INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a compiete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Constructive Neural Networks with Applications
to Image Compression and Pattern Recognition

Liying Ma

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

May 2001

© Liying Ma, 2001

o] Netionaltioay Bibliothéque nationale

of Canada du Canada
uisitions and Acquisitions et
gﬁiographic Services services bibliographiques
395 Wi Street 385, rue Welli J
SoummSi g uesemger
Canada Canada
Your Sle Votre résérence
Qur be Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 4 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-63990-8

Canadi

ABSTRACT

Constructive Neural Networks with Applications to Image Compression and

Pattern Recognition

Liying Ma, Ph.D.

Concordia University, 2001

The theory of Neural Networks (NNs) has witnessed a striking progress in the
past fifteen years. The basic issues, such as determining the structure and size of the
network, and developing efficient training/learning strategies have been extensively
investigated.

This thesis is mainly focused on constructive neural networks and their ap-
plications to regression, image compression and pattern recognition problems. The
contributions of this work are as follows. First, two new strategies are proposed for
a constructive One-Hidden-Layer Feedforward NN (OHL-FNN) that grows from a
small initial network with a few hidden units to one that has sufficient number of
hidden units as required by the underlying mapping problem. The first strategy
denoted as error scaling is designed to improve the training efficiency and general-
ization performance of the OHL-FNN. The second strategy is a pruning criterion
that produces a smaller network while not degrading the generalization capability
of the network.

Second, a novel strategy at the structure level adaptation is proposed for con-
structing multi-hidden-layer FNNs. By utilizing the proposed scheme, a ENY is
obtained that has sufficient number of hidden layers and hidden units that are re-
quired by the complexity of the mapping being considered.

Third, 2 new constructive OHL-FNN at the functional level adaptation is
developed. According to this scheme, each hidden unit uses a polynomial as its

activation function that is different from those of the other units. This permits the

iii

growing network to employ different activation functions so that the network would
be able to represent and capture the underlying map more efficiently as compared
to the fixed activation function networks.

Finally, the proposed error scaling and input-side pruning techniques are ap-
plied to regression, still and moving image compression, and facial expression recog-
nition problems. The proposed constructive algorithm for creating multilayer FNNs
is applied to a range of regression problems. The proposed polynomial OHL-FNN
is utilized to solve both regression and classification problems. It has been shown
through extensive simulations that all the proposed techniques and networks pro-

duce very promising results.

iv

ACKNOWLEDGEMENTS

There are so many people who have given me support and help during my
study at Concordia. First of all, I wish to extend my most heart felt thanks and
sincere appreciations to my thesis advisor, Professor K. Khorasani, whose inspira-
tion, guidance, advice, encouragement, patience and all of the support throughout
my Ph. D. study have made this day possible. I am especially grateful for the con-
stant/unfailing encouragement he has given me. [would not have completed this
study without his expert guidance and substantial time and efforts. My special
thanks go to Professor M.R. Azimi-Sadjadi for generously agreeing to serve as an
external examiner of my thesis and for providing valuable comments on my thesis.
Special thanks go to Professor W. Lynch who emphasized the need for rigor and
precision in my thesis through tireless reviews of my dissertation document and
suggestive discussions. Special thanks also go to Professor H. Poorooshasb and Pro-
fessor F. Khendek, for reviewing my thesis and giving their valuable comments, as
well as serving on my defense examination committee. Thanks also go to Professor
R. Zmeureanu for chairing on my defense examination committee.

I would like to thank Dr. N. Kasabov for his stimulating discussions at inter-
national conferences.

I would also like to thank my friends Z. Xu, M. Wang, Y. Jiang, L. Chen, N.
Guo and H. Deng for their friendship which accompanied me throughout my studies
at Concordia. Particularly, I thank my friends J. Zan and Dr. Y. Wang for helping
me deal with the details in arranging my defense.

This thesis is dedicated to my family for their endless love and support. My
parents have given of themselves without any reservation. My brothers have always
been there and wishing me the best. My husband has given me his understanding
and all of his support.

LISTOFFIGURES ix
LISTOFTABLES xvi
LISTOFSYMBOLS e XV
1 Introduction 1
Il Background 1
1.2 Review of adaptive structure neural networks 6
1.2.1 Pruning algorithms, 6

1.22 Regularization., 7

1.2.3 Constructive learning algorithms 8

1.3 Constructive algorithms for feedforward neural networks (FNNs) . . . 9
1.3.1 Formulation of constructive FNN training 10

1.3.2 Dynamic node creation (DNC) 13

1.3.3 Activity-based structure level adaptation (ASLA) 14

1.3.4 Cascade-correlation (CC) 16

1.3.5 Constructive learning of a one-hidden-layer FNN 19

1.4 Problems with the constructive FNNs 21

1.5 Overview of the thesisresearch 23
16 Conclusions 24

TABLE OF CONTENTS

2 New strategies for constructive one-hidden-layer FNNs — error

scaling and input-side pruning 25
21 Introduction 25
2.2 Error scaling strategy for input-side training 29
221 Errorscaling 31
222 Simulationresults. 33
2.3 Input-side pruning strategies 43

vi

2.3.1 Sensitivity based on training error (Method A). 46

2.3.2 Sensitivity based on correlation (Method B) 47
23.3 Simulationresults 48
2.4 Convergence properties for special class of constructive algorithms . . 57
2.4.1 Convergence properties for an ideal case 38

2.4.2 Convergence properties of an improved constructive algorithm 60

25 Conclusions 64
A new strategy for constructing multi-hidden-layer FNNs 65
3.1 Imtroduction 65
3.2 Strategy for constructing multi-hidden-layer FNNs 67
3.3 Simulation results for regression problems 74
34 Conclusions 81

Constructive one-hidden-layer FNNs using polynomial activation

functions 82
41 Introduction 82
42 Hermite polynomials 85
43 The proposed incremental training algorithm 90
44 Simulationresults 96
45 Conclusions 107

Applications of the constructive one-hidden-layer FNNs to image

compression and facial expression recognition 108
5.1 Imtroduction 108
5.2 Still image compression using a constructive OHL-FNN 113
5.2.1 Constructive OHL-FNN for image compression 114
9.2.2 Experimentalresults 116
9.2.3 Influence of quantizationeffects 123

vii

5.24 Comparison with the baseline JPEG 125
3.2.5 Generalization capability of the constructive OHL-FNNs . . . 128
5.3 Moving image compression using a constructive OHL-FNN 132
5.3.1 Similarity definitions of twoimages 132
5.3.2 Experimentalresults 137
5.4 Facial expression recognition using a constructive OHL-FNN 146
34.1 Introduction 146

5.4.2 Application of constructive OHL-FNNs to facial expression
recognition L Lo 148
3.3 Conclusions 160
6 Conclusions and topics for further research 162
Bibliography 166
Appendix A The “quickprop” algorithm 177
Appendix B A Quasi-Newton-based training algorithm 179

1.1
1.2
1.3
14

1.6

!O !0 !\’) !\9 !0 !\.’J
A - L D

!\D
~

2.8

LIST OF FIGURES

A simple neural network structure.
Examples of FNN.
Structure for a multi-hidden-layer constructive FNN.
One-hidden-layer FNN under construction using DNC — the dotted
lines show the newly added connections.
The Cascade-Correlation (CC) structure — the dotted lines show the
newly added weights.
OHL-FNN under construction — the dotted lines show the newly

added connections.

The original and the generalized CIF function.
The original and the generalized AF function.
The original and the generalized HF function.
The original and the generalized RF function.
The original and the generalized SIF function.
Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the CIF regression problem
(SNR=0 [dB], 40runs)..
Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the AF regression problem
(SNR=0[dB],40runs)..o
Comparisons between the mean FVUs of the training and the general-

ization with and without error scaling for the HF regression problem
(SNR=0[dB[,40runs)..

ix

2.10

!\7
p—t
(V1]

Comparisons between the mean FVUs of the training and the general-

ization with and without error scaling for the RF regression problem

(SNR=0 [dB], 40 runs). . . .« o o oo oo

Comparisons between the mean FVUs of the training and the general-

ization with and without error scaling for the SIF regression problem

(SNR=0 [dB, 40 runs).o

2 (a) Training and (b) generalization errors for CIF with and without

pruning method A, and (c) the cumulative number of weights pruned,

versus the number of hidden units; solid line: with and dashed line:

without pruning method A.

(a) Training and (b) generalization errors for CIF with and without
pruning method B, and (c) the cumulative number of weights pruned,

versus the number of hidden units; solid line: with and dashed line:

without pruning method B.

(a) Training and (b) generalization errors for SAF with and without
pruning method A, and (c) the cumulative number of weights pruned,

versus the number of hidden units; solid line denotes with and dashed

line denotes without pruning method A.

5 (a) Training and (b) generalization errors for SAF with and without

pruning method B, and (c) the cumulative number of weights pruned,

versus the number of hidden units; solid line: with and dashed line:

without pruning method B.

(a) Training and (b) generalization errors for HAS with and without
pruning method A, and (c) the cumulative number of weights pruned,

versus the number of hidden units; solid line denotes with and dashed

line denotes without pruning method A.

53

GE

2.17 (a) Training and (b) generalization errors for HAS with and without
pruning method B, and (c) the cumulative number of weights pruned,
versus the number of hidden units; solid line denotes with and dashed

line denotes without pruning method B.

3.1 Multi-hidden-layer network construction process for the proposed strategy.
3.2 Multi-hidden-layer network for the proposed strategy.

3.3 Training (solid line) and generalization (dashed line) FV'Us of a multi-

hidden-layer network constructed for a simple linear regression problem. 7

3.4 Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for a sinusoid with noise problem. .
3.5 Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for CIF.
3.6 Original and generalized CIF by the first hidden layer.
3.7 Training (solid line) and generalization (dashed line) FV'Us of a multi-

hidden-layer network constructed for SAF.

4.1 Samples of the orthonormal Hermite polynomials, h,(-) (n =0,1,---,7).
4.2 Structure of a constructive OHL-FNN that utilizes the orthonormal Hermite
polynomials as its activation functions for the hidden units.
4.3 Structure of a constructive OHL-FNN that takes the orthonormal Hermite
polynomials as the activation functions of its hidden units.
4.4 (a) Training and (b) generalization FVUs of the new and the standard
constructive OHL networks forthe HF.
4.5 Original and generalized HF by the proposed algorithm.
4.6 Original and generalized HF by the “standard” algorithm.
4.7 (a) Training and (b) generalization FVUs of the new and the standard
constructive OHL networks for the three-dimensional regression function.

4.8 The original two categories.

56

68

(s

91

101

. 103

4.9 Generalized two categories by the previous and the proposed constructive
FNNswith Shiddenunits.

4.10 Generalized two categories by the previous and the proposed constructive
FNNs with 10 hidden units.

4.11 (a) Training and (b) generalization FVUs of the new and the standard

constructive OHL networks for a two-category classification problem. . . .
5.1 FNNs for image compression.
5.2 A schematic for OHL-FNN-based image compression..

5.3 Two original images used in the experiments.
5.4 PSNRs for (a) training and (b) generalization, (c) the cumulative number
ofpruned weights.
5.3 Reconstructed images of the Girl achieved by three networks with 3 hidden
units trained by the three respective approaches.
5.6 Generalized images of the Lena by a network of 3 hidden units trained by
the Girl image and the three corresponding training approaches.
5.7 pdfsof hidden layer outputs for the constructive OHL network with different
number of hidden units.
5.8 PSNRs of the trained Girl image for the three quantization settings.
5.9 Comparison of the PSNRs of reconstructed Girl images obtained by our
proposed technique with input-side weight pruning and the JPEG scheme. .

5.10 Comparison of the PSNRs of reconstructed Girl images obtained by our

. 106

111

119

121

126
127

128

proposed technique without input-side weight pruning and the JPEG scheme.128

5.11 The PSNRs of the reconstructed Girl image and generalized Lena image for
network training Case T-I and the three generalization cases G-I, G-I, and
G-IIL . . e e

5.12 The PSNRs of the reconstructed Girl image and generalized Lena image
for network training Case T-II and the three generalization cases G-I, G-II,

5.13

5.16

.O!
—
-~

5.18

5.19

5.20

The PSNRs of the reconstructed Girl image and generalized Lena image for
network training Case T-III and the three generalization cases G-I, G-II,

Original image of the Lake (size 512x512). 138
The PSNRs of the reconstructed Girl image and the generalized Lena and
the Lake images, with the block size of 4 x 4. The similarities between the
Girl and the Lena and the Lake are 0.983 and 0.972, respectively. 138
The PSNRs of the reconstructed Girl image and the generalized Lena and
the Lake images, with the block size of 8 x 8. The similarities between the
Girl and the Lena and the Lake are 0.969 and 0.950, respectively. 138
Original images of the 1st, 20th, 40th and the 60th frames from the Football
video sequences (688 x 480 pixels, bite rate R=8 bits/pixel). 140
Block-based similarity (III) of the subsequent frames with respect to the
Ist frame of the Football video sequences, for different block sizes. 141
The PSNRs of the reconstructed or generalized images vs. the frame number
for different number of hidden units, with block size of 4 x 4. The Ist frame
was used for network training and other frames were generalized by the
trained network. The pruning method B described in Chapter 2 was used
with pruning level=10%. The compression ratio is approximately (16/n) : 1. 142
The PSNRs of the reconstructed or generalized images vs. the frame number
for different numuer of hidden units, with block size of 8 x 8. The 1st frame
was used for network training and other frames were generalized by the
trained network. The pruning method B described in Chapter 2 was used
with pruning level=10%. The compression ratio is approximately (64/n) : 1. 142
Reconstructed 1st and generalized 20th, 40th, and 60th frame of the Foot-
ball video sequence. The 1st frame was used to train a constructive OHL-
FNN (block size = 4 x 4, 5 hidden units, network training with pruning

methodB). 143

5.22

5.23

ov e on
[3%] o "~
-] (=

wn
[\
(o 4]

o
(V]
(Y=}

5.30

5.31

5.32

5.33

5.34

The PSNRSs of the reconstructed or generalized images vs. the frame number
for different number of hidden units, with block size of 4 x 4. The 1st
frame was used for network training and other frames were generalized by
the trained network. The pruning method B described in Chapter 2 was

used with pruning level=10%, with 38% input-side weights pruned. The

compression ratio is approximately (16/n): 1. 144
The first frame with additive noise (SNR=10 [dB]) from the Football video
sequence, which was used for network training. 145
The 20th frame (Football video sequence) generalized by the network (5
hidden units) trained on the 1st frame withnoise. 145
Application of the constructive OHL-FNN to facial expression recognition. . 149
Sampie of nominal face images from the database. 152
Sample of face images from the database, with the image registered as
sadness being ambiguous. L oL L L 152
Mean training SSEs vs. the block size and the number of hidden units
(training with pruning (pruning-level =0),20runs). 154
Mean generalization SSEs vs. the block size and the number of hidden units
(training with pruning (pruning-level =0), 20runs). 154
Mean recognition rates vs. the block size and the number of hidden units,

obtained during network training with pruning (pruning-level = 0) (20
BUDS). & v o e 154
Mean recognition rates vs. the block size and the number of hidden units,
obtained during testing the networks trained with pruning (pruning-level
=0)(20runs). e e 154
Maximum recognition rates vs. the block size obtained during network
training with pruning-level = 0 and without pruning (20 runs). 135
Maximum recognition rates vs. the block size obtained in testing for the
networks trained with pruning-level = 0 and without pruning (20 runs). . 155

Mean SSEs for training of the constructive OHL-FNNs (training with

pruning-level = 0 and without pruning, 20runs). 135

5.35

5.36

9‘
[
-~!

5.38

5.39

Mean SSEs for generalization of the constructive OHL-FNNs (trained with
pruning-level = 0 and without pruning, 20runs).
Mean recognition rates for the constructive OHL-FNNs obtained during

network training with pruning-level = 0 and without pruning (M,=12, 20

Mean recognition rates for the constructive OHL-FNNs obtained for test-
ing of the networks trained with pruning-level = 0 and without pruning
(Mp=12,20rums). ottt i e e e
Mean accumulative number of pruned input-side weights for the construc-
tive OHL-FNNs with pruning-level =0, My=12and 20runs.
Recognition rates vs. the number of hidden units for two constructive OHL-
FNNs yielding the best recognition rates in testing stage. These two net-
works are obtained in the 18-th and 8-th run of network training with and

without pruning, respectively (My=12).

xv

156

2.1

o
N

4.1

LIST OF TABLES

Mean FVUs values of the training and the generalization performance
of networks constructed with (“new”) and without (“previous”) error
scaling technique as a function of the number of hidden units. 37
Percentage (1) of the number of connections pruned by the proposed
method B with respect to that of the full input-side connections (10
Runs, FV'U : generalization error without pruning, FV'U, : general-

ization error with pruning). 50

Mean FVU values for the training and the generalization of our pro-
posed and the “standard” constructive OHL networks for the five

two-dimensional regression functions considered in [43] (SNR=10 [dB]). 99

Confusion matrix obtained by a OHL-FNN with 6 hidden units trained
with pruning (pruning-level=0, M,=12), for the images used during the
network training. Lo L 157
Confusion matrix obtained by a OHL-FNN with 6 hidden units trained
without pruning (M,=12), for the images used during the network training.157
Confusion matrix obtained by a OHL-FNN with 6 hidden units trained
with pruning (pruning-level=0, M,=12), for the images not seen by the
trained network. e 158
Confusion matrix obtained by a OHL-FNN with 6 hidden units trained

without pruning (M,=12), for the images not seen by the trained network. 158

xvi

€n—1,min

en-—l,max

flrf'l.'fRYf
fmx‘mfma::

Jy Jinput

J output

M
M,

LIST OF SYMBOLS

bias of the hidden unit(s)

similarity of an image block to an image

optimal compressor characteristic

target for network training

output error of the NN

user-specified minimum value of output error
user-specified maximum value of output error
activation function of the hidden or the output node
user-specified minimum and maximum values for activa-
tion functions

regression map (function)

Hermit orthonormal polynomial

Hermit orthogonal polynomial

approximate Hessian inverse at iteration ¢

dimension of input vector to or number of output nodes
of the NN

identity matrix of proper dimension

objective function for input-side training

objective function for output-side training

number of hidden layers or horizontal/vertical size of an
image

number of quantization levels (= 2%)

dimension of the input vector to the NN

size of square block of an image

number of output nodes of the NN

number of training samples

xvil

P.(") other polynomials

Pn vector for square image block

p:(°) probability density function

q quantization error

dn vector for square image block

Q) quantizer characteristic

Q cross-correlation matrix

R bite rate (bits/pixel)

R auto-correlation matrix

s input to a hidden unit

sgn sign function

S similarity between two images

S4,.58 sensitivity functions used for input-side pruning
U gray-level of a pixel

Utnaz largest possible gray level of a pixel in an image
v output-side weight of a hidden unit

v weight matrix of the NN

Vi, Va variances of images

Vou: Vam variances of image blocks

w weight matrix of the NN

T input to the NN, input to a quantizer

X, x input vector to the NN or predictor variable(s) of the

regression map (function)

Trmaz maximum value of decision level

Tk, Yk decision and representation levels of a quantizer
Y output of the NN, output of a quantizer

Y output or response of a regression map (function)
z output of the hidden unit(s)

a(t)
A
VJou.tput(')

(Y

digital image

bias and weight of 2 node or a constant

coefficient of the Hermit orthonormal polynomial
weight of a node

difference gradient vector

difference output weight vector

quantization step size

gradient of Joyepye With respect to output-side weights
additive noise

positive user specified parameter for quickprop
percentage of the number of connections or weights

pruned

a constant

positive user specified parameter for quickprop
mean values of images

mean values of image blocks

compression ratio

standard deviation of the output error

weighting function of the Hermit orthonormal polynomial

Chapter 1

Introduction

1.1 Background

Artificial neural networks (ANNs) or simply neural networks have been studied for
more than 40 vears to achieve human-like performance in real-life applications. Bi-
ologically inspired, ANNs are composed of many nonlinear computational elements
operating in parallel and organized in a way that may or may not be related to the
actual structure of the brain. Neurons or computational elements or nodes are con-
nected by weights that are adjusted to achieve the application requirements. Figure

1.1 shows a simple neural network.

Activation
X4 Function
X
XM

Input

Figure 1.1: A simple neural network structure.

ANNs are characterized by their learning and generalization capabilities which
are similar to the ones of the brain’s. They learn from experience and can mod-
ify their performance by adjusting their behavior to respond to their environment.
Many kinds of training algorithms have been developed. Once trained, they can
generalize from previous examples to new ones due to their structures and their
training strategies. Generalization ability of a trained network is critical, because
it measures how well the network works when presented with a new input data or
patterns that the network has not seen before.

An ANN is specified by its structure, node activation function and learning
or training rules/algorithms. The training rules specify the initial network weights
or even initial structure, and decide how the network (weights and/or structure)
should be adjusted to satisfy the prespecified performance requirements.

The theory of Neural Networks (NNs) has witnessed a striking progress in the
past fifteen years since its resurgence in the early 1980s. The basic issues, such
as determining the structure and size of a NN, developing an efficient NN learning
strategy, and other related problems have been extensively investigated and a large
number of NN topologies and training algorithms have emerged in the literature
[1]-{7]. (14]-[16].

Furthermore, NNs have also found a vast number of real-life applications,
such as in digital communications [8] (also see the references therein), control [9, 10].
signal processing {11, 12], function approximations, regressions, pattern recognitions
6, 7, 13, 17], etc. The range of NN-based techniques for real-life applications is still
expanding and is growing.

Among the numerous NNs paradigms, such as Hopfield networks, Hamming
networks, Kohonen's self-organizing feature maps (SOM), Radial Basis Function
(RBF) networks, and Multilayer Perceptrons (MLP), the feedforward NNs (FNNs)
are the most popular due to their flexibility in structure, good representational

capabilities, and large number of available training algorithms [1]-[7], [14, 15]. In

this thesis we will be mainly concerned with the FNNs. Some examples of FNNs [7]

are shown in Figure 1.2.

Output layer
Qutput layer

Input layer Input layer Second hidden layer

First hidden layer

Hidden layer

(2) One hidden layer network (LHL) (b) Multi-hidden layer network (MHL)

(c) Nonlayered with shortcut

Figure 1.2: Examples of FNN.

When using a NN, one needs to address three important problems. The so-
lutions to these problems will significantly influence the overall performance of the
NN as far as the generalization performance of the network to new data sets that

have not been presented during the network training.

The first problem is the selection of data/patterns for network training. This
is a problem that has practical concerns and has not received as much attention
by researchers as the other problems. The training data set selection can have
considerable effects on the performances of the trained network. Some research on
this issue has been conducted in {13] (and the references therein).

The second problem is the selection of an appropriate and efficient training
algorithm from a large number of possible training algorithms that are developed
in the literature, such as the classical error backpropagation (BP) [18] and its many
variants [14], [19], [20] and the second-order algorithms (21, 22], to name a few. Many
new training algorithms with faster convergence properties and less computational
load are being developed every year by researchers in the NN community.

The third problem is the determination of the network architecture. This prob-
lem is more important from a practical point of view when compared to the above
two problems, and is generally more difficult to solve. The problems here are to find
a network structure as small as possible to meet certain desired performance require-
ments, as well as the selection of activation function for the network nodes. What
is usually done in practice is that the developer trains a number of networks with
different sizes and activation functions, and then the smallest network that can fulfill
all or most of the required performance specifications is selected. This amounts to a
tedious process of trial and error that seems to be unfortunately unavoidable. The
selection of activation functions for the network nodes can be considered as a part of
network structure. Because the selection of activation functions actually makes the
NN-based solution finding more complex, the log-sigmoidal or tan-sigmoidal func-
tions are generally used. But there is no guarantee that they are the best choice.
This thesis focuses on developing a systematic procedure for an automatic determi-
nation and/or adaptation of the network architecture and activation functions for a
FNN.

The 2nd and 3rd problems are actually closely related to one another in the

sense that different training algorithms are suitable for different NN topologies.
Therefore, the above three considerations are indeed critical when a NN is to be
applied to a real-life problem.

Consider a data set generated by an underlying function. This situation usu-
ally occurs in pattern classification, function approximation, and regression prob-
lems. The problem is to find a model that can represent the input-output rela-
tionship of the data set. The model is to be determined or trained based on the
data set so that it can predict within some prespecified error bounds the output
to any new input pattern. Neural network is one of the most promising tools to
address this problem by mapping the input data into the output data. In general,
a NN can solve this problem if its structure is chosen appropriately. Too small
a network may not be able to learn the inherent complexities present in the data
set, but too large a network may learn “unimportant” details such as observation
noise in the training samples, leading to “overfitting” and hence poor generalization
performance. This is analogous to the situation when one uses polynomial functions
to address curve fitting problems. Generally acceptable results can not be achieved
if too few coefficients are used, since the characteristics or features of the underlying
function can not be captured completely. However, too many coefficients may not
only fit the underlying function but also the noise contained in the data, vielding
a poor representation of the underlying function. When an “optimal” number of
coefficients are used, the fitted polynomial will then yield the “best” representation
of the function and also the “best” prediction for any new data.

A similar situation arises in the application of neural networks, where it is
also imperative to relate the size of the NN to the complexity of the problem. Ob-
viously, algorithms that can determine an appropriate network architecture and/or
size automatically according to the complexity of the underlying function embedded
in the data set are very cost-efficient, and thus highly desirable. Efforts toward the

network size determination have been made in the literature for many vears, and

(S]]

many techniques have been developed (2], [34] (and the references therein]. Towards
this end, in the next section, we review three general methods that deal with the

problem of NN structure determination.

1.2 Review of adaptive structure neural networks

In this section, we give a brief review for three types of algorithms for adaptive
structure neural networks, before we review the constructive feedforward NNs in
detail in next section. These three types of algorithms are pruning algorithms,

regularization and constructive learning algorithms.

1.2.1 Pruning algorithms

One intuitive way to determine the network size is to first establish by some means a
network that is considered to be sufficiently large for the problem being considered,
and then trim the unnecessary connections or units of the network to reduce it to
an appropriate size. This is the basis for the pruning algorithms. Since it is much
“easier” to determine or select a “very large” network than to find the proper size
needed, the pruning idea is expected to provide a practical but a partial solution to
the structure determination issue. The main problem to determine is how to design a
criterion for trimming or pruning the redundant connections or units in the network.
Mozer and Smolensky (23] proposed a method which estimates which units are “least
important” and deletes them during training. Karnin {24] defined a sensitivity of
the error function being minimized with respect to the removal of each connection
and pruned the connections that show low sensitivity. Le Cun et al. [25] designed a
criterion called “saliency” by estimating the second derivative of the error function
with respect to each weight, and trimmed the weights with sensitivities lower than
some prespecified bound. Castellano et al. [26] developed a new iterative pruning

algorithm for FNNs, which does not need the problem-dependent tuning phase and

the retraining phase that are required by other pruning algorithms such as those in
(23]-[25]. The above pruning algorithms have the following limitations: (i) the size of
the initial network may be difficult to determine a prior, and (ji) the computational
cost are very excessive due to the fact that repeated pruning processes have to be

performed.

1.2.2 Regularization

A neural network that is larger than required will, in general, have some weights
that have very little, if anything, to do with the essential input-output relationship.
Although, they may contribute in reducing the training error, they will not behave
properly when the network is fed with new input data, resulting in an increase of
the output error in an unpredictable fashion. This is the case when the trained
NN does not generalize well. In the conventional BP and its many variants these
weights along with other more crucial weights are all adjusted in the training phase.
Pruning these unnecessary weights from the trained network based on a sensitivity
criterion is one possible approach to deal with this situation. Alternatively, a scheme
known as regularization, does impose some conditions on the NN training so that
the unnecessary weights will be forced to converge to zero. This can be done by
adding a penalty term to the error objective/cost function that is being minimized.
Many different penalty terms are proposed in the literature that have been found
to be effective for many problems, see for example the references [27]-[30].
However, the regularization techniques still can not determine the size of the
network. The network size has to be determined in advance by the user. Further-
more, in the objective/cost function cne has to weight appropriately the error term
and the penalty term. This is controlled by a parameter known as the regularization
parameter. Usually, this parameter is selected by trial and error or by some heuris-
tic based procedure. Recently, the Bayesian methods have been incorporated into

network training for automatically selecting the regularization parameter [31]-[33].

~

In these methods, pre-assumed priors regarding the network weights such as normal
or Laplace distributions are used that favor small network weights. However, the
relationship between the generalization performance and the Bayesian evidence has

not been established, and those priors sometimes do not produce good results.

1.2.3 Constructive learning algorithms

The third approach for determining the network size is known as constructive learn-
ing. Constructive learning alters the network structure simultaneously as learning
proceeds, producing automatically a network with an appropriate size. In this ap-
proach one starts with an initial network of a “small” size, and then incrementally
adds additional hidden units and/or hidden layers until some prespecified error re-
quirement is reached or no performance improvement can be observed. The network
that is obtained in this way is a “reasonably” sized one for the given problem at
hand. Generally, a “minimal” network is seldom achieved by using this strategy,
however a “sub-minimal” network can be expected [34, 45]. This problem has at-
tracted a lot of attention by several researchers and many promising algorithms
have been proposed. An excellent work by Kwok and Yeung [34] surveys the ma-
Jor constructive algorithms in the literature. Dynamic node creation algorithm and
its variants [35]-[39], activity-based structure level adaptation [40, 41], Cascade-
Correction (CC) algorithms [42]-[44], and the constructive one-hidden-layer (OHL)
algorithms {45, 46] are among the most important constructive learning algorithms
developed so far.

Constructive algorithms have the following major advantages over the pruning

algorithms and regularization-based techniques.

Al. It is relatively easier to specify the initial network architecture in constructive
learning techniques, whereas in pruning algorithms one usually does not know

a priori how large the initial network size should be. Therefore, an initial

A2,

A3.

network that is much larger than actually required by the underlying problem
is usually chosen in pruning algorithms, leading to a costly network training

process.

Constructive algorithms tend to build small networks due to their incremental
learning nature. Networks are constructed that correspond to the complexity
of the given problem and the specified performance requirements, while overly
large efforts may be spent to trim the unnecessary weights contained in the
network in pruning algorithms. Thus, constructive algorithms are generally
more economical (in terms of training time and network complexity/structure)

than pruning algorithms.

In pruning algorithms and regularization-based techniques, several problem-
dependent user parameters need to be properly specified or selected in order to
obtain an “acceptable” and “good” network yielding satisfactory performance.
This requirement makes these algorithms more difficult to be used in real life
applications. On the other hand, constructive algorithms with incremental

procedures are not affected by these drawbacks and problems.

In the next section a more detailed formulation of the constructive FNN as well as

the description of the previous algorithms are provided.

1.3 Constructive algorithms for feedforward neu-

ral networks (FNNs)

In this section, we first give a simple formulation of the problem in training a con-

structive one-hidden-layer FNN in the context of nonlinear optimization. An in-

troduction to and review of several existing constructive algorithms are provided

in some detail, as a preamble and review to the chapters that follow. The advan-

tages and drawbacks of these constructive algorithms are indicated and discussed.

9

Finally, the fundamental and the main concerns and focus of this thesis work will

be provided.

1.3.1 Formulation of constructive FNN training

Suppose that a FNN is used to approximate a regression function whose input vector
(or predictor variables) is indicated by a vector X of multi-dimension and its output
(or response) is expressed by Y. Without loss of generality, we assume here that
Y is a one-dimensional variable. A regression surface (input-output function) g(-)
describes the relationship between X and Y. A FNN is trained and used to realize
or represent this relationship. The input samples are X = (x!,x?,---,xP), and the
corresponding target samples (or observations) are D = (d!,d?,---,d") which are
the output data contaminated by an additive white noise vector A = (¢!, €, -- -, €F),
with d? =y +¢ for j =1,2,---, P, where P is the number of patterns in the data
set. The network training can be formulated as the following unconstrained least

square (LS) nonlinear optimization problem

P

i, L@) (Y

subject to

(i . A)
y‘{ = fl(wli): w; € §Rn1x;\!’ Y{ ER™, X € R‘uy
i = fa(wayl), wa € R™™, y] e Rm,

| ¥1 = frlwiyl_y), wr e RUM- o e R

where n = (n;,n,,---,nz_;) is a vector for the number of hidden units at each
hidden layer, f = (fi, f2,---, fr) denotes the activation function of each layer, f,
fa, -++, fr—1 are usually nonlinear activation functions, where f; is linear for a

regression problem, and w = (wy, wy, - - -, W) represents the weight matrix at each

10

layer (see Figure 1.3 for the structure of an MHL-FNN). All levels of adaptation
are included in the above LS nonlinear optimization. The performance index (1.1)
appears to be too complicated to be solved by any existing optimization technique
to reach an acceptable solution due to the huge optimization space. Therefore, if
one fixes some of the variables, the problem will become easier to solve. However,
only a suboptimal solution can then be usually provided. Fortunately, it turns out

that a suboptimal solution suffices in many practical situations.

Y

Figure 1.3: Structure for a multi-hidden-layer constructive FNN.

If on the other hand a OHL network is used to approximate the regression
problem, its training is reduced to the following LS optimization problem
P

Y(d -) (1.3)

fi.fam, Wi, w2 =t

subject to

vi= fi(wixi), w,eRM yleRm xieRM,

1.4
y% = f2(W2Y{)y Wy € §RIX"‘, y% e RL ()

11

It is not difficult to observe that even the above reduced LS nonlinear optimization
problem is still not trivial to solve. This is partly due to the freedom in the selection
of the activation functions and the number of hidden units that make the search for
the solution to the optimization problem difficult to determine.

Actually, one can solve (1.1)-(1.2) and (1.3)-(1.4) only in an incremental fash-
ion. That is, given certain variables, say the activation functions and the number
of hidden layers and units, according to a systematic prespecified policy, solve the
resulting LS optimization problem with respect to the remaining variables, and re-
peat the process until an acceptable solution or network is obtained. In this way,
for a given choice of activation functions and the number of hidden lavers and units,
(1.1) and (1.3) reduce to two nonlinear optimization problems with respect to the
weight matrices. These problems may be solved using the steepest-decent (for ex-
ample, the BP) type or second-order (Quasi-Newton) recursive methods. The error
surfaces represented by (1.1) and (1.3) have, in general, many local minima and the
solution to the problem is sought for only one local minimum at a time. The error
surfaces change their shapes each time the activation functions and/or the number
of hidden layers and/or units are modified, resulting in different local minimum each
time.

The four major constructive algorithms that are briefly reviewed below have
adopted the above approach and can therefore provide only suboptimal solutions to
(1.1) and (1.3). The constructive OHL-FNNs architecture developed in Chapters 2
and 4 also provide suboptimal solutions to (1.3) in one way or another, whereas the
constructive multilayer FNN proposed in Chapter 3 provides a suboptimal solution
to (1.1).

1.3.2 Dynamic node creation (DNC)

When one attempts to use a FNN to solve a mapping problem, it is generally very
difficult to obtain @ priori the proper size for the FNN. One may be given some
underlying information on the training data, however the information may not be
easily and directly used to assist in determining a good “guess” for the network size.
A simple and an intuitive idea would be to start training from a rather small network,
enlarging it when needed to automatically obtain a network that would represent
the complexity of the problem being considered within a prespecified performance
requirements.

Dynamic node creation (DNC) developed by Ash [35] and its variants [36]-[39)]
are constructive algorithms that are based on this intuition. In these algorithms,
the training process begins with a small network. The backpropagation algorithm,
Newton's method, Quasi-Newton methods, recursive least-squares algorithms, and
the gradient-based algorithms are then used for training the weights of the network.
When the training error is stabilized to some prespecified range, the training process
is stopped. New hidden units (nodes) are added to the stabilized network one at a
time, and the enlarged network is trained again. This process will be continued until
a desired error bound is reached or some stopping conditions are satisfied. F igure
1.4 shows a typical FNN structure under construction using DNC.

The major advantage of these algorithms is the simplicity of the node creation
policy. Any training algorithm for a fixed structure network can be used. The con-
vergence of the algorithms to the target function follows directly from the universal
approximation property of the FNN structure [18]. However, the major difficulty
with these algorithms is the significant increase in the computational load of the
network training when the network becomes “significantly” large. This is due to the
fact that the enlarged network has to be retrained each time a new hidden unit is
added. This amounts to a scale-up problem as the training of the whole enlarged

network has to be performed during the constructive training process.

13

[
,
\' ..‘ \ M \“ . \‘ '{
Input N .\,(/ ‘"r:i‘ Wy ."'
w Yo LYY R
L) - .
v . Trinallthe
output weights

Train all the
input weights

‘
" "‘
.
e
a
S
.
.
.

Hidden Layer

Figure 1.4: One-hidden-layer FNN under construction using DNC — the dotted
lines show the newly added connections.

1.3.3 Activity-based structure level adaptation (ASLA)

A: Neuron generation

The ASLA algorithm developed by Lee [40] is motivated by the same underlying
intuition used in the DNC algorithm [33]. The difference between these two struc-
tures is in the way that one adds a new hidden unit to the network. In the DNC
[33], 2 new hidden unit with initial random input-side and output-side weights is
added to the network simply when the error is stabilized. On the other hand in
ASLA, when the network error is stabilized, a sensitivity measure denoted by the
fluctuated distortion (FD) is evaluated for each hidden unit. If it is determined that
an additional hidden unit should be added to the network, a neuron or hidden unit
with the highest FD, the so-called “mother” neuron, is selected to be split into two
neurons. The weights of the new neuron are selected to be identical to those of its
mother neuron. After the neuron generation, a training algorithm such as BP will

be applied to the enlarged network and the process is repeated until the output error

14

remains within a prespecified desired bound. The new neuron can be considered as
a copy of its mother neuron.

Following a sufficiently long training process, a neuron that is capable of rep-
resenting its map will have relatively small fluctuations, while the neuron that is
incapable of this will show large fluctuations. In other words, the mother neuron is
the ideal candidate that requires assistance from a new neuron. It is argued that the
new neuron may be expected to help its mother neuron more efficiently and timely

by copying its mother’s weights as its initial weights.

B: Neuron annzhilation

In ASLA, a neuron can also be annihilated from the network without affecting its

performance. This is made feasible under two circumstances:

C1. When the neuron is not a “functioning” element in the network, or

C2. When the neuron is a “redundant” element in the network.

The first situation is simply identified by checking the output variance (output
fluctuation) of each hidden neuron. If this is almost a constant for a given neuron,
then it can be removed from the network. Furthermore, in [40] a post-sigmoidal
activity variation measure was introduced for monitoring the output of each neuron.
The second situation is identified by simply monitoring the correlation between
the hidden neurons output values in the network. If two neurons are completely
correlated, then one of them can be removed from the network. In FNNs this can
be done by monitoring the dependency of the input-side weight vectors of neurons in
the same layer. The neuron annihilation strategy makes the network more flexible

and enhances its performance and generalization capabilities.
C: Extension of ASLA

In the ASLA developed by Lee [40], only one neuron is selected as the mother

neuron, and only one new neuron is allowed to be added to the network during the

15

learning process. Weng and Khorasani [41] extended Lee’s ASLA by allowing the
selection of multiple mother neurons and the creation of multiple new neurons at
any time during the learning process. This extension makes ASLA more flexible and
practical. They also introduced a new algorithm to improve the training speed. The
modified strategy and the new training algorithm were applied to several benchmark
examples and a real-life application problem.

It should be noted that ASLA also enjoys the same advantages as that of the
dynamic node creation algorithm. However, it also suffers from the scale-up prob-
lem when applied to complex problems. It is expected that ASLA may have better
performance capabilities when compared to the DNC, since it employs more com-
plicated strategies for both node creation and node annihilation. However, formal

justifications of these improvements are still lacking.

1.3.4 Cascade-correlation (CC)

The CC algorithm proposed by Fahlman and Lebiere [42] is an important tool for
constructing FNNs with multiple hidden layers. The CC facilitates the development

of powerful high-order feature detectors even with the use of simple hidden units.
A: Cascade structure

The CC is characterized by its cascade architecture (see Figure 1.5). The algorithm
starts with no hidden units, every input is connected to every output unit by a
connection with an adjustable weight. New hidden units are added one at a time
as required (when the training error is not small enough or when the error gets
stabilized). A new hidden unit has input-side connections with not only the original
network inputs but also with the output of each already existing hidden units in the
current network. It has output-side connections to the original network outputs.
Using this procedure, a “deep” (a FNN with many hidden layers) cascade structure

will be constructed.

16

Second Hiaden Layer

Train only newly RN Train all the output waights
added input weights '{‘,"Z" 3 N w HPUTeIg
W, Ry N
input K : e

Figure 1.5: The Cascade-Correlation (CC) structure — the dotted lines show the
newly added weights.

There are three major advantages with the CC algorithm:

Al. Unlike the DNC and the ASLA, CC is not concerned with the problem of

initial network size, whose determination can be problem-dependent.

A2. Powerful high-order feature detectors can be constructed with simple hidden

units.

A3. Aswill be shown below, the training of a new hidden unit is divided into input-
side training and output-side training, which is then performed sequentially,

resulting in computationally efficient procedure.
B: Training

In CC, there are two separate steps (or phases) for training a new hidden unit:
input-side training and output-side training. Since the initial weights of a hidden

unit have, in general, considerable influence on the network performance, a pool of

17

neuron candidates with randomly generated initial weights may be trained during
the input-side training. One candidate that yields the “best” result for the objective
function under consideration is incorporated into the active network, and its input-
side weights will be fixed in the constructive learning process that follows. Once a
new candidate is added to the network, the output-side training is then performed.

An objective function that was proposed by Fahlman and Lebiere [42] for
input-side training is the maximum correlation criterion. Suppose there are n — 1
hidden units in the network, and the error signal of the network is denoted by
e,’;-l',,, j=1---,P,o=1,---,N, where P is the number of training samples and
N is the number of outputs. Consider a candidate for the n-th hidden unit to be
added to the network that is being trained. Its output is denoted by fI, j =1,---, P.

The correlation-based objective function is then given by

NP
mput = Z Z _én—l,o)(fr{—fn) H (15)
o=l [j=1
where
1 f: ;
-l = 5 e'rjl— ,01 (16)
1 P& 1
_ 1 & .
fo = 32 A (L.7)
Pj=1

The candidate that yields the maximum correlation is added to the active network,
which is then followed by the output-side training in the next stage. The output-side
training with n hidden units is performed according to the following least squares
(LS) error criterion:

Output = —ZZ ygzo (18)

< o=lj=1

where y,{,a is the response of the o-th output, and d? is the target of the o-th output.
A fast and computationally efficient algorithm called quickprop was proposed

by Fahlman and Lebiere [42] to maximize Jinpue and minimize Jy,py:. Note that

18

an LS solution to the output weights can actually be obtained by simply using the
pseudo-inverse operation if the output layer is linear [34, 43).
Before closing this subsection, note that the CC algorithm has also its own

drawbacks. Its two major limitations are as follows:

D1. The deeper the structure is, that is the more hidden layers the network grows,
the more input-side connections for a new hidden unit will be required. This
may give rise to degradation of generalization performance of the network, as

some of the connections may become irrelevant to the prediction of the output.

D2. As the network gets deeper, the propagation delays will become longer and
the fan-in of the hidden units will become complicated, making a very large

scale integration (VLSI) circuitry for implementation purposes not feasible.

Towards these end, regularization-based techniques and other methods that limit
the fan-in of the hidden units have been proposed in the literature to alleviate these
problems [34].

1.3.5 Constructive learning of a one-hidden-layer FNN

We are now in a position to introduce some contributions to the construction of a
OHL-FNN [45, 46]. In DNC algorithms, the retraining of the whole network is found
to significantly increase the computation load as the network becomes larger. This
begs the question: why not just train the “new” part of the network? This idea is
actually realized in some sense in CC through the separation of input training for
the input-side of the new hidden unit and output training for the output layer of the
network. However, the fan-in problem in CC may become prohibitive as the network
becomes deeper, resulting in degradation of the generalization performance. There-
fore, one way to overcome the above-mentioned problems with the DNC algorithms

and the CC is to construct a OHL-FNN by using the training strategy adopted in

19

CC (see Figure 1.6). Although constructive OHL-FNN has some advantages over
CC and DNC algorithms, it also has its own problems as discussed in the Section
14.

(I SRS B .
(o5 a7 Tainalithe
y output waights

added input weights

Hicden Layer

Figure 1.6: OHL-FNN under construction — the dotted lines show the newly added
connections.

In [45], Kwok and Yeung investigated and compared a number of objective
functions or performance indices or criteria for training new hidden units for a
OHL-FNN using different regression problems. The activation functions of the hid-
den units were simply a sigmoidal function. These objective functions and criteria
can also be directly used for training hidden units in a CC architecture. In [46],
Kwok and Yeung introduced the Bayesian regularization technique into construc-
tive OHL networks to improve their generalization performance. In this technique,
a full Bayesian approach is used to accomplish the regularization by using appro-
priate priors regarding the network weights to favor small network weights. The
regularization parameters are automatically determined by a multi-level inference

process so that the user will not be required to formally provide them. More details

20

regarding this approach can be found in [46].

1.4 Problems with the constructive FNNs

This thesis will concentrate on the constructive learning algorithms for a OHL-FNN

due to the following reasons:

R1. The OHL-FNY is simple and elegant in structure. The fan-in problem with

the CC architecture is not present in this situation.

R2. OHL-FNN is a universal approximator as long as the number of hidden units
is sufficiently large. Therefore, the convergence of constructive algorithms can

be easily established [43].

R3. The constructive learning process is simple enough to facilitate the investiga-
tion of the training efficiency and development of other improved constructive

strategies.

As can be found in {43, 46], many objective functions have been tested for sev-
eral regression problems in constructing OHL-FNNs, and regularization technique
was determined to be effective in improving the generalization capabilities of the
constructed networks. However, analyzing the relationship between an objective
function and the network performance is a very challenging problem. Towards this
end, one needs to address the following questions: how “good” is an objective func-
tion? which objective function works “best”? and how does the constructive process
converge? The three major issues for the constructive learning of a OHL-FNN are

stated as follows:

I1. The training efficiency which is used to measure the “goodness” of an objective
function in terms of the performance of the constructed FNNs, and it has been

found to be quite problem-dependent [45]. Towards this end, the objective

21

function and the learning strategy need to be further studied. These are the

motivations behind the work presented in Chapter 2.

I2. Although, it is possible to train neuron candidates with different types of ac-
tivation functions, usually the same activation function is used to reduce the
training time in the search space. It may be advantageous to find different
activation functions for improving the training efficiency. This idea is further

investigated in Chapter 4.

13. Theoretical investigation on convergence of the training algorithm, the error
dynamics, and the generalization performance with respect to the number of

hidden units are other important issues that need to be investigated.

As stated before the constructive multi-hidden-layer FNNs are also considered
in this thesis, since they may provide better approximation and representation capa-
bilities to many complicated problems when compared to the OHL-FNNs. Several
algorithms have been developed in the literature, such as the CC, stack learning
algorithm [47], and adding-and-deleting algorithm [48].

The major limitations of CC were pointed out previously. The stack learning
algorithm begins with a minimal structure consisting of the input units and the
output units only, similar to the initial network that the CC starts from. The
algorithm then constructs a network by creating a new set of output units and
by converting the previous output units into new hidden units. The new output
layer has connections to both the original input units and all the established hidden
units. Clearly, this algorithm generates network that has similar structure to the
CC-based networks, and hence has the same limitations as the CC. In the adding-
and-deleting algorithm, the network training is divided into two phases: addition
phase and deletion phase. These two phases are controlled by evaluating the network
performance. The so-called backtracking technique is used to avoid the “limit off”
of the constructive learning. This algorithm may produce multilayered FNN but is

22

computationally very intensive due to its lengthy addition-and-deletion process and

the use of the BP-based training algorithm.

1.5 Overview of the thesis research

This thesis is mainly concerned with developing constructive learning algorithms
for FNNs that are applied in regression (chapters 2, 3, and 4), image compression
(chapter 3), and pattern recognition problems (chapters 4, and 3). It consists of the
following chapters where new constructive algorithms for the FNNs at different levels
of adaptation will be proposed and applied to many important practical problems.

Chapter 2 presents modifications developed for a constructive OHL-FNN through
structure level adaptation where new hidden units are added one at a time when
needed. These modifications attempt to improve the generalization performance
and to reduce the size of the constructed OHL-FNN.

In Chapter 3, a new strategy is introduced for constructing a multi-hidden-
layer FNN. This scheme is also developed using the structure level adaptation that
adds both new hidden units and new hidden layers one at a time when it is de-
termined to be needed. Using this strategy, a FNN may be constructed having as
many hidden layers and hidden units as required by the complexity of the problem
being considered.

In Chapter 4, a new OHL network is introduced. In this network, each hidden
unit uses a polynomial function for its activation function that is different from
other units. Here, both structure level adaptation and function level adaptation
are utilized in constructing the network. The function level adaptation ensures that
the growing network has different activation functions such that the network may be
able to capture the underlying function more efficiently. The polynomials considered
consist of a series of orthonormal polynomial functions. It is shown through extensive

simulations that the proposed networks constructed yield better performance when

23

compared to those networks with sigmoidal activation functions.

Chapter 3 is focused on the application of the constructive OHL-FNN modified
in Chapter 2 to image compression and facial expression recognition. First, compres-
sion of both still images and moving frames (video sequence shots) are performed
to test the generalization capability of the constructive network. The influence of
quantization effects as well as comparison with the baseline JPEG scheme, and noise
robustness issues are also investigated. Next, the constructive OHL-FNN is applied
to facial expression recognition problem where very promising results are obtained.

Future research topics for further investigation and conclusions are provided

in Chapter 6.

1.6 Conclusions

A formulation of the constructive FNN training was given. Several well-known
constructive algorithms were also reviewed. The DNC, the ASLA, the CC, and the
constructive OHL-FNN were all discussed. Their advantages and drawbacks were
also pointed out. At the same time, we have indicated our preliminary efforts in

addressing partially these drawbacks in the chapters that follow.

24

Chapter 2

New strategies for constructive
one-hidden-layer FNNs — error

scaling and input-side pruning

2.1 Introduction

Regression problem is a very important application area for neural networks (NNs).
Among a large number of NN architectures, the feedforward NN (FNN) structure is
one of the most widely used structures. Although OHL-FNNs have simple structures,
they possess interesting representational and learning capabilities. In this chapter,
we are interested particularly in incremental constructive training of OHL-FNNs.
In the incremental constructive training schemes for a OHL-FNN, input-side
training and output-side training may be separated in order to reduce the train-
ing time. With the output layer activation functions taken as linear, (a situation
that applies to regression applications), the output-side training can be achieved
by simply computing a pseudo-inverse in the least square (LS) sense [45]. This

will practically leave one with no possibilities for performance improvements. One

25

is then left with input-side training as a means of constructing more suitable net-
works that have improved generalization capabilities. The choice of a given objective
function also plays a key and important role in the input-side training. There are
several objective functions [45] that can be used for training the hidden units. Their
efficiency, however, is found to be problem-dependent. Among the objective func-
tions considered in [43], the correlation-based functions proposed by Fahlman and
Lebiere [42] appear to be quite general and work satisfactorily for most of the re-
gression problems. Furthermore, they have the lowest computational load among
the objective functions investigated in [43].

Generally, 2 multivariate model-free regression problem can be described as

follows. Suppose one is given P pairs of vectors

(djvxj) = (d{vd'.]zvdj\vrllfdvvrjw) (2-1)
j=12---,P

that are generated from unknown models

d{ = gi(xj)+€{r i=172r"'7ivs j=1~,2:”'3P (‘

!\J
(3]
~—

where the {d’}'s are called the multivariate “response” vectors and {x/}'s are called
the “independent variables” or the “carriers”, and W and V are dimensions of x
and d, respectively. The {g;}'s are unknown smooth non-parametric or model-free

functions from M-dimensional Euclidean space to the real line:
gi : RM’ — Rx 1= 17 27 Ty N. (?"3)

The {€/}'s are random variables (or noise) with zero mean E[e/] = 0, and are
independent of {x/}. Usually, {e/}'s are assumed to be independent and identically
distributed (4id). The goal of regression is to obtain estimators, g, gz, - - -, §v that
are functions of the data (d’,x?), j = 1,2,---, P, to best approximate the unknown

functions, g1, s, -, gy, and use these estimators to predict (generalize) a new d

26

given a new x:

-

di:gi(x)! i=1x27"'yN~ (2.4)

Suppose here that the regression problem has an M-dimensional input vector
and a one-dimensional output scalar (Vv = 1). The j-th input and the output
patterns are denoted by x/ = (3, 7}, 7}, - - -, 7)) and & (target), respectively, where
j=12,..P, and 1:6 =1 for all j as representing the bias. The constructive OHL
algorithm [43] may start from a small network, say a one hidden unit network,
adapted by a backpropagation type learning algorithm. At any given point during
the constructive training process, say there are n — 1 hidden units in the hidden
laver, and the problem then is to train the n-th hidden unit that is to be added to
the network. All the hidden units have identical sigmoidal activation function. The
network is depicted in Figure 2.1. A candidate that maximizes the correlation-based
objective function will be selected from a pool of candidates, and is then incorporated
into the network as an n-th hidden unit (for details refer to next section). The input

to the n-th hidden unit is given by
M

s = Ywel, j=12,---.P (2.5)
i=0
where w, ; is the weight from the i-th input to the n-th hidden unit, wng is the so-

called bias of the n-th hidden unit and its input is set to =j = 1. Before proceeding
to the output-side of this new hidden unit, one has to first train its input-side
weight(s). This is the so-called input-side training phase. Once the input-side
training is accomplished, the output of the hidden unit can then be expressed as
M _
fa(s) = fQwnezl), §=1,2,---,P (2.6)
=0
where f(-) is the sigmoidal activation function of the hidden unit defined as an
example according to f(z) = (1 + e~**)~!, where X is the slope parameter of the

sigmoid. The network output with n hidden units may now be expressed as follows:

n

v o= Yuflsl), i=12---,P 2.7)

k=0

27

where v, (k=1,2,---,n) are output-side weights of the k-th hidden unit, and vy is
the bias of the output unit with its input being fixed to fo = 1. The corresponding

output error is now given by

e = d-y (2.8)

-kafk(sz:)f j=172!"'rP'

k=0

Subsequently, the output-side training is performed by solving the following LS

problem given that the output layer is linear,

(2.9)

J output =

I\Dlt-—' Ml'—‘

I\DIO—'

{ 2": kak(si)} -

k=0

Following the output-side training, a new error signal e} is calculated from
(2.8) for the next cycle of input-side training associated with the (n + 1)-th hidden
unit and its corresponding output-side training.

The remainder of this chapter is organized as follows. Section 2.2 presents the
concepts of the error scaling that is introduced to improve the performance of the
constructive training procedure. In Section 2.3, two pruning strategies are proposed
to remove (delete), during the constructive training process, the input-side con-
nections that have “minimal” contributions to the input-side training. Since these
pruning techniques are used locally, the generalization performance of the resulting
networks may not be significantly improved, however networks with fewer connec-
tions will be constructed that should be more advantageous for implementation
purposes. In Section 2.4, convergence of the proposed constructive algorithm will
be discussed, and an optimal objective function for the input-side training will be

obtained that is different from all the other objective functions given in [45]. This

28

RS R
é../\\ n ;. Train all he

Train only the newly R - cutput weights
added input weights

Hidgen Layer

Figure 2.1: Structure of a constructive OHL-FNN.

objective function is theoretically expected to outperform the objective functions

investigated in [43]. Section 2.5 concludes this chapter.

2.2 Error scaling strategy for input-side training

In this section, the efficiency of the correlation-based objective function is investi-
gated. Without loss of any generality, a regression problem with only one output is
considered. The correlation-based objective function in this case is given as follows

[42]:

P . . -
Jinput = Z(dx—l—én—l)(fn(sr]z) ~ fa) (?'-10)
Jj=t
where
1 &
Baol = -F;ze;_l (2.11)

P
AR OWAL) (212)
i=t
with &, and f, denoting the mean values of the training error and the output of the
n-th hidden unit over the entire training samples, respectively. The above objective
function attempts to maximize the correlation between the unbiased training error
and the output of the new hidden unit. In other words, the output training error
is more likely to be reduced by as largest as possible when the new hidden unit is
added to the network. The derivative of Jinp,: with respect to the weight w,; is
calculated as (for details refer to Appendix A for a multi-output case)

aJ input
aw,,‘,-

Co Y (€ = Enr) frlsh)zl. (2.13)

J=1

where
P
= sgn z_: -1~ €n-1 fn(s'lu) f)) (2.14)

where, for simplicity, f; is treated as a constant in the above calculation, even though
fa is actually a function of the input-side weights. The explicit weight adjustment
rules are also given in detail in Appendix A for an output layer with multiple neurons.
Note that the above expressions may be obtained by simply deleting subscript “o”

from (A.3)-(A.6). From (2.10) and (2.13), the following observations can be stated:

O1. Maximization of the objective function (2.10) requires that the output of the
new hidden unit f,(s?) bear resemblance to the error signal €/, as close as

possible. The optimal situation may be expressed as
falsh) = f(s1) = Aeny (2.13)

for all the training patterns, where \ is a sufficiently large constant. Under
this condition, it can be shown that the addition of the n—th hidden unit will
make the network output error zero, which implies that a “perfect” training

may be achieved. However, in most regression problems this ideal situation

30

02.

03.

is impossible to achieve and therefore, one is then required to perform the
input-side training to approach the above ideal case. Refer to Section 2.4 for

further details on the convergence of a constructive training algorithm.

Since f(s?) is upper and lower bounded (saturated for large or small values
of s7) to the interval [0, 1] as a result of the nature of the sigmoidal activation
function, (2.15) will not be satisfied if certain errors el _, for some training
samples reside outside the ranges of f(-). In this case, the activation func-
tion will be forced into its saturation regions, in order to achieve as much
“resemblance” as possible to the corresponding error signal. The derivative
of the activation function around the saturation region will be zero, resulting
in no contribution to (2.10). Equivalently, the training samples that have re-
sulted this undesirable situation will consequently have no contribution to the

input-side training.

Based on the above observations one can envisage the following simple remedy:
why not try tc position the undesirable error signal samples into the opera-
tional range of the activation functions (where they have non-zero derivatives)
during the input-side training? This is the motivation behind the proposed

“error scaling technique” that will be developed below.

2.2.1 Error scaling

During the input-side training phase, if the error signal e, varies within the range

[€a—1,min; €n—1,maz] that is beyond the active range {fmin, fmaz] of the activation func-

tion of a hidden unit, then the particular hidden unit can not follow these errors that

are outside its active range. Consequently, the error signal range [en—1.min, €n—1,maz)

should ideally be mapped into the active range of the hidden unit [fmin: frmaz]: bY

invoking a linear coordinate transformation, as follows:

fmaz = Cien—1,maz +C2 (2.16)

31

fmin = Clen-l.min + C2- (2.17)

Note that only linear transformations can be utilized here if one wants to preserve
the waveform of the error signal. Solving the above expressions for the parameters

Ci and G, yields

C1 = fma: - fmin i (2.18)

€n—1,mez — €n-1,min ‘

€n— in — €En- i
C'_)_ = n l,maa:fmm n l.mxnfmaz' (219)

€n—1,maz — €n-1,min

Therefore, the error signal €/ _, is linearly transformed into e{,_lvnw according to

CLE':;-L*'Cz C <1
e

n—

€n—Lnew = (2.20)

L= én—-l + lmc:;lm:n Cl 2 1

The error signal €], in (2.10) will now be replaced by €,_, ,.,, which is calculated
from the above equation. If the activation function of the hidden units is a log-
sigmoidal function, then its active range, for example, may be set to [0.1, 0.9]. It
is clear that this active range is confined within the upper and lower bounds of
the activation function. By narrowing the bounds the active range can yield more
effective training. During simulations for this chapter to determine the active range
for a log-sigmoidal function, it has been found that the active range [0.1, 0.9] yielded
good training and generalization results. It is not difficult to determine from the
above equation that if en_1 maz and €q—1,min are chosen such that the mean value of

the error signal &,_ iS (€n—1,maz + €n—1,min); ODE gELS

+ N
én_l'new . fma: 5 fmxn (2.21)

regardless of C;. This is a point where the activation function reaches its maxi-
mum first-order derivative. The replacement of €/, by e,’;-l,,,m is now expected to

improve the efficiency of the input-side training.

What is now required to be defined are the bounds for the error signal e_;
Since the correlation between f,(s.) and el _, is statistically defined, the bounds
for €/_, have to also be selected in a statistical sense rather than a simple fixed
values. Consequently, following the above reasoning, we take the following values as

the bounds of €/ _,, i.e.,

€n—lmaz = e-n-1+30'en-p (222)

= &yoy = 30e,_, (2.23)

€n—1,min

where o, _, is the standard deviation of e,
The well-known “quickprop” algorithm is used to maximize the correlation
criterion (2.10) [42, 45]. This proposed technique will be applied to numerous other

examples to confirm and demonstrate its effectiveness.

2.2.2 Simulation results

In this subsection, several examples are worked out to some details to demonstrate
the effectiveness of the proposed error scaling technique. The examples that follow
are regression functions that were used in many previous work [45] (and references
therein). In all the following examples the performance of a network is measured by

the fraction of variance unexplained (FVU) [45] which is defined as

FVU = = (
> (9() - 9)°

j=1

1 & .
- = e I,J
g 3 ,-§=1: g(z')

!\3
[{&)
=
p

where g(-) is the function to be implemented by the FNN, §(-) is an estimate of g(-)
realized by the network, and 7 is the mean value of g(-). The FVU is equivalently

a ratio of the error variance to the variance of the function being analyzed by the

33

network. Generally, the larger the variance of the function, the more difficult it would
be to do the regression analysis. Therefore, the FVU may be viewed as a measure
normalized by the “complexity” of the function. Note that the FVU is proportional
to the mean square error (MSE). Furthermore, the function under study is likely to
be contaminated by an additive noise e. In this case the signal-to-noise ratio (SNR)
is defined by

P

> (9(eh) =

SNR = 10 lOgm %————— ('.

NCETY

i=t

[
[f]
[4]]

1 &
E = =Y ¢
P
where € is the mean value of the additive noise, which is usually assumed to be zero.

Example : Let us consider the following five (3) regression functions that were

studied in [45]:

(a) Complicated interaction function (CIF)

g(z1,72) = 1.9 (135 + €™ e~ sin(13(z, - 0.6)°) sin(7z2)) . (2.26)

(b) Additive function (AF)

g(z1,z2) = 1.3336 (1.5(1 — 1) + €** " sin(3n(z; - 0.6)?)
+€%52703) gin (47 (25 - 0.9)%)) (2.27)

(c) Harmonic function (HF)

g(z1,z0) = 42.639 (0.1+ (z; —0.5)(0.05 + (z; — 0.5)* (2.28)
—10(z; — 0.5)%(z2 — 0.5)* + 5(z, — 0.5)%))

34

(d) Radial function (RF)

g(z1,12) = 24234 ((z, —0.3)%+(z2 - 0.3) (2.29)
X (O.T' (z; — 0.5)*> — (zo — 0. a)g)

(e) Simple interaction function (SIF)

g(z1, z2) = 10.391 ((x; — 0.4)(z2 — 0.6) +0.36) (2.30)

The surfaces of these functions are shown in Figures 2.2(a)-2.6(a).

For each function two hundred and twenty-five (223) uniformly distributed
random points were generated from an interval [0,1] for each input dimension for
network training. Ten thousands (10000) uniformly sampled points from the same
interval without additive noise were used to test the generalization performance of
a trained network with different number of hidden units. Forty (40) independent
runs were performed for an ensemble-averaged evaluation for two cases where SNRs
are 10 [dB| and 0 [dB], respectively. Mean FVUs values for the training and the
generalization performance of networks trained with and without error scaling for
the above regression functions are summarized in Table 2.1. Selected generalized
surfaces of the above functions by the networks constructed using samples with 10
[dB] SNR are also provided for comparison in Figures 2.2(b),(c).(d) - 2.6(b).(c).(d).

Comparisons between the training and the generalization performances of the
previous (without error scaling) and the new (with error scaling) algorithms for all
the five functions are depicted in Figures 2.7-2.11, where the SNR is 0 {[dB]. From

Table 2.1 and Figures 2.7-2.11, the following comments are in order:

(1) The proposed training technique provides improved generalization performance
compared to the standard constructive FNNs, especially for large noise sce-

narios.

35

(2) The new error scaling technique demonstrates a capability for avoiding over-
training in all the regression functions considered when compared with the
previous technique. Specifically, even though the proposed technique yields
larger training FVUs than the previous technique as the network grows, it

generates improved generalization FVUs compared to previous methods.

(3) In some cases the new technique can not completely prevent over-training as
the generalization FVUs also increase slightly as more hidden units are added

to the net.

36

Table 2.1: Mean FVUs values of the training and the generalization performance of
networks constructed with (“new”) and without (“previous”) error scaling technique
as a function of the number of hidden units.

Number of hidden units

Training Generalization

Fun. | SNR [dB] | Approach | 2 5 10 20 2 5 10 20
CIF 10 previous | 0.659 | 0.429 | 0.181 | 0.089 | 0.685 | 0.452 | 0.214 | 0.108
new 0.661 | 0.409 | 0.164 | 0.095 | 0.686 | 0.433 | 0.187 | 0.088
0 previous | 0.778 | 0.639 | 0.301 | 0.404 | 0.646 | 0.548 | 0.362 | 0.235
new 0.779 | 0.643 | 0.501 | 0.454 | 0.646 | 0.512 | 0.290 | 0.200
AF 10 previous | 0.697 | 0.207 | 0.126 | 0.092 | 0.723 | 0.171 | 0.094 | 0.048
new 0.634 | 0.182 | 0.125 | 0.095 | 0.644 | 0.135 | 0.079 | 0.040
0 previous | 0.791 | 0.500 | 0.406 | 0.350 | 0.699 | 0.270 | 0.225 | 0.313
new 0.797 | 0.494 | 0.426 | 0.406 | 0.665 | 0.184 | 0.155 | 0.190
HF 10 previous | 0.770 | 0.557 | 0.367 | 0.171 | 0.888 | 0.678 | 0.499 | 0.290
new 0.777 | 0.551 | 0.336 | 0.157 | 0.894 | 0.657 | 0.421 | 0.219
0 previous | 0.882 | 0.712 | 0.573 | 0.407 | 0.898 | 0.783 | 0.565 | 0.449
new 0.885 | 0.729 | 0.565 | 0.461 | 0.898 | 0.838 | 0.493 | 0.332
RF 10 previous | 0.625 | 0.240 | 0.125 | 0.072 | 0.691 | 0.243 | 0.098 | 0.036
new 0.627 | 0.200 | 0.110 | 0.073 | 0.684 | 0.191 | 0.065 | 0.024
0 previous | 0.658 | 0.493 | 0.417 | 0.356 | 0.632 | 0.267 | 0.258 | 0.405
new 0.658 | 0.498 | 0.441 | 0.415 | 0.622 | 0.223 | 0.185 | 0.264
SIF 10 previous | 0.275 | 0.136 | 0.098 | 0.082 | 0.281 | 0.101 | 0.054 | 0.032
new 0.275 | 0.132 | 0.097 | 0.085 | 0.276 | 0.085 | 0.047 | 0.022
0 previous | 0.634 | 0.454 | 0.400 | 0.361 | 0.357 | 0.182 | 0.164 | 0.206
new 0.628 | 0.433 | 0.419 | 0.406 | 0.344 | 0.174 | 0.123 | 0.1534

0N
1IN L)
AR

(a) CIF (original) (b) Generalized CIF with 1 hidden
unit (HU)

Nyt
")f DORn
O
(AR
sty
O o
5

N
A
"' ()
“

(c) Generalized CIF with 10 HUs (d) Generalized CIF with 20 HUs

Figure 2.2: The original and the generalized CIF function.

38

Oc s
QRN &
R Ny
OAX) Ny
PN iy
WAL gt

XN
‘1"_“:“\\:

(a) AF (original) (b) Generalized AF with 1 hidden
units (HU)

(c) Generalized AF with 10 HUs (d) Generalized AF with 20 HUs

Figure 2.3: The original and the generalized AF function.

39

(a) HF (original) (b) Generalized HF with 1 hidden
unite (HU)

(c) Generalized HF with 10 HUs (d) Generalized HF with 20 HUs

Figure 2.4: The original and the generalized HF function.

40

LT
\\\ﬂ‘\‘s“s" XA
N ‘\\\‘\\“\ Wy
BT

\)
RN

OO
RO
\t\.i'lll‘l‘lr///‘////lf d
DU

(c) Generalized RF with 10 HUs

(b) Generalized RF with 1 hidden unit
(HU)

(d) Generalized RF with 20 HUs

Figure 2.5: The original and the generalized RF function.

41

(a) SIF (original) (b) Generalized SIF with 1 hidden
unit (HU)

(c) Generalized SIF with 10 HUs (d) Generalized SIF with 20 HUs

Figure 2.6: The original and the generalized SIF function.

42

1

with errcr scaling
withouz errar scaling

with ervcr scalizng

------ wiIlcut ertor scaling

-
S

-
P
¥

-
-
.
5

P Lraining)
s

5

H % . P . .

V) {genevalizat ion)

-
s
-—

. 3 [I3 0 i

3
aumber of hiddern units

(a) FVUs for the training (b) FVUs for the generalization

e
&
]
h
u

Figure 2.7: Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the CIF regression problem (SNR=0 [dB].
40 runs).

1 * r—p——
)
. + 3 T
w€iZh errsr scaling i with errar scaling
------ wizhouZz errar scal:ing ,T withCul esrer scaling
e
- 3
-d e
2 i
-3 <
z |
H Sew
2 3 |
f -
S 3
3
EI » T -
gr »* .--3
L T -
w o TTEITTT B R QSRR
........... T 4
\
.. 3 !
e s . . . 1 2 e . 1) e 3 . . . W 3 Y 1 N '
aunber 3f hidden units nunber cf hidden units

(a) FVUs for the training (b) FVUs for the generalization

Figure 2.8: Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the AF regression problem (SNR=0 [dB],
40 runs).

43

-
"
-
4

v

. with error scaling } with erzcr scaling
~=-=-- -4izhouz errTr scaling - -====-- wiZhouz €Irar SCAling
.u (-4
s Sa
2 ot
H L
-
:-.r- :; -
- N l
= 3
3
2

PVu
5

E: ‘,—
L
) nuzber 3¢ hidden \.x'..:s runter of hidden unmits
(a) FVUs for the training (b) FVUs for the generalization

Figure 2.9: Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the HF regression problem (SNR=0 (dBj.
40 runs).

: 3 pp—
A
i
. s , \
o 1 with errcr scaling K i ———— wilh erTcr scaling
------ wiTneut ersvsc scaling . .- -=---- wilhcu: errsr scaling
LB -
EH
-
3
2u.4 >
H 3
< -
- W
N e
2 g i
.19 g’ t‘f'
3 i
5 T
.8 - T
|
LR
s,]
I
I
[X1) .3
L] 3 [*3 1 3 is w s 3 3 . . . s 32 113 i i n
sunber 22 kilden un:ils auzber of hidden units

(a) FVUs for the training (b) FVUs for the generalization

Figure 2.10: Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the RF regression problem (SNR=0 [dB],
40 runs).

44

wizk ervar scaling with errar scaling
...... wiLRout errIr scaling [X s +-=e=- withsut error scaling

—ﬂ((f‘

.
2.
¥

FVI (training)

FVit {genutalization)
-
%
-

ounter 2 Ridden units

(a) FVUs for the training (b) FVUs for the generalization

Figure 2.11: Comparisons between the mean FVUs of the training and the general-
ization with and without error scaling for the SIF regression problem (SNR=0 [dB].
40 runs).

2.3 Input-side pruning strategies

In the input-side training, one can have one or a pool of candidates to train a new
hidden unit. In the latter case, the neuron that results in the maximum objective
function will be selected as the best candidate. This candidate is incorporated into
the network and its input-side weights are frozen in the subsequent training process
that follows. However, certain input-side weights may contribute little, if any, to
the objective function or indirectly to the reduction of the training error. These
connections should first be detected and then removed through a pruning tech-
nique. Pruning these connections is expected to produce a smaller network without
compromising the performance of the network. Note that the pruning operation is
carried out “locally”, and therefore the generalization performance of the final net-
work will not be improved significantly, since the general pruning-and-backfitting

performed in standard fixed size network pruning is not implemented here. In this

thesis we propose two types of sensitivity functions for the purpose of formalizing

the input-side weight pruning process.

2.3.1 Sensitivity based on training error (Method A)

Let us reproduce here the squared output error criterion given in (2.9) for a single

output network

P 2
2_; (vl - &) (2.31)

lulv—t

output =

If Jousput is locally minimized by incorporating the n-th hidden unit, the error surface
with respect to the input-side weight(s) denoted by Wy = (wno, wn,1,- -, wa,r) Of
the new hidden unit will appear to be bowl-shaped in a very small vicinity of that
local minimum. This implies that the second-order derivatives of Joyspy: With respect
to each weight of that unit will be positive at the local minimum. If this is not the
case for a given weight, that weight would then make no contribution to reducing
the training error. The first derivative of Jouspue With respect to an input-side weight

Wy, of the n-th hidden unit is calculated as follows
P - . . .
L L SETCAC) (2.32)

The second-order derivative (sensitivity) function may now be evaluated according

to

Sr.:i (2.33)
. _ P : . . .
= up 2 (@) (S0 + v (@) -)" (1)

The above criterion (2.33) for pruning a weight was used for pruning BP-based
trained NNs in {25]. But here it is used for pruning the input-side weights only during

the input-side training phase. Because the input-side training is not performed under

46

the above squared output error criterion, this sensitivity is not a direct criterion for
the input-side pruning.

When the output-side training is completed, the second-order derivative or
sensitivity function (2.33) with respect to each weight of the new hidden unit is
calculated. The weights that result in negative sensitivity are set to zero or pruned.
Subsequently, the output of the new hidden unit is recalculated and the output-side
training is performed again. Clearly, pruning the weights that make no contribution
in reducing the training error may be achieved only once, however output-side train-
ing has to be performed twice: once before and the other time after the pruning.
Furthermore, weights that have relatively very “small” second-order derivatives, for
example lower than some prespecified threshold (we denote it by pruning level), can

also be removed without significantly affecting the performance of the network.

2.3.2 Sensitivity based on correlation (Method B)

Suppose that the best candidate for the n-th hidden unit to be added to the network

results in an objective function Jmer,. Then, sensitivity of each weight may be

defined as
SnB,j = Jmaz,n - Jinput(wn,i = 0)7 1= 1727 Ty -‘[7 (234)

where Jinpue(wn, = 0) is the value of the objective function when wy; is set to zero
while other connections are unchanged. Note that the bias is usually not pruned.
The above sensitivity function measures the contribution of each connection to the
objective function. The largest value for the n-th hidden unit sensitivity is denoted
by Spe=. If §2; < 0, and/or is very small compared to S7*%, say 3% (pruning level:
= (S — SB.)/Sme=) of it, then the weight wy; is removed. After the pruning is
performed, the output of the hidden unit f(s?) is re-evaluated and the output-side
training is performed.

It should be noted that it is very difficult to compare the above two pruning

47

methods analytically. However intuitively, one may say that Method B is likely to
provide better performance than Method A, since the sensitivity criterion used in
Method B is directly related to the cost function Jinp: used for input-side weight

training.

2.3.3 Simulation results

To confirm the validity of the pruning methods A and B, we present in this section
some simulation results. Intuitively, the larger the dimension of the input vector, the
more effective the above pruning techniques would be. In all the following examples,
ten (10) independent runs are performed to gauge an average evaluation. The SNR

in all examples is set to 10 [dB].

Example 1: The first example is the 2-dimensional function CIF [43, 50] used
in the previous section. Again, two hundred and twenty-five (223) uniformly dis-
tributed random points were generated from an interval [0,1] for network training.
Ten thousands (10000) uniformly sampled points from the same interval without
additive noise were used to test the generalization performance of the trained net-
work. The pruning level is set to 5%. Figure 2.12 shows the generalization errors
with and without pruning method A (error scaling is performed for both cases), and
the cumulative number of weights pruned using method A. Figure 2.13 depicts the

corresponding results using the pruning method B.

Example 2: The second example is a simple 3-dimensional analytical function

(SAF) [52] given by

1
9(z1: 22, 23) = |+ e-c-i~(@-05)+3sin(eza)

(2.35)

One thousand (1000) random samples with additive noise were generated for network

training, and five thousands (5000) random samples without additive noise were

48

generated for verifying the network generalization. The pruning level in this case
is set to 1%. Figure 2.14 shows the generalization errors with and without pruning
method A (error scaling is performed for both cases), and the cumulative number
of weights pruned using method A. Similar results using the pruning method B are
shown in Figure 2.15. The pruning level is again set to 1%.

From Figures 2.12 and 2.13, one may observe that pruning method A did not
remove any weight while pruning method B pruned on average only one and half
weights from a network that has 20 hidden units. This shows that the two proposed
pruning methods do not indicate a significant advantage for problems having a lower
order input dimension.

Figures 2.14 and 2.15 demonstrate that both methods have pruned some
weights, but with method B showing more effectiveness than method A, due to the
fact that more weights could be pruned in method B than method A, even though
both methods vield practically the same FVUs for both training and generalization

processes.

Example 3: The third example is a 3-dimensional function (HAS) [33] that is given
by

g(z1, T2, T3, T4, T5) = 0.0647(12 + 3z, — 3.522 + 7.213) (2.36)

X (14 cosdwzy)(l + 0.8sin37zs).

Three thousands (3000) random samples with additive noise were generated for
network training, and ten thousands (10000) random samples without additive noise
were generated for verifying the network generalization capabilities. The pruning
level in this case is set to 0.2%. Figures 2.16 and 2.17 illustrate the results achieved
using methods A and B, respectively.

For a quantitative comparison, the results obtained using method B for the

above three examples are summarized in Table 2.2.

49

Table 2.2: Percentage (n) of the number of connections pruned by the proposed
method B with respect to that of the full input-side connections (10 Runs, FVU :
generalization error without pruning, F'VU, : generalization error with pruning).

Number of hidden units

Fun. | Pruning 9 10 15

level (%) | FVU | FVU, | n (%) | FVU | FVU, | n (%) | FVU | FVU, | n (%)
CIF 3 0.377 | 0.377 | 0.00 | 0.218 | 0.213 | 3.50 | 0.158 | 0.161 | 4.33
SAF L 0.068 | 0.091 | 25.3 | 0.022 | 0.024 | 19.2 | 0.018 | 0.018 | 15.1
HAS 0.2 0.671 | 0.660 | 22.8 | 0.208 | 0.216 | 27.2 | 0.195 | 0.202 | 20.0

To further confirm and demonstrate the effectiveness of the proposed two prun-

ing methods, the constructive OHL network is applied to image compression prob-

lem in Chapter 5 where the networks are pruned using the ideas developed in this

chapter.

e [
y
a7 GJI-
L1 11
Ea: iu- -
1
2a %u- \
2 .
: :
CZ.L 2=
| i
3'5 - l'i
3 2 4 L] [i3 it " M 1. = L] 1 13 [] L] "° AL S e A | . x
rnr of "EXS0N wrets e of haiter srvis
(a) FVUs for the training (b) FVUs for the generalization

iﬂ'GGOOﬁOOGQGGOGOOQJOO{
3 H

'3
.
%

) Fl « 0 R T
(c) Cumulative number of weights
pruned

Figure 2.12: (a) Training and (b) generalization errors for CIF with and without
pruning method A, and (c) the cumulative number of weights pruned, versus the
number of hidden units; solid line: with and dashed line: without pruning method
Al

s ar- \
e \
L Ld
E:“ \ 1 gu.-
(] 4 -
3 i,
3t 37 J
83 ¢
QapF H
sk .ooe
5
a3y) . t [) CEEC) [= % 3 s] .) [0} [. w =
Ratros of Pcian urets AATOS? of Pudiem urets
(a) FVU for the training (b) FVUs for the generalization

r.[. . I
2> a e
% |- °
) o :
‘:nl— e ~E
g ! 3 |
! I
= -1 +
Q
as ° .
o b
5 |
3 2 . [] :"“’t':": " Al § s o
(c) Cumulative number of weights
pruned

Figure 2.13: (2) Training and (b) generalization errors for CIF with and without
pruning method B, and (c) the cumulative number of weights pruned, versus the
number of hidden units; solid line: with and dashed line: without pruning method
B.

52

J
|
4
|
-

[1 L3 s L} ¢ "2 . " M] E]) s 4 L] [] e k3 " " .

(a) FVUs for the training (b) FVUs for the generalization

] T . 0 ' " 3 s . . =
errOae of Nalen wrais

(¢) Cumulative number of weights
pruned

Figure 2.14: (a) Training and (b) generalization errors for SAF with and without
pruning method A, and (c) the cumulative number of weights pruned. versus the
number of hidden units: solid line denotes with and dashed line denotes without
pruning method A.

"

(a) FVUs for the training

. 19 " " " " »

(b) FVUs for the generalization

-
(c) Cumulative number of weights
pruned

Figure 2.15: (a) Training and (b) generalization errors for SAF with and without
pruning method B, and (c) the cumulative number of weights pruned, versus the
number of hidden units; solid line: with and dashed line: without pruning method

B.

o4

] 1
tl .l i'l
By
§'+ TRy
el
P
| T
o

3 . . . Bl 23 [y S "]
ey of Vidten wmite

(a) FVUs for the training (b) FVUs for the generalization

$—

5 %

19 of waighie :0-“
5§

e,
-
$
—F—

R -

—

3

-
-

it 12 w i "
et of Misdes wits

(c) Cumulative number of weights
pruned

Figure 2.16: (a) Training and (b) generalization errors for HAS with and without
pruning method A, and (c) the cumulative number of weights pruned, versus the

number of hidden units; solid line denotes with and dashed line denotes without
pruning method A.

—
»
v

- - -

V™V igeseisitietient

—'!——— R ek AR Rt R S S S

s 1 . . . 1 33 s w i £ 3 . . 0 3 13 e s i .
wmses 3 Mddes wite wanber of Midtve wits

(a) FVUs for the training (b) FVUs for the generalization

T,

Basias of weighte prmaet

N i
* : . . [} » 2 7Y s i 2
omtar 3t Aidden \mits

(c) Cumulative number of weights
pruned

Figure 2.17: (a) Training and (b) generalization errors for HAS with and without
pruning method B, and (c) the cumulative number of weights pruned, versus the
number of hidden units; solid line denotes with and dashed line denotes without
pruning method B.

2.4 Convergence properties for special class of con-
structive algorithms

For the constructive OHL-FNNs, the convergence of the algorithm with respect to
the number of hidden units is very important and needs carefyl investigation.

First, we investigate the ideal case where a “perfect” input-side training is as-
sumed to determine the convergence of the constructive training algorithm with and
without error scaling operations. The ideal case can vield the best convergence rate
that the constructive training algorithm can theoretically approach. Furthermore,
through this analysis one obtains a better understanding as to the implications for
a “perfect” or ideal input-side training.

Secondly, the convergence properties of the nominal case for the constructive
algorithm where a “perfect” input-side training is not achievable will be considered.
Formal analysis of the input-side training is not tractable due to the nonlinearities
of the activation functions of the hidden units. Fortunately, due to the linearity of
the output node of the network, one may formally analyze the output-side training
to determine how the input-side training affects the output-side training, and fur-
ther to determine how the output error changes with the addition of new hidden
units as the constructive learning proceeds. Consequently, a sufficient condition is
developed in this section for the input-side training to guarantee the convergence
of the constructive algorithm. This condition also provides us with a formal tool to
better understand the previously designed objective functions in [43]. Furthermore,
guidelines for the design of the objective function to be utilized for the input-side

training may also be obtained.

(94
~!

2.4.1 Convergence properties for an ideal case

After the initial network with, say one or more number of hidden units, has been
constructed using a BP-based or some second-order training algorithm, the output

error €], _, for the n — 1 hidden unit(s) can be calculated by

a1 = & -y (2.37)
n-1 R
= d]—zkak(s-ll:)! j:]-v?y"':P'
k=0

If one attempts to train a new (namely the n-th) hidden unit added to the network
where the input-side training is perfect or ideal, i.e., (2.13) is completely satisfied,
then for the output-side training one can set the output-side weight of the new
hidden unit v, as

% (2.38)

vn =

while leaving other existing output-side weights unchanged. Therefore, the output

error el will now become

%
I
%
|

s

(2.39)

for all j, implying that the constructive OHL network requires to add only one hidden
unit to the initial network in order to achieve zero output error. However since (2.15)
can not be satisfied in general, therefore the above ideal situation is highly unlikely

to occur. Below we provide some further explanations for this observation.

If (2.15) holds, then we would have

1 1 1 -
Wn Ty + WnaZy+ -+ Wn My +Wag = fH(Nel_))
Wn1T] + Wa,2T) + -+ -+ Wn yfTy + wno = f7'(\ey) (2.40)
P P, T P Py
Wn 1Ty +Wn2Zy + - -+ WaMTyy+UWng = f l('\‘3n-1)

where f~!(-) is the inverse of f(-) which is generally a monotonic function. The above
set of P simultaneous equations have M + 1 unknown variables wny, ..., wp 3. If
P = M+1 and the related matrix rank conditions hold, then (2.15) will be satisfied,
implying that the ideal case is feasible. However, in most regression problems P is
much larger than M + 1, and hence only an LS solution may be computed using the
above set of simultaneous equations.

When the output error is scaled according to (2.20), for C; < 1 we may write

e = &~y —Aug— v fo(s) (2.41)
= e',’;,l - AU{) - vn,\(CLe‘,’;_l + Cg)

= (1- Uncl’\)e;];—l - (Avg + an2’\)'

where Avg denotes the change in the bias of the output node. The other set of
output-side weights v;, vg,---,v,_; are left unchanged. If one sets

1

A ,
B = o o (2.42)
C
Ay = - (2.43)
the error signal e} will be zero for all j. For C; > 1, we have
e = & -y~ Ay - v.falsl) .44
= € — At~ v {erjl—l —€p-1+ fm‘z‘)ﬂ}

= (1- Un'\)ei—L - {Avo = UnA&p_ + vn/*fmu -2*- fmi"} .

39

Therefore, by setting

and

] + frmi
AUD — en_l - fma:z 5 fmzn

Vg =
(2.45)

the output error is forced to zero for all j. Consequently, using the error scaling
technique, if (2.13) holds, perfect training (i.e., zero output error) is also possible by
properly selecting the bias of the output node and the output-side weights of only
the new hidden unit that is added to the initial network.

In practice, as mentioned above, (2.15) is only an ideal case. One is then
required to search and obtain an approach by which the output of the new hidden
unit approaches as closely as possible to (2.15). This goal is basically equivalent to
designing a criterion for the development of the input-side training. The correlation-
based criterion (2.10) introduced by Fahlman and Lebiere [42] may be viewed and

considered as one such design.

2.4.2 Convergence properties of an improved constructive

algorithm

In [45], a new objective function or criterion for input-side training was derived as:

P \?
(Ze, -Lfn(srjx))
J= (2.46)

P

> (falsh)?

=l

It was concluded that this function compared to the other ob jective functions used
for input-side training of a OHL-FNN results in somewhat better performance in
solving some regression problems [45]. Note that the above cost function was de-
rived under the assumption that the output weights of the already-added hidden

units do not change during the output-side training. We have found that in all the

60

experiments we conducted this assumption is not valid. When output-side training
is performed it causes tangible changes to all the output-side weights of the existing
n — 1 hidden units. Therefore, from both theoretical and practical points of view
it is interesting to investigate what is the optimum ob jective function for input-side
training, and under what condition(s) the proposed algorithm will converge? This
subsection is dedicated to address these questions.

Suppose the output weights of the hidden units are denoted by Voo =
(v, 1,02, -+, vn-1)T before the n-th new hidden unit is added to the network. The
change in V,_; as a result of the output-side training after the n-th new hidden
unit is added is denoted by AV,_;. The summed squared error of the output after

the addition of the n-th hidden unit is now given by

P
SSE, =) (& ~yl)?
Jj=i
P 2
= Y Ad ~ (VI + AV DB ~ wafuls))
Jj=l
4
= Y (¢ -ulg)’ (247)
j=l
where
U, = (Av:-lr vn)Tr (248)
. , . . \T
EL = (fO:fl(S{)r"'7fn—l(s{t—1)rfn(3¥;)) ' (249)
and note that fy = 1. After some algebraic manipulations, equation (2.47) may be
written as
SSE, = SSE,.,-2UIQ,+UIR,U, (2.50)
where
P - .
Q. = Z dx-IQs (2.31)
j=1
P . .
R, = Y fi(f). (2.52)
1=l

61

Minimization of the above SSE, leads to the following LS solution

U, = R;IQn (

(3]
o
(9%
[l

and the minimum value is given by
SSEF = SSE,.,-QIR;'Q.. (2.54)

Obviously, maximizing the 2nd term in the RHS of the above equation will maxi-
mize the convergence in minimizing the SSE (or MSE). Clearly, this gives us a very
important condition that would guarantee the convergence of our constructive algo-
rithm, namely provided that the input-side training for each hidden unit makes the
2nd term in the RHS of (2.54) positive, then the network error will be decreasing
monotonically as the training progresses. It should also be noted that the objective
function must be designed in such a way that the above term is positive and pos-
sibly maximized. Since the 2nd term is highly nonlinear, and the many previously
proposed objective functions in [45] are related to it in rather complicated ways, one
is generally resorted to a large number of simulations to determine the most suitable
objective function that works best for a given problem. This fact emphasizes the
difficulties one has to deal with as far as the input-side training is concerned.
Direct maximization of the 2nd term appears to be the most effective way to
achieve the fastest convergence. Therefore, the optimum objective function may be

given by

Jinput,opc = QER;IQn (255)

which is different from the objective function J derived in [45]. Note that the above
objective function is of a theoretical interest, as it will be difficult to implement it in
actual input-side training due to the required matrix inversion R!. Also, note that
the correlation between the output error and the output of the new hidden unit as

indicated by (2.10) is included in Jinput,ope, and maximization of this correlation will

62

contribute to making Jinpytqpe positive. If this condition can be ensured each time a
new hidden unit is trained, the convergence of our proposed constructive algorithm

will then be guaranteed.

By letting
Q= [Q7_,.Qul. (2.36)
@ = ge"_lfn(sf;), (25)
R, = {R”‘“‘ r""], (2.38)
T,
Ty = Xp:fn(e, (2.59)

(fn(sf)’ (2.60)

S
il
WiMe

and assuming that r,_; = 0 (implying that the output of the new hidden unit is not
correlated with the outputs of all the previous hidden units, although this is usually

not the case in most network training), we obtain
SSEF = SSEn_1 — QR Qnot — Q2/r (2.61)

It now follows that minimization of SSE, yields the objective function J derived
in [45] (the 3rd term in the RHS of (2.61)). Given that the assumptions stated
earlier are not valid during the constructive learning process, the objective function
J is therefore only “suboptimal”. In other words, what is derived is an optimal
objective function that does include the objective function derived in [45] as its
special case. Implementing or developing a network structure that would realize our

derived objective function requires further research.

63

2.5 Conclusions

In this chapter, a new technique is proposed to scale the error signal during the
constructive learning process to improve the input-side training efficiency and to
obtain better generalization performance. Two pruning methods for removing the
input-side redundant connections have also been proposed. The result would be
a smaller network without degrading or compromising its performance. Finally,
convergence of the proposed constructive algorithm has also been discussed and an

optimum objective function for input-side training was subsequently derived.

64

Chapter 3

A new strategy for constructing

multi-hidden-layer FNNs

3.1 Introduction

It was stated in previous chapters that one-hidden-layer (OHL) network can approxi-
mate any continuous function to any desired accuracy as long as enough hidden units
are included in the hidden layer [34]. Motivated by this result the developments in
the literature have been focused on constructive OHL-FNNs. However. the result in
[34] does not necessarily imply that a OHL network architecture is the most efficient
structure for representing a given input-output map. Networks with more than one
hidden layer usually perform better than the OHL networks in many applications.
Constructing and training multi-hidden-layer networks is generally more dif-
ficult than those of OHL networks since one has to develop a strategy by which
the depth of the network in terms of the number of layers is determined. Cascade-
Correlation (CC) constructs a multi-hidden-layer FNN, but the connections in the
resulting network are not regular. As described in Chapter 1 there are many limita-
tions with CC. Other algorithms, such as the stack learning algorithm by Fang and
Lacher [47] constructs similar connections as in CC, and the adding-and-deleting

65

algorithm by Nabhan and Zomaya [48] which is based on an exhaustive search tech-
nique a:lso produce multi-hidden-layer FNNs that are expected to work better than
the OHL-FNNs. However, the network connections may be irregular and the train-
ing process may also require a long time to converge.

In this chapter, a new strategy for constructing a multi-hidden-layer FNN
with regular connections is proposed by extending the strategy that was developed
in constructive OHL-FNNs [45]. The new constructive algorithm has the following

features and advantages:

(1) As with other OHL constructive algorithms, the number of hidden units in
a given hidden layer is automatically determined by the algorithm. In addi-
tion the number of hidden layers are also determined automatically by the

algorithm.

(2) The constructed multi-hidden-layer network has regular connections. The fan-
in problem with CC and the stack learning algorithm has been eliminated.

In other words, the new constructive network scales up appropriately.

(3) The algorithm adds hidden units and hidden layers one at a time, when and
if they are needed. The input-side weights for all the hidden units in the
installed hidden layer are fixed (input weights are frozen), however, the input-
side weights for a new hidden unit that is being added to the network are
updated during the input-side training. Generally, a constructive OHL may
need to grow a large number of hidden units or even fail to represent a map
that actually requires more than a single hidden layer to handle the corre-
sponding complexity. Therefore, the proposed algorithm that grows its layers
and hidden units automatically depending on the complexity of the problem
being considered will converge very fast and is computationally more efficient

as compared to the constructive OHL networks.

66

(4) Incentives are also introduced in the proposed algorithm to control and mon-
itor the layer creation process such that a network with fewer layers are con-
structed. This will encourage the algorithm to solve problems using small size

networks, reducing the costs of network training and implementation.

The outline of this chapter is as follows. Section 3.2 presents the constructive
multi-hidden-layer strategy. Simulation results are given in Section 3.3. Section 3.4

presents our conclusions.

3.2 Strategy for constructing multi-hidden-layer
FNNs

In this section, the new strategy for constructing a multi-hidden-layer FNN is pre-
sented. Suppose one desires to construct a FNN to solve a mapping or a regression
problem having multi-dimensional input space and a single scalar output. Exten-
sion to the case of multi-dimensional output space would be straightforward. It is
also assumed that the output unit has a linear activation function for the regres-
sion problems. The new constructive algorithm develops the FNN (see Figure 3.1)

according to the following steps:

(a) Initial linear (b) Creation of the first hidden
network layer

(c) Addition of hidden units to the (d) Creation of the second hidden
first hidden layer layer and its units

Figure 3.1: Multi-hidden-layer network construction process for the proposed strategy.

68

Step 1: [Initially train the network with a single output node and no hidden layers
(refer to Figure 3.1(a)), with the input belonging to a multi-dimensional space
depending on the problem that is being considered. The training of the weights
may be achieved according to an LS solution or some gradient-based algorithm,
including the bias of the output node. The training error F VU (as described
in Section 2.2.2) is monitored each time a new hidden unit is added to the
network, and if it is not smaller than some prespecified required threshold,

one would then proceed to Step 2a, otherwise one would go to Step 2c.

Step 2a: Treat the output node as a hidden unit with unit output-side weight and
zero bias (refer to Figure 3.1(b)). The hidden unit input-side weights are fixed
and are as determined from the previous training step. The output error of

the new linear output node will be identical to its hidden unit.

Step 2b: A new hidden unit is added one at a time just as in a constructive
OHL-FNN (refer to Figure 3.1(c)). Each time a new hidden unit is added,
the output error (FVU) is monitored to see if it is smaller than the prescribed
threshold value. If so, one then proceeds to Step 2¢c. Otherwise, a new hidden
unit is added until the output error FVU is stabilized above the prescribed
threshold. Under this condition (when error is stabilized) one then proceeds
to Step 2a; a new hidden layer is introduced to possibly further reduce the
output error (refer to Figure 3.1(d)). Steps 2a and 2b are repeated as many
times as necessary until the output error FVU is below the prescribed desired
threshold. Input training of a new hidden unit is performed by maximizing a
correlation-based objective function, whereas the output training is performed

through an LS type algorithm. Subsequently, one then proceeds to Step 2c.

Step 2c: The constructive training is terminated.

69

For implementing the above algorithm some further details and definitions
regarding the above procedure are in order. First, the quantity “stop-ratio” is
introduced to determine if the training error FVU is stabilized as a function of the
added hidden unit, as follows

FVU(n-1) - FVU(n)
FVU(n-1)

stop—ratio = x 100% (3.1)

where FV'U(n) indicates the training error FVU when the n-th hidden unit is added
to a growing hidden layer of the network. Note that according to [34] addition of a
proper hidden unit to an existing network will reduce the training error. The issue
that needs addressing here is the magnitude of the stop-ratio. At the early stages
of the constructive training, this ratio may be large. However, as more hidden units
are added to the network the ratio will monotonically decrease. When it becomes
“sufficiently” small, say a few percents, the inclusion of further additional hidden
units will contribute little to the reduction of the training error, and as a matter
of fact may actually start giving rise to an increase in the generalization error,
since the unnecessary hidden units may force the network to begin to memorize the
data. When the stop-ratio is determined to be smaller than a prespecified desired
percentage successively for a given number of times (this is denoted by “stop-num”),
the algorithm will treat the error FVU as being stabilized, and hence will proceed
to the next step to explore the possibility of further reducing the training error by
extending a new layer to the network. It should be noted here that the stop-ratio
and the stop-num are generally determined by trial and error, and one may utilize
prior experience derived from simulation results to assign them. Below, we provide

some general guidelines for determining these parameters.

C1: A rule of thumb, say 3 to 10 percent, should be a reasonable value for the
stop-ratio. If a new hidden unit or layer is needed, then it is not difficult to
observe that this bound will be easily surpassed. Generally speaking, having

network with fewer hidden layers is clearly more advantageous over networks

70

with many hidden layers. Therefore, this ratio may initially be set to relatively
small value for the construction of the first hidden layer so that the algorithm is
given an opportunity to solve the problem by constructing only a single hidden
layer. On the other hand if the problem is not representable by a single hidden
layer, then the ratio has to be increased to penalize and to prevent the creation
of deep hidden layers. This incrementally adjusting the ratio, that is starting
initially with small values and gradually increasing it will achieve improved
solutions if properly followed (the concept is very similar to the assignment of

learning ratio in BP networks).

C2: The stop-num values larger than 3 generally imposes stricter emphasis on the
error FVU stabilization, but that may be too conservative to allow redundant
units to be added. Incentives can also be introduced for the stop-num, similar
to the stop-ratio case. by using larger values for the first hidden layer, say 4

or 5, and taking smaller ones for the other subsequent layers, say 3 or even 2.

Note here that in the proposed algorithm the policy for hidden unit addition
is the same as that adopted in Section 2.2. Therefore, the convergence analysis

presented previously is also applicable and valid here.

Before the experimental results are introduced, let us explain in more details
why the proposed constructive algorithm can not automatically be extended to
classification problems where the output node has nonlinear activation function. As
shown in Figure 3.2, in the (L — 1)-th hidden layer there are n;_; hidden units,
and the constructive algorithm is at the point of creating a new hidden layer by
generating a new output node having the activation function g(-). Consequently, we

have
Via=9Byi,+e), j=1,2---.P (3.2)

71

where § and @ are the input-side weight and bias of the newly added output node,
respectively. If we set 8 = 1 and o = 0, and the activation function of the new

output node is simply selected as linear, that is g(z) = z, we obtain

Vim=vig i=L2--P (3.3)

This implies that the training error from the previous output node will be passed

L-1 Layer L Layer L+1 Layer

_

Figure 3.2: Multi-hidden-layer network for the proposed strategy.

on to the newly generated output node unchanged as is. When a new hidden unit
is added to the L-th layer, the SSE at the new output node will be monotonically
decreased.

On the other hand if g(-) is nonlinear, the parameters a and 3 should satisfy

the following:

Byl +a=g"yl) =907 (¥lL) (3.4)

for some j. For serial learning or a single training sample, (3.4) may be satisfied with-
out any difficulty (as we have one equation and two variables leading to non-unique
solutions for o and 8). For batch learning, which is the case being considered in this

thesis, we need to ensure that the following set of equations hold simultaneously:

Byip+o = ¢ ' (yi,)

Byt +a = g—l(y%,L) (3.5)

Byt +a = g7'(yhy)

Obviously, these simultaneous equations may have a unique solution only if P is
2. Clearly, in most real problems the number of training samples is always larger
than 2. Therefore, the best that one can accomplish from the above simultaneous

equations is to work with the following least square (LS) solution, namely

['B } = (AT4) " 4TB (3.6)
a
where
[yl 1] [g(yl,) |
. vip 1 . B= 9'1(?%.L)
|y 1) | g7 (utL) |

Note that in the above expression it is implicitly assumed that matrix A7 4 is full
rank. In most problems where a large number of training samples are available, the
rank condition is generally satisfied easily. The summed square error of the above

simultaneous equations is given by

P . 42
J = %Z{ﬁyﬂ '*‘a‘g_l(y{,L)} (3.7)

(1

BT [I—A (474)™ AT]B >0

|
N} o=

N —

73

which is always positive. Therefore, the output SSE(L +1) at the new output node

will be different from that of the previous output node, and is given by

v

SSE(L+1) =Y {¢ — g8, + &)}’ (3.8)

j=t
where d’ is the desired target.

From the above analysis, it now follows clearly that the SSE may actually in-
crease when a new output layer with a nonlinear node is added to the network. This
is generally an undesirable result. On the other hand, if the addition of hidden units
to the previous layer can not only compensate the increase in SSE but also further
reduce the SSE, the proposed algorithm may be extended to construct multilayer
FNN with nonlinear activation functions for some applications. This issue will not

be pursued further in this thesis.

3.3 Simulation results for regression problems

To confirm the effectiveness and potential of the proposed strategy, we have con-
ducted several simulations for the regression problems including those considered
previously in Chapter 2. Unless explicitly specified, for all the simulation results
shown below stop — ratio = 5% and stop — num = 3 during the entire construction
process.

The first problem considered is a linear regression given by
9(z) =075z +0.25+v, O<z<l. (3.9)

One hundred (100) samples are used for training. The SNR is 10 [dB]. Figure 3.3
shows the training and the generalization error FVUs associated with the first and
the second hidden layers. Figure 3.3(2) indicates that the addition of a sigmoidal
hidden units to the first hidden layer resulted in little training FVU reduction, and
the algorithm detected an error FVU saturation when the fourth hidden unit is

74

added. This implies that all the three nonlinear hidden units added to the network
are redundant and only the linear unit is needed, resulting in a linear network for
representing a linear regression problem. To observe the possibility of reducing the
FVU by using a deeper network, the second hidden layer was also added. Figure
3.3(b) depicts the FVUs. Obviously, the saturation of the training FVU is more

pronounced in this case.

aer v - car

(Y- 14 1%r
anspr - [+ 12
coak IUP
2 H
P (112
pL-14 i34
L3114 * RQ'L
---I.!-’----!----_;I. — & : - ! St i} 2 28 3 13 4
aurrue of fecian urels AarOer of Pekimn uris
(a) First hidden layer (b) Second hidden layer

Figure 3.3: Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for a simple linear regression problem.

The second problem considered is a sinusoid with noise. One hundred (100)
samples are used for training with the SNR selected to be 10 [dB]. The FVUs for
each constructed hidden layers are depicted in Figure 3.4. It follows from Figure
3.4(a) that even though the first hidden layer reduces the training FVU very rapidly,
the second hidden layer does contribute to the FVU reduction very minimally due to
the performance saturation (stop-ratio = 3 %). This implies that the second hidden
layer is not required for this problem and simply a one hidden layer network may

provide the best solution as provided by the proposed algorithm.

75

4 3 L} b4 . A 15 2 s 3 38 4
Parmoer of Faien ures ArOer of xinn s

(a) First hidden layer (b) Second hidden layer

Figure 3.4: Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for a sinusoid with noise problem.

The third problem considered here is the CIF that was simulated in Chapter
2. The SNR is selected about 6 [dB]. Two hundred and twenty five (225) data
points are used to train a network. The results are given in Figure 3.5. Clearly, it
can be observed that the second hidden layer is needed in this case, however the
third hidden layer does not contribute much to solving this problem (in terms of
the stop-ratio of 5%). Therefore, a two-hidden-layer network, with a small number
of hidden units in the second hidden layer is all that is required for representing
the CIF problem with noise. It may also be concluded from Figure 3.5(b) that the
OHL network with a sufficient number of hidden units may also yield satisfactory
solution to the CIF problem, since the FVU associated with the second hidden layer
saturates rather quickly. The generalized surfaces of CIF for different number of
hidden units are shown along with its original surface in Figure 3.6.

The last problem we consider here is the SAF problem with noise. Two hun-

dred (200) samples are used to train a network. The SNR is selected to be 10 [dB].

76

29 328
32
2
[X1
kS L] L} L] W 2 14 ‘. A} = 3', 2 3 s L3 L r L]
Faren of Naaten L Ao o rxen wrds
(a) First hidden layer (b) Second hidden layer

28
Aamdee ol PRI ety

(c) Third hidden layer

Figure 3.5: Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for CIF.

-3
-~

A,
ORI
,///,I",;.,‘,.\\:“:\\;\,
TSNS
1,

OOKRSS
AKX

27
A

10
1,00y
A0

(a) CIF (original)

(c) Generalized CIF by the first
hidden layer (5 HUs)

o

(b) Generalized CIF by the first

hidden layer (1 HU)

Vil
(XXX
AN

"

(d) Generalized CIF by the first

hidden layer (15 HUs)

Figure 3.6: Original and generalized CIF by the first hidden layer.

78

The incentive given to the first hidden layer is by setting its stop-ratio to 5%, and
for the other hidden layers this parameter is set to 10%. Clearly, from Figure 3.7 it
follows that a two-hidden-layer network is all that is required for solving the SAF
problem, as the 3rd layer causes the stop-ratio to be satisfied each time a new hidden
unit is added until the stop-num was reached.

To summarize for the four examples given above we conclude that the new
algorithm has constructed a network having simultaneously a sufficient number of
hidden layers and a sufficient number of hidden units in each hidden layer depending

on the complexity of the problem that is being considered.

TSt of NI wrets e of eckiens R

(a) First hidden layer (b) Second hidden layer

[$2 3 . -

sam- 4

arasp

] ts 2 113 b} 18 .
rar of Piien wets

(c) Third hidden layer

Figure 3.7: Training (solid line) and generalization (dashed line) FVUs of a multi-
hidden-layer network constructed for SAF.

80

3.4 Conclusions

In this chapter, a new strategy for constructing a multi-hidden-laver FNN was pre-
sented. The new algorithm builds upon the constructive algorithm developed for
adding hidden units to a OHL network by generating additional hidden layers. The
network obtained by using this algorithm has regular connections to facilitate hard-
ware implementation. The constructed network is suboptimal in the sense that the
new hidden units and layers are added incrementally only when they are needed
based on monitoring the residual error that can not be reduced any further by the
already established network. It is not feasible to compare the new algorithm with the
other existing multi-hidden-layer constructive algorithms reported in the literature,
due to the fundamental differences in the network architecture and construction
strategies. However, it is seen from the presented experimental results that the pro-

posed algorithm is effective and efficient in representing certain nonlinear problems.

81

Chapter 4

Constructive one-hidden-layer
FNNs using polynomial activation

functions

4.1 Introduction

Since the early 1980s, a large number of neural network (NN) structures have been
proposed and applied to various real world problems. The feedforward NNs (FNNs)
are by far the most popular architectures due to their structural flexibility, good rep-
resentational capabilities, and availability of a large number of training algorithms.
The hidden units in a FNN usually have the same activation functions typically
selected as sigmoidal functions.

Among the constructive FNNs, the one-hidden-layer FNN (OHL-FNN) is by
far the simplest in terms of both its structure and training efficiency, yet having a
wide applicability due to its “universal approximation property”. That is, a OHL-
FNN can approximate a continuous function to any desired accuracy as long as
enough hidden units with sigmoidal activation functions are included. However,

it has never been shown that the use of the same activation functions for all the

82

hidden units is the best or the optimal choice for performance and generalization
considerations. In other words, there are still a lot of opportunities for attempting
to possibly improve the performance of the OHL-FNN by using more appropriate
activation functions for the hidden units instead of simply using identical sigmoidal
functions.

In a constructive OHL-FNN, one or a pool of candidates with different initial
weights and possibly different activation functions are tested and the one resulting
in maximizing the performance index will be incorporated into the active network.
However, the freedom in actually determining and selecting the activation functions
will significantly increase the search space due to the difficulty in specifying the
pool of activation functions that may be used. Although, the idea of using different
activation functions for different units was mentioned by Fahlman (42| and several
other researchers [43, 34], a systematic and a rigorous algorithm and a methodology
for accomplishing this has not yet been developed.

In this part of the thesis, a new strategy is developed and presented that
is applicable to both fixed structure as well as the constructive network trainings.
This is accomplished by using different activation functions with hierarchically varied
nonlinearities, as the constructive learning of a OHL-FNN is progressing. This is
motivated by the idea that a non-uniform use of activation functions may actually
enhance the generalization capability of the resulting network.

Let us consider an input-output map to be realized by a OHL-FNN. This
function may generally contain a constant term, a linear term, second order nonlinear
terms and higher-order nonlinear terms. Any analytic function can be represented
in this way at least in the sense of its Taylor series expansion. All these terms may in
the end be viewed as being combined in “parallel”, in the sense that their weighted
sum would amount to the whole function. It is quite well-known that any series
expansion can be made to approximate the original function to any desired level of

accuracy, as long as sufficient number of terms are used. This well-known fact, in

83

principle, is very much analogous to the above-mentioned approximation ability of
a FNN. The idea is to basically let each unit in the FNN represent only one term
of the function representation that is being approximated (along the similar lines
as in the Fourier or the Taylor series expansions). Towards this end, we propose to
use locally bounded orthonormal basis functions as the activation functions of the
hidden units of a FNN. Each unit is expected to be responsible for approximating the
corresponding nonlinearity contained in the underlying function. Note that simply
using the nonlinear functions in a Taylor series expansion can not be used as the
activation functions of the hidden units since these functions are not bounded in
general.

In this chapter, the incremental constructive structure of FNNs when applied
to regression problems is considered. A OHL-FNN with a linear output layer is
utilized here. Unlike the constructive learning approach proposed in [43], the initial
network has no hidden units. The network is built up from a so-called “nuil net”.
In [45], the number of hidden units for the initial network was left unsolved and to
be resolved by trial and error and heuristics. During the construction process, the
hidden units are added to the active network one at a time, and the activation func-
tions of the hidden units will be assigned from lower order orthonormal polynomials
to higher-order ones. As the network grows, naturally the activation functions of the
hidden units become more complicated. This can potentially cause some problems in
practice, since more computational resources will be clearly needed. However, if one
utilizes orthonormal polynomials that have recursive characteristics, this problem
can be alleviated to a large extend. For example, the orthonormal Hermite polyno-
mials are one such polynomial candidates that may be considered, since they have
the following desirable properties {49]: (a) any analytic signal/function (or objective
signal/function in a regression problem) can be represented to an arbitrarily high
degree of accuracy by taking sufficient number of basis functions in a series expan-

sion, implying that the orthonormal Hermite polynomials may be used as universal

84

approximators; and (b) the recursive expressions for calculating the basis functions
and the recursive relationships for their first-order derivatives can be utilized ef-
fectively in network training. Furthermore, extensive simulations for many noisy
regression problems have revealed that the proposed scheme may produce FNNs
that generalize much better than constructive OHL-FNNs with identical sigmoidal
activation functions [45].

The outline of this chapter is as follows. Section 4.2 presents a brief introduc-
tion to the Hermite polynomials. An incremental training algorithm is developed
in Section 4.3. Simulation results are provided in Section 4.4 to demonstrate the
effectiveness and potentials of the new constructive network. The conclusions are

briefly drawn in Section 4.3.

4.2 Hermite polynomials

In this section, the Hermite polynomials having hierarchical nonlinearities are first
introduced to be used subsequently as the activation functions of the hidden units
of the FNN. The orthogonal Hermite polynomials defined over (—oc, oc) are given

as follows [49] (see also the references therein):

Hy(z) = 1, (4.1)
H(z) = 2=, (4.2)
Hi(z) = 2zH,i(z) - 2(n—1)H,_5(z), n > 2. (4.3)

The definition of H,(z) may be given alternatively by
nz2 & [2 - 1.
Hgy(z) =(-1) e’zam—n (e) ., n>0, Hy(z)=1 (4.4)

The polynomials given in (4.1)-(4.3) are orthogonal to each other, but not orthonor-
mal. The orthonormal Hermite polynomials may then be defined according to

ha(z) = anHa(z)9(2), (4.5)

85

where

o, = (n!)—I./2ﬂ,1/-1;2—(71—1.)/'.!Y (4.6)
. 1 -
Q(I) = \/—S;e .r/'l. (4()

In other words, for a given h,(z), the following orthonormal relationship holds

= 1 i=j,
/ hi(z)h;(z)dr = (4.8)
—oe 0 i#].
The first-order derivative of h,(z) can be easily obtained by virtue of the recursive

nature of the polynomials defined in (4.3), that is:

Bold) — (on) Phocr(a) = ahale), m21, (+9)
dhq(l’) - a dO(l')
dc ~ ° dz

= —rho(z). n=0. (4.10)

A typical set of the orthonormal Hermite polynomials are depicted in Figure
4.1. In reference [49], the orthonormal Hermite polynomials are used as basis func-
tions to model 1-D signals in the biomedical field for the purposes of signal analysis
and detection. In reference {31], a selected group of the orthonormal Hermite poly-
nomials in a weighted-sum form is used as the activation functions of all the hidden
units of the OHL-FNN.

It should be noted here that using the relationships (4.3), (4.9) and (4.10), the
computational burden for evaluating the polynomials and their derivatives may be
reduced considerably.

In our proposed FNN, the first hidden unit will take h¢(z) as its activation
function, the 2nd hidden unit will take h,(z) as its transfer function, and so on. The
resulting FNN with the Hermite polynomials as its activation functions has the same
structure as the standard FNN. However, the use of the hierarchical polynomials is
expected to increase the performance of the resulting network as shown subsequently

in this chapter.

86

1 1 1 1
0.5 0.5 Q0.5 0.5
0 0 0 0
-0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1
-5 0 § -5 4] 5§ -5 0 5§ -5 0 5
n=0 n=t n=2 n=3
1 1 1 1
05 0.5 Q.5 Qs
1] Q 4] Q
-0.5 -0.5 -05 -0.5
-1 -1 -1 -1
-5 0 5§ -5 0 § -5 0 5 -5 Q 5
n=4 n=5 n=6 n=7

Figure 4.1: Samples of the orthonormal Hermite polynomials, A,(:) (n =0,1,---,7).

It was indicated earlier that the Hermite polynomials are chosen due to their
suitable properties. However, there are many other polynomials that have similar

properties. For example, considering the following:

Legendre polynomials

1 4
np! dgn

P.(z) = (2 -1)*, -1<z<1 (4.11)

with recursive relationships

nP,(z) — (2n — 1)zPri(z) + (n—1)P,_a(z) =0, (4.12)
B2 2aPu(@) - Pani(a)]

(> -1) T
= (n+ D[Pusslz) —zP(D)]. (413)

Gegenbauer polynomials

v (=1)*T(v + HT(n + 2v) (1 = L2)(/D—v
B = S Taan

n+v+i) n!

(
-], gzcl ()

with recursive relationships

nPYz) = WEPiz) - P (113)
% = WwPl(g) (4.16)

and ['(-) is a Gamma function.

Tchebycheff polynomials
P.(z) = (2(;?1)! 1- 1:2%(1 - 1< <1 (4.17)

with recursive relationships

Pn-i-I(I) - 2.’1.’Pn(1‘) + n-I(r) =0, (4'18)
(1- zz)d}:}iﬂ:) = nP,_i(z) — nzPy(z). (4.19)

88

Laguerre polynomials

er e 4t .
la] —_— =T ATa
PS(z) = - (ez"®), 0<zr<cc (4.20)
with recursive relationships
nPl(z)+(z-2n—a+1)P; () +(n+a—-1)P2 ,(z) =0, (421)
n>2
dPe
I d; =nP}(z) - (n+a)Po_(z). (4.22)

Note that the input ranges for the above listed polynomials do not meet the
requirement for a hidden activation function which takes inputs ranging from —oc
to +oc. If one uses a polynomial with a limited input range as an activation function
for a hidden unit, one should then restrict the input-side weight space in which an
optimal input-side weight vector has to be searched under a given training criterion.
The restriction of the input-side weight space is not desirable as it would limit the
representational capability of the network. The rationale for using the Hermite
polynomials is therefore motivated by their restriction-free input range properties.
Of course, other orthonormal polynomials with restriction-free input range may also
be used as activation functions for the FNNs. Search for such polynomials is left for
further research.

Mathematically speaking, the above listed polynomials may still be used as
activation functions of the hidden units provided that one normalizes the network
input vector for a hidden unit each time the input-side weight vector of it is up-
dated. Although, it appears that the weight vector is now not constrained, and only
the network input vector is normalized by a properly selected large constant, this
constant is actually closely related to the weight vector. Therefore, the input to the
hidden unit at its input-side training phase will be no longer linear with respect to
the weight vector. Consequently, as far as the optimization problem is concerned,

the input-side training will now have two types of nonlinearities : one from the input

89

to the hidden unit, and another due to the activation function of the hidden unit.
This optimization is clearly more complicated as compared to the one with only
the nonlinearity of the activation function. It is therefore our conclusion that the
Hermite polynomials are expected to be the most suitable choice for the activation

functions of the hidden units for the problems considered in this thesis.

4.3 The proposed incremental training algorithm

Consider a typical OHL-FNN with a linear output layer and a polynomial-type
hidden layer, as shown in Figure 4.2. The hidden unit with input and output
connections indicated by dotted lines is the present neuron that is trained before it
is allowed to join the other existing hidden units in the network. Suppose, without
loss of generality, that a regression problem has an M-dimensional input vector and
a scalar one dimensional output. The j-th input and output samples are denoted by
X’ = (z), 2,).+, 7) (z} = 1) and &’ (target), respectively, where j =1,2,---, P
(P is the number of training data samples). The OHL constructive algorithm starts
from a null network without any hidden units. At any given point during the
constructive learning process, suppose there are n — 1 hidden units in the hidden
layer, and the n-th hidden unit is being trained before it is added to the existing
network (see Figure 4.2).

The output of the n-th hidden unit for the j-th training sample is given by

M
fn(S‘;) = hn—l (Z wn,msz;;) (423)
m=0

where h,(-) denotes the n-th order Hermite orthonormal polynomial. Its derivative
can be calculated recursively from equation (4.9) and s is the input to the n-th
hidden unit, given by

M

si=Y wpmal, (4.24)

m=0

90

Input-side training >+ _° s

- ’

Hidden Layer

Figure 4.2: Structure of 2 constructive OHL-FNN that utilizes the orthonormal Hermite
polynomials as its activation functions for the hidden units.

91

where wy, g is the bias of the node and its input is 1-3 =1,and wpm (M#0)isa
weight from the m-th element of the input vector to the n-th hidden node.
The output of the network may be expressed as follows

v = w+ HZ-: vihi_1(s]) (4.25)

=1

= v +viho(s]) + vahi(sh) + vsha(s) + - -+ + vahaa ().
where vg is the bias of the output node, and vy, vy, ---,v, are the weights from the
hidden layer to the output node.

Clearly, the above expression has a very close resemblance to a series expan-
sion that utilizes the orthonormal Hermite polynomials as its basis functions, and
where each additional term in the expansion contributes to improving the accu-
racy of the function that is being approximated. Through the series expansion,
the approximation error will become smaller as more terms having higher-order
nonlinearities are included. This situation is actually quite similar to that of in-
crementally constructing a OHL-FNN, in the sense that the error is expected to
become smaller as new hidden units having hierarchically higher-order nonlineari-
ties are successively added to the network. In fact, it has been shown that under
certain circumstances incorporating new hidden units in a OHL-FNN can decrease
monotonically the training error {45]. Therefore, in this sense adding a new hidden
unit to the network is somewhat equivalent to the addition of a higher-order term
in a Hermite polynomial-based series expansion. It is in this sense that the present
network is envisaged to be more suitable for constructive learning as compared to
a fixed-structure FNNs. Note that, only if sJ = s} = --- = s_,, then g/, will be
a truly Hermite polynomial-based series expansion. Otherwise, as proposed in the
algorithm above the expansion would be approximate since the weights associated
with each added neuron is adjusted separately, resulting in different inputs to the
activation functions.

The problem is now to train the n-th hidden unit that is to be added to the

active network. There are many objective functions (see for example (42, 34] for

92

more details) that can be considered for the input-side training of this hidden unit.
A simple, but a general cost function that works well, and as discussed in Chapter

2, is as follows [42):

P
mput = Z l-enl fn(szu) f-n) (426)
where
fa(sh) = hn-i(s)) (4.27)
o _1¢
€pn1 = P;e}]‘-l (428)
- 1L
fo = ;Z n-1(s%). (4.29)
ey = -yl (4.30)

where fn(sl) or hn_,(s) is an orthonormal Hermite polynomial of order n — 1 used
as the activation function of the n-th hidden unit, €),_, is the network output error
when the network has n — 1 hidden units and d” is the j-th target output for the
network training.

The derivative of Jinpe With respect to a weight w,; is calculated according

to
aJin ¢ L _ : -
aw?" = $sgn (Z(er,t-l - en—l)(fn(si;) - fn)) (4.31)
n,i j=1
P
x Y (eht = En-1)hp_y(sh)2]
Jj=1

where sgn(-) is a sign function. The first-order derivative h,_,(s’) in the above
expression can be easily evaluated by using the recursive expression (4.9) for n > 2
and (4.10) forn = 1.

A candidate unit that maximizes the objective function (4.26) will be incor-
porated into the network as the n-th hidden unit. Subsequently, the output-side

training is performed by solving a least squared problem given that the output layer

93

has a linear activation function (see Figure 4.2). After performing the output-side
training, a new error signal el is calculated for the next cycle of input-side and
output-side trainings.

The proposed scheme in this chapter may now be summarized according to

the following steps:

Step 1: Initialization of the network

Start the network training process with a OHL-FNN having no hidden units.

Set n =1, e{) = d’, and the activation function = hq(-).

Step 2: Input-side training

Train only the input-side weights of the n-th hidden unit h,(-). The input-side-=
weights for the existing hidden units, if any, are all frozen. This unit will be
permanently added to the existing network (active network). Specifically, one
candidate for the n-th hidden unit with random initial weights is trained using
the objective function defined in (4.26), based on the “quickprop” algorithm
[42]. If instead, for the n-th unit, a pool of candidates are trained as above,
then the one candidate that yields the maximum objective function will be

chosen as the n-th hidden unit to be added to the active network.

Step 3: Output-side training

Train the output-side weights of all the hidden units in the active network.
Given that the output layer has a linear activation function the output-side
training may be performed by computing the pseudo-inverse operation that

results from the least square optimization criterion.

Step 4: Network performance evaluation and training control

Evaluate the network performance in terms of the metric fraction of variance

unexplained (FVU) [45] on the training and on the generalization data set

94

defined as follows

P
2.(8(x7) — g(x’))?
FVU == (4.32)
Z_:(g(xj)—9)?

where g(-) is the function being implemented by the FNN, §(-) is an estimate
of g(-) or the output of the trained network, and 7 is the mean value of g(-).
The network training is terminated provided that certain stopping conditions
are satisfied. These conditions may be expressed, for example, in terms of a
prespecified FVU threshold or a maximum number of permissible hidden units,
etc. However, if the stopping conditions are not satisfied, then the network
output y; and the network output error e/ = d’ — y/ are computed, n is

increased by 1, i.e., n = n + 1, and we then proceed to Step 2.

As mentioned previously in Chapter 2, in the constructive OHL-FNNs [43], the
determination of a proper initial network size is also a problem that needs careful
attention. This initialization may significantly influence the efficiency of the network
training that follows. However, in our proposed scheme, the network training starts
from the smallest possible architecture. This is an important advantage of our

proposed algorithm over the similar methods previously presented in the literature.

Although the proposed algorithm is presented in the context of regression
problems, it is straightforward to extend the algorithm to also classification problems
by simply changing the activation function of the output node from a linear one to a
sigmoidal one. Since the output node is now nonlinear, the pseudo-inverse based LS
solution to the output-side training can not be applied any longer. Other algorithms
for the nonlinear LS minimization problem has now to be chosen. For instance,

second-order algorithms such as the Quasi-Newton algorithm may be utilized.

95

The proposed algorithm is of incremental nature, and its convergence with
respect to the number of hidden units is therefore an important issue that needs to
be investigated. Fortunately, this issue can be discussed in quite the same way and
context that were taken in Chapter 2, since the only difference between the con-
structive networks in Chapters 2 and those here is the activation functions utilized
in the hidden units. This implies that the same conclusions obtained previously may

be extended directly to the constructive networks proposed in this chapter.

4.4 Simulation results

In this section, we present some of our simulated results to demonstrate the effective-
ness and the superiority of the new constructive OHL network. It is found through
extensive simulations that for “simple” regression problems the performance of the
new network is similar to the previous (“standard”) constructive OHL networks
presented in Chapter 2. The new constructive network, however, provides improved
performance when applied to “complicated” regression or classification problems.
In all the following simulations the corresponding learning parameters for both
the “standard” OHL constructive algorithm (as in Chapter 2) and the new “pro-
posed” algorithm (as in the present chapter) are set independently so that each
network solution would demonstrate its “best” achievable performance on average.
Furthermaore, it is suggested that this will make the comparisons shown below “fair”.

Ten (10) independent runs are conducted to obtain an average basis for comparisons.

Example I: Consider the following one-dimensional regression function:

g(z) = 02 {1 + fla(a: - 7)2} cos(2z) + 0.5¢"Fsin(2z — 0.1x). (4.33)

The first term of this function was used in [30]. The second term is added here to
make the function even more complicated. Here, a hundred (P = 100) uniformly

96

distributed random samples over {0, 1] were chosen for network training. The signal-
to-noise ratio (SNR) is selected to be 10 [dB|. The number of uniformly sampled
noiseless data for evaluating the generalization FVU is two hundred (200). The
training and the generalization FVUs are shown in Figure 4.3. It is seen clearly
that the proposed algorithm works slightly better than the “standard” algorithm in
terms of the generalization FVU.

Example II: Consider the following two-dimensional regression function (HF):

g(z1,72) = 42.659 (0.1 + (z, — 0.5)(0.05 + (z; — 0.5)* (4.34)

~10(zy — 0.5)%(z2 — 0.5)? + 5(z, — 0.5)*))

This harmonic function was used earlier in Chapter 2. Here, two hundred and
twenty-five (P = 225) uniformly distributed random samples were generated from
the interval [0, 1] for network training. The SNR is 10 [dB]. Ten thousand (10,000)
uniformly sampled points from the same interval without noise were used for gen-
eralization. The simulation results are given in Figure 4.4. It can be observed from
this figure that the proposed new algorithm results in considerably smaller general-
ization FVU than the “standard” algorithm. This suggests that the proposed new
algorithm may be more useful for more “complicated” regression problems. Here,
we also show the generalized surfaces by both the proposed and the “standard”
algorithms for the regression function HF', in Figure 4.5 and Figure 4.6, respectively.

To further verify this statement four other two-dimensional regression func-

tions, as used in [43, 51] and given below, are used for simulations.

o Additive function (AF):

g(z1,22) = 1.3356 {L5(1 — z1) + > sin(3n(z; — 0.6)?) (4.35)

+e3=2-0) gin(4r(zy — 0.9)2)} ,

97

e Radial function (RF):

g(z1,72) = 24.234{((z1 — 0.5)? + (z2 — 0.5)))(0.75 — (z1 — 0.5)°
~(z2 - 0.3)))}, (4.36)

e Simple interaction function (SIF):

g(z1, T2) = 10.391 {(z; — 0.4)(z2 — 0.6) + 0.36}, (4.37)

e Complicated interaction function (CIF):

g(z1.22) = 1.9 {1.35 + €™~ 5in(13(z; — 0.6)%) Siﬂ(?l‘g)} . (4.38)

Simulations for the above four functions (SNR=10 [dB]) are performed under the
same settings as in the HF case. Simulated results for these five functions are now
summarized Table 4.1. Obviously, the generalization FVUs are significantly im-
proved by using our proposed algorithm. For SIF and AF functions both algorithms
yield similar training FVUs as the number of hidden units increases, although our
proposed algorithm results in smaller training FVUs for the other functions regard-

less of how large the number of hidden units becomes.

98

Table 4.1: Mean FVU values for the training and the generalization of our pro-
posed and the “standard” constructive OHL networks for the five two-dimensional
regression functions considered in [43] (SNR=10 {dB]).

Number of hidden units
Training Generalization
Function | Approach 2 5 10 20 2 3 10 20
CIF “standard” | 0.582 | 0.345 | 0.196 | 0.107 | 0.620 | 0.403 | 0.206 | 0.111
proposed | 0.536 | 0.348 | 0.138 | 0.087 | 0.394 | 0.349 | 0.095 | 0.039
AF “standard” | 0.630 | 0.208 | 0.132 | 0.101 | 0.700 | 0.136 | 0.073 | 0.050
proposed | 0.501 | 0.218 | 0.151 | 0.109 | 0.538 | 0.166 | 0.076 | 0.027
HF “standard” | 0.812 | 0.614 | 0.434 | 0.201 | 0.980 | 0.744 | 0.351 | 0.303
proposed | 0.726 | 0.582 | 0.268 | 0.116 | 0.842 | 0.390 | 0.197 | 0.082
RF “standard™ | 0.634 | 0.224 | 0.115 | 0.073 | 0.668 | 0.212 | 0.097 | 0.048
proposed | 0.441 | 0.153 | 0.092 { 0.074 | 0.443 | 0.091 | 0.027 | 0.019
SIF “standard” | 0.297 | 0.153 | 0.099 | 0.072 | 0.298 | 0.119 | 0.048 | 0.043
proposed | 0.334 | 0.157 | 0.100 | 0.079 | 0.284 | 0.095 | 0.031 | 0.026
L i 1D e izarom
3 3
: |k
g,

’
sunber sf hiddex usnits

(a) Training FVUs

3 E g

z 3

.
cucher af hidden unils

(b) Generalization FVUs

Figure 4.3: Structure of a constructive OHL-FNN that takes the orthonormal Her-
mite polvnomials as the activation functions of its hidden units.

99

------- Scandar? algeritin
Proposed algericsha

FVU {training)
. - : - ’ . . . -

Y\ mmmem Standard algoritim
TS Propesed aljoriiim

-
L

! (generalization)
B e . e DR S B S

-

3 . . . i3 [} . HY i =

nuzkber ¢f hidden units oucher ¢f hidden units

(a) Training FVUs (b) Generalization FVUs

Figure 4.4: (2) Training and (b) generalization FVUs of the new and the standard
constructive OHL networks for the HF.

Example III: Consider the following three-dimensional regression function given
by

1

g(z1, 20, 23) = P e e e + 2z sin(27z,). (4.39)

A thousand (P = 1000) uniformly distributed random samples within the interval
[0, 1] were used for network training. Also, a thousand (1000) different samples were
uniformly generated for generalization performance testing. The SNR is chosen to
be 10 [dB]. The results for this function are depicted in Figure 4.7. Obviously, in this
case the new proposed algorithm works much better in terms of the generalization
FVU than the previous standard algorithm.

Using all the above simulated results for the regression problems one can ob-
serve that the new constructive network with Hermite polynomials as activation
functions learns from the training samples as well as and even better than the pre-
vious network with sigmoidal activation functions, and also produces smaller gen-

eralization FVUs. In other words the proposed network provides similar or even

100

()
X AN
Al !
N CRTCER LA C CSRA R AN
L

(a) HF (original) (b) Generalized HF with 1 HU

-

-

-

3

l
!
.1?
J
I

-

(c) Generalized HF with 5 HUs (d) Generalized HF with 20 HUs

Figure 4.5: Original and generalized HF by the proposed algorithm.

101

-

o w .
L ae ey B S S S S s)
~
Iy

1 "

(a) HF (original) (b) Generalized HF with 1 HU

SRR U SN S S——

NITa% 0% %0

\\\‘,s '.“.b

ROSKRIN
e [

.

(c) Generalized HF with 5 HUs (d) Generalized HF with 20 HUs

Figure 4.6: Original and generalized HF by the “standard” algorithm.

102

improved learning capabilities with the training samples, and is more capable of
representing the data and generalizing beyond the training samples.

Finally, to demonstrate that the concepts presented here can equally be ap-
plied to classification problems we apply the proposed algorithm to a two-category
classification problem. Note that the output node has no longer a linear activation
function as it is changed to a sigmoidal function. The output-side training is carried
out using the Quasi-Newton algorithm. To make a fair comparison, the training
parameters for the previous (“standard”) and the proposed algorithms have been

assigned such that both algorithms yield approximately their best performances.

------ Standar? algsritho

------ Standard algorisim

Przgosed algcriins PrIpesed algorizhzm

2 39

3.

-
1i1zat ton)
.

P

-
4

VO (Qunere
-
P Fh—% %

PVt {training)

. 3) . . 13 3 i . i =

nuzber of hidden uniis nuzker of hidden uziis

(a) Training FVUs (b) Generalization FVUs

Figure 4.7: (a) Training and (b) generalization FVUs of the new and the standard
constructive OHL networks for the three-dimensional regression function.

103

Example IV: Consider the following two-category classification problem:

0 <0, 1 <22 +22< ¢;

olz1, 2] = | or £; >0, 2+ (za +1)*< 1. (4.40)
Ly £2) = .
1 7,<0, 23 +23<];

or £y >0, 1 <22+ (2, +1)2 < 4.

\

The two categories are sampled at an 0.1 interval in both the horizontal (z,) and
the vertical (z,) directions to obtain sufficient network training samples. Sampling
with the resolution of 0.05 is performed to collect data for network generalization.
Figure 4.8 shows the original two categories on a two-dimensional surface. The
generalized two categories are given in Figures 4.9 and 4.10, which are obtained from
two typical networks of 5 and 10 hidden units trained by both the standard and the
proposed constructive algorithms, respectively. Comparisons of the training and the
generalization errors (FVUs) for both constructive algorithms are shown in Figure
4.11. From Figures 4.9 - 4.11, it follows very clearly that the proposed constructive
FNN using Hermite polynomials as its activation functions yields better performance
than the “standard” constructive FNN that uses identical sigmoidal functions as its

activation functions.

104

&
L

Figure 4.8: The original two categories.

. .
-3 .2 2% e LS : 3 -3 -z 3 s

(a) Standard constructive algorithm (b) Proposed algorithm

Figure 4.9: Generalized two categories by the previous and the proposed constructive
FNNs with 5 hidden units.

105

o
-3 @ -t 0 13 :

(a) Standard constructive algorithm

Figure 4.10: Generalized two categories

tive FNNs with 10 hidden units.

3

- -3 23 s IS H

(b) Proposed algorithm

by the previous and the proposed construc-

Standard aigorithm
Proposed slgorithm

FVU (training)
-
2
¥

o s

"? ------ Standard algoriths
i

. Preposed algoriihm
TN
z |
- !
T
x>
3
i
3 |
2
I

mumber of hidden units

(a) Training FVUs

Figure 4.11: (a) Training and (b) generalization FVUs of the new and the standard

P S,

zumber 9f hidden units

(b) Generalization FVUs

constructive OHL networks for a two-category classification problem.

106

4.5 Conclusions

In this chapter, we have proposed a new type of constructive OHL-FNN. This net-
work learns better and as efficiently as, but generalizes much better than the previous
(“standard”) constructive OHL networks [45]. Extensive simulations for regression
problems have been carried out first to confirm the effectiveness and superiority of
the proposed new algorithm. Application to an albeit simple classification prob-
lem has also been included to demonstrate the potential power of the proposed
algorithm. The pruning algorithms proposed in Chapter 2 can also be easily incor-
porated into the new algorithm when the proposed algorithm is applied to problems
of higher dimensional input vector. Furthermore, the constructive policy proposed
in Chapter 3 may also be combined with the new algorithm presented in this chapter
to construct multi-layer FNNs with polynomial hidden units to represent and learn

even more complicated regression problems.

Chapter 5

Applications of the constructive
one-hidden-layer FNNs to image
compression and facial expression

recognition

5.1 Introduction

Digital image presentation requires a large amount of data and its transmission over
communication channels is time-consuming. To ease this situation, a huge number of
techniques to reduce (compress) the amount of data for representing a digital image
have been developed to make its storage and transmission economical. Development
of these new techniques is a very important research area within the field of image
processing known as image compression.

A vast number of image compression algorithms have been developed in the
literature [54]. Particularly, in the past decade numerous attempts have been made
to pursue the possibility of using various neural networks (NNs) for image com-

pression (see for example [35, 56, 57] for reviews). Autoassociative neural networks

108

[58], self-organizing Kohonen map (SOM) (59, 60}, cellular neural networks [61, 79],
counter-propagation neural networks [62], to just name a few, are among the vast
number of techniques that have been proposed in the literature. For example, re-
fer to [63]-(83] for more neural network algorithms that have been used for image
compression purposes. Among the large number of neural networks techniques avail-
able for image compression, we are particularly interested in Multi-Layer Perceptron
(MLP)-type feedforward NNs (FNNs) due to their structural elegance, abundance
of training algorithms and good generalization capabilities [71]-[76], [81], [83].

In the above NN-based algorithms, an image is usually divided into small
square blocks of pixels which are then framed into patterns for network training.
The size of each block is typically taken as 4x 4, 3x3, 6 x6, or §x8, or even 16 x 16,
although this generally depends on the nature of the image being compressed and
the training algorithm used. The NN considered would then have identical input
and output dimensions equal to the number of pixels in a given block.

In a multi-hidden-layer FNN used for image compression (71, 74], the hidden
layer in the middle of the network has fewer number of nodes than the input layer,
and its output values associated to all the blocks are considered as the compressed
image or transmitted image to the receiver. In order to reconstruct the image at the
receiver end, the weights for those connections on the right-hand-side (RHS) of the
middle layer are also transmitted to the receiver (see Figure 5.1(a) for details). If
the number of all the output values for the middle layer units plus their connections
on the RHS are less than the total number of pixels of the image, a compression is
then achieved. The fewer the number of units in the middle layer, the higher the
degree of compression. The multi-hidden-layer FNN considered here is symmetric
in structure, with the network from input layer to the middle hidden layer acting
as data compressor, while the network from the middle layer to the output layer
playing the role of a reconstructor. These two sub-networks have the same number

of connections. This technique works quite well as shown by many experimental

109

results in the literature (71, 74, 75]. However, there are two basic problems with
this strategy. The first one is due to the large network size, which makes the training
costly and the training convergence sluggish. The second problem is the determi-
nation of a proper network size, in other words generally trial and error seems to
be the only available option one has at his/her disposal for choosing the proper
compression ratio. The idea of using only OHL-FNN has been proposed in (69, 72]
(also see the references therein). This idea may lead to a faster training convergence
at the expense of lower quality of the reconstructed image for the same compression
ratio. Determination of the number of hidden units is still a open problem that
requires costly trial and error runs.

To address the above problem, a constructive OHL network has been proposed
for image compression by Setiono and Lu (73] (see Figure 5.1(b)). This algorithm is
quite similar to the dynamic node creation algorithm of [35]. It starts with a network
that contains only a single hidden unit in the hidden layer. The network is then
trained by using a variant of the quasi-Newton method to achieve fast convergence.
If the trained network does not satisfy the accuracy requirements, a new hidden unit
is added and the whole network is re-trained again. This process will be repeated
until a network with the desired accuracy and/or compression ratio is achieved. This
compression algorithm is thus flexible in the sense that the user can trade off between
image quality and the compression ratio according to some a priori specification.
However, the algorithm is not as efficient as other constructive algorithms that (i)
freeze the input-side weights of the added hidden units to the existing network,
and (ii) do not retrain the frozen weights. With the exception of the above work,
constructive algorithms have not yet been applied to image compression applications.

In Chapter 2, we have considered a constructive algorithm for a OHL-FNN to
produce a network with both possibly improved performance and reduced number
of weights. The proposed algorithm is now applied to image compression in this

chapter. Specifically, the input-side weight pruning technique is incorporated in the

110

(b) OHL-FNN for image compression where ideally n << I.

Figure 5.1: FNNs for image compression.

111

construction of a OHL-FNN. The network training consists of two phases: input-side
training phase and output-side training phase. Once a new hidden unit is added
to the existing network, its input-side weights will be fixed (frozen) in the training
process that follows. Output-side weights of all the hidden units are then updated
in the output-side training phase.

In this chapter, we first attempt to compress a still image using our proposed
modified constructive OHL-FNN. The image “Girl” is used to train and construct
a network, and the image “Lena” is used to test the generalization performance of
the resulting constructed network. Influence of the quantization factors on the com-
pressed image is also investigated. Two types of quantization schemes, namely the
uniform and the probability density function optimized (pdf-optimized) quantiza-
tions are considered. The performance of the constructed network is then compared
with the baseline JPEG technique in terms of the PSNRs for the same compression
ratios. Furthermore, the generalization ability of the proposed constructive OHL-
FNN is investigated in some details in the presence of additive noise during the
training and/or generalization of images.

Next, the proposed modified constructive OHL-FNN network is applied to the
problem of the compression of moving images (video sequences). Currently several
NN-based schemes have been considered in the literature for the compression of
moving images, for example, refer to [56], [77]-[80]. However, constructive FNN
has not yet been applied for this purpose. Towards this end, we first present three
definitions of similarity (correlation) between two images in order to obtain a better
understanding of the concepts behind our proposed NN-based video compression
techniques. Extensive experimental results are then provided to demonstrate the
effectiveness and the potentials of the proposed techniques.

Finally, we also consider here the application of the modified constructive
OHL-FNNs to the problem of facial expression recognition. A promising recog-

nition system was reported in [88] for facial expression recognition based on the

112

two-dimensional discrete cosine transform (2-D DCT) and the BP-type NN. How-
ever, determining the network size was handled by trial and error. In this chapter,
the constructive OHL-FNN presented previously is applied to solve this problem
with surprisingly good results.

The outline of this chapter is as follows. Section 5.2 gives the details of a
constructive OHL-FNN for still image compression. Moving image compression
using a constructive OHL-FNN is then presented in Section 3.3. Experimental
results for facial expression recognition are shown in Section 5.4. Conclusions are

included in Section 3.3.

5.2 Still image compression using a constructive

OHL-FNN

In this section, we first derive some theoretical results regarding the constructive
OHL-FNN that is to be used for compressing still images. Details about network
training are omitted here (for details refer to Chapter 2 for description of the input-
side and the output-side training, and the input-side pruning of a constructive OHL-
FNN). Experimental results using the images Girl and Lena are provided in this
section. The influence of the quantization operations on the hidden layer output of
the constructed OHL network is also evaluated. Three separate cases namely, (i)
no quantization, (ii) uniform quantization, and (iii) pdf-optimized quantization are
considered. Approximately 0.1 to 0.5 [dB] PSNR. improvement has been observed
using the pdf-optimized quantization in comparison with the uniform quantization.
It is also confirmed that the pdf-optimized quantization gives almost the same PSNR
as that obtained without any quantization operation. Comparison of our proposed
technique with the commonly used baseline JPEG is also performed to assess the

relative capability and performance of our technique. It is revealed that our proposed

technique works as well as or even better than the baseline JPEG. The generalization

113

capability of our constructed network is investigated in the presence of additive noise
during the training and/or generalization of images. Several scenarios are considered
for this purpose. It was found that for this application the constructive OHL-FNN

is not generally as robust as expected to the additive noise residing in the images.

5.2.1 Constructive OHL-FNN for image compression

In NN-based image compression the image of size L x L that is being compressed
is first divided into square blocks of equal size M, x M,. Each square block is then
arranged into a vector of dimension [x 1 (I = M) that will be fed to the neural
network as an input training pattern. All such vectors are put together to form
a training matrix X of size I x P, where P is the number of square blocks, i.e.
P = L?/M?. The target matrix D for the neural network is considered to be the
same as the input matrix X. The schematic of a OHL NN-based image compression

is shown in Figure 5.2.

OHL FNN for compression
Digital image Mb

-+ + FHEHMo -

Figure 5.2: A schematic for OHL-FNN-based image compression.

To improve the quality of compression and/or training performance, the input

patterns to the neural network are normalized by one of the following rules:
i = U!/Una (5.1)

114

gl = 1- Wi Une (5.2)

where 7/ is the normalized i-th element of the j-th input vector, U7 is the gray-level
value of the original pixel, and Un, is the largest possible gray level of the input
image being compressed. If one uses (5.1), “logsig” functions can be used as the
activation function of the hidden units. The “tansig” functions are selected as the
activation functions when one adopts the expression (5.2). In this chapter, we will
use the normalization governed by (5.1). The output of the k-th hidden unit for the

j-th input pattern is now expressed by

. [.
d=h (Z Wil + b:,k) (5.3)
i=1

where wy;, b.x and f, are the input-side weights, bias and activation function of
the k-th hidden unit, respectively. As discussed above the activation function fi, in
general, may be selected as a logsig function. The output of the o-th output node

will now be given by

. n .
ygx-l,a = f2 (z Uy,ngn + by,o) (54)
m=]

where vy m, by, and f, are the input-side weights, bias and activation function of
the o-th output node, respectively, n is the number of hidden units of the current
network, and f, can also be a nonlinear activation function, but linear type output
activation functions will simplify both network training and network implementa-
tion.

The correlation-based objective function for input-side training of the n-th

hidden unit is considered as

I yp _ _
Jinput = z Z(evjt—-l,a - e-n—l.o) (fi’ - fl.) (5-5)
o=l |j=1
where
e1jt—1.a = yi-l,a - dZ (5-6)

115

is the output error at the o-th output node when there are n — 1 fixed hidden units
in the network.
The output-side training will be performed corresponding to the following

summed square error criterion

J output =

| —

I P . N2
g;(yﬁ.o—dz,) : (5.7)

5.2.2 Experimental results

First, we provide two definitions for quantifving the measurement of the quality of
images reconstructed from the network output. The first is the peak signal-to-noise

ratio (PSNR) defined by

P x I x (255)* -
PSNR = 10lo il (5.8)
glo (g:l ZjP:I(y.']‘so - dz)-)

and at times the global signal-to-noise ratio (SNR) defined by

. Target image variance .
SNR = 10log - . (3.9)
N (# Z£=[2;:1(!["%0 - dg)Z)
may be used.
The second is the compression ratio p that is calculated according to
LxL
p = a (5.10)

nxP+nxI+I+1
where the first term in the denominator is the number of the outputs of the hidden
layer with respect to all the input patterns, the second and the third terms are the
number of the output side weights and biases, and the final term 1 is the overhead
(Umaz) due to the image normalization. Note that in (5.10) it is assumed that all
the above-mentioned numbers are assigned with the same number of bits.

There are two possible approaches that one may adopt to compress an image.
The first approach is to train a network corresponding to each single image that

will be compressed and then transmitted. This approach is clearly simple in its

116

compression policy. Network training is performed for each new image. However,
this may give rise to some serious problems with the training cost when this approach
has to be used in real-time applications. The compression ratio in this case may be
evaluated according to the definition (3.10).

The second approach is to train a network corresponding to a series of images
with “similar” statistics at first, and then transmit the output of the hidden layer
only for a new presented image. Given that the network for compression task is
already trained in advance (off-line), the problems of real-time training and con-
vergence will not be present. However, images that have not been presented to
network training might have different degrees of “similarities” to those used in net-
work training. These different degrees of similarities could significantly influence and
deteriorate the qualities of the reconstructed images. Moreover, a new image that is
significantly “different” from those used during the network training could result in
a severe quality degradations. To address this problem, a pre-processing procedure
is required to monitor and determine the statistics of the new images for quantifying
the degree of similarities between images (refer to Section 5.3 for the definitions of
the similarity between two images). For instance, histogram or correlation between
the new image and the image that has already been used to train the network can
be used. If the correlation between the two images is large, the general idea is that
there is no need to retrain the network, if on the other hand the correlation is not
“sufficiently” large and not “too” small as well, the network may be retrained with-
out a change in its structure to represent the new data, and finally if the correlation
is too small, one then would need to retrain the network completely, i.e. to retrain
both the weights and the structure of the network simultaneously. The compression

ratio in this case may be evaluated by the following expression

LxL

TxPrl (3.11)

p:

Two familiar images, the Girl and the Lena, as shown in Figure 5.3, are used

117

in our experiments. Input-side weight pruning are also invoked in these experi-
ments. Using the second approach (off-line) for image compression (as described
above), the input-side weight pruning will result in a reduction in the number of
input-side weights, and therefore reduce the implementation cost. To see the rel-
ative performance of the constructive NN-based compression technique, the PSNR
of a2 BP-based network having the same number of hidden units as the evolving
constructive network solution is also worked out. It should be noted that the whole
network is re-trained each time a new hidden unit is added to the network in the
BP-based training.

Two typical results are shown below. The first result is the Girl image that
is used for training the network, and the second result is the Lena image which is
used to test the generalization capability of the trained network. Since the initial
weights influence the resulting network in a significant manner. ten (10) runs have
been performed to make a statistical performance evaluation. Both images Girl and
Lena are of size 512 x 312. The block size in this case is selected as 4 x 4. The
number of hidden units is increased from 1 to 10. The PSNR's for the training
and the generalization are shown in Figure 5.4, respectively. The number of pruned
weights is shown in Figure 5.4(c). Clearly the network trained with weight pruning
applied has smaller number of weights compared to the standard networks but it
vields almost the same PSNR. Note that it is much easier and more efficient to trade
off between the compression ratio and the quality of reconstructed image using the
OHL constructive network as compared to the conventional BP-based network. This
is due to the fact that the PSNR of the constructive OHL depends closely on the
number of hidden units each time a new hidden unit is added to the active network,
which allows the user to trade off between the PSNR and the compression ratio
as the network training evolves. The reconstructed and the generalized images are

shown in Figures 5.5 and 5.6, respectively.

118

From Figures 5.4(a) and (b), one can empirically specify the relationship be-
tween the number of hidden units and the PSNRs of reconstructed and generalized
images. The above relationship can be arranged into an expression relating the
bit/pixel and the PSNRs by calculating the bit/pixel corresponding to the number
of hidden units (n), according to

nx P
LxL

bit/pizel ~ R

where R(= 8 bits/pizel) is the bit rate of the original image. In other words, by
integrating the results from Figures 5.4 and the above equation, one can simply

obtain the plot of PSNRs as a function of the bit/pixel.

(a) The Girl (size 512 x 512) (b) The Lena (size 512 x 512)

Figure 5.3: Two original images used in the experiments.

119

(b) Generalization PSNRs (The Lena
image)

s]
v v
o

8
v

Crsmnsative resvis! of puavet wegun

4 3 . L] . L4 L] [} w
Aot of NSSh Wi

(c) Cumulative number of pruned
weights

Figure 5.4: PSNRs for (a) training and (b) generalization, (c) the cumulative number
of pruned weights.

120

(a) Constructive training with pruning (b) Constructive training without
pruning

(c) BP-based network training

Figure 5.5: Reconstructed images of the Girl achieved by three networks with 3
hidden units trained by the three respective approaches.

121

(a) Constructive training with pruning (b) Constructive training without
pruning

(c) BP-based network training

Figure 5.6: Generalized images of the Lena by a network of 3 hidden units trained
by the Girl image and the three corresponding training approaches.

122

5.2.3 Influence of quantization effects

In the proposed technique, the amplitude-continuous output of the hidden layer for
a trained or generalized image is to be transmitted in digital form. This requires
quantization. The bite rate (R) here is 8 bits/pixel or sample. Let z; and Yky
k=1,2,---, L, denote the decision levels/values and representation levels/values
of a quantizer, respectively, where L, = 2% is the number of quantization steps. For

a uniform quantizer, we have

b= = A k=120 L1 (5.12)

Trer — Ik = A; for finite Ty, Trsy

where A is known as the quantization step size. The actual mapping between z and

y represented as

y = Q(z) (5.13)

is known as the quantizer characteristics. The quantization error is also defined as
g = r-Q(z) (3.14)

The characteristic Q(z) can be of midtread or midrise type. depending on whether
zero is one of the output levels or not. If the data to be quantized represents a
uniform probability distribution, the uniform quantizer will be an optimum selection
in terms of the quantization error variance. On the other hand if this is not the case,
a non-uniform quantizer has to be used.

In this section a typical non-uniform quantizer, such as the pdf-optimized
quantizer [84] is considered for comparison purposes. Non-uniform quantization
can be achieved by first compressing the signal r using a non-uniform compressor
characteristic c(-), then quantizing the compressed signal ¢(z) emploving a uniform
quantizer, and finally expanding the quantized signal using ¢~!(-) which is the inverse

of the compressor ¢(-). This is known as the companding technique (compressing and

123

expanding). Searching for an optimal compressor characteristic ¢(-) is the major task
in designing a non-uniform quantizer. For high bit rate applications where R and,
therefore L,, are both sufficiently large, an approximate compressor characteristic

c(+) can be derived for the pdf-optimized nonuniform quantizer as

Copt(Z) = Tmaz [/ \/——dx] [/zm: \/——dx] (3.13)

where p(-) is the pdf of the data to be quantized. and z,,,; is the upper bound of z.
Given Cope(z) uniform decision levels kz g, /Lgik =1,2,---, L, the corresponding
optimum decision level £ = z; o, can be obtained using the above expression.

In our experiments, the output of the hidden units are quantized, where R =
8,L, = 256, and Tpme; = 1. The Girl image is used to train the network, while
the Lena image is used for network generalization. The patch size is 4 x 4 as
before. Below, we show the pdfs of the hidden layer outputs for the constructed
networks having different number of hidden units for the Girl image (Figure 3.7).
Clearly, as the number of hidden units increases, the pdf behaves more abnormal
(in other words there is more deviation from the uniform probability distribution).
Interestingly, opposite to one’s expectation, these pdfs all show non-uniform and
non-Gaussian distribution forms.

Three cases are now considered: no quantization, uniform quantization, and
pdf-optimized quantization. The PSNRs of the three cases for the trained Girl
image are evaluated and are compared and plotted in Figure 5.8. It is clear that
the pdf-optimized quantization results in almost the same PSNR as that of the no
quantization case, implying that the pdf-optimized quantization makes little, if any,
PSNR degradation. The pdf-optimized quantization works better than the uniform
quantization due to the non-uniform pdf property of the data. The performance
advantage of the pdf-optimized over the uniform quantization in this experiment is
about 0.1 [dB] at the earlier stages of network training, and is increased to around
0.5 [dB] as the network grows with more hidden units. This is due to the fact that

the pdf of the data becomes more deviated from the uniform pdf as more hidden

124

units are added to the network and more data needs to be quantized.

From Figure 5.8 one can also observe that the difference between the PSNRs
obtained without quantization and by the uniform quantizer increases as the num-
ber of hidden units increases. However, the PSNR of the pdf-optimized quantizer
stay close to the PSNR obtained without quantization regardless of the number of
hidden units. Therefore, one may conclude here that the uniform quantizer behaves
more abnormally as more hidden units are added to the network. Furthermore, the
pdf-optimized quantizer behaves excellently even when the number of hidden units
increases and the pdf becomes more abnormal.

[t should be noted that PSNR variance of 0.5 [dB] over the entire image re-
sults in an almost undetectable difference for a human vision system. When putting
the proposed NN-based technique into real applications, the uniform quantizer may
be chosen if one considers both its simplicity and its acceptable PSNR variance in

comparison with other methods.

5.2.4 Comparison with the baseline JPEG

In this section the proposed constructive compression technique is compared with
the most commonly used still picture compressor JPEG. Comparison is made in
terms of the PSNRs of the reconstructed images as a function of the compression
ratio.

The Girl image is first used to train the constructive QHL-FNN. Reconstructed
images for different number of hidden units (in effect different compression ratios)
are saved for subsequent PSNR evaluation during the constructive training process.
The reconstructed images are obtained by quantizing the output of the hidden layer
by using both the uniform and the pdf-optimized quantization schemes. To make
a fair comparison with the JPEG algorithm, the compression rate of the quantized

hidden-layer output by using the PSNR-lossless Huffman coding is incorporated into

125

-
3

»
%
-
¥

ot

Probability density

Probability density

s . [(XY [X] 3] [3

3 LY [N} 1. LR i8] LY 3t s 1.7
Qutput of the hidden layer Qutput of the hidden layer

(a) One hidden unit (b) 5 hidden units
'_ |

[
T [% [23 [NY ENY [} e 10 [N] 13

ar
Output of the hidden layer

(c) 10 hidden units

Figure 5.7: pdfs of hidden layer outputs for the constructive OHL network with
different number of hidden units.

PSNR (dB)

c 20 Quantizaticn

-=~==<- uniform quanzization

pdf-cprimizad quansizatien

k3 3 . L] . hd [} A i

nurker cf hidden units

Figure 5.8: PSNRs of the trained Girl image for the three quantization settings.

the total compression ratio for the trained constructive OHL-FNN.

The baseline JPEG images are constructed using a free image tool for similar
compression ratios obtained by the constructive OHL-FNN. The PSNRs of these
images are evaluated by simply comparing them with the original image.

The PSNRs associated with the JPEG scheme and our technique are plot-
ted in Figures 5.9 and 5.10 for the networks with and without input-side weight
pruning, respectively, as a function of the compression ratio. It is seen that our
technique yields higher PSNRs for both “low” and “hight” compression ratios, and
comparable PSNR for “moderate” compression ratio, when compared to the JPEG
scheme. It can also be concluded that our technique works as well as or even bet-
ter than the JPEG, not considering the significant generalization capabilities that
our constructive OHL-FNN possesses. Furthermore, it appears that the uniform
quantization scheme is more useful than the pdf-optimized quantization scheme as
far as the overall performance of our proposed technique is concerned. This implies

that combination of uniform quantization and Huffman coding schemes performs

127

better than the combination of pdf-optimized quantization and the Huffman coding

schemes. In addition, the former combination does also require less computational

resources.
:4 v m v
" v o JPEG | " . a JPEG
o Uniform quantization e\‘ Uniform quantization
np L mee- pdf-optimized quantization 4 nh Sy mwe=e pdf-optimized quantization

=
v
S
v

PSNR {48}

PSNR (dB)

[Ty S
3

1] ¢ 4 3 .
Compression ratio

Figure 5.9: Comparison of the PSNRs Figure 5.10: Comparison of the PSNRs
of reconstructed Girl images obtained of reconstructed Girl images obtained

by our proposed technique with input- by our proposed technique without
side weight pruning and the JPEG input-side weight pruning and the
scheme. JPEG scheme.

5.2.5 Generalization capability of the constructive OHL-
FNNs

The constructive OHL-FNNs are found to be generally quite cost-efficient and to
produce reasonable performance results as demonstrated in previous chapters of this
thesis and in the literature. However, their generalization capabilities in the context
of image compression has not yet been investigated systematically. In this subsection
we discuss our experimental results regarding this issue and provide some useful and
insightful observations. The benchmark images used in our experiments are still the

Lena and the Girl images. The Girl image is used to train the network, while the

128

Lena image is used to test the generalization ability of the trained network. Noisy
images are constructed by adding Gaussian white noise to the original clean images.
The selected SNR is 10 [dB] for all the images.

In our experiments, the following three scenarios are considered for the con-

structive network training:

Case T-I: Noiseless input image and noiseless target image
This is the case that was considered in the previous Subsection 5.2.2 and where

generalization was performed on the noiseless image.

Case T-II: Noisy input image and noisy target image
This case may be viewed to more relevant in practice, since images are generally

corrupted by noise to a certain degree.

Case T-III: Noisy input image and noiseless target image
This case is considered to simultaneously assess the constructed network for

its compression performance and noise reduction capabilities.

For each of the above training cases, the following three corresponding gener-

alization cases are considered:

Case G-I Noiseless input image and noiseless target image
Case G-II Noisy input image and noisy target image

Case G-III Noisy input image and noiseless target image

Figures 5.11, 5.12 and 5.13 depict the PSNRs of the reconstructed Girl image
subject to the above three network training cases, as well as the PSNRs of the
generalized Lena image obtained from the trained network and subject to the above

three generalization cases. The following comments and remarks are now in order:

C1

C2

C3

C4

C5

In all the three training cases the PSNRs of the reconstructed images always
improve each time a new hidden unit is added to the existing network. This

is one of the interesting properties of the constructive OHL-FNN.

In all the three training cases the PSNRs of the generalized images corre-
sponding to noiseless input improve as new hidden units are added to the
existing network. This suggests that the constructive OHL-FNNs trained by

either noiseless or noisy images generalize well to the noiseless images.

In Case T-I, the noiseless image is generalized with very good quality (Case
G-I), while the generalization PSNR for the noisy image improves little as the
increase of the number of hidden units is increased in Case G-I Fi urthermore,
in Case G-III, with the increase of the number of hidden units, the PSNR
decreases unexpectedly, which implies that the network trained using noiseless

image is not necessarily robust to additive noise.

The constructive OHL-FNN trained using both noisy input and target images
(Case T-II) does not demonstrate any ability in filtering the additive noise of

the input image used for generalization.

In Case T-IIL, the network is trained using noisy input and noiseless target
images. Obviously, the constructive OHL-FNN can remove the noise in the
input image to some degree, however the increase in the number of hidden
units improves rather slightly the reconstructed image PSNR. This implies
again that the constructive OHL-FNN is not robust to input additive noise,
and pre-processing may be needed to remove the additive noise before the

constructive OHL-FNN can be used for image compression.

130

Training (Casa T-f)

PSNR |dB)

20 =~ o . _ Generalization (Case G-ill)
.

i A U

*

[L EE Rl S e - I

Generalization (Case G-i) }

{

|

] 1 k] 4 [} 14 * .
number of hidden units

Figure 5.11: The PSNRs of the re-
constructed Girl image and generalized
Lena image for network training Case

T-I and the three generalization cases
G-I, G-II, and G-IIL

% Training (Case T-i)

xb Generalization (Case G-I 3

T [o . Generalization (Case G-itf)
he o

S

-
- -
........

numbaer of hidden units

Figure 5.12: The PSNRs of the re-
constructed Girl image and generalized
Lena image for network training Case

T-IT and the three generalization cases
G-I, G-II, and G-III.

i
Generailzstion (Case G-i)
Y Training (Case T-i) \
g/ - .
E. T
‘a:_ P I e R . B . |
i Generalization (Case G-ill)
nb
p o el - LR i o R SR kY SR
kg Generalization (Case G-il)
) 2 3 . 5 [r L 3 i] <
number of hidden units

Figure 5.13: The PSNRs of the re-
constructed Girl image and generalized
Lena image for network training Case
T-III and the three generalization cases

G-I, G-II, and G-III.

131

5.3 Moving image compression using a construc-

tive OHL-FNN

A number of techniques have been proposed to date [36], [77]-[80] (also see the
references therein) for the use of neural networks for moving image (video sequence)
compression. However, to the best of our knowledge, constructive type FNNs for
moving image coding have not yet been considered in the literature.

In the previous section, the still image Girl is used to train a constructive
OHL-FNN. The resulting trained network is then used to compress the Lena image
which was not seen by the network. It was found that the PSNR of the reconstructed
Lena image (without noise) is quite high, implying that the proposed technique may
be considered for use in certain practical applications. Although, the two images
appear visually different, they may actually have some inherent features that are
similar on the block basis. This suggests that a certain similarity measure on the
block basis may make it possible to use the network that was trained on the Girl
image for compressing the Lena image. This motivates one to propose that in moving
image compression, one may use a certain number of frames to train a network and
then use the resulting trained network to compress some other frames as long as
it can be established that latter frames are “similar” to the former images. This
has been the key factor in exploring the possibility of using our constructive neural
networks for video sequence compression. It should be noted that as long as the
similarity between the frame(s) used for FNN training and the subsequent frame
is larger than a prespecified value, the latter can be compressed using the trained

network, however the temporal redundancy between frames is not exploited here.

5.3.1 Similarity definitions of two images

Suppose a constructive OHL-FNN is trained on a single frame of a moving image

sequence, and this network is now being considered to compress the frames that

132

follow. Naturally, one needs to determine to which degree a given frame is similar
to the frame that was used in network training, and how this similarity is related
to the compression quality in terms of PSNR (which are all related to the general-
ization capability of a given network). Thus, it is imperative that a notion of the
similarity between two images be clearly defined and quantified. This is clearly of
both theoretical and practical importance.

Towards this end, let Z,(i,j), Za(i,j), i=1: N,, J = 1: N, denote two
digital images. They are divided into square blocks of size I, = I, x I.. The number
of blocks will be N, = N, N,/I;. The blocks are then arranged into vectors p,, and
Qm, M =1: Ny, respectively. In the following we present three potential similarity

measures, and subsequently apply the most appropriate one to our application.

Similarity measure I : This definition is motivated from the standard notion of

correlation, and is expressed as follows:

S SN) -) Zali) —)

§ = 1=t = (5.16)

where

Ne N
Uy = \/ ZZZ (i, 7), (5.17)
"‘ Ci={ j=I
Ne N
2 = — ,Zzzoz] (5.18)
‘V"‘ch-lJ_
Ny Ne
Zy()% 5.19
'V'rlvcg:]z_;(1 1,] : (0)
N: N

V, = N N =33 (Z2(4,5)) (5.20)

€i=] j=1

Vi =

In this definition, the entire image is treated as a stationary stochastic wave-
form. The quantity S determines the similarity of the two images globally,
but is not able to characterize their similarity locally and on the block basis.

Although, the definition is simple in form, but quite intensive in calculations.

133

As an illustration the similarity between the first frame and the 60th frame of
a video sequence “Football” (see Figure 5.17 for the original images) is 0.023,
and the similarity between the Girl and the Lena images is —0.108. This
implies that the above two sets of frames are quite different from each other
not only in appearance but also according to this definition. However, it has
been shown experimentally that the network trained using the 1st frame of
the Football sequence is capable of compressing the 60th frame quite well (see
Section 5.3.2 for details). This suggests that the above measure may not be

quite appropriate for a NN-based image compression application.

Similarity measure II : In this case the similarity is defined using a block-based

average correlation according to

where

72 (Pa() = p,)(Qm (4) = ptq,0)

Cm = max{ —=! (5.22)
n \/L;n‘/l]m
1 &
= — 5.2
Hpn [bgpn(l) (3.23)
1 N
Han = 72.am(i), (5.24)
6:’:1
V;)n = I Z: pn I-‘pn 7 (5 25)
x—l
Vo = —Z (Am (i) — pg,n)* (5.26)

x-l
Note here that the size of images Z; and Z, may be different as long as their
block size is the same. That is to say, two images with different sizes may
appear to be similar on the block basis, and can therefore be compressed by

the same NN. For each vector qy, in image Z,, a search is performed among all

134

the vectors of image Z; to determine a vector that yields the largest correlation
with it. The averaged maximum correlation values of all the vectors in Z, is

then defined as the similarity between Z, and Z,.

Using this definition, the similarity between the first frame and the 60th
frame of the Football video sequence for a block size of 4x4 is 0.914, implying
that both images are quite similar on the block basis (note that the similarity
between the 60th frame and the first frame may have a different value in
this case). The similarity between the Girl and the Lena for the same block
size of 4x4 is 0.880. This could explain why the network trained on the 1st
frame (block size 4x4) can also generalize or compress the 60th frame with an
acceptable PSNR as shown in the next section. Upon closer inspection, one
realizes that the computational complexity of this metric due to its intensive
search routine, large number of multiplications and sorting operations involved
is quite excessive. This is a major drawback of the definition. which has led

us to the following modification.

Similarity measure III : This definition is presented to overcome the limitations

of the previous metric as follows:

1 &
S==Y cn (5.27)
“'0 m=1
where
Emin(m) . . -
= l- e = l 5.2
Cm 1 LA R = 8 bits/pizel, (5.28)
Iy
Emin(m) = mgn{Z |Pa(i) —qm(i)l}- (5.29)
=1

According to this definition, the number of required multiplications is substan-
tially reduced as compared to measure II, while the essence of the similarity
introduced in measure II has been preserved. Therefore, this measure can be

evaluated with much less computational load, and hence may be applied in

135

practice. The denominator of the RHS of (6.28) may be replaced by ¥, q.(i)
as an alternative normalization factor. Using this measure, the similarity be-
tween the first frame and the 60th frame from the Football video sequence is
about 0.978, while the similarity between the Girl and the Lena is about 0.983.
These values are higher than the similarity values obtained by measure II (the
similarities between the 60th frame and the 1st frame, and between the Lena
and the Girl may also yield different values).

To summarize, the similarity measure III seems to be the most suitable metric
for determining the similarity of two images and has also a much lower complexity
as compared to measure II. In video coding, this similarity may be used to detect
a scene change, and therefore to automatically restart the network training. Fur-
thermore, the PSNR of a generalized image can not be determined simply by the
similarity between the images used for network training and generalization, although
the similarity between the two images is expected to play an important role in the
PSNR evaluation of the generalized image. This is due to the fact that the structure
and connections of the trained network affect to a significant degree this evaluation
process. It is not difficult to see that the PSNR of the generalized image may be
evaluated by the similarity and the trained network. However, we have not yvet found
an analytical approach for performing this evaluation.

It should be pointed out that there is an easy and intuitive way to determine
how similar a frame used for network training is to a new subsequent frame: Input
the new frame to the trained network, and evaluate the PSNR of the network output.
The decrease of the PSNR from that of the reconstructed image from training may
serve as an indication of the similarity of the two images. This way although simple
and direct in nature, however is only a brute force method and tells us a priori
quantitatively little about the similarity between any two images.

Before presenting the experimental results of our technique for the Football

video coding, some more results are provided to show that for the same trained

136

network, different PSNRs result for different generalized images whose original pic-
tures have different similarities with respect to the image used to train the network.
Specifically, the Girl image is used to train a network, but this time the Lena and
the “Lake”(512 x 512) are used to check the generalization ability of the resulting
trained network. The Lake image is a natural landscape and clearly different from
a human picture. The original image of the Lake is given in Figure 5.14. The Lake
is of the same size as the Girl and the Lena (512 x 512). The similarities between
the Girl and the Lena and the Lake are 0.983 and 0.972, respectively, for a block
size of 4 x 4. The similarities between the Girl and the Lena and the Lake are 0.969
and 0.950, respectively, for a block size of 8 x 8. It is clear that the larger the block
size, the smaller the similarity. The PSNRs for the reconstructed Girl image and the
generalized Lena and Lake images are shown in Figures 5.15 and 5.186, respectively.
It can be observed from these two figures that having different similarities would
result in different generalization PSNRs. Furthermore, the larger the block size, the
smaller the similarity and consequently the lower the PSNRs for the reconstructed

and generalized images.

5.3.2 Experimental results

The constructive OHL-FNN is now used to compress the a video sequence known
as Football. The first frame (see the original image in Figure 5.17) is used to train
the network, and the subsequent frames (see examples in Figure 5.17 for the original
20th, 40th, and 60th frames) are then to be compressed by the trained network.
First, the similarities of the Football sequences are determined by invoking
measure [II, specifically to calculate the similarities between the first frame and the
subsequent frames. Since the block size is expected to affect the similarity greatly, a
comparison for using different block sizes is also made and the results are shown in
Figure 5.18. From this figure it can also be seen that the larger the block size, the

smaller the similarity measure. This is consistent with the observation that smaller

137

Figure 5.14: Original image of the Lake

(size 512 x 512).

Y QR S—

Figure 5.15: The PSNRs of the recon-
structed Girl image and the generalized
Lena and the Lake images, with the
block size of 4 x 4. The similarities be-
tween the Girl and the Lena and the
Lake are 0.983 and 0.972, respectively.

138

3) . .
Number of hidden units

Figure 5.16: The PSNRs of the recon-
structed Girl image and the generalized
Lena and the Lake images, with the
block size of 8 x 8. The similarities be-
tween the Girl and the Lena and the
Lake are 0.969 and 0.950, respectively.

blocks generally have higher possibility of being similar to each other than larger
blocks. It also follows that the similarity, although varying, does indicate small
changes within a scene. This implies that the frames within the same scene may be
compressed with a similar quality (PSNRs) by the same trained network.

The PSNRs of the reconstructed and the generalized (compressed) images are
depicted in Figures 5.19 and 3.20, where the block sizes are selected as 4x4 and 8x8,
and the results with and without pruning are presented as a function of the number
of hidden units. [t can be concluded from these figures that the trained network
can successfully compress all the frames that follow the first one. Also, it is shown
clearly that the results with pruning is almost the same as those without pruning,
where the number of the network input-side weights is reduced by approximately
35% through pruning on the average.

The results for the block size of 16x 16 were irregular due to in part the lack
of adequate training samples, and are not shown here. The constructive network
did not work well for this case as the PSNR of the reconstructed images improved
very little or even dropped each time a new hidden unit was added to the network,
although the quickprop algorithm for the input-side training converged quite well.
Block overlapping technique may be used to alleviate this problem. Furthermore, a
larger block size means a larger number of input-side weights, which could make the
network training more likely to get trapped in some local minimum. Increasing the
number of candidates may lead to some improvement in this case, at the expense of
significantly increasing the amount of computational time.

Next in Figure 5.21 we depict four images, namely the reconstructed image
of the first frame that was used by the constructive OHL network for training,
and the generalized images of the 20th, 40th and 60th frames by the same con-
structive OHL FNN (see Figure 5.17 for the original images). It is seen that the
reconstructed/generalized images are very similar to their original pictures.

Finally, results are now shown to investigate the generalization capability of

139

(a) 1st frame (original)

(c) 40th frame (original) (d) 60th frame (original)

Figure 5.17: Original images of the 1st, 20th, 40th and the 60th frames from the
Football video sequences (688 x 480 npixels, bite rate R=8 bits/pixel).

140

e99-
L
h Block size 4xd
g;ﬂﬂ-':
3 ’
E '
;cm-;"
?. I‘..‘_‘._'Bl'ocksluaxl
- - - -
ic%-; e e - m—eee te e >
g L}
-)
B yest
So. _ Block size 16x18
l..=I>~
°--%- g ____
394 o""'-o---.

i . i

Frame number

Figure 5.18: Block-based similarity (III} of the subsequent frames with respect to
the 1st frame of the Football video sequences, for different block sizes.

the constructive OHL-FNYN used for video compression in the presence of additive
noise. The first frame is now assumed to be noisy (SNR = 10 [dB]), and is used as
the input and target images for network training. The subsequent noiseless frames
are now to be generalized by this network. Figure 5.22 shows the PSNRs of the
reconstructed or generalized images as a function of the frame number for different
number of hidden units. From this figure it follows clearly that (i) the PSNR of
the reconstructed image for the first frame improves very slowly as the number of
hidden units increases, implying that the constructive training is not effective due
to the additive noise in the input and target images, and (ii) the PSNRs of the
generalized images for the subsequent frames also improve slowly as the number
of hidden units gets larger. Figures 5.23 and 5.24 depict the noisy images for the
first frame used for network training and the generalized image for the 20th frame,
respectively. Despite the noise in the image for training (Figure 5.23), the trained

network can still generalize the 20th frame quite well, although not as good as the

141

with priaiag

PSHR of reconstiucied image

Ne. ¢! frane

Figure 5.19: The PSNRs of the recon-
structed or generalized images vs. the
frame number for different number of
hidden units, with block size of 4 x
4. The 1st frame was used for network
training and other frames were gener-
alized by the trained network. The
pruning method B described in Chap-
ter 2 was used with pruning level=10%.
The compression ratio is approximately
(16/n) : 1.

142

wita grumng

\ e~ wiIBsut pruning

Juazer of midden e 8 e § {

FENR ul seconstiuct ed image

Ng. 3t fraze

Figure 5.20: The PSNRs of the recon-
structed or generalized images vs. the
frame number for different number of
hidden units, with block size of 8 x
8. The 1st frame was used for network
training and other frames were gener-
alized by the trained network. The
pruning method B described in Chap-
ter 2 was used with pruning level=10%.
The compression ratio is approximately
(64/n) : 1.

(c) 40th frame (d) 60th frame

Figure 5.21: Reconstructed 1st and generalized 20th, 40th, and 60th frame of the
Football video sequence. The 1st frame was used to train a constructive OHL-FNN
(block size = 4 x 4, 5 hidden units, network training with pruning method B).

143

network that was trained by the input image without noise (see Figure 5.21(b) for
a comparison). In summary, it can be concluded that the constructive QHL-FNN

is not robust to additive noise when used for moving image compression.

k.t T

Number of hidden units n = 4, §

%

g

H

4
.

PSNR of reconstructed image
- ~
a]

4 e x 0 @ 5 «©
Frame number

Figure 5.22: The PSNRs of the reconstructed or generalized images vs. the frame
number for different number of hidden units, with block size of 4 x 4. The 1st frame
was used for network training and other frames were generalized by the trained
network. The pruning method B described in Chapter 2 was used with pruning
level=10%, with 38% input-side weights pruned. The compression ratio is approxi-
mately (16/n) : 1.

Before closing this section, the following comments are in order:

(i) To increase the compression ratio achievable by our technique for video com-
pression, one may use the specific characteristics inherent in the video sequence
being considered. Generally speaking, in the same scene, only a number of
blocks represent and dominate movement from one frame to another. There-
fore, the blocks containing little or no movement in a frame need not to be
transmitted. To determine and achieve this, one needs to compare the blocks
of the present frame that is being compressed with the corresponding blocks

of the previous frame(s) used for network training. The combination with

144

Figure 5.23: The first frame with ad- Figure 5.24: The 20th frame (Football
ditive noise (SNR=10 [dB]) from the video sequence) generalized by the net-
Football video sequence, which was work (5 hidden units) trained on the
used for network training. 1st frame with noise.

some proper inter-frame compression techniques, the compression ratio of the
constructive OHL may be significantly increased. See [55]-[57] and references

therein.

(ii) When the proposed technique is to be used for compression of moving image
sequences with successive different scenes of different nature, one may train
a series of OHL-FNNs (OHL-FNNs banks) off-line to cope with the different
scenes in real-time. This idea is somewhat similar to the well-known vector
quantization (VQ) scheme. In this way, for a given scene, the OHL-FNN
that captures the best PSNR may be selected and used to compress all the
subsequent frames in the scene. Clearly, the comment (i) above can also be

integrated into the concept of OHL-FNNs banks.

145

5.4 Facial expression recognition using a construc-

tive OHL-FNN

5.4.1 Introduction

The computer-based recognition of facial expressions has been an active area of
research in the literature for a long time. The ultimate goal in this research area
has been the realization of intelligent and transparent communications between hu-
man beings and machines. Several facial expression recognition methods have been
proposed in the literature, see for example (85]-[88] and the references therein.

A well-known facial action coding system (FACS) was developed by Ekman(83]
for facial expression description. In the FACS, the face is divided into 44 action
units (AUs), such as nose, mouth, eyes. etc. The movement of muscles of these
feature-bearing AUs are used to describe any human facial expression. This method
requires J-dimensional measurement and may thus be too complex for real-time
processing. To alleviate the drawbacks with the original FACS, a modified FACS
using only 17 relevant AUs was proposed in [86] for facial expression analysis and
synthesis. However, 3-dimensional measurement is still needed. The complexity
of this modified FACS is reduced when compared to the original FACS, however
certain information useful for facial expression recognition may be lost. In recent
vears facial expression recognition based on 2-dimensional digital images has received
a lot of attention by researchers. In {87], a radial basis function (RBF) NN is
proposed to recognize human facial expressions. The 2-dimensional discrete cosine
transform (2-D DCT) is used to compress the entire face image and the resulting
lower-frequency 2-D DCT coefficients are used to train a OHL-FNN in [88]. Very
promising experimental results are also reported in [87, 88].

The NN-based recognition methods are found to be particularly promising

[87, 88], since the NNs can easily implement the mapping from the feature space of

146

face images to the facial expression space. However, determining a proper network
size has always been a frustrating and time consuming experience for NN develop-
ers. This is generally dealt with through long and costly trial-and-error simulations.
Motivated by these limitations and drawbacks, in this section we propose to use the
constructive FNNs to overcome this problem. The constructive FNNs can system-
atically determine a proper network size required by the complexity of a given prob-
lem, while reducing considerably the computation cost involved in network training
when compared with the standard BP-based training techniques. We are particu-
larly interested in the constructive OHL-FNNs considered in Chapter 2, which are
simple in structure and present fairly good performances in many applications such
as regression problems and image compression [45, 89, 90].

In this section, a new technique for facial expression recognition is proposed
which uses the 2-D DCT over the entire face image as a feature detector and the
constructive OHL-F'NN as a facial expression classifier. An input-side pruning tech-
nique proposed in [89] is also incorporated into the constructive learning process to
reduce the network size without sacrificing the performance of the resulting network.

This technique is applied to a database consisting of images of 60 men, each
having 5 facial expression images (neutral, smile, anger, sadness, and surprise).
Images of 40 men are used for network training, and the remaining images of 20 men
used for generalization and testing. Confusion matrices calculated in both network
training and testing for 4 facial expressions (smile, anger, sadness, and surprise) are
used to evaluate the performance of the trained networks. It is demonstrated that the
best recognition rates are 100% and 93.75% (without rejection), for the training and
testing images, respectively. Furthermore, the input-side weights of the constructed
network are reduced by approximately 30% using our pruning method (89, 90].
In comparison with the BP-based recognition method [88], the present technique
constructs OHL-FNN with very fewer number of hidden units and weights, while

simultaneously providing improved recognition performance.

147

5.4.2 Application of constructive OHL-FNNs to facial ex-

pression recognition

A: Theoretical background

Figure 5.25 describes the procedure in the application of constructive OHL-FNN to
the facial expression recognition problem. To recognize the facial expressions from a
2-dimensional human face images, one generally needs to establish a feature detector
that can capture the dominant characteristics of the face images, and a classifier
that can categorize the facial expressions of interest. The features detected for each
facial expression must be insensitive and not be influenced by the appearance of any
individual human. Therefore, some preprocessing of the face images is generally
needed. One may first obtain a difference image by subtracting a neutral image
from a given expression image. The difference images are expected to have much
less to do with the appearance of the human whose facial expressions are the subject
of recognition. However, it is still very difficult for the classifier to recognize the facial
expression from the difference images, as the difference image still has a large amount
of data. To facilitate the recognition, one needs to further compress the difference
image in order to reduce the size of the data in a proper way, without losing the
key attributes and features that play important role in the recognition process. The
2-D DCT is frequently used in image compression as one powerful tool for this
purpose. The 2-D DCT can reduce the size of the data significantly by transforming
an image into the frequency domain where the lower frequencies possess relatively
large amplitudes while the higher frequencies have much smaller magnitudes. That
is to say, the higher frequency components can be ignored without significantly
compromising the key characteristics of the original difference image, as far as the
facial expression recognition problem is concerned. The 2-D DCT coefficients of the
lower frequencies capture the most dominant and relevant information of the facial

expressions.

148

Difference <=

g
2
a,
)
=}
Z,
e
g
B

e e e e o o e e

image image image
(L-by-L) (L-by-L) (L-by-L)
2-D DCT .
¥i
Y2
LL| 2D bCT
coefficients YN
{L-by-L)
L

Figure 3.25: Application of the constructive OHL-FNN to facial expression recognition.

149

The 2-D DCT used here is given by

4C(ky)C L 1L-1] T] 0T
Uia(kr, k2) = C(1 Z Y 2(3i,5) cos(ztl)kl cos (27 + L)k ,(5.30)
i=0 j=0 2L 2L
(kl,kg = 0,1,...,L'—1)
1
C(O) = 7‘5, and C(k)=—‘1 fOT k%O.

where Z(i,j) is the gray-level of a pixel of a two-dimensional digital image. A
square (or block) of the lower frequency 2-D DCT coefficients (Ugee(k1, k) : &k =
0,1,---,(My — 1),k = 0,1,---,(Mp — 1)) is rearranged as an input vector x of
dimension [= Mg to be fed to the constructive OHL-FNN. In this section, 4 facial
expressions are considered: smile, anger, sadness and surprise. The target vector is
therefore set asd = {1 00 0]7, (01007, {001 0|7, and [0 0 0 1|7 representing
the expressions smile, anger, sadness, and surprise, respectively.

The input-side training is performed by maximizing a correlation objective
function given in Chapter 2 based on the quickprop algorithm (see also Appendix
A for details). Output-side training is performed by using of the Quasi-Newton
algorithm due to the nonlinearity of the sigmoidal activation function of the out-
put nodes (see also Appendix B for details). The pruning method B developed in
Chapter 2 is used during the network training to reduce the network size. The
constructively trained OHL-FNNs are first evaluated by not only the mean summed
squared error (SSE) but also their recognition rate subject to these facial expression
images that are used during training. The remaining images that are not presented
to the network during training will be used to test the generalization capability of the
trained networks. Furthermore, the confusion matrix used in pattern recognition is
also utilized here to assess the ability of the trained networks to separate the 4 facial
expressions being considered. The decision to select a particular facial expression
category at the output of the network is achieved by the so-called winner-take-all
policy. That is, a given image will be classified to the category whose corresponding

output node yields the maximum output value.

150

B: Experimental results

The constructive OHL-FNN discussed previously in this thesis is applied to a database
that consists of images of 60 men, each having 5 face images (neutral, smile, anger,
sadness, and surprise). This database is already normalized. In the normalization
process, the centers of the eyes and mouth are taken as the reference points, and two
lines: one connecting the centers of the eyes (line A), and the other starting from the
center of the mouth and ending at the middle point of line A (line B) are considered.
An affine transformation is used such that these two lines are orthogonal to each
other in all the images. Furthermore, the length of line B is set to a prespecified
constant value for all the images. All the images in this database are of size 128 x 128
having 256 gray levels (bite rate = § bits/pixel). Smile, anger, sadness, and surprise
are the 4 specific facial expressions of interest. In the simulation experiments, the
images of 40 men are used for network training, and the remaining images of 20 men
are used for generalization and testing. Figure 5.26 shows a set of samples of face
images corresponding to the same man. The facial expression of each face image in
this sample set is quite clear to human vision. These face images are to be used in
network training. Here, we also give another set of face image samples for another
man in Figure 5.27. We see that the facial expression of the fourth image registered
as “sadness” is quite difficult even for human to recognize.

Through numerous simulations it was determined that the block size (M) of
the square of the lower frequency 2-D DCT coefficients used for network training
and testing has a strong influence on the NN performance. Therefore, we conducted
experiments with different block size M. For each M,, 20 runs with different initial
weights were performed to construct 20 OHL-FNNs that have a maximum of 10
hidden units. Their performances were evaluated first by the images used during
network training, and then by the remaining images that are not seen by the trained
networks.

First, 4 figures (Figures 5.28-5.31) for the mean SSEs of training with pruning,

151

Neutral

..

Smile Anger Sadness Surprise

Figure 5.26: Sample of nominal face images from the database.

Neutral
Smile Anger Sadness ? Surprise

Figure 5.27: Sample of face images from the database, with the image registered as
sadness being ambiguous.

152

the mean SSEs of generalization with pruning, the mean recognition rate in network
training, and the mean recognition rate for testing with pruning are presented,
respectively as a function of the block size M, and the number of hidden units.
Similar results are also obtained for the 20 OHL-FNNs trained without pruning.
Clearly. from Figures 5.28 and 5.30 one can observes that the proposed technique
works very well in terms of the training SSEs for all the selected block sizes, and
the training saturates when more than 3 hidden units are added to the network.
Figures 5.29 and 5.31 indicate that networks with less than 2 and more than 6
hidden units will results in poor performance in terms of both generalization SSEs
and recognition rates.

Next, we select the best recognition rates in network training and testing. The
purpose here is to decide the most appropriate block size that leads to the highest
recognition rates during testing. The results are plotted in Figures 5.32 and 5.33. It
is clear that in this database for perfect training the block size needs to be equal to or
greater than 8, while for testing the block size of 12 yields the best results. These are
based on the 20 runs of network training with or without pruning (40 OHL-FNNs).
The best recognition rates obtained during the training and the testing stages with
and without pruning are achieved in the 18-th and 8-th runs, respectively. These
results will clearly vary if one increases the number of runs.

Finally, we take a closer look at the performance of the constructive OHL-FNN
that corresponded to the best block size selected above. In Figures 5.34 and 5.35 we
give the mean SSE for training and testing for the block size M, = 12 that resulted
in the highest recognition rates in the testing stage. The mean recognition rates
during training and testing are also plotted in Figures 3.36 and 5.37, respectively.
The mean accumulative number of pruned input-side weights is given in Figure 5.38.
The recognition rates with respect to the number of hidden units for the two best
OHL-FNNs are provided in Figure 5.39, with one network trained with pruning and

the other network trained without pruning. The confusion matrices during training

153

J

I

i

, MeanSSE(usining)

Number of hidden units

Figure 5.28: Mean training SSEs vs.
the block size and the number of hidden
units (training with pruning (pruning-
level = 0), 20 runs).

s 5 it 3 8 3
H-- A

3
Yommm b dma

Meoan recognition rate (training)

b 1

Figure 5.30: Mean recognition rates vs.
the block size and the number of hidden
units, obtained during network training
with pruning (pruning-level = 0) (20
runs).

154

Moan SSE (testing)

- T A - Y N |

Number of hidden units

Figure 5.29: Mean generalization SSEs
vs. the block size and the number
of hidden units (training with pruning
(pruning-level = 0), 20 runs).

3
]

4

Mean recognition rals (lesting)
%2 s S 4
M b

- Number of hidden units

Figure 5.31: Mean recognition rates vs.
the block size and the number of hidden
units, obtained during testing the net-
works trained with pruning (pruning-
level = 0) (20 runs).

with and without pruning (overiaped)

Maximum recognition rate (training)

Figure 5.32: Maximum recognition
rates vs. the block size obtained during
network training with pruning-level =
0 and without pruning (20 runs).

3

2

3
v

s
T

——— with pruning
without pruning

3
v

Maximum recognition rate (testing)

[y . * .‘Bloclkl ‘lze'.l 1] i3 3 38
Figure 5.33: Maximum recognition
rates vs. the block size obtained in

testing for the networks trained with
pruning-level = 0 and without pruning
(20 runs).

e
[E
. nlr (X1 3 b
|
; i
s r
+ -
3 l .\ E
e s |
g ’ ; IRt +
W e with pruning \l;l' with pruning |
s ; without pruning 'g e N meema without pruning
il L!r i
E 313
o I
!
! S
[N
i
E
-& 3 i . 1) [A . ’ i3 * 13 3 1 . * . . . ' i3
Number of hidden units Number of higden units

Figure 5.34: Mean SSEs for training
of the constructive OHL-FNNs (train-
ing with pruning-level = 0 and without
pruning, 20 runs).

155

Figure 5.35: Mean SSEs for general-
ization of the constructive OHL-FNNs
(trained with pruning-level = 0 and
without pruning, 20 runs).

with pruning
without pruning

Mean recognition rate (iraining)

1 3 H

. L3 it}

L A\] L3 T
Number of hidcen units

Figure 5.36: Mean recognition rates for
the constructive OHL-FNNs obtained
during network training with pruning-
level = 0 and without pruning (M,=12,
20 runs).

Figure 5.38: Mean accumulative num-
ber of pruned input-side weights for the
constructive OHL-FNNs with pruning-
level = 0, M;=12 and 20 runs.

156

3
T

&
T

with pruning
without pruning

Mean recognition rate (tasting)

13 3 H

R
Number of hidden units

Figure 5.37: Mean recognition rates for
the constructive OHL-FNNs obtained
for testing of the networks trained with
pruning-level = 0 and without pruning
(Mp=12, 20 runs).

B
I
amr
g
§7"

by ——— treining with pruning (18=th run}

----- training without pruning (8=in run)

T Numberof higden units tor

Figure 5.39: Recognition rates vs.

the number of hidden units for two
constructive OHL-FNNs yielding the
best recognition rates in testing stage.
These two networks are obtained in the
18-th and 8-th run of network training
with and without pruning, respectively
(My=12).

Table 5.1: Confusion matrix obtained by a OHL-FNN with 6 hidden units trained with
pruning (pruning-level=0, M,=12), for the images used during the network training.

smile | anger | sadness | surprise
smile 40 0 0 0
anger 0 40 0 0
sadness 0 1 39 0
surprise 0 0 0 40

[

mean recognition rate 99.375%

Table 5.2: Confusion matrix obtained by a OHL-FNN with 6 hidden units trained without

pruning (M,=12), for the images used during the network training.

smile

anger | sadness | surprise
smile 40 0 0 0
anger 0 40 0 0
sadness 0 0 40 0
surprise 0 0 0 40

|

mean recognition rate 100.00%

Table 5.3: Confusion matrix obtained by a OHL-FNN with 6 hidden units trained with
pruning (pruning-level=0, M;=12), for the images not seen by the trained network.

[smile | anger | sadness | surprise |
smile 20 0 0 0
anger 1 17 2 0

sadness 0 3 17 0
surprise 0 0 0 20

[

mean recognition rate 92.50 %

Table 5.4: Confusion matrix obtained by a OHL-FNN with 6 hidden units trained without

pruning (M =12), for the images not seen by the trained network.

[smile | anger | sadness | surprise
smile 20 0 0 0
anger 0 19 1 0

sadness 1 3 16 0
surprise 0 0 0 20

mean recognition rate 93.75 %

158

and testing are given in Tables 5.1-5.4 for these two networks with 6 hidden units.

From the above representative experimental results the following comments

are in order;

C1

C2

C3

C4

From Figures 5.28-5.33, it can be noticed that constructive OHL-FNNs trained
with or without pruning are found to be capable of learning the training sam-
ple images considerably well, and recognizing the new expression images in
surprisingly high recognition rates, as long as the block size M, is properly se-
lected. There may exist an optimal block size for the constructive OHL-FNN
which leads to the highest recognition rate during testing. For the database
used in this section, the optimal block size is approximately 12. A significantly

smaller or a larger block size will result in poor recognition performance.

It can be seen from Figures 5.32-5.37, and 5.39 that the network training
with and without pruning results in quite similar performances in terms of
the training and generalizing SSEs and recognition rates. However, invoking
pruning may reduce the number of input-side weights by approximately 30%
resulting in a much smaller network. The OHL-FNNs with 4 to 8 hidden
units are found to have sufficient computational capabilities to represent the

mapping from the feature space to the facial expression space of face images.

Tables 5.1-5.4 show that the confusion matrices corresponding to expressions
“anger” and “sadness” indicate the challenges that the facial expression recog-
nition is faced with when compared to the recognition of expressions “smile”

and “surprise”.

In comparison with the BP-based recognition algorithm shown in [88], the
constructive technique proposed here generates OHL-FNNs with significantly
fewer number of hidden units and reduced number of input-side weights while
simultaneously resulting in improved recognition performance. A OHL-FNN

obtained with block size M; = 12 and a maximum of 6 hidden units yvields a

159

recognition rate that is as high as 93.75% (i.e. 75 expression images are cor-
rectly recognized). This result is better than the best result of 94.7% provided
by the BP-based networks with block size of M, = 16 and 25 hidden units,
and subject to a rejection rate of 5% (see [88]), with actually 72 expression

images correctly recognized.

5.5 Conclusions

In this chapter the application of a constructive OHL network to still and moving
images compression, and facial expression recognition have been considered.

First, the proposed technique has been applied to the compression of two still
images, the Girl and the Lena where promising results were obtained. Influence
of quantization effects of the hidden layer output on the network performance was
also investigated. It was found that the pdf-optimized quantization scheme works
better than the uniform quantization scheme as far as the PSNR of the reconstructed
image is concerned. Comparison of the proposed technique with the baseline JPEG
has also been made. Experiments have shown that the proposed technique has
comparable or even better capabilities as compared to the well-known JPEG scheme.
The generalization capability of the constructive OHL network has been investigated
in some detail. It was observed that the constructive OHL network is not as robust
as expected when used to perform image compression in the presence of additive
noise.

Next, the proposed technique was also considered for video sequence compres-
sion. Three definitions regarding the similarity between two images were given and
clarified. For the same scene, the network trained by the first frame may com-
press the subsequent frames that follow with quite a good quality of reconstruction

provided that the block size is not exceedingly “large”.

160

Finally, the proposed technique has been applied to facial expression recog-
nition. It has been found that the constructive algorithm proposed in Chapter 2
can produce OHL-FNNs with much reduced number of hidden units and input-side
weights in comparison with the BP-based NN constructed in (8], while yielding
improved recognition rate.

In all the experiments presented, it was revealed that the input-side weight
pruning technique proposed in Chapter 2 results in smaller networks, while simul-
taneously providing similar performance when compared to their fully connected
network counterparts.

The constructive OHL network is very attractive from the point of view that
the training process is efficient and the user can easily trade off between the PSNR
of the reconstructed image and the compressicn ratio. Further research is needed to
expedite the training convergence time at expense of increasing the training com-

putational cost and complexity.

161

Chapter 6

Conclusions and topics for further

research

In this thesis, we first introduced background information on constructive learn-
ing, its importance, research progress, and difficulties that are presently limiting
this paradigm. We then reviewed several existing constructive learning algorithms
such as the dynamic node creation (DNC}), activity-based structure level adapta-
tion (ASLA), cascade-correlation (CC), and constructive one-hidden-layer (OHL)
networks, presenting their advantages and disadvantages.

Three research directions with new results were then presented. The first
direction was the efficient training of hidden units in constructive OHL feedforwad
neural networks (OHL-FNNs) {89]. The saturation problem with the correlation-
based objective function used in the input-side training was first pointed out, and
then a new technique known as error scaling was proposed. This technique can
potentially alleviate the saturation problem and increase the training efficiency, and
possibly improve the generalization capability and performance of the constructed
FNNs. Simulation results revealed that the new technique may help in producing
more effective OHL-FNNs. Furthermore, two input-side weight pruning methods

were proposed, which can reduce the number of input-side weights significantly

162

without degrading the generalization performance of the network constructed [89,
90, 96].

The second direction was the development of a new strategy for constructing
multi-hidden-layer networks [91, 97]. By using the proposed constructive algorithm,
it is feasible to construct a FNN with regular connections and multiple hidden layers.
During the constructive learning process, new hidden units and new hidden layers
were generated one at a time according to a prespecified criterion when invoked.

The third direction was the use of polynomial activation functions for the
hidden units [92, 98]. Each hidden unit has its own polynomial transfer function.
All the corresponding activation functions of the hidden units consist of a series of
orthonormal polynomials. This idea was basically motivated from the concept of
standard series expansion of a given function. The Hermite orthonormal polynomials
were used as the activation functions for the hidden units. The FNNs constructed
this way works favorably compared to those FNNs that use the identical activation
functions such as sigmoidal functions for all of their hidden units [92, 98].

In Chapter 5, the constructive OHL-FNN was applied to still and moving im-
ages compression problems {90, 93, 99]. Very promising results were obtained for
both still images and video sequences. The results achieved by using the constructive
OHL network were compared with the baseline JPEG. The influence of quantization
effects and robustness to noise of the constructive OHL networks were also investi-
gated in some detail. Furthermore, the constructive algorithm modified in Chapter
2 was applied to facial expression recognition {94, 93, 100]. Experimental results
have shown that OHL network of small size can be easily developed that performs
even better than the BP-based networks with larger number of hidden units.

As mentioned above, we have introduced three research directions and pre-
sented new results. The experimental experience gained so far will be very instru-
mental in our future research. Here, we enlist several major research topics that

could be possibly explored in future.

163

T1.

T2.

Determination of initial weights for new hidden units

In constructive learning of OHL networks, several problems need to be recti-
fied. One problem is the use of candidates, which increases the computation
burden to a large extent. To obtain a satisfactory network, sometimes sev-
eral candidates may need to be considered. All the candidates are started
with completely random initial weights. The question to address here may
be posed as follows: would it be possible to find a way to reduce the num-
ber of candidates? When a new hidden unit is required, it may be feasible
to obtain information about its initial weights from the already constructed
retwork. The problem is how to extract this information and formulate it
such that it can be directly used in the determination of the initial weights
of the candidates. If this problem can be solved, a single candidate would be
sufficient. Towards this end, the methodology would be to design an efficient
criterion to determine the initial weights of the new hidden units from the

already constructed network.

Adaptive order determination of the polynomial activation functions

In Chapter 4, we introduced a constructive OHL network with Hermite poly-
nomial activation functions. The order of the polynomial activation function is
increased incrementally by one each time a new hidden unit is included into the
network. In other words, the activation functions become more complicated as
the network grows. Although the recursive relationships of the Hermite poly-
nomials can be used to reduce the computational complexity of the learning
process, the computational burden will become heavy as the network becomes
larger. This issue clearly cannot be ignored. A strategy to encourage the use
of lower order polynomial activation functions will be more desirable and cost-
efficient. Development of such a strategy will also be an attractive topic for
further research.

164

T3.

T4.

Automatic determination of the user parameters in multi-hidden-

layer networks

In Chapter 3, we have introduced a new algorithm for constructing multi-
hidden-layer networks. However, the user is required to determine several pa-
rameters for the algorithm by trial and error and heuristically. Automatically

determining these parameters will be very desirable.

Analysis of the dynamics of the constructive learning algorithms

We have performed no theoretical analysis to reveal the dynamic properties
of the constructive learning algorithms. For example, the squared training
error as a function of the number of hidden units may be very insightful in
understanding the performance limitations of the network and the stability
conditions of the training algorithm. It is not difficult to see that theoretical
attempt of this nature will be extremely challenging due to the high nonlinear-
ity and dimensionality of the network. This may be one of the most interesting
topics to tackle in the future. It seems that a powerful analytical tool has to
be first identified and developed before one attempts to analyze the dynamics

of the constructive learning algorithms.

165

Bibliography

(1] R. Lippmann, “4n introduction to computing with neural nets,” IEEE ASSP
Magazine, pp. 4-22, Apr. 1987.

[2] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE
Signal Processing Magazine, pp. 8-39, Jan. 1993.

[3] S. Haykin, Neural Networks : A Comprehensive Foundation, Macmillan, 1994.

(4] S. Amari, “Mathematical foundations of neurocomputing,” Proc. of the IEEE,

vol. 78, No. 9, pp. 1443-1463, Sept. 1990.

5] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge

Engineering, Cambridge, Mass, MIT Press, 1996.

[6] J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Com-
pany, St. Paul, MN, 1992.

(7] N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms,
and Applications, McGraw-Hill, Inc., 1996.

[8] B. Mulgerw, “Applying radial besis functions,” IEEE Signal Processing Maga-
zine, pp. 30-63, Mar. 1996.

9] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. on Neural Networks, vol. 1, pp.
4-27, Mar. 1990.

166

[10] K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimiza-
tion of dynamical systems containing neural networks,” IEEE Trans. on Neural

Networks, vol. 2, pp. 252-262, Mar. 1991.

[11] S. Haykin, “Neural networks ezpand SP’s horizons,” IEEE Signal Processing
Magazine, pp. 24-49, Mar. 1996.

[12] T. Chen et al., “The past, present, and the future of neural networks for signal

processing,” IEEE Signal Processing Magazine, pp. 28-48, Nov. 1997.

[13] L. V. Tetko et al., “Efficient partition of learning data sets for neural network
training,” Neural Networks, vol. 10, no. 8, pp. 1361-1374, 1997.

(14] D. Sarkar, “Methods to speed up error back-propagation learning algorithm,”
ACM Computing Surveys, vol. 27, no. 4, pp. 519-542, 1995.

(15] C. T. Leondes, Neural network systems techniques and applications: Algorithms

and Architectures, Academic Press, 1998.

(16] R. Reed, “Pruning algorithms — A survey,” IEEE Trans. on Neural Networks,
vol. 4, no. 3, pp. 740-747, 1993.

(17] C. M. Bishop, Neural networks for pattern recognition, Oxford:Oxford Univer-
sity Press, 1995.

(18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal rep-
resentations by error propegation,” In D.E. Rumelhart and J.L. McClelland,
editors, Parallel Distributed Processing: Ezplorations in the Microstructure of

Cognition, MIT Press, Cambridge, MA, pp. 318-362, 1986.

(19] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, “Efficient backpropa-
gation training with variable stepsize,” Neural Networks, vol. 10, no. 1, pp. 69-82,
1997.

[20] F. Stager and M. Agarwal, “Three methods to speed up the training of feedfor-
ward and feedback perceptrons,” Neural Networks, vol. 10, no. 8, pp. 1435-1443,
1997.

(21] A. J. Shepherd, Second-Order Methods for Neural Networks, Springer-Verlag
London Limited, 1997.

[22] S. Osowski, P. Bojarczak, and M. Stodolski, “Fast second-order learning algo-
rithm for feedforward multilayer neural networks and its applications,” Neural

Networks, vol. 9, no. 9, pp. 1583-1596, 1996.

[23] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trimming the
fat from a network via relevance assessment,” in Advances in Neural Information

Processing (1), D.S. Touretzky, Ed.(Denver 1988), 1989, pp. 107-115.

[24] E. D. Karnin, “A simple procedure for pruning back-propagation trained neural

networks,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 239-242, 1990.

[25] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances
in Neural Information Processing (2), D.S. Touretzky, Ed.(Denver 1989), 1990,
pp. 598-605.

[26] G. Castellano, A. M. Fanelli, and M. Pelillo, “4n iterative pruning algorithm
for feedforward neural networks,” IEEE Trans. Neural Networks, vol. 8, no. 3,

pp. 519-331, 1997.

[27] Y. Chauvin, “A back-propagation algorithm with optimal use of hidden units,”
in Advances in Neural Information Processing (2), D.S. Touretzky, Ed.(Denver
1989), 1990, pp. 642-649.

[28] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization by

weight-elimination applied with application to forecasting,” in Advances in Neural

168

Information Processing (3), R. Lippmann, J. Moody, and D.S. Touretzky, Eds.,
1991, pp. 875-882.

[29] C. Ji, R. R. Snapp, and D. Psaltis, “Generalizing smoothness constraints from
discrete samples,” Neural Computation, vol. 2, no. 2, pp. 188-197, 1990.

[30] M. Ishikawa, “A structural learning algorithm with forgetting of link weights,”
Tech. Rep. TR-90-7, Electrotechnical Lab., Tsukuba-City, Japan, 1990.

[31] W. L. Buntine and A. S. Weigend, “Bayesian backpropagation,” Complex Syst.,
vol. 3, pp. 603-643, 1991.

[32] D. J. C. Mackay, “Bayesian interpolation,” Neural Computa., vol. 4, no. 3, pp.
413-447, 1992,

[33] H. H. Thodberg, “4 review of Bayesian neural networks with an application to
near infrared spectroscopy,” [EEE Trans. on Neural Networks, vol. 7, pp. 36-72,
1996.

[34] T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structure learning
in feedforward neural networks for regression problems,” IEEE Trans. on Neural

Networks, vol. 8, no. 3, pp. 630-643, 1997.

[35] T. Ash, “Dynamic node creation in backpropagation networks,” Connection Sci.,

vol. 1, no. 4, pp. 363-375, 1989.

(36] Y. Hirose, K. Yamashita, and S. Hijiya, “Backpropagation algorithm which
varies the number of hidden units,” Neural Networks, vol. 4, pp. 61-66, 1991.

[37] E. B. Bartlett, “Dynamic node architecture learning: An information theoretic

approach,” Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.

169

[38] R. Setiono and L. C. K. Hui, “Use of a quasi-Newton method in a feedforward
neural network construction algorithm,” IEEE Trans. on Neural Networks, vol.

6, pp. 273-277, 1995.

[39] M. R. Azimi-Sadjadi, S. Sheedvash, and F. O. Trujillo “Recursive dynamic node
creation in multilayer neural networks,” IEEE Trans. on Neural Networks, vol.

4, No. 4, pp. 242-256, 1993.

[40] T. C. Lee, Structure level adaptation for artificial neural networks, Kluwer

Academic Publishers, 1991.

[41] W. Weng and K. Khorasani, “An adaptive structural neural network with ap-
plication to EEG automatic seizure detection,” Neural Networks, vol. 9, no. 7,

pp. 1223-1240, 1996.

42| S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,”
:

Tech. Rep., CMU-CS-90-100, Carnegie Mellon University, 1991.

[43] D. S. Phatak and I. Koren, “Connectivity and performance tradeoffs in cascade
correlation learning architecture,” IEEE Trans. on Neural Networks, vol. 5, pp.

930-935 (1994).

[44] L. Prechelt, “Investigation of the CasCor family of learning algorithms,” Neural
Networks, vol. 10, no. 5, pp. 883-896, 1997.

[45] T. Y. Kwok and D. Y. Yeung, “Objective functions for training new hidden
units in constructive neural networks,” IEEE Trans. on Neural Networks, vol. 8,

no. 5, pp. 1131-1148, 1997.

[46] T. Y. Kwok and D. Y. Yeung, “Bayesian regularization in constructive neural
networks,” Proc. Int. Conf. Artificial Neural Networks, Bochum, Germany, 1996,
pp. 557-362.

170

[47) W. Fang and R. C. Lacher, “Network complezity and learning efficiency of
constructive learning algorithms,” Proc. Int. Conf. Artificial Neural Networks,
1994, pp. 366-369.

. -

[48] T. M. Nabhan and A. Y. Zomaya, “Toward generating neural network structures

for function approzimation,” Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.

[49] A. L Rasiah, R. Togneri, and Y. Attikiouzel, “ Modeling 1-D signals using
Hermite basis functions,” IEE Proc.-Vis. Image Signal Process., vol. 144, no. 6,

pp. 345-354, 1997.

[50] T. Draelos and D. Hush, “A constructive neural network algorithm for function
approrimation,” [EEE Intl. Conf. on Neural Network, Washington D. C., 1996,
vol. 1, pp. 30-53.

[31] J. N. Hwang, et al.. “Regression modeling in backpropaegation and projection

pursuit learning,” IEEE Trans. on Neural Networks, vol. 3, pp. 342-353, 1994.

[52] T. Samad, “Backpropagation with ezpected source values,” Neural Networks,

vol. 4, pp. 613-618, 1991.

[33] H. Hashem, “Optimal linear combinations of neural networks,” Neural Net-

works, vol. 10, pp. 599-614, 1997.

[54] A. N. Netravali and B. G. Haskell, Digital pictures: representation, compres-

sion, and standards, 2nd edition, Plenum Press, 1995.

(55] R.D. Dony and S. Haykin, “Neural network approaches to image compression,”

Proceedings of the IEEE, 1995, vol. 83, no. 2, pp. 288-303.

(36] C. Cramer, “Neural networks for image and video compression: a review,”

European Journal of Operational Research, vol. 108, no. 2, pp. 266-282, 1998.

171

[37] J. Jiang, “Image compression with neural networks — a survey,” Signal Pro-

cessing:Image Communication, vol. 14, no. 9, pp. 737-760, 1999.

[58] A. Basso and M. Kunt, “Autoassociative neural networks for image compres-
sion,” BEuropean Trans. on Telecommunrications and Related Technologies, vol.

3, no. 6, pp.593-598, 1992.

[39] O. T. Chen, B. J. Sheu, and W. C. Fang, “Image compression using self-
organization networks,” IEEE Trans. on Circuits and Systems for Video Tech-

nology, vol. 4, no. 3, pp. 480-489, 1994.

[60] C. Amerijckx, M. Verleysen, P. Thissen, and J. -D. Legat, “Image compression
by self-organized Kohonen map,” IEEE Trans. on Neural Networks, vol. 9, no.

3, pp. 303-507, 1998.

[61] P. L. Venetianter and T. Roska, “ Image compression by cellular neural net-
works,” IEEE Trans. on Circuits and Systems [: Fundamental Theory and Ap-

plications, vol. 45, no. 3, pp. 203-215, 1998.

[62] W. Sygnowski and B. Macukow, “Counter-propegation neural network for im-

age compression,” Optical Engineering, vol. 35, no. 8, pp. 2214-2217, 1996.

[63] J. M. Miller and J. N. Peterson, “An image compression method using a KLT
neural network,” Proceedings of the Artificial Neural Networks in Engineering
(ANNIE’95), 1995, vol. 3, pp. 437-443.

[64] E. Gelenbe, H. Bakircioglu, and T. Kocak, “Image processing with the random
neural network,” Proceedings of the SPIE, 1998, vol. 3307, pp. 38-49.

[65] Q. Wang and Y. Zhong, “A DCT based image coder with random neural net-
work,” Mini-Micro Systems, vol. 20, no. 7, pp.481-484, 1999.

172

[66] A. J. Hussain and P. Liatsis, “A new recurrent polynomial neural network for
predictive image coding,” Seventh Intl. Conference on Image Processing and Its

Applications, 1999, vol. 1, pp. 82-86.

[67] J.S. Lin, “Image vector quantization using an annealed Hopfield neural network

,” Optical Engineering, vol. 38, no. 4, pp. 599-605, 1999.

[68] K. Diamantaras, K. Hornik, and M. G. Strintzis, “Optimal linear compression
under unreliable representation and robust PCA neural models,” IEEE Trans. on

Neural Networks, vol. 10, no. 5, pp. 1186-1195, 1999.

[69] G. W. Cottrell, P. Munro, and D. Zipser, “Learning internal representations
from gray-level images: An ezample of extensional programming,” Proc. 9th

Annual Conf. Cognitive Science Society, 1987, pp. 461-473.

[70] L. O. Chuaand T. Lin, *A neural network approach to transform image coding,”

Int. J. Circuit Theory and Applications, vol. 16, pp. 317-324, 1988.

[71] A. Namphol, S. H. Chin, and M. Arozuliah, “Image compression with a hierar-
chical neural network,” IEEE Trans. on Aerospace and Electronic Sys.. vol. 32,

no. 1, pp. 326-337, 1996.

[72] Y. Benbenisti, D. Kornreich, H. B. Mitchell, and P. A. Schaefer, “New simple
three-layer neural network for image compression,” Opt. Eng., vol. 36, no. 6, pp.

1814-1817, 1997.

(73] R. Setiono and G. Lu, “Image compression using a feedforward neural network,”

Proc. IEEE Int. Conf. Neural Networks, 1994, pp. 4761-4765.

(74] G.Panda and P. Singh, “A novel scheme of data compression and reconstruction
using multilayer artificial neural network,” Journal of the IETE, vol. 41. No.s. 5
& 6, pp- 329-334, 1995.

[75] N. A. Murshed, F. Bortolozzi, and R. Sabourin, “Binary image compression us-
ing identity-mapping backpropagation neural network,” Proceedings of the SPIE,
1997, vol. 3030, pp. 29-35.

(76] Y. Chang, D. Kumar, and N. Mahalingam, “Data compression for image recog-
nition,” Proceedings of the IEEE TENCON - Speech and Image Technologies

for Computing and Telecommunications, 1997, pp. 399-402.

[77] C. A. Kamm, G. M. Kuhn, B. Yoon, R. Chellappa, and S.Y. Kung, “Com-
pressing moving pictures using the APEX neural principal component ectractor,”

Proceedings of the 1993 IEEE-SP Workshop, 1993, pp. 321-330.

[78] C. Cramer, E. Gelenbe, and I. Bakircioglu, “Video compression with random
neural networks,” Proceedings Intl. Workshop on Neural Networks for [dentifi-

cation, Control, Robotics, and Signal /Image Processing, 1996, pp. 476-484.

(79] L. Rodriguez, P. J. Zufiria, and J. A. Berzal, “Video sequence compression via
supervised training on cellular neural networks,” International Journal of Neural

Systems, vol. 8, no. 1, pp. 127-135, 1997.

[80] S. Carrato, “Video data compression using multilayer perceptrons,” Proceedings

of the 9th Italian Workshop on Neural Nets, 1998, pp. 189-194.

[81] A. L. Perrone and G. Basti, “Novel SAR images compression with de-speckle
algorithm,” Proceedings of the SPIE, 2000, pp. 484-495.

[82] S. Fiori, S. Costa, and P. Burrascano, “Improved ¥-APEX algorithm for digital
image compression,” Proceedings of the [JCNN, 2000, pp. 392-397.

[83] A. Meyer-Baese, “Medical image compression by “neural-gas” network and prin-

cipal component analysis,” Proceedings of the IJCNN, 2000, pp. 1-5.

[84] N.S. Jayant and P. Noll, “Digital coding of waveforms: principles and applica-
tions to speech and video,” PRENTICE-HALL, INC., 1984.

174

[85] P. Ekman and W. Friesen, Facial Action Coding System, Consulting Psycholo-
gists Press, 1977.

[86] F. Kawakami, H. Yamada, S. Morishima, and H. Harashima, “Construction and
Psychological Evaluation of 3-D Emotion Space,” Biomedical Fuzzy and Human

Sciences, vol. 1, no. 1, pp. 33-42, 1995.

[87] M. Rosenblum, Y. Yacoob, and L. S. Davis, “Human ezpression recognition
from motion using a radial basis function network architecture,” IEEE Trans. on

Neural Networks, vol. 7, no. 5, pp. 1121-1138, 1996.

[88] Y. Xiao, N. P. Chandrasiri, Y. Tadokoro, and M. Oda, “Recognition of facial ez-
pressions using 2-D DCT and neural network,” Electronics and Communications

in Japan, Part 3, vol. 82, no. 7, pp. 1-11, 1999.

[89] L. Ma and K. Khorasani, “Input-side training in constructive neural networks
based on error scaling and pruning,” Proceedings of the [JCNYN, 2000, vol. VI,
pp. 455-460.

[90] L. Ma and K. Khorasani, “New pruning techniques for constructive neural net-
works with application to image compression,” Proceedings of SPIE, 2000, vol.
4053, pp. 298-308.

[91] L. Ma and K. Khorasani, “4 new strategy for adaptively constructing multi-
layer feed-forward neural networks,” Proceedings of SPIE, 2000, vol. 4055, pp.
70-78.

[92] L. Ma and K. Khorasani, “Adaptive structure feed-forward neural networks us-
ing polynomial activation functions,” Proceedings of SPIE, 2000, vol. 4055, pp.
120-129.

[93] L. Ma and K. Khorasani, “Moving image compression and generalization capa-

bility of constructive neural networks,” Proceedings of SPIE (To appear, 2001).

175

[94] L. Ma and K. Khorasani, “Facial ezpression recognition using constructive neu-

ral networks,” Proceedings of SPIE, vol.4390, pp.187-198, 2001.

[95] L. Ma and K. Khorasani, “Constructive Hermite polynomial feedforward neural
networks with application to facial ezpression recognition,” in the Convergence
of Information Technologies and Communications (ITCOM 2001), Proceedings
of SPIE (To appear).

[96] L. Ma and K. Khorasani, “New training strategies for constructive neural net-
work with application to regression problems,” submitted to [EEE Trans. on

Neural networks.

[97] L. Ma and K. Khorasani, “A new strategy for adaptively constructing multilayer

feedforward neural networks,” submitted to Neural Computing.

[98] L. Ma and K. Khorasani, “Constructive feedforward neural networks using Her-
mite polynomial activation functions,” submitted to IEEE Trans. on Neural Net-

works.

[99] L. Ma and K. Khorasani, “4pplication of adaptive constructive neural networks
to still and moving image compression,” submitted to IEEE Trans. on Neural

Networks.

[100] L. Ma and K. Khorasani, “Facial ezpression recognition using constructive
feedforward neural networks,” submitted to IEEE Trans. on System, Man, and

Cybernetics.

Appendix A
The “quickprop” algorithm

The quickprop algorithm developed by Fahlman [42] has played a very important
role in the input-side training of constructive OHL-FNNs, the multi-layer FNNs, and
the polynomial OHL-FNNs (see Chapters 2, 3, and 4 for details). In this appendix,
a brief introduction to this algorithm is provided in the context of correlation-based
input-side training. Note that quickprop is a second-order optimization method
based loosely on Newton's method. As shown below, it is simple in form, but has
been found to be surprisingly effective when used iteratively [42].

The correlation-based objective function for input-side training is reproduced

here (see Eqs. (2.10), (4.26)):

I { P) ' _
Jinput = Z Z(d;-y,,a -En—l.a)(fn(s}lz) -fn) ' (-‘Ll)
o=l}j=1
€n-lo = %;e{;-l.m (A,Q)
e
fo = 52 falsa), (A.3)
j=1
M .
s o= an,irxl (A4)
1=0

where it is assumed that there are already n — 1 hidden units in the network, and
the above objective function is used to train the input-side weight {w} of the n-th
hidden unit, and I is the number of output nodes, f,(-) is the activation function of
the n-th hidden unit, z is the i-th element of the input vector of dimension M x 1
€l _,, is the output error at the o-th output node, and f,(s!) is the output of the
n-th hidden unit, all defined for the training sample j. The derivative of Jinpe with
respect to an input-side weight is given by

: P .
0Jingut = Y &2 (A.5)

177

6.1 ZI: sgn(Co) (e{;-l 6~ €n-1 O)M (A.6)

o=l ' ’ ds"‘
P > . -
Co = Z(evl-;—l,o - én—l.O) (fn(s'lx) - fn)
j=1

where, for simplicity, f, is treated as a constant in the above calculation, even

though f, is actually a function of the input-side weights. Let us define

Snilt) =—%J;;‘—""f, i=0,1, ---, M (A.7)

where ¢ is the iteration step. The quickprop algorithm maximizing (A.1) may now

be expressed by

£Sni(t), if Awgy(t—1)=0, (i=0, 1,---, M)
Awn,i(t) = %%')B:—S{i—(—:)l’ lf Awn,,-(t - 1) -',‘L- 0 and mi—'b‘(jt)m <p (:\8)

plAwni(t - 1), otherwise.

where
Awni(t —=1) = wny(t) — wai(t - 1),

and ¢ and p are positive user-specified parameters.

178

Appendix B

A Quasi-Newton-based training algorithm

In the output-side training of the constructive OHL-FNNs and the polynomial OHL-
FNNs (see Chapters 2 and 4 for details), computing the exact pseudo-inverse leads
readily to an LS solution if the output nodes are considered to be linear. However,
when constructive FNN is applied to classification problems, the output nodes of the
networks have to be selected as nonlinear function. The output-side training now
requires an algorithm that achieves a fast convergence and small SSE, at possibly the
expense of increased computational load. In this thesis, a Quasi-Newton algorithm
is utilized. A brief review of the scheme is given below.

The criterion for output-side training is given by

Joutpir = Z Z(yf; 0o~ d’ (B.1)
o=1 j=1
yf;,o = fO(Z‘;)i
zg = i:vn,i"{
i=0

where y’ is the response of the o-th output, d? is the target at the o-th output, ul is
the output of the i-th hidden unit, and j is the number of the training sample, f,()
is the activation function of the o-th output node. In the algorithm, the output-side

weights v, = (Un0,Un 1, *,Una)T are updated according to
Va(t +1) = va(t) = H(2)Voutpue (va(t)) (B2)
where VJouiput(Va(t)) is the current gradient vector given by

; (B.3)

Va=Va(t)

8 it O 8 st | T
Vrutput(Va(t)) = [Joup autt;'u‘ &vw]
Ty! n, nn

H(t) is the approximate inverse Hessian calculated iteratively according to

_S(Br(e) ST\ | ame)T
Hi+1)= (507 (t)) H() (I J(t)T'r(t)) Yiote B4

179

where

8(f) = va(t+1) - va(t), (B-3)
1) = Voutput(Va(t +1)) = Vidougue(vn(t)), (B.6)

and I is identity matrix of appropriate dimension.

Note that several types of Quasi-Newton algorithms are available in the liter-
ature (see [38] and references therein), and the algorithm presented above is one of
them, which belongs to the class of second-order algorithms. Although, it is based
on the Newton’s method, however it does not require exact calculations of the sec-
ond order derivatives (see (B.2)-(B.6)). Instead an approximate Hessian matrix in
(B.4) is updated at each iteration of the algorithm. The update is computed as a

function of the gradient (B.4)-(B.6).

180

