doubly Linked List

In this section I shall look at an implementation of a doubly linked list that uses two
pointers in each node as shown in figure 1. A doubly linked list, is a sequence that
supports both forward and backward traversal, and provide constant time insertion and

removal of elements at the beginning or the end, or in the middle.

Figure | shows the structure of Lists in the STL.

liat

Header nnda
| \\
Valua Vahie
Valua Valua
| — — |

Figure 1: Lists in STL

20

In the project, when a phonebook is created, I use container class List:

list<Person> phoneBook;
list<Person>::iterator phoneBooklterator;

I also define phonebooklterator.

As we know iterators are the mechanism that makes it possible to decouple algorithms
from containers; algorithms are templates, and are parameterized by the type of iterator,

so they are not restricted to a single type of container.

Hence, in the project, when [search a record of a person in the existing phonebook, I use

the STL's find_if() algorithm to perform this search through the phonebook list. It shows:

PhoneBooklterator = find_if (phoneBook.begin(), phoneBook.end(), personHaslt(pn));

if (phoneBooklterator= =phoneBook.end(}))
cout << "Record not found in list" << endl;

else
cout << *phoneBooklterator << endl;

It completes the first time PersonHaslt() returns true for any object. It returns an iterator

to that object, or if PersonHaslt() never returned true, find_if () returns end().

To insert a record of a person into the phonebook and to provide confirmation to check
whether the record is inserted, an Insert iterator is used to implement this. Here is the
definition of insertion into a container by means of:

phoneBook.insert(phoneBook.end(), aPerson);

21

Its effect is to insert the record of aPerson immediately before the iterator
phoneBook.end().

To delete a record of a person from the existing phonebook and check whether it can be
correctly removed from the phonebook. I use STL's algorithm remove() to perform this
function:

if (phoneBooklterator == find_ifiphoneBook.begin(), phoneBook.end(),
PersonHaslt(pn)))

phoneBook,remove(aPerson);
Remove removes from the range [phoneBook.begin(), phoneBook.end()] all elements that

are equal to the value of PerHaslt(pn).

4.2.1 Implementing a Binary Search Tree

A tree structure is used to store data in sorted order. It consists of nodes that contain data.
Nodes have links to other nodes. Any tree has a single root node to which all other nodes
are linked. A node data must have a key which can be compared and sorted. A binary tree
is the simplest type of a tree structure; a binary search tree is a particular kind of binary
tree. Each node in a binary search tree contains data and two links. The left link connects
to all nodes with lesser data values; and the right link connects to all nodes with greater
data values. If one datum is greater or less than another datum it can be determined by

comparing the key values of the two data.

In STL, I use Set to represent tree to compare to the Tree organization in OrgC++. Set is
one of the associative Containers in STL. Also STL sets are always sorted and they are

implemented using tree structures. In this project, I use a binary search tree. It holds data

22

that can be compared with something like operator <. The build-in types of C++ have
such a comparison, though the comparison for pointers to strings (or indeed any pointers)
is quite meaningless. Therefore, the STL permits the user to define alternate comparison
operations using function objects. A comparison object is either a binary function
returning bool, or an object in a class that has such an operator() defined.

In the project, I defined the following comparison function to compare two nodes:

class PersonLess

{ bool operator() (const Person& x, const Person& y) const {
return x.getPhonenumber() < y.getPhonenumber();

}
}

4.3 "Closed" Implementation

In the C++ Data Object Library (OrgC++), all organizations are based on a ring-type

arrangement, not on a NULL-ending list.
4.3.1 Implementing a Doubly Linked List

In order to make a comparison to STL list, I can use double_ring organization to

represent doubly linked list because they behave similarly.

backward forward

Start. DOUBLE_RING

Figure 2: DOUBLE_RING in OrgC++

As I described in the previous chapter 3.4.2, OrgC++ is based on new concepts of Hyper-
objects which are objects that store their data in other objects, called carriers. Carriers

passively keep the data but hyper-objects provide the methods.

OrgC++ uses generic functions. For example, add() can be used to add an object to a
ring, to a tree, or to a graph, without loosing the advantage of full type checking. del() for
deleting (disconnecting) an object. In OrgC++, a ring (or circular list) is a structure
existing on a set of objects without any start/tail pointer encapsulated in a special class.
Since the entry to the ring is not encapsulated I have to keep it externally, otherwise the
ring would be there, but I would not know how to get to it. The entry is also important if [
am concerned about the order of the objects in the ring. The entry to the ring will be

returned as the last element when traversing the ring.

Here [defined a phonebook using double_ring organization.
ZZ_HYPER_DOUBLE_RING(phoneBook,Person); I/ declare a DOUBLE_RING
Before I start to use this ring, I have to set entry=NULL.

Person *nstart=NULL; I/ initialize start before using the DOUBLE_RING.

I also define Person* phoneBook_ptr. OrgC++ doesnt provide operation find_if{)in
DOUBLE_RING, in order to compare to STL algorithm find_if(), here [also define it as

the following:

24

Person* find_if{PersonHaslt& another_person) {
Person *temp;
int count = 0;
ZZ_A_TRAVERSE(phoneBook,nstart,temp)4
if (another_person(*temp)) break;
}Z A _END;
return temp;

}
Then when I search a record of a person in the existed phonebook, I defined:
phoneBook_ptr = find_if (PersonHaslt(pn));

if (!phoneBook_ptr)
cout << "Record not found in list" << endl;

else
cout << *phoneBook_ptr << endl;

To insert a record of a person into the phonebook and provide confirmation to check

whether the record is inserted. [use OrgC++ generic function add():
phoneBook.add(nstart, aPerson);

Adds new object, a record of aPerson to the ring with entry point nstart and returns a

new entry.

[also use OrgC++ generic function del() to move a record of a person from the existing
phonebook and check whether if it can be correctly removed from the phonebook.

if (phoneBook _ptr = find_if{PersonHaslt(pn)))
{
phoneBook.del(nstart,phoneBook_ptr);
delete(phoneBook_ptr);
}

4.3.2 Implementing a Binary Search Tree

In OrgC++, [use DOUBLE _TREE to compare to the STL Sets as illustrated in figure 3

A
B c lep| D parent
A
E F "| *_q_,
A backward sibling
v v

G 3 child

Figure 3: DOUBLE_TREE in OrgC++

Here I defined a phonebook using DOUBLE_TREE organization:

ZZ HYPER_DOUBLE TREE(phoneBook.Person);
Person *nstart=NULL;

Because OrgC++ doesnt contain find_if{) algorithm, as I described in 4.3.1, [therefore,

have to define find_if() here to search for a person’s record.

26

Person* find_ifiPersonHaslt& another_person) {

Person *tmp_parent = nstart;
Person *first_child, *second_child;

while (tmp_parent) {
if (another_person(*mmp_parent)) break;
* No child *
if (!(first_child=phoneBook.child(tmp_parent))) {
tmp_parent = NULL;
break;

}
* One child */
else if ((second_child=phoneBook.fwd(first_child))==first_child) {
if ((another_person.getPhonenumber()>=tmp_parent->getPhonenumber())
&&(first_child->getPhonenumber()<tmp _parent->getPhonenumber()))
{
tmp_parent = NULL;
break;
}else

if ((another_person.getPhonenumber()<tmp_parent->getPhonenumber())
&&(first_child->getPhonenumber()>=tmp_parent- >getPhonenumber()))
{
tmp_parent = NULL;
break:
} else

tmp_parent = first_child;

I* Two children */
else {
if (another_person.getPhonenumber()>=tmp_parent->getPhonenumber())

mp_parent = second_child;
else

tmp_parent = first_child;
}
} 1* while loop *I
return tmp_parent;

Then I can use find_if to search for a person record of the phonebook using:
phoneBook_ptr = find_if (PersonHaslt(pn));

if (!phoneBook_ptr) {
cout << "Record not found in list" << endl;

}
else {

cout << *phoneBook _ptr << endl;

}

27

To remove a record of a person from phonebook, here I also defined phoneBookdel():

void phoneBookdel(Person* del_person) {
phoneBook.del(del_person);
if (del_person==nstart) nstart=NULL;

resortAllChildren(del_person);
delete del_person;

As seen in figure 3, all the children of any node form a RING. The child pointer from the
parent represents the start pointer of the RING. Repeated use of add() loads the nodes in
reverse order. When I insert a record of a person into the phonebook, the following

OrgC-++ contained operations are used to define phoneBookadd() .

Add() adds a new child;
App() appends a new sibling to the right of a given node.
Ins() inserts a new sibling to the left of a given node

Here I defined phoneBookadd() to add a node into the phonebook.

28

void phoneBookadd(Person* new_person} {
Person *tmp_parent = nstart;
Person *first_child, *second_child;

if (Instart) {
{/IphoneBook.add(nstart,new_person);
nstart = new_person;

}
while (tmp_parent) {

* No child */

if (/(first_child=phoneBook.child(tmp_parent))) {
phoneBook.add(tmp_parent, new_person);
return;

1* One child */
else if ((second_child=phoneBook.fwd(first_child))==first_child) {
if ((new_person->getPhonenumber()>=tmp_parent->getPhonenumber())
&&(first_child->getPhonenumber()<tmp_parent->getPhonenumber()))

phoneBook.app(first_child, new_person);
Il appends a new sibling to the right of a given node.
return;
}else
if ((new_person->getPhonenumber()<tmp _parent->getPhonenumber())
&&(first_child->getPhonenumber()>=mp _parent->getPhonenumber()))

{
phoneBook.ins(first_child, new_person);
return;
}else
tmp_parent = first_child;
}
I* Two children */
else {
if (new_person->getPhonenumber()>=tmp_parent- >getPhonenumber())
mmp_parent = second_child;
else
mp_parent = first_child;
}
} I* while loop *I

29

4.4 User Interface

In order to compare the selected data structures easily in STL and OrgC++, I originally
wanted to use Microsoft Foundation Class (MFC) as an “application framework™ to
design and implement Windows Style User Interface for the project. Because MFC is
accepted and used by many professional programmers, it's very natural for Windows to
have a C++ programming interface. MFC Library application framework includes many

general-purpose classes such as collection classes for lists, arrays and maps.

I tried using MFC to design UI for both implementations in the project, but because of
difficulties with OrgC++ class generator, [decided against it although a lot of time was
spent in the consideration. From the perspective of the main purpose of this project, the
interface is not a critical factor in the completion of the project to compare data structures
in STL and OrgC++. Therefore, I used MFC Library to implement UI for "Open"
implementation only for STL, and UI for OrgC++ interactive windows under MS-DOS

was used.

4.4.1 Suspected Problems with OrgC++

The problem is that OrgC++ consists of a class generator and a special library. The class
generator typically just reads the header file with the declarations of objects and
organization, and it creates two files: an include file and a source file with all the access
routines required by the program. These two files are used to compile and link the

original source code. Hence, when modifying data objects, I have to call the class

30

generator every time before re-compilation. All used classes have to be modified when

using OrgC++; and in addition, might involve changes to the MFC base classes.

4.4.2 UI for "Open" Implementation in STL

Figure 4 below shows the main interface of the Phone Book system using STL.

::: Test STL Library

Figure 4: The Main Window of PhoneBook in STL

As shown in Figure 4, I can select a data structure using either doubly linked list or set
and also select a number of records (nodes) to generate a phonebook.

This main window also shows two results:

31

e The time used to build this phonebook in milliseconds

e The space required to build this phonebook in bytes

In addition there are four buttons on the right side of the screen. Any one of the following
options can be selected :

e Search: to search a record of a person in the phonebook.

e [nsert: to insert a record of a person into the phonebook.

e Remove: todelete a record of a person from the phonebook.

o Exit to exit the phonebook system.

The following sub-window will be popped up after pressing the Search button.

Search a record in the phone book

FIGURE 5: Ul for Searching a record in STL

This sub-window allows us to input a phone number to search for a record of a person
whose phone number is the input phone number. It also shows the loop times when I

perform a search function. The search result will also show in the box after [press the

32

start button. In each sub-window I have three buttons to select: Start, Reset and Cancel.
Start and Reset buttons are disable in the initial sub-screen but are activated if you input a
phone number in the box field:

e Start: to start search / insert / remove a record in / to / from a phonebook

o Reset: to reset all data in the screen if I have done a search.

e Close: to exit this screen and go back to the main window of the application

If I press the insert button, the following window is shown. It is similar to the sub-screen
of the search screen except there are three box fields for us to input a new person’s first

name, last name, and phone number into the existing phonebook.

Insert a record into the phone book

Figure 6: Ul for inserting a record in STL

If I press the Remove button, it will bring us to this screen:

33

Remove a recoid trom the phone book

G T BT

Figure 7: Ul for deleting a record in STL

It is very similar to the Search sub-screen. (See Figure 5) It also shows the remove result

after [press the Start button on this screen.

34

4.4.3 UI for "Closed" Implementation in OrgC++

I described the problems with OrgC++ in the section 4.2.1 and, therefore, only show the

interactive windows for this implementation. See Figure 8.

Figure 8: Ul in OrgC++

As we can see, four selection options are provided. I can key in the number of the
selected option and press Enter key to show the result. Actually it is similar to the four

buttons shown on the main window of the "Open" implementation (See figure 4).

35

Chapter 5 Results

In this section I evaluate and analyze the performance of both implementations of data
structures considered. I also present the results of each experimental test. It is important
to note that the results in this section reflect the performance of a particular
implementation of the data structures and do not necessarily reflect performance

limitations that exist in the data structures independent of these implementations in each

library.

According -to the evaluation criteria defined in the section 3.1, here I present the results

for each item.

5.1 Usability - Ease of Coding

After I experienced implementation of the data structures in both "Open" and "Closed"
implementations, [found both STL and OrgC++ Libraries provide sets of classes. There
are some differences.
¢ Difference in class declaration
In STL: can define a class just as [do in C++ to define all data and member functions
of a class.
In OrgC++: when you declare an object (STL called class), only the attributes that do
not relate to the organization of data are declared. Objects which will be involved in

the automatic handling of data must contain a line of the form

36

ZZ_EXT <objectType>. This statement marks the place where the transparent
pointers will be inserted.

Here is how I defined a class Person in both implementations.

In STL In OrgC++
class PersonHaslt class PersonHaslt
{ {
public:
PersonHasli(); Il constructor ZZ_EXT PersonHaslt
PersonHaslt(int & phoneNumber);
/I person has the phonenumber. Public:
PersonHaslt(); Il constructor
bool operator() (Person& aPerson); | PersonHaslt(int& phoneNumber);
!l person has the phonenumber.
private:
int number; bool operator() (Person& aPerson);
p &
private:
int number;
b

e STL contains more generic algorithms.

STL provides find_if() algorithm. [can easily use it to search for a record in the
phonebook. OrgC++ doesnt contain this function so I have to define a function called
find_if() in the program. Then I can use it to perform a search as [would with STL. To

see the implementation of this, please refer to section 4.3, on page 23.

e STL and OrgC++ have very similar interface attributes.
They both have similar iterators and similar functions that manipulate the data structures
but they are not identical. In STL, data and their relations are interwoven with the classes

that carry the data. In OrgC++, data and their relations are orthogonal.

37

The following shows the declaration of a phonebook in each library:

In STL In OrgC++

list<Person> phoneBook; ZZ_HYPER _DOUBLE RING(phoneBook.Person);

5.2 Time and Space

In this section [show the test results of building time ratio, access time ratio, and space
ratio for "Open" and "Closed" implementations as I defined earlier in section 3.6.3. Each

time the test results corresponding to different node numbers are generated.

5.2.1 Build Time Efficiency

The build time ratios [got from both implementations are shown in Table I. From the
table, we can see that the results of build time ratio for doubly linked list and binary
search tree structure are similar. They indicate that the time used to build a phonebook in
the "Closed" implementation is greater than in the "Open" implementation no matter

what data structure is selected.

The time range of building doubly linked list with nodes from 8000 to 140000:
e "Open" implementation: 440 ~ 10110 milliseconds

e "Closed" implementation: 6040 ~ 121390 milliseconds

38

Table 1: Build Time ratio

Test No.of Double Binary
No. Node Linked List Tree
1 8000 0.072848 0.088792
Build 2 10000 0.044534. 0.056995
TimeRatio 3 20000 0.055423 0.063584
4 40000 0.062898 0.048596
5 60000 0.141103 0.051179
6 80000 0.091810 0.068187
7 100000 0.078645 0.039478
8 120000 0.077346 0.073972
9 140000 0.083285 0.038643

0.150000 -
0.100000
0.050000
0.000000

M)
O
S

O N N
S S L
N S O
SIS

S & & & &
$ & & &S
& & & &8

——Double Linked List - - Binary Tree_

52.2 Access Time Efficiency

In this section, [show the results of time ratios in the following table:

39

Table 2:

Access Time Ratio

Test No. Double Binary
No. of Nodes Linked List Search Tree

1 8000 2870.400000 0.350649

2 10000 3555.800000 0.182796

3 20000 5959.500000 0.187500
Access 4 40000 11923.500000 2.941176
Time Ratio 5 60000 21483.600000 0.940299

6 80000 34925.000000 2.640884

7 100000 29763.166667 14.060000

8 120000 35703.500000 18.227273

9 140000 51062.000000 3.638498

Access Time Ratio Chart for Double Linked List

8000 10000 20000 40000 60000 80000 100000 120000 140000

~ —e—Double Linked List

Access Time Ratio Chart for Binary Search Tree

20.0000

15.0000
10.0000
§.0000

L@ .. e
0.0000 - -]
8000 10000 20000 40000 60000 80600 100000 120000 140000

- @ - »B—inary Search Tree

From the previous section 5.2.1, we know that it takes more time to build a phonebook
with "Closed" implementation. You may then wonder about access time. The test results
are surprising as shown in Table 2.

The raw data, that is what [actually measured, is shown in Table 3.

Table 3: Access Time

Test No. STL OrgC++
No. | of Nodes list ring set tree
1 8000 [143520 |50 |270 770
2 | 10000 [177790 |50 170 930
3 20000 |357570 |60 330 1760
Access 4 40000 |715410 |60 500 170
Time 5 60000 1074180 |50 1260 1340
6 80000 |1746250 |50 9560 [3620
7 100000 |1785790 |60 7030 |500
8 120000 2142210 |60 8020 |440
9 140000 |2553100 |50 7750 |2130

From the test results we see it required much longer to search for a record in the
phonebook using doubly linked list in the "Open" implementation. It appears that
accessing data is very efficient in the "Closed" implementation. The results of access
time ratio for the binary search tree are very close. The "Open" implementation method
is slightly slower than the "Closed" implementation method. Why are the results so
different? The exact cause is unclear, but it is probably due to differences in the
organization of STL and OrgC-Hi data structures. All organizations in OrgC+-+ are based
on a ring-type arrangement, not on a NULL-terminated list. Another possibility is that
OrgC-++ reorganizes the list so that, when a node is accessed, it becomes the first node of

the list. In addition, the allocation of links for STL lists may create lot of overhead

41

because traversing lists in STL requires an additional pointer jump and periodic

reallocation and copying of the links.

523 Space Efficiency

I show the test results of space ratio in this section. From the following table 4, we can
see that the space ratios of all the data structures I implemented are 1.5. The required
space to build a phonebook in each implementation with both selected data structures are

the same, hence, the space efficiency of the two implementations are the same.

Table 4: Space Ratio

Test No. Double (Set)
No. of Nodes Linked list Blnag Tree
1 8000 1.5 1.5
2 10000 1.5 1.5
Space 3 20000 1.5 1.5
Ratio 4 40000 1.5 1.5
5 60000 1.5 1.5
6 80000 1.5 1.5
7 100000 1.5 1.5
8 120000 1.5 1.5
9 140000 1.5 1.5

Space Ratio Chart

8000 10000 20000 40000 60000 80000 100000 120000 140000

| —e—Double Linked List = === Binary Tree |

42

From the table, it also shows more space was required in the "Open" implementation than

in the "Closed" implementation.

5.3 Interaction with MFC

As described in section 4.4, at the beginning of design phase, [wanted to use MFC for
both implementations to create UT but there are some problems with OrgC++ so [had to

give up using MFC for "Closed" Implementation.

5.4 Other Comparisons

I also did some comparisons of other criteria which I defined in the evaluation criteria in
Chapter 3. Here, I show the summarized results of comparison on the two Libraries in

the following table.

43

Table 5:

Comparison of the two Libraries in other criteria

Compare criteria Standard Template Library | C++ Data Object Library
Is it shareware or The standard Template Library | It is commercial. Full source
commercial? is one of the standardized | of Data Object Library is
components of the C++|not available free at this
language. time.
Are there problems to | It’s quite easy to compile. It's not easy to compile. [
compile on PC? had a lot of problems to
compile it on my PC at the
beginning.
Is it supported by the Yes. No. Free binary version of
vendorideveloper? the library does not include

any support or guidance.

Is it easy to install?

No worry about installation.

It comes with Visual C++.

No. It took a quite of time to

install it on my PC.

Is it a suite of tests?

Yes.

Yes

Is it easy to crash when

doing a large search?

No

It crashed a few times when

doing a large search.

Chapter 6 Conclusions

In this chapter, [conclude the experimental results and summarize the advantages of
using STL and OrgC++. I also discuss the research of comparison performance of data

structures for further directions in which the project could be taken.

In summary, this project is an experiment of exploring the performance of data structures
in different implementation methods. Although the application and data structures
selected are not considered perfect, it may provide us some interesting findings on data

structures for future research since there is not much published in this area.

Through the project, I know the "Closed" implementation provides a new way to look at
pointer problems. It uses a code generator to build a meta model of all application classes
and it inserts the required pointers using generated macros, not inheritance, This is a dirty
but efficient method which results in faster code but is not as elegant as templates.
Compared to the "Open" implementation method, the phonebooks are easy to implement

using templates, and they form the basis of almost every existing container class library.

6.1 The advantages of STL and OrgC++

I have implemented our Phonebook in both libraries, there are some different features in

each of them:

45

Standard Template Library

e It’s easy to use. It has an elegant, consistent, and easy to comprehend architecture.
The different components of the STL can be plugged together which makes the
programmer more productive.

e STL algorithms are generic. They work on a variety of containers and even on
ordinary C++ arrays.

e The use of STL is likely to make software more reliable, more portable and more
general and will reduce the cost of producing it.

e It interacts well with other libraries such as MFC.

C++ Data Object Library

e Data structures can be protected against most pointer errors by initializing all pointers
to NULL, and setting them back to NULL when the object is disconnected from the
data structure, because all organizations are based on a ring-type arrangement, not on
a NULL-terminated list. An object cannot be destroyed before all its pointers are
NULL.

e It makes the data structures automatically persistent by taking Code generator to find
the locations of all the pointers, and without the user coding and supporting
serialization functions for every class.

e Itis possible to perform a fast run-time check for the integrity of the list.

e [t is more efficient sometimes to do random search, insert or remove operations from

a doubly linked list.

6.2 Future Work

There is not much work published in this area. The study of data structures in different
C++ implementation methods has generally been neglected. Therefore, there is the

opportunity for much more research in this area.

In this project, [presented the design and implementation of a phpnebook system with

both "Closed"” and "Open" implementations in Standard Template Library and C++ Data

Object Library. Although the implementation was for only two libraries and for a specific

application, there are some findings recommendations for future work to expand the

research.

e Select more libraries other than STL and OrgC++ such as LEDA, Rogue Wave, etc.

e Design and implement other applications to explore the performance of data
structures.

e Select more data structures other than doubly link lists and trees.

¢ Implement the application on other platforms such as UNIX, Windows NT, etc.

e Make comparisons using different criteria than were used here.

47

Chapter 7 Bibliography

A.

(il

(2]

(3]

[4]

(5]
(6]

[7]

(8l

91
[10]

Books and articles

Joseph Bergin. Data Structure Programming with The Standard Template Library
in C++. Springer-Verlag New York Berlin, Inc, 1998

Ulrich Breymann. Designing Components with the C++ STL: A New Approach to
Programming. Addison-Wesley, 1998

Timothy A. Budd. Multiparadigm Programming in LEDA. Addison-Wesley
Publishing Company, Inc., 1995

Robert Robson. Using the STL: The C++ Standard Template Library. Springer-
Verlag New York, Inc., 1998

Leen Ammeraal. STL for C++ Programmers. John Wiley & Sons Ltd., 1997

Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings
Publishing Company, Inc., 1991

Mitchell L Model. Data Structures, Data Abstraction - A Contemporary
Introduction Using C++. Prentice Hall, Inc. Englewood Cliffs, New Jersey. 1994
Glenn W. Rol. Introduction to Data Structures and Algorithms with C++. Prentice
Hall Europe, 1997

[an Sommerville. Software Engineering. Fifth edition. Addison-Wesley, 1995
Cameron Hughes and Tracey Hughes. Collection and Container Classes in C++.

John Wiley & Sons, Inc., 1996

[t1] Frank M. Carrano. Data Abstraction And Problem Solving With C++. The

Benjamin/Cummings Publishing Company, Inc., 1995

[12] J. P. Pardoe and M. J. King. Object Oriented Programming Using C++. Macmillan

(1]

(2]
(3]

(4]

Press Ltd., 1997

Information on the web

Jiri. Soukup. C++ Data Object Library and Persistent Data.

http://www .codefarms.com/

LEDA. http://www.mpi-sb.mpg.de/LEDA/leda.html
Standard Template Library Programmer’s Guide.
http://www.sgi.com/Technology/STL/

Standard Template Library. http://www.cs.rpi.edu/~musser/stl.html

49

Appendix

A Stlifunctor.h

listlfunctor.h: The declaration of class Functor in STL, it defines a random number
ligenerator. It is used to initilize a stream by a given seed.

#ifndef STLFunctor_H
#define STLFunctor_H

#include <iostream.h>
#include <«list>

/I constants used in random number generator.
const unsigned long int module = 10000000LU;
const unsigned long int multiplier = 169874;

//class Functor defines a random number generator.
class Functor

{
//private:
unsigned long ran; /used to represent the random data stream.
unsigned long random_number(); //define function random_number().
public:
/I constructor initilizes a data stream by a seed.
Functor(int i): ran(i){}

//Get a random number.
unsigned long getRandom() { return random_number(); }

//operator() overloading.
unsigned long int operator()() { return random_number(); }

)4
#endif STLFunctor_H

50

B Stlperson.h

Il stlperson.h: the declaration of class Person in STL. It defines a person’s firstname,

/I lastname and phonenumber. Class ORGCPerson

#ifndef STLPerson_H
#define STLPerson_H

#include <iostream.h>
#include <list>

class Person
{ 3
private:
char *firstName; //define person’s firstname
char *lastName; //define person’s lastname
int phoneNumber; //define person’s phonenumber

public:
Person(); // Constructor
~Person(); /I Destructor
Person(char *f, char *I, int i=0);

const char* getLastname() const { return lastName; }
const char* getFirstname() const { return firstName; }
/I void setLastname(l);
/I void setFirsmame(f)
/I void setPhonenumber(i);

int sizeQ;

int getPhonenumber() const; // Get a person’s phonenumber.
void setPerson(char *s1, char *s2, int i=0); / Set a person’s record.

/loperators

friend ostreamé& operator<<(ostreamé& out, const Person& p);

bool operator==(const Person& p2);
bool operator!=(const Person& p2);
bool operator<(const Person& p2);
bool operator>(const Personé& p2);

51

class PersonLess

{
public:

bool operator() (const Person& x, const Person& y) const {
#ifdef IND_NAME

felse

ffendif
}
)

int temp = strcmp(x.getLastname(), y.getLastname());
if (temp < 0)

return true;
else if (temp > 0) return false;

temp = strcmp(x.getFirstname(), y.getFirstname());
if (temp <0)

return true;
else return false;

return x.getPhonenumber() < y.getPhonenumber();

#endif STLPerson_H

52

C stlpersonhasit.h

I/ stlpersonhasit.h: contains declaration of class ORGCPersonHaslt in OrgC++. It
/1 defines the function that is used to get a person’s record by a given phonenumber.

#ifndef STLPersonHasIt_H
#define STLPersonHasIt H

#include "stlperson.h"

class PersonHaslIt

{

public:
PersonHaslt(); // constructor
PersonHaslt(int& phoneNumber); // person has the phonenumber.
bool operator() (Person& aPerson);

private:
int number;

%
#endif STLPersonHaslt_H

53

D Orgcfunctor.h

Il orgcfunctor.h: The declaration of class class Functor in OrgC++, it defines a random
Il number generator. It is used to initilize a stream by a given seed.

#ifndef ORGCFunctor_H
#define ORGCFunctor_H

#include <iostream.h>
#include “zzincl.h"

// constants used in random number generator.
const unsigned long int module = 10000000LU;
const unsigned long int multiplier = 169874;

//class Functor defines a random number generator.
class Functor

{

ZZ_EXT_Functor

{lprivate:
unsigned long ran; //used to represent the random data stream.

unsigned long random_number(); //define function random_number().
public:
// constructor initilizes a data stream by a seed.

Functor(int 1): ran(i){}

//Get a random number.
unsigned long getRandom() { return random_number(); }

//operator() overloading.
unsigned long int operator()() { return random_number(); }

)2
#endif ORGCFunctor_H

54

E orgcperson.h

llorgcperson.h: the declaration of class Person in OrgC++. It defines a person’s
Il firstname, lastname and phonenumber.

#ifndef ORGCPerson_H
#define ORGCPerson_H

#include <iostream.h>
#include "zzincl.h"

class Personhaslt;

class Person

{

friend int phoneBooksize();

friend Person* find_if(PersonHaslIt& another_person);

ZZ_EXT _Person

private:
char *firstName; //define person’s firstname
char *lastName; //define person’s lastname
int phoneNumber; //define person’s phonenumber

public:
Person(); // Constructor
~Person(); I/ Destructor
Person(char *f, char *1, int i=0);

const char* getLastname() const { return lastName; }
const char* getFirstname() const { return firstName; }

int GetSize();
int getPhonenumber() const; // Get a person’s phonenumber.
void setPerson(char *s1, char *s2, int i=0); / Set a person’s record.

//operators
friend ostream& operator<<(ostreamé& out, const Personé& p);
bool operator==(const Person& p2);
bool operator!=(const Person& p2);
bool operator<(const Personé& p2);
bool operator>(const Person& p2);

35

ot

class PersonlLess

{
ZZ_EXT_PersonLess;

public:
bool operator() (const Person& x, const Person& y) const {
#ifdef IND_NAME
int temp = strcmp(x.getLastname(), y.getLastmame());
if (temp <0)
return true;
else if (temp > 0) return false;

temp = stremp(x.getFirstname(), y.getFirstname());

if (temp < 0)
return true;

else return false;
#else

return x.getPhonenumber() < y.getPhonenumber();
#endif

b2

%

#endif ORGCPerson_H

56

F orgcpersonhasit.h

Il orgcpersonhasit.h: contains declaration of class ORGCPersonHaslt in OrgC++. It
I/ defines the function that is used to get a person’s record by a given phonenumber.

#ifndef ORGCPersonHasIt_H
#define ORGCPersonHasIt_H

#include "orgcperson.h"
#include “"zzincl.h"

class PersonHaslIt

{

ZZ_EXT_PersonHaslt

public:
PersonHaslt(); // constructor
PersonHaslIt(int& phoneNumber); // person has the phonenumber.
bool operator() (Person& aPerson);

private:
int number; /! define phonenumber as integer.

%

#endif ORGCPersonHasIt_H

57

