INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0800

®

UMI

USING OBJECTSTORE IN BUILDING C++ INTERFACE
APPLICATION

RITA VAFADAR AFSHAR

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2000
© RITA VAFADAR AFSHAR, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fie Vctre reference
Ovur fiie Notra reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-47854-8

Abstract

Using ObjectStore in building C++ Interface Application

Rita Vafadar Afshar

ObjectStore is an object oriented database management system. It provides a
tightly integrated language interface to the traditional database management system
features such as persistent distributed data access and associative queries. Object-
Store enables "ordinary” C and C++ programmers to add persistent database to
their applications without having to learn a new language and without sacrificing any
performance. This is an advantage over the relational database approach in which
there is an impedance mismatch between database query language and the high leve!
programming languages. ObjectStore and C++ programming language share the
same data model, for instance base types, such as integers, characters, and pointers,
as well as more complex types, such as structures and classes. The operators defined
on the data types are also equivalent. Actions such as pointer dereferencing (- >)

are valid for both persistent and transient data. with no difference to the programmer.

ObjectStore also ensures that the resulting unified interface yields access speed
for persistent objects that are usually equal to that of in-memory dereferences of
transient data.

Our objective in this report is to describe how to create database applications,
using the fundamental features of ObjectStore such as, Database access. Transactions
Exceptions, Collections, Queries, Indexes and Relationship facilities. The general in-
formation and instructions for generating schemas, compiling, linking and debugging

ObjectStore are explained in details.
We develop an application, Airline Reservation to examine most of the database

functions in ObjectStore system. This application has written in C++ language and

uses ObjectStore API whenever needed to use database.

il

Contents

1 Introduction 1
1.1 What Is ObjectStore? 1
1.2 Persistent Storage 1
1.3 Language Integration 2
1.4 Object Accesso 3
1.3 ObjectStore Processes 3
1.6 ObjectStore Memory Mapping Architecture 4
1.7 Schemas 5
1.8 ObjectStore ODBMS 3

2 Introducing Sample Application 8
2.1 Outline of requirement for the Airline Reservation System 8
2.2 Application Operations 9
2.3 Application Design 9

3 General Instructions for Building An Application 11
3.1 Overview of Source Files 13
3.2 ObjectStore Header Files 13
3.3 Determining Typesina Schema, 14
3.4 Creating Schema Source Files 14
3.5 Overview of Schema Generation 16

3.5.1 Generating an Application Schema 19
3.6 Compiling and Linking Programs 21
3.6.1 Linking with ObjectStore Libraries 22
3.6.2 Sun C++ Compiler Options 23
3.6.3 Solaris 2 Linking, .. 24

iv

3.6.4 Sample Makefile Template
3.7 Working with Virtual Function Table (VTBL) Pointers
3.7.1 Missing VIBLs,
3.7.2 Run-Time Errors from Missing VTBLs
Environment for ObjectStore
4.1 IncludeFiles.
4.2 ObjectStore Initialisation
4.3 Application Schema Source File
4.4 ObjectStore Database operators
4.4.1 Creating a Database
4.4.2 Destroying Databases
4.4.3 Opening Databases
444 Closing Databases
1.5 Persistent Objects in Database
4.5.1 Using Typespecs
4.5.2 Typespecs For Classes
453 Clustering
4.5.4 Transient Database
4.6 Database Entry Points and Data Retrieval
4.6.1 Creating Database Roots
4.6.2 Retrieving Entry Points
4.6.3 Type-Safety for Database Roots

Using Transactions

3.1 Using Lexical Transactions
5.2 Using Dynamic Transactions
5.3 Pointers

Exception Facility

6.1 Macros
Collections

7.1 Collections Requirements
7.2 Creating Collections,

43
43
44
44

46

50
30

ol

7.3 Inserting Collection Elements
74 Removing Collection Elements
7.5 Navigating Collections using Cursors

8 Queries and Indexes

8.1 Simple Queries
8.2 Single-Element Queries
8.3 Existential Queries
8.4 Pre-analyzed Queries
8.5 Query Optimization.
85.1 ExplicitIndex
85.2 ImplicitIndex, .
86 IndexOptions
8.7 Index Maintenance
8.7.1 Automatic Index Maintenance
8.7.2 User-Controlled Index Maintenance

9 Data Integrity
9.1 Inverse Data Members
9.2 Defining Relationship
9.3 Relationship Interface Styles . . .
9.3.1 Simple Data Member . . .

9.3.2
9.3.3

10 Conclusion

Relationship Interface Style

Functional Interface Style

vi

92
33
34

56
36
38
38
38
60
61
62
62
63
63
64

67
68
68
70
!
71

T2

73

Acknowledgments

I would like to thank my supervisor. Gosta Grahne for introducing me to the

concepts of ODBMS and encouraging me to finalize my project.

[am grateful to Mr. Swiercz Stanley (Applications and Information Systems Man-

ager) for his enormous helps on compiling and debugging my ObjectStore application.
[would like to dedicate this project to my husband, and thanks him for his un-

failing positive encouragement and support of me. Also my special thanks to iy real

friends and family, especially my Mom and my Dad.

vii

Chapter 1

Introduction

1.1 What Is ObjectStore?
ObjectStore is an object-oriented database management system. It allows you to:

e Create and modify C++ objects (as well as C structures)instead of tables,

columns, rows, and tuples.
e Access data in the format in which it exists in the application.

e Describe, store, and query complex data used in sophisticated computer applica-
tions, as well as data traditionally managed by relational database applications.

such as MIS programs.

e Store data independently of the data type.

1.2 Persistent Storage

Persistent data is the data that survives after a process, which has created it ter-
minates. ObjectStore stores persistent data in stable storage in databases, typically

disks.

There are two kinds of databases. A file database which is a regular operating
system file. A rawfs database (raw file systems) which resides in an ObjectStore
file system, managed by an ObjectStore Server. Rawfs databases are not discussed

in this document.

Each database is made of segments, which are variable-sized regions of memory.
They can be used as a unit of transfer from persistent storage to program. or transient
memory. Each segment, in turn, is made of pages. A specified number of pages can

be used instead of segments as the unit of transfer to program memory.

1.3 Language Integration

ObjectStore and C++ programming language share the same data model. The data
types are the same for both, including base types, such as integers. characters, and
pointers. as well as more complex types. such as structures and classes. The operators
defined on the data types are also equivalent. Actions such as pointer dereferencing
(- >) are valid for both persistent and transient data. with no difference to the pro-

grammer.

In the following code, we have defined two instances of class Passenger, one tran-
sient and one persistent (note the overloaded new operator). The manipulations of
the objects are identical in each. both a part from the necessarily different persistent

data definition. the piece of code looks exactly like ordinary C++:

os_database* db;

/*transient #*/
new Passenger(1,"Julian Smith","911 A Street");

Passenger* passengerl

/* persistent =/

Passenger* passenger2 = new(db,Passenger::get_os_typespec)
Passenger(2,"Bob Apple"”,"30 S5th Ave");
cout <<passengerl->address<<endl;

cout <<passengerl->address<<endl;
There is a tight integration between ODBMS and C++ programming language,
which gives us the following features.

¢ Re-usability -We can use just one code for persistent and transient data. Also,
there is no need to have additional statements in order to access persistent data,

so binary compatibility with libraries and subroutines is possible.

2

e No translation -We are spared from having to write extra code to translate
between the database and the application data types. This is referred to as
single-level storage. and is in contrast to relational systems where code must
be written to pick fields out of tuples and copy them into the data members of

objects.

e Ease of programming - Because the constructs of the programming language
are used as the data manipulation language of the ODBMS and because the
type systems are identical, we are provided with an environment that is an easy

transition from standard coding.

As illustrated in the code example above, each instance of class can be declared
as persistent or transient through the explicit declarations and definitions, using the

overloaded new operator.

1.4 Object Access

Providing efficient object access speed is a requirement deriving from the typical tar-
get application’s accessing patterns. This type of application usually interleaves small
database operations with small amounts of computation. It implies a large number

of database accesses in comparison to the amount of data being fetched.

Object access in ObjectStore means dereferencing, like pointers in C or C++ .
Performance for ObjectStore boils down to ensuring that the amount of time required
to dereference pointers to persistent objects is as close as possible to that of tran-
sient objects. ObjectStore does this through the use of a unique Virtual Memory
Mapping Architecture (VMMA) that involves sophisticated memory mapping,
caching, and clustering techniques. These techniques provide the basis for database
management services that match the highest performance levels of proprietary file

management systems.

1.5 ObjectStore Processes

ObjectStore applications require two auxiliary processes for application execution, an

ObjectStore Server and a Cache Manager.

3

A Server handles accesses to ObjectStore databases, including storage and re-
trieval of persistent data. When ObjectStore is installed, the system administrator
typically arranges for each server to start when its host machine boots. A single
application can use several databases, including databases on different file systems,
handled by different servers. Most users never have to worry about starting and stop-

ping servers.

A Cache Manager is started automatically when an ObjectStore application starts.
The cache manager is a daemon that runs on the machine running the client applica-
tion. Its function is to respond to server requests as a stand-in for the client applica-
tion. in order to participate in the management of the application client cache. The
client cache is the local holding area for data. mapped or waiting to be mapped into

virtual memory.

If additional ObjectStore applications are started on the same machine, the same
Cache Manager functions for those applications as well. Although the same machine
can run several ObjectStore applications at once, only a single Cache Manager is ever
running on a given machine. As with servers, most users never have to worry about

starting or stopping Cache Managers.

1.6 ObjectStore Memory Mapping Architecture

With ObjectStore, data is transferred between database memory and program mem-
ory completely automatically in a manner transparent to the user. ObjectStore de-
tects any reference in a running program to persistent data, and automatically trans-
fers the page containing the referenced data (possibly together with adjacent pages)
across the network to the application’s cache. Then, the page containing the refer-

enced data is mapped into virtual memory.

Sometimes the referenced data is already in the client cache (because data in the
same pages was already used, and the required page was not swapped out of the

cache), and all that is required is a virtual memory mapping. Sometimes the data

is already mapped into virtual memory (because data on the same page was already
used in the current transaction)and then nothing additional is required to access it.
Once data has been mapped into virtual memory, accesses to it will be as fast as

accesses to regular, transient data.

ObjectStore achieves the combination of transparency and efficiency with a unique
memory mapping architecture. All data is stored in an ObjectStore database, in its
native C++ format. All pointers in a database take the form of regular virtual mem-

ory pointers.

In [7]. more information is given on how the transfer of data between persistent

and transient memory is handled.

1.7 Schemas

We have seen that segments and pages are used as the units of transfer between the
server and its clients. We also know that storage entities contain the data structures,
variables. and classes used by ObjectStore applications. The question is. how does

ObjectStore gets this information?

ObjectStore needs to be able to identify which objects exist on a particular page as
well as to determine their exact boundaries and the layout of their internal structures.
Help is not available from C++ because classes are not run-time entities, and thus
there is normally no location where this information can be placed. The natural
solution is to store class layout information as C++ objects in the actual database,

under the control of ObjectStore. ObjectStore refers to such class information as

schemas.

1.8 ObjectStore ODBMS

As we mentioned, ObjectStore’s architecture provides a unified programming inter-
face to both persistently and transiently allocated data. The object access speeds are

same for in-memory dereferences of transient data. The first design point was realized

w

by tightly integrating the Object-Store ODBMS with C++; the second. through an
interesting virtual memory mapping architecture that also plays a vital role in merg-
ing the data models of both the language and the database. The result is an ODBMS
that enables C and C++ programmers to add object-oriented database persistence
to their applications without having to learn a new language and without sacrificing

performance.
We can use the following database functions in ObjcetStore’s applications:

Database access

Database access allows us to perform basic activities. such as opening and closing

databases. and creating and accessing persistent objects.
Transactions
Transactions take the above basic activities and regroup them into logical units

of work that are performed either all together or not at all. At the same time Ob-

JjectStore does not allow other transactions from viewing intermediate results.

Exceptions

If anything goes wrong during the database access activities, we can trap the
ObjectStore-generated errors through an exception mechanism to provide our own

error handling routines.
Collections

Grouping objects into various types of collections is simple with ObjectStore's
library of collection classes. This class library enables us to define lists, arrays, sets,

or bags of related objects.

Queries

Collections can be queried efficiently through ObjectStore’s query facility, which
selects objects on the basis of the values of their attributes (data members).

Indexes

To improve the performance of queries. indexes can be built on the collections.
Relationships

ObjectStore provides a relationship facility that automatically maintains the point-
ers used to specify relationships between objects.

We examine most of these functions as our sample application, Thin Airline Reser-

vation.

~1

Chapter 2
Introducing Sample Application

In this chapter. we describe a sample application AirLine Reservation which we

developed to examine most of the ObjectStore concepts as we introduce them.

2.1 Outline of requirement for the Airline Reser-
vation System

Airline reservation application

The database keeps track of employees. aircraft, flights and passengers. Each
aircraft is described by its serial number, date of manufacturing, manufacturer, accu-
mulated flight hours, and the spare parts it needs regularly. A spare part has a serial
number, a specification and a place. Each aircraft is a plane type. A pale type has
a name(e.g. MD-11), a manufacturer, a maximum speed, a length, and a number of
seats. A flight has a number(e.g. AC 47), a source and destination, a duration, and a
distance. A particular flight on a particular date is called a departure. A departure is
carried by an aircraft. Departures have passengers booked onto them. The booking
includes the price of the ticket, the travel class, and the seat number. A passenger
is described by his or her name, address, and amount of accumulated frequent flyer
miles. A departure is furthermore flown by one or more pilots. A pilot has an em-
ployee number, name, address, salary. and license number. A pilot is qualified to
fly a number of plane types. For each plane type he or she is qualified, his or her
accumulated flight hours on that type is recorded. A technician is described by his or

her employee number, name, address, salary, team he or she is working on, and the

type of planes he or she is qualified to service.

2.2 Application Operations

Airline reservation application supports the following type of queries, update and on-

going report generation operations.

A e

3.
6.

Add a new aircraft. Delete an aircraft.

Add/delete/modify a booking.

Add/delete/modify a pilot.

Add/delete/modify a technician.

List all passengers booked on a departure.

List the names and addresses of all pilots who are qualified to operate a departure.

Assign a pilot-crew for a departure.

7.
8.
9.

List the name and address of all technicians who are qualified to service an aircraft.
List all the plane types a passenger is booked on to fly in.

Assign a technician-crew for a departure.

2.3 Application Design

Figure 1 shows the relationship between the classes, which have been used in Airline

reservation application.

{‘ THIN serves

| | AIRLINE
{hires '
|
’E l ‘(‘ Pilot | has
Baployes T | o 8 1
| ,| qualify . |
| PlaneType Ecraftl———“m—— Departure
. * on particular date
| service pog — |
7 . g —
Person] ___ Technici SparePart has
L \ | ’ *
f Passengerf
.| has

Figure 1: Airline Reservation

10

Chapter 3

General Instructions for Building

An Application

An ObjectStore application is a C++ program that uses ObjectStore. We perform
the following steps to develop an application with ObjectStore. These instructions

assume that we are using a makefile to build our application.

1. Modify the source.

Modify your application source code to make ObjectStore API calls. See the Ob-
jectStore C+-+ API User Guide for information about using ObjectStore APIs. Note
that you must modify our makefile to find ObjectStore header files. (See section 3.2

for more information.)
2. Create the schema source file.(See section 3.3 for details)

The schema source file is a C++ file with a specified format used as input to the

schema generator (ossg). The schema source file includes the files that define:

e Classes that have instances stored by the application in persistent memory.

e Classes that have instances read by the application from persistent memory.

We can include the type itself, or the base types of the class.

e Classes that appear in library interface query strings or index paths.

11

3.

Generate schema with ossg.

Modify your makefile to run the ObjectStore schema generator (ossg). The input

for this step includes

o Schema source file

e ObjectStore library schemas The output from this step is the:

4.

— Application schema database

— Application schema source file. If you are using Visual C++, the output
is an object file referred to as the application schema object file. This
file records the location of the application schema database along with
the names of the application’s virtual function dispatch tables, the narmes
of discriminant functions. and the definitions for any get_os_typespec()

member functions.

Compile the application schema source file.

Make sure your makefile enables you to compile the application schema source

file. This creates the application schema object file.

5. Link.

Your makefile should contain likes to the following (to create the executable):

Application object files
Application schema object file
Application libraries
ObjectStore libraries

System libraries

12

3.1 Overview of Source Files
We build an ObjectStore application from the following source files:

e Source files that contain code that we write.

e Header files, provided with ObjectStore, that we have included in our source
files.

e Header files that we write to define our persistent C~+ classes.

e Schema source file that specifies our persistent classes for the schema generator.

We create this file according to ObjectStore rules.

Building an ObjectStore application requires the generation of schema informa-
tion. This is information about the classes of objects the application stores in or
reads from persistent memory. ObjectStore generates schema information according

to the schema source file that we create. (See section 3.4 for more information.)

3.2 ObjectStore Header Files

ObjectStore provides header files that we must include in our source code. The Ob-
jectStore features we use, determine which header files to include. Be sure to include

the files in the given order. We must always include ostore/ostore.hh.

If We Use This Feature Include These Header Files

Any ObjectStore feature | ostore/ostore.hh

Collection ostore/ostore.hh, ostore/coll.hh

Compactor ostore/ostore.hh, ostore/compact.hh

Database utilities ostore/ostore.hh, ostore/dbutil.hh

Metaobject protocol ostore/ostore.hh, ostore/mop.hh

‘Relationships ostore/ostore.hh, ostore/coll.hh, ostore/relat.hh

Schema evolution ostore/ostore.hh, ostore/manschem.hh, ostore/schmevol.hh

13

3.3 Determining Types in a Schema

The schema source file determines the types that are in a schema. In the schema

source file, we use a macro to mark the types to be included in the schema.

The types that we mark are the types on which we can perform persistent new().

See also section 3.5.1 for more information.
Which Types to Mark

As a minimum, we should mark the following types:

e Classes on which the application might perform persistent new() to create a

direct instance of the class.

e Classes that have instances read by the application from persistent memory.

We can directly mark the type itself or mark the base types of the class.
e Classes appearing in a query string or in an index path.

Omissions in the schema source file can cause run-time errors. For example. we might
try to persistently store a type that we did not mark or that is not in the schema. It

is not necessary to mark ObjectStore classes except for collection classes [2].

3.4 Creating Schema Source Files

The schema source file specifies the C++ classes that our code reads from or writes to
persistent memory. We create the schema source file according to a specified format.
The schema source file can contain only valid C++ code. It is a good practice to
compile our schema source file to verify that it is compilable, but compilation is not

required.

When we run the schema generator, we specify the name of the schema source
file. Our executable program does not include the schema source file. The schema

source file is only for input to the schema generator (ossg).

14

Schema Source File Format

Before creating the schema source file, we determine the types in the application
that we are going to mark in the schema source file. Use the tables in 3.3, then follow

these steps to create a schema source file.
1. Create a text file.

2. In the text file. specify #include to include ObjectStore header files required

by the features that will be used . The required order is in 3.2.
3. Specify #include to include the manschem.hh file provided with ObjectStore.

4. Specify #include to include the files that define the following types:

e The types that we are going to mark.

e Any types embedded in types that we are going to mark.

We are not required to include the definitions for all reachable types. However.
not including the class definition for a type that is in the application schema causes

that:

e ObjectStore cannot check the class for compatibility with a database class def-

inition (if one exists).

e ObjectStore cannot make virtual function table pointers (vftbls) and discrim-

inant functions available for the class.

For efficiency. create header files which contain only class definitions and include
the header files in the schema source file. This speeds schema generation because

there is nothing extra for the schema generator to examine.

5. Mark certain included types with a call to the macro OS _MARK_SCHEMA _TYPE.

Each call is on its own line and has the format:

OS_MARK_SCHEMA_TYPE(type-name);

For additional information about OS_MARK_SCHEMA _TYPE() and
OS_-MARK_SCHEMA_TYPESPEC() chapter 4, System-Supplied Macros of [3].

6. Mark parameterised types with multiple arguments with a call to the macro
OS_MARK_SCHEMA _TYPESPEC. This macro is similar to OS_MARK_SCHEMA_TYPE
in syntax and function. except that we must enclose the type and its arguments in

parentheses. Each call is on its own line and has the format:
OS_MARK_SCHEMA _TYPESPEC((type-name< x,v >));

7. Save the schema source file.
Here is the schema source file for the Airline Reservation application which was
described in section 2. As we can see, types can be marked without putting them in

any dummy function.

schema.cc:

#include <ostore/ostore.hh >

#include <ostore/manschem.hh >

#include <ostore/coll.hh >

#include “smallclass.hh™

OS_MARK SCHEMA_TYPE(PlaneType):
OSMARKSCHEMA_TYPE(Aircraft);
OS_MARK_SCHEMA_TYPE(os_Set<PlaneType* >):
OS_MARK_SCHEMA_TYPE(os_Set<Aircraft* >):

3.5 Overview of Schema Generation

A schema contains information about a set of classes. ObjectStore defines the follow-

ing kinds of schemas:

e Application schemas

16

e Component schemas

Library schemas
e Compilation schemas

Database schemas

We use the ObjectStore schema generator to generate application, component.

library, and compilation schemas. ObjectStore creates database schemas.

ObjectStore stores each application. component, library, and compilation schema
in its own ObjectStore database. Database schemas are stored in the associated
database or in a separate database that we specify. Each schema database must be

accessible to an ObjectStore server.
Application Schemas

An application schema contains descriptions of

e Classes the application stores in or reads from persistent memory

e Classes that a library in the application links with, stores in or reads from

persistent memory

ObjectStore uses the application schema during run time to:

e determine the layout of objects being transferred between the database and the

application

e validate the database schema to ensure that the application schema matches

the database schema

For simple applications, we can use a single invocation of ossg to generate an appli-
cation schema. [n more complex applications, we might need to use library schemas

to store schema information before constructing the application schema.

Component Schemas

A component schema is a type of application schema that can be loaded and
unloaded dynamically at run time. Typically. a component schema is also a self-

contained schema associated with a DLL.
Library Schemas

ObjectStore must have all the information about persistently used type in a ap-
plication. If the application uses a library that stores or retrieves persistent data, and
the library does not supply its own component schema, use the schema generator to
create a library schema for that library. This library schema should be used when

creating application schema in order to have all the persistently used types in the

application.

In addition to the library schemas we create, ObjectStore provides library schemas
for its libraries that use persistent data. If we link our application with an ObjectStore
library that has a library schema, we must specify library schema when generating

the application schema.
Compilation Schemas

Compilation schema works like library schema. It contains information about the
application’s persistent types, but does not contain information about any persistent

tvpes used by any libraries that the application links with.

Database Schemas

ObjectStore creates a database schema from the application and component schemas
of all applications that allocate objects in the database. The database schema consists
of the definitions of all types of objects that have ever been stored, or are expected

to be stored in the database.

18

Keeping Database Schemas and Application Schemas Compatible

Compatibility means that if a class exists in both schemas
e its data members must have identical definitions and ordering in each schema,

e both class definitions must either define at least one virtual function, or virtual

functions must be absent from both definitions.

3.5.1 Generating an Application Schema
Input

To generate an application schema, specify your schema source file as input to

ossg . If you are linking with libraries that have library schemas, you must also

specify those library schemas as input to ossg .
Output

The output from ossg is

e Application schema database The schema generator creates the application

schema and stores it in an ObjectStore database.

e Intermediate schema source file This file records the location of the applica-
tion schema database along with the names of the application’s virtual function

dispatch tables, the names of discriminant functions, and the definitions for any

get_os_typespec() member functions.

We must compile this file and then link the resulting object file with our applica-

tion. See section 3.6 for details.
Invoking ossg to generate an application schema

The ossg command syntax for generating application, library, and compilation

schemas appears below. More options for ossg is given in [3]

19

ossg [neutralizer_options| [additional_app_options] [-assf app_schema_source_file -
asof app.schema_object file.obj | -asdb app_schema_db schema source_file [lib_schema_dbl

lib_schema_dbn |

! -assf Specifies the name of the application schema source file |
appschema source_file or | or application schema object file to be produced by ,
-asof ossg. For all compilers except Visual C++, the schema |
app-schema _object_file.o generator produces a source file that we must compile. !

When we use Visual C++, the schema generator directly :

1
produces the object file. Required. No default. !
-asdb app._schema_db.adb | Specifies the name of the application schema database |
to be produced by ossg. If the schema database exists
and is compatible with the type information in the in-
put files, the database is not modified. This pathname
must be local to a host running an ObjectStore Server.

The pathname should have the extension . If we want

to specify an existing application schemma database with
ossg. the application schema must have .adb as its ex-
tension. Required. No default.

schema source_file Specifies the C++ source file that designates all the

types we want to include in the schema. It should in-

clude all classes that the application uses in a persistent

context. No default.

lib_schema.ldb ... Specifies the pathname of a library schema database.
The name must end in .db. This can be an
ObjectStore-provided library schema or a library schema
that we created with ossg.

The schema generator reads schema information from
the library schema database specified and modifies
the application schema database to include the library
schema information. We can specify zero or more library
schema databases. Optional. The default is that library

schemas are not included.

20

Here is an example of ossg :

ossg -assf $(APP_SCHEMA SRC) -asdb $(APP_SCHEMA DB) $(OSSCHEMA_FLAGS)
$(CPPFLAGS) $(SCHEMA_SRC) $(LIB.SCHEMA_DBS)

where,

APP SCHEMA _SRC = osschema.cc

APP SCHEMA _DB= $(OS_ SCHEMA_DB_DIR) airline.adb
OSSCHEMA _FLAGS=
CPPFLAGS=-I3(OS_ROOTDIR)/include

SCHEMA _SRC= schema.cc

LIB_ SCHEMA_DBS= ${0OS_ROOTDIR)/lib/liboscol.ldb
$(OS_ROOTDIR)/lib/libosqry.ldb

Specifying ObjectStore Library Schemas

ObjectStore provides library schemas for the ObjectStore libraries that store or
retrieve persistent data. If we are linking our application with an ObjectStore library
that has a schema, we must specify that library schema when we generate the ap-
plication schema. The following table shows how to specify an ObjectStore. given a
library schema. When we specify a library schema, we must always specify the full
path. For example, $(OS_ROOTDIR)/lib/liboscol.ldb on UNIX.

For This Feature Specify This Library Schema Link with This Library
Collections liboscol.ldb -loscol
Compactor Tiboscmp.Idb -loscmp
(Queries “libosqry.1db -losqry
Schema evolution libosse.Idb Tibosqry.Idb Tiboscol.1db -losse” -losqry -loscol

3.6 Compiling and Linking Programs

UNIX

21

This section provides information for compiling and linking ObjectStore applica-
tions on UNIX platforms. The material refers to all UNIX platforms that support
ObjectStore C++ interface Release 3.1.

3.6.1 Linking with ObjectStore Libraries

ObjectStore includes libraries that must be linked when building the applications.
Libraries allow multiple programs to share code without redundantly compiling the

source. Applications use libraries by specifying them at link time.
Requirement

We always link with the libos library. If we are using full ObjectStore,
SOS_ROOTDIR/lib/libos is used: if we are using ObjectStore/Single,
SOS_ROOTDIR/libsngl/libos is used. For definitions of single and full objectstore.

see chapter one in [2].

We must also link with either the libosthr or libosths libraries. Additional Ob-
jectStore libraries are linked according to the features we use in our code, as shown
in the following table. If there are more than one library, they have to be specified in

the order given.

It Our Application Uses This Feature | Link with These Libraries in This Order
“Any ObjectStore feature libos {libosthr or libosths}

‘Collections hiboscol Iibos {libosthr or libosths}

Queries and indexes libosqry liboscol libos {libosthr or libosths}
Relationships liboscol libos {libosthr or libosths}

C run-time library libos {libosthr or Tibosths]

C++ run-time library
We must link libos before 1libC, the C++ run-time library. On some platforms

it is possible a wrong order is obtained when shared libraries are used. Linking first

with libos prevents this problem.

22

Specifying libraries

Use the -1 (lowercase 1 as in link) option to pass library names to the linker.
When we specify an ObjectStore library, do not include the lib portion of the library
name, it means instead of using libos use -los . For example, in Airline Reservation

application, we use collections, relationships and queries as the following:

8(CCC) $(TFLAGS) -o generate generate.o implement.o $(APP_SCHEMA _OBJ)
$(LDFLAGS) $(LDLIBS)

which is:

CCcC= CC

OSSCHEMA _FLAGS=

LIBOSC_LD =

LIBOSTHR_LD=-losth

TFLAGS= -DPTHREADS -g -KPIC -pta -vdelx -mt $(DEBUG_OPT)

LDFLAGS= -L$(0S_ROOTDIR)/1ib $(OS_LINK_FLAGS)

LDLIBS= -losqry -losmop -loscol -los -losth $(LIBOSVND) \
$(LIBOSTHR_LD) $(LIBOSC_LD)

APP_SCHEMA_0BJ= osschema.o

Note that the -L$(OS_ROOTDIR)/lib option begins with an uppercase L as

in Library.

3.6.2 Sun C++ Compiler Options

Sun C++ 4.0 has a compile-time option,-pto , that creates all template instantia-
tions in the current object file. Do not use this option when developing ObjectStore
applications. because it makes everything (including vtbls) static. Since the 3.7 are
static, ObjectStore cannot get at them and gets the wrong vtbl . which leads to an

error.

-vdelx compiler option

23

When we are using SPARC Pro-Compiler C++, we must always specify the -

vdelx compiler option.

The -vdelx option to CC generates the correct calling sequence for persistent

vector deletes. For example:
delete [] persistent_array:

Without -vdelx . the compiler generates a direct call to the Sun vector delete routine.

This routine returns an error message indicating that it did not allocate the array:

error: delete [] does not correspond to any Qnew’

If we use CC to link (by means of 1d), then the linker receives the correct libraries.

On Solaris 2.x systems, we must compile (and link) ObjectStore applications with
real thread support. Specify -losthr on the link line to supply the proper library for
real thread support. The libosths library, a stub threads library, can also be used
with Solaris 2.x systems. Using this library can result in higher performance in some

circumstances because it turns off thread locking.

3.6.3 Solaris 2 Linking

ObjectStore supports linking with and without threads. This means there are two

ObjectStore thread support libraries on Solaris 2 - libosths and libosthr.

e Use the libosthr library in linking an application that links with -mt (or -
Ithread).

e Use the libosths library in linking an application that does not link with -mt

(or -lthread).

On Solaris 2.x, we must always specify the -mt compiler option on the CC com-

mand line. This is required for a successful compilation.

24

Here is an example of a program (foo) compiled and linked in both configurations.
Linking with threads

with threads:

CC -mt -I$(OS_ROOTDIR)/include $(CCFLAGS) -0 foo -L$(OS_ROOTDIR)/lib -

los -losthr

Note that to link an application to use threads.

e Use -mt (or -lthread) on the link line.
e Link with libosthr .

Linking without threads

without threads:

CC -IS(OS.ROOTDIR)/include $(CCFLAGS) -o foo -L$(OS_ROOTDIR)/lib

-los -losths
Note that to link an application that does not use threads,
e Do not use -mt on the link line.

e Do not explicitly place -lthread in the link line.

e Link with libosths .

3.6.4 Sample Makefile Template

In an ObjectStore makefile, in the LDLIBS line, we must specify each library with
which we are linking. Then, in the line of the makefile where ossg generates the
application schema, we must specify the library schemas needed by our application
schema. For each library schema that is specified in the ossg command line. we must
specify the corresponding library in the LDLIBS line. Note that the reverse is not

25

true. For each library that we specify in the LDLIBS line. we do not necessarily
specify a library schema in the ossg command line. This is because every library
does not necessarily have a library schema. Only those libraries that store or retrieve

persistent data have associated library schemas.
Application schema database

In makefiles, we should not specify an existing ObjectStore database as the appli-
cation schema database.
Doing so can corrupt our build process if the server log has not been propagated to

the database.

Makefile template

APPLICATION_SCHEMA_PATH= app-schema-db

/* we only assign the name to application schema #/
/* database app-schema-db, the body will be generated by ObjectStore.*/

LDFLAGS= -L$(0S_ROOTDIR)/1ib $(OS_LINK_FLAGS)
LDLIBS= -losqry -losmop -loscol -los -losth [other libraries]
SOURCES = .cc files
OBJECTS = .o files
EXECUTABLES = executables
CCcC=CC
all: ${EXECUTABLES}
executable: $(OBJECTS) os_schema.o
$(CCC) -o executable $(OBJECTS) os_schema.o \
$(LDLIBS) $(OS_POSTLINK) executable
.0 files: .cc files
${CCC} $(CPPFLAGS) -c .cc files
os_schema.o: os_schema.cc
$(CCC) $(CPPFLAGS) -c os_schema.cc

26

os_schema.cc: schema.cc

ossg -assf os_schema.cc -asdb $(APPLICATION_SCHEMA_PATH) \
$ (CPPFLAGS) schema.cc $(0S_ROOTDIR) /1ib/1ibosqry.1db \
$ (OS_ROOTDIR) /1ib/1iboscol.1db
Cclean:
osrm -f ${APPLICATION_SCHEMA_PATH}
rm -f ${EXECUTABLES} ${0BJECTS} os_schema.=*

For more information see chapter 4 in [3].

3.7 Working with Virtual Function Table (VTBL)
Pointers

There is a special case in which ObjectStore needs to know, at run time, the locations
of information in our application program’s executable: Virtual function tables
(vtbls)

When we declare a class to have virtual functions or, in some cases, to have virtual
base classes, it acquires an invisible data member, a virtual function table pointer.
(Virtual function table is usually abbreviated as vtbl . pronounced veetable. On
some platforms vtbls are called vfts for virtual function tables. Vtbl and vft indicate
the same thing.) The vtbl points to a table of function pointers that the application
uses to dispatch calls to virtual functions. The C++ compiler arranges for the correct

function pointers to be placed in the virtual function table.
Persistent storage

When we persistently store an object belonging to a class with virtual functions,
ObjectStore cannot store the vtbl pointer literally, since it is a pointer to the text or
data segment of the current executable - a tra ient pointer. When the same program
runs another time, or a different program opens the database, the vtbl might have a

different location.

3.7.1 Missing VTBLs

Depending on our platform, missing vtbls can cause errors at compile time or at run
time. It is better to find such errors at compile time. By default ossg reports these

errors at compile time.
Symbols missing when linking ObjectStore applications

Sometimes when linking. particularly with optimisations enabled. we are told that
various symbols required by the application schema object file are missing. These
symbols on non-Windows platforms (including OS/2) begin with _vtbl or _vft. or
end with _vtbl.

This happens because ObjectStore needs to access the virtual function tables
(vfts) for some classes. and the C++ compiler does not recognize these tables as
being needed. The easiest way to get these symbols is to add a non-static dummy

function such as the following:

void foo_force_vfts(voids){
force_vfts(new A);
force_vfts(new B);

}

Creating instances of a class causes the class’s vfts, as well as those of bases having

out-of-line default constructors, to be created in this file.
Abstract classes

If one of our classes is abstract, a variant of the above approach is needed, since
we cannot allocate an abstract class. We can provide an out-of-line constructor for
the class, or we can allocate a non abstract derived class in such a way that in-
line constructors are used for the abstract class. For example, if the original class

definitions were:

class A {
virtual void foo() = 0;
};

28

Class B : public A {
virtual void foo();
};

.then class A might be missing its vft. However, an unoptimized new B would call
A’s in-line default constructor, which would reference the vft for A. But if class B had

an out-of-line constructor, this would not work. Then it would be easiest to make an

out-of-line constructor for A:

class A {
virtual void foo() = 0;
AOA{}
friend void force_vfts(voids);
A(voids);
};

class B : public A {
virtual void foo();

};

and define A::A(void*){} in some file.
Instantiating Collection

If we are using a parameterized collection class, we must instantiate the other
collection classes because they have casting to each other. A work around is to

declare the following and link them. For example:

void foo_force_vfts(void*) {

force_vfts(new os_Array<missing-types*>);
force_vfts(new os_Bag<missing-type*>);
force_vfts(nevw os_Collection<missing-types>);
force_vfts(new os_List<missing-types*>);
force_vfts(new os_Set<missing-type#*>);

force_vfts(new missing-types);

29

In our Airline Reservation example (as described in chapter 2 we have:

/* A function to force vftable inclusion for collections templates */

void foo_force_vfts(voids) {
force_vfts(new os_Array<Flights*>);
force_vfts(new os_Bag<Flight+>);
force_vfts(new os_Collection<Flight*>);
force_vfts(new os_List<Flights>);
force_vfts(new os_Set<Flight+>);
force_vfts(new Flight#);

3.7.2 Run-Time Errors from Missing VTBLs

On some platforms (without weak symbol support). we find out about the missing
vtbls at link time. The vtbls are marked in the schema output file, but are not
marked in the application. This is frequently the case for parameterised collections

classes (os_Set, os_List, and so on).

Sometimes an executable does not have vtbls for all classes with virtual functions
in the schema. When a vtbl pointer for a class is not available, ObjectStore fills in
the vtbl pointer for the class’s instance with a special vtbl that signals an error when

any of the virtual functions is called.
No constructor

Missing vtbls can occur when our application calls a virtual function on an in-
stance of a class for which no constructor call appears in the source. Since a call to
the class’s constructor does not appear in the source, the linker does not recognise
the class as being used and does not link in its implementation. But an ObjectStore
application can use a class whose constructor never calls it by reading an instance of

the class from a database. To avoid this situation, put a call to the class constructor

30

inside a dummy function that is never called.

In our Airline Reservation application. for example, class Employee is an ab-
stract class. By separating class declarations file from their methods implementation,

we will not have missing vtbl error anymore.
Class not in schema

Missing vtbls can also occur when the class is not included in the application’s
schema, either because its definition was not included in the source or because the
class was only reachable from explicitly marked classes by means of void* pointers.
In this case. the solution is to include a definition of the class, or to explicitly mark
it with OS_ MARK_SCHEMA TYPE() .

Marking Employee class in schema source file is looks like the following:

OS_MARK_SCHEMA_TYPE(Employee);

31

Chapter 4
Environment for ObjectStore

We want to show you the different features of ObjectStore application including:

e How we can have database operations, like create a database, destroy. open.

and close
e Create objects in the database

e Retrieve objects through database roots.

Note that we always assumes that we have an existing C++ program and we want

to store objects in a database and retrieve them later.

We use our Airline reservation application as an example to describe more clearly

each part.

4.1 Include Files

To convert a C++ program to an ObjectStore application first add the ObjectStore
header files. You can find about ObjectStore header files in 3.2. Our sample applica-

tion includes :

#include <ostore/ostore.hh >
#include <ostore/coll.hh >

32

#include "smallclass.hh”
and “smallclass.hh”™ includes all class definitions.

4.2 ObjectStore Initialisation

As the first statement to be executed in any ObjectStore program must be the static
member function objectstore::initialize(). If the application uses the collection
class library supplied by ObjectStore. it must call os_collection::initialize() as well.

Our Airline reservation application contains these two calls in the beginning of main()
function:

main(int argc, char#** argv)
{
objectstore::initialize();

os_collection::initialize();

4.3 Application Schema Source File

By creating application schema source file. ObjectStore will have all nessecary schema

information in its schema database. see section 3.4 for more information.

4.4 ObjectStore Database operators

Before we access persistent memory, we must set the stage by performing a few other

operations:

e A database must be created or opened.

e A transaction must be started.

e A database root must be retrieved or created.
All these operations are described in this section.

33

4.4.1 Creating a Database

We create a database by calling the static member function os_database::create()

giving the name of the database as an argument:
os_database *db= os_database::create(”/oodb/airline/thinair.db”);

This function also opens a newly created database. We can call this function
from either inside or outside a transaction. although, in general. it is best to create

databases outside a transaction.

The create function returns a pointer to an object of type os_database . We
use this pointer as the this argument to other non static member functions of the
class os_database. such as os_database::close() (this function is used to close a

database).

We can call os_database::create() function by more arguments to overwrite the

default mode:
os_database *db= os_database::create(” /oodb/airline/thinair.db”,0666,1,1);

The second argument specifies a protection mode. The defaults mode is 0664

By specifying a nonzero value (true) as the value of third argument, we direct
os_database::create() to overwrite any existing database with the same name. in-

stead of signaling an exception. This argument defaults to 0 (false).

Nonzero value of the fourth argument specifies that, the schema information of
the newly created database to store in the specified schema database. However if

this argument is 0 , schema information is stored in the new database which we are
creating.
4.4.2 Destroying Databases

We can destroy a database with the os_ database::destroy() function.

34

void destroy();

This function takes no arguments (other than the this argument), and has no

return value.

os_database* dbi;

dbl->destroy();

If the database is open at the time of the call, destroy() closes the database before
deleting it. Note that to help ensure program portability, we should call the destroy

function from outside any transaction.

4.4.3 Opening Databases

Before we can read or write data, we must open the database in which the data resides.
A database is automatically opened when we create it with os_database::create(). If

we want to open a previously created database. we use the function os_database::open().

Like os_database::create(), we should specify pathname of the database. By
setting an optional argument, create_mode to nonzero. in case that there is no
database by specified pathname, instead of signaling an exception, a new database is
created. We can open the database in a read only mode by giving a nonzero integer

as the second argument. The default mode is O for read/write.
os_database *db= os_database::open(” /oodb/airline/thinair.db”, 0, 0664);

4.4.4 Closing Databases

We close a database by calling os_database::close().
void close() ;

This makes the database data inaccessible (assuming we have not performed
nested opens- see [3] for information about Nested Database). If the call to
os_database::close() occurs inside a transaction, the database is not actually closed

35

until the end of the outermost transaction. That is, the data remains accessible until

the outermost transaction terminates.

os_database =*dbil;
OS_BEGIN_TXN(txi, O, os_transaction::update)

dbl->close();
/* data in dbil remains accessible =/

OS_END_TXN(tx1);
/* end of transaction, so dbl data is now inaccessible */

4.5 Persistent Objects in Database

ObjectStore uses overloaded new operators to create persistent objects:

void* operator new(size_t, os_database*, os_typespec*)

The first argument of type size_t is always provided by ObjectStore. The second
argument tells ObjectStore where to put the object. The Third argument tells Ob-
jectStore the type of object to create and its storage layout.

To create an array of persistent objects we have to specify an additional argument
for new operator that determines the number of elements. For example, to create a

persistent character string containing 10 symbols we write:

char* pstring = new(db,os_typespec::get_char(),10) char([10}:

4.5.1 Using Typespecs

Typespecs, instances of the class os_typespec help maintain type safety when you
are manipulating database roots. A typespec represents a particular type, such_as

36

char.

ObjectStore provides some special functions for retrieving typespecs for types such
as:
static os_typespec* get_char():
static os_typespec* get_short();
static os_typespec* get_int():

static os_typespec* get_long();

Here is an example in which we create a persistent integer object in a database

by calling os_typespec::get_int():
int* number = new(db,os_typespec::get_int()) int(0):

4.5.2 Typespecs For Classes

For user-defined classes such as aircraft class we create an os_typespec as follows:

v

os_typespec* Aircraft_type = new os_typespec(” Aircraft”):

Typespecs should only be allocated transiently: you should not create a typespec

with persistent new.
aircraft=new(db.Aircraft_type)Aircraft(na,Pma.ms.len,sn;sno,mdate,Ama,f);

Instead of creating typespec objects in each application we can declare a static
member function with the name get_os_typespec for each user defined class. The
ObjectStore schema generator automatically supplies a body for this function. The
get_os_typespec function is particularly useful when we want to define a parame-
terised typespec for class templates. The get_os_typespec function also highly simpli-

fies the management of os_typespecs.

For example, the class declaration of aircraft contains the following static function

declaration:

class Aircraft:public PlaneType

{
private:
int serialNo;
int manufacturdate;
char = Amanufacturer;
int flighthours;
public:

/* Define layout for ObjectStore */
static os_typespec* get_os_typespec();

};
Using this class declaration, we create a new aircraft using:

Aircraft* an_aricraft = new(db,Aircraft_type) Aircraft("jet","Homa",6000,
4000,50,1,20,"HH",35) ;

4.5.3 Clustering

Sometimes we want to specify more precisely where we want to allocate the storage for
our new object. When an ObjectStore database is created. it contains two segments,
one the schema segment and another the default segment. The schema segment con-
tains schema information used internally by ObjectStore and all the database roots.
The default segment contains the persistent objects we create by giving a database

pointer as the first argument of the overloaded new operator.

The class os_segment provides a useful function, os_segment::of(), that allows

us to determine the segment in which a given object resides.

Here is an example which uses a version of the new operator that allows us to

determine the place of our new object:

38

void* operator new(size_t, os_segment*, os_typespec*)

This operator is used in the following example, which shows the body of our

constructor for passenger:

Passenger: :Passenger(char* na, char* ad,...)

{

long len = strlen(na) + 1;

name = new(os_segment::of(this),os_typespec: :get_char(),len)char([len];
strcpy(name, na);

len = strlen(ad) + 1;

address = new(os_segment::of(this),os_typespec::get_char(),len)char[len];
strcpy(address, ad);

4.5.4 Transient Database

By passing pointer to a transient database in ObjectStore overloaded new operator.

we can create transient object using exactly same code.

We get a pointer to the transient database by calling the

os_database::get_transient_database() function.

4.6 Database Entry Points and Data Retrieval

The only ways you can retrieve your stored object from persistent database is either
by Navigation or Query. But neither of them can be done unless you have an en-
try point to the object. Once you have retrieved an entry point object, all objects

reachable from it, will be automatically retrieved when needed.

An entry point is an object which is given a persistent name using a root. A root
is an instance of the ObjectStore class os_database_root and its aim is to associate

an object witn a name.

39

4.6.1 Creating Database Roots

The first step is to create a root, then associate an object, which we want to be an

entry point with a name and finally retrieve our object using the entry point.

Here is how we create a root for our sample application:

os_database* db =....open(...);

os_Set<Passenger #*> * Passenger_extent;

/+* Create the passenger extent collection as a persistent object */
Passenger_extent = &os_Set<Passenger #*>::create(db);

/*Define the root "passenger" */

os_database_root* aRoot = db->create_root("passenger");

As we see, the root is created in current persistent database that the entry point is
stored. Transient database causes the error. err_database_not_open. If we try to
create a root with a name that already exists in the database, the err_root_exists

is signaled.

The second step was to associate an object, which we want to be an entry point
with a name. The name which we give to create_root() function will be assigned to

the entry point by calling set_value() function:

/* Associate the root with the passenger extent entry point */

aRoot->set_value(Passenger_extent);

In our Airline reservation application we use extents as entry points. For example,
Passenger _extent is a collection (set) that contains pointers to all objects of a class.
Through this entry point we can reach all objects whose pointers have been inserted

into this collection.

4.6.2 Retrieving Entry Points

We retrieve the root by giving its name to the find_root() function. To access the
value of this root (entry point object) use get_value() function as illustrated in the

following code extract:

40

os_database* db =....open(...);
03_Set<Passenger *> * Passenger_extent;
/* Find the "passenger" roots/
os_database_root * a_root = db->find_root("passenger");
if (a_root)
Passenger_extent= (os_List<Passenger *> *)a_root->get_value();

The os_database::find_root() function takes a root name as an argument and

returns a pointer to the root if the root can be found in the database; otherwise it

returns a 0.

The function os_database_root::get_value() returns a void*, a pointer to the
entry point object associated with the specified root. Since the returned value is

typed as void*, a cast is usually required when retrieving it.

Now we can navigate through Passenger_ertent entry point object and get all

passengers information that will be described in 7.5:

/* cursor on passenger extent */

os_Cursor<Passenger*> p(*Passenger_extent);

/* iterate cursor */

for (Passenger* aPass=p.first(); aPass; aPass=p.next())
/* display each passenger #*/
aPass->display();

In Airline Reservation application, we declare extent as static member and all

accesses to extent is being done in a static member function, access_extent():

void Passenger::access_extent (os_database #*db)

{

os_database_root * a_root = db->find_root("passenger");

if(a_root)
extent= (os_List<Passenger *> *)a_root->get_value();

else

{

41

extent=gos_List<Passenger *>::create(db);
db->create_root("passenger")->set_value(extent);

}

4.6.3 Type-Safety for Database Roots

If we want to have some type-safety for roots. we can add os_typespec* as a
second argument to set_value() and get_value() functions. The type of the en-
try point should match with the os_typespec given in get_value. Otherwise an
err_type_mismatch exception is signaled.

Here is an example:

os_database* db;
Passengerx* aPassenger;

aPassenger = new(db, Passenger::get_os_typespec())
Passenger ("Robin", "Forest",...);
os_database_root* aRoot = db->create_root("my_passenger");

aRoot->set_value(aPassenger, Passenger::get_os_typspec());
aRoot = db->find_root("my_passenger");

if (aRoot)
aPassenger =(Passenger*) (aRoot->get_value(Passenger::get_os_typespec()));

42

Chapter 5
Using Transactions

We access to persistent storage in a boundary of a transaction. There are two ways

we can specify this boundary:
e Lexical transactions: Using transaction macros.

e Dynamic transactions: Using members of the class os_transaction.

5.1 Using Lexical Transactions

We begin and commit lexical transactions with the following macros:

OS_BEGIN_TXN (identifier.exception**. transaction-type)
OS_END_TXN (identifier)

For example, in our Airline Reservation application:
OS_BEGIN_TXN(t1. 0. os_transaction::update)

{

// List of airplane

}

OS_END_TXN(t1)

The identifier argument is used to distinct the transaction from possible other trans-

actions in the same function.

43

The second argument exception** is used in case you want to have exception
handling when a transaction aborted. To ignore special handling of retries. you can

give a 0 as the second argument (as shown in our example above).
transaction-type is one of the following enumerators, defined in the scope of os_transaction:

os_transaction::update specifies a transaction in which updates to persistent

memories are allowed.

os_transaction::read_only specifies a transaction in which any attempt to update

persistent memory signals the exception err_write_permission_denied.

os_transaction::abort_only specifies a transaction in which writes to persistent

memory is allowed, but the transaction cannot be committed.

5.2 Using Dynamic Transactions

This kind of transaction allows programs to begin a transaction dynamically. and end
the transaction in a different function. We begin and commit the transaction using

call the member functions begin() and commit() of the os_transaction class.

5.3 Pointers

There are several kinds of pointers in an ObjectStore application.

Pointers to persistent objects are one kind of these pointers. Typically they are
invalidated at the end of a transaction. We can make this to not happen by calling
the database method objectstore::retain_persistent_address(). This function in-

troduce additional overhead and storage to our application.

We can have pointers from persistent memory to transient memory. As we

know the transient memory is a temporary storage and will be discarded at the

44

end of our process. We also know that at the end of a transaction. persistent
objects are written to a disk. If some of these persistent objects have a pointer
value to the transient database, these pointers are no longer valid. By calling db-
>set_null_illegal pointers we can ask ObjectStore to set all pointers from objects
in database db to transient memory to null at the end of a transaction. We have to

do this every time we start a new process that accesses this database.

In ObjectStore applications we can access several databases simultaneously. There-
fore we may have some pointers between these databases. We named these pointers

as cross database pointers.
[f we want to keep the cross database pointers at the end of our transaction,
we should call dbl- >allow_external_pointer(1) to enable ObjectStore to store a

pointer to another database (db2) in an object of database dbl.

For more about Transactions see [7] and [8].

Chapter 6
Exception Facility

ObjectStore supports the use of two kinds of exceptions:
e C++ exceptions
e TIX exceptions

C—+ exceptions are parts of the C++ language supported by some C+~+ compil-
ers. On any platform whose compiler supports exceptions, we can signal and catch

C++ exceptions in ObjectStore applications.

TIX exceptions are parts of the ObjectStore application-programming interface.
ObjectStore API functions sometimes signal predefined TIX exceptions when error
conditions arise, and our programs can handle these exceptions with macros and
member functions provided by ObjectStore. These predefined exceptions are listed
in Appendix B, Predefined TIX Exceptions of [3].

In addition, we can
e Define new TIX exceptions
e Signal predefined or user-defined TIX exceptions

e Handle user-defined TIX exceptions

Exceptions allow us to define alternative return paths to handle errors and unusual

cases. Using exceptions, we distinguish two different code paths:

46

e Normal execution path, which is executed if no error or unusual situation occurs.

¢ Exception execution path, executed in the case of a recognized and predefined

error situation.

With these two paths, we can handle exceptional cases separately and keep the
code for the normal execution path simple. Without exceptions, a single return

mechanism has to deal with both normal return values and error values.

6.1 Macros

ObjectStore provides a set of macros to catch and handle exceptions:
TIX_HANDLE(identifier)

Declares a region of “protected code” where a specific type of exception will
be detected. This is the normal execution path. This region of code is enclosed in
brackets to specify the handler’s scope: it defines the “exception-catching” block. The

identifier, given as a parameter is the name of the exception to be handled. This

exception as well as any sub exceptions in the hierarchy will be caught.

EXCEPTION

Specifies the block of code that handles the exception. This “exception-

handling” block is also enclosed in brackets.
TIX_END _HANDLE
Marks the end of the exception-catching and exception-handling blocks.
Note that we must avoid blanks in writing these macros.
We have used the exception-handling feature in different parts of the Airline Reser-

vation application. For example, we have defined exception-catching and exception-
handling blocks when opening the database at the beginning of the application:

47

main(int argc, char** argv)
{

objectstore::initialize();
os_collection::initialize();

if (arge != 2)

{

cout << "Usage: " << argv{0] << " <dbname >" << endl:

exit(1):

}

TIN_.HANDLE (err_database_not _found)
{

/* normal execution path */

db = os.database::open(argv(1]):

}

TIX_EXCEPTION

{

/* exception execution path */

cerr << "Database " << argv[l] << ” not found. Create it ...”

db = os_database::create(argv(1]):
generate();

cout << endl << ” generate OK” << endl:
}

TIN_LEND_HANDLE

/* end of exception handling */

db- >close();
}

<< endl:;

We catch the predefined exception err_database_not_found and handle the ex-

ception by creating the database and calling generate() function to initialize the

new database with some objects.

In Addition to the ObjectStore’s exception we also can define our own exceptions.

48

We haven’t used user-defined exception in our application. if you are interested see
Appendix A, of [3].

49

Chapter 7

Collections

Collections contain set of pointers to objects, rather than the objects themselves. We

can have collections both in transient and persistent memory. depending on the needs

of our application.

ObjectStore has a set of collection classes like array, set. bag., and list that they
inherit from the class os_collection. Some of the classes like arrays and lists can
have duplicate elements and some like sets can not. Some like lists and arrays have
ordered element and some like sets do not. Lists and arrays are same in Ob jectStore,

except that arrays can have null values but list can not.

7.1 Collections Requirements

In order to use ObjectStore collection classes include the ostore/coll.hh file after

including the basic ObjectStore classes:

#include <ostore/ostore.hh >
#include <ostore/coll.hh >

We also must call the initialize method before we can use collections:

os_collection::initialize();

As we mentioned in 3.6 we also have to update our make file.

7.2 Creating Collections

After we choose the kind of collections we need, we use create() method to create
each collection. Create() method is a static method of os_Set<T>, where T stands

for the type of the elements of the collection. It creates an empty set in the database.

As we said, collections are classes in ObjectStore. We can have objects of collec-
tions or classes that have collections as their data members. In our Airline Reservation
application, we have created a persistent collection, a set that contains pointers to all

passenger objects in our database. We have called this set Passenger_extent:

os_database* db:
os_Set<Passenger* >& Passenger_extent = os_Set<Passenger* >::create(db):

The only required argument for the create() method is the name of the database.

It returns a reference to the generated instance.

Collections can be defined as static multivalue data members of objects. We de-
clare the collection as static member because we want it to be shared by all objects

of the class and not part of each objects of the class.

In our application, class Aircraft contains a collection. called Aircraft_extent.

class Aircraft:public PlaneType

{
public:
static os_Set<Aircraft *> =*Aircraft_extent;
os_backptr bkptr;
private:
int serialNo;
char * manufacturdate;

o1

char * Amanufacturer;

int flighthours;

};
Note that the static member must be initialized before we can access it. In order to

be able to access it we should define a root. We described how to create a root in

4.6.1.

7.3 Inserting Collection Elements

The insertion is used by calling insert() method:
void insert(const E) ;

In our sample application, we have inserted any newly created object into the
eztent collection. So, first we make sure we have an entry point to this collection by

calling access_eztent().

SparePart::SparePart(int senc, char #sp, int pr)

{
long lent= strlen(sp) +1;

if (!extent)

access_extent (os_database::of (this));
TIX_HANDLE(err_not_assigned)

{

extent->insert(this);

Because eztent has been defined as a set , there is no order in it. If we want to

have order in which objects are created, we should declare ertent to be a list.

52

Array Collections

Ordered collections such as lists or arrays have additional insertion methods that
allow us to control the position of the new element, such as insert_first() and in-
sert_last(). The insert methods insert_before() and insert_after() allow us to place an
object relative to the position of a cursor.

The create() method for array creations takes more arguments like initial cardi-
nality that determines the number of slots available (3 in following example). All

other parameters are default values.

os_Array<Kinds* >& KindArray =
os_Array<kinds* >::create(db,0.0.0.0s_collection::dont _associate_policy,3.0):

7.4 Removing Collection Elements

Remove() method is used to delete an element from a collection. In our sample
application class Passenger has a method called deleteBooking{) which removes a

booking from the set of the passenger’s bookings.

void Passenger::deleteBooking(Booking *bo)

{

/* find that this booking is already in the passenger’s bookingset or not, if it is not
say error */

bookingSet.remove(bo);

/* if there is no other passenger’s that have booked for this booking */

/* may be we can delete it from extent of booking in the Booking class */

delete bo;

}

There are various kinds of remove methods based on the type of the collections. We

can use cursor positions or a numerical indexes to specify an element to be removed.

33

Numerical indexes can be used only with ordered collections.

7.5 Navigating Collections using Cursors

The ObjectStore class library provides cursor classes. Cursors are associated with
collections. They can be moved across the collections to access each elements of col-
lections. Whenever we attach a cursor to a collection, the type of the cursor and the

tyvpe of the collection elements should match.

The following code of our sample application displays all the elements of a collec-

tion parts using a cursor sparecur.

void Aircraft::display()
{

os Set<SparePart * > parts ;

if(sparepartpntr)

parts=sparepartpntr;

os_Cursor<SparePart * > sparecur(parts):

// Attach the cursor sparecur to the os_Set<SparePart * > sparepartpntr
for(SparePart * sp= sparecur.first();sparecur.more(); sp=sparecur.next())
if(sp)

sp- >display():

cout<<endl;

}

os_Cursor::first()

The program has a loop. The traversal is performed with a loop. The initializa-
tion part of the loop header is an assignment involving a call to the member function

os_Cursor::first():

p = c.first()

This function positions the cursor at the collection’s first element, and returns
that element. If there is no first element, since the collection is empty, first() makes

the cursor null and returns 0.

os_Cursor::next()

The incrementation part of the loop header is an assignment involving a call to

the member function os_Cursor::next():

p = c.next()

[t positions the cursor at the collection’s next element, and returns that element.

If there is no next element, next() makes the cursor null and returns 0.

os_Cursor::more()

The loop’s condition is a call to the member function os_Cursor::more():

c.more()

This function returns a nonzero 32-bit integer (true) when the cursor is still posi-

tioned at some element of the collection, and 0 (false) when it is null.

After next() is applied to the collection’s last element, the cursor becomes null,

and more() then returns false, terminating the loop.

Chapter 8
Queries and Indexes

Among the database services provided by ObjectStore is support for query process-
ing. A query facility with adequate performance must go beyond support for linear
searches. So ObjectStore provides a query optimizer, which formulates efficient re-
trieval strategies. minimizing the number of objects examined in response to a query.
The query facilities are used from within C++ programs, and they treat persistent

and non-persistent data in an entirely uniform manner.

8.1 Simple Queries

In Airline reservation application, if we want to find a passenger’s information, in-
stead of iterating through Passenger::extent looking for an entry with name “Bita”,
we let ObjectStore do the work by using os_Collection::query facility to find the

right passenger object in our database:

os_Set<Passenger* >& result = Passenger::extent- >query (
g g

" Passenger*”.”strcmp(name,” Bita”)==0");

Calls to the function can take the form:

collection-expression.query(element-type-name,query-string, schema-database)

collection-ezpression

It defines the collection over which the query will be run. (e.g. *Passen-

ger::extent in the above example

element-type-name

It is a string indicating the element type of the collection being queried.(e.g.

Passenger*)
query-string

The query-string is a C++ control expression indicating the query selection

criterion. In this example it is strcmp(name,”Bita”)==0 .

Any string consisting of an int-valued C++ expression is allowed, as long as

e There are no variables that are not data members.

¢ There are no function calls, except calls to strcmp() or streoll(), calls involving
a comparison operator for which the user has defined a corresponding rank

function and/or hash function. See section 8.4 for queries with function calls.

schema-database

The schema-database is a database whose schema contains all the types men-
tioned in the selection criterion. This database provides the environment in which

the query is analyzed and optimized. The database in which the collection resides is

often appropriate.

Return value

The return value of query() refers to a collection that is allocated on the heap.
So when we no longer need the resulting collection, we should reclaim its memory
with ::operator delete() to avoid memory leaks. The resulting collection has the
same behavior as the collection being queried. The order of the elements in the result

cannot be guaranteed to be the order of the elements in the collection being queried.

57

8.2 Single-Element Queries

If we know that the answer for the query has just a single element, it might be
more convenient to use as_Collection::query_pick(). Same format for calls to

query _pick() as for calls to query():

E query _pick(char*, char*, os_database*) const;
where E is the element type parameter.
Example to query_pick()

PlaneType * a_planetype;
a_planetype= PlaneType::extent- >query_pick ("PlaneType*” strcmp(”jet” .name).db);

A pointer to PlaneType object. with the attribute name jet is returned by the
above query. If there are more than one answer for query_pick(), one of them is

picked and returned. If there is no answer for query, 0 is returned.

8.3 Existential Queries

In some cases we just want to check whether a particular element exists in a collection

or not. For such cases. we should use os_Collection::exists().

Again it has the same syntax as query() and query_pick(). but instead of return-
ing a collection or element, they return a nonzero os_int32(int or long, whichever is

32 bits on our platform) for true, and 0 for false.

We can also have Nested Queries[8].

8.4 Pre-analyzed Queries

The restrictions in simple queries cause that we cannot ask for the name of passen-

ger, read it into a program variable, and look it up using a query. Also the cost of

o8

analyzing a query is likely to be a relatively expensive operation. If the same query
is performed several times, perhaps with different values for the free variables each
time, and perhaps on different collections each time, we should use a preanalyzed

query.

To work with preanalyzed query, first we create a query object, an instance of class
os_coll_query. This query will be analyzed upon creation. It is created with one of
the static member functions os_coll_query::create(), os_coll_query::create_pick()

or os_coll_query::create_exists().

We give the type of the warget collection, a query string and the name of the
schema database where this query will be executed. Variables (including data mem-
bers) can appear in a query string. as long as the type of each variable (except data

members) is specified explicitly with a cast.
For example:

const os_coll_query & queryl = os_coll_query::create_pick(”PlaneType*” ”strcmp((char

*)argl.name)==0".db):

Once we have a preanalyzed query, we have to bind a value to the free reference
by creating a bound query. We can create a bound query at any time, using the
constructor for the class os_bound_query. The bound query object can then be used
as a parameter for the query method, applied to a collection with the appropriate

element type:
/* We have planetype’s name in variable 'na’*/

os_bound_query bound_queryl(queryl, os_keyword_arg("argl”,na));
a_planetype= PlaneType::extent- >query_pick(bound_queryl);

The bound query constructor takes two arguments: a preanalyzed query and a key-

word_arg list, an instance of os_keyword_arg_list.

Using os_keyword_arg(), it substitutes the free reference, argl, with an actual pro-

gram variable.na, for the query execution.

We can also use a function call. as long as the specified function returns the right
type. This allows method calls to be used in bound queries. Whenever the value of

the program variable changes, we have to provide a new binding.

We can have more than one free reference in a query string. In such a case, the

constructor takes a list of os_keyword_arg as parameters:
/* na and ad are name and address of passenger */

const os_coll.query & queryl =

os_coll_query::create_pick(” Passenger™”,”strcmp((char *)sl,name)==0

&& stremp((char *)s2,address)==0" 0s_database::of(this));

os_bound_query bound_query1(queryl, (os_keyword_arg(”s1”,na) .0s_keyword_arg(”s2” ,ad)));

a_passenger= Passenger::extent- >query_pick(bound_queryl);

When our query objects are no longer needed, we should delete them from the heap

using the method call os_coll_query::destroy:

os_coll_query::destroy(query1l);

8.5 Query Optimization

If we want to optimize queries over collections, we can use ObjectStore’s index fa-
cility. To tell ObjectStore which data member to use to build an index, we have to
create an index path object. Using the simplest kind of path, we can base an index
key or iteration order on the value of some data member or simple member function.
For example, we can iterate through a set of Aircraft in order of the Aircraft’s serial

numbers (Aircraft with lower numbers precedes Aircraft with higher numbers).

60

The collection library contains a class os_index_path that provides a static mem-
ber function create(). The definition of the index path for the part example looks
like this:

os_index_path& idx_pathl = os_index_path::create(” Aircraft*”’ “serialNo" .db);

Here. Aircraft® is the path’s type string, which names the element type of col-
lections, whose elements can serve as path starting points. SerialNo is a path string
indicating the data member itself. The argument db is a database whose schema

contains the definition of the class Aircraft.

8.5.1 Explicit Index

In order to perform an ordered traversal over a collection. we can build an index. To
request an index into the set extent. we specify the key of the index as the value of the

data member. serialNo. We use the member function os_collection::add_index():
os Set<Aircraft* > *extent:

os.index_path &pathl = os_index_path::create(” Aircraft*", “serialNo” db);

extent- >add_index(pathl):

Once we invoke this function. any query over extent involving lookup by serialNo is

optimized.

Having explicit indexes in a collection slow down updates to the collection. This is
because index maintenance is performed whenever such an update occurs. Therefore,
it is advisable to remove an index whenever we have update to the collection and
insert before querying. The method call for dropping an index looks like this:

Aircraft::extent- >drop_index(pathl);

61

8.5.2 Implicit Index

To print our list of Aircraft, ordered by serialNo, we now define a cursor using an

index path object:

/* List Aircraft, ordered by serialNo */

Aircraft::access_extent(db);

os.index_path& idx_pathl = os_index_path::create(” Aircraft*’."serialNo” .db):
os_Cursor<Aircraft* >airc(*Aircraft::extent,idx_pathl);

for (Aircraft* al = airc.first(); airc.more(): al = airc.next())
al- >display():

We perform an ordered traversal over a collection using a cursor. The os_Cursor
classes provide a constructor that takes a path as an argument. To support this
iteration. ObjectStore builds an index to access the aircraft in the right order. When

the iteration is finished. the index is automatically deleted.

8.6 Index Options

The default index in ObjectStore is implemented as hash tables (unordered indexes).
But if your application performs range queries involving the indexed data member,
you can request an ordered index, implemented using a B-tree. With a B-tree, queries
involving <, <=, >, or >= comparisons on indexed data member can be computed

more efficiently than with an index implemented only with hash tables.
The os_index_path::ordered Enumerator

You request an ordered index by specifying os_index_path::ordered as the sec-

ond argument to add_index() when requesting the index:
os_Set<Aircraft* > *extent:
os_index_path &a_path =

62

|
|

os_index_path::create(” Aircraft*” “serialNo”, db);

extent- >add.index(a_path, os_index_path::ordered);

The default value for this parameter is os_collection::unordered.

8.7 Index Maintenance

Whenever you use a path, for each data member mentioned in the path string. except
const and collection-valued members, you must perform or enable index maintenance.
Note that failing to perform or enable index maintenance can result in corrupted

indexes, incorrect query results, and program failures.

8.7.1 Automatic Index Maintenance

Before we can create indez_path objects we have to extend the class declarations.
Each data member that appears in an index path has to be declared as indexable. To
make a data member indexable, vou add to the class whose data member you want to
be indexable a public or private data member of type os_backptr. The declaration
of the data member of type os_backptr must precede the declaration of the data

member (or member functions) you want to make indexable:

class Aircraft

{

public:
os_backptr baackp;

private:
static os_Set<Aircraft*>* extent;
os_indexable_member (Aircraft,serialNo,int) serialNo;
char* manufacturdate;
char* Amanufacturer;
int flighthours;

};

63

The last thing you must do to make a data member indexable is call the macro
os_indexable _body/() to instantiate the bodies of the functions that provide access
to the indexable member. These functions ensure that any indexes keved by that data
member are properly updated when the member is updated. The macro call should

appear (at top level) in a file associated with the class defining the indexable member:
os_indexable_body(Aircraft.serialNo.int.os_index(Aircraft,backp)):

Note: Since some macro arguments are used (among other things) to concatenate

unique names, avoid white space in macro arguments.

8.7.2 User-Controlled Index Maintenance
Using the functions os_backptr::break_link() and os_backptr::make_link() when-

ever you update the member, allows ObjectStore to perform index maintenance under

user control.

You still have to add an os_backptr data member to the declaration of the class

for which you want to build an index:

class Aircraft:public PlaneType

{

public:
static os_Set<Aircraft s>sextent;
os_backptr bkptr ;

private:
int serialNo; /*indexable data*/
char= manufacturdate;
char* Amanufacturer;
int flighthours;

}

Whenever a new object of this class is created, a new index entry has to be gener-

ated and inserted into the index. This is done using the os_backptr member function

64

make_link, which should be called in the body of the constructor of the class after

you assign a value to the data member for which the index is maintained:

/* Constructor */

Aircraft::Aircraft(char *na, char * Pma,...)
{

long len;

serialNo=sno;

manufacturdate=mdate;

lent=strlen(Ama) + 1;

/* explicit maintenance for index, keyed on serialNo #/
bkptr.make_link(&serialNo, &serialNo, os_index(Aircraft,bkptr)
-os_index(Aircraft,serialNo));

/* add new Aircraft into Aircraft::extent */
if (lextent)

access_extent (os_database::of (this));
TIX_HANDLE(err_not_assigned)

{

extent->insert(this);

}
}
Deleting an object requires the removal of the corresponding entry from the index
by calling os_backptr::break_ link().
/* Destructor*/

Aircraft::"{FAircraft ()
{

/* explicit maintenance for index, keyed on serialNo=/
bkptr.break_link(&serialNo, &serialNo, os_index(Aircraft,bkptr)-
os_index(Aircraft,serialNo));

65

delete [J Amanufacturer;
remove Aircraft from Aircraft::extent
TIX_HANDLE(err_not_assigned)

{

extent->remove (this);

}

You should call break_link() just before making a change to an indexable data
member (this removes an entry from each relevant index). Call make_link() just af-
ter making the change (this inserts a new entry into each relevant index, indexing the
object by the new value of the relevant path). You can ensure that this happens by en-

capsulating these calls in a member function for setting the value of the data member.

The functions make_link() and break_link() take the same arguments: the first
two arguments are identical and they are the address of the indexed data member,

which in this case is name; the third argument is of type int and is always of the form:
os_index(Classname,backptrname) - os_index(Classname,membername)

where

e Classname stands for the class name (e.g. Aircraft)

e backptrname is the name of the os_backptr member of the class (bkptr)

¢ membername is the name of the data member for which the index exists(serialNo).
This is all we have to do to maintain indexes with key name, because it is not possible

to change the name after an object has been created.

ObjectStore allows you to specify different behaviors for indexes (8]

66

Chapter 9
Data Integrity

There are many ways in which ddtabase integrity might be jeopardized. We show
an example that may cause a problem in referential integrity. In our sample
application, take the many-to-one relationship between Passengers and their one or

many booked seats.

class Passenger{
public:
os_Set<Booking*> books;

};

class Booking {
private:

Passenger #* client;

};

Any updating to passenger’s booking, like deleting one and assigning a new book-
ing into the books collection of passenger object should be done carefully. You must
remember to change the inverse client pointer in the Booking object to point to the

new-booked object.

There are some kinds of database pointers that can cause dangling reference,

the pointer to a deleted object, as well as the incorrectly typed pointer.

67

If all of the data members that point to the deleted object are not updated. they
will point to unallocated space. or perhaps even worse, to the valid space of another

process.

ObjectStore provides facilities to help deal with these integrity maintenance prob-

lems.

9.1 Inverse Data Members

ObjectStore has relationship facility. which allows you to declare two data members
as inverses of one another, so they stay in sync with each other according to the se-
mantics of binary relationships. This works for pairs of data members that represent

one-to-one, one-to-many. and many-to-many relationships.

In order to use relationship we should include the following libraries in this order:

ostore/ostore.hh. ostore/coll.hh, ostore/relat.hh

9.2 Defining Relationship

There are two types of macros. which are used to define relationships in classes.
The first type of macro. which are called as relationship member macros define the
data members as well as the different access functions used to get and set the data

member values.

They are as follow:

os_relationship_1_1() - for one-to-one relationships
os_relationship_1_m() - for one-to-many relationships
os_relationship_m_1() - for many-to-one relationships

os.relationship_-m_m() - for many-to-many relationships

The second macro types are body macros. They provide the instantiations for the

relationship’s accessory functions.

68

The corresponding function body macros are:
os.rel.1_1_body() - for one-to-one relationships
osrel_1_m_body() - for one-to-many relationships
os_rel.m_1_body() - for many-to-one relationships
os_rel_.m_m_body() - for many-to-many relationships

Here is an example of our Airline application:
class Passenger{

private:

os_relationship_m_1(Passenger,books,Booking,client, os_Set<Booking*>)books;

}

Relationship member macros require five arguments:

e Name of the class defining the member (Passenger)

e Name of the member (books)

e Name of the class defining the inverse member (Booking)

e Name of the inverse member (client)

e Type of the data member itself (0s_Set<Booking* >)

We also need to use the matching function body macro in the class implementa-
tion file:

os_rel_m_1_body(Passenger.books.Booking,client);

The arguments for body macro are the first four arguments of its corresponding

member macro.

The other side of relationship also has to be defined. In above example, in Book-
ing class we should define one-to-many member macro relationship with its matching

body macro:

69

class Booking{

private:

os_relationship_1_m(Booking,client,Passenger,books, Passenger*)client;

};

function body to instantiate the access functions is defined:
os_rel_1_m_body(Booking.client.Passenger.books):

So, as we see the relationship macros should always come in fours. This means
that for instance, a one-to-many relationship member must also have a one-to-many

relationship body. as well as a many-to-one inverse member, which itself must have

a many-to-one relationship body.

9.3 Relationship Interface Styles

After you define a binary relationship in a class. you can present this relationship for

end user in different interfaces.

We take the previous Booking class, which has a single valued relationship client
that points to the Passenger class.
Passenger* a_passenger:
Booking* a_book = new(db,Booking::get_os_typespec())Booking(...):

a_book- >client = a_passenger;

ObjectStore’s relationship facility would automatically ensure that the equivalent

of the following operation was performed:

/*insert new book into set of bookings done by a passenger*/

(a-passenger- >books).insert(a_book);

70

9.3.1 Simple Data Member

In this style, relationship is like a simple data member of the class. It can be accessed
using the ”.” or "- >" operator. The end user need not be aware that special inverse-
update processing is occurring as showing below:

Relationship definition

os_relationship_m_1(Passenger,books,Booking,client,0s_Set<Bocking*>)books;
Passenger* a_passenger;
Booking=* a_book;

a_passenger=a_book->client;

Note that there are two restrictions of using this style. The first restriction is that
you can’t initialize this data member in the initialization list of a constructor. They

must be explicitly set in the body of the constructor.

The second situation is that, this style is only available in the C++ library in-
terface, not the C library interface, because it relies on the C++ capability to define

coercion operators and to overload operator=().

9.3.2 Relationship Interface Style

In this style, we treat relationship like objects in its own right. There are ObjectStore
particular functions getvalue() and setvalue(), which are used to set or get the

value of the relationships:

Passenger* a_passenger:

Booking* a_book;

a_passenger = a_book- >client.getvalue();

Notice that. a_book- >client will be the relationship’s instance. This interface
solves the restrictions in the first style. It also could be considered a more consistent
approach, because it allows relationships to be treated like real objects rather than

simple memory pointers.

9.3.3 Functional Interface Style

In functional interface style, we let to the end user to access the relationship just using
functions defined on the class. You can do this, by defining relationship in private

part of the class.

This style offers a more object-oriented interface, because it takes away the im-
pression of direct member access that is associated with the simple data member and
relationship interface styles. Here is an example using a function set_book(} to set the

value of the relationship:

Passenger* a_passenger:
Booking* a_book:

a_book=a_passenger- >set_book():

Important:

The function body macros for many-to-many and. many-to-one relationships must
not be placed in files that could be included more than once in the build of a single ap-
plication because some of the functions defined by these macros are virtual functions.
Multiple definitions of these functions can cause the compiler to produce redundant

versions of the tables that are used to resolve calls to such functions.

You can also have ability to have different behavior. like indexable inverse
member, delete propagation, and so on. Descriptions of all these can be found in

chapter 6 of [7].

Chapter 10
Conclusion

We described the concept of ObjectStore, an Object Oriented Database Management
System. ObjectStore supports essential functions to create database applications.
Database access feature allows us to perform basic activities, such as opening and
closing databases. and creating and accessing persistent objects. Transaction fea-
tures take the same basic activities and regroup them into logical units of work that
are performed either all together or not at all. At the same time ObjectStore does

not allow other transactions from viewing intermediate results.

Grouping objects into various types of collections is simple with ObjectStore’s li-
brary of collection classes. This class library enables us to define lists, arrays. sets. or
bags of related objects. Collections can be queried efficiently through ObjectStore’s
query facility. which selects objects on the basis of the values of their attributes (data
members). To improve the performance of queries, indexes can be built on the col-

lections.

ObjectStore provides a relationship facility that automatically maintains the point-

ers used to specify relationships between objects.

By developing Airline reservation application, we examined these fundamental

features of ObjectStore.

Bibliography

[1} ObjectStore C++ Release Notes.

(2] ObjectStore Building C++ Interface Applications.

(3] ObjectStore Management.

[4] ObjectStore Component Server Framework User Guide.
[5] ObjectStore C++ API Reference.

[6] ObjectStore Collections C++ API Reference.

[7] ObjectStore C+—+ API User Guide.

(8] ObjectStore Advanced C++ API User Guide.

The publications listed below are considered particularly suitable for more detailed
discussions of the topics covered in this document.

Note: All the references are on_line and can be found in

http://www.unik.no/"mdbase/0S_doc_cc

74

