INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Conference Management System
Implemented by Oralce Developer 2000

Wen Yang

A Major Report
In

The Department
Of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March 2000

© Wen Yang, 2000

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fie Votre réference
Our fie@ Notre reference
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L.’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-47858-0

Abstract

Conference Management System

Implemented by Oracle Developer/2000

Wen Yang

Oracle is an extremely powerful and flexible relational database system (RDBMS), it
provides various tools for application development and for performing administrative
functions, such as SQL*Plus, PL/SQL, Net8, Developer/2000, Designer/2000 and so
on. This project mainly covers a brief introduction to Oracle Form 45 and Report 25,
which are parts of the Developer/2000 suite of development tools. These products
can all be used individually or as an integrated application development platform.
Although each has a separate purpose, there are many similarities that enable one to
create consistent and powerful applications. Oracle Forms is a powerful application-
development tool for building client/Server database applicaions, that are portable
to a variety of GUI and character mode platform. The another Developer/2000 tool
called Oracle Reports allows the developer to create sophisticated reports in a variety
of layouts and contains many customization features. Oracle Developer/2000 tools

are optimized to take compile advantage of powerful features in the oracle server.

The another part of this project is an example application named Conference Man-
agement System implemented using Oracle Database Management System. The in-
terfaces were built with Oracle Forms and Reports. It designed to be a complete
solution for a conference management and easy to use. It demonstrates a proto-
type for an application coded using Oralce Developer/2000 and PL/SQL. It runs on
Oracle? server release 7.3.2.3.0, SQL*Plus release 3.3.2.0.0 and PL/SQL 2.3.2.3.0.

iii

Acknowledgements

I would like to express my sincere gratitude to Dr. Desai for his guidance and patient.

I also would like to take this opportiunity to thank my friend L. Chen for her help
in providing me many useful material and all other friends and colleagues for their

generous support, encoragement and assitance in this project.

v

Contents

1 Overview 1
2 Starting the Oracle Forms 2
2.1 Introductionto Oracle Forms 2
2.2 Starting the Oracle Forms Designer 3
2.2.1 Start the Oracle Forms Designer 3

2.2.2 Connect to ORACLE from the Designer 3

2.3 Introduction to Object Navigator 3
2.3.1 Expanding or Collapsinga Entry 3

2.3.2 Changing the Name of an Object)

2.3.3 Creating and Deleting Objects 6

2.3.4 Moving, Copying and Cutting Objects 6

3 Creating Oracle Forms and Writing Code 8
3.1 Creating a Form with Single Block 8
3.1.1 Createa Form Module 8

3.1.2 Create a Base TableBlock 9

3.1.3 The Layout Editor 14

3.1.4 Set Object Properties in Properties Window 15

3.1.5 Save, Generate and Runthe Form 13
3.2 Creating a Master-Detail Form 20
32.1 Createa MasterBlock 21
322 CreateaDetailBlock 21
3.2.3 Creating Complex Master-Detail Relationship 24
3.3 Using PL/SQL to Write Event Trigger 26
331 Createtriggers 26
33.2 Write Trigger Code 28
3.4 Writing Program Unit 31
34.1 Createa Program Unit 31
342 EditaProgram Unit 35
34.3 Deletea Program Unit 35
Creating Menus, Alerts and LOVs 36
4.1 CreatingaMenu e e 36
411 CreateaMenu Module, 36
4.1.2 Create Menus and Menu Items 37
4.1.3 Assign Commands to Menu Items 39
4.1.4 Save and Generate a Menu Module 40
4.1.5 Attach a Menu ModuletoaForm 40
4.2 Creating Alerts L oo 41
421 Createan Alert 0. 41
422 Displayan Alert0 0. 42
4.3 Creating List of Values (LOVs) 43

vi

43.1
4.3.2
4.3.3
4.3.4

Create a Static Record Group
Create a Query Record Group
Createa LOV

Starting the Oracle Reports

2.1

5.2

5.3

Introduction to Reports

Starting the Oracle Report Designer

5.2.1
5.2.2

Start Report Designer

Connect toDatabase

Creating and Modifing Reports

6.1

6.2

Creating a Single Table Report

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

Specify the Data Model
Specify the Default Layout
Save, Generate and Run the Report
Create Computationtoa Report

Create Page Number Stamps

Creating a Master-Detail Report

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Specify the Master-Detail Data Model
Link the Queries
Create Summaries
Specify the Master-Detail Layout

Save, Generate and Run the Master-Detail Report

vil

49
49
30
30
30

31

6.3 Modify the Report in Layout Editor 66

6.3.1 Edit, Format Text 66

6.3.2 CreateaPageBreak 67

7 Conference Management System 68
7.1 Introduction 68
72 System Analysis 69
7.2.1 Developingan ER model for CMS 71

7.2.2 Converting the ER Diagram into a Relational Database Schema 72

723 Normalization 0L, 73

73 TableCreation 73
7.4 Functions Implemented and The User Interfaces 83
75 SourceCode L. 106

8 Summary and Future Work 117
8.1 Summary e e 117
82 FutureWork 118

A Bibliography 120

viii

Chapter 1
Overview

This project is designed to be both a user’s guide for Oracle Developer 2000 Forms
and Reports and an example application developed by Oracle Forms and Reports.

Chapter 1 is an introducation for this report.

Chapter 2 introduces Oracle Forms’ Navigator and how to start it.

Chapter 3 discusses how to create a Form and describes some of the major features
of PL/SQL.

Chapter 4 covers menus, alerts and LOVs.

Chapter 5 introduces Oracle Reports’ Navigator and how to start it.

Chapter 6 describes how to create Reports and modify Reports.

Chapter 7 contains an example application named Conference Management System.

Chapter 8 contains summary of this report and future work.

Chapter 2

Starting the Oracle Forms

2.1 Introduction to Oracle Forms

Oracle Form is a powerful application-development tool for building client-server
database applications. Oracle Forms is part of Developer 2000. When you build

applications with Oracle Forms, three components will be involved:

1. Oracle Forms Designer is an application development enviroment which includes
a set of visual tools that allow you to create objects, set their properties, and

write code for your applications.

2. Oracle Forms Generator is used to generate application files to create executable
runfiles for runtime deployment. Generating a form module compiles all of its

code objects and create an .FMX runfile.

3. Oracle Forms Runform is the runtime engine that form operators use to run a

finished Oracle Forms application.

2.2 Starting the Oracle Forms Designer

Note: This section assumes that the ORACLE database and Oracle Forms have been

installed on your system.

2.2.1 Start the Oracle Forms Designer

Entering following command at unix prompt, Oracle Forms opens a new form module

for you automatically.
%f45desm &

The & is the ampersand character. The Object Navigator for Forms will appear with
default module named MODULEI1(See figure. 1).

To open an existing module by selecting File—0pen, choose the file name you want

open.

2.2.2 Connect to ORACLE from the Designer

1. Select File — Connect.. ., Datebase connect window opens(See figure.2).

2. Enter a valid username, password. Leave the database field to blank (press the
tab key to move between the fields).

3. Choose Connect.

When you connect to the database successfully, the status line in the bottom of Object

Navigator(See figure. 1) displays the connect lamp <con>.

Mod: MODULET Flie: madulet

Figure 1: Object Navigator

Figure 2: Connect Window

2.3 Introduction to Object Navigator

The Object Navigator provides a hierarchical display of the objects in all open mod-
ules. The top-level nodes include Forms, Menus, Libraries, Built-in Packages and
DataBase Object. Objects are grouped under the appropriate node. For example,
all of the windows defined in a forrmn module appear under the windows node. The
window node, in turn, appears under the appropriate form module object, see figure
1. All other nodes, and the objects they contain, are indented to indicate that they
belong to these higher-level nodes.

Objects and nodes in the Navigator are displayed with a + or - symbol to indicate
whether they are currently expanded or collapsed. A gray + is displayed for a node

that does not yet contain lower-level objects.

Each object in the Navigator is displayed with an icon that indicates its type. For
some objects, double-clicking the icon invokes an editor appropriate to that type of

object.

2.3.1 Expanding or Collapsing a Entry

You can expand or collapse a Navigator entry by clicking the + or - symbol in front
of it. Click the + or - symbol to expand or collapse objects at the level immediately
below the level of the current object. Shift+click to Expand or Collapse All, meaning
that they expand or collapse entries at every level that is below the current entry.

2.3.2 Changing the Name of an Object

Clicking on the default name, MODULE]I, the cursor changes to an I-beam, type the
name specified, then press Return.

The another way is double-click the module object icon in the Object Navigator to
display the properties window. Type the new name in the Name Property, and press

9

i
|

Return to accept the name change.

2.3.3 Creating and Deleting Objects

To create an object in the Navigator, select either a node or an object of the type
you want to create and choose Navigator—Create, or click on Create button (see
figure.3) on the tool palette on the left hand side of Object Navigator:

Figure 3: Create Button

When a node does not yet contain any objects and so is displayed with a grayed +,
you can create an object of that type by double-click the +.

To delete an object in the Navigator, select it and choose Navigator—Delete, or,

click on Delete button (see figure.4) on the tool palette:

IXI
Figure 4: Delete Button

Note: When the current selection is a node, rather than an object, deleting remove

all objects under that node. When the current selection is a module, deleting closes

that module.

2.3.4 Moving, Copying and Cutting Objects

e To move an object, click and hold on the icon beside it, drag it to the desired
destination and then release it. Or, choose Edit—Cut, move the cursor to the

desired destination, then choose Edit—Paste.

e To copy the current selection, hold Control button and drag the selection to
the desired location. Or, choose Edit—Copy, move the cursor to the desired
destination, then choose Edit—Paste.

e To cut the current selection, choose Edit—Cut or click the Delete button on
the tool palette

e To cut or copy all objects within a node, position the cursor on the node, then

choose Edit—Cut or Edit—Copy.

Note Restrictions on Copy/Move Destinations:

1. Objects can be copied from one module to another, but cannot be moved from

one module to another.

2. Objects must be dragged or pasted to the appropriate location in the module
hierarchy.

3. Only objects of the same type can be moved as part of a multiple selection.

Chapter 3

Creating Oracle Forms and
Writing Code

3.1 Creating a Form with Single Block

At first, start the Oracle Forms Designer and connect to the database. A form
module must be open. We assume two tables named SUPPLIER and ORDERS with

the attributes given below had been created:
SUPPLIER (Sid, Sname, Saddress, Sphone)
ORDERS (Order#, Sid, Odate, Ostatus, Oprice, Opayment)

3.1.1 Create a Form Module

When you start the Forms designer, the Object Navigator displayed and automatically
creates a default Form called MODULE]L, see figure.l1.

You can build an application by modifying MODULE]L, or create a new formm mod-
ule in the Object Navigator, then change the name of Form to a new name, (e.g.

|

ORDER).

3.1.2 Create a Base Table Block

In general, a block on a form corresponds to a table in the database. For this example,
only one block will be created for the ORDERS table.

To invoke the New Block window, select Tools—New Block... from menu to display
the New Block window. Or, put the cursor on the block item, then click the create
button (figure.3) in the tool palette. A New Block window with four tabs appears(See
figure.3):

Figure 5: New Block Window

For this case, you will build an order-entry application and would create a base table
block to correspond to ORDERS table. When you create the base table block, Oracle
Forms also creates default text items for each column in the base table.

The General Tab in the New Block Window

In the Base Table field, enter the name of the table, ORDERS, or click on the Select
button to the right of the Base Table field, the dialog window(See figure.6) will pop

9

Figure 6: Dialog Window

up. Make sure the Current User and Tables buttons are selected and click on the
OK button. A list of names of tables in database will appear(See figure.7), double-click
the table name, ORDERS.

In the Block Name field, enter name for the block, ORD_BLK, or accept the default
name. The block name is an internal descriptor that is not displayed at runtime. In
the Canvas field, type the name of the canvas-view, CAN_ORD, or accept default name,
on which you want to place the items that will be created in the block. The general

tab as figure 8.

The Items Tab in the New Block Window

Clicking on the Items tab on the New Block window. Choose Select Columns...
to display the names of all columns of ORDERS.

If you want Oracle Forms to create an item for a column, that column must be
included. Included columns are displayed with a + (plus), excluded columns with
- (minus). To include or exclude a column, select the column in the list, then set
the Include option On or 0ff. By double-clicking the column names to include or

exclude them.

10

TR,

A

Figure 7: List Table Window

Figure 8: The General tab in New Block Window

11

Figure 9: The Item Tab in the New Block Window

(Optional) For each column, select an appropriate column label and width for the
form field. For this case leave each field as Type: Text Item.

The Layout Tab in the New Block Window

Clicking on the Layout tab on the New Block window. The Layout window allows
you to specify the default layout and other options for a base table block.

Figure 10: The Layout Tab in the New Block Window

12

Style

Tabular — When Orientation is set to Vertical, Oracle Forms places all items next
to each other across a single row, with boilerplate labels above each item. When
Orientation is set to Horizontal, Oracle Forms places items in a single column, one
above the other, with a boilerpate label to the left of each item.

Form — Oracle Forms attempts to place the items in a two-column format, with
boilerplate text labels positioned to the left of each item. In general, using Tabular

for multi-record blocks, Form for single-record blocks.
Orientation Specify how multiple records should be displayed.

Vertical — Arrangement places consecutive records in a downward direction. Typically,

the fields are next to one another in columns.
Horizontal — Arrangement places consective records off to the right hand side.

Record Indicates the number of records to display at one time. For tabular style,

more than one record can be displayed.

Spacing The distance between consecutive records. 0 spacing places consecutive

records next to each other.

Intergrity Constraints Enforces integrity constraints declared in the database. An
example of this will be given in the section on the Master/Detail Forms.

It is also possible to include a Button Palette and/or a Scrollbar by selecting

those options.
Finishing Up the New Block

After specifing all options for the new block, click on the OK button to create the
block.

13

3.1.3 The Layout Editor

To view the actual form and its blocks and fields, double-click the object icon for the
Canvas-Views, CAN_ORD, in the Object Navigator. Or press the right mouse button in
the Object Navigator to display a pop up menu, then choose Layout Editor. You
also select Layout Editor from Tools in menu bar. Figure 11 is Layout Editor with
ORDERS block.

Figure 11: The Layout Editor with ORDERS Block

The Layout Editor is a graphical design facility for creating and arranging inteface
items and boilerplate text and graphics. In the Layout Editor, fields and labels can
be moved around by clicking and dragging the item with left button. Other text, lines
and boxes etc., can be added using the tool palette on the left side of the window.

e To change the text of a label choose the text button from the tool palette and
then click on a label. To stop editing the label, click anywhere outside of the

label text.

14

e To add text to the block choose the text button on the tool palette, click on a
open area, type the new text. To change the font, highlight the text, click the

Font item from Format menu and select size.

e To change the text color of a label, use the pointer tool to highlight a label and
then click on the Text Color button to choose the color.

e To change the width of a label of a field by clicking on the field, drag one of the
handles(small black boxes around the field) to re-size the field.

3.1.4 Set Object Properties in Properties Window

The properties window displays the properties of the object you select. You can use

the properties window to review and change its properties.

To invoke the properties window, double-click on an object in the Layout Editor
to display its properties, or click on an object with the right mouse button, choose
Properties option from pop-up menu. Figure 12 shows the properties for the OR-
DER# item.

3.1.5 Save, Generate and Run the Form

Forms can be saved in files in a directory of your choice. The ‘source code’ for a form
is stored in file with a .fmb extension. Compiled forms have a .fmx extension.

Save the Form

In the Object Navigator, click on ORDER to make it the current object, and then
choose File—Save. In the Save Dialog Box(See figure.13), enter the name order . fmb
in Save field, then click OK to save the file.

15

Figure 12: Properties for Order# item

Compile/Generate a Form

Before a form can be ezecuted, it must be Compiled and Generated. Compiling runs
a PL/SQL compiler on all of the procedures and triggers in the form. Generating
create the .fmx file that is then used to run the form.

To compile a form, first make sure the form is saved. Select the Compile... option
from the File menu.

To Generate the .fmx file for a form, select File—Administration, choose Generate
from the pull-down menu. If the form generation is successful, Module generated

successfully will appear on the status bar at the bottom of the screen.

When you generate a form, Oracle Form compiles any uncompiled PL/SQL code it

contains. Any compilation errors cause generation to fail, a record of the compilation

16

Figure 13: Save Dialog Box

17

process, including error messages, is kept in a file with a .err extension. (For example,
if the form is named order then the record of the compilation will be stored in
order.err). When this happens, the generation errors alert is displayed, showing

appropriate error messages.

Run a Form

After a form has been saved and compiled, it can be executed. Choose Run option
from File menu, the form will display in a new window(See figure.14).

Figure 14: ORD BLK Form After Running

If you are not already connected to the database, Forms displays an alert, asking if
you want to log on to the database. If you are connected successfully, the status line

displays the connect lamp <con>.

Using the various menus and items in the form one can query the database, enter

new data, change data and save them.
Queries a form using:

1. To retrieve all records

18

Choose Query—Execute, the records are displayed as showing figure 15. Press the
Down or Up arrow key, or select Next, Scroll down or Previous, Scroll Up

from record menu to view other records.

AP e,
s

Figure 15: Retrieve All Records.

2. To retrieve a specifc record

Choose Query—Enter to specify an item. For example, in the Order# item, type
an order number, OR003, you want to view, then choose Query—Execute, the record

relating ORO03 will appear.
3. To retrieve a group of records

Choose Query—Enter, Specify a item by entering partial value using pattern match-

ing characters:

e _represents any single character;

e % represents any conbination of characters, including no characters.

For example:

Jon_s matches Jones, Jonas, Jonus

19

Enter% matches Enter, Enters, Enterprise

_in%s matches Bins, Fines, Winners

'To change data in a form, you can press TAB key to the field of interest, and type
over the existing data.

To enter new data into the form, you can scroll to the last record and then down once
more to move to a blank record. Data can be typed into the fields and TAB key can

be pressed to move between fields on the form.
To save both changed and new records on a form, choose Save from Action menu.

To exit from a running form, pull down the Action menu and select the Exit menu

item.

3.2 Creating a Master-Detail Form

The Master-Detail relationship is a common relationship between entities. In an
Entity-Relationship diagram, these are shown as “One to Many” relationship. In a
physical database design, a single Master record references one or more details records
in another table. A record in the detail table will relate to exactly one master record
in the master table. Another name for this relationship is called parent-child.

A Master-Detail form has two blocks arranged in a master-detail relationship. The
first block corresponds to the master table and the second block corresponds to the

detail table. There are two major functions in a Master-Detail form:

1. Oracle Forms coordinates values between the two blocks through a series of

form and block level triggers.

2. Oracle forms guarantees that the detail block will display only records that
are associated with the current record in the master block.

20

3.2.1 Create a Master Block

Using the steps given in the previous section on Creating a Form with a Single Block,
create a new block named SUPPLIER that contains all of the columns in the SUP-
PLIER table.

1. From the Tools menu choose New Block... option.

2. On the General tab, click on the Select button to select the SUPPLIER table,
change the Block Name to SUPPLIER_BLK and Canvas to CAN_SUPPLIER.

3. Click on the Items tab and click on Select Colummns... button to include all
of the columns of SUPPLIER.

4. Click on the Layout tab and choose style as Tabular and Orientation as Vertical.
Allow only 1 record to be displayed with spacing of 0.

3. When done, click on the OK button to create the block.

6. Save the form as sup_ord.fmb and then compile and run it to make sure it is

working property.

3.2.2 Create a Detail Block

Now that we have the master block SUPPLIER created, we can create the detail
block ORDERS and associate it with the master block. Perform the following steps:
1. Choose New Block... from the Tools menu.

2. On the General tab, click on the Select... button to select the ORDERS ta-
ble. Making the Block Name aiso changes to ORDER_BLK and the Canvas Name
changes to CAN_SUPPLIER.

21

3. Click on the Items tab and click on Select Columns... button to include all
of the columns.

4. Click on the Layout tab and choose style as Tabular and Orientation as Vertical.
Allow 3 record to be displayed with spacing of 0. Also click on the options for
Integrity Constraints and for a Scrollbar.

3. Click on the Master/Detail tab.

Figure 16: Master-Detail tab in New Block window

The Master/Detail tab in the New Block window (see figure. 16) allows you to define
a master-detail relationship between the base table block you are creating (the detail
block) and a master block.

In Master Block field, type the name of the master block. The block specified must
already exist in the current form. In this example, type in the name of the Master
Block, SUPPLIER_BLK, or choose it from Select... button. Join Cendition specifies
the join condition that links a detail record to a master record. Type in the Join
Condition field:

22

ORDERS_BLK.Sid = SUPPLIER_BLK.Sid

When done, click on the OK button to create the block.
Save the form (it should have the name sup_ord.fmb) and then compile and run it.

Figure 17 shows the master-detail form running.

Figure 17: Layout Editor with Maste/Detail

Notice that by scrolling the master block SUPPLIER to other supplier numbers (using
the up and down arrow keys), the records of Orders for that supplier are automatically

queried and displayed.
The another way to create a relation is as follows:

In the Object Navigator(figure. 1), insert a relation object under the relations node
for the master block (SUPPLIER_BLK). Position the cursor on the Relations node
under the master block, then click Create button in the tool palette. The relation
dialog appears(See figure. 18):

e In the Relation Name field, enter a name of this relation or accept default name.

23

Figure 18: Relationship Dialog window

In the Master Block field, the name of master block (SUPPLIER_BLK) is en-

tered for you automatically.

In the Detail Block field, type the name of the detail block, ORDERS_BLK, or

choose it from Select... button.

e In the Join Cordition field, type
ORDERS_BLK.Sid = SUPPLIER_BLK.Sid

Choose OK to create a master-detail form.

3.2.3 Creating Complex Master-Detail Relationship

Many applications require complex master-detail relationships that involve more than
two blocks. To create such relationships, simply defines as many individual relations

24

as needed. Any block can be the master or detail in more than one relation, and a

block that is the master in one relation can be the detail in another.

Consider an application for purchase order, we had created three tables and their
relations in the database, Orders, Supplier, Product.

One supplier has one or more orders and one or more product. One order belongs
to one supplier and has one or more product. One product belongs to one or more

orders and suppliers.
We can create them in the form using three ways:
1. Master with Dependent Details:

A master with dependent details relatioship includes a master block and n levels of
detail blocks, such that the first detail block is itself a master for its own detail block.

In this way, we make the Supplier as master block, Orders as detail block for
Supplier block but as master block for Product block, Product block as detail
block.

2. Master with Independent Details

A master with independent details relationship involves two or more detail blocks,

each of which has the same master block.

We can choose one of the three blocks as master block, the other two blocks as detail
block. In this example, the master block Supplier along with the detail block Orders

and Product.
3. Detail with Two Masters

A detail with two masters relationship involves a single detail block that has two
master blocks. Oracle Forms displays the appropriate detail records for whichever

master block is the current block in the form.

In the sample application referred to earlier, the Product block could be a detail
block having two master blocks, Orders and Supplier.

3.3 Using PL/SQL to Write Event Trigger

PL/SQL Editor Context

Type - Sets editor context to a specific type of code object. When the current module
is a form, Type can be set to Trigger or Program Unit. When the current module is
a menu, Type can be set to Menu Startup Code, Menu Item Code, or Program Unit.
When the current module is a library, Type is always Program Unit.

Object - Sets editor context to a specific object scope.

Name - The Name option lists all of the code objects defined in the current context.
Selecting a code object from the Name poplist makes that object the current object
in the editor.

The primary method of adding code to a form is through a trigger. Every trigger has

a name, and contains one or more PL/SQL statements, it encapsulates PL/SQL code
so that it can be associated with an event and executed and maintained as a distinct
object.

A trigger must be attached to a specific object in the form, either an item, a block,
or the form itself. Trigger fires (i.e. runs) when its event happens. For example, in a
form with three buttons, each button has a When-Button-Pressed trigger attached to
it, and each trigger contains different PL/SQL statements. When the Button Pressed
event occurs, Oracle Forms responds by firing only the When-Button-Pressed trigger
attached to the selected button.

Triggers are usually added as the last stage in the form development process.

3.3.1 Create triggers

In the Object Navigator, triggers appear under the Triggers node for the object to
which they are attached.

e Start the Object Navigator(See figure. 1).

26

e Expand the object (i.e. SUPPLIER_BLK) under the item by clicking on its +
sign, the trigger node appears.

e Select triggers, click the Create button, new triggers list window opens(See
figure. 19).

Figure 19: New Trigger List Window

e Enter a search string in find field then press Find button to find the trigger
name.(i.e. WHEN-BUTTON-DOWN)

e Choose the trigger name WHEN-BUTTON-DOWN from the new trigger list
window, click OK, PL/SQL editor opens(See figure. 20).

e Write the trigger code in the trigger code window, press the Compile button to

compile the trigger.

e When done, click Close button to dismiss the editor.

You can create a trigger for an item in the Layout Editor, select the item, press the
right button of mouse, from the popup menu, select Trigger to invoke the PL/SQL

27

Figure 20: PL/SQL Editor

Editor, choose New to invoke the new trigger window, the remainder is same as above

way.

3.3.2 Write Trigger Code

The code in Oracle Form triggers is written in oracle’s PL/SQL language which is an

extension to the SQL database language.
The text of an Oracle Forms trigger is an anonymous PL/SQL block. A block can

consist of three section:

1). A declaration section for variables, constants, cursors, and exceptions, which is

optional,
2). A section of executable statements, which is required.

3). A section of exception handlers, which is optional.

28

PL/SQL structure
The syntax for delimiting the sections of a PL/SQL block looks like this:

DECLARE

-- declarative statements (optional)
BEGIN

-- executable statements (required)
EXCEPTION

-- exception handlers (optiomal)
END;

In a trigger, only the executable section is required. When you write a trigger that
does not have a DECLARE section, you do not need to include the BEGIN and END
Keywords, as they are added implicitly. The following example shows such a trigger:

/* Key-CLRREC Trigger: */

IF :System.Record_Status = ’CHANGED’ OR
:System.Record_Status = ’INSERT’ THEN
Commit_Form;

END IF;

Clear_Record;

If, however, your trigger has a DECLARE section, you must include the BEGIN
and END keywords (see following code) so the compiler can detect the start of the

executable section.

/* When-Button-Pressed Trigger: =/

DECLARE

lov_return boolean;
BEGIN

lov_return := show_lov(’Order#_Lov’);
END;

29

Calling Built-in Subprogram in Triggers

Oracle Forms includes many built-in subprograms that you can call from triggers.
A built-in subprogram is a package procedure or function. Built-in subprograms are
variable to handle a variety of application functions. In the Object Navigator, you
can broswe a list of Oracle Forms built-ins under the Built-in Package nodes.

1. To move the input focus from one item to another, you may call:
NEXTITEM, NEXT_BLOCK, NEXT _RECORD, GOITEM, GO_BLOCK;
2. To perform operations on data in the form or in the database:

CLEAR_RECORD, DELETE_RECORD, ENTER_QUERY, EXECUTE_QUERY, COM-
MIT_FORVM;

3. To control the display of interface objects at runtime:

MOVE_WINDOW, HIDE_WINDOW, SHOW _EDITOR, SHOW _LOV, SHOW _ALERT.
For example:

/*When-Button-Pressed trigger for Order button*/

Go_Block('ORD _BLK’);

When this subprogram is called, the Orders block is displayed.

Writing SQL Statement in Triggers

The SQL statements can be used in trigger to perform some operations. These all
write in a trigger editor (Figure. 20). To refer to an item in the form use the following

notation: block_name.item_name
select sum(Oprice)

into :0RD_BLK.totalprice

from orders;

30

To reference the value of an item, preface the item name with a block name and a

colon:

table_name.column_name = :block_name.item_name

Compile Triggers

Oracle Forms compiles any uncompiled triggers in a form when you generate the form
to create a runtime file, and compiling individual triggers is not required. However,
compiling locally allows you to find and correct errors in your trigger code at the time

you write the trigger, rather than when you generate the form.

3.4 Writing Program Unit

The program unit is a PL/SQL subprogram that you write and re-use in the form.
This section explains how to create this subprogram that can be called from any

trigger in that module, it can be a procedure or a function.

3.4.1 Create a Program Unit

In the Object Navigator, select the desired Program Units node and then click Create
button. The New Program Unit window appears(See figure. 21).

Specify the Name of the program unit and then specify the program unit Type (either
Procedure, Function, Package Spec, or Package Body). Click OK, the PL/SQL editor
window opens(see figure. 20). In the PL/SQL editor, write, edit and compile the
program unit code. If there are errors displayed in the compilation message pane,
click on an error to navigate to its location in the source code and correct it.

If no error appears, click Close to dismiss the PL/SQL editor.

Procedure example:

31

Figure 21: New Program Unit window

The procedure specification begins with the keyword PROCEDURE and ends with
the procedure name or with the list of formal parameters. The procedure body begins
with the keyword IS and ends with the keyword END.

Syntax:

PROCEDURE procedure_name [argumet list] IS
[local variable declaration]

BEGIN
statements
[EXCEPTION exception_handlers]

END;

The following procedure processes an order by decrementing the invertory available
for a particular product. To call this procedure, you pass in the product ID, the
number of units being ordered, and the warehouse that should fill the order:

PROCEDURE do_order (units_ordered IN NUMBER, prod_id IN NUMBER,
warehouse IN NUMBER) IS

32

units_in_stock NUMBER;
BEGIN
SELECT amount_in_stock INTO units_in_stock FROM inventory
WHERE product_id = prod_id AND warehouse_id = warehouse;
IF units_in_stock >= units_ordered THEN
UPDATE inventory
SET amount_in_stock = units_in_stock - units_ordered
WHERE product_id = prod_id;
ELSE
Message(’Insufficient stock on hand.’)
Raise Form_Trigger_Failure;
END IF;
END;

You should use this procedure in a trigger as following:
do_order (:order_blk.units, :order_blk.prod_id, :warehouse_blk.id);

Function example:
Every function must execute a RETURN statement.

Syntax:

FUNCTION function_name [argument list] RETURN [type] IS
[local variable declaration]
BEGIN
statements
RETURN (result);
[(EXCEPTION exception_handlers]
RETURN (result);
END;

33

The following function returns the number of product units in stock at a particular
warehouse. When you call this function, you pass in a product ID and warehouse ID:

FUNCTION get_invertory (product NUMBER, warehouse NUMBER)
RETURN NUMBER IS
amount NUMBER;
BEGIN
SELECT amount_in_stock INTO amount FROM inventory
WHERE product_id = product and warehouse_id = warehouse;
RETURN amount;

EXCEPTION
WHEN OTHERS THEN
Message(’Invalid product name or warehouse ID.’);

RETURN (-1);
END;

You could use this function in a trigger as follows:

DECLARE

inv NUMBER ;

amount_required NUMBER := :order_block.order_item;
BEGIN

inv := Get_invertory(:product.id, :warehouse.id);

IF inv < 0 THEN
-- handle the error here

ELSE IF inv >= amount_required THEN
-- process the order here
END IF;
END;

If no error appears, click Close to dismiss the PL/SQL editor.

34

3.4.2 Edit a Program Unit

e In the Object Navigator, double-click the program unit icon you wish to edit.
e In the PL/SQL editor, edit the program unit.
e Click Compile to recompile the program unit when you are finished editing.

e Click Close to close the PL/SQL editor when you are finished.

3.4.3 Delete a Program Unit

e In the Object Navigator, click the program unit node.
e Click the Delete button (Figure. 4) to delete the
program unit.

e Click Yes to confirm the message box that appears. If the program unit you
delete is referenced in other program units, you must remove those references

to reflect the deletion.

Chapter 4

Creating Menus, Alerts and LOVs

4.1 Creating a Menu

Every form runs with a menu, either the defauit menu provided by Oracle Forms, or

a custom menu you create using the Menu Editor.

The Menu Editor provides a visual and intuitive way to quickly create a menu skele-

ton. Once the skeleton is created, you add commands to each menu item, and attach

the menu module to a form.

Assume that you want to create a custom menu as in figure. 22.

4.1.1 Create a Menu Module

The first step in designing a custom menu is to create a menu module. In the Object
Navigator, double-click on the Menus node, or put the cursor in the menu item, then

click on the Create button, and change the default name, such as main_menu.

36

Figure 22: Menu Editor
4.1.2 Create Menus and Menu Items
Create a Main Menu

1. Select main_menu node, then choose Tools—Menus editor. The Menu Editor(See

figure. 23) opens, showing a new menu with one item selected.

Figure 23: Menu Editor with a New Menu

2. Type File to replace the default name.

37

3. Select Menu—Create Right or select the item and press Create Right but-
ton(Figure. 24) from toolbar, a new item is added to the main menu with the

default name <New Item>.

Figure 24: Create Right button

4. Type Edit to replace the default name.

5. Repeat step 3 and 4 to add the Item.

Create Menu Items

Now we’ll create menu item under each main menu title.

1. In the menu, click in the File menu item.

2. Select Menu—Create Down or select the item and click Create Down button(Figure.
23),

17

Figure 25: Create Down Button

Oracle Form adds a new item below File, with the default name <New Item>.
3. Type New to replace the default name.
4. Use Create Down button to add the Open, Save and Save as menu items.

3. Click in Edit to select the Edit menu.

6. Use Create Down button to add the Cut, Copy, Paste and Edit menu items.

38

7. Select the Item menu, add Previous, Next and Clear menu items by repeating

above steps.

Create Submenu Items

Select the parent item on the individual menu, such as Copy. Click the Create Right
button, or press Control-Right arrow to add the first itern on a new submenu. Type
Normal to replace the default label, and then click the Create Down button to add
the another submenu items, replace the default label with Special.

Delete items from a menu or submenu

Select the item you want to delete, choose Menu—Delete (or click on the Delete
button). Oracle Forms displays an alert asking if you are sure you want to delete,

and click Yes.

4.1.3 Assign Commands to Menu Items

Every menu item must have a valid Command Type property: Null, Menu, PL/SQL
etc. Most menu items execute PL/SQL commands, so their Command Type is
PL/SQL. If a menu item has submenus, its Command Type must be changed to Menu.
For example, File, Edit and Item must have Command Type property set to Menu.

Null is used to separator items.

Assigning a command to a menu item, you may select the desired menu item in the
Menu Editor(e.g. Save) and choose the properties... option from the pop up meun
by clicking the right mouse button.

In the Properties window, check that Save’s Command Type is set to PL/SQL.

39

Double-click on the Command Text property (or click on the More... button) to
display the PL/SQL Editor. Type the code in the Editor.

DO_KEY(’commit_form’);

Click Compile button to compile the code, and finally click Close to dismiss the

window.

4.1.4 Save and Generate a Menu Module

Once all of the menu structure has been created and commands for each menu item
have been specified, the menu module must be saved to a file with a .mmb extension

and generated.

To save the menu module, select File—Save(or Save As) to save the menu module
you just created. Oracle Forms displays the Save As dialog, with the default file
name module .mmb. Replace the default name with mymenu.mmb and click OK. Choose

File—Exit to close the Designer.

To generate the menu module, pull down the File menu from toolbar, click on Admin-
istration menu and choose Generate from the submenu. Generating a menu module

results in a file with a .mmx extension. In this example, the generated menu module

1S mymenu . mmx

4.1.5 Attach a Menu Module to a Form

Before attaching a menu to a form, you must generate the menu module, set the

form’s Menu Module property, and generate the form.
For example, you want attach mymenu module to a form:
At first, make sure main_menu is saved and generated. Open that form’s property

window, set the Menu Module property to the main menu, once a menu is attached

40

to a form, Oracle Forms automatically loads the main menu.mmx menu file when the

form is running.

4.2 Creating Alerts

An alert is modal window that displays a message notifying the operator of some ap-
plication condition.There are three styles of alerts: Stop, Caution and Note. Each
style denotes a different level of message severity. Message severity is represented
visually by a unique icon that displays in the alert window.

4.2.1 Create an Alert

e In the Navigator, select the Alerts node and then click the Create button.
Double-click the alert icon to display its property window. Change the Name in

properties window to a meaningful name, e.g. no_price_alert.
e Give the alert window a Title, e.g. Please take note.

Set the Alert Style to appear in the alert, e.g. Note.

Give a default Message (the actual message will be given later in the trigger).

e Define one or more buttons for the alert by entering a text label in the Button
1, Button 2 and Button 3 fields. (The default text labels are OK for Button 1

and Cancel for Button 2).

Note: At least one button must have a label. Buttons that do not have label
are not displayed. On most window managers, the default button has a distinctive

appearence.

41

4.2.2 Display an Alert

To diaplay an alert, your application must execute the SHOW_ALERT built-in sub-

program from a trigger.

SHOW_ALERT is a function that returns a numeric constant.

Show_Alert(alert_name)
Return NUMBER;

e Create a trigger by double-clicking the triggers icon in the object navigator.

e In the PL/SQL editor for the new trigger. Write the PL/SQL code for the
trigger.

DECLARE
-- return variable from the function Show_Alert
alert_button MUMBER;
BEGIN
IF :item.price IS NOT NULL THEN
-— call the user-named calculation subprogram
calculate_totals;
ELSE
-- display the alert
alert_button := Show_Alert(’no_price_alert’);
IF alert_button = ALERT_BUTTON1 THEN
-- invoke the price list window
Go_Block(’product_prices’);
END IF; -- do nothing if operator selects button 2
END IF;
END;

42

4.3 Creating List of Values (LOVs)

An LOV is a scrollable popup window which shows the acceptable values for the
associated text item. For example, when you enter the Sid item in ORDER form (see
the example of 4.2.1), it might be difficult to remember all of the sid of suppliers.
One solution to this problem is to make a list of appropriate values available when
you navigates to Sid item.

In the following section, we will illustrate how to create a LOV and how to attach it

to an item.

A LOV is based on a Record Group which is a query that returns a collection of data.
There are two kinds of record group values:

1). Static record group — a record group whose values are set at design time. The
values are stored in the form, not in the database. It is useful when the values are

known in advance and will not to change.

2). Query record group — a record group whose values are stored in the database.
The values are read from the database at runtime. It is useful when the values are

not known in advance and are likely to change.

4.3.1 Create a Static Record Group

Select the Record Groups node in Object Navigator, click on the create button on
the tool palette to popup New Record Group window(See figure. 26).

Select Static Values then press OK, Columns Specification window opens. Give a
column name, specify the data type and length, type the values for that column in
the Column Values field, eg. Cash, Cheque and Master Card. Click OK to create the

static record group(See figure. 27).

Open the properties window for the record group to change the name to a meaningful

43

Figure 27: Column Specification Window

44

narme.

4.3.2 Create a Query Record Group

Select the Record Group node in Object Navigator, click on the create button to
open New Group window(See figure.28), select Based on the Query below..., type
a statement query to retrieve the data from the database in Query Text field, example
as shown in figure 28.

Figure 28: New Record Group window with a query

Click OK to create the query record group. Change its name in the properties window,
e.g. RGSID.

4.3.3 Create a LOV

In the Object Navigator, double click LOVs node to open a New LOV window. Select
Existing Record Group and enter its name or press Select... button to choose

one from a list of existing record groups. For example: choose RG_SID, see figure.
29.

Figure 29: New LOV window with a Exist Record Group

Press OK to create a New LOV.

Open properties window, replace its default name with a meaningful name, e.g.
LOV SID, double click on the Column Mapping property to open the LOV Column
Mapping window(See figure. 30).

In the Column Names field, select the columns from the record group to include
them in the LOV. In the Return Item field, type the form’s target item name, e.g.
ORD_BLK.SID. Enter the Column Title as it should appear at runtime. e.g. Sup-
plier ID. Click OK to create the new LOV. If you do not want a column to be returned,
leave the Return Item blank.

You can also created a LOV which doesn’t base on an exist record group, in New
LOV window select New Record Group Based on the Query below... and typea
query in Query Text field.

46

Figure 30: LOV Column Mapping window

4.3.4 Attach an LOV to an Item

After creating a LOV, you attach the LOV to an item. In our example, we attach
the LOV SID to the Sid item of the ORD_BLK. In the Object Navigator, open the
properties window for Sid item of the ORD_BLK. Set the LOV property by entering
the name of the LOV to LOV_SID.

(optional) Set the LOV for validation property to True, so that values from the
LOV can be entered in the field.

(optional) Open the properties window for LOV, set the Auto Display propety to
True to display the LOV automatically at runtime.

After attaching the LOV to an item, at runtime, Oracle Form displays the <List>
lamp on the status line whenever an LOV is available. Once invoked, an LOV appears
in a small window, allowing you to select a single value. For instance, we attached
the LOV to Sid item of ORD _BLK previously, in the runtime we can get a window
when we invoke the Sid item(See figure. 31).

47

R e
I

Figure 31: LOV List window

48

Chapter 5

Starting the Oracle Reports

5.1 Introduction to Reports

Oracle Reports is a tool for developing, displaying, and printing production-quality
reports. It is designed for application developers who are familiar with SQL and
PL/SQL.

There are four steps to building a report with Oracle Reports:

Create a new report definition. Define the data model (choose the data, data re-
lationships, and calculations you will use to produce the report output). Specify a
layout. You can use a default, customizing it if desired, or create your own layout.

Run the report, previewing the output in the Previewer.

Report has many kind of style: Tabular, Break, Master/detail, Matrix(crosstab),
Nested matrix, Matrix break, Form letter, Mailing label, World Wide Web, Multime-

dia and OLE2.

49

5.2 Starting the Oracle Report Designer

5.2.1 Start Report Designer
Enter the following command at the unix prompt:
% r25desm &

The & is the ampersand character.

The Object Navigator for reports will appear (See figure. 32).

Figure 32: Object Navigator

5.2.2 Connect to Database

As with Oracle Forms, the first step in using Oracle Reports is to Connect to an
Oracle server. Choose the Connect... from the File menu. In the connect dialog

30

(See figure. 2), fill your Username and Oracle Password, then click OK. If connected
successfully, <Con> will be displayed at the bottom of the Object Navigator screen.

5.3 Introduction to Object Navigator

Object Navigator shows all objects that Oracle Reports has created for you, as part
of the report definition.

Data Model - in which you define the data for the report.
Layout - in which you create the report layout.

Parameter Form - in which you customize the appearance of the Runtime Param-
eter Form, a window that optionally appears at runtime and enables you to enter

parameter values that affect report execution.

Chapter 6

Creating and Modifing Reports

6.1 Creating a Single Table Report

There are four steps to build a report with Oracle Reports:

1. Specify a data model (choose the data, data relationships, and calculations you

will use to produce the report output).

2. Specify a layout. Oracle Reports provides six default layout styles; you can
choose one and customize it if desired, or create your own layout.

3. Create or Customize the Parameter Form. All reports have a default parameter

form.

4. (optional) Create any triggers or program units that will be executed with the

report.

In this section, we will create a report that views the contents of a single table.

6.1.1 Specify the Data Model

The first step is to specify the data model: in the Object Navigator, double-click
the Date Model node icon, or highlight the Data Model, click on it with the right
mouse button and choose Editor from pop-up menu. The Data Model Editor will
appear(See figure. 33).

Figure 33: Data Model Editor

In the Data Model Editor, single-click the Query button from tool palette to create
a query object(See figure. 34),

sl

Figure 34: Query Button

click in the main area (canvas region) of the window, then property window appears.

Choose General tab of the property window, in Name text box, for example, re-
place the default name to Q_orders or accept default name. In SELECT Statement
text box, type a SELECT statement (e.g., select order#, sid, odate, oprice,
opayment from orders order by order#;).

33

Note: Select the columns in the order you want them to appear in the report out-

put(See figure. 35).

Figure 35: Property Sheet for Q_orders
Click 0K to display the Q_orders query and its associated columns below it in a group
named G_orders in the Data Model Editor(See figure. 36).

At any time, the properties for the query, the group and each of the columns will
be displayed by clicking on the query or the group with the right mouse button, it

produce a pop-up menu with the properties menu item.

Re-sort the order of the columns in a group by clicking and draging the column name

to its new position.

6.1.2 Specify the Default Layout
Once the data model has been completed, the layout of the report must be specified.

e Click the default Layout button (See figure. 37)
in the toolbar at upper of data model window, the default Layout screen will

appear(See figure. 38).

Figure 36: Data Model Editor with Q_orders
=
Figure 37: Default Layout Button

The six layout choices include:

Tabular — Simple table with column headings at the top and data records in
consecutive rows below.

Master/detail — Multiple tabular reports broken up by related collections of
data.

Form — Column headings on the left hand side with data values next to them
on the right.

Form Letter — Arbitrary placement of data items within a text body.

Mailing Label — No column heading and records grouped into repeating
sections sized to print directly to a sheet of mailing labels.

Matrix(crosstab) — Column labels on both the left and the top with the

data values in the middle.

e (Optional) In the Data/Selection tab, customize the report output:

(s 1]

Figure 38: Default Layout Screen

To remove a column from the report, click to deselect it.
To rename a column heading, revise its label.
To adjust field length, change the width.

e In this example, choose the Tabular. Click OK to display the Layout Editor(See
figure. 39).

Each of the nested Frames indicates either the entire report(outer most box), the
current group or the actual columns themselves (inner most). Columns can be resized,
headings can be moved and formatted(change font and size, etc.)boxes, lines and text
can be added, etc. There are a number of drawing and editing tools on the palette

on left side of the screen.
Now we have created the data model and a default layout.
Next, the report will be generated and run.

A default parameter form will be created automatically.

Figure 39: Layout Editor with Q_orders

6.1.3 Save, Generate and Run the Report

To save a report, choose the Save option from File menu. The source code for Oracle

Reports are saved in files with an .RDF file name extension.
Compiled and generated reports are saved with a .rep extension.
For this example, save this report as ORDER .RDF

Once the report is saved, choose the Run... option from the File menu. The

Runtime Parameter Form opens(See figure. 40).

The Runtime Parameter Form has two fields. One is a list of possible Destination
Type for the report includeing: Screen, Printer, E-Mail, File and Preview. The
Destination Name field will change depending on the destination type.

Keeping the Runtime Parameter Form set at Destination Type as Screen and click

on the Run Report button.

As the report runs, an activity screen will appear giving an indication of the processing

that is currently underway(See figure. 41).

o7

Figure 40: Runtime Parameter Form

6.1.4 Create Computation to a Report

Create a Break Report

To remove the duplicate values, create a break report based on the ORDERS iden-
tification number. This will group all information related to a particular supplier
under the same 8id in the report output. To add the summaries, create your own

computational columns.
In the Data Model editor, clicking and hold the G_orders group object and drag it
down and then drag the break column (e.g. sid) above the group to create a new

group. Double-click the new group object to display the property sheet to replace
the default name to G_sid for the group and clicking OK, the Data Model Editor is

shown in figure. 42.

Whenever you change the format in the data model, you'll need to updata the report
layout. The next step is to update the layout to incorporate your changes.

o8

Figure 41: Activity Window

Select Default Layout from the Tools, if the selection of the Default Layout isn’t
changed, then choose OK. Otherwise, in confirmation box, clicking Yse button to

replace the existing layout.

Running the report to display the report output as figure. 43.

Create a Summary Column

In the Data Model Editor, single-click the Summary Column button (See figure. 44)
in the tool pallette.

To create a column with a group, click in the group at the position you want the
column placed. To create a report-level column, click in outside of group area. For
example, In the property sheet, rename the column to Totalprice and set the Function
to Sum and the Source option to oprice, and then click OK.

After running, the report previewer screen is as following (See figure. 45):

Figure 42: Q_orders with a Break Column sid

Create a Formula Column

Clicking once on the Formula Column button (See figure. 46) in the tool palette,

then clicking area within the G orders. A new column, initially named CF_l, is
created. Replace the name CF_1 in the new column’s property sheet. Specify the
other options.

Enter a formula

Click the Edit..., a Program Unit Editor will appear, add the formula using the
PL/SQL code in the Program Unit Editor, then click Compile. When the code is
compiled successfully, click Close.

6.1.5 Create Page Number Stamps

If you want to create a page number in the top or bottom margin of the report, In
the layout editor, click the Margin button (See figure. 47) to display the margin area
of the report,

60

sid Crder Odate

5101 CROOZ 02-MAY-58
CROOE 22-SEP-56
CRO1C 20-K0V-67
5102 CROOE 15-JUB-67
CROQS 30-cc7-97
5110 CROOZ 15-CEC-67
CROCE 02-KAR-57
S11 (ROO1 10-JAN-58
CROG4 02-AUG-58
CROG? 20-JUL-58

Figure 43: Report Previewer Window with a Break Column sid
G

Figure 44: Summary Column Button

click the Field icon (See figure. 48) from the tool palette,

click and drag a rectangle in the bottom margin area. Double-click this field object
to display the property sheet.

In the From text box of property sheet, select Physical Page Number from the drop-
down list.

(Option) clicking the Page Numbering button to change defaults in the dialog box.
Finally click OK.

6.2 Creating a Master-Detail Report

A master/detail report contains at least two groups of data. For every value of the
master group, the related values in the detail group are retrieved. By comparsion, a
break report has a similar data model, but has only one query. In this section, we

61

Sid Jrder Odate Oprice IJrayment
s101 JEG02 02-mav-38 388 99 cash
JF006 22-SrP-96 S50 S XaszeCard
IE010 20-N0V-97 950 5 XaszeCard
§102 JFQCS 15-JUN-97 2451 89 ckeque
JE009 30-0CT-97 1211 S5 keque
s110 JE003 15-DEC-97 2886 89 MaszeCacd
JF008 02-MAR-97 889 cash
§111 i 113 10-Jan-98 2399 ckeque
JE004 01-AUG-98 255 85 cash
JF007 20-JUL-38 456 99 cash
Totolgr:ce 12441 16

Figure 46: Formula Column Button

will go throgh the steps for creating a master/detail report. To avoid any confusion,

save and close any existing reports before proceeding.

6.2.1 Specify the Master-Detail Data Model

As in the single-table report, we begin by specifying the data model for the Master-
Detail report. To create a Master/Detail report, we will use the SUPPLIER and

ORDERS tables.
Begin in the Object Navigator and invoke the Data Model Editor. In the Data Model

Figure 47: Margin Button

62

Figure 48: Field Icon

Editor, add two queries.

In query Q_1, display the property sheet, go to General:Name, and rename the query
to Q_supplier, specify the SELECT Statement as:

select * from supplier;

Query Q_supplier will act as the Master query for the report.
In query Q_2, rename the query Q_orders, specify the SELECT Statement as:

select * from orders;

Query Q-orders will act as the Detail query in this Master-Detail report. The Data
Model Editor should look like figure. 49.

6.2.2 Link the Queries

The data link relates the two queries via the primary and foreign keys of the two
tables. In this case, using the column sid of ORDERS and sid of SUPPLIER to

create a link to establish the relationship between the queries.
To link the master query (Q-orders) with the detail query(Q_supplier):
e Select the Data Link button in the tool palette (See figure. 50).

e Click on the SID column of group Q_SUPPLIER and drag the mouse over to
the SID1 column of group Q-ORDERS. The property sheet appears.

For this example, close the link property sheet without changing any settings.

63

- SNAME
4 SPHONE
& SADDRESS

Figure 49: Data Model with two Queries

ol

Figure 50: Data Link Button

A Link (solid black line) will appear between group Q.SUPPLIER and query
Q-ORDER (See figure. 31).

Note: The direction of the arrow shows the flow of the data from the parent
group to child query.

Suppose we want the report to display total price for each supplier(or master
record), and total price of all suppliers (report total). we can do this in the

data model using summaries.

6.2.3 Create Summaries

Create the total price for each supplier by selecting the summary column button
and click in the master group. Double-clicking on the summary column displays

64

[G_orders
< ORDER®
- SiDY

« ODATE

& OSTUTS

2 QPRICE

& QPAYMENT

e

Figure 51: Data Model Editor with a Link Between Two Queries

its property sheet, where you can specify the type of computation to perform. For

second summary, total price for all suppliers, selecting the summary column button
and clicking outside of the groups.

At this point, the Data Model is completed.

6.2.4 Specify the Master-Detail Layout

In the Data Model, click the default layout button. When the default layout screen ap-

pears, choose Master/Detail and click on the 0K button. The previewer with Master-
Detail report will appear (See figure. 52).

6.2.5 Save, Generate and Run the Master-Detail Report

For now, the report can be saved, generated and Run. For this example, save the
Master-Detail report as SUP_ORD.RDF, the Runtime Parameter Form is created by

65

$:14 s201 Sc.aae Cline Spbore 123-397€ Seddress 23 Peel 3
ordez $1dl sdate Ostuzs c1ze Opeymeat
ORO02 sic1 22-mAY-SE 3 I8€ 59 Cask o
OROZC S1Cl <J-w0v-57 1 95C. 5 E39Telacd)
ORO0E sict 22-sEP-G€ 1 S5C 5 Baszecard B
si1d 221 Srams Stone Sphare 335-1111 Saddress 12 math -
Orde:s S1dl tdace Qatuzy Opsice Opayment -
CROOL Ss111 1J3-JAR-5€ 1 2337 Cheque ._
OROO% s111 I1-ADG-SE [2SE 35 Cask -
OR007 si11 23-Jm-5€ ¢ 456 59 Cask :

S$1d4 $102 Sraxe Be’l Spaare 339-0077 Saddress 55 ue Denzs BN
Qrder S1¢1 daes 0stuts Oprize Opayment i
OROOS $1C2 33-0CT-87 1 1211 53 Cheque
OROQS s162 15-you-57 1 2451 33 Cheque)

$14 S0 Seane Sorte Spbore 339-67%¢ Seddres: #7 Bac:
Grdec s1dl Tdate Omtuczas Opzice Opayment -
OR003 Ss112 15-DEC-57 [208Be 33 Baszzelacd B
OROOE S112 I2-mAR-57 1 ES3 Cask .

mn"* R N R R ISRy 7. - P :_‘

Figure 52: Report Previewer with a Maste/Detail Report

default and includes options to output the report to the Screen etc.

6.3 Modify the Report in Layout Editor

6.3.1 Edit, Format Text

To edit text, click the text tool in the tool palette on the left hand

Figure 53: Text Tool Button

click inside the text object, insert or modify the text, then click outside the text
object.

To format text, click the text object, click the format option from menu to change

the font, size, style and so on of the text.

To cut, copy or paste text, click the text tool, and then click the text object, click
and drag to mark the text you want to cut or copy, choose Edit—Cut or Copy. To

66

paste text, choose Edit—Paste

6.3.2 Create a Page Break

In the Layout editor, double-click the object at which you want to insert a page break.

In the property sheet, click the General Layout: Pagination setting you require,
then click OK.

Note: To set a page break after each repeating frame, select an Object: Maxmun

Records per Page setting of 1.

67

Chapter 7

Conference Management System

7.1 Introduction

In this project, a database application of Oracle Developer/2000, Conference Manage-
ment System(CMS), was designed and implemented. The user interfaces were built
by Form4.5, the reports were created by Report2.5. The purpose of the project is ex-
plore a flexible enough way to provide a management for various conference types and
an easy enough interface for the user without any coding, all functions are handled

through the user interface.

The database in CMS stores all the information pertinent to the conference as follows:
1. An organizing committee that looks after the logistic, including accommodations
and social program; 2. Convocations of a conference; 3. An program committee
which oversees the technical program including invited talks, tutorials and special
presentation; 4. The people presenting the paper during a convocation; 5. The
papers submitted for the convocation with authors’ information; 6. Referees who
review papers submitted for the convocation; 7. A number of parallel sessions to be
held on each day of the convocation; 8. Publications that contain the accepted papers
and the related publisher; 9. The accounts for attendees; 10. The activities including

the social program.

68

In addition, the project also provides the functions for several special queries such
as: 1. Find the referees who were late in returning the review, 2. Find referees who
have not returned their review by due day; 3. Find the referees who accept or reject
more than n% of the papers they review; and 4. Find papers whose authors haven’t
returned the final vesion of their paper.

Furthermore, the project may display the reports in the information of the conference
based on the database as follows:

1. Conference list; 2. Convocation list; 3. Session list; 4. Paper list; 5. Account list;
6. Attendee list; 7. Program committee list; 8. Referee list; 9. Social events; 10.
Accepted authors list; 11. All authors list.

The database design of the project consist of five main steps:

1. System Analysis
2. Table Creation

3. Function Implementing and Graphic User Interface Building

>

. Report Creation

. Data Test

(3]}

7.2 System Analysis

Database design is based on the information about the organization that is to be
served by the database. The information should include the main applications and
user groups; the documentation used or generated by these applications or user
groups; and a prioritized list of requirements of each application or user group.

The following is the Software Requirements Specifications for this database:

1. Conference has title, theme and is identified by ConferenceNo.

69

(4]

Convocation which is a conference holding has title, conno, start date, end date
and lieu and identified by an CONVONO.

Each conference has an orgnizing committee, membership of various committees
may change over time. Each member is identified by PERSONID has firstname,

lastname, position, address, email and phone attributes.

Each time a conference is held(convocation), it has a program committee headed
by a program chair or program co-chairs, it’s attributes are similar to orgnizing

cominittee.

The program committee organizes the conference to be held on a number of
days with a number of parallel sessions on each date. Each session has a theme,

room number, time slot, a chair, and is assigned a number of accepted papers;

. A number of papers are submitted to a conference. Each paper is identified by

PAPERNO, and it has paper’s title, coverage area, submit date and final due
date. Each such paper, for each convocation of a conference, is given a number

starting from 101 and all reference to the paper would be using this number.

Each paper is authored by one or more authors each of who has an address

including an email.

Each paper is sent by the program co-chair to at least three referees. A paper
must not be self-reviewed. The reviews are to be returned within a predeter-

mided number of days, along with their comments and decision of acceptace or

rejection.

Each person attending the conference, has a name, address including an email
and phone and account which records the amounts of fees paid, amounts out-
standing and list of payment. Fees may be for the conference or one of its
attached activities such as tutorial, special excursions and so on.

70

10. For a convocation of a conference, the organizing committee organizes seriese
of activities including excursions, visits to local attractions and so on, which
identified by ENOQ, it has title, place, date, time slot and fee attributtes.

11. The accepted papers are published by a publisher that is identified by name,
address, contactperson, etc. The publication has an ISBN, number of pages and
contents with ordering of the accepted paper which were received in the final
form before the deadline. The page number of the paper are also accessible

from the paper entry.
According to system analysis, the relation schemes will be completed in three steps:

1. Developing an Entity-Relationship model;
2. Converting the ER Diagram into a relational database schema;

3. Normalization.

7.2.1 Developing an ER model for CMS

The Entity-Relationship(ER) model is high-level conceptual data model which is a
set of concepts that describe the structure of a database and the associated retrieval
and update transactions on the database. The main purpose for developing a high-
level data model is to support a user’s perception of data, and to conceal the more

technical aspects associated with database design.

The Entity-Relationship(ER) model uses ER diagrams to represent the conceptual
schema that is independent of the DBMS.

The ER diagram for CMS is based on above system analysis(see the ER diagram).

71

SID 10 weiseiq Y4

0] 5300

uonedlgng

saystiqng

ﬁ =o:8=88mw _ ENG | _ E
aFeuepy #
weidosy _ hwEN_cawho w
:o:ScZ.oUg h o&&ozw h_o_::< g

é ﬁ oo:oé:ouq
Se 9|doay
) 1

7.2.2 Converting the ER Diagram into a Relational Database

Schema

Based on the ER diagram, the following 17 relation schemas are obtained, making
refinements to scheme if need. In each relation, the primary key and foreign key(s)
are bold and italicized respectively.

Conference (conno, title, theme)

Convocaton (convono, conno, title, csdate, cedate, lieu)

Session (sno, convono, chairman, title, room, ssdate, sedate, equipment)
Paper (paperno, sno, title, coveragearea, submitdate, finaldue)

Person (personid, firstname, lastname, position, address, email, phone)
Organizing (conno, personid)

Program (convono, personid)

Attend (convono, personid)

Author (name, paperno, address, email)

Activity (eno, convono, title, place, edate, estime, eetime, fee)
Goactivity (eno, personid)

Referee (referee, paperno, email, assigndate, submitdate, rcomment, result)
Publisher (name, address, contactname, email, phone)

Publication (ISBN, title, numofpage, publisher)

Account (account#t, personid, accofee, eventfee)

Payment (account#, paydate, payamount)

Contain (paperno, ISBN, pagenum)

72

7.2.3 Normalization

Normalization is a formal technique for analysing relations based on their primary
key (or candidate keys in the case of BCNF) and functional dependencies. The
technique involves a series of rules that can be tested against individual relations
so that a database can be normalized to any degree. When a requirement is not
met, the relation violating the requirement must be decomposed into relations that

individually meet the requirements of normalization.

The process of normalization takes a relation through the various normal forms. At

each stage the process remove undesirable characteristics from the relation.

For each relation in the schema, identify the functional dependencies that exist among
the various attributtes, find out all candidate keys of relation, check whether the
relation is in BCNF/3NF. If not, decompose the relation scheme into BCNF/3NF

schemes.

7.3 Table Creation

The datebase tables were created according to above relation scheme using SQL*Plus
tool.

SQL*Plus is one of the most powerful tools used in developing applications for the
Oracle database. It provides direct access to Oracle. Although it might seem that
SQL*Plus is not user-friendly like graphical query tools, it provides a great deal of
flexibility and runs on all platforms supporting Oracle. You can use SQL*Plus to
manipulate data and create database objects, it also is a powerful prototyping tool
that you can use to develop and test SQL statements before integrating them into

your application.

At first, Run SQL*Plus and connect to database, then execute the SQL*Plus com-
mand Start. There are seventeen tables in this project database. The following is

the file to create table and insert sample data for this project.

73

EEREEEREEEKEERERREERRERREERRKEERERER R REKE
* Drop.sql *
EXAREEREREREFRERRERERR KRR R KRR EREER R KKK

DROP TABLE c_conference cascade constraints;
DROP TABLE c_convocation cascade constraints;
DROP TABLE c_session cascade constraints;
DROP TABLE c_person cascade constraints;

DROP TABLE c_organizing cascade constraints;
DROP TABLE c_program cascade constraints;
DROP TABLE c_paper cascade constraints;

DROP TABLE c_attend cascade constraints;

DROP TABLE c_author cascade constraints;

DROP TABLE c_activity cascade constraints;
DROP TABLE c_goactivity cascade constraints;
DROP TABLE c_referee cascade constraints;
DROP TABLE c_publisher cascade constraints;
DROP TABLE c_publication cascade constraints;
DROP TABLE c_contain cascade constraints;
DROP TABLE c_account cascade constraints;
DROP TABLE c_payment cascade constraints;

AR S L2 R 2 222 2 222 ettt s e i 22t s

* Creat_table.sql *
KA KKK RR KRR R R R KRR R R R

[REkkkkxkkrkrkkxnc_conference**xxxxkxxxkx/
create table c_conference

(
ConNo NUMBER (8) NOT NULL,
Title VARCHAR2(20) NOT NULL,
Theme VARCHAR2(20),

PRIMARY KEY (ConNo)
);

[ExekRERRXEEXERC_CONVOCALiON*kxkk kRN RN RR%/
create table c_convocation

(
ConvoNo NUMBER(8) NOT NULL,

74

ConNo NUMBER (8) NOT NULL,

Title VARCHAR2(20) NOT NULL,
Csdate DATE,

Cedate DATE,

Lieu VARCHAR2(20),

PRIMARY KEY (ConvoNo),
FOREIGN KEY (ConNo) references c_conference
);

[RxExxRERRRRERAERERC_SESSion*rnnxkunrkxnkx/
create table c_session

(

SNo NUMBER (8) NOT NULL,
ConvoNo NUMBER (8) NOT NULL,
Chairman VARCHAR2(10),

Title VARCHAR2 (30) NOT NULL,
Room VARCHAR2(10),

Ssdate DATE,

Sedate DATE,

Equipment VARCHAR2(30),

PRIMARY KEY (SNo),
FOREIGN KEY (ConvoNo) references c_convocation

);

/*********#*#****#tc_person**********tt*‘/
Create table c_person

(

PersonID NUMBER (8) NOT NULL,
FirstName VARCHAR2(30) NOT NULL,
LastName VARCHAR2 (30) NOT NULL,
Position VARCHAR2(30),

Address VARCHAR2(20),

Email VARCHAR2(20),

Phone VARCHAR2(20),

PRIMARY KEY (PersonlID)
);

/EExxxrarnrnsrekC_Organizingsssxsxssrxsnss/
create table c_organizing

(

ConNo NUMBER (8) NOT NULL,

Personid NUMBER (8) NOT NULL,
PRIMARY KEY (ConNo, Personid),
FOREIGN KEY (Personid) references c_person,
FOREIGN KEY (ConNo) references c_conference

);

[*EEEERRXR SRR EXXC_DYOGTAMC AR S SRR KSR KK KRR RK [
create table c_program

(
ConvoNo NUMBER (8) NOT NULL,
Personid NUMBER (8) NOT NULL,
PRIMARY KEY (ConvoNo, Persomnid),
FOREIGN KEY (Personid) references c_person,
FOREIGN KEY (ConvoNo) references c_convocation
),

[HEEEEXKRKXEEERRKC_DAPCL ¥ * XXX R XK KRS XA RX KRN [
create table c_paper

(
PaperNo NUMBER (8) NOT NULL,
SNo NUMBER (8) NOT NULL,
Title VARCHAR2(20) NOT NULL,
CoverageArea VARCHAR2(40),
SubmitDate Date,
FinalDue Date,

PRIMARY KEY (PaperNo),

FOREIGN KEY (SNo) references c_session
)

[Rerrnkekraxskeknc_attendrrrrrrrraxkekxkkknxsk/
create table c_attend

(
Convono NUMBER(8) NOT NULL,

76

Personid NUMBER(8) NOT NULL,
PRIMARY KEY (Convono, Personid),
FOREIGN KEY (ConvoNo) references c_convocation,
FOREIGN KEY (Personid) references c_person

);

[x%xxxrexkxnrsnrsC_author***ssxxxxexsrsxsxrsx/
create table c_author

(
PaperNo NUMBER (8) NOT NULL,
Name VARCHAR2(20) NOT NULL,
Address VARCHAR2 (20),
Email VARCHAR2(20) ,

PRIMARY KEY (PaperNo, Name),

FOREIGN KEY (PaperNo) references c_paper
);

[EEEEEREERERXEERRC_ACLIVILYy**axrnre b rR bR RRRNR]
create table c_activity

(
ENo NUMBER (8) NOT NULL,
ConvoNo NUMBER (8) NOT NULL,
Title VARCHAR2(30) NOT NULL,
Place VARCHAR2(30),
EDate DATE,
Estime VARCHAR2(6),
Eetime VARCHAR2(6),
Fee NUMBER (8, 2),
PRIMARY KEY (ENo),
FOREIGN KEY (ConvoNo) references c_convocation
)

[rErExERERERERRERERXC_gOACLIVILy S * R AR RN RRRE %R/
create table c_goactivity

(
ENo NUMBER(8) NULL,
PersonID NUMBER(8) NULL,

77

PRIMARY KEY (ENo, PersonlD),

FOREIGN KEY (ENo) references c_event,

FOREIGN KEY (PersonID) references c_person
);

[RkxkkkkkrnnrknnresC_roefereerrrrrskasrnkkkxrrrresx/
create table c_referee

(
Referee VARCHAR2(15) NOT NULL,
PaperNo NUMBER (8) NOT NULL,
Email VARCHAR2(30),
AssignDate DATE,
SubmitDate DATE,
Rcomment VARCHAR2(30),
Result VARCHAR2(30),
PRIMARY KEY (Referee, PaperNo),
FOREIGN KEY (PaperNo) references c_paper
)i

[*xxxxxxnxxxxxxxsxxC_publishers*xxxxxxssskrsxxrnnx/
create table c_publisher

(

Name VARCHAR2(20) NOT NULL,
Address VARCHAR2(30) NOT NULL,
ContactName VARCHAR2(30),

Email VARCHAR2(40),

Phone VARCHAR2(20),

PRIMARY KEY (NAME)
);

[*xxxxrxxxxskesnxkxC_publication**xsxssxxxkssxsxx/
create table c_publication

(

ISBN VARCHAR2 (20) NOT NULL,
Title VARCHAR2 (40) NOT NULL,
NumOfPage NUMBER (8) ,

Publisher VARCHAR2(20) NOT NULL,

78

PRIMARY KEY (ISBN),
FOREIGN KEY (Publisher) references c_publisher (name)

);

[REREREEERERERERRRERC_ACCOUNTRRERARRRERRRERKRKREK [
create table c¢_account

(
Account# NUMBER(8) NOT NULL,
PersonlID NUMBER(8) NOT NULL,
AccoFee NUMBER(8, 2),
EventFee NUMBER(8, 2),

PRIMARY KEY (Account#),

FOREIGN KEY (PersonID) references c_person
);

[EREEEREXEREEXXREEREC_DAYMENT XXX EEX R AR E XK R R KKK R K%/
create table c_payment

(
Account# NUMBER(8) NOT NULL,

PayDate DATE,

PayAmount NUMBER(8, 2),
PRIMARY KEY (Account#, PayDate, PayAmount),
FOREIGN KEY (Account#) references c_account

);

[EERRkrkkrkkkhkRkek®kC_CONtAIN*ER ke hehkxkk kR krnhkk/
create table c_contain

(
PaperNo NUMBER (8) NOT NULL,
ISBN VARCHAR2(20) NOT NULL,
PageNum NUMBER(8) ,
PRIMARY KEY (PaperNo, ISBN),
FOREIGN KEY (PaperNo) references c_paper,
FOREIGN KEY (ISBN) references
c_publication
);

79

4020 20 200 3 30 30 2k e 3 20 2 e e 20 2 0 30 20 30 3 3 o o ok ke ok o ek ke K

* Insert.sql *
33 20 30 3 3 e 3 2 2 e 2 20 X e 3 3R o ok e e e e o ok ok e ok ok ok e K

insert into c_conference
values (1, ’conference 1’, ’Theme 1’);
insert into c¢_conference
values (2, ’conference 2’, ’Theme 2’);

insert into c_convocation

values(l, 1, ’convocation 1-1’, ’1-jan-98°’, ’20-jan-98’, ’Hell Building’);
insert into c¢_convocation

values(2, 1, ’convocation 1-2’, ’10-feb-99’, ’20-feb-99’, 2Building A’);

insert into c_session

values{1, 1, ’John’, ’Session 1-1’, ’H333’, ’2-jan-98’,
’6-jan-98’, ’Table, TV’);

ingsert into c_session

values(2, 1, ’Jerry’, ’Session 1-2’, ’H666’, ’7-jan-98°,
’20-jan-98’, ’Video, TV’);

insert into c_person

values(1l, ’Jerry’, ’Blone’, ’member ’, ’#656 durocher’, ’jerry@email.com’,
’514-222-3333’) ;

insert into c_person

values(2, ’Jack’, ’Chen’, ’member ’, ’#123 St. Denis’, ’jack@cs.ca’,

’514-111-3322’);

insert into c_organizing
values(1, 1);
insert into c_organizing
values(2, 2);

80

insert into c_program
values(1l, 3);
insert into c_progranm
values(2, 5);

insert into c_paper

values(1, 1, ’Paper 1-1’, ’ConverageArea 1’, ’1-jan-98’, ’20-jan-98°);
insert into c_paper

values(2, 1, ’Paper 1-2’, ’ConverageArea 2’, ’10-jan-98’, ’30-jan-98’);

insert into c_attend
values(1l, 1);
insert into c_attend
values(2, 3);

insert into c¢_author

values(1l, ’Wisle’, ’#234, Massional’, ’wisle@xx.com’);
insert into c_author

values(1, ’Lao’, ’#33, guy’, ’laoQyy.com’);

insert into c_activity

values(1, 1, ’movies’, ’Empire’, ’26-jan-98’, ’19:30’, ’22:00’, 25.00);
ingsert into c¢_event

values(2, 1, ’visiting’, ’01d Montreal’, ’28-jan-98’, ’10:30’, ’12:00°’, 35.00

insert into c_goactivity
values(1l, 1);
insert into c_goactivity
values(1l, 2);

insert into c_referee

values(’John’, 1, ’john@cs.ca’, ’2-jan-98’, ’20-jan-98°,
’comment1’, ’Accept’);

insert into c¢_referee

81

values(’Martin’, 1, ’martin@css.ca’, ’2-jan-98°’, ’20-jan-98°,
’comment2’, ’Reject’);

insert into c_publisher

values(’Smae’, ’#7877 St. Drovo’, ’Cinthic’, ’cinthic@smae.com’,
’541-777-0909°) ;

insert into c_publisher

values('Demem’, ’#1111 St. decarie’, ’wenly’, ’wenly@demem.com’,
1541-222-2222°) ;

insert into c_publication

values (’PID 000123-98’, ’Computer maginzine’, 120, ’Smae’);
insert into c_publication

values(’SDR 900234-78’, ’Database Group’, 80, ’Smae’);

ingsert into c_account
values (10000001, 1, ’300.00’, ’55.00°);
insert into c_account
values (10000002, 2, ’400.00°, ’75.00°’);

insert into c_payment
values (10000001, ’25-jan-98’, 200.00);
insert into ¢_payment
values (10000001, ’27-jan-98’, 100.00);

insert into c_contain
values(1, ’SDR 900234-78°, 20);
insert into ¢_contain
values(2, ’IUI 790111-23’, 63);

82

7.4 Functions and The User Interfaces Implement-
ing
In order to complete required functions, user interfaces were designed as following:

1. Main Window

WELCOME
CONFERENCE MANAGEMENT SYSTEM

Figure 35: Main Window

The main window is first window of CMS (Figure. 53).

2. Menu Window

In the window (Figure. 36), user can access functional windows by selecting

options from menu bar and listed buttons.

83

PLEASE CHOOSE A OPTION FROM MENU OR BELOW

S e RN G B

Figure 56: Menu Window

84

3.

Add a new conference and its organizing committee and other asso-
ciated detail.

CONFERENCE MANAGEMENT

Conference No

Tie icon‘erence 1

Figure 57: Conference Management

In the Conference Management window (Figure. 37), user can add a new
conference, update an exist conference, browse a list of conferences which exist
in database and can switch to menu window, organizing committee window

and convocation management window.

In the Organizing Committee window (Figure. 38), user can add a new or-
ganizing committee member, update an existing member and browse a list of

members who exist in the database under a specific conference.

For an existing conference, add a convocation for it including the
details of its date, lieu, program committee etc. Associate papers,
authors, attendees with this convocation.

85

ORGANIZING COMMITTEE

Conlference [confersnce 22

Figure 58: Organization Management

86

CONVOCATION MANAGEMENT

icanference |

Title iconvocation 1-1

I Lieu {Heil Bulding
Start Dete (01-JAN-SE (8d-mm-yy)

N End Date {20-JAN-SE (dd-mm-yy)

Figure 59: Convocation Management

87

CONFERENCE ATTENDEE

Conference Convocation

jconference 1 lconvoclﬂon 1-1 |

Persion iD 1 Position [remper

FirstName :Jcrry Emall | ery@emaiicom

LastName [Blone Tel [514-222-33
AdAress 4656 curocher

Figure 60: Attendee Management

In the Convocation Management window (Figure. 39), user can add a new
convocation, update an existing convocation, browse a list of convocations which
exist in the database and can swich to Session Management window, Attendee

Management window and Program Committee window.

In the Attendee Management window (Figure. 60), user can add a new attendee
to a specific convocation, update an existing attendee, browse a list of attendees

who exist in the database.

In the Paper Management window (Figure. 61), user can add a new paper with
its author information, update an existing paper, browse a list of papers which
exist in the database and can swich to referee Management window.

For a convocation of a conference, add activities along with their
detail information, such as date, place, time slot, title, fee.

88

PAPER MANAGEMENT

Title {graphic design

Confersnce [conterence 1 Convocation iconvocation 1-2

Coveragearea __Mummedia ! rype PS | Locatlon [dimummeda
Submit Date (10-03-00 Final version Deadline :20-03-00

AUTHOR
Firstname Lastname Address

Yanik JjLbeu {Montreal
7 :

Figure 61: Paper Management

89

EVENT MANAGEMENT

e
Convocation jconvocation 1-2

Figure 62: Event Management

90

In the Event Management window (Figuer. 62), user can add a new new, update
an exist event, browse a list of events which exist in the database and can swich

to Event attendee Management window for specific convocation.

6. For a convocation, add sessions, and for sessions, assign chairs, pa-

pers, rooms, special equipment required.

SESSION MANAGEMENT

Conference Convocsetion
icorference izorvecadan 1-1

Session NO. Title Chairman

i :Session 1-1 fiorn

Room H333

Date [02-01-c8 to ipE-a1-s8 (OD-MM-vv)

Equipment Taple, TV

ren | owen [T] o |

Figure 63: Session Management

In the Session Management window (Figure. 63), user can add a new session,
update an existing session, browse list of sessions which exist in the database
to specific convocation.

7. Find which referees were late in returning the reviews.

In the above window (Figure. 64), user can browse the referees’ information

who have not returned their reviews by due date.

91

Information of Referees
who have not return their review by due date

First Name Last Name Paper No Assigndate Returndate Review Due

—

{ -

i i
g »
H H
H t

o | oy e |

Figure 64: Referees were late in returning the reviews

8. Find referees who have not returned their review by due date.
In the above window (Figure. 63), user can browse a the referees’ information
who have not returned their reviews by the due day.

9. Find referees who accept/reject more than n% of papers they review.

In the above window (Figure. 66), user may choose accept or reject option and
enter the number of percent, then click Query button to browse list information

of referees who accept or reject more than n% of papers they review.

92

Referees who have not returned their reviews

First Name Last Name Paper No Assigndate Submitdats

1i

T
Lol ons

i AR
U e

The referee who accept/reject
more than n% of papers they review.

Reasuit
Accapt

First Name Last Name

Figure 66: Referees who accept/reject more than n% of papers

93

10. For a given convocation of a conference, find papers whose authors

haven’t returned the final version of their paper.

Papers whose authors haven’t return the final version

; i e

papers whune
Count: “8 <vsert>

Figure 67: Papers whose authors have not returned the final version of paper

In the above window (Figure.67), user may browse a list of information of paper
whose authors haven’t returned the final version of their paper to a specific

convocation.

11. Manage papers submitted, referees assigned, reviews received, late
reviews and reminders required, acceptance and rejection decision,
final version of acceptance papers and authors attending.

In the Referee Management window (Figure.68), user add information of referee

and his/her comments and result to a given paper.

12. Publication details.

94

Paper
First Name
Assign Date

Return Date

Comment

REFEREE MANAGEMENT

:Object Onented Modeling

iChase Last Name :lLowson

i15-02-88 Emafl ichase@oil.com

§20—02—89 Review Due §01—03—99
omment 1

Result l

Acception — }

Figure 68: Referees Management

PUBLICATION MANAGEMENT

I1ISBN Title
{SDR 300234~ 78 fDatabase Group

Content iPaper 1-2 Page Number

Publishar

Name [Smac Contact Name [Cinthic

Emall {cintnicoimae com Phone. [541-777-0909

Address {07877 St fort

‘Addrpoets | Dtim | Firs | ‘Buck |

Figure 69: Publication Management

96

In the Publication Management window (Figure.69), user may add a new
publication with papers contained in this publication, and information of pub-
lisher of this publication, update the information of a publication which exist
in database and browse a list of publications.

13. Details of accounts and list of payment for attendees.

Ciadd | Delews | Find .| - ek |

A2 Ar3t, pivese cBCk perseniD 10 CREESE & POrSon NTSrMENER Gnd CTeale arcounts.

Figure 70: Account Management

In the Account Management window (Figure.70), user may add information of
account for a attendee who already exist in the database with detail payment

list.
Ad hoc queries, such as the following, is also to be supported:

14. Find the details for a given conference.

In the Conference Information window (Figure.71), user may browse all the

97

CONFERENCE INFORMATION

Canturence No e Thams
n fcanterence 1 Treme 1 =

CONVOCATION INFORMATION

Corvvons Tt Start eate Erd dute Uisw
fi {=3nvocation 1-1 {01-JaN-38 {20-JAN-98 {Hell Butding i<
Z {canvacation 1-2 {fo-FE8-99 [20-FEB 93 {Buiairg A i
H r H 7 H]
H t H i HIG

SESSION INFORMATION

S e Oralrwan Nart ente End gt Rosmn Eqapmant
{Session 1-1 {Jann f82-JAN-90 {06-JAN-30 (KT [Tasle. TV
{Sezsion 1-2 fJarry {07-JaN-38 {HBEE {Video TV

iSession V-3 iPas {15-JAN-98

"9-JAN-98 ‘HBEE .T:A::les ~gnting, Car

v <arts

Figure 71: Conference Information

98

details for a given conference, including information of its convocations, ses-

sions and may switch to Organzing Committee window, Program Committee

window and Attendee window.

ORGANIZING COMMITTE INFORMATION

Conference iconference <

Personid Firstname Lastname Position Address Emall Phone
q {iscan igel imemper {#80C St Laurent {oan@nonercom {S'4-111-11 i
B H
f ! n H a H
16 iJerry iWrite :chair i92, 5t Mathea {,erry@.om com j41€-234-56 i
a7 iSteve iqun imember i0567, Uniro {qur@cae com {a5C-456-9€" ‘

i
il

i : i i/

T | oan e e] ey | Teak |

Figure 72: Organizing Committee Information

In the Organizing Committee Information window, user may browse the in-

formation of this committee members for a given conference.

In the Program Committee Information window (Figure.73), user may browse
the information of this committee members for a given convocation.

In the Attendee Information window(Figure.74), user may browse the infor-

mation of attendees for a given convocation.

When user browse the information of attendees without giving a convocation, a
warn message is displayed to remaind user to choose a convocation title (Figure
75).

99

PROGRAM COMMITTEE INFORMATION

Confersnce gc;,,,' farence 1 T Corwocation iccnvacation §-1

Persenid Firstname Lastname Posiion Address Emall Phone Ceoverege Area

3 iDowsen fwage {Char H idowsen@ese e [011-656-£S {Datadbase M

=‘ i

{

H

Figure 73: Program Committee Information

100

ATTENDEE INFORMATION

Conference {corference L

PersoniD FirstName LastName Position Address Phone

3'@5: Zacrent i514-121-111
8122 ST Mary : 1514-566-2¢

[R ¥

i
{
{
f

Figure 76: Warning Message

101

When user want choose a conference title without giving a conference, a warn

message will be displayed to remained user to choose a conference title first

EVENT INFORMATION

Comvocation [comvecanoni-1

Tide [75T0€
Place {ou Monesl

Date {zs-w-me

310'30

{1200
3

Eas

Figure 77: Event Information

In the Event Information window(Figure. 77), user may browse the informa-

tion of events with its attendees for a given convocation.

15. Find the details of paper and publication.

In the Paper Information window(Figure. 78), user may browse the informa-
tion of events with their attendees for a given convocation and may switch to
window(Figure. 61).

In the Publication Information window(Figure. 79), user may browse the

information of publications, their containing papers and their publisher.
16. Find details of account of attendees.

102

Jivanage Databa {Database Engineenrg (01-MAR-0C (20-VMAR-0 {HTML [a\3atabas |
12 jHuman interface User Interface {01-FEB-00 {30-MAR-0 iPS jd\nterface -4
{grapnic design iMuftimedia i10-MAR-0C (20-MAR-0 PS juymynlmet 7

{ aval. Queatec {susan@ E
H i
R REFEREE
K Frst Mume Last Name Emel Assign Date Submit Date Resut
N {aaa iu:n {2230 {10-MAR-CO {12-MAR-O(| fAcceptio >

f

i {

f 7

Figure 78: Paper Information

103

PUBLICATION INFORMATION

sbn AL] Mages
{SDR 900234-78 :Database Group isn

Content of the Publication
Faper Tepic Fage Mmwmber
Paper 1-2 l20
Paper 1-3 {33
ipapers IER)
{Paper 1-2 fﬁ“

PUBLISHER
MNae (Smae Fane Esu-rn-m

e e
Cantact M Cinthic Emas antuc@smee com

Address :®7877 St font

Cmmt: *8 v <bvnnets

Figure 79: Publication Information

104

ACCOUNT INFORMATION

Convocation convocation t-1 |

Person ID First Name Last Name
| B ~ JiJack {Chen ;—3
Accont Payment List
Account # 10000002
e emeeeememores e et meeee et e Date Amount
Total Amount : 3475.00

Outstanding [$375.00

[25JAN-s3 [100 RN

H H /

] e]] ey] ek |

<inpert>

Figure 80: Account Information

105

In the Account Information window(Figure. 80), user may browse the infor-
mation of attendees’ account and their detail payment lists for a given confer-

ence.

7.5 Source Code

Following is parts of source code of this project.

e 20 e 3 200 30 2 o 3 o e e 2 2o e R 2k K e 2 ok ok e sk

* Mod_Paper .fmb *
3o 200200 0 0 e ke e e g o o e o ki Kk kR ok ok

declare
v_count number;
v_sno c_session.sno’type;
v_author number;
ret number;
begin
if :modpaper_blk.paperid is null or
:modpaper_blk.title is null or
:modpaper_blk.submit is null
then
ret := show_alert(’alertl’);
else
select count(*) into v_count
from c_paper
where paperno = :modpaper_blk.paperid;

select sno into v_sno
from c_session
where title = :modpaper_blk.session;

select count(*) into v_author
from c_author
where paperno = :modpaper_blk.paperid;

106

if v_count = 0 then
if :modpaper_blk.session is null then
message (’Please choose a session’);
else
--**xingsert into c_paper table
insert into c_paper
values (:modpaper_blk.paperid, v_sno,
:modpaper_blk.title, :modpaper_blk.coverage,
:modpaper_blk.submit, :modpaper_blk.final);
message(’One paper record added!’);

commit;
end if;

--x¥xingert into c_author table
go_block(’modauthor_blk’) ;

if :modauthor_blk.name is not null then

first_record;
loop

insert into c_author

values(:modpaper_blk.paperid, :modauthor_blk.name,

:modauthor_blk.address, :modauthor_blk.email);

commit;

next_record;

exit when :modauthor_blk.name is null;

end loop;
previous_record;
else
ret := show_alert(’alert2’);
end if;

message(’One record added’);

else

update c_paper

set title = :modpaper_blk.title, coveragearea = :modpaper_blk.coverage,
submitdate = :modpaper_blk.submit, finaldue = :modpaper_blk.final

where paperno = :modpaper_blk.paperid;

107

commit;
message (’One record updated!’);

if v_author <> 0 then

delete c_author

where paperno = :modpaper_blk.paperid;
end if;

go_block(’modauthor_blk’);
if :modauthor_blk.name is not null then
first_record;
loop
insert into c¢_author
values (:modpaper_blk.paperid, :modauthor_blk.name,
:modauthor_blk.address, :modauthor_blk.email);
commit;
next_record;
exit when :modauthor_blk.name is null;
end loop;
previous_record;
end if;
end if;
end if;
end;

---------- Find_Button

declare
lov boolean;
begin
lov := show_lov(’paper’);
if :modpaper_blk.paperid is not null then

findauthor;
select title into :modpaper_blk.session from c_session

where sno in (select sno from c_paper
where paperno = :modpaper_blk.paperid);
end if;
end;

108

declare

lov_return boolean;
begin

lov_return := show_lov (’session’);
end;

TRk R LR RR ARk gk ko kR Rk

* Result.fmb *
L2 22223232 2222222 222232222 22 sy

PROCEDURE pro_referee IS
BEGIN
declare
v_referee c_referee.refereeltype;
v_count_reject number;
v_count_accept number;
ret number;
retl number;
ret3 number;
v_count number;
v_n real := 0.0;
v_number number := 0;
cursor refcursor is
select distinct referee from c_referee group by referee;
begin

if :refresult_blk.presult is null or :refresult_blk.n is null then
ret := show_alert(’alertl’);

else

go_block(’result_blk’);

open refcursor;
LOgP

fetch refcursor into v_referee;

exit when refcursor’NOTFOUND;

109

select count(*) into v_count
from c_referee
where referee = v_referee;

if :refresult_blk.presult = ’Reject’ then

select count(*) into v_count_reject

from c_referee

wvhere referee = v_referee and result = ’Rejection’;

v_n := (v_count_reject/v_count) * 100;
end if;

if :refresult_blk.presult = ’Accept’ then

select count(*) into v_count_accept

from c_referee

where referee = v_referee and result = ’Acception’;

v_n := (v_count_accept/v_count) * 100;
end if;

if v_n > To_number(:refresult_blk.n) then

:result_blk.referee := v_referee;
next_record;

v_number := v_number + 1;
end if;
END LOOP;

close refcursor;
previous_record;

if v_number = 0 then
retl := show_alert(’alert2’);
end if;
end if;
end;
END;

E2 2 2 22 2 222222 sttt ds

* Mod_Conference.fmb *
223223 2 23222 23332222222 2 ¢ R 2y

110

****Convocation Management#***x*

------- Add/Update_Button~-----
declare

v_count number;

v_conno c_conference.conno’type;
ret number;

begin
select count(*) into v_count from c_convocation
where convono = :modconvo_blk.convono;

select conno into v_conno from c_conference
where title = :modconvo_blk.conf;

if v_count = 0 then
if :modconvo_blk.conf is null or
:modconvo_blk.convono is null or
:modconvo_blk.convotitle is null
then
ret := show_alert(’alert2’);
else
insert into c_convocation
values (:modconvo_blk.convono, v_conno, :modconvo_blk.convotitle,
:modconvo_blk.csdate, :modconvo_blk.cedate,
:modconvo_blk.convolieu) ;
message (’One record added’);

end if;
else
update c_convocation
set title = :modcomnvo_blk.convotitle,
csdate = :modconvo_blk.csdate,
cedate = :modconvo_blk.cedate,
lieu = :modconvo_blk.convolieu
where convono = :modconvo_blk.convono;

message(’One record updated’);

end if;
commit_form;
end;

111

--------- Find_Button--------
declare

lov_return boolean;

v_conno c_conference.conno’type;
v_count number;

ret number;

retl number;

begin

if :modconvo_blk.conf is null then

retl := show_alert(’alert4’); --choose conference
else

lov_return := show_lov (’convocation’);

select title into :modconvo_blk.conf from c_conference
where conno = :modconvo_blk.conno;

end if;

end;

=x*¥xxxProgram Mangement*xx**x

declare
v_count number;
v_convono number;
ret number;
begin
select count(*) into v_count

from c_person
where personid = :modpro_blk.memberid;

if v_count = O then
if :modpro_blk.memberid is null or
:modpro_blk.fname is null or
:modpro_blk.lname is null or
:modpro_blk.memposition is null
then
ret := show_alert(’alertl’);
else

112

insert into c_person

values (:modpro_blk.memberid, :modpro_blk.fname,

:modpro_blk.memposition, null,

:modpro_blk.lname,

:modpro_blk.mememail, :modpro_blk.memtel);

commit;
message (’One person added’);

select convono into v_convono
from c_convocation
where title = :modpro_blk.convo;

insert into c_program
values (v_convono, :modpro_blk.memberid);
commit;
end if;
else
update c_person
set firstname = :modpro_blk.fname,
lastname = :modpro_blk.lname,
position = :modpro_blk.memposition,
email = :modpro_blk.mememail,
phone = :modpro_blk.memtel
where personid = :modpro_blk.memberid;
comnit_form;
end if;
end;

e 3 2 20 XK 2 e 303 0o e e e e e 3 e e e i e ok ke ok e ok

* Mod_Account .fmb *
e 2ic 2 3jc 2 e o 3 2c 2x e o e e e ok e e e e K e o o e ko e

declare
pid number;
v_count number;
v_countl number;
v_account c_account.account#)type;
begin
if :modacc_blk.account# is null then

113

message (’Please choose account information.’);
else

select count(*) into v_count

from c_account

where personid = :modacc_blk.personid;

if v_count <> 0 then
update c_account

set accofee = :modacc_blk.accofee
where account# = :modacc_blk.account#;
else

insert into c_account

values (:modacc_blk.account#, :modacc_blk.personid,
:modacc_blk.accofee, :modacc_blk.eventfee);

end if;

commit;

if :modacc_blk.pdate is not null and
:modacc_blk.pamount is not null then

select count(*) into v_countl

from c_payment

where account# = :modacc_blk.account# and
paydate = :modacc_blk.pdate and
payamount = :modacc_blk.pamount;

if v_countl = 0 then
insert into c_payment
values (:modacc_blk.account#, :modacc_blk.pdate, :modacc_blk.pamount);
else
message(’This record already exist.’);
end if;
end if;
commit;
end if;
end;

delete c_payment
where account# = :modacc_blk.account#;

114

delete c_account

where account# = :modacc_blk.account#;
commit;
clear_form;
--------- Find_Button---------
declare
lov_return boolean;
begin
lov_return := show_lov(’account’);-~ Account list

if :modacc_blk.personid is not null then

select firstname, lastname

into :modacc_blk.firstname, :modacc_blk.lastname
from c_person

where personid = :modacc_blk.personid;

:modacc_blk.pdate := ’’;
:modacc_blk.pamount := ’’;
end if;

end;

delete c_payment

where account# = :modacc_blk.account# and
paydate = :modacc_blk.pdate and
payamount = :modacc_blk.pamount;

commit_form;

:modacc_blk.pdate := ’’;
b

:modacc_blk.pamount := ’’;

declare
lov_return boolean;
begin
if :modacc_blk.account# is not null then

115

lov_return := gshow_lov(’list’); -- Account List

end if;

if lov_return is null then

message (’The person’ || :modacc_blk.firstname ||
end if;
end;

e 2k 2 3 20 o ek e e ek o e o e 3 e ok o ok Kk K KK

* Laterreferee.fmb *
L2 22 2 22 222223222222 22222 % 222

--------- Query_Button-——-—---

declare
v_referee c_referee.refereel,type;
v_paper c_paper.title’type;

v_assigndate c_referee.assigndate’type;
v_submitdate c_referee.submitdate/type;
cursor mycursor is

:modacc_blk.lastname||’is n

select r.referee, p.title, r.assigndate, r.submitdate

from c_referee r, c_paper p

wvhere r.submitdate > r.assigndate + 7 and p.paperno = r.paperno;

begin
go_block(’lateref_blk’);
clear_block;
open mycursor;
loop

fetch mycursor into v_referee, v_paper, v_assigndate, v_submitdate;

exit when mycursor’NOTFOUND;

:lateref_blk.referee := v_referee;
:lateref_blk.paper := v_paper;
:lateref_blk.assigndate := v_assigndate;

:lateref_blk.submitdate v_submitdate;
next_record;
end loop;
close mycursor;
previous_record;
end;

116

Chapter 8

Summary and Future Work

8.1 Summary

Oracle Developer/2000 features a point-and-click interface so it is easy to use; in
addition, it has intelligent defaulting, user extensibility, portablility, integration and
the capability to access non-Oracle database. These features are unique among the
tools available that access Oracle databases. Although some of these features might
exist in other products, no other products feature all these attributes combined.

However, there are also some shortcoming:

1. Oracle Developer Form 4.5 is not very convenient. Visual Basic or Java is better

choice for designing graphical user interface.

2. There is slight problem of color saturation when interface designer wish to get

desire effect of the color.

This project covers a brief introduction of Oracle Developer 2000, it mainly describes
Form 4.5 and Report 2.5 tools and how to use them to develop a database applica-
tion, like Object Navigator, Layout editor, Lov, Various 3D buttons that can be used
to perform functions. Through the use of menus, module and other functionality,
Developer/2000 is a complete database management tool. Application of Conferece
Management System has been developed by using Form 4.5 and Report 2.5, it de-
mostrates how the Oracle Developer/2000 tools can be used to generate and compile

117

modules of forms, interfaces, triggers, procedure units and reports.

Many times, users need reports that summarize information available on screen,
the project also provides ability to display reports based on the date stored on the

database.

8.2 Future Work

1. Menu security features let user specify which operators will be allowed to use

which menus. User can grant operators access at two levels:

e access to all of the menu items in a module;

e access to specified menu items only.

When the current operator does not have access to certain menu items, they

can be hidden completely or displayed as disabled.

By using menu security features, user can avoid having to create multiple ap-
plications that perform same functions. For example, two departments in a
company might both use the same application, but employees in the first de-
partment can be given access to parts of the application that can not be accessed

by employees in the second department.

2. Another feature of Developer/2000 is that all of its components have been de-
signed to be integrated. Oracle Graphics 2.5 is an important part of Developer
2000, which enables Oracle developers to present graphical representations of
Oracle data. Graphical research provides an impact that cannot be achieved
with mere textual views of numerical data.

This project has not addressed this issue. Although Oracle Graphics will pro-
duce these charts in a standalone mode, the true power of this tools is as an

OLE 2 server application that can be incorporated into OLE container appli-
cations such as Visual Basic, Excel, and, of course, Oracle Forms and Oracle

118

Reports. Furthermore, CMS can use graphic to show various information of

conference management.

119

Appendix A

Bibliography

[Ora97]
[Data96]

[OnTug]
[OnDor]
[OraF95]

[OraR93]
[OraS93]

[Data94]
[OraU96]

Scott Urman, ” Oracle8 PL/SQL Programming”, Oracle Press, 1997
Thomas M.Connolly, Carolyn E. Begg, Anne D. Strachan, "Database
Systems, A Practical Approach to Design, Implementation and
Management”,Addison- Wesley, 1996.

Oracle Tutorial, ugweb.cs.ualberta.ca/ oracle/

Online document for Oracle, www.oracle.com.sg/products/tools/dev2k/
Oracle Corporation, ” Oracle Developer 2000 Form 4.5 Guide Manual”,
1995

Oracle Corporation, ”Oracle Developer 2000 Form 4.5 Reference Manual”,
1995

Oracle Corporation, " Oracle 7 Server Application”, 1996

Toby J. Teorey, ”Database Modeling & Design”, 1994

Rachel Bechker, Orace[tm] Unleashed, SAMS Publishing 1996

120

