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ABSTRACT

Nonlinear Finite Element Modeling and Incremental Analysis of
A Composite Truck Tire Structure

Xiong Zhang, Ph.D.

Concordia University, 2001

The performance of a road vehicle is directly related to the static and dynamic properties
of tires, which provide support and control for vehicles and which must possess good
durability under various tire-road interactions and loading conditions. The tire
characteristics are inherently dependent on various structural and geometric parameters,
the material properties of the individual layers of a tire and the loading conditions. In
view of the simulation and analysis of tire response, in terms of deformation and stress
fields, and vibration properties, extensive analytical studies had been conducted in the
past based on the linear analysis of the multi-layered tire structure, assuming negligible
shear interactions between the layers. In this dissertation, a nonlinear finite element
model of a radial truck tire is developed based on its composite structural elements to
analyze the various stress fields, with focus on the inter-ply shear stresses between the
belt and carcass layers as functions of normal loads and inflation pressures. The model is
validated through a comparison of the normal force-deflection characteristics and the
contact patch geometry derived from the model with the laboratory-measured data in a
qualitative sense. The tire model is used to conduct a parametric study on the shear
interactions in the multiple layers under a wide range of loading conditions, to derive a
more desirable set of structural parameters that can lead to lower values of maximum
shear stresses within the loaded multi-layered tire structure. A polynomial function has
been derived to estimate the two-dimensional tire-road contact pressure distribution as a
function of the inflation pressure and the normal load. The tire model is further used to
study the free-vibration behavior of the inflated tire structure. The influences of the
individual structural parameters on the load and pressure-dependent natural frequencies
of a radial truck tire are also investigated. The results show that the proposed finite
element tire model based on adequately measured geometric and material properties of a
tire structure can yield considerable benefits in the tire design and heavy vehicle

performance.
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e The normal strains along the coordinate axes.

e, The components of the Cauchy strain tensor corresponding to 7,
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F Force vector

F, Normal load applied on the tire, unit: KN

F, Resultant normal load, unit: kKN
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p.(x) Contact pressure as a function of longitudinal coordinate x, unit: Pa

P.(x) Normalized contact pressure as a function of longitudinal coordinate x

PL P, Inflation pressure of a tire, unit: psi

P, Normalized inflation pressure of a tire

D Equivalent two-dimensional contact pressure due to elements in row n, unit:
Pa
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-XXi-



Order of the polynomial £, (p,)

Symmetric stretch matrix

The components of the displacement vector for the considered point P, unit: m
Displacement at node L of an element along the i-th direction, unit: m
Displacement vector containing increments of displacement

Increments in displacement variables in k-th direction, unit: m

Reference volume of the configuration at time ¢ =0, unit: m’
Total potential energy per unit volume in materials, unit: Nm/m’

Strain energy density due to hydrostatic pressure unit: Nm/m’

Potential energy density due to displacement at time t with respect to
configuration at t=0, unit: Nm/m’

Strain energy density estimated using 4/, , unit: Nm/m’
Work done by centralized force P,,, unit: Nm
Interpolation coefficients of the polynomial k;(p,)

Longitudinal coordinate of a point in the contact patch, unit: m
Normalized longitudinal coordinate of a point in the contact patch

Column matrix formed by the longitudinal coordinate variables

Deformation gradient tensor at time t with respect to configuration at t=0
The coordinates of the displacement vector for the considered point P

Differentiation of the i-th displacement variable at time t, with respect to the j-
th displacement variable at time t=0

Kronecker delta

-XXii-



Ay

n

{®.}

V2

V3

Width of the elements in row n, measured along y direction, unit: m

Normal deflection of a tire, unit: mm
Change of volume, unit: m>

Permutation tensor

Green-Lagrange strain tensor at time t with respect to the configuration at t=0
Mode shape vector (eigenvector) of mode i
Natural circular frequency of mode i, unit: Hz

Poisson’s ratio
Poisson’s ratio associated with the movement in belt plane

Poisson'’s ratio associated with the movement in the transverse plane vertical
to the cords

Poisson’s ratio associated with the movement in the transverse plane along the
cords direction

Cord angle in layer, unit: degree
Density, unit: kg/m3
The Cartesian components of the Cauchy stress tensor

Operator representing% aa:(: + aa,(:
“\ 0%y 0€i

-xxiii-



CHAPTER1 INTRODUCTION AND LITERATURE REVIEW

1.1 GENERAL

The pneumatic tires are the most widely used composite structures of commercial
importance and have functioned as an integral part of the wheeled-vehicle systems, since
their inception [1]. The dominant use of pneumatic rubber tires in vehicles is attributed to
their various properties, such as ability to support and guide the vehicle, and to provide
adequate traction and braking with good durability under widely varying tire-road
interactions and loading conditions. The ride quality, handling, and directional control
and stability performance requirements of a vehicle thus strongly rely upon properties of
the tires. The characteristics of tires, however, are not easily predictable and
comprehensible due to the complexity of the tire structure and the lack of effective
analysis methods. The tire properties are mostly characterized through laboratory
experiments in terms of total forces and moments developed at the tire-road interface.
The experimental methods not only involve highly complex fixtures and measurement
systems; the development of relationships between the measured data and the structural
properties of tires poses many challenges. Moreover, in view of the nonlinear nature of
the tire forces and moments, the measured quantities can be considered to be valid only in
the vicinity of the test conditions employed. The analysis methods involving structural
properties of a pneumatic tire are considered desirable to study the influence of tire
design and operating factors on its response characteristics. Such tire models can yield
considerable insight into the tire design and response in terms of deformation, stress and

strain fields, tire-road contact pressure distribution, oscillation modes, etc.
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A number of tire models have been developed to study the vehicle characteristics
related to the vertical load carrying properties, traction and braking forces, comering
forces and the cushioning ability of the vehicle over rough roads [2, 3, 4]. The tire
models, derived from the measured data, are widely employed in analysis of the vehicle
system performance. These models have served as simple yet effective tools for
enhancement of understanding of the tire properties. The models, however, cannot
analyze the contributions due to structural features and material properties of the layers in
a tire. An analysis of the tire properties over a wide range of operating conditions requires
the knowledge of deformation and stress fields for a loaded tire that must be determined
in the design stage. A number of models of the tire structure have thus been developed on
the basis of material properties and geometry of the multi-layered tire system [4, 5].
However, the techniques used to compute tire stress and deformation fields have
remained limited for decades due to lack of adequate computing resources and analysis
software. Today, one of the main challenging tasks encountered by tire designers is to
understand the underlying causes of the tire delamination failures, which may be resulted
from a combination of factors involving the tire structural parameters and geometric
dimensions, tire loads, vehicles and driving conditions. Such investigation can be
initiated by performing static analyses followed by modal analysis of a specific tire, and
then, the dynamic analyses concerning the real operating conditions of a tire in service.
Special attention has been concentrated on the effective prediction of the various stress
fields, especially the shear stress fields developed in the multi-layered system of a

pneumatic tire due to various loads and operating conditions. Implementation of this goal



can be facilitated through the application of the commercial finite element (FE) analysis
code ANSYS® for the multi-layered composite structure of a loaded tire.

In this dissertation, a nonlinear finite element model of a radial truck tire is
developed on the basis of its composite structural elements to analyze the varicus stress
fields, with particular focus on the inter-ply shear stresses in the belt and carcass layers as
functions of the structural parameters and the normal load. The established tire model
incorporates the geometry and orientation of the cords in belt and carcass layers, stacking
sequence of different layers, large magnitude and nonlinear deformations of the multiple
layers and the nearly incompressible property of the tread rubber block. The influences of
the structural and geometric parameters, and the configuration and material properties of
the individual belt and carcass layers on the shear interactions in the individual layers are
investigated under non-rolling conditions. The results of the parametric study are used to
derive a more desirable set of structural parameters that can lead to lower maximum shear
stresses within a loaded tire body. The computed three-dimensional pressure fields in the
tire-road interface are analyzed to derive a polynomial function to effectively estimate the
contact pressure distribution as a function of the inflation pressure and the axle load. The
model is further used to perform modal analysis to investigate the influence of the design

parameters and the loads on the vibration characteristics of the tire.

1.2 REVIEW OF THE LITERATURE

The reported relevant studies are reviewed and briefly discussed in this section to

enhance the knowledge and to build the scope of the dissertation research.
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1.2.1 Tire Structure and Modeling Considerations
A pneumatic tire is a toroidal shaped structure filled with air. There are two kinds
of tires that can be distinguished by their structural features: bias-ply tires and radial-ply
tires. The design of a radial-ply tire differs considerably from that of a bias-ply tire. The
radial tires are increasingly being implemented for automobiles and heavy road and off-
road vehicles. The essential structural elements of a pneumatic radial tire include the

carcass, belts, tread and beads, as shown in Figure 1.1.
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Figure 1.1: Primary structural elements of a radial tire.

The carcass is a molding of rubber reinforced by one or more cord-reinforced
layers in a matrix of low modulus rubber material (natural or synthetic rubber). The cords
embedded in the layer(s) are disposed in a radial direction running directly across the
crown at 90° to the circumferential centerline of a radial tire. The carcass, inflated with
air, forms the toroidal tire structure as a sealed body and that supports the vehicle load.

The carcass construction plays a dominant role in determining the tire characteristics and
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vehicle performances [6). The belts or breaker are made up of several plies of cords fitted
on the top of the casing and laid at various low crown angles. The belt layers enhance
rigidity to the tire in the lateral direction and help to stabilize the tire in radial direction.

The exterior tread layer of a tire is patterned with grooves and slots to provide
gross drainage of water from the tire-road contact patch in wet conditions. The tread also
serves as a wear resistant layer in addition to protecting the tire casing. Furthermore,
tread provides sufficient frictional contact with the road to develop and transmit adequate
driving, braking and comnering forces, and assists cooling in dry conditions. The beads.
made up of many turns of high modulus cords, are located at the inner edges of the
sidewall. The main function of the beads is to secure the tire casing at the wheel rim
firmly.

The mechanics of pneumatic tires has been extensively investigated through
experimental as well as analytical means. The objectives of the majority of these studies
have included the characterization of the load-deflection properties, rolling resistance and
skid resistance properties, the tire-road contact patch geometry and the forces and
moments generated in the tire-road contact patch. Owing to the strong nonlinear
properties of the tires, experimental studies have attempted to define tire characteristics
as functions of various operating conditions, with little or no consideration of the material
and structural parameters [3, 6-8].

The forces and moments generated by a tire are known to be strongly nonlinear
functions of many operating (speed, load, road surface, inflation pressure, temperature,
tread condition, etc.) and design (geometry, structure, material properties of layers, etc.)

parameters. Estimation of tire forces and moments, therefore, requires consideration of



the majority or all of these parameters. The characterizations through experimental
means, in general, do not permit the influence of all of the design and operating variables
due to extensively large test matrix, nonlinear material properties and measurement
difficulties associating with the rolling tires [3, 6, 9].

The analytical studies on tires have attempted to develop tire models of varying
complexities. The tire modeling generally involves the elastic deformation of the tire
structure subjected to a normal load, tire-road interactions between the tread and the road
surface in the contact region, and the related three-dimensional geometry. The
deformation and loading properties are considered to be mutually interactive. The stress-
strain fields generated in a tire depend on the contact conditions, the structural
parameters, geometric configuration of the cross section and the material properties of the
layers making up the tire. It is generally agreed that the tire modeling and analysis tasks
represent a very complex problem that requires either extensive calculations or warrants
considerable simplifications for obtaining solutions to meet various design and analysis
objectives.

A vast number of tire models have been developed since the 1950’s, which differ
considerably in complexity, structure and purpose of use. Classical models were
developed on the basis of a string or a beam supported on an elastic foundation
representing the tread band and the tire body [6-8]. The results derived from these
relatively simple models have provided considerable knowledge leading to understanding
of the development of the shear forces and moments generated in the tire-road contact
patch. A number of empirical models have also been developed on the basis of

experimentally measured forces and moments [10-11]. These models are mostly used for



simulation of coupled tire-vehicle models [3, 8]. Semi-empirical models, combining the
features of both the classical and the empirical models, have also been proposed [12-14].
Both the empirical and semi-empirical models are considered useful in predicting the
overall tire properties affecting the vehicle performance, such as traction, braking,
cornering and the ride quality, while the influence of structural and geometric parameters
are mostly ignored in vehicle performance analysis codes. The models derived on the
basis of structural parameters and geometric configurations of individual layers form
another category of tire models. These models are, in general, quite complex due to
complex tire geometry, multi-layered tire structure, material properties of different layers
and cords embedded in the layers. Such models are developed and used by the tire
designers for stress related analyses to enhance the tire characteristics, such as tire
durability [4-5, 15]. The models reported in the recent years are mostly based on the
finite element analyses and are capable of predicting the stress-strain fields within the
individual layers. These models contain detailed representations of the tire structure and
the related material properties of layers. In the subsequent sections, the tire models are
grouped into two categories on the basis of their potential use and objective: (i) the
models for vehicle dynamics analyses, which include those derived from the measured
data and the classical methods; (ii) the models for tire design and analyses, which

emphasize the structural and material features of the tire.

1.2.2 Analytical Tire Models

While the contact forces generated in the tire-road contact patch are of

fundamental importance for preservation of stability, control and guidance of road
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vehicles, the deformation and stress fields developed in a loaded tire have significant
influence on the fatigue life, durability, wear and failure of a tire. The mechanics of the
stress or force generation processes of a tire under various loading conditions are of
particular interest to the tire designers, the vehicle dynamists, and pavement and bridge
designers. The application of tire mechanics in different fields, however, involves
different perspectives and performance objectives.

The vehicle dynamists, in general, are concerned with overall tire properties
affecting the vehicle performance characteristics, such as response to the side slip and/or
longitudinal slip (braking and traction efforts) and road surface irregularity. The classical
and semi-empirical/empirical tire models developed on the basis of measured data under
well defined operating conditions are thus considered adequate to characterize the total
forces and moments developed by the tires. The forces and moments developed by a
pneumatic tire are known to be related to the material properties, structural features, tire-
road contact geometry, inflation pressure and the frictional interaction in the contact
patch. Input parameters for these models usually include vertical load, side-slip angle,
longitudinal slip ratio, camber angle, vehicle speed, free rolling angular speed, while the
outputs are normally the resultant shear force and moment generated in the tire-road
contact region. The pavement and bridge designers, on the other hand, are mostly
concerned with the magnitudes of static and dynamic tire forces transmitted to the road
and bridge structures. The tire models characterizing the static and dynamic force-
deflection properties may thus be considered adequate for such studies. Both the classical
and regression function (empirical/semi-empirical) models are considered adequate and

economical for analysis of vehicle dynamics performance and dynamic pavement/bridge



loads [3, 6, 8, 16-18]. Since these regression-based models are derived on the basis of
measured data under carefully controlled conditions, they can be considered valid in the
vicinity of the selected operating conditions. Moreover, the contributions due to material
and structural properties are mostly ignored [19].

A pneumatic tire is a complex system of multiple layers of carcass and belts,
which are made of components with considerably different properties. The properties of
the anisotropic cord-rubber composite layers in the carcass structure play a dominant role
in controlling the overall performance characteristics of the pneumatic tire. Moreover, the
stress and strain fields within the tire structure determine the characteristics of tire forces
and tire durability. The finite element techniques are widely employed to derive elaborate
models of the tire structure incorporating the detailed material properties and structural
features of each individual component, such as the nearly-incompressible behavior of the
tread rubber and the anisotropic material properties of the carcass and belt layers. The
outputs of these models, in general, are the stress fields in the individual layers. The tire
responses, such as the load deflection characteristics, shear force generated in the tire-
road contact patch, etc., are derived from the stress fields through post-processing of the
model results. Various reported tire models are reviewed and grouped in two broad
classes on the basis of the analyses objectives and applications. The models within each

group are briefly described in the following sections.
1.2.3 Tire Models for Vehicle Dynamics Analyses

Apart from the aerodynamic and gravitational forces, almost all other forces and

moments affecting the motion of a road vehicle are applied through the tire-road contact
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interface. The handling, directional control and stability, and ride performance of vehicles
are thus primarily dependent upon the overall static and dynamic properties of the tires. It
is generally convenient to distinguish between symmetric and anti-symmetric modes of
tire performance, with reference to the rolling plane of a tire in the vehicle dynamics
analysis [20]. While a tire supports the vertical load and transmits longitudinal braking or
driving forces, it is also required to supply adequate comering and camber forces that are
essential for the directional control of the vehicle. Linear tire models are often applied,
when only small deviations in the vehicle response are considered. In this case, the
symmetric and anti-symmetric motions of the assumed wheel-tire system are usually
assumed uncoupled. The in-plane and out-of-plane tire models are frequently used to

analyze symmetric and anti-symmetric motions of the tire-wheel system [20].

In-plane Tire Models

The in-plane tire models are mainly concerned with the response of a tire to a
disturbance input that stems from the motions of the wheel relative to the road in the
wheel plane. The in-plane tire models are used to study the symmetric behavior of tires,
arising from the steady state or slowly varying motions to high frequency and non-
steady-state behavior of a tire [21]

The simple in-plane tire models describe the linear and nonlinear normal load-
deflection properties of tires [22-27], which are widely used to study the in-plane
vibrations of a tire and the effects of tire vibration characteristics on the vehicle
performance in terms of ride quality [28-33]. The in-plane tire models, have also been

applied to study the radial and longitudinal tire force responses to in-plane variations in
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the wheel axle position, road irregularities, tire radius and tire radial stiffness, assuming
linear analysis of the in-plane motions [3].

The inertia effects of a tire are mostly neglected, assuming that predominant
motions occur at frequencies well below the lowest natural frequency of the tire, which is
estimated near 20 Hz for road vehicle tires [3]. Under high frequency excitations, above
30 Hz, a pneumatic tire exhibits number of natural frequencies in the in-wheel plane and
out-of-wheel plane motions, resulting in continuously distributed vibrations of the side
wall and the tread band [3]. The tires also exhibit coupled in-plane and out-of-plane
motions involving complex three-dimensional deformation modes, which can not be
obtained from both the in-plane and out-of-plane tire models. The development of an
effective three-dimensional tire model is thus considered desirable to study the coupled
motion of the tire. The experiments performed to study the frequency response
characteristics of tires revealed considerably small amplitude ratio of the hub oscillation
to the sinusoidal platform oscillation at higher frequencies, above 110 Hz [21]. At even
higher frequencies, the tire exhibits the standing wave phenomenon, which has been

extensively investigated by many researchers [34-41].

Out-of-plane Tire Models

The out-of-plane tire models are widely used to study the response of a tire in the
transverse plane of the tire-wheel system related to the comering properties of tires [42-
50), which are of fundamental importance in view of the handling and stability
characteristics of the road vehicles. In these models, the road is assumed to be

undeformable with smooth surface, while the tire is represented by combination of elastic
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or visco-elastic elements. The majority of the out-of-plane tire models considered the
contact patch as either a straight line or a two-dimensional idealized shape, such as
rectangular and elliptical [42]. These models mostly provide qualitative descriptions of
the tire behavior to facilitate the understanding of the mechanism related to shear force
generation in the tire-road contact patch.

The use of an elastic continuous structure representing the carcass is essential in
both the steady state and the non-steady state tire models. Many investigations have
attempted to incorporate elastic continuous carcass structure in formulating these out-of-
plane tire models. Some of the models are based on the assumption that the tread of a tire
is equivalent to a stretched string restrained by lateral springs that are representative of
the side wall, with the wheel rim acting as the base of the springs [3, 6]. Some of the
other models consider the tread as an elastic beam with continuous lateral support [8, 51],
while the others assume that the carcass flexibility is associated entirely with
independently acting radial spokes representing both the carcass and the tread block
flexibility [52-53]. None of these models, however, could describe the structural and
geometric features of the tire. Their applications are limited to the fundamental
understanding of the shear force generation in the tire-road contact patch and the
investigation of the overall tire properties as functions of the various vehicle parameters,
such as slip angle, tire load and speed.

The most widely used out-of-plane tire model is the regression-based model,
proposed by Pacejka [10-12]. The model, referred to as the ‘magic formula’ tire model,
comprises a set of analytical functions, whose coefficients are identified by curve fitting

the data acquired from full-scale tire experiments [43-44]. The model describes the forces
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and moments as functions of different operating conditions, such as normal load, side
slip, slip ratio and speed. The need to perform additional work to adequately incorporate
the effects of the camber force and moment as well as the spin force into the model has
been recognized [51]. The ‘magic formula’ tire model has been widely adopted by tire
manufactures as an industry standard. The measured data are, therefore, frequently
reported in terms of the model coefficients, rather than the conventional graphical or
tabular forms. Although the ‘magic formula’ model has been proven as an effective tool
for analyses of directional performance of vehicles, it does not allow the consideration of
material and structural properties of the tires. The applications of these models, however,
is limited by the fact that they require extensive experiments for evaluating the equivalent
parameters and that the range of their validity is limited to specific ranges of those

parameters.

1.2.4 Tire Models Based upon Structure and Geometry

Models used in tire stress analysis are normally called structural tire models and
are based on the composite material or layer theories. These models are normally
developed using finite element techniques, where the governing equations of motion of a
typical element are derived using the energy method. The primary feature of these models
is the ability to determine the tire responses to a prescribed set of applied loads and
operating conditions under given boundary conditions. Consequently, the structural
models are used to predict the displacement, strain or stress at any chosen location within
the tire structure, when the geometry configurations, the relevant properties of its

component materials, the applied loads and the constraints from boundary conditions are
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known. The response of a loaded tire is mostly governed by the properties of the
anisotropic cord-rubber composite layers. A vast number of structural models have been
developed with different considerations or simplifications of the configuration of the
carcass and the belt layers, resulting in varying levels of complexity. The reported models
can be grouped into four different classes on the basis of complexity or modeling
simplifications. They are the netting analysis models, the membrane models, the thin

shell models and the finite element models, as illustrated in Figure 1.2.

|Structural tire modelsl
1

[ 1 I ]
Netting Membrane] | Thin shell FE
models models models models
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Direction of more advanced models

Figure 1.2: Classification of structural tire models.

Early structural tire models were based on elementary structural analysis, which
were called the cord and rubber models or netting models [54-60]. The netting models
assume that the tensile forces in the cords exclusively balance the inflation pressure. The
models, therefore, fail to include the bending and stiffening effects of the rubber
surrounding the cords and the bending effect of the tire. Despite these limitations, cord-
network models allow the determination of the inflated profile of some bias-ply tires with

reasonably good accuracy. The cord-network model has also been applied to study the



response behavior of aircraft tires [57]. The study concluded that such models often yield
unacceptable results in terms of the stresses in the cords.

Alternatively, the models based upon membrane and thin shell theory were
developed to incorporate the effects of the rubber matrix [61-62]. These models,
however, did not account for abrupt changes in the geometry, and material properties of
different layers or loading. With the use of the membrane elements, the tire structure is
treated like a thin film, where the bending effects of the rubber are also ignored and only
the tensile forces within the membrane could be considered. The linear membrane
analysis offers no more benefits than the netting analysis due to its independence of the
elastic properties of the rubber material. The nonlinear membrane analysis, however,
could be used to compute the profiles of the inflated membranes against flat surfaces [63-
64]. DeEskinazi et al. [65] used the nonlinear membrane theory to solve the contact
problem of an inflated toroidal membrane deflected against a flat surface, incorporating a
general representation of the geometry, loading and boundary conditions. The more
advanced membrane tire models based on the laminate theory can incorporate the
differences in mechanical and geometric characteristics of the cord layers in addition to
the elastic rubber property [66-67]. It had been established that nonlinear membrane
theory in conjunction with the application of the maximum potential energy principle
forms the essential basis for the finite element approach to deflecting a tire inner tube
against a flat surface [68].

The tire models based upon shell theory include the bending effects that were
neglected in the membrane theory and netting models. These models thus allow for

analysis of local effects in the footprint and bead regions as well as the regions of

-15-



significant curvature changes. Classical shell theory involves the solutions of the
differential equations to obtain closed form expressions that relate the shell’s
deformations and stresses to the applied loads as functions of the shell dimensions and
material properties [5]. Brewer [68-69] developed effective tire models using thin shell
theory, which is based on the assumption that a straight line perpendicular to the plane of
the plate is (i) inextensible; (ii) remains straight; and (iii) rotates, such that it remains
normal to the tangent of the deformed surface. These assumptions are equivalent to
specifying that the transverse shear strains are assumed to be zero. By using the shell
theory to analyze an aircraft tire subjected to inflation loading, Brewer [68] modeled the
tire as a thin laminate consisting of cord-rubber plies stacked in a specified sequence and
derived the equations of equilibrium for the differential shell element using the composite
laminate theory.

The tire models comprising multi-layered anisotropic shells have also been
developed by Grigolyuk et al. [70-71] and Noor et al. [72] based on the Timoshenko-type
theory, which assumes that a straight line perpendicular to the plane of the plate does not
remain perpendicular to the tangent deformed surface after deformation. In these studies,
a more general computational tire model was built using the higher-order Timoshenko-
type theory of multi-layered anisotropic shells, which allows for describing the nonlinear
dependence of the tangential stresses and strains on the thickness coordinate. More
accurate computational models of tires have also been developed by the application of the
discrete-layer theories of multi-layered anisotropic shells [73-79]. In these models, the
order of the governing differential equations is dependent on the number of tire layers,

which allows for the analysis of the distribution of transverse stresses along the tire
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thickness direction. The constitutive equations of the anisotropic elasticity theory for
transverse shear stresses and strains, however, are satisfied in the integral sense for each
layer, which may not agree well with the actual stress and strain distributions along the
transverse direction.

The limitation of both the Timoshenko and Kirchhoff type models lies in the fact
that the shell thickness is assumed to be small relative to the radii of the curvature of the
shell surface. The displacements are assumed to be small relative to the shell dimensions,
which may not be justifiable in the case of pneumatic tires comprising compliant rubber
layers that experience large deformations. Furthermore, the thin shell models often ignore
the contribution due to the tread block in order to simplify the tire structure as a shell
shape, which results in the key limitation of these models. Although shell models have
appeared as effective tools in stress analysis and profile determination for an inflated
non-rolling or rolling tire, the analysis of tires deformed by external loads, to a large
degree, still remains beyond their scope.

A vast number of finite-element-based computational models for pneumatic tires
have been developed for analyses and design optimization studies. The finite element
models could be effectively applied to study the stress and strain distributions in
individual layers, contact pressure distributions in the tire-road interface, resultant contact
forces, vibration characteristics, and dependence of the responses on various design and
operating parameters (inflation pressure, geometry, loading, etc.). The highlights and
limitations of the various reported finite element tire models are briefly discussed in the

following sections.
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1.2.5 Finite Element Tire Models

The early finite element models developed in 1970’s chronologically used
tetrahedrons and rectangular prisms, iso-parametric hexahedral elements and sub-
parametric elements [80-88). These elements remained difficult to implement and
required a great deal of preparation and computational efforts due to the lack of powerful
computers at the time. The iso-parametric elements used in these models, however,
served as an efficient tool for the analysis of two dimensional and axisymmetric
structures, which resulted in improved accuracy of the solution and the reduced
computing time [89-92].

Since the 1970’s, considerable advances have been made in the application of the
finite element techniques in tire modeling. Three-dimensional finite element models have
been developed and applied for the stress analysis of road vehicle and aircraft tires with
appropriate consideration of large magnitude static deflections [93-94]. Some of these
models have provided considerable information on characterization of the tire-road
contact loads and the energy dissipation associated with the loading conditions [95-96],
while others investigated the wear mechanism causing aircraft tire failure during a single
landing operation [97-98]. The models have been used to study influence of variations in
the material characteristics of the tire constituents due to the combined effects of material
hysteresis and frictional heating [99-101]. The steady state dynamic and transient
dynamic analyses have been performed to study the rolling, braking and comering
behavior of the tires [102-108]. These studies have mostly employed finite element

modeling for nonlinear analysis of shells of revolution [109-111], reduced methods [112,

-18-



114], operating splitting techniques [115-116], etc. Applications of these techniques to
the tire modeling are summarized in reference [117].

In recent years, the Finite Element Analysis (FEA) has been increasingly
integrated into the tire design process [118]. The FEA has been used to study the general
tire behavior and to perform parametric and comparative performance analyses. The FEA
of tires is now increasingly being used in virtual vehicle dynamics simulation models and
as a replacement for certain tire tests to reduce the development time. These models have
been widely used to predict tire deformations and stresses due to inflation pressure
loading, the load-deflection characteristics, footprint shape, global forces and moments,
natural frequencies, etc. Considerable differences among the reported models, however,
exist due to differences in objectives of the studies, modeling considerations, the orders
of elements used, rubber elasticity and material models, representations of the cord-
rubber layers, etc.

Compared to the analyses of statically loaded tires, dynamic simulations can be
more computationally intensive due to asymmetric behavior and requirements of smaller
load increments. The computational expense is considered as a major limitation of the 3-
D tire analysis, and the primary reason for limited use of the dynamic finite element
analysis within the tire design process [119]. The advances in high-performance
computing together with more efficient numerical algorithms have facilitated the
realization of high-density 3-D finite element analysis models of tires in recent years

[120-123].
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Stress Analysis

Vast majority of models for stress analysis are based upon either classical or finite
element techniques as applied to the tire structures that are simplified as cylinders,
membranes, or shells of revolution [4, 5, 12]. A large number of finite element based tire
models have been reported during the past few years to analyze the stress, strain and
deformation fields in the tire under various loading conditions [124-127]. While classical
methods provide closed form solutions to sets of differential equations to gain insights
into the tire behavior, the finite element techniques allow modeling of the geometry of
the actual tire profile and considerations of representative material properties of
individual layers. The importance of such studies may not lie in the quantitative values
they present, but rather in the qualitative comparisons of the trends obtained for different
design configurations involving variations in the geometric and structural properties. The
reported tire stress analyses range from the use of simple axisymmetric models for the
analysis of tire deformations due to curing stresses [128], to those involving application
of advanced models for analysis of rolling tires with detailed considerations of friction,
cornering and visco-elastic properties of the polymers [124].

While fiber stresses in a rolling tire relate to the cornering and traction properties
of the tire, the shear stresses developed in different belt layers and the belts and carcass
interfaces, directly affect the stability and integrity of the tire structure. The majorities of
the reported tire models, however, do not reflect the complexity of a real tire and thus
could not incorporate the concerned shear interactions. Too high a magnitude of inter-ply
shear stress in the belts may cause delaminating damage. The analysis of structural

integrity and stability characteristics of tires thus necessitates the shear stress analyses of
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the multi-layered loaded tire. Only limited efforts, however, have been made to analyze
the inter-ply shear stress fields and distribution of fiber forces in the individual layers of
tires [126-127, 129]. Most of the current finite element tire models, which could be found
in the literature, are mainly based on linear analysis of the multi-layered system,
assuming small deformations of layers and negligible shear interactions between the
anisotropic layers.

A number of nonlinear finite element tire models, reported in the literature,
consider the thickness of the individual rubber layers, while the fiber layers are
considered as membranes to facilitate the large deformation analysis of the nearly
incompressible rubber layers [126]. Wang et al. [127] introduced the Moire method to
carry out in-plane strain and displacement analysis from the experimental stress-strain
data for the tread and the belt regions. Nemeth et al. [126] described the use of a software
package comprising finite element models for design purposes, which incorporated
volume element modeling of the rubber layers and membrane element modeling of the
fiber layers. Such studies thus do not consider the shear interactions between the
individual anisotropic fiber layers and the large shear deformations of the fiber layers.
The analysis of the shear stresses developed between the fiber layers necessitates the
consideration of nonlinear analysis of such layers of finite thickness.

The above reported works are mostly concerned with car tires and only few of
them have been used to investigate the responses of heavy-duty truck tires, whose
geometry, material properties, and especially, the loading conditions, may differ
considerably from those of the car tires. The tire response to an applied load, expressed in

terms of stresses, strains and deformations of different layers, are inherently dependent on
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various tire structural parameters, such as the angle of cords in each layer, number of
layers used in the belts and material properties of different layers [130). The tire behavior
under specific inflation pressure and normal load may be further influenced by its
geometric features described by the aspect ratio, rim radius, tread depth, etc. [129]. The
influences of various structural and geometric parameters on the shear interactions of a
loaded truck tire, however, have not been investigated. The development of tirz models
capable of predicting inter-ply shear stress responses could provide information leading

to improved design and reduced delamination failures.

Contact Pressure Distribution

The contact pressure field developed in the tire-road interface has been an integral
part of the tire modeling programs and is of fundamental importance for both the tire
design and vehicle performance studies. The contact pressure distribution of a rolling
vehicle tire also determines the stresses induced in the pavement and bridge structures
leading to their fatigue damage [16-18]. The contact pressure field is strongly related to
the tire inflation pressure, vertical load and various structural properties. While a number
of pressure sensing systems have been used to measure the tire-road contact pressure
distribution [131], only limited efforts have been made to effectively estimate the contact
pressure distributions as functions of the inflation pressure and the normal load. Sakai
[131] employed an optical measurement system to characterize the stress distribution
between a tire and the contact surface, which facilitates the image representing of the
contact pressure distribution data and the contact area geometry in an experimental

manner. Akasaka and Kabe [132] studied the 2-D contact pressure distribution for a bias
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tire loaded against a flat road surface. Assuming in-extensible cords in their study.
however, ignored the variations in the cord tension. Trinko [133] derived a 2-D contact
pressure distribution from a 3-D finite element analysis of a tire. The derived results,
however, were not verified experimentally.

Although finite element tire models of varying complexities [134-138], have been
used to derive the contact pressure distributions, only few studies have attempted to
provide effective formulations for estimation of the 2-D contact pressure distribution that
may be implemented into vehicle models. Akasaka et al. [139] reported the 2-D contact
pressure distribution for a typical radial tire, by considering the tire as a ring with the
embedded springs to simplify its complex structure. The study reported the high contact
pressures along the shoulder regions and the relatively low pressures along the crown
centerline for a statically loaded tire. Ishihara et al. [140] determined the 2-D contact
pressure field due to a loaded tire through analysis of the model based upon membrane
elements. While the results revealed good agreement with the measured data, the
complexities of the related formulations used to derive the results deterred its general
application. A comprehensive description of the tire-road contact geometry and the
normal contact stresses developed due to tire-road interactions has been presented by
Browne et al. [141]. The study presents the contact properties for various types of tire-
road interactions based on both analytical models and experimental methodologies. Both
Ishihara [140] and Browne et al. [141] have employed membrane elements in their
investigations to solve for the large deformations experienced by the inflated tires. The
majority of the reported models, however, are based on rather insufficient experimental

evidence or relatively simple theoretical basis to establish the contact conditions.
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Tanner et al. [142] employed an advanced computational procedure for the
solution of frictional contact problem for the aircraft tires. The authors in their study
modeled a space Shuttle nose-gear tire using the two-dimensional laminated anisotropic
shell theory, incorporating the effects of variations in the material and geometric
parameters, transverse shear deformation and the geometric nonlinearities [143, 144].
The contact algorithm was based on the perturbed Lagrangian formulation [145], and the
preconditioned conjugate gradient (PCG) iteration procedure [146] was employed to
compute the solutions of the nonlinear contact problem [147-150], the shape of the
contact area and the normal force distributions in the contact region. In this investigation,
the inflated tire was loaded against a rigid surface, and the static tire contact problem was
thus treated as a unilateral contact problem. The numerical iteration was implemented
with a mixed finite element formulation [151]. The contact forces were derived from the
load intensities computed from the finite element program. The predicted normal and
tangential contact load intensity distributions were observed to be in fair to good
agreement with the experimental measurements. However, a possible drawback of this
method lies in the fact that the shape functions used are computed only for the
undeformed tire and may not reflect the contact area variations associated with the tire
deformations at the tire-road interface.

The studies on pavement damage potentials of tire loads and ride dynamics of
vehicles mostly consider the tire as an elastic element with a point contact with the road
surface. Some of the reported studies have considered the contributions due to variations
in normal load and inflation pressures through the development of equivalent spring rates

of the point-contact tire models [152-154]. In these studies, the 3-D contact pressure field
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was represented by an equivalent force, acting at a point within the contact patch beneath
the center of the tire. The contributions due to geometry of the tire enveloping the road
surface were further ignored. The point-contact approach, although quite simple and
convenient, yields the resultant tire force acting at a point on the road surface. This
contact force, however, may yield an overestimate of the road damaging potentials of
dynamic loads and exaggeration of the wheel-hop tendency [154]. Analysis of tire force
transmitted to the pavement necessitates the development of adequate tire models to
describe the contact patch geometry and the distribution of the contact forces on the road
surface. It is believed that tire load distribution function can be formulated from the 3-D
pressure field derived from an effective nonlinear finite element model incorporating the
essential geometric, material and structural properties of a tire. The function may then be
applied to the resultant tire force computed from the vehicle model comprising an
equivalent point-contact spring to estimate the 2-D pressure distributions. The simplicity
of the vehicle ride or pavement loading models could thus be retained through use of
equivalent point-contact tire models in conjunction with the estimation function. This,
however, would necessitate the derivation of an analytical function describing the 2-D
tire-road contact pressure distributions as a function of the axle load, inflation pressure

and contact patch length.

Modal Analysis

The vibration modes and the natural frequencies of a tire inherently determine the
tire's dynamic response properties. The tires envelop the external input arising from the

road irregularities and generate an input to the vehicle. The tire non-uniformities and

-25-



unbalance may yield further inputs to the vehicle due to resulting self-excitations. The
different modes of vibration of the tire interact with the dynamics of the vehicle and thus
affect its vibration behavior and ride quality [3, 155]). The vibration characteristics of a
tire design can be measured in the laboratory or computed numerically, in terms of the
tire natural frequencies and the associated mode shapes in the radial, lateral and the
circumferential directions [15]. The free and forced vibration response characteristics of
pneumatic tires have been evaluated through both the experimental [21, 25, 156] and the
computational means [157-159]. Majority of these studies, however, assumes uncoupled
symmetric and anti-symmetric motions of the wheel-tire system. Moreover, the analytical
models employed in these studies consider the tire structure as a circular string under
tension and supported by an elastic foundation to facilitate the mathematical description.
The finite element tire models based upon membrane or shell elements have also been
employed to study the vibration responses of tires [160-161]. These models are
considered to be considerably simple and can only provide the in-plane tire vibration
characteristics. The majority of the reported modal analyses are primarily based on linear
analyses of over-simplified tire structures, with the incompressible property of the rubber
ignored. The contributions due to the large nonlinear deformations of the multi-layered
system, and the variations in the inflation pressure and axle load thus have not been fully
investigated. The in-plane tire models can be applied to study the radial (ride quality) and
the longitudinal (braking or traction) force responses to in-plane variations in the wheel
axle position, road irregularities, tire radius and tire radial stiffness. These models,
however, do not yield the three-dimensional deflection modes comprising coupled in-

plane and out-of-plane deformations. The vibration modes of a pneumatic tire containing
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the nearly incompressibility of rubber materials, the anisotropy of the multi-layered
system and the structural features have been addressed in only few studies [162]. The
analysis of deformation modes and the natural frequencies of a tire as functions of the
anisotropy of the belt layers, axle load, and the inflation pressure have not been
attempted. This necessitates the study of the influences of the anisotropy of belt layers on

the vibration modes of a truck tire based on a nonlinear finite element analysis.

1.3 SCOPE AND OBJECTIVES OF THE THESIS

From the review of the literature, it is apparent that the dynamic performance
characteristics of wheeled road and off-road vehicle are strongly influenced by the static
and dynamic properties of tires. The deformation and stress/strain fields generated in the
tire structure, and the forces and moments developed in the tire-road contact patch, are
nonlinear and complex functions of many operating and design parameters. While
empirical and semi-empirical tire models yield the forces and moments developed by
tires for a limited range of operating variables, the continuous models provide significant
information related to the design variables. Extensive analytical and experimental studies
have been reported on the dynamics of road vehicles using either experimental tire data
or empirical tire models. Only limited efforts, however, have been made to develop
reliable analytical models for truck tires in view of the material properties and structural
parameters of the tire. The development of an effective analytical tire model on the basis
of its composite structural elements is thus highly desirable for the analysis and

enhancement of heavy vehicle performance.
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Owing to the complexity of the truck tire structure and geometry, it is quite
difficult to determine the stress fields in a tire under normal working conditions through
theoretical analysis. The majority of the reported models have neglected the effects of
shear stresses in the multi-layered portions of the tire. Although a few models can
incorporate the effects of transverse shear stress through the thickness direction, they are
normally based on the thin shell theory. Their applications are thus limited to the inflation
or rotational problems, while the analysis of deformations caused by other external loads
can not be performed. The majority of the finite element models, which could be found in
the literature, are mainly based on the linear analysis of the multi-layered system,
assuming small deformations of the anisotropic layers and negligible shear interactions
between the anisotropic layers. Some of the advanced finite element models, reported in
the literature, consider the thickness of the individual rubber layers, where the fiber layers
are considered as membranes. Such models thus do not adequately consider the
interactions between the individual anisotropic fiber layers. Moreover, very few of the
reviewed studies are related to the heavy-duty truck tires. The development of a detailed
and efficient model for a truck tire that permits the analysis of the 3-D deformation and
stress fields with emphasis on the shear interactions between the belt and carcass layers
as a function of the tire load, is thus considered desirable.

The performance characteristics of tires, and thus the vehicle, are strongly
influenced by many geometric, structural and material parameters. The effects of such
parameters on the stress and strain fields of truck tires have not been reported,
specifically, the influences of variations in structural parameters and material properties

of individual layers and geometry of a loaded tire on the maximum shear stresses
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developed in the belt and carcass layers. A comprehensive parametric study is thus
considered vital to derive a set of more desirable structural and geometric parameters for
a truck tire, such that the maximum shear stresses in the belt and carcass layers could be
reduced over a wide range of loading conditions. |

The normal load distribution generated in the tire-road interface is dependent on
the inflation pressure and the axle load. The contact pressure fields affect the operating
properties of tires and offer essential information on how the road surfaces are loaded by
vehicles through their tires. Owing to the complex nature of the tire-road contact
problem, and wide variations in the operating conditions and pavement surfaces, the 3-D
contact pressure field is often represented by a single nominal force acting at a point
within the contact patch beneath the center of the tire. Such simplification yields an over
estimation of the dynamic wheel load and pavement damage potential of tires. Although
the contact pressure distributions have been quantified through experimental techniques,
effective analytical functions describing the contact pressure distribution as functions of
the inflation pressure and the normal load are not yet available. The identification of a
tire-road contact pressure distribution function in the wheel plane as a function of the tire
inflation pressure and normal load offers considerable potential for efficient analysis of
the pavement damage potential of the tires. Moreover, the load-dependent vibration

modes of a truck tire could provide considerable insight into its vibration behavior.
1.3.1 Objectives of the Dissertation Research

The overall objective of the dissertation research is to develop an effective tire

design and analysis tool incorporating the nonlinear geometric and structural features of
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the multi-layered system of a truck tire. The dissertation research is focused on a non-

rolling tire under static loading conditions. The study involves the nearly-incompressible

property of the rubber block; large nonlinear deformation of both isotropic rubber and
anisotropic layers; stress and strain fields in layers and normal stress distributions in the
tire-road interface. The specific objectives of the study are described below:

a. Develop a nonlinear finite element model of a radial truck tire using 8-node layer and
hyper-elastic elements representing each individual structure layer and the tire cross-
section geometry to derive the deformation, stress, strain and inter-ply shear stress
fields under a static load and specified inflation pressure.

b. Validate the tire model by comparing the computed tire-road contact patch geometry
and the load-deflection characteristics, with those measured in the laboratory under a
wide range of tire load and inflation pressure conditions.

c. Perform the analysis of the validated model and determine the tire response in terms
of the radial deformations, tensile stresses, stresses in principal directions, inter-ply
shear stress fields developed between the different belts and carcass layers, and the 3-
D tire-road contact pressure fields, as functions of the normal load and the inflation
pressure.

d. Perform a thorough parametric study on the effects of various structural parameters
related to the tire geometry and cross-section, the geometry and anisotropic properties
of the individual layers, on the maximum shear stresses developed between the belt

and the carcass layers for a range of loads and inflation pressures.



e. Propose a more desirable set of structural parameters to reduce the maximum shear
stresses in the belt layers for a loaded tire, and demonstrate the potential performance
benefits of the proposed design parameters.

f. Estimate the 2-D tire-road contact pressure distribution with objective of enhancing
the application of the point-contact tire models in the pavement damage studies. For
this purpose, the so-called “equivalent work” concept is employed to propose an
effective methodology to formulate the 2-D contact pressure distribution as a function
of the inflation pressure and the axle load.

g. Perform modal analysis of the tire model to generate its natural modes and study the
influence of the anisotropy related parameters, such as the cord angle, number of
layers in the belt, number of cord ends per unit width of each layer and the inflation

pressure, on the natural frequencies of the tire.

1.3.2 Organization of the Thesis

In chapter 2, the governing equations for the incremental analysis of inc ruzbbder
element are derived based on the Total Lagrangian (TL) formulation and the modified
Mooney-Rivlin material model. The general formulation for the finite element solution of
the nonlinear elastic problem involving nearly incompressible materials has been derived
using the mixed interpolation of the displacements and pressure (Wp) formulation, which
are to be employed by the finite element model of a radial truck tire.

In chapter 3, a nonlinear finite element tire model is developed using ANSYS® to
determine the deformation and stress fields in the belts and carcass layers, contact patch

geometry and pressure distribution in the tire-road interface. The influence of normal
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load and thus the tire deflection on the above response parameters are discussed. The
model is validated in a qualitative manner through comparison of the computed load-
deflection characteristics and the footprint geometry with the measured data.

In chapter 4, a parametric study is performed to study the influence of selected
structural and geometric parameters on the maximum shear stresses developed in the belt
layers. The investigated parameters include the cord angle and number of twisted cords
per unit width of an individual layer, total number of belt layers, the aspect ratio, rim
radius and the tread depth. A more desirable set of these parameters is proposed to reduce
the highest maximum shear stress to enhance the durability of a tire in service.

In chapter S, the 3-D contact pressure data computed from the finite element
model are analyzed to derive the 2-D pressure distribution using the equivalent work as
the basis. Curve fitting techniques are applied to derive a polynomial function for the
estimation of the 2-D contact pressure distribution as a function of the normal load and
the inflation pressure. The validity of the proposed methodology is assessed through
comparison of the estimated data with those computed from the finite element tire model.

In chapter 6, a model analysis is performed to derive the 3-D mode shapes and the
corresponding natural frequencies below 112 Hz. The motions associated with each
vibration mode of the tire under specific inflation pressures are discussed. The effects of
variations in the inflation pressure and the anisotropy related structural parameters, such
as cord angles and the number of layers in the belt, on the natural frequencies of a radial
truck tire are investigated in a qualitative manner.

In chapter 7, the highlights of the research, major conclusions drawn and

recommendations for future work are presented.
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CHAPTER2 FORMULATION FOR THE NONLINEAR FINITE
ELEMENT TIRE MODEL

2.1 INTRODUCTION

A tire structure comprises of composite layers of different materials and exhibits
strongly nonlinear deformation characteristics. The development of an effective and
reliable tire model thus essentially involves the consideration of the nearly
incompressible property of the tread rubber block in addition to the anisotrpic material
properties of each layer. The nonlinear analysis of a body, in general, involves the
determination of the state of equilibrium corresponding to the applied loads. The stress
analysis of a pneumatic tire involves strong nonlinearities attributed to the material and
the kinematics, and thus necessitates an incremental formulation and a time variable to
conveniently describe the loading and the motion states of the body from its original to
the final configuration. The Total Lagrangian (TL) formulation can be conveniently used
to derive the governing equations for the rubber elements in the development of the finite
element model of a pneumatic tire, where all the static and kinematic variables are related
to the initial configuration of the considered body [163].

The displacement-based finite element method, due to its conceptual simplicity, is
commonly used for the analysis of solids and structures [164]. Assuming that the nodal
point displacements of the finite element mesh can be used to completely describe the
displacements in the body, an application of the principle of virtual work generates a set
of simultaneous equations with the nodal point displacements as unknowns. The
displacements can then be used for the incremental nonlinear analysis, where the

displacement increments are considered as the principal unknowns. For incompressible
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materials, however, the hydrostatic pressure is de-coupled from the displacement, which
necessitates the use of the displacement/pressure (u/p) formulations to obtain the solution
of the elastic problems involving the nearly-incompressible tread rubber materials.

In this chapter, the general FE stiffness matrices and force vectors of the rubber
element for the incremental analysis are derived using the Total Lagrangian (TL)
formulation and the modified Mooney-Rivlin material model. The general formulation
for the FE solution of nonlinear elastic problem involving nearly incompressible
materials has been derived using the mixed interpolation of the displacements and
pressure (w/p) formulation, which are to be employed by the FE tire model developed

using ANSYS® software for a typical truck tire.

2.2 BASIC EQUATIONS FOR THE LINEAR ISOTROPIC MATERIAL

Consider a three-dimensional element in a solid body of isotropic material that is
described by the Young’s modulus E and Poisson’s ratio v. Using indicial notation, the
governing differential equations for any point within the considered solid body is given
by

T, +f° =0 2.1)

where 7, are the Cartesian components of the Cauchy stress tensor and f? are

the Cartesian components of the body force vector. If the body is made of nearly
incompressible material, the volumetric strains will be small in comparison to the

deviatoric strains. Then the constitutive or stress-strain relations can be written as:



T, =Ke,0; + 2Ge, (2.2)

where x and G are given by the bulk modulus and shear modulus, respectively,

K= —E— (2.3)
31-2v)
E
G= 24
2(1+v) (2.4)

Further, e, is the volumetric strain, expanded as:

AV _ du, +au2 +8u3 (2.5)

e, =€; = =e, +e, t+ey
“ VvV odx, ox, O0x;

where x, and u, (i=1, 2, 3) are the coordinates and components of the displacement
vector for the considered point P, respectively. e, (i=1, 2, 3) are the normal strains along

the coordinate axes. AV and V describe the volume change and the original volume
occupied by the considered material particles, respectively.

The &, in Equation. (2.2) is the Kronecker delta, expanded as:

{f N )
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and e,.'j are the deviatoric strain components, which are related to the volumetric strain

and the Cauchy strain tensor in the following manner:

e. =e. ———9§. 2.7)

where e, are the components of the Cauchy strain tensor correspondingto 7, .

For a linear isotropic material, the pressure-strain relationship can be written:

p =—Kke; (2.8)
where

T T +T _+7T.. . N N
p=- ;"(z— = :;” = in Cartesian coordinates)

In the above equations, p is the hydrostatic pressure and x is the bulk modulus.
The e, are the volumetric strains, which diminish to zero for the incompressible
materials as x approaches to an infinite value. The hydrostatic pressure p, in this case,
converges to a finite value. Obviously, Equation (2.8) cannot be used to numerically
calculate p, since p is de-coupled from the displacements for a totally incompressible
material and must be calculated directly from the equilibrium equations in an analytical

solution.
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2.3 NONLINEAR U/P FORMULATION FOR THE INCOMPRESSIBLE
MATERIAL

A general u/p formulation is derived for analysis of elastic bodies involving
nearly incompressible materials. The formulation is based on a mixed interpolation of the
displacements and pressure, the so-called w/p formulation. The feature of the u/p
formulation is that a separately interpolated pressure explicitly replaces the pressure
computed from the displacement field. The displacement and pressure increments are
solved during subsequent equilibrium iterations and are used to update the total
displacements and pressures.

In the following sections, a general nonlinear formulation is derived upon the
consideration of the material properties and/or geometric nonlinearities. The derivations
employ many of the concepts and notations used in nonlinear analyses by Sussman et al.
[163] and Bathe [164]. The finite element stiffness matrices and force vectors are derived
from a modified potential using the Total Lagrangian (TL) formulation, which results in
the incremental equations of motion that are used to develop the finite element tire

model.
2.3.1 Basic Concepts Concerning TL Formulation

The most important idea in the nonlinear incremental analysis of solid material is

that the material description used has an incremental strain potential energy density

‘W such that

dW=,S,d¢€,; (2.9)

-37-



where , 3‘-,.1. are the components of the second Piola-Kirchhoff stress tensor and ¢, are

the components of the Green-Lagrange strain tensor. The left subscript ‘o’ denotes the
original configuration and the over bar is used to indicate that the quantities are computed
from the displacement field.

For materials with an incremental potential concerning hyper-elasticity, the

potential ;W physically represents the strain energy density due to displacement per unit

of the original volume. A consequence of the material assumption described in Equation

(2.9) is that the tensor

=~ 9,5, oW

= = 2.10
0TI T 9le,  04€,04€, (2.10)

has the following symmetric property [163]:

(2.11)

0

0 Cijrs =0 rsif

For this reason, the displacement-based finite element method produces symmetric
element tangent stiffness matrices and the potential based u/p formulation. The equations
of motion derived on the basis of u/p formulation are described entirely by the form of
the potential. The element force vector and the stiffness matrixes can be derived by the
chain differentiation of the potential with respect to the displacement and pressure
variables. The key step in the construction of the equations of motion is to properly

modify the potential to include the pressure variable [164].
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The application of the principle of virtual displacements to a typical element,

yields the general governing equation in the variational form as described in [164):

o{ [, ,wa’v =R 2.12)

where ‘R describes the external virtual work at time t, °V is the reference volume at
¢t =0 and W is the total potential energy per unit volume, which is composed of potential

energy density attributed to displacement (denoted by ;W ), and that attributed to both

the displacements and the pressures (denoted by 0 @ ), such that

W={W+.0 2.13)

In the above equation, ,Q is related to hydrostatic pressures ‘p due to

displacements and due to separately-interpolated pressure variables ‘p in the following

manner:

)? 2.14)

In the above equation, the displacement and pressure are both treated as finite
element field variables, which involve the corresponding interpolations on the basis of

their respective nodal values. The operator , P(-) is related to the deformation gradient



tensor, the right Cauchy-Green deformation tensor and the Green-Lagrange strain tensor

in the following manner:

1 'C a(')

2.15
3der(/X)° ™ /&, 215

OP() = —

where /X is the deformation gradient tensor, ,C,, is the right Cauchy-Green

deformation tensor of dimension mx n, and ;&,,, is the Green-Lagrange strain tensor.

Equation (2.12) indicates that the variation in the integrated ‘internal stress’
potential must equal the variation in the ‘external loading’ potential. The only admissible
variations in the displacement-based finite element analysis are the displacement
variations, which are controlled by the nodal point displacements. While in the u/p
formulation, the unknown pressure variables are also subject to variations, which are used
to generate the constraint equations.

Equation (2.12) and (2.13) yield the following form of the governing equation

incorporating the variations in both the pressure and displacement variables:
8([,, G +s0dV 'R (2.16)

2.3.2 Finite Element Matrices Based on TL Formulation
The matrix form of the governing incremental equations of motion for a typical
rubber element, can be derived through linearization of the principle of virtual work with

respect to the finite element variables as [164]:
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‘KUU ‘KUP[a@]_{““R| |'FU .17
‘KPU ‘KPP | b 0 ‘FP ]

where "*#R consists of the nodal point forces corresponding to the external loading at

-~

time t + At, & and p are displacement and pressure vectors, respectively, which contain

the increments in ‘&, and ‘' p, (k=1,2,3). Further, the vectors, 'FU and 'FP, contain the

following entries:

F UF;,IL,;‘_ ov6Wd°")=f;(fov(é‘V+JQ)d°V)=—a—[Lv['W ‘ ('ﬁ-’ﬁ)zd°VH

The element of the stiffness matrix in Equation (2.17), 'KUU, ‘KUP, 'KPU, 'KPP, can

be determined from [164]:

ul
'Fy. 9'FP,
'KU;D,,:af':U': —L='KPU
a'p; d'u,
‘ P.-,~=a,F.P‘ (2.19)
ap,.
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Equation (2.17) reveals that the force vector is partitioned into two parts, one part
due to the displacement variations and the other part arising from the pressure variations.
Similarly, the stiffness matrix is partitioned into four parts. Using chain differentiation,

the components of force vector and stiffness matrix can be written as:

ad I W 9, W d,€ d,€
‘FU, = ——\|, Wd’v 2 4% = Totu goy = | 5, L H4%
a,- oy ) a, A’ J‘ova E a,g oy [+ R 74 a,ﬁ‘

a l —_ ~¥ ;0 —_— alﬁ V]
‘FP, = —— - 'p—='p)dV ||=|, —eCPP('p—'P)=—dV (2.20)
&'p, [I( 52 77 H b mocPr(PPrgg

and , P() can be computed from Equation (2.15), and

where ,CPP = —
0

. _d'FU, ‘g 9o€u |,0
KUU, =S "Iva" it ug,—.—}fv

. > 9,5, 9,
"'". Skl a:aoa:ki dov oy aotﬁjl aolau dOV

LSt L | she 35
&l 3
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v E,0eE, 0'd, 94,

= 's,,,a",’ga,_d"v [,

o€, 9Eu %

~ 2.21)
kl ar»j ara (

9%,¢€,
, d’Vv + uu
I Su Y9',0'a, o o€

where
,CUU o7 W CA (P S (P, (2.22)
S YPI PR Y TP " 2,P'p
— W .
Note that ,C,,, = ————— and the second term in (2.22) can be expanded as:
00E490E

92 _ 1 (,__,,.,)2 _ d d 1 (PP )2
dceoie| 2,P(p) " P die. | aies|2.Pmy L F

3 L sy AP 1 55y 2P

= EX } famy \ I} }
d,€,, 2[ P('I_))] N o PCP) o€y

1 9, P('ﬁ)],,- o2 P®], 1 3P 3PP
p) (P—'P)= p
[ p('ﬁ)]3 9.€, P [ p('ﬁ)] 9/e, 0 &y

gy Eob@], L PPy ) 35
2[ P(p ] 05400, l:ol"('ﬁ)]2 0,&, 9,&,
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_ 1 a’i)' a"p' _ 1 "ﬁ—'ﬁ 32;5
JP(P) dle, 3jey  oPCP) o€ €,

op d'p — = 0°D
= CPP————+,CPP('p-'p)—————
PP S aie, PP P e

o Pcp)] a5 | 37 a[oP(‘Tw)]}

+,CPP*('p-'p
CPFAP ”’{ dic, dic.  die. e,

_ ol peplal, Pep)) 1 0P
CPP3 t—_1¢ 2 (1] J 0 ) CPP2 r=_r==\2 1]
A AL R R S YR
(2.23)
and
a,W a X7 l 2 r a l -_— -~
tS = 0 = lw_ l—_l"" - IS - {l _l 2
TP ao’eu(° 20P(’17)(p P) }° 4 9le, [20P('ﬁ) P p)}
(2.24)

where /S, = a?w and
aO£H
S wr] ) Jiie?]
a -1 Ili—'ﬁ)2]= 20P(lp) a[oP(‘i)]_’_ 20P( P) J a’i)'
ds€y | 2,P(P) af, P(P)] ey 9'p gy



1 o nd PP 1 . . 3P
= ("D - 1 )
2/, P('ﬁ)]’( L YR TN "o,

ez 0|, P = a'p
_L cpprepapy PP, cppipip) IE &
2 aO ki a0 [/
Hence
t r'c f— I~ alﬁ 1 2ot=_13)2 B[OP('ﬁ)J
oSu=oSu+oCPP( p—'p) aolgu +30CPP (p-'p) a;e“
xup. < OFUs - a-‘wd oy [ 0 [ W ey ]d°V
v 9p, Ivaa,dp, “vop,|dje, Od,
21 a
0*W 9d'pad, E,ddov:jo OCUP,da o€u 9P 4o
°va £,0'p 0p, du, v du, op,
in which

a"W d 9 | . 1 t=_1m=y2
= = ‘W — -
CUPH [1 {a'ﬁ[o ZOP("—J)(p P) }}

__ 9 [af 1 'ﬁ—’i)]}
dle, |0F| 2,PCP)
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(p- p)}

g o]
_ 2 { 1 ,,ﬁ_,ﬁ)}= P(P) A pep], _LoPCP) 3P
35y |0 PCP) al, P(P))] g€y P 9,y
1 PP 1 3P
=————=(p-'P)—= + - -
[o P('ﬁ)]- do €y o P(P) &y
=-,CPP 9P ,CPP*('p-'p Mﬁ—)l .27
d,Ey d, €y
d'FP. d d 0 {Jd W
IKPP - - IW 0 0 OV
"=, %, {aﬁf[f ‘ V} 35, [aﬁ,
3 |9 W 93P |6 9> Wapap, P 9P o
= V= - a’v =, ;cPPZEZEa%y
" op, [ d'p aﬁ,—]d k. 0'p* 9p, 9p, °~ " op, 9p,
(2.28)
in which
9’ W _ 0 | ,— 1
"W - BBy | = - =,CPP 2.29
af“"’ al~2 [0 2 P(I—-)( ) ] OP(lﬁ) 0 ( )

When ,P(‘p) is constant (as is the case for common material descriptions).

several of the terms in the above equations are zero. The equilibrium is reached when for

all the degrees of freedom [163],
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d

1 - 4 0'8H -—
R -], ¢Su % d°V =0
and
— 1~ a’ﬁ
[,, o CPPCP-"P)=d°V =0 (2.30)
v api

2.3.3 Discretization of the Variables

For the purpose of evaluating the elements, 'FU,, 'FP, 'KUU,,

‘KUP, ('KPU;), and 'KPP,, the change in the Green-Lagrange strain tensor o€y and

the interpolated pressure ‘P in terms of the incremental displacement and pressure
variables need to be formulated. The displacement and pressure variables for a material

point within an element are interpolated as:

‘P=8.b (2.31)
where ‘u’ is the displacement at node L of the element along the i™ direction and ‘ p, is
the corresponding nodal pressure. Further, h, and g, are the interpolation functions for

displacements and pressure, respectively.

For the pressure, it can simply be written as:
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valat-fi (2.32)

Using the Green-Lagrange strain tensor:
4 l { !
ofu = E(Oxb.lz 0%ss = 0y) (2.33)

where &, is the Kronecker delta. The derivatives with respect to the nodal point

displacements can be computed as:

d € 1
0%k _ t I
9'ut = _2-(0xi.lc o toXiohe )
]
21
9" €y 1

a'u,."a'uf = E(OhL.k ohu 1ol ot i )9, (2.34)

Similarly, using 'ﬁ=0P({,P—V—) with the Mooney-Rivlin material model, the pressure

derivatives with respect to the Green-Lagrange strains can be obtained as:

Jd'p

ty 0
=-KoJ;,C
e, 3. Cy
6215 ety 0 t t -lsa A 3 a t 35
—,——[—-——K,,JMCHOC,,—K(OJ,) (ekrtgbf+£krr£1rj')ocrj (2.35)
aoeuaoerx
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where £, is the permutation tensor and 9C, is the inverse of the right Cauchy-Green

deformation tensor [C,,. The x represents the bulk modulus and J; is the reduced

invariant, whose expression is to be derived in the next section.

2.3.4 Application of Mooney-Rivlin Material Model
The w/p formulations are considered to be well suited for the analysis of rubber
materials due to their nearly incompressible response property. The basic ingredient in
these formulations is the strain energy density (W, which is defined by the specific
material model used.
While various forms of the strain energy density function W are available, one of

the commonly used models is the Mooney-Rivlin material description model, which is
used to characterize the tread rubber material undergoing large strains. The conventional

Mooney-Rivlin material can be expanded as [164]:
W =C,((1, -3)+C,y (I, -3); =1 (2. 36)

where C, and C, are material constants and 4/, are the invariants given in terms of the

components of the right Cauchy-Green deformation tensor:

ty _t
OII—OCkk

4 l t t 14
ol =5[(01l)2—ocijocij]



1, =det;C 2.37)

In the above expressions of invariants, the following relations exist:

IC=(XT X
IX=(RU

JC={XT{X={UT R §RU=,U" sU=,U U (2. 38)

where U is a symmetric stretch matrix and (R is an orthogonal (rotation) matrix.

In the Mooney-Rivlin model, 2(C, + C;) represents the shear modulus and 6(C; +
C; ) represents the Young’s modulus when strains are small. In the above-described
Mooney-Rivlin material description, it is assumed that the rubber is totally
incompressible. A better assumption is that the bulk modulus is several thousand times as

large as the shear modulus, which means that the material is almost or nearly
incompressible. This assumption is realized by eliminating the restriction, 4/, =1, and

including a hydrostatic work term in the strain energy function to obtain:

‘W =C,(1,-3)+C, (g1, -3)+ W, (o1I,) (2. 39)

The material description, however, cannot be applied directly, since all of the

three terms in the above equation contribute to the pressure, such that:
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‘D=C,oP(1,)+C, o P(o 1)+, PW,(,1,)) (2. 40)

Particularly, the terms oP*(,P(;1,))and ,P*(,P(,I,)) are nonzero, since they are

sensitive to the magnitude of the volume ratio. In order to obtain an appropriate

expression to circumvent this problem, the reduced invariants are introduced:

(;Jl =0'Il((;13)—”3
ol-’z=ollz(0113 )_213

T, =(1,)"? =(detyC)'? =det X (2.41)

The invariants ,J, and 4J, in Equation (2. 41) are insensitive to the magnitude
of the volume ratio. The terms ,P(;J,)and ,P(,J,) are thus considered as zero. Using

the det; X than det,C , the strain energy density can be expanded as:

W =C,(J, -3 +Cy( T, =3+ W, (o T3) (2.42)

In the above expression, W, has to satisfy the material restriction as in the

following:

> _o o IWuld)_,

—_— o 7 3 (2 43)
d(det,X) d(det,X)

o PZ (lﬁ) -
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Equation (2.43) indicates that ‘' p depends only on ;J; and can be further derived

as [163]:
‘P =—K(det,X —1) = —k(sJ; ~1) (2.44)
and
= d('p)
P —— = 2.45
o PCP) d(det/X) o (2.45)

Considering the potential energy attributed to the hydrostatic pressure W, =0

and the Equation (2.14), the differential form of the total strain energy density can be

described as:

d'W =dW, =—'pld(det X)) (2. 46)

W, =-| ‘pld(detsX)]= —[ - Kldet X ~11d(det;X)

=%K(deto'X -1)° =%x((;1, -1)* (2.47)

where x represents the bulk modulus.

The stresses computed from displacements, corresponding to the strain energy

density, are derived using the following equation:
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- 1{ W oJOW
g =—| =2 0 2.48
oTu 2(30’8,, +a;e,k) ( )

Moreover, the constitutive tensor is computed using

—~ 1{ 0¢85, , 9,5
(Cyp == 2t 4 0 2.49
o 2(a;en a.;e,,J &

is consistent with the

The use of the operator 1 9¢) +—a(;) instead of 9C)
2| dog; 9oE; 9o €,

fact that j&, is a symmetric tensor and ensures that , §,.j and C—‘,.j,s have the correct

symmetries. Since this operator is frequently used in the subsequent derivations, the

following abbreviated notations are introduced:

o =l( 90 , 90 J (2. 50)

Using the relationship, ,¢&; =—l-(’C.. —-4.), the above expression can also be
P o U] 2 0™~y i

rewritten as

.90 , 30
) = 2.51
O =3¢ aic, 2.51)
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It is noted that the operator (-);. is a linear operator and may be manipulated using

the rules of the chain differentiation.
Applying the operator (2. 51) to Equation (2. 42), yields following expression for

the strain energy density:
W =C(sJ,-3)+C,(sJ, —3)+%k(0’.13 -1)? (2.52)
The above equation results in following expression for the stresses:
oS, =QW), =C, (), +Cy(3J ), + k(oI5 =D J3); 2. 53)

where

4 e t - r . l ! ¢ - ' .
(I =(l5) “3(011),} -3(011)(013) “3(013).',‘

! . t =213, 1 . 2 t 4 -5/3 /¢ .
(oJ2), =(ol3) " (ol2)y "5(012)(013) (o13);

AU B P
(0‘,3):] =§' 013) ”-(013),',' (2.54)

Recalling the invariants described in Equation (2.37):

t t 4 1 t 2_ 1 t 4 4
o, =oCu: 012=§[(01x) —GCon.-]; ol =det,C



The terms in right side of the Equations (2.54) can be expanded in the following

manner.
G1,); =26,
(o12); =2,1,6, ~(;C;+4C)
G1,); =[det,CY, =(°C;+7C ;)det,C (2.55)
where
°C, =(,C;) (2.56)

For the purpose of further consideration of ,C,, the derivative law of a

determinant is used. The derivative D’ of a determinant D of order n whose entries are

differentiable functions, can be written as [165]:

D1= D(” + D(Z) + e D(n) (2.57)

where D, is obtained from D by differentiating the entries in the j-th row.

For a third-order determinant C, it can be written that

Cll ClZ CI3

d(detC) _ d
3. 3¢ |c» €= Cx
Y ! C31 C32 C33
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Cn CIZ CD C C C
9, 3 ol Jocw o dH| & (2.58)
= »n n 2
¢, €. C |ac,., €, 3| lac, ac, ac,
] U] v

In the above expressions, two of the three determinants in the right hand side will

be zero, and the remaining determinant consists of a row containing only one non-zero

term, which is equal to 1. Introducing the notation C, which is defined as the matrix

obtained from C with all its elements in the i row except C, being zeros, it can be

written as:

d(detC) _ 1
aC

detC (2.59)

i i

The above equation verifies the Equation (2.55) for the invariant Gl ),'] .

The constitutive tensor is derived upon applying the operator in Equation (2.51),

such that:

oEijrs =(Ol‘§:j ):: =C, (PFA ):]):x + Cz((oljz):j):x +k[(1;13):s((;13):j +(oJ3 — l)((ol-ls);):s
= C (T )i +Ca (@2 )i, + k(5T 3)7 (0T 3); +(od s = D(oT 3D

(2.60)

where



t had t -1/ t - l t -4/ 4 ® ot d 4 * ot . 4 4 hid
(0d )i =G (011 -3’(013) GGG +G 1) G 13), (1)) ,,]

+§(;1. L) PG G,

3 o 4 - I had 2 ! - t *rt hd 4 * ot hd t t b
(ojz)ijrs =(o1y) 2,3(012)1‘er -3(013) SIB[(OIZ)U(OIJ)U +(o13), (013).,' +(012)(013)l/n']
10 1 t - 4 *,t hd
+'6'(olz)(013) 8/3(013)0(013)n

' had 1 ' =312 ¢ “! . 1 t “1/2 /1 .-
(OJB)Urx =—Z(013) 3l-(013)ij(013)rs +5(013) v (013),-],,- (261)

and
(Olll):;rs =0
(o1.);. =46,0, -2(6,6,,+6,6,)

~ ~

t e _ra ~ -~ - ~ - o~
(013)1'jr: —[eircej:] +€i:t£jrf +£jrc£isf +£pr€1rf ]0 Crf (262)

The pressure derivatives required in the u/p formulation are derived through chain

differentiation:
a,p ="k0'13(:)cu
aoeu
_9°p =k 'J.°C, [C.. —k((J3) " (Epeiys +Ercbin )0 C (2.63
f f =Rol3,Cuorn TR0V krc©lsf kscCif Jo Yo .63)
aoeuaoen
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where £, is the permutation tensor and °C,, is the inverse of the right Cauchy-Green

deformation tensor ,C,, .

2.3.5 Solutions for the incremental Analysis
The objective of the analysis is to obtain displacement and pressure variables,
such that the right-hand-side of Equation (2.17) is identically zero. The Newton-Raphson
scheme can be employed in an iterative manner to solve the global Equation (2.17).
Assuming continuous pressure between elements and omitting the left subscripts for

simplicity, Equation (2.17) can be rewritten as:

[KUU +[KUPlp=R—-FU

[KUPY i +[KPPlp =0— FP (2.64)

The solution of the above equation yields:

p =[KPP]"' (-FP-[KUPY i)

([Kli=R-F (2.65)
where

[K]=[KUU]-[KUP)KPP)"'[KUPY

F = FU -[KUP)[KPPY'FP (2.66)
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The Equations (2.65) and (2.66) can be solved using the Gauss elimination
method to derive the element stiffness matrix [K] and the force vector F, which can then
be assembled into the global stiffness matrix and force vector. Once the global set of
equations has been solved, the displacement incremental field & is known and the

pressure incremental field p can be obtained at the element level using Equation (2.65).

24 SUMMARY

The fundamental concepts and governing equations for the linear isotropic
materials are presented to form a theoretical basis for the subsequent nonlinear
incremental analysis. A general formulation for the nearly incompressible rubber material
is derived based on the mixed interpolation of the displacement and pressure variables.
The finite element matrices composing the global equations for a rubber element, and the
required incremental form of the interpolated displacement and pressure variables are
then derived using the Total Lagrangian formulation. A detailed u/p nonlinear
formulation, using the Mooney-Rivlin material model, is further derived for the
implementation of the nonlinear incremental analysis. Finally, the procedure for
obtaining the iterative solutions from the global equations is described. The u/p
formulations derived on the basis of the Mooney-Rivlin material model in this chapter are
used to generate the finite element matrices for the hyper-elastic element, used to
represent the rubber tread block and the rubber layers in the subsequent development of

the nonlinear finite element tire model.
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CHAPTER 3 MODELING AND INCREMENTAL ANALYSIS
OF A TRUCK TIRE

3.1 INTRODUCTION

The ride, handling, braking and directional performance characteristics of road
vehicles are directly related to the tire-road interactions, and the static and dynamic
response of the tires. The early tire models generally involved either the membrane
analysis or considered the tread as a pressed string, while the sidewalls were considered
as elastic foundation supporting the tread [8]. Other studies modeled the tire as a ring so
as to incorporate the tread bending [3]. More elaborate models were developed by
considering the tire as a sandwich structure whose core resisted the deformations in shear,
while the outer layers resisted the deformation in bending [5]. Wang et al. [127]
introduced the Moire method to carry out an in-plane strain and displacement analysis
from the experimental stress-strain data obtained for the tread and the belt regions.

A large number of FE based tire models have been proposed during the past few
years to study various structural aspects of the tires, which include interlayer
deformations and stresses, fiber forces, interlayer shear forces, etc. [4]. The majority of
the reported FE tire models, however, are mainly based on linear analysis of the multi-
layered system, assuming small deformations of the layers and negligible shear
interactions between the anisotropic layers. Only a limited number of nonlinear FE tire
models, reported in the literature, consider the thickness of the individual rubber layers,
while the fiber layers are considered only as membranes to facilitate the large nonlinear
deformation analysis of the nearly incompressible rubber layers [126]. Such studies thus

do not consider the interactions between the individual anisotropic fiber layers. Nemeth
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et al. [126] described the use of a software package comprising FE models for design
purposes, which incorporated volume element modeling of the rubber layers and
membrane element modeling of the fiber layers. The large shear deformations of the fiber
layers thus could not be considered. The analysis of the shear stresses developed between
the fiber layers necessitates the consideration of nonlinear analysis of such layers of finite
thickness. Moreover, the reported studies are mostly concerned with car tires and very
few of them are related to heavy duty truck tires. The dimensional geometry, material
properties of each layer, and especially, the loading conditions of truck tires, are quite
different from those of the car tires.

In this chapter, a detailed and efficient nonlinear FE model of a truck tire is
developed to predict the three-dimensional (3-D) stress, strain and deformation fields as
functions of the inflation pressure and the normal loads acting on the tire. The tire model
is developed considering the nearly incompressible property of the tread rubber block,
and large magnitude and nonlinear deformations of the multi-layered system under the
tread. The model thus permits the analysis of shear interactions between the belts and the

carcass layers.

3.2 DEVELOPMENT OF THE FINITE ELEMENT TIRE MODEL

A tire structure comprises of composite layers of different materials and exhibits
strongly nonlinear deformation characteristics. The development of an effective and
reliable tire model thus essentially involves consideration of the nearly incompressible
material property of the tread rubber block and the anisotrpic material properties of each

layer. The model should also consider the orientation and geometry of the high modulus
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cords in the individual layers, stacking sequence of different layers and nonlinear analysis

of the multiple layers in order to predict the inter-ply interactions.

Circumferential direction
Cord angle of belt 4

Belt 4

Belt 3
Belt 2
Belt 1

Interply rubber Layer nearest to the tread

(a)

Circumferential direction

Inner liner

Body layer

Rubber layer between
body layer and belt

(b)

Figure 3.1: The stacking sequence of the layers in (a) the belts, and (b) the carcass.
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A radial truck tire with four circumferential ribs, one steel cord carcass layer and
four steel belts in the crown area, is considered for the model development. Figure 3.1
illustrates a schematic of the stacking sequence of the belts and the carcass layers. The
cord angles relative to the circumferential direction in the belts beginning from the one
nearest to the body ply are assumed as —22°, +22°, -22°, +22° respectively. The thickness
of the belt is considered to be approximately two times the steel cord diameter. The inter-
ply rubber layers represent the isotropic rubber medium between the different belts, and
between the belt and the body layer. The tire model is developed using essential features
of the tire structure and cross section geometry, such as the number of belts and carcass
layers, tread geometry, section height and width, thickness of the layers, number of cords
and cord angles. The bead and end effects of the belts are neglected in order to derive a
more efficient model with reasonable demand on the computer run time.

The finite element model of the entire tire structure is developed by performing
the meshing of the tire cross-section, as shown in Figure 3.2(a). The finite element
representation of the rubber and the layer elements in the tire cross-section is illustrated
in Figure 3.2(b). Figure 3.2(c) illustrates the isometric view of the finite element model of
the tire developed using ANSYS®. The isometric view of the layered elements, and the
amplified rubber element and the layers in the layer elements representing the belts and
carcass used in the development of the finite element tire model, are shown in Figure 3.3.

The belts and carcass layers are composed of different orthotropic materials and
further, the principal directions of each layer may be oriented differently. Such layers of

different materials can be conveniently modeled using the layered elements, SOLID46, as
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illustrated in Figure 3.3, which is readily available within the ANSYS® element library

[166].
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Figure 3.2: (a) Meshing of the cross section; (b) finite element representation of the
cross section by the rubber elements and the layer elements; and (c)
isometric view of the finite element model of the tire using ANSYS®.



Elemens to be
amplified in Fig. 3.3(b)

(a)

Tread rubber

Hyper element representing
the tread block
Belt layer 1
Layer element represen
Belt layer 2 he belt layers presenting

Belt layer 3
Belt layer 4

Carcass layer Layer clement representing

the carcass layers

(b)

Figure 3.3: (a) Finite element representation of the rubber and layered elements;
and (b) an amplified rubber element and the layer elements in the
crown area through thickness direction.
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The SOLID46 element is designed to model layered thickness shells or solids and
is thus employed to model the multi-layered belt and the sidewalls. The element can
appropriately model the nonlinearities, such as large deflections and stress stiffening
effects. Moreover, the element allows up to 250 different material layers through the
element thickness and hence plays an important role in reducing the total number of
elements employed in the development of the tire model. The use of the layered elements,
however, necessitates the identification of the material properties, fiber layer (cord)
orientation, layer thickness, etc. The choice of this element further allows for the analysis
of inter-ply shear stresses through the thickness direction of the layers.

The element SOLID46, illustrated in Figure 3.4, is defined by eight nodes, layer
thickness, layer material direction angles, and orthotropic material properties. The
element possesses three-degree-of-freedoms at each node: translations along the nodal x,
y and z directions. The element has an effective stiffness in the transverse direction such
that the non-zero inter-laminar shear stresses, strains and displacements in the transverse

direction can be incorporated.

J
(a) (b)

Figure 3.4: Schematic representations of the 3-D 8-Node elements: (a) layered
element; and (b) hyper-elastic element.
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The input of the SOLID46 element may be in matrix form or layer form. In the
matrix form, the matrices must be computed outside of the ANSYS analysis. The thermal
strains, the majority of the stresses and the failure criteria, however, are not available
with the matrix input. For layered (non-matrix) input, the layer thicknesses are computed
by scaling the specified constant thickness inputs to ensure consistent thicknesses
between the nodes. Although the failure criteria are defined with the layered input, the
node locations may imply that layers are tilted or warped. The SOLID46 element,
however, does not permit zero volumes and zero thickness layers or layers tapering down
to zero thickness.

To analyze the rubber material that undergoes large strains and displacements
with small volume changes in a tire structure, the eight-node hyper-elastic element
HYPERSS, also available in the ANSYS® element library [166] and shown in Figure 3.4,
are used in conjunction with the two-term Moony-Rivlin material model. The HYPERSS8
element is defined by eight nodes with three degree-of-freedom (d.o.f.) at each node:
transiations along the nodal x, y and z directions. The element is applicable for nearly
incompressible rubber-like materials with arbitrarily large displacements and strains. The
hyper-elastic formulation is nonlinear and requires an iterative solution. The finite
element stiffness matrices and force vectors relating to the element are formulated using
the mixed wp (displacement/pressure) formulation, as described in Chapter 2. This
allows for the formulation of the element matrices to be formed by mixed variational
principles with the pressure introduced to enforce the incompressibility constraint. The
element input data include eight nodes, the isotropic material properties, and the

constants defining the Mooney-Rivlin strain energy function, which is valid for a wide
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range of nearly incompressible rubber and rubber-like materials, as described in Chapter
2. The temperatures may also be defined as inputs to describe the body loads at the nodes.
The thermal effects may also be incorporated by defining the material properties as
functions of the temperature. As in the case of the SOLID46 layered element, the zero

volume elements are not permitted.

3.3 METHOD OF ANALYSIS

The tire model is developed assuming that the inflated tire is connected or fixed to
the rigid rim through common nodes, as shown in Figure 3.5, which is widely adopted in
the reported studies on structural modeling of tires [126-127, 167-168]. The tire model is
subjected to loading in two sequential steps. The initial loading is caused by the tire
inflation pressure, which is assumed to be uniform within the tire. The inflated static tire
is then subjected to normal loading through the application of a specified normal
deflection at the contact region. Figure 3.5 further illustrates the loading and boundary
conditions of the tire model in the vertical-axle plane crossing the center of the contact
patch. The friction in the contact patch is considered to be very low, assuming smooth
and uniform contacting surface to facilitate the solution process. This assumption is
considered to be adequate in the investigation of the stress fields generated in the
individual layers of a tire as functions of the loads and structural parameters.

ANSYS® supports both the rigid to flexible and flexible to flexible surface to
surface contact elements to solve a contact problem. These contact elements use a “target
surface” and a “contact surface” to form a contact pair. The target element TARGE170, a

3-node triangular or 4-node quadrilateral element for the rigid target surface, is designed
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and used to represent the target surface for the associated contact elements. The contact
elements CONTA173, 4-node element available in the ANSYS® element library, are
created on the surface of the solid elements, the HYPERSS elements representing the
tread of the tire. The target surface is discretized by a set of target segments
(TARGE170), which are coupled with their associated contact elements CONTAL173. An
iterative algorithm is employed to determine the contact surface and elements

corresponding to given loading condition.

Inflation Pressure
(Supplied m load step 1)

Normal displacement of the ngid
Rigid road surface road surface relative to the tire

(Supplied in load step 2)

Figure 3.5: Loading and boundary conditions of the finite element tire model
in the vertical axle plane crossing the center of the contact patch.
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These surface-to-surface elements are well suited for the tire-road contact
problem and support large deformations with the various friction models. Moreover, they
can be created using the ANSYS® meshing tools on the target and contact surfaces with
the TARGE170 and CONTA173 eclements, respectively. The finite element model
recognizes the possible contact pairs through the presence of the specific contact
elements. The node ordering of the target segment elements is a critical task for detection
of the contact and defining the target surface. The nodes must be ordered so that the
outward normal to the target surface is defined by the right hand rule, pointing to the
contact surface. The normal deflection of the tire against the road can be realized and
controlled by adjusting the translational displacements of the target surface along the
vertical direction, while the rim of the tire is fixed. The material properties of the
underlying elements are used to compute an appropriate contact stiffness, while the

augmented Lagrangian method is employed to solve the nonlinear contact problem.

3.4 IDENTIFICATION OF MODEL PARAMETERS

The nonlinear finite element tire model is analyzed to study the deformation field,
footprint geometry, contact pressure distribution, principal stress field and inter-ply shear
stresses. The data related to the tread rubber material properties are estimated from the
data reported in the published study [170]. Figure 3.6 illustrates the estimated properties
for a single cube element of the tread rubber. The figure describes the estimated
experimental stress-strain data for three different deformation modes: (a) uniaxial
tension; (b) equibiaxial tension; and (c) pure shear (planar tension), as illustrated in

Figure 3.7. The reported properties are considered to calculate the Mooney-Rivlin



constants to formulate the strain energy density for the hyper-elastic element in the finite

element tire model.

T
'
'

1
[

e e e

e e Tl e

B e T B

(———-———

1.0E+06

¥

8.0E+05 + - -------
6.0E+05 § - -------
40E+05 f —-------

{ed) ssogs jeujwoN

25

15
Uniaxial tension ratio

0.5

_F e e e e e —— =~
U U (Ul I I

S T e I

5
Equibiaxial tension ratio

1

408405 4 - -----
0E+05 § - - _#7 - --

2

(ed) ssans jeupwon

EE ettt sl et B Attt

JE R (NP SR S

-
t
)
'
1

8.0E+05

U
[}
[}
|
1
-
M
o~

(ed) ssaxs jeUWION

40B+05 4 - —-----------

;

o
c

15 2.5

Pure shear

05

©

Figure 3.6: Estimated rubber properties based on the reported data:

(a) Uniaxial tension, (b) Equibiaxial tension and (c) Pure shear.
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Figure 3.7: Illustration of deformation modes: (a) Uniaxial tension, (b) Equibiaxial
tension and (c) Planar tension (Pure shear).

The geometric configuration of the tire was selected from the measurements
performed on a 12.5R22.5 truck tire, such as section height and tread depth. The detailed
data concerning the geometry of cords in each individual layer are estimated primarily
from the reported data [130, 169]. The material properties and constants for the belt and
carcass plies are illustrated in Table 3.1 to 3.4. In table 3.1 and 3.2, the layer 1 represents
the rubber medium between the belt layer 1 and the tread. The layer 1 in Tables 3.3 and
3.4 refers to the rubber layer between the carcass layer and the belt. The values of
Young’s modulus, shear modulus and Poison’s ratios in principal directions for each
individual layers, are estimated using the Halpin-Tsai equations in conjunction with the
constants provided in Table 3.5 to 3.7 [130]. The constants describing the composite
layers and elastic properties for the rubber and the cords in the layers are derived from
the reported data for car tires [129-130, 171]. In view of the estimated material

properties, the results derived from the model are considered to describe the tire response
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in a qualitative manner. The application of the model based on adequately measured

material properties of layers in belts and carcass casing are expected to yield a

quantitative analysis of a specific tire.

Table 3.1: Estimated material properties and constants for the belt plies

Anisotropic Longitudinal Transverse Degree of
Layer Or Young’s modulus E; | Young’s modulus E; | Anisortropy
No. Isotropic (MPa) (MPa) E/ E,
1 Isotropic 13.8 13.8 1
2 Anisotropic 13,884 20.2 687
3 Isotropic 13.8 13.8 1
4 Anisotropic 13,884 20.2 687
] Isotropic 13.8 13.8 1
6 Anisotropic 13,884 20.2 687
7 Isotropic 13.8 13.8 1
8 Anisotropic 13,884 20.2 687
Table 3.2: Estimated material properties and constants for the belt plies
Cords Angle Shear Modulus Poisson’s ratio Layer
Layer 2] GorG,,G;, G; V OF V{,V2,V3 thickness
No. (degree) (MPa) (mm)
1 - G=4.63 0.49 6
G,=6.03 v,=0.4645
2 22 G;=0.76G, v,=0.42 1.5
Gs=Gi v3=0.4645=v,
3 - G=4.63 0.49 1
G,=6.03 v,=0.4645
4 =22 G2=0.76G, v,=0.42 1.5
G5=Gi v3=0.4645=v,
5 - G=4.63 0.49 1
G=6.03 v1=0.4645
6 22 G,=0.76G, v;=0.42 1.5
Gs=G, v3=0.4645=v,
- G=4.63 0.49 1
G,=6.03 v,=0.4645
22 G,=0.76G, v:=0.42 1.5
G5=G, v3=0.4645=v,

Note: G, G, and G; represent the shear modulus in the belt plane, and transverse planes normal to
the cords and along the cords direction, respectively. Similarly, v;,v, and v; are the Poison’s
ratios associated with these planes.
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Table 3.3: Estimated material properties and constants for the carcass plies

Anisotropic Longitudinal Transverse Degree of
Layer or young’s modulus E; | Young’s modulus E; | Anisortropy
No. isotropic (MPa) (MPa) E/ E,
1 Isotropic 11.04 11.04 1
2 Anisotropic 11,714 153 767
3 Isotropic 11.04 11.04 1

Table 3.4: Estimated material properties and constants for the carcass plies

Layer | Cords angle Shear Modulus Poisson’s ratio | Layer thickness
No. (degree) G or Gy, G,, G; (MPa) V Of V,,V2,V3 (mm)
| - G=3.68 0.49 3
G;=4.62 v1=0.4685
2 90 G,=0.77G,, G3=G, v,=0.43, V5=V, 1
3 - G=3.68 0.49 3

Note: Gy, G, and G3 represent the shear moduli in the belt plane, and transverse planes normal to
the cords and along the cords direction, respectively. Similarly, v,v; and v; are the Poison’s
ratios associated with these planes.

Table 3.5: Estimated constants describing the composite layers

Volume fraction Radius of Cord end count
for cords Twisted cords (Ends per centimeter)
(%) (mm)
Belt Ply 13.4 0.4 4
Body Ply 11.3 0.3 4

Table 3.6: Estimated elastic constants for the rubber in the plies

Young’s Modulus Shear Modulus | Poisson’s Ratio | Density p
E (MPa) G (MPa) v (kg/m’)
Belt Ply 13.8 4.60 0.49 1190
Body Ply 11.04 3.68 0.49 1190

Note: Density of the tread rubber is assumed as 1164 kg/m’ [172]. The derived densities for the
belt and carcass layer are 1910 and 1810 kg/m’, respectively, which are estimated based on
the volume ratios occupied by each component of the individual layers. The Mooney-Rivlin
constants for the tread rubber and the outer rubber layer of carcass are assumed as C; =

1203786.67 Pa and C,=2361.69 Pa.

Table 3.7: Estimated elastic constants for the twisted cords in the plies

Young’s Modulus E Shear Modulus Poisson’s Ratio
(MPa) G (MPa) v
Belt Ply 1.06*10° 7.59*10° 0.30
Body Ply 1.06*10° 7.59*10° 0.30
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3.5 DISCUSSION OF MODEL RESULTS
The finite element tire model is analyzed using the ANSYS® software and the
results, expressed in terms of deformation, stress and strain fields, and contact pressure

distribution, are discussed in the following sections.

3.5.1 Deformation Field and Contact Pressure Distribution

The traction, braking, ride quality and pavement loading characteristics of a
vehicle are directly related to the tire deformation and pressure distribution at the tire-
road interface. These properties, however, are further related to inflation pressure and
various structural properties of the tire. The tire model is thus analyzed to derive the
radial deformation field, contact patch geometry and pressure distributions under
different inflation pressures, while the normal load is varied by varying the normal static
deflection of the non-rolling tire.

Figure 3.8 illustrates the isometric and front views of the deformed tire under an
inflation pressure of 621.3 kPa (90 psi) and a normal load that corresponds to the tire
deflection, AZ=60 mm. Figure 3.9 illustrates the radial deformation fields derived from
the model under two different normal loads: F/~6.1 kN and F;=17.4 kN. While the
maximum radial deformation occurs, as expected, in the lateral centerline of the contact
patch, the radial deflection field reveals nonlinear response of the tire with the normal
load. The labels ‘SMN’ and ‘SMX’ describe the minimum and maximum values of the
plotted items, respectively. It should be mentioned here that the coordinate system shown

in Figure 3.8 is valid only for the contact patch, in which the Z-axis is vertical to the road
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surface. The normal deflection and thus the normal load are thus conveniently

represented by AZ and F,, respectively.
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Figure 3.8: Isometric and front views of the statically loaded non-rolling tire.
(AZ = 60 mm; p; = 621.3 kPa)
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*Figure 3.9(a): Radial deformation fields under small normal load. (p; = 621.3 kPa)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the plotted
item. The unit of the deformation shown in the legend is m.
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*Figure 3.9(b): Radial deformation fields under regular normal load. (p; = 621.3 kPa)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the plotted
item. The unit of the deformation shown in the legend is m.

The analysis of the FE tire model followed by the post-processing can provide
two- and three-dimensional contact pressure fields under different inflation pressures and
normal loads. The resulting pressure fields are further analyzed to derive the contact
patch geometry and contact pressure distribution, as a function of normal load. Figures
3.10 to 3.12 illustrate the contact pressure distributions in the contact patch and the
footprint shapes of the tire under different inflation pressures, ranging from 545.3 to 821
kPa (79 t0119 psi), and normal loads, ranging from 17.7 to 31 kN. The figures also
summarize the lengths and widths of the contact patch obtained under different inflation
pressures and normal loads. The legends in the figures show the color map representing

the different ranges of the averaged values of the nodal contact pressures in Pascal.
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*Note: The legends in the figures show the color map representing the different ranges of the averaged
values of the nodal contact pressures in Pascal.

The results show that the contact length and thus the net contact area increases
with increase in the normal load for a specific inflation pressure and decrease with
increase in the inflation pressure for a specific normal load. The influence of the inflation

pressure and the normal load on the width of the contact area, however, is not significant.
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The three-dimensional contact pressure fields, generated from the average values of the
pressures acting at centers of each contact element, are shown in Figure 3.13, for
different inflation pressures, p; = 621.3 kPa (90 psi), 759.3 kPa (110 psi) and 828.4 kPa

(120 psi), and normal deflections, AZ=15mm, 22mm, 30mm and 36mm.
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Figure 3.13(a): The computed three-dimensional contact pressure distribution fields
under different normal loads, p; = 621.3 kPa (90 psi).
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The analysis of the contact pressure distributions derived under different normal
loads, shown in figures 3.10 to 3.13, indicate that the high contact pressure peaks occur at
inner side of the inner ribs (near the central circumferential line), when the normal load is
lower than a critical value around 15 kN. The pressure peaks tend to shift towards the
outer ribs, as shown in the figures, when normal load is increased beyond 20 kN. The
ratio of the peak pressure values occurring in the outer ribs to the peak pressure in the
inner ribs tends to increase considerably with increase in the normal load. Such trends in
pressure distribution have also been observed in reported experimental studies on car tires

[131, 141].

3.5.2 Stress Fields in the Principal Directions

The FE tire model is further analyzed to derive stress fields along the principal
directions corresponding to 621.3 kPa (90 psi) inflation pressure and F, =17 kN. Figure
3.14 illustrates the first, second and third principal-direction stress fields together with the
capped hidden side and front views of the loaded tire. The principal-direction stress fields
reflect the energy dissipation trends in the tire and, to some degree, affect the tire fatigue
life. These stress fields are often considered in the structure design optimization and
optimization studies. Since the exact stress-state of a point within the tire body is
determined by the corresponding stress tensor, complete description of the stress state of
a point involves the analysis of all the stress components in the stress tensor. The
following analysis of the specific stress component fields reflects some aspects of the
stress states of the tire subjected to inflation pressure of 621.3 kPa (90 psi) and normal

load of 17 kN.
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(Continued)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the
plotted item. The unit of the stress value shown in the legend is Pascal (Pa).

The results show higher values of the first principal-direction stress in each case,
which occurs along the circumferential line in the carcass layers and the belts. The
highest values of the first principal-direction stress occur in the vicinity of the center of
the contact patch. The second and third principal-direction stresses exhibit their
maximum values in the shoulder regions, which is most likely attributed to the abrupt
changes in the geometry of the carcass layer, and the discontinuities in the material
properties associated with the carcass and the belts. It should be noted that the computed

stress fields include the effects of both the inflation pressure and the normal loading.
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3.5.3 Fiber Stresses and Inter-ply Shear Stresses

Fiber stresses in a rolling tire relate to the comering and traction properties of a
tire. The shear stresses developed between different belt layers, belt and carcass, and belt
and tread interfaces directly affect the stability and integrity of the tire structure. Too high
an inter-ply shear stress in the belts may cause delamination damage. Only a few reported
studies in the field, however, have attempted to analyze the inter-ply shear stresses and
distribution of fiber forces in the tires [57, 126-127]. The proposed nonlinear FE tire
model incorporating multi-layered elements permiis the analysis of fiber forces and inter-
ply shear stresses in the tires.

Figure 3.15 illustrates the distribution of the tensile stresses in the circumferential
direction in the belts and the carcass layers caused by both the inflation pressure and the
normal load. The tensile stress fields of the belt layers and the corresponding
displacements are asymmetric about the circumferential axis, which is most likely
attributed to the asymmetric stacking sequence of the belt layers, although the geometry
and loading are symmetric. This asymmetric behavior is also attributed to the coupling
effects, which are inherent in the composites, such as the coupling between the bending
and the twisting, and that between the extension and bending movements. It can be seen
that the circumferential tensile stress values in the belt layers are much higher than the
stresses in the carcass layers near the contact patch. The distribution of the
circumferential tensile stresses in the carcass layers and the belt layers along the lateral
axis of the tire are evaluated corresponding to three different normal loads (6.1 kN, 11.2

kN and 17 kN) to examine the peak stresses.
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*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the
plotted item. The unit of the stress value shown in the legend is Pascal (Pa).

-87-



Figure 3.16 illustrates the distribution of the circumferential tensile stresses in the
carcass layer, along the lateral direction of the tire at the lateral centerline of the contact
patch for different normal loading conditions. The results show that the tensile stresses
are distributed nearly symmetrically about the contact patch centerline. An increase in the
normal load and thus the normal deflection causes higher circumferential tensile stresses
in the centerline elements of the carcass layer. Light loading of the tire results in peak
stress in the vicinity of the center of the contact patch. An increase in the normal load

tends to increase the stresses considerably in the elements in the vicinity of the outer
periphery.
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Figure 3.16 Tensile stresses in carcass layer for different normal loads; p1=621.3 kPa.

The distribution of circumferential tensile stresses in different belt layers for
different normal loads are presented in Figure 3.17. The results show that the belt 3
experiences the highest stresses over most of the tire width, while belt 4 is subjected to

higher stresses near the periphery. The tensile stresses in the belts 4 and 3, located near
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the carcass layers, are considerably larger than those observed in the belts located near
the tread layer. As the normal load increases, the tensile stresses in belts 4 and 3 tend to
increase, while the variations in the peak values occurring near the center of the selected
element strip are insignificant. The peak values of the tensile stresses in belts 2 and 1,
however, decrease with increase in the normal load.

Figure 3.18 illustrates the inter-ply shear stress distribution between the belt 4 and
the carcass layers in- and out-of- the tire plane. The results represent the shear stresses
derived for elements in the lateral centerline of the contact patch. The out-of-tire-plane
shear stresses Sy, represent the stresses in the transverse plane of the tire, while the in-
tire-plane shear stresses Sy, describe the stresses along the longitudinal direction. The
result shows that the out-of-tire-plane inter-ply shear stresses Sy, are over ten times
higher than the in-tire-plane stresses Sy, developed between the belt 4 and the carcass
layer. It can be further observed that variations in the normal load yield significant
changes in Sy, between the belt 4 and the carcass layer, while the influence of normal
load on the S, is also considerable. It should be noted that these computed stress values
represent only one averaged component of the stress tensor associated with each of the
considered element. A more elaborate stress analysis on the interactions between
different layers should involve all the stress components related to the considered
elements.

The inter-ply shear stresses, Sy, and S,., developed between different belt layers
and the belt and carcass layers are presented in Figure 3.19 and 3.20, respectively, under
two different normal loads: 6.1 kN and 17 kN. The out-of-tire-plane shear stresses Sy,

developed between the carcass layer and the belt 4, which is on the top surface of the
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carcass layer, are significantly higher than the corresponding shear stresses generated
between the belt layers near the shoulder area, as shown in Figure 3.19. The stresses Sy,
developed between every two adjacent layers approach zero value at the center location
of the contact patch. The in-tire-plane shear stresses Sy, generated between any two
adjacent belt layers are generally larger than the corresponding Sx, values developed
between the belt 4 and the carcass layer, as shown in Figure 3.20. The in-tire-plane shear
stresses S, generated between belt layers, located in the strip of elements transversely
arranged through the contact center, appear to be anti-symmetric about the center of the
contact patch, as can be seen from Figure 3.20. The peak values of Sx, generated between
the belt layers tend to move further away from the center of the contact patch to the outer
periphery in the cross-section of the tire when normal load increases. No significant
differences are observed in the shear stresses S,; and S,; generated between belt layers
for different loading conditions. The peak values of Sy, and S, occurring near the

shoulder area may result in the onset of delamination damage in the tire.

3.6 EXPERIMENTAL WORK AND MODEL VALIDATION

The static force-deflection characteristics of tires are strongly related to the tire
structural parameters, static load and inflation pressure. As in practical operating
conditions, a tire usually encounters considerable variations in the static load due to
changes in the number of passengers in service or in the weight of the goods in
transportation. Further more, the inflation pressure of tires may also vary considerably. It
is thus essential to characterize the tire properties over a wide range of pre-loads and

inflation pressures.
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A test stand, comprising an electro-hydraulic actuator and an instrumented tire
platform was developed to measure the static force deflection characteristics of a
candidate truck tire (12.5R22.5) under different pre-loads, ranging from 17.8 kN to 40
kN, and inflation pressures, ranging from 545.3 kPa to 828.4 kPa. Figure 3.21 illustrates a
pictorial view of the test stand and measured force-deflection properties of the tire. The
tire was initially charged at a desired inflation pressure and was preloaded to a specified
pre-load value. The inflation pressure was then adjusted to achieve the desired pressure

under the pre-load.

———80psi —{—100psi —&—120psi
40 — T - .

Normal load (kN)

0 15 éo 30 a0 50
Normal deflection (mm)

Figure 3.21: A pictorial view of the test stand and the measured normal load-
deflection characteristics of a 12.5R22.5 tire.
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The tire was supported between a fixed inertial reference and an electro-hydraulic
actuator. A force transducer was installed between the tire support and the actuator piston
to measure the tire force. The signal from the linear variable differential transformer
(LVDT) position sensor, integrated within the actuator, was considered for the
measurement of the tire deformation. A series of experiments were performed to measure
the force-deflection characteristics of the tire over a wide range of inflation pressures.
The geometry of the contact patch of the tire was also acquired in the laboratory over a
range of normal loads and inflation pressures. In the experiment, the actuator was
positioned to ensure clear access to the tire tread in the vicinity of the contact region. A
sheet of paper was placed on the support plate and the dark color paint was applied on the
tire tread. The actuator piston was then positioned to achieve a specified normal load
corresponding to a preset inflation pressure. The resulting imprint of the painted tread
was scanned to determine the contact patch geometry.

The measured force and deflection data are used to examine the validity of the FE
model in a limited manner. The computed force-deflection characteristics are compared
with the measured data, as shown in Figure 3.22. The results show comparable nonlinear
normal force-deflection characteristics of the FE model and the measured data. The
results further show that the static vertical stiffness increases with increase in the inflation
pressure. Both the measured data and the model results show similar trends in load-
deflection characteristics, and considerable deviation corresponding to large deflection.
The magnitude of errors between the computed and measured data also increases with the

increase in the normal load for a specific inflation pressure. The deviation between the



model results and the measured data are most likely caused by the lack of precise

material properties and the errors generated in the geometric measurements.
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Figure 3.22: Comparison of the computed normal load-deflection characteristics with
the measured data: (a) 545.3 kPa; (b) 683.4 kPa; and (c) 821.4 kPa.



The validity of the analysis is further examined by comparing the computed
contact patch geometry from the FE model with the data obtained from the experiments
performed in the laboratory, as shown in Figure 3.23. The tire inflated with different
inflation pressures, ranging from 545.3 to 821.45 kPa (79 to 119 psi), was deflected to
achieve different normal loads ranging from 17.68 to 40 kN. The comparisons show
reasonably good agreements between the computed and measured footprints. The
variations in the footprint length and width due to increasing normal load for different
inflation pressures, as derived from the model, are also illustrated in Figure 3.24 and

Figure 3.25, respectively. The results show reasonably good agreement with the

measured data.
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As discussed above, the computed and measured normal force-deflection
characteristics and especially, the contact patch geometry (shapes and lengths), show
reasonably good agreement over a wide range of normal loads and inflation pressures.
The differences between the measured and computed normal force-deflection
characteristics are considered to be resulting from the errors associated with the estimated
material properties for the rubber block and individual layers of the candidate tire. It can
be concluded that the results derived from the FE tire model can be used for qualitative
analysis of a truck tire. The FE tire model can thus be further used to perform a
parametric study to derive a more desirable set of structural parameters so as to minimize

the maximum stresses within the tire body.

3.7 SUMMARY

A nonlinear FE model of a truck tire is developed to study the three-dimensional
stress, strain and deformation fields of a truck tire subjected to normal load and inflation
pressure loading conditions. The proposed model is capable of predicting the inter-ply
shear stresses between the layers, and can be employed to analyze the shear interactions
between the layers and the fiber forces in individual layers, which are related to the
traction/braking and comering properties of tires. The occurrence of too high a shear
stress has been related to delamination damage in the multi-layered tire system. The
contact patch geometry and pressure distributions derived from the FE model suggest that
high contact pressure peaks occur at inner side of the inner ribs under light to medium

loading. The pressure peaks, however, tend to shift outward along the lateral direction
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under high normal loads. The ratio of the peak pressures occurring in the outer ribs to
those in the inner ribs tends to increase considerably with increase in the normal load.

From the model results, it is concluded that the highest values of the first
principal-direction stress occur in the vicinity of the center of the contact patch. The
second and third principal stresses exhibit their maximum values in the shoulder areas,
which is considered to be resulting from the abrupt changes in the geometry of the
carcass layer and the discontinuities in the material properties associated with the carcass
and the belts. The tensile stress fields of the belt layers and the corresponding
displacements are asymmetric about the circumferential axis, which is attributed to the
asymmetric stacking sequence of the layers. The tensile stresses in the carcass layer are
distributed nearly symmetrically about the contact patch centerline. An increase in the
normal load tends to increase the stresses considerably in the elements in the vicinity of
the shoulder area. The tensile stresses in belts 4 and 3, located near the carcass layers, are
considerably larger than those observed in belts 2 and 1 located near the tread layer.

The shear stresses derived from the elements in the lateral center-line of the
contact patch show that the out-of-tire-plane inter-ply shear stresses Sy. are over ten times
higher than the in-tire-plane stresses Sy, developed between the belt 4 and the carcass
layer. The influence of normal load on the Sx., however, is more significant than that on
Syz. The out-of-tire-plane shear stresses Sy; developed between the carcass layer and belt
4, are significantly higher than the corresponding shear stresses generated between the
belt layers near the shoulder area. The peak values of Sy, generated between the belt
layers tend to move further away from-the center of the contact patch to the outer

periphery in the cross-section of the tire when normal load increases. The peak values of
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S,: and S,; occurring near the shoulder area may be considered as the main factors
causing the delamination damage in the tire.

The contact geometry and the normal force-deflection characteristics of the tire
model are compared with the laboratory-measured data over a wide range of normal
loads and inflation pressures to examine the model validity. The comparisons revealed
reasonably good agreements between the model results and the measured data in a
qualitative sense.

The validated tire model is employed in the following chapter to perform the
parametric study to investigate the influence of variations in the structural and geometric
parameters on the maximum inter-ply shear stresses in the belt layers. The parametric
study aims to derive a more desirable structural configuration that may lead to lower
magnitudes of the maximum shear stresses in the belt layers under a range of normal

loading conditions.
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CHAPTER 4 PARAMETRIC STUDY ON SHEAR INTERACTIONS
IN A TRUCK TIRE

4.1 INTRODUCTION

A radial tire structure can be described as a non-rigid inflated torus composed of a
flexible carcass of high-tensile cords restricted by stiff belts and fastened to steel beads.
The belts stabilize the tire casing in radial direction, provide rigidity to the tread region
and enhance the structural integrity to realize desired tire behavior. The tire response
characteristics to an applied load, expressed in terms of stresses, strains and deformations
of different layers, are inherently dependent on various tire structural parameters, such as
angle of cords in each layer, number of layers used in the belts and material properties of
different layers [S, 129]. The tire behavior under specific inflation pressure and normal
load may further be influenced by its geometric features described by aspect ratio, rim
radius, tread depth, etc. [171].

While fiber stresses in a rolling tire relate to cornering and traction properties of
the tire, the shear stresses developed in different belt layers, and at the belt and the
carcass interface directly affect the stability and integrity of the tire structure. Most of the
reported models do not reflect the complexity of a real tire and thus could not incorporate
the concerned shear interactions, since they are primarily based on linear analysis of the
multi-layered system, assuming small deformations of anisotropic layers and negligible
shear interactions between the layers [4, 5]. Too high a magnitude of inter-ply shear
stress in the belts may cause delamination damage. The analysis of the structural integrity
and stability characteristics of tires thus necessitates the analyses of the inter-ply shear

stresses in a multi-layered loaded tire. Only limited efforts, however, have been made to
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analyze the inter-ply shear stress fields and distribution of fiber forces in individual layers
of tires [57, 126-127]. The majority of the reported studies focus on the car tires, where
the variations in operating loads and inflation pressure are considered to be small. The
heavy vehicle tires differ considerably from the car tires in geometry, material properties
of the layers, and especially the loading conditions. The structural analysis of truck or bus
tires have been addressed in only few studies [129], specifically the influence of
variations in the operating and design parameters on the fiber forces and inter-ply shear
stresses in a loaded truck tire have not been investigated.

In this chapter, the nonlinear finite element tire model developed in Chapter 3is
employed to conduct a parametric study on the shear stresses developed in the belt layers
in a truck tire. The effects of variations in the geometric and anisotropic material
properties of the individual layers in the multi-layered system, and the orientations of the
cords in different layers on the maximum inter-ply shear stresses are investigated. The
parameters considered concerning the geometry of the tire include the aspect ratio, rim
radius and tread depth. The parameters related to structural features and material
properties of individual layers in the belts, such as the cord angle, total number of belt
layers under the crown and number of twisted cords per unit width of an individual layer,
are further considered. The influences of these parameters on the maximum shear stresses
developed in individual belt layers are investigated for a non-rolling radial truck tire with
690.3 kPa (100 psi) inflation pressure, and 20 and 30 mm normal deflections. The results
are analyzed to derive a more desirable set of geometric and structural parameters in
order to reduce the maximum shear stresses in the belt layers of a loaded tire. The

maximum inter-ply shear stresses computed using the proposed set of parameters are
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compared with the stresses derived corresponding to the nominal tire parameters to

demonstrate the potential benefits of the selected parameters.

4.2 PERFORMANCE MEASURES AND PARAMETERS SELECTION

The peak shear stresses developed between the individual layers due to inflation
and normal load, which are considered to be one of the main cause of delamination
failure of a tire, can be investigated in the belt plane (S.), the tire plane (Syy) and the axle
plane normal to the tire plane (Sx.). Since a radial truck tire comprises of multiple belt
layers, the first step in investigating the influence of the various structural parameters on
the maximum shear interactions between belt layers is to determine the stress fields
developed in the above mentioned planes for each belt layer under certain loading
conditions. The magnitudes of the shear stress fields in each plane are then compared to
identify the plane that encounters the maximum value of the peak shear stresses. The
subsequent parametric study can then be focused on the influence of the individual
parameters on the maximum values of stresses in the concermned plane. The parameters
involved in the investigation are selected based upon their effectiveness concerning the
anisotropy of the individual layers, the structural components and the geometry of the tire
in order to derive a more desirable structural configuration that can lead to lower
maximum shear stresses in a loaded tire.

The cord angles in belt layers, total number of cord-reinforced layers in the belt
and number of cord ends per unit of width of each layer are among the most important
structural parameters of a tire. Since the belt layers containing different cord angles are

essential in stabilizing the tire casing in radial direction and are in a highly stressed state,
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these anisotropic-property-related parameters directly affect the stress response of a
loaded tire. The primary geometric parameters affecting the configuration of a tire may
include the aspect ratio, rim radius and tread depth. The effects of these geometric
parameters on the inter-ply shear stress field of a truck tire have not been reported.

The variations in a single structural/geometric parameter, however, may yield
variations in the tire’s normal load and load-deflection characteristics. The selected
parameters are thus varied within a relatively small range, such that the resulting
influence on the load-deflection characteristics is minimal, as illustrated in Figure 4.1 to
4.6, where a single parameter is varied, while the remaining parameters are held at their
nominal values. The results show that the variations in the structural and geometric

parameters within the considered ranges affect the load-deflection characteristics in an
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Figure 4.1: Effect of variations in the cord angle in the individual layers on
the tire load-deflection characteristics, p; = 828.4 kPa (120 psi).
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Figure 4.3: Effect of variations in the amount of twisted cord ends per
centimeter (epc) in each layer on the tire load-deflection
characteristics, p; = 828.4 kPa (120 psi).
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Figure 4.4: Effect of variations in aspect ratio on the tire load-deflection
characteristics, p; = 828.4 kPa (120 psi).

5.0E+04
4.5E+04 -
4.0E+04 -
3.5E+04
3.0E+04 1
2.56+04 1
2.0E+04 -
1.5E404 -
1.0E+04
§.06+03 1
0.0E+00

Normal load (N)

Normal deflection (mm)

Figure 4.5: Effect of variations in rim radius on the tire load-deflection
characteristics, p; = 828.4 kPa (120 psi).
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Figure 4.6: Effect of variations in tread depth on the tire load-deflection
characteristics, p; = 828.4 kPa (120 psi).
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Figure 4.7: Effect of variations in inflation pressure on the tire load-
deflection characteristics, p; = 828.4 kPa (120 psi).
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insignificant manner. The variations in the selected parameters, however, are considered
to be sufficiently large to illustrate their effects on the maximum shear stresses in the
layers for given normal load and inflation pressure. Tﬁc variations in the inflation
pressure, however, significantly influence the tire load-deflection characteristics, as
illustrated in Figure 4.7. An increase in the inflation pressure yields higher tire stiffness.

Based on the above observations and consideration of the limitation of the
software concerning the load application in the involved contact problem, constant
deflection condition was chosen to conveniently perform the parametric analysis. The
results of the parametric study are considered to be valid for nearly constant load
condition, which is considered to be representative of the loading conditions for an in-
service tire. It should be mentioned here that material properties employed in the model
are estimated from the data reported in various published studies as described in Chapter
3. The geometric configuration of the tire was selected from the measurements performed
on a 12.5R22.5 truck tire. In view of the estimated material properties, the results derived
from the model are considered to describe the tire response in a qualitative manner. The
application of the proposed methodology and model in conjunction with adequately
measured material properties of the layers in belts and carcass casing, however, are
expected to yield a quantitative analysis of a specific tire. In the following analysis, the
inflation pressure, the normal deflection and thus the normal load are considered as the
primary operating parameters that affect the maximum shear interaction in the belt layers
of the loaded tire.

Figure 4.8(a) illustrates an isometric view of the inflated tire subject to a static

normal deflection as represented in the ANSYS® software. In Figure 4.8(b), the deflected
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(a) (b)
Figure 4.8: [sometric view of the deflected tire: (a) deflected tire (b) capped view
of the rotated deflected tire and the coordinate system.
tire is rotated by approximately 90 degrees for convenient viewing of the maximum shear
stress field in each belt layer. The figure also shows the cylindrical coordinate system
used in the subsequent parametric study, where x-axis represents the radial direction, y-
axis represents the tangential direction along the circumferential line of the tire and z-axis
represents a direction parallel to the axle. Figure 4.9 to 4.11 illustrate the shear stress
fields (S, Sxy and Sx) for each individual belt layers as a function of the inflation
pressure. The stress fields are estimated under a constant normal deflection: AZ = 30mm,
using the pre-estimated nominal structural parameters. The nominal simulation
parameters used in the analyses are: tread depth = 10 mm, total number of belts = 4, epc
(amount of cord ends per centimeter) for each layer = 4, cord angle = £22 degrees, rim
radius = 0.3m, and aspect ratio = 0.845. In the above figures, Sy, and Sy, represent the
shear stresses in the wheel plane and in the transverse plane of the tire, respectively,

while the S,, represents the shear stresses in the belt plane.
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*Figure 4.9: Shear stress Sy, fields in the different belt layers, AZ = 30mm: (a) layer 1;
(b) layer 2; (c) layer 3; and (d) layer 4.

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the
plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Figure 4.9: Shear stress Sy, fields in the different belt layers, AZ = 30mm: (a) layer 1;
(b) layer 2; (c) layer 3; and (d) layer 4. (Continued)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Figure 4.10: Shear stress S,, fields in the different belt layers, AZ = 30mm:
(a) layer 1; (b) layer 2; (c) layer 3; and (d) layer 4.

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of the
plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Figure 4.10: Shear stress Sy, fields in the different belt layers, AZ = 30mm: (a) layer 1;
(b) layer 2; (c) layer 3; and (d) layer 4. (Continued)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Figure 4.11: Shear stress S,; fields in the different belt layers, AZ = 30mm: (a) layer I;
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*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Figure 4.11: Shear stress S; fields in the different belt layers, AZ = 30mm: (a) layer 1:
(b) layer 2; (c) layer 3; and (d) layer 4. (Continued)

*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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The layers 1 and 2, closer to the tread, reveal concentration of high shear stresses
S, in the central portions of the belt near the edges and extremities of the contact patch,
as illustrated in Figure 4.9. Moreover, both layers also reveal high stresses in the central
regions on both sides out of the contact patch. The layers 3 and 4, located closer to the
carcass, however, yield concentration of S, near the center of the contact patch. The
layer 4 further yields high magnitude of Sy, on the two opposite edges of the belt, farther
from the contact patch center. The layer 3 also reveals high values of Sy, in its central
portion along the circumferential line of the tire farther away from the contact patch,
when the inflation pressure is higher than 690.3 kPa.

The Figure 4.10 and 4.11 illustrate the Syy and S,; fields in different belt layers for
different inflation pressure loading conditions and constant normal deflection (AZ =
30mm), respectively. The results show relatively high values of the shear stresses Sy, in
layers 1, 2 and 4, which occur near the edges of the contact patch. The peak stresses Sy
in layers 2 and 4 tend to shift towards the edges of the belt when the inflation pressure
increase from 552.2 to 828.4 kPa. The distributions and locations of the peak stresses in
layers 1 and 4, however, are only slightly affected by the increase in the inflation
pressure. The high stresses Sy, in layer 3 appear to be concentrated in the opposite sides
of the contact patch, near the edges of the contact region. The magnitudes and
concentration of S,, increase considerably with increase in the inflation pressure. The
peak values of Sy, developed in each layer, however, tend to concentrate near the edges
of the individual belt away from the contact patch. The variation in the inflation pressure
yields almost negligible influence on the distribution of the S,,. The magnitudes of Sy, in

the individual layers, however, increase with increase in the inflation pressure. The
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results clearly show that the magnitudes of the shear stresses Sxz and Sy, are considerably
lower than those of the Sy, developed in the belt layers. The effects of variations in the

selected parameters on the peak shear stresses are presented in the following section.

4.3 PARAMETRIC STUDY

The distributions of the fiber forces along the circumferential line of a pneumatic
tire have been investigated in many studies [5, 15, 57 and 126]). The distributions of shear
stress fields within each belt as function of the loading conditions, however, have been
attempted in only few studies [127]. This may be partly attributed to the complexities
associated with the identification of material and geometric properties of individual
layers in a multi-layered system.

The parametric study is initially performed to study the effects of variations in the
operating parameters, such as normal load and inflation pressure, on the maximum shear
stresses developed in the belt layers. The effects of variations in the structural and
geometric parameters on the maximum shear stresses developed in the belt layers are
then investigated for the truck tire with 100 psi (690.3 kPa) inflation pressure and
constant normal deflections of 20 mm and 30 mm. These selected values of normal

deflections represent normal loads in the order of 17 kN and 30 kN, respectively.

4.3.1 Influence of the Infiation Pressure and the Normal Load
The tire inflation pressure and normal load directly affect its radial stiffness
characteristics, contact patch geometry and the contact pressure distributions in the tire-

road interface. Moreover, the pressure and normal loads strongly influence the tire
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deformation and the stress fields developed in the cord-reinforced layers in the loaded
tire. The influences of the variations in the inflation pressure and the normal load on the
shear stress fields, especially the maximum shear stresses in different individual cord-
reinforced layers have not been reported. The finite element model of the truck tire
developed in this dissertation is used to study the trends in the peak shear stresses (Sxy.
S, and Sy,) as functions of the inflation pressure and the normal deflection.

Figure 4.12 and 4.13 illustrate the maximum shear stresses (Sxy, Sxz and Sy,) in
different belt layers as functions of the inflation pressure for specific normal deflection
condition. The results show that all of the shear stresses in the wheel plane, the transverse
plane and in the belt plane increase, with increase in the inflation pressure. This increase
in the peak stresses is mostly attributed to the increased radial stiffness of the tire under a
high inflation pressure that intensifies the stresses developed in the belt layers. The
results reveal that increasing the inflation pressure from 690.3 kPa (100 psi) to 828.4 kPa
(120 psi) results in significant increase in the maximum shear stresses Sy, in layer 2, and
a relatively small increase in the maximum shear stresses Sy, in the other layers. The
results further show nearly identical trends for both the normal deflections considered,
while the magnitude of peak Sy, tends to be higher under 30mm normal deflection. The
peak shear stresses in the transverse plane (Syx.) increase considerably with increase in the
inflation pressure, while the corresponding increases in the peak shear stresses in the
wheel plane (Sy,) are relatively small. A comparison of Figures 4.12 and 4.13 further
reveals that peak magnitudes of Sy are considerably larger than those of S,y and S.

Figure 4.14 illustrates the peak shear stresses in different belt layers as functions

of normal deflection of the tire inflated at a pressure, p;= 100 psi, and with the nominal
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structural and geometric parameters. The results show that the maximum shear stresses
S.y and Sy, increase significantly, in a nonlinear manner, with increase in the normal
deflection and thus the normal load, while the S,; increases almost linearly. The
maximum shear stresses Sy, developed in layer 4 are the highest followed by those
developed in layers 3, 2 and 1. An increase in the normal deflection yields only slight
variations in the peak stresses Sy; in all the different layers. The maximum shear stress
S,. develops in layer 2, which tends to increase nearly linearly with the normal
deflection. The lowest value of maximum shear stress Sy, occurs in layer 4, adjacent to
the carcass layer. The results also show that the maximum value of the shear stresses
(Sy.) in different layers are around 30 to 50 times higher than the corresponding shear
stresses Sy, and Sy,, when normal deflection AZ is within the range of 20 to 30 mm for
the considered loading condition. The subsequent parametric study is thus focused on the
influence of various structural parameters on the maximum shear stress Sy,, with the
loading conditions of 690.3 kPa (100 psi) inflation pressure, and 20 and 30 mm normal
deflections. The maximum value of S, is considered as the main cause that could result
in the delamination failure of tires. In the analysis, the layer 1 refers to the layer nearest

to the tread and layer 4 lies adjacent to the carcass layers.

4.3.2 Influence of the Aspect Ratio
The aspect ratio of a tire affects its outline configuration and the dimensions of
the cross section, and thus may influence the stress distribution properties of different
layers. The aspect ratio of the selected tire is varied from 0.77 to 0.91 by varying only the

radial coordinates of the element nodes at the rim edges. The section width and overall
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diameter of the tire thus remain unchanged, while the section height alone is varied to
achieve different aspect ratios. Figure 4.15 illustrates the influence of variations in the
aspect ratio on the maximum shear stresses, Sy, developed between different belt layers
of the tire subjected to an inflation pressure of 100 psi and normal deflections of 20 and
30 mm, respectively. The results show that increasing the aspect ratio yields a large
increase in the maximum shear stress Sy, in layer 2, and relatively small increase in the
layer 1, irrespective of the normal load considered. This may be due to the fact that
increasing the aspect ratio enlarges the coupling effects between the bending and twisting
movements of the cord reinforced belt layer 2 relative to its adjacent layers 1 and 3. The
influence of variations in the aspect ratio on the maximum shear stresses Sy, in layer lis
considerably less than that observed for layer 2. This may be attributed to its adjacent
rubber layer connecting with the tread, which considerably alleviates the shear stress
concentration on the top surface of the layer 1. The peak values of Sy, in layer 3 and 4,
however, decrease with increase in the aspect ratio. The layer 4 has a radially arranged
cord reinforced carcass layer as its adjacent layer, while the layer 3 is located in the core
of the multi-layered system. The effects of variations in the aspect ratio on the stresses in
both the layers are therefore relatively small, when the tire is deformed. The results
suggest that peak shear stresses developed in the belt layers could be reduced with lower
aspect ratio tire design.

It is further observed that a larger normal deflection and thus the higher normal
load yields higher maximum shear stresses Sy in all the layers for different aspect ratios.
Table 4.1 summarizes the percent increase in Sy;, when tire deflection is increased from

20 mm to 30 mm, for different aspect ratios.
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Table 4.1 Percent variations in the peak stresses S, for different aspect ratios.

| Percent increase in maximum S,, when AZ increased from 20 to 30 mm
Aspect Ratio Layer 1 Layer 2 Layer 3 Layer 4
0.7746 2% 2.9% 4.2% 7.1%
0.845 5.5% 5.6% 2.2% 6.3%
0.914 4.7% 4.4% 1% 5%

4.3.3 Influence of the Cord Angle

Among the various design parameters, the cord angle plays a significant role in
determining the behavior of a radial tire and the stress fields in each belt layer. The
influence of variations in the cord angle (8) on the maximum shear stresses S,; for
different belt layers, is shown in Figure 4.16. The cord angles are varied from 18 to 26
degrees, and are designated as +0, -8, +0 and —0, respectively, beginning from layer 1,
which is nearest to the tread rubber block.

The results show that increasing the cord angle within the considered range yields
considerably lower peak values of Sy, in belt 2, while the peak values in belt 3 and 4
increase. The peak shear stress in the outer belt (layer 1) decreases with increase in the
value of cord angle from 18 to 22 degree, and then increases slightly with further increase
in cord angle from 22 to 26 degree. The increasing trend for peak shear stress in layer 3
and 4 as function of the cord angle may be attributed to the complex bending and twisting
coupling behavior of the composite layers. The observation that the maximum shear
stresses Sy, in belt 2 decrease with increase in the cord angle, however, remains to be
investigated further to be fully understood. The results further show nearly identical
trends for both loading conditions considered in the study.

The effects of variations in normal deflection on the maximum inter-ply shear

stresses Sy, corresponding to different cord angles are summarized in Table 4.2 in terms
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Table 4.2 Percent variations in the peak stresses S, for different cord angles

Cordangle | Percent increase in maximum S,; when AZ increased from 20 to 30 mm
(degree) Layer 1 Layer 2 Layer 3 Layer 4
18 5% 5.6% 12% 3.5%
20 5.2% 5.9% 1% 5%
22 5.5% 5.6% 2.2% 6.3%
24 2.9% 6.2% 3.8% 7.8%
26 2.8% 6.5% 5.6% 9.3%

of percent increase. It is observed that increasing the normal deflection from 20 mm to 30
mm yields considerable increases in the maximum shear stress Sy, in layers 2 and 4 for
cord angles ranging from 22 to 26 degrees. The maximum shear stresses Sy, in layer 4,
however, always remain lower than the peak stresses in layer 2 and 3 in the considered
range of cord angles. The maximum shear stresses S,; in layer 3 are considerably less
affected by the variation in the normal load, when compared with the stresses in the other
layers for 20 and 22 degree cord angles. The maximum shear stress Sy, in layer 3,
however, is significantly affected by the load variation when the cord angle assumes a
value of 18 degrees. Based on the above results, it is suggested that a cord angle of
approximately 25 degrees could be used to achieve a good compromise in the values of
maximum shear stresses developed in all the layers under the conditions considered in
this study. Cord angles smaller than 25 degrees result in higher values of the maximum
shear stress in layer 2, while -a larger cord angle yields higher maximum shear stress in

layer 3.

4.3.4 Influence of the Number of Belt Layers

The number of belts used in a radial tire affects its rigidity and shear stress fields

in a considerable manner. The belt layers provide high rigidity to the tread against
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distortion, and affect the rate of tread wear and the tire rolling resistance. Assuming
identical geometry and material properties of each individual layer, the use of fewer belts
could adversely influence the tire stability. The use of too many belts, on the other hand.
directly affects the weight and the cost. The influence of the variations in the total
number of cord reinforced layers in the belt has not been reported thus far. In the
following analysis, the peak shear stresses developed within individual layers of the tire
are computed by varying the total number of belt layers embedded in the crown area
from 3 to 5. The thickness of each layer and the total thickness of the tire in the thickness
direction are kept unchanged. The change in the number of belt layers may yield different
shear stress fields in the different belt layers, when compared with those attained for the
four-layer-belt case. This necessitates the determination of the various shear stress fields
Sxy» Sxz and Sy in the different belt layers for the loading conditions considered.

The shear stress fields Sy, Sx; and Sy, in the different belt layers of the tire with 3
and 5 belt layers are illustrated in Figures 4.17 and 4.18, respectively. The results are
derived under 690.3 kPa inflation pressure and 30 mm normal deflection. Figure 4.17
shows that the high values of the stress Sy in each belt layers occur in the contact patch
near the opposite edges of the belt. Moreover, similar to the results obtained for the four-
layer-belt tire (Figure 4.10), the high values of the stress Sxz derived for the three-layer-
belt concentrate within the narrow portion near the shoulder areas along both the edges of
the belt, farther away from the contact region. The computed values of the shear stress
S, fields for three-layer-belt are quite similar to those derived for layers 1, 2 and 3 of the
four-layer-belt system, shown in Figure 4.9. In the case of the five-layer-belt (Figure

4.18), the shear stress fields of Sy, in layers 1, 2, 4 and S are also similar to those in the
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*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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*Note: SMN is the minimum value of the plotted item; SMX is the maximum bounded value of
the plotted item. The unit of the stress value shown in the legend is Pascal (Pa).
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layers 1, 2, 4 and 3, respectively, of four-layer-belt system. The layer 3, in the five-layer-
belt case, however, reveals concentration of high shear stresses S,, in the relatively
narrow central portions of the belt near the edges and extremities of the contact patch.
The shear stress S, fields in the individual layers in five-layer-belt case exhibit trends
similar to those observed for four-belt-layer case, namely, the concentration of high
magnitudes of Sy, occurs within two small regions, near the edges of the contact patch
but in the opposite side. Similar to the three-layer-belt and four-layer-belt cases, the hi gh
stresses (Syx.) for the five-layer-belt case concentrate near both edges of the individual
belts away from the contact patch for all the layers.

Figure 4.19 illustrates the peak values of shear stresses Sy, developed in
individual layers for two different normal loads when the number of belt layers is varied
from 3 to 5. Each curve in the figure represents the maximum value of shear stress Syz in
a specific layer but corresponds to different total number of belts. For example, the curve
for layer 2 represents its peak shear stress response for total number of belts of 3, 4 and 5.
As the number of belt layers increases from 3 to 5, the peak shear stresses Sy; in layers 2
and 3 decrease significantly, irrespective of the normal load. The peak value of stress Sy,
in layer 1 tends to decrease slightly when the total number of belt layers is increased from
3 to 4 and increase slightly with further increase in the number of belt layers. The peak
value of the stress S, in layer 4 increases slightly when one more layer is added. The
addition of the fifth belt layer tends to lower the maximum shear stresses in the layers 1
to 3 and has negligible effect on the peak value of the stress Sy, of layer 4. The maximum

of the peak shear stress Sy, among all the layers are developed in layer 2 and are
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significantly reduced with the increase in the number of belt layers, irrespective of the

applied load.
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Figure 4.19: Peak values of shear stress Sy, of individual belt layers as a function
of the total number of belt layers; p; = 690.3 kPa: (a) AZ = 20 mm;
and (b) AZ =30 mm.
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An increase in the normal deflection yields higher maximum shear stresses Sy, in
almost all the layers, specifically in layers 1 and 5, irrespective of the number of layers in
the belt. The percent increases in Sy, in different individual layers corresponding to
different number of belt layers, when AZ is increased from 20 mm to 30 mm, are
illustrated in Table 4.3. The results also show that addition of the fifth belt layer leads to
a more even distribution of peak shear stresses in different belt layers. This suggests that

a tire design with 5 layers is more desirable for the conditions considered in the study.

Table 4.3 Percent variations in peak stresses S,, for different total number of belt layers

Total number | Percent increase in maximum S,, when AZ increased from 20 to 30 mm
of layers Layer | Layer 2 Layer 3 Layer 4 Layer 5
3 5.3% -0.5% 10.4%
4 5.5% 5.6% 2.2% 6.3%
5 5.8% 5.4% -0.8% 0% 18%

Figure 4.20 and 4.21 further illustrate the peak values of shear stresses Sxy and Sy;
of individual belt layers as a function of the total number of belt layers, respectively, for
the loading condition: p; = 100 psi and AZ = 20 and 30 mm. The results show that the
peak values of shear stresses S,y in layer 3 decrease significantly with the increase in the
number of belt layers, irrespective of the normal loads, while the peak shear stresses Sy,
in each layer increase with the increase in the number of belt layers. The magnitudes of
the peak S, and S,;, however, are over 40 times lower than the peak Sy; in the layers.
The peak shear stresses Sy, developed in individual layers in the belt plane, are thus
considered more important in the shear interaction analysis of the layers of a tire than
those in wheel plane and transverse plane (Sxy and Sx.), irrespective of the total number

of layers in the belt.
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Figure 4.20: Peak values of shear stress Sy of individual belt layers as a function
of the total number of belt layers; p; = 690.3 kPa: (a) AZ = 20 mm and

(b) AZ = 30 mm.
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Figure 4.21: Peak values of shear stress Sy, of individual belt layers as a function
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4.3.5 Influence of the Rim Radius

The rim radius determines the tire size and may also affect the stress fields in
different belt layers. The variations in the rim radius are realized by changing the radial
coordinates of element nodes in the cross section. While the cross section area of the tire
remains unchanged, the outer diameter alone is varied. The peak values of Sy, in
individual layers are computed for different values of rim radius, ranging from 0.26 m to
0.32 m, and normal deflection of 20 mm and 30 mm.

The results presented in Figure 4.22 show negligible effect of the rim radius on
peak values of S,, in different belt layers for both normal deflections: AZ = 20 and 30
mm. Varying the rim radius, however, affects both the peak values of shear stresses Sy,
and S, significantly, as shown in Figure 4.23, although the peak values of Sy, and Sy, in
the layers are much lower than the corresponding peak value of Sy,. Both Sy, and Sy, take
their minimum values when the rim radius takes the value of 0.30m. The above
observations are considered to be attributed to the curvature changes in the belt
associated with the variation in the rim radius and need to be further investigated with
more elaborate theoretical and experimental analysis. The percent variations in the peak
shear stresses S, in the layers corresponding to different rim radii due to the normal load
are illustrated in Table 4.4. It is observed that an increase in the normal load yields
considerable increases in the peak shear stresses Sy, in all the layers, especially large
increases in the magnitudes in layers 1, 2 and 4. Based on the above observations, it is
suggested that a rim radius of 0.3 m, which results in the lowest magnitudes of S,y and

S« in different belt layers, is to be desirable for the conditions considered in the study.
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Figure 4.22: Peak values of shear stresses Sy, as a function of rim radius;

pi= 690.3 kPa: (a) AZ = 20 mm; and (b) AZ =30 mm.
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Table 4.4 Percent variations in peak stresses S,, for different rim radii

Rim radius | Percent increase in maximum S,, when AZ increased from 20 to 30 mm
(m) Layer 1 Layer 2 Layer 3 Layer 4
0.26 5.8% 6.2% 3.2% 6.8%
0.28 5.4% 6.3% 2.7% 6.3%
0.30 5.5% 5.6% 2.2% 6.3%
0.32 3.0% 5.7% 2.2% 6.3%

4.3.6 Influence of the Tread Depth

Heavy truck tires with high loads at the tire-road interface employ tread
compounds with high resistance to abrasion, tearing, and crack growth, and with low
hysteresis to reduce internal heat generation and rolling resistance [9]. While the effects
of the tread and the tread pattern on the tire-road interaction have been investigated
[129], the influence of variations in the tread depth on the stress fields of a loaded tire
have not been addressed in the reported studies. The variations in the tread depth from 3
mm to 10 mm yield almost insignificant effects on the peak values of S, and Sxy Of
individual layers, as illustrated in Figure 4.24. The variations in the tread depth, however,
yield complex changes in S, under different normal deflections as can be seen in Fig.
4.25. An increase in the tread depth tends to lower the peak shear stresses Sy in belt
layers under normal deflection of 20 mm, and yields considerably higher values under
normal deflection of 30 mm. It should be mentioned that varying the tread depth itself,
with the other portions of the cross-section area unchanged, would cause variations in the
aspect ratio of the tire. The effect of variations in the aspect ratio due to the variations in
the tread depth, however, is considered to be negligible. The effect of varying the normal
load on the percent change in the peak shear stress values of Sy, in the layers for the

considered tread depths are illustrated in Table 4.5. It can be seen that increasing the
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Figure 4.24: Peak values of S, of layers as a function of the tread depth; p; =
690.3 kPa (100 psi): (a) AZ = 20 mm and (b) AZ =30 mm.
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normal load yields significant increases in the peak stress Sy, in layers 1, 2 and 4, but
relative small increase in the peak stress in layer 3 for all the values of the tread depths
considered. There are no clear trends in the observed variations in the peak shear stresses
as function of the tread depth. It is considered that the design of the tread depth relies on
factors other than the shear stresses developed in the multi-layered system, such as heat

resistance and wear resistance.

Table 4.5 Percent variations in peak stresses S, for different tread depths

Tread depth | Percent increase in maximum S,, when AZ increased from 20 to 30 mm
(mm) Layer 1 Layer 2 Layer 3 Layer 4
10 5.5% 5.6% 2.2% 6.3%
7 4.9% 5.9% 2.2% 5.7%
3 4.9% 5.5% 1% 5.2%

4.3.7 Influence of the Cord Ends per Centimeter (epc)

The number of cord ends per centimeter (epc) along the width of each individual
layer determines the longitudinal and transverse Young’s modulus of the layer, when the
thickness of the layer is considered to be a constant. The Young's modulus of each layer
can be estimated from the volume ratio of the cords to that of the rubber matrix, and the
material properties of the cords in the composite layers. The effect of varying epc on the
material properties, such as the Young’s modulus and Poison’s ratio, can be estimated
from the Halpin-Tsai equations [130], when volume ratio of the cords and the rubber
matrix in the belt, and their individual material properties are known. The effect of
variations in the material properties of the layers on the stress fields can thus be

investigated by varying the value of the epc.
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Figure 4.26 illustrates the effect of varying the value of epc on the maximum
shear stresses S,; in the belt layers. Three distinct values of epc (3.5, 4 and 4.5) are
considered for the analysis. It should be noted that a higher value of epc yields stiffer
belts. The results show that increasing the values of the cords per centimeter in the width
of each belt yields considerable increase in the maximum value of shear stresses Sy, in
layer 2, and relatively slight increases in the peak shear stresses in all the other layers,
irrespective of the normal load. The results also reveal nearly linear trends in variations
of the maximum shear stresses (Sy.) in each belt layer with the epc. For the simulation
conditions considered, a lower value of epc (3.5) yields lower peak values of Sy; in all the
layers, as shown in Figs. 4.26. This is attributed to the fact that a lower epc value yields a
soft layer that can experience large deformations and thus relatively small potential stress
concentration. The effects of varying the normal loads on the peak shear stress values of
Sy in the layers for the considered values of epc are illustrated in Table 4.6. While
increasing the normal load and thus the deflection yield increases in all the belt layers,
varying the normal load has relatively small effect on the maximum shear stress in layer
3 but relative large influence on the magnitude of the peak shear stress in layer 4. The
above results thus suggest that a lower value of epc (3.5) may be desirable with twisted
cords that have a diameter of 0.8 mm and belt thickness of 1.5 mm for the considered

truck tire.

Table 4.6 Percent variations in peak stresses Sy, for different values of epc

Value of epc | Percent increase in maximum S,, when AZ increased from 20 to 30 mm
(Ends/cm) Layer 1 Layer 2 Layer 3 Layer 4
3.5 2.6% 6% 1.4% 4.8%
4 5.5% 5.6% 2.2% 6.3%
4.5 5.2% 6.1% 3.5% 7.1%
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4.3.8 Discussions on the Desirable Set of Parameters
The results presented in Figure 4.15 through Figure 4.26 could be used to derive
a set of desirable geometric and structural parameters to achieve lower values of the
maximum shear stresses in the belt layers under the loading conditions considered. The
analyses were performed using the pre-estimated nominal simulation parameters. The
results suggest that peak shear stresses could be reduced significantly using the selected
parameters. The selected structural, geometric and operating parameters are compared

with the estimated nominal parameters in Table 4.7.

Table 4.7(a) Nominal and desirable structural, geometric and operating parameters

Parameters Aspect Cord angle Number of Rim radius
ratio Degree layers m
Nominal 0.845 +22 4 0.30
Desirable 0.777 +25 5 0.30

Table 4.7(b) Nominal and desirable structural, geometric and operating parameters

Parameters | Tread depth epc Inflation pressure | Normal deflection
mm kPa mm
Nominal 10 4 -
Desirable 10 3.5 <690.3 20-30

The tire model is further analyzed using these simulation parameters to study their
potential performance benefits in terms of peak shear stresses, Syz, Sxy and S,; in the belt
layers, as a function of the normal deflection or normal load. Figure 4.27 illustrates the
peak shear stresses (Syz, Sxy and Syx;) developed in the individual layers as function of the
normal deflection in the 10-40 mm range, when the inflation pressure is 690.3 kPa, as
derived from the tire model with the selected set of parameters. The results are compared

with those obtained using nominal parameters shown in Figure 4. 14.
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The comparisons clearly show that the maximum shear stresses Sy; in all the
layers, especially in layer 2 are significantly reduced. The maximum shear stresses Syy
and S, developed in the belt layers with the proposed parameters, however, increase.
The magnitudes of Sxy and Sz, however, are less than one tenth and one twentieth of the
peak values Sy, values in the layers, respectively. Considering that the peak values of Sy,
are significantly larger than those of Syxy and Sy, the Sy values obtained using the
selected set of parameters are compared with those obtained using the nominal
parameters. The relative percentage changes in the peak values are illustrated in Figure
4.28. A positive value of percent change represents reduction in the peak value of Sy; due

to selected set of parameters, while the negative values refer to an increase in the peak

value of S,,.
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The results show that the tire model with the selected set of parameters yields
considerably lower peak values of shear stress Sy of all the layers, with the exception of
the layer 4, irrespective of the normal load/deflection. The use of the selected set of
parameters, yields 35-45% lower values of Sy, in belts 2 and 3, and 6-13% lower values
of Sy; in belt 1, depending upon. the normal load. The peak shear stress S,; developed in
layer 4, however, increases considerably (= 26%) in the considered range of normal
deflections (10 to 40 mm). The proposed design parameters yield highest peak stress Sy,
in the layer 4.

Figure 4.29 further illustrates the percentage reduction in the highest peak values
of the shear stresses Sy, developed in the belt layers as a function of the normal deflection
for different inflation pressures. The comparison reveals that the highest peak stress Sy,
in the belt layers, attained using the selected parameters is 21.6-23.4%, 18.3-27.9% and
18.6-25.8% lower than that computed from the nominal parameters, for the inflation
pressure of 690.3, 552.2 and 828.4 kPa, respectively. For an inflation pressure of 690.3
kPa, the highest peak stresses (corresponding to the maximum normal deflection of 40
mm) occur in layer 2 and in layer 5, with the nominal and proposed set of parameters,
respectively. The magnitudes of these peak stresses corresponding to the nominal and
selected parameters are 31.9 MPa and 26.8 MPa, respectively, as shown in Figure 4.14(c)
and Figure 4.27(a). The relative reductions in the highest peak stress in the belt layers
decrease with increase in the normal deflection for a lower inflation pressure (552.2 kPa)
and increase under a higher inflation pressure (882.4 kPa), as illustrated in Figure 4.29.
The reductions in the highest peak stress Sy, of different belt layers, however, are

obtained at the expense of higher peak shear stresses Sxy and S.z- This may be acceptable
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considering that the peak shear stresses S, in different layers are approximately over 10

and 20 times higher than the corresponding Sxy and S,, values.
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4.4 SUMMARY

A qualitative study of the effects of structural and geometric parameters on the
maximum shear stresses developed in different layers of a truck tire is performed using
the finite element tire model developed in Chapter 3. The maximum values of the shear
stresses developed in individual layers and their locations are evaluated for a radial truck
tire under an inflation pressure of 690.3 kPa and specified normal load/deflections. The
influence of the parameters including the inflation pressure and the normal deflection, the
cord angle and number of cord ends per centimeter (epc) for each layer, rim radius, tread
depth, aspect ratio and the total number of layers, on the maximum shear stress
developed in different layers of a loaded tire are investigated. A desirable set of these
parameters is identified to achieve lower value of maximum shear stresses in the belt
layers over a range of inflation pressure and normal load conditions. The results show
that the use of the proposed set of parameters can significantly reduce the maximum
shear stresses in the multi-layered system for a tire with inflation pressure ranging from
552.2 to 828.4 kPa and the normal deflection ranging from 10-40mm. The highest
maximum shear stress developed in the belt layers is reduced by 18.3 to 27.9% and the
reductions in Sy in layers 2 and 3 occur in the 35 to 45% range, depending on the tire
deformation and the inflation pressure. The reductions in the maximum shear stresses Sy,
are achieved at the expense of increasing the maximum shear stresses Syy and S;. The
magnitudes of the peak S,y and S,;, however, are considerably smaller than that of the
Syz.

The validated tire model is further used in the following chapter to analyze the

contact pressure distribution in the tire-road interface. The contact pressure fields derived
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from the finite element model are analyzed to propose a function for estimating the tire-
road contact pressure distribution. The three-dimensional pressure fields are used to
derive a two-dimensional contact pressure distribution using the equivalent work as the
basis. The curve fitting techniques are applied to derive a polynomial function to describe
the contact pressure distribution as a function of the inflation pressure, normal load and

the coordinate along the contact patch.
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CHAPTERS5 ESTIMATION OF TIRE-ROAD CONTACT
PRESSURE DISTRIBUTION

5.1 INTRODUCTION

The distribution of normal load in the contact patch between a tire and the road
surface affects the operating properties of the tires, since they are closely related to the
tire’s performance in terms of comnering characteristics, road damage potentials, noise
generation and wear. The distribution of the tire load in the plane of the road surface is an
important factor, since it can provide considerable insight into the structural design of the
tire and its effects on the vehicle performance and the potential road damage.

The contact pressure field developed in the tire-road interface is strongly related
to the tire inflation pressure, vertical load and structural properties. While a number of
pressure sensing systems have been used to measure the tire-road contact pressure
distribution [131], analytical techniques do not yet exist for effective estimation of the
contact pressure distribution as a function of the inflation pressure and the normal load. A
large number of analytical tire models, however, have been developed to study the
structural behavior of the tires [4, 5]. Many studies on the tire-road contact pressure
distribution and the contact patch geometry of statically loaded tires have been
undertaken during the last three decades, using either experimental techniques or
analytical models of varying complexities [131-133). The majority of the reported
models, however, are based on rather insufficient experimental data or relatively simple
theoretical basis to establish the contact conditions. These models, such as the models
reported in [139, 141], are normally based on the membrane or thin shell theory with

membrane or thin shell elements representing the inflated tire. These models are thus
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considered adequate for linear analysis. Many other studies have also derived the contact
pressure distributions from finite element tire models of varying complexities [135-138].
Very few studies, however, have derived an effective formulation to estimate the 2D
contact pressure distribution that could be applied for the studies on ride properties and
road damaging potential of heavy vehicle tires.

Studies on pavement damage potentials due to tire loads and ride dynamics of
vehicles mostly consider the tire as an elastic element with a point contact with the road
surface. Such a methodology can not predict the distribution of tire loads and thus may
provide an overestimation of the pavement damage potentials of tires. In these studies,
the 3-D contact pressure field, due to its complexities, is simplified and replaced by a
nominal force acting at a point within the contact patch beneath the center of the tire.
. Some of the reported studies have considered the contributions due to variations in
normal load and inflation pressures through the development of equivalent spring rate of
the point-contact tire spring [152-154]. The contributions due to geometry of the tire
enveloping the road surface, however, are ignored.

An estimate of the tire load distribution at the contact surface may be derived
from the known 3-D contact pressure field computed from an effective finite element tire
model and the resultant tire force generated from an equivalent point-contact spring. The
simplicity of the vehicle ride or pavement loading models could thus be retained through
the use of the equivalent point-contact tire models. This necessitates the derivation of
analytical formulations of 2D contact pressure distributions as a function of the normal

load, inflation pressure and the coordinate along the contact patch length.

-160-



In this chapter, an analytical procedure to estimate the tire-road contact pressure
distribution, along the length direction of the contact patch, as a function of the inflation
pressure and normal load for a truck tire is proposed. The modeling process is based on
the 3-D pressure fields computed from the developed nonlinear finite element tire model,
which considers the structural geometry, the anisotropic material properties of the
multiple layers and the nearly incompressible property of the tread rubber block. The 3-D
pressure fields are analyzed to derive a 2-D contact pressure distribution using the
equivalent work as the basis. Curve fitting techniques are applied to derive a polynomial
function to describe the contact pressure distribution as a function of the normal load,

inflation pressure and coordinate along the contact patch.

5.2 ANALYSIS OF 3-D CONTACT PRESSURE FIELDS

The traction, braking, ride and pavement loading characteristics of a vehicle are
directly related to the pressure distribution that is developed in the tire-road interface.
These properties, however, are further related to inflation pressure, normal load and
various structure properties of the tire [6]). The finite element tire model developed in
Chapter 3 is used to derive the contact patch geometry and pressure distribution of the
tire at various loading conditions. The tire model is validated by comparing the normal
force-deflection characteristics and the contact patch geometry (footprint shapes and
footprint length) computed from the finite element model with the experimental
measurements obtained in the laboratory over a wide range of normal loads and inflation

pressures. The comparisons revealed reasonably good agreements between the model
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results and the measured data, the results derived from the finite element tire model are
thus considered valid in a qualitative sense.

The finite element tire model is analyzed to determine the 3-D contact pressure
fields for different inflation pressures ranging from 552.4 to 828.36 kPa (80 to 120 psi),
while the normal load acting on the tire is varied by varying the maximum normal
deflection of the tire. The typical computed 3-D contact pressure distributions for the
selected radial truck tire subjected to 15 and 30 mm normal deflections and inflation
pressures of 552.4, 621.3 and 828.4 kPa, are illustrated in Figure 5.1 to 5.3. The analyses
are performed by applying a known pressure load, which are followed by application of a
normal load by varying the normal deflection. The results reveal that for a constant
inflation pressure the highest contact pressure peak initiates in the inner ribs and then
tends to swift to the outer ribs with the increase in the normal deflection. Increasing the

inflation pressure coupled with light normal load, however, yields concentration of high

peak of contact pressure in the inner rib areas.

Length of contact f
Wiah of contact patch (m) Width of contact pafch Lengt mr' j ;aTw

patch (m) m)

Fz=10.5 KN F;=229 KN

Figure 5.1: 3-D contact pressure fields under different normal loads; p1 = 552.2 kPa.

-162-



— )
g Q.
s <
o g
2 g
] a
a B
g ¥, g
1< .214 [a] 4 .
] -0.109 P> I A _010'274
0.000 - i ¥ -109
g 8 i A 0109 | ength of . 8 o
e 2 14 % 2 3 8
_ s 2 z contact patct ] ? 3 § § 0.214 Length of contact

Width of contact patch (m) Width of contact patch S patch (m)

(m) (m)

Fz=11.2KN Fz=24.3 KN

Contact Pressure (Mpa)

Figure 5.2: 3-D contact pressure fields under different normal loads; p1 = 621.3 kPa.

Contact Pressure (Mpa)

-0.155
o~
> § 2 ; 3 3 4
¢ 2 B g To214 Lengthof contact ) ? 28 4 Length of contact
Width of contactpatch © & patch (m) Width of contact patch - patch (m)
(m)
(m)
Fz=12.1 KN Fz=28.6 KN

Figure 5.3: 3-D contact pressure fields under different normal loads; pi = 828.4 kPa.

The critical values of the normal load, beyond which the pressure peaks tend to

shift from inner ribs to the outer ribs, depend upon the tire inflation pressure. The results

further reveal that the ratio of the peak pressure values occurring in the outer ribs to the
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peak pressure in the inner ribs tends to increase considerably with increase in the normal
load for a given inflation pressure. Figure 5.4 illustrates the peak contact pressures

observed within the inner and outer ribs of the tire as a function of the normal deflection

and the inflation pressure.

—t—80 psi (outer rib) —O— 80 psi (inner rib) —&— 100 psi (outer rib)
—— 100 psi (inner rib) -3 120 psi (outer rib) -0~ 120 psi (inner rib)

P I T IR R

Peak Value of Contact Pressure (MPa)
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Normal Deflection (mm)

Figure 5.4: Peak contact pressure as a function of the normal deflection.

The results reveal that the peak pressures occurring within a rib are strongly
related to the normal deflection. An increase in the normal deflection from 15 to 36 mm
yields negligible effect on the peak values occurring in the inner ribs, but significant
effect on the peak values of the contact pressure in the outer ribs. The peak contact
pressure increases with the increase in the normal deflection and thus the normal load, for

a given inflation pressure. The peak value corresponding to lower inflation pressure is
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higher than the peak value corresponding to a higher inflation pressure, when the normal
deflection is below 30 mm. For a given normal deflection, increasing the inflation
pressure results in higher contact pressure peaks in the outer rib areas. The intersection of
the peak pressure curves for inner and outer ribs for a specific inflation pressure can be
used to define the critical normal load. The results show that higher contact pressure
peaks occur in the vicinity of inner ribs near the central circumferential line, when the
normal load is lower than a critical value. The critical value of the normal load, however,
increases with the increase in the inflation pressure.

The pressure peaks tend to shift towards the outer ribs, when the normal load is
increased beyond the critical value. The ratio of the peak pressure occurring in the outer
ribs to that in the inner ribs tends to increase most significantly when the normal load is
increased beyond the critical value, specifically for the lower inflation pressures. Under
lower inflation pressures, the contact pressure peaks shift to the outer ribs very rapidly.
with increase in the normal load. Such characteristics of the contact pressure distributions
are attributed to the upward deflection of the crown center in the contact patch and the
deep downward deflections of the edges of the belts near the shoulder areas. Such trends
in the contact pressure distribution have also been observed in reported experimental

studies [131, 141).

5.3 ESTIMATION OF 2-D CONTACT PRESSURE DISTRIBUTION

Studies on ride dynamics and pavement damage potentials of heavy vehicle tires

mostly consider in-plane models of the vehicle, where the tire-road interactions are
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modeled as a point-contact spring. The spring rate of ihe equivalent tire spring, invariably
derived from the measured force-deflection data, is known to vary considerably with the
inflation pressure as described earlier in Chapter 3. The point-contact approach, although
quite simple and convenient, yields the resultant tire force acting at a point on the road
surface. This contact force can cause an overestimate of the road damaging potentials of
the dynamic loads and is known to exaggerate the wheel-hop tendency [152]. Analysis of
the tire force transmitted to the pavement necessitates the development of adequate tire
models to describe the contact patch geometry and the distribution of the contact forces
on the road surface. Development of such a model, however, is quite complex due to
complex tire geometry, structure and material properties. Alternately, the proposed finite
element based tire model may be applied to derive the contact pressure distribution in the
longitudinal-vertical plane of the contacting tire. The resultant contact force may be
related to the force developed by the equivalent point-contact spring model of the tire
[153-154]. A polynomial function may then be formulated to express the resultant force
by its distribution on the road surface as a function of the normal load and inflation

pressure.

5.3.1 Method of Analysis

Let the tire contact patch be represented by / rows and k columns of elements,

where each element within the contact patch is subjected to a centralized force, P, (n =
1,....0; m = 1,..., k) acting at the geometric center of the element, as shown in Figure

5.5(a). The magnitude of this point force (F,,) can be computed from the element

geometry and the average contact pressure p,, :
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Figure 5.5: (b): Illustration of contact pressure as a function of coordinate x.

P, = PunSum (5.1)

where s, is the area of the element, located in row n and column m of the contact patch.

The work done by the centralized force can be computed from the average normal

deflection of the element dz,, , in the following manner:
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W, =P, -dz,, . (5.2)

The equivalent 2-D contact pressure due to elements in row n can then be

computed as:

k

2V
n = m=l ; n=1, ...,l (53)
P dz,-L,-(Ay,)

where L, and Ay, are the length and the total width of elements in row n, respectively,
as illustrated in Figure 5.5(a). The normal deflection dz, represents the average vertical
deflection of the elements in row n. p, (n =1, ..., I) describes the 2-D equivalent contact

pressure acting on the road surface in the longitudinal-vertical (X-Z) plane. The

distributed tire-road contact force acting on the road surface, F_ (n =1, ...,0), can then

be estimated from:

F,=p,L,(Ay,); n=1,.,1 54)

The equivalent contact pressure along the longitudinal direction, derived from
Equation (5.4), is considered to act along the circumferential centerline of the tire and can
be expressed as a polynomial function of the longitudinal coordinate of the contact patch
corresponding to a given inflation pressure and normal load. The origin of the
longitudinal axis is placed at the intersection of the vertical centerline of the tire with the
road surface. The normalized contact pressure could be expressed as a function of the

value of the equivalent point-contact force or the normalized equivalent normal load:
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(I(Pa)J gai(l(N)J [1(,,,)) (5.5)

where p_(x) is the contact pressure in Pascal (Pa) and x is the longitudinal coordinate

from the contact center in meter (m), as shown in Figure 5.5(b), while F_ is the resultant

normal load in Newton (N), g describes the order of the polynomial function and

a{l(%)-) are the coeficients described as functions of normalized F._.

5.4 IDENTIFICATION OF POLYNOMIAL FUNCTIONS

From the above analyses on the 3-D contact pressure fields and the contact
geometry analysis performed in Chapter 3, it is apparent that the magnitude of the contact
pressure peak and the length of the contact area, are strongly influenced by the inflation
pressure and the normal load in a nonlinear manner. The 2-D contact pressure fields are
thus expected to be strongly dependent upon the normal load F, and the inflation
pressure p, in a highly complex manner. Figures 5.6 and 5.7 illustrate the 2-D contact
pressure distribution of the truck tire under 621.3 kPa (90 psi) and 759.3 kPa (110 psi)
inflation pressures, respectively, as estimated from Equation (5.3). The figures also show
the corresponding curves fitting the pressure distribution data for different normal loads.
The pressure distribution identified from the finite element model shows slight
asymmetry about the vertical.centerline of the tire, which is considered to be mostly

attributed to the asymmetric stacking sequence of the belts and the carcass layers. The
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corresponding curves, derived from the polynomial function of Equation (5.3), however.

appear to be less asymmetric about the contact center.
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Figure 5.6: 2-D contact pressure distributions for different normal loads; p; =
621.3 kPa: (a) F,=17.1 kN; and (b) F,=31.1 kN.
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Figure 5.7: 2-D contact pressure distributions for different normal loads; p; =
759.3 kPa: (a) F,= 19.4 kN; and (b); F.=34.7 kN.
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The results reveal that the contact pressure distribution is strongly dependent on
both the inflation pressure and the normal load, and that the length of the contact patch

varies nonlinearly with the normal load and inflation pressure. The 2-D contact pressure
distribution ( p.) along the length direction of the contact patch in the tire-road interface
is thus considered to be a function of the inflation pressure ( p,), the normal load (F.)

and the coordinate (x) along the longitudinal direction. A polynomial function is thus
formulated to describe these dependencies. The detailed form of the function is derived
through analysis of the dependency of the contact pressure distribution on each individual
variable, while the remaining variables are held as constants. The derived formulation is
validated by comparing the estimated contact pressure distribution with the data obtained

from the finite element model.

5.4.1 Identification of the Polynomial Coefficients
The identification of the polynomial coefficients is initiated by analyzing the 2-D
contact pressure distributions derived from the computed 3-D contact pressure fields as a

function of the longitudinal coordinate (x), where the normal load ( F.) and the inflation
pressure ( p,) are treated as constant parameters. The coefficients (a,) of the derived
formulation of the contact pressure distribution p, (x), are then used to define a
polynomial function in the normal load (F), while the inflation pressure ( p,) is still
treated as a fixed parameter. The identified coefficients (k;) of the derived polynomial

function (a,), can be further estimated as functions of the inflation pressure ( p, ). Finally,
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the polynomial formulation describing the contact pressure distribution as a function of
the inflation pressure, normal load and longitudinal coordinate can be achieved.

In view of the nonlinear characteristics of the contact pressure distribution as
function of the inflation pressure, normal load and &e longitudinal coordinate, the
coefficients (a,) of the polynomial are identified as functions of both F. and p,. The
curve fitting is initially performed for a constant value of p,. The analysis is performed
for given values of p, ranging from 80-120 psi (552.2-828.4 kPa). The results reveal that

the contact pressure distribution can be accurately described by a fourth-order polynomial
in x, which is equivalent to g = 5 in Equation (5.5), while the inflation pressure and the
normal load are kept constants. Figures 5.8 and 5.9 illustrate the variations in the

coefficients a,, (i = 1,2, 3, 4, 5) as functions of the normal load for p; =621.3 kPa (90

psi) and 828.4 kPa (120 psi), respectively. The coefficient values derived from equations
(5.3) and (5.5) are indicated by symbols (a), while the corresponding curve-fit is

indicated by a continuous line. While the coefficients a, (i = 1, 4, 5) increase with
increase in the normal load until certain value of the normal load, a, and a, decrease
significantly, and a, approaches to a nearly steady value, when normal load increases
further. On the contrary, a, and a, reduce at first and then increase with further increase
in the normal load. The results show that the coefficients a,, (i = 1, ..., 5) are strongly

related to variations in the normal load in a nonlinear manner. Moreover, increasing the

inflation pressure yields significant increases in a@,, a, and a5 and considerable

reductions in a, and a, for the same normal load values. The results reveal that the the
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variations in the normal load and in the inflation pressure have strong effects on the
values of a,, (i = 1, ..., 5) in a nonlinear manner.
The dependency of a, on the inflation pressure can be incorporated by expressing

them as polynomial functions in normal load F, for a range of p;. The analyses performed

for a given inflation pressure revealed that each of the coeffiecients a; can be accurately

desribed by a third-order polynomial in normal load F in Newton (N), such that

. I : r—j .
a = k. ! . =1,2,3,4,5 5.6
' j=1 U(l(pm)) [I(N)} (l ) ( )

where r =4 and k; (j = 1, 2, 3, 4) are the interpolation coefficients corresponding to q,,

which are dependent on the inflation pressure p; and can further be expressed as third-

order polynomial functions in normalized p; :

5=
k,,=2w{ P J : (G=1,2,3,4i=1,2,....5) (5.7)

where w, (I = 1, 2, 3, 4) are the coefficients of the polynomial and s = 4.

Curve-fitting is further performed to identify the constant coefficients w, (/= 1, 2,
3, 4). Equations (5.6) and (5.7) are solved to derive the coefficients k; (j =1, 2,3, 4) as
functions of p; that correspond to each a; and F.. The relationships between k; (j = 1, 2,

3, 4; i=1, 2, 3, 4, 5) and p; corresponding to each q; are shown in Figure 5.10(a-e). It can
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be seen that the coefficients k, corresponding to coefficients q, and a, are nearly
linearly related to the inflation pressure, while the coefficients of k; corresponding to

a,, a, and a, appear highly nonlinear functions of the inflation pressure.
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Once the values of w, for each k; (j = 1, 2, 3, 4), which are derived for each a,
(i=1, 2, 3, 4, 5), are known, the matrix W, (i = 1, ..., 5) can be established and used to
derive the series of coefficients a, in order to obtain the pressure distribution polynomial

function. Based on the assumption that the contact pressure distribution for given values
of inflation pressure and normal load can be expressed as a polynomial function in
coordinate x and that the highest power of the polynomial is four (g = 5), the contact

pressure distribution of Equation (5.5) can be expressed as:

p.(x)=A"X (5.8)
where A' =[a, a, a, a, a], and X =[x* X’ X X 1I', where X=x/(lm)
and x is the longitudinal coordinate in meter (m). When inflation pressure p; is constant, the

elements in matrix A are expressed as functions of the value of the normal load F. alone:

a,=K'F;(i=127345) (-9)

where K'=[k, k. k; ko G =1,2 3,4,5; F=[F’ F’ F,_ 1, where

1

F,=F./(IN) and F, represents the normal load in Newton (N) acting on the tire. The

vector A can thus be expanded as:

A= KF (5.10)
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where K=[K! K. K. K. K!],isa(5x4) matrix containing the vectors K, (i = L,
..., 5). Each row of the matrix K, K] (i =1, 2, 3 4, 5), is a polynomial function in py, as

expressed in Equation (5.7), and can be written as

K.=WP, i=1,....,5 (5.11)
where
k, W), Wi W, Wy, 25,3
K = ki LW, = Wy Wy Wy Wy . p= ﬁ—,' (5.12)
ki Wy Wi Wi Wi, D
ki Way Wi Wi W |, 1

where the matrices W, (i=1, ..., 5) are the final objective matrices that are used to obtain
the coefficients a, (i = 1, 2, 3, 4, 5), P, = p, /(1psi) and p; represents the value of the
inflation pressure in psi. The value of i is equal to the number of coefficients a,
contained in the series. When all the matrices W, are known, the terms in a, can be

obtained using the prescribed procedure. The resuiting polynomial, expressed as a
function of the values of the inflation pressure, normal load and position along the
contact patch, can be used to predict the 2-D tire-road contact pressure distributions for
given inflation pressure and normal load. The polynomial function can be expressed in

the following manner:

B.@)=33 3w 3 )" -F)" -G 5.13)

=l j=l I=l
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where p.(x)= p.(x)/(1Pa), B, =p,/Qpsi), F,=F,/(IN) and X=x/(lm) are the
normalized contact pressure, inflation pressure, normal load and the longitudinal
coordinates, while g, r and s take on values of 5, 4 and 4, respectively. The procedure for
formulating the contact pressure polynomial is illustrated in Figure 5.11, in which the

matrices W, , the inflation pressure p; and the normal load are used as the input data.
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Figure 5.11: Procedure for estimating the contact pressure distribution
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The matrices W, are used in conjunction with the previously constructed column

vector P containing the given value of the inflation pressure to derive the column vector



K,. The K, (i=1, 2, 3, 4, 5) are further employed to construct the matrix K. The dot

product of the matrix K and the column vector F containing the given value of the

normal load yields the coefficients a, and thus the column vector A. The objective
function p_(x) is finally achieved by the dot product of A’ and the column vector X

containing the coordinate x.

5.5 DISCUSSION OF THE RESULTS
The 3-D pressure fields derived from the finite element model of a 12.5R22.5

truck tire are analyzed to formulate matrices W,. The matrices Wi=1,2,3,4,5)are

derived as following:

0 0 —154¢-06 2.32¢-04
— 0 0 01177 —-20.88
|0 0 -1.76e+03 4.02¢+05
‘10 0 7.57¢+06 —8.6e¢+08
—1.85e~11 7.32¢-09 -926¢—07 3.67¢—05
—_— ~3.80e~-07 -2.29¢-05 0.018 —1.04
: 0.0606 -15.35 1.17¢+03 —2.87¢+04
—-559.7 1.55¢+05 -14e+07 3.85¢+08
0 0 420e-08 -6.27e-06
W = 0 0 -3.50e-03 0.624
1o 0 53.166 —1.33¢+04
0 0 -2383¢+05 2.65¢+07
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-1.04¢—-12 2.85¢e-10 -251e-08 7.1le-07
933¢-08 -2.57¢-05 228¢-03 —6.66e—02

W, =
¢ 1-2.30e-03 0.63894 —56.96 1.702¢ + 03
8.5577 -237e+03 2.09e+05 -—-5.89¢+06
0 -245¢—-11 496e-09 -245¢-07
469¢—-08 -1.19¢-05 9.6le—04 -25le—02
W, = (5.14)
—2.53¢e-03 0.7012 —-63.55 1.93¢ +03
28.45 —8.17e+03 7.72¢+05 -2.4e+07

The polynomial functions, described in Equations (5.8) and (5.13), are then
derived and the estimates of contact pressure distribution are obtained using the
procedure illustrated in Figure 5.11, where the required inputs are the values of the
inflation pressure and the normal load with units of psi and N, respectively.

Figure 5.12 illustrates the estimated contact pressure distributions at the tire-road
interface of the selected tire for inflation pressure ranging from 552.2 to 828.4 kPa (80 to
120 psi), and various values of the normal load, ranging from 5 kN to 45 kN. The
estimated pressure distributions corresponding to specific normal loads (20, 30 and 40
kN) and 80 psi, 100 psi and 120 psi inflation pressures are presented in Figure 5.13. It is
observed that increasing the normal load significantly increases the length of the contact
patch for constant inflation pressure, but increasing the inflation pressure affects the
footprint length only slightly for a constant normal load. Under light normal load and
high inflation pressure, the contact pressure peaks occur in the vicinity of the central
point of the contact patch. The pressure peaks, however, tend to shift towards front and

rear edges of the contact patch, under high normal loads or low inflation pressures.
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Figure 5.12(a): Contact pressure distributions estimated from the proposed
polynomial for different normal loads; p; = 80 psi.
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Figure 5.12(b): Contact pressure distributions estimated from the proposed
polynomial for different normal loads; p1 = 90 psi.
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Figure 5.12(c): Contact pressure distributions estimated from the proposed
polynomial for different normal loads; p; = 100 psi.
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Figure 5.12(d): Contact pressure distributions estimated from the proposed
polynomial for different normal loads; p; = 110 psi.
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Figure 5.12(e): Contact pressure distributions estimated from the proposed
polynomial for different normal loads; p; = 120 psi.
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Figure 5.13(a): Contact pressure distributions estimated from the proposed
polynomial for different inflation pressures; F, = 20 kN.
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Figure 5.13(b): Contact pressure distributions estimated from the proposed

polynomial for different inflation pressures; F, = 30 kN.
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Figure 5.13(c): Contact pressure distributions estimated from the proposed
polynomial for different inflation pressures; k.
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Under a lower normal load (20 kN), the variations in p; exhibit relatively small
effect on the contact pressure-distribution and the pressure peak, as shown in Figure
5.13(a). The estimated contact pressure distribution is thus less sensitive to variations in
the inflation pressure ranging from 80 psi to 120 psi, when normal load is less than 20
kN. Under a large normal load (above 30 kN), the variations in p; influence the contact
pressure distribution in a significant manner. Lower inflation pressure results in a rapid
shift of the contact pressure peaks to the two edges of the contact patch. A higher
inflation pressure yields nearly constant contact pressure distribution around the central
point of the contact patch. Such observations in the contact pressure distribution have
also been reported by Sakai [131] and Browne et al. [141].

It should be emphasized that the proposed polynomial function, and thus the
results presented in Figures 5.12 and 5.13, are derived on the basis of the 3-D contact
pressure fields computed from a finite element model of a truck tire. While the geometric
parameters are taken from the cross-section of the tire, the material properties are
estimated from the data reported in various published studies [5, 125, 129, 171-172]. In
view of such estimated parameters, the results presented in this study are considered to
describe the tire-road interface pressure distribution in a qualitative manner. The validity
of the proposed polynomial is examined by comparing the estimated data with those
derived from the finite element tire model and Equation (5.3) for different inflation
pressure and normal load conditions, as shown in Figure 5.14. The results show
reasonably good agreement between the estimated and computed contact pressure
distributions. The estimated results also show reasonably good agreement with the

reported experimental data by Browne et al. [141].
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Figure 5.14: Comparison of the estimated contact pressure distributions with
those derived from the FE model; p; = 621.3 kPa: (a) F, = 11.2 kN;
(b) F,= 17.4 kN; (c) F,=31.1 kN; and (d) F,=46.1 kN.
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Figure 5.14: Comparison of the estimated contact pressure distributions with those

derived from the FE model; p, = 621.3 kPa: (a) F,= 11.2 kN; (b) F. =
17.4 kN; (¢) F.= 31.1 kN; and (d) F. = 46.1 kN. (Continued)
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kN; (c) F.=34.7kN; and (d) F,=46.4 kN.
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(Continued)
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56 SUMMARY

A computational methodology is proposed to derive an estimate of the 2-D tire-
road contact pressure distribution in the tire plane as a function of the normal load,
inflation pressure and the longitudinal coordinate along the contact patch. A polynomial
function in the normal load, inflation pressure and coordinate of the local contact point is
developed on the basis of the contact pressure field data derived from the finite element
model of a truck tire. The principle of equivalent work is applied as a basis to reduce the
3-D contact pressure field into the 2-D pressure fields in the wheel plane of the tire. The
resulting 2-D contact pressure distribution is described by a polynomial function using
the curve fitting techniques. The polynomial function is applied to obtain estimates of the
2-D contact pressure distribution in the wheel plane at the tire-road interface
corresponding to different normal loads and inflation pressures. A comparison of the
estimated contact pressure distributions with those derived from the FE model revealed
reasonably good validity of the proposed estimation function. The estimated results also
revealed reasonably good qualitative agreement with the data reported in the published
studies. The proposed methodology can be applied to obtain an estimate of the contact
pressure distribution on the basis of resultant point-contact force, inflation pressure and
normal load.

The validated tire model is analyzed to estimate its vibration modes and natural
frequencies in the following chapter. The vibration modes and the natural frequencies for
the radial truck tire with different inflation pressures are analyzed incorporating the pre-
stress effects and the nonlinearities. The effects of the individual structural parameters on

the tire’s natural frequencies are also investigated.
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CHAPTER 6 MODAL ANALYSIS OF A TRUCK TIRE BASED ON
A NONLINEAR FINITE ELEMENT TIRE MODEL

6.1 INTRODUCTION

The vibration modes and the natural frequencies of a tire inherently determine the
tire’s dynamic response properties concerning the transmission of disturbances from the
tire footprint to the vehicle, critical rotational speed, noise generation, etc. Consequently.
the analysis of tire vibration characteristics has played an important role in predicting the
vehicle behavior in terms of ride comfort and noise generation [3, 156]. Considerable
efforts have been made to conduct both experimental [21, 25, 156] and theoretical studies
(28, 40, 157-161] on the vibration characteristics of the pneumatic tires. The majority of
the works, however, assume that the symmetric and anti-symmetric motions of the
wheel-tire system are uncoupled and can be studied separately [28, 40, 160-161].
Moreover, the tire structure is normally simplified as a circular ring on an elastic
foundation to facilitate the analytical formulation of the vibration problems. The tire
structure, such as the rubber, textile and steel cords, constituent anisotropy and nonlinear
properties of material could not be taken into account. These models thus do not reflect
the complexity of a real tire and the majority of them can only provide the in-plane tire
vibration characteristics.

Some other tire vibration related works have been performed based on simple
finite element models using membrane or shell elements [159]. The most advanced FE
models are mainly based on the linear analysis of the multi-layered system, assuming
small deformations of the anistropic layers and thus could not properly incorporate the

large nonlinear deformations due to the inflation pressure and the axle load [160, 162].
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Very few of the reported models are capable of generating three-dimensional deflection
modes of the tire, with appropriate consideration of the nearly incompressible property of
rubber, the anisotropic property of the multi-layered system and the structural features.
The vibration behavior of a pneumatic tire depends not only upon its structural and
material properties, but also on the operating load and inflation pressure. The free
vibration characteristics of a given tire are thus expected to be load and pressure-
dependent. While the load- and pressure-dependent deflection modes have not been
reported, the contributions due to the anisotropic property of the belt layers have been
mostly ignored.

In this chapter, the free vibration behavior of the truck tire is carried out through
the analysis of the finite element tire model described in Chapter 3. The vibration modes
and frequencies of a radial truck tire with different inflation pressures are analyzed
incorporating the pre-stress effects and the nonlinearities. The effects of variations in the
individual structural parameters on the load and pressure-dependent natural frequencies
of a radial truck tire are also investigated. The structural parameters considered in the
modal analysis are the cord angles in each layer, total number of belt layers and the
amount of twisted cords per unit width of each individual layer, which are related to the

configuration and anisotropic material properties of the belt layers.

6.2 METHOD OF ANALYSIS
The nonlinear FE tire model developed in Chapter 3 is employed to perform the
modal analysis of an inflated truck tire, which is treated as a pre-stressed structure. The

analysis is initiated by conducting a static analysis under a given inflation pressure. The
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results are analyzed to derive the pre-stress effects of the static loading of the nonlinear
tire model for the given inflation pressure and the load. A modal analysis of the inflated
tire is then carried out upon incorporating the pre-stress effects derived from the static
analysis. The free-vibration analysis of the undamped tire structure is performed using

the classical eigenvalue problem:

[KH®D,} = 0! [M){P,} (6.1)

Where (K] = stiffness matrix
{®,} = mode shape vector (eigenvector) corresponding to mode i
w, = natural circular frequency corresponding to mode i

[M ] = mass matrix

The Block Lanczos method [173], which uses the sparse matrix solver and is
considered suitable for solution of large symmetric eigenvalue problems, is used to
achieve rapid convergence. A static analysis of the model is initially performed under a
given inflation pressure to define the stiffness matrix corresponding to the specific pre-
stress condition. The modal analysis of the finite element model is then performed to
determine the free vibration properties of the pre-stressed tire. The mass matrix is formed
using the lumped mass approximation, which can result in a shorter run time and lower
memory requirements. The density of the tread rubber material in the tire is obtained
based on the data reported by Oh et al. [172]. The average densities of the carcass and

belt layers are estimated from the density data of the rubber, the steel cords and the
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volume ratios occupied by the components in each individual layers. The estimated

densities of the tread rubber, plies and the rubber in the plies are illustrated in Table 6.1.

Table 6.1: Estimated densities of rubber, plies and the rubber in the plies

Tread Rubber in Rubber Belt ol Carcass bl
rubber belt ply in carcass ply ply | Carcass ply
Density p (kg/m’) | 1164 1190 1190 1910 1810

The other data related to the material properties, e.g., Young’s modulus, tension
and shear response characteristics, etc., are estimated based upon the data reported in
various published studies [S, 125, 129-130, 172]. The parameters describing the model
geometry were selected from the measurements performed on a 12.5R22.5 truck tire. The
Table 6.1 together with Table 3.1 to 3.7 summarizes the material and structure
parameters of the cord-reinforced rubber plies employed in the tire model. In view of the
estimated material properties, the results derived from the modal analysis are considered
to describe the tire vibration characteristics in a qualitative manner. The application of
the model in conjunction with adequately measured material properties of layers in belts
and carcass casing are expected to yield a quantitative modal analysis of a specific tire.

The frequency below which the tire inertia effects may be neglected must lie well
below the lowest natural frequency of the tire, which is estimated as 20 Hz for the road
vehicle tires [3]. In the high frequency range, considered as higher than 30 Hz, tires
exhibit a number of natural frequencies associated with the in-wheel plane and out-of-
wheel plane motions, and continuously distributed vibrations of the side walls and the
tread band [3]. The in-plane and out-of-plane motions corresponding to a specific mode
may be coupled, and the deformation pattern may involve complicated three-dimensional

mode shapes, which are different from the results reported in the studies mentioned



earlier. The experimental studies performed on pneumatic tires have shown that the
amplitude ratio of the hub oscillation to the sinusoidal platform oscillation is relatively
small, when the excitation frequency exceeds 110 Hz [21]. The measured resonant peaks
were observed to lie in the 60-80 Hz frequency range for the radial tires. The highest
resonant frequency of the pneumatic tires is thus considered to be well below 100 Hz,
which is also considered to be the cut-off frequency for vibration transmission by the
automobile suspension [15]. The highest frequency for the mode extraction in the current
study is assumed as 112 Hz. At higher frequencies a rolling tire may exhibit a standing
wave phenomenon, which necessitates complex tire dynamic analyses and is thus not
included in this study.

In addition to the inflation pressure, the most important structural parameters
affecting the vibration characteristics of a tire are the cord angles in belt layers, total
number of layers in the belt and the amount of cord ends per unit width of each layer.
Since the belt layers containing different cord angles are essential in stabilizing the tire
casing in radial direction and are in a highly stressed state, these anisotropic-property-
related parameters have direct influence on the vibration properties of an inflated tire.
The effects of the structure-related parameters on the vibration modes of the tire with
690.3 kPa (100 psi) inflation pressure are thus evaluated to enhance on understanding of

the tire vibration behavior.

6.3 -TIRE MODE SHAPES
While a number of studies have been reported on the high frequency motions of

the tires [3], the majority of the studies are limited to the motions in the wheel plane and
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are based on the ring or membrane models. These models thus could not be used to study
the effects of the anisotropic property of the multi-layered system on the vibration
characteristics of the tires. The nonlinear finite element tire model developed in this study
is analyzed, and the vibration modes and the comresponding natural frequencies below
112 Hz are extracted. Table 6. 2 summarizes the natural frequencies associated with the
extracted nine modes of the tire model. The nominal parameters for the analysis are
considered to be 690.3 kPa (100 psi) inflation pressure, four layers in the belt, 22 degrees

cord angle in each layer and 4 cord ends per centimeter in the width of each layer.

Table 6.2: The tire natural frequencies associated with the extracted nine modes

Mode
2
Numbers 1 2 3 4 5 6 7 8 9

F‘eq(‘;‘;z“)cies 42.11 | 45.12 | 47.00 | 67.30 | 67.87 | 86.25 | 97.62 | 98.94 |110.86

Figure 6.1(a) to 6.1(i) illustrate the deflection modes of the candidate tire
corresponding to the extracted modes. The first deflection mode corresponding to the
lowest natural frequency of 42.11 Hz, exhibits translational motions of the tire along the
transverse direction, as shown in Figure 6.1(a). The deflection mode 2 (f; = 45.12 Hz)
contains mainly a rotational motion of the tire around the wheel axle as shown in Figure
6.1(b). The deflection mode corresponding to mode 3 (f; = 47 Hz) exhibits rotational or
twisting oscillation of the tire around an axis in the wheel plane crossing the tire center.
The vibration mode shape corresponding to the frequency of 67.3 Hz reveals relatively
complex deformation pattern caused by the twisting of the tire. The portions in the
opposite two halves of the tire displace outwards from the wheel plane, while the other

opposite portions of the tire tend to oscillate backwards out of the tire plane.
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(a) Mode 1

(b) Mode 2

*Figure 6.1: Deflection modes of the tire model: (a) first mode, f; = 42.11 Hz;
and (b) second mode, f> =45.12 Hz.

*Note: The deflection modes are extracted from the tire model with the nominal
parameters; p; = 690.3 kPa (100 psi).
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(c) Mode 3

(d) Mode 4

*Figure 6.1: Deflection modes of the tire model: (c) third mode, f3 = 47.0 Hz;
and (d) forth mode, f4 = 67.3 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model with the nominal
parameters; p; = 690.3 kPa (100 psi).
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(f) Mode 6

*Figure 6.1: Deflection modes of the tire model: (e) fifth mode, fs = 67.87 Hz;
and (f) sixth mode, fs = 86.25 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model with the nominal
parameters; p; = 690.3 kPa (100 psi).
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(g) Mode 7

- Yl

(2p e -~

(h) Mode 8

*Figure 6.1: Deflection modes of the tire model: (g) seventh mode, f; = 97.62
Hz; and (h) eighth mode, fz = 98.94 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model with the nominal
parameters; p; = 690.3 kPa (100 psi).
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(i) Mode 9

*Figure 6.1: Deflection modes of the tire model: (i) ninth mode, fo = 110.86
Hz. (Continued)

*Note: The deflection modes are extracted from the tire model with the nominal
parameters; p; = 690.3 kPa (100 psi).

The deflection mode S (fs = 67.87 Hz) describes a vibration motion causing the
compression of nearly one half of the carcass and expansion of the other half. The motion
is observed to be symmetric about a central axis in the wheel plane. Under the oscillation
mode 6 (fs = 86.25 Hz), the deformed tire assumes an oval form, as illustrated in Figure
6.1(f). This vibration mode involves the extension motion in opposite directions along a
central axis and compressive motion along the opposite axis. The maximum deflections
are observed to occur in the crown areas. The two involved axes along which the motions
occur are in the wheel plane and are vertically crossed at the tire center. In the seventh
mode (f; = 97.62 Hz), the tire appears twisted along the toroidal centerline and may

suggest the presence of a standing wave with the most complicated deflection shapes
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among all the considered modes. The deflections mode 8 (fg = 98.94 Hz) and mode 9 (fo
= 110.86 Hz) show more complex deformation patterns, with comer rounded triangular
and quadric shapes in their side views, respectively. The vibration modes 7 to 9 are
considered to be most likely associated with the standing waves. The results reveal that
tire side-wall vibration modes or the side-wall deformations, which are ignored by the in-
plane models, such as the ring on elastic foundation type models, play a very important
role in tire vibration. Most of the three-dimensional mode shapes presented in this study,
however, have not been reported in the literature, with the exception of the modes 5. 6, 8
and 9. Zhang, et al. predicted the tire modes using LS/DYNA3D and presented the side
views of the deformation pattemns. The deflection modes derived in this study
corresponding to these modes show patterns that are similar to those reported by Zhang et
al. [162].

Figure 6.2 illustrates the deformation modes and the corresponding frequencies of
the tire model analyzed by Zhang et al. [162]. The results show the presence of only one
torsional and three belt-bending free vibration modes in the frequency range below 120
Hz. The study also identified five additional free vibration modes in the frequency range
above 160 Hz, as illustrated in Figure 6.3. The deflection patterns of the computed modes
5 (fs = 67.87 Hz), 6 (fs = 86.25 Hz), 8 (f; = 98.94 Hz) and 9 (fy = 110.86 Hz) are
observed to be similar to those reported by Zhang et al., corresponding to the frequencies
57.6, 81.1, 113.3 and 142.2 Hz. Considerable differences, however, can be observed
between the predicted and the reported frequencies corresponding to these modes. This
may be attributed to the different structural and geometric parameters and the material

properties employed in the two studies.
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Figure 6.2: Tire free vibration modes as reported in reference [162].
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Figure 6.3: New free vibration modes as reported in reference [162].

6.4 INFLUENCE OF DESIGN PARAMETERS ON THE TIRE NATURAL
FREQUENCIES

The cord angles in the belt layers, total number of layers in the belt and number of
cord ends per unit width of each layer, are among the most important structural
parameters of a tire. In addition to the inflation pressure, the belt layers containing
different cord angles are essential in stabilizing the tire casing in radial direction and are
the primary factors affecting the stiffness characteristics of a tire. These anisotropic-
property-related parameters have direct influence on the vibration property of a loaded

tire, which have not yet been reported.
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The effects of the above parameters on the vibration characteristics are
investigated individually for a tire with 100 psi (690.3kPa) inflation pressure. The
selected parameters are varied within a relatively small range, except for the number of
layers in the belt, such that the resulting influence on the mode shapes is relatively small.
The variations in the selected parameters, however, are considered to be sufficiently large
to illustrate their effects on the natural frequencies of an inflated tire. The subsequent
study is thus focused on the analysis of the effects of variations in the inflation pressure
and the individual structural parameters on the natural frequencies rather than the mode

shapes of the tires.

6.4.1 Effect of the Cord Angle

Among the various design parameters, the cord angle plays a significant role in
determining the anisotropic property of each layer and thus the behavior of a radial tire.
The stiffness characteristics of the belt layers and thus the tire, in circumferential, radial
and axial directions, are primarily dependent on the orientation of the cords in the
individual layers. The natural frequencies of the tire are identified through analysis of the
tire models with three different cord angles: 18, 22 and 26 degrees. The cord angles are
designated as +8, —0, +0 and -0, respectively, beginning from layer 1, which is nearest to
the tread rubber block. Figure 6.4 illustrates the influence of cord angle on the natural
frequencies of the tire associated with the first three vibration modes. The effect of
variations in the cord angle on higher mode natural frequencies is illustrated in Figure

6.5.
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Figure 6.4: Effect of cord angle on the first three natural frequencies of a truck
tire; p1= 690.3 kPa (100 psi).
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Figure 6.5: Effect of cord angle on the first nine natural frequencies of a truck tire;
pi= 690.3 kPa (100 psi).
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It can be observed that the increase in the cord angle yields a distinct but small
decrease in the first three natural frequencies and relatively larger reduction in the natural
frequencies associated with the higher modes of vibration. An increase in the cord angle
leads to lower stiffness of the belt layers in the circumferential direction and thus yields
lower natural frequencies. The first three modes primarily involve the translational
motion in the axial (lateral) direction, rotational motion about the tire center in the wheel
plane and the oscillation about an axis in the wheel plane crossing the tire center. other
than the motions associated with the circumferential direction. The influence of variations
in the cord angles on these modes is thus relatively small. The modes corresponding to
higher natural frequencies, however, are associated with motions that include major
components in the circumferential direction of the tire. The influence of the variations in
the cord angle on the natural frequencies above 60 Hz is therefore slightly larger. It 1s
concluded that relatively larger cord angles help to reduce the natural frequencies of a tire

in its service, especially those associated with higher modes in the 60 to 112 Hz range.

6.4.2 Effect of the Number of Beit Layers
The number of belts used in a radial tire affects its rigidity in all the directions and
thus the vibration properties in a considerable manner. The belt layers provide high
rigidity to the tread against distortion, and affect the rate of tread wear and rolling
resistance. Assuming identical geometry and material properties of each individual layer,
the use of fewer belts could adversely influence the tire stability and the use of too many
belts, on the other hand, could directly affect the weight and the cost. The modal analysis

of the tire is performed by varying the total number of belt layers embedded in the crown
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area from 3 to 5, while the thickness of each layer and the total thickness of the tire in the
thickness direction are kept unchanged. The effect of the variations in the number of belt

layers on the natural frequencies is illustrated in Figure 6.6 and 6.7.

03 belt iayers W4 belt layers M5 beit layers

Natural requency (Hz)

1 2 3
mode number

Figure 6.6: Effects of variation of number of layers in the belt on the first three
natural frequencies of a truck tire; pr= 690.3 kPa (100 psi).
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Natural Frequency (Hz)
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Figure 6.7: Effects of number of belt layers on the natural frequencies; p1 = 690.3
kPa (100 psi): (a) mode 4 and (b) mode 7.

-214-



Figure 6.6 illustrates the influence of number of belt layers on the first three
natural frequencies of the inflated tire. As the number of belt layers increases from3 1035,
the first three natural frequencies decrease only slightly. Similarly, majority of the higher
mode frequencies tend to decrease as the number of layer varies from 3 to 5, except those
for the modes 4 and 7 (Figure 6.7). The reduction in the natural frequencies due to
increasing number of layers in the belt may be attributed to the fact that more belt layers
stiffen the crown area but soften the side-wall, which experiences larger deformations
and yields lower natural frequencies. Mode 4 involves the bending and twisting
movements of the tire around the axles in the wheel plane and its frequency is largely
associated with the stiffness characteristics of the body layers in the side-wall.
Consequently, the natural frequency fs increases as the number of layers increases from 3
to 4 and then decreases slightly as the number of layers further increases from4to 5 as
illustrated in Figure 6.7(a). Mode 7 possesses the most complicated mode shape among
the considered modes and its frequency increases with increase in the number of layers.
as shown in Figure 6.7(b), since the involved movements in this mode are closely

associated with the bending and twisting motions of the belt layers.

6.4.3 Effect of the Cord Ends per Centimeter (epc)

The amount of cord ends per centimeter (epc) along the width of each individual
layer determine the longitudinal and transverse Young's modulus of the layer and thus
the stiffness characteristics of a tire in all the directions, when the thickness of the layer is
constant. The Young’s modulus of each layer, which primarily determines the tire

vibration properties, can be determined by the volume ratio of the cords relative to the
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Natural Frequency (Hz)

rubber matrix and their material properties in the composite layer. The effects of varying
epc on the material properties, such as the Young’s modulus and Poisson’s ratio, can be
estimated by the Halpin-Tsai equations [130], when the volume ratio of the cords and
rubber matrix in the belt and their individual material properties are known. Hence, the
study of the effects of material properties of the layers on the vibration characteristics of
an inflated tire can be performed by investigating the influence of varying the value of

epc, as illustrated in Figure 6.8.

Qepc=3.5 Wepv=4.0

Natural Frequency (Hz)

42.114 Mepc=43
42112 | 45.12 47.04
4211 45.115 | 47.02
42.108 - 47 |
42.106 1 45.11 46.98 |
prgted 45.105 4696 1
421 - 46.94 1
451 |
42.098 46.92
42.096 45.095 46.9
68
67.95
67.9 -
67.85 -
67.8
67.75 -
67.7 -
67.65 1
676

Figure 6.8: Effects of the amount of cord ends per centimeter (epc) on the first nine
natural frequencies of a truck tire; p;= 690.3 kPa (100 psi).
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Figure 6.8: Effects of the amount of cord ends per centimeter (epc) on the first nine

natural frequencies of a truck tire; pi= 690.3 kPa (100 psi). (Continued)
Figure 6.8 illustrates the effects of varying the value of epc on the first nine
natural frequencies of the considered tire with four belt layers, 22 degree cord angles in
each layer and 690.3 kPa (100 psi) inflation pressure. The results reveal that the
variations in value of the epc have distinct influence on all the natural frequencies below
112 Hz. Increasing the value of epc yields monotonic increases in all the frequencies,
except for f;, which increases as the epc value varies from 3.5 to 4 and then drops slightly
with further increase in the value of epc from 4 to 4.5, as illustrated in Figure 6.8. This
may be attributed to the fact that mode 2 involves mainly the rotational movement of the
tire around the axle and the related frequency is largely dependent on the stiffness of the

side-walls rather than that of the belt.

6.4.4 Effect of the Inflation Pressure
The stiffness properties of a tire are strongly related to the inflation pressure as
evident from the normal load-deflection characteristics presented in Chapter 3. The free
vibration properties of a given tire are thus expected to depend upon the inflation

pressure. The stiffening effects due to the inflation pressure significantly affect the
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stiffness of a tire in all the directions and thus the vibration characteristics of the tire
considerably. Figure 6.9 illustrates the influence of varying the inflation pressure on the
first nine natural frequencies of the tire with four belt layers, 22 degree cord angle and an
epc value of 4 in each layer. The results reveal that all the natural frequencies increase as
the inflation pressure increases from 552.2 kPa (80psi) to 828.4 kPa (120 psi). An
increase in the inflation pressure, in general, results in a reduced aligning stiffness due to

relatively smaller contact patch, and tends to increase the lateral and camber stiffness of a

tire [42).
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Figure 6.9: Effect of inflation pressure on the natural frequencies of the tire model.

The percent change in the natural frequencies due to variations in the inflation
pressure is illustrated in Figure 6.10. The results reveal that increasing the inflation
pressure from 100 to 120 psi yields 6.1-8.5 % increases in the first nine natural

frequencies and that decreasing in inflation pressure from 100 to 80 psi results in 6.6-9.5
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% reduction in all the natural frequencies. The variation in the inflation pressure has large
effects on the natural frequencies associated with mode 1 and 3, but relatively small
influence on the other modal frequencies. The results further reveal nearly symmetric
percent change in the natural frequencies due to the variations in the inflation pressure
relative to p; = 100 psi (690.3 kPa). While a lower inflation pressure is desirable to
achieve improved ride quality arising from the reduced inherent natural frequencies, it
may deteriorate the tire life due to enhanced tearing and cracking caused by the large
deformations developed in the tire-road contact patch, increase in self-aligning torque and
squeal. The selection of an optimal inflation pressure for a given tire needs a more
elaborate study involving other performance measures, such as tire-road interactions,

temperature effects, noise generation, and ride and handling properties of the vehicle.

—e— Decrease infiation pressure from 100 to 80 psi

—o— Increase inflation pressure from 100 to 120 psi

percent change in natural frequencies
(%)

0 1 2 3 a4 5 6 7 8 9 10
Mode number

Figure 6.10: Percent change in the first nine natural frequencies of the tire model
due to the variation in inflation pressure.

-219-



6.4.5 Modal Analysis of the Tire Model Using the Selected Parameters

The nonlinear finite element tire model is analyzed to investigate the mode shapes
and natural frequencies of the tire using the selected parameters derived from the
parametric study conducted in Chapter 4. The mode shapes of the tire model developed
using the selected parameters are extracted and illustrated in Figure 6.11. A comparison
of these mode shapes with those extracted from the nominal tire model (Figure 6.1)
reveals similar deflection patterns for modes 1, 2, 3, 6 and 9. The remaining mode shapes
of the model with selected parameters, however, differ considerably from those extracted
for the nominal parameter model. The mode 4 illustrates a vibration motion of the tire
with one half of the tire shrinking and the other half expanding in the lateral direction,
symmetric about the wheel plane. The deflection modes 5, 7 and 8 reveal motions similar
to those seen in modes 4, 8 and 7, respectively, of the tire model with nominal
parameters. The differences in the natural frequencies between the modes of tires using
the selected and nominal parameters are illustrated in Figure 6.12. The results reveal
almost insignificant differences in frequencies f; and fs. The tire model with selected
parameters yields higher natural frequencies f2, f3, f7, fs and fo, and slightly lower natural

frequencies f4 and fe.
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(a) Mode 1

(b) Mode 2

*Figure 6.11: Deflection modes of the tire model: (a) first mode, f; = 4261
Hz; and (b) second mode, f> = 46.47 Hz.

*Note: The deflection modes are extracted from the tire model using the selected
parameters; p; = 690.3 kPa (100 psi).
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(d) Mode 4

*Figure 6.11: Deflection modes of the tire model: (c) third mode, f; = 48.02
Hz; and (d) forth mode, f; = 66.63 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model using the selected
parameters; p; = 690.3 kPa (100 psi).
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(f) Mode 6

*Figure 6.11: Deflection modes of the tire model: (e) fifth mode, fs = 68.86
Hz; and (f) sixth mode, fs = 85.54 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model using the selected
parameters; p; = 690.3 kPa (100 psi).
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(h) Mode 8

*Figure 6.11: Deflection modes of the tire model: (g) seventh mode, f; =
99.84 Hz; and (h) eighth mode, fg = 100.64 Hz. (Continued)

*Note: The deflection modes are extracted from the tire model using the selected
parameters; p; = 690.3 kPa (100 psi).
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(i) Mode 9, fo = 114.5 Hz

*Figure 6.11: Deflection modes of the tire model: (i) ninth mode, fo = 114.5
Hz. (Continued)

*Note: The deflection modes are extracted from the tire model using the selected
parameters; p; = 690.3 kPa (100 psi).

O Selected parameters & Nominal parametres

140
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Figure 6.12: Comparison of the natural frequencies of the tire model based upon
the selected and nominal parameters; pi= 690.3 kPa (100 psi).

-225-



6.5 SUMMARY

The effects of variations in the inflation pressure and the anisotropic property
related structural parameters on the natural frequencies and deflection modes of the
inflated tire are investigated through modal analysis of the nonlinear tire model. The
resuits show that the variations in the cord angle can have notable effects on the natural
frequencies above 60 Hz and relatively small influence on the lower frequencies.
Increasing the cord angles in the layers yields a decrease in the natural frequencies in the
considered range. The number of cord ends per unit width in each layer has considerable
effect on the natural frequencies. Increasing the value of epc yields higher values of the
natural frequencies in almost all of the considered modes. Increasing the number of
layers in the belt yields lower natural frequencies fi, f, f3, fs, f6, fs and fs but higher
frequencies f; and f7. An increase in the inflation pressure results in significant increase
in all the natural frequencies. The mode shapes of the tire using the selected parameters
based on the parametric study performed in Chapter 4 are extracted and discussed. The
differences between the tire model based upon the selected nominal parameters are also

investigated and discussed.
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CHAPTER7 CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

7.1  MAJOR HIGHLIGHTS OF THIS INVESTIGATION

In this thesis, a detailed and efficient nonlinear finite element model of a
pneumatic truck tire is developed to investigate the deformation, stress and strain fields
under different static loads. The finite element model is validated and analyzed to
investigate the inter-ply shear interactions in the belt layers, the contact pressure
distribution in the tire-road interface, and the mode shapes and natural frequencies. The
analyses are conducted with following objectives:

e To propose a more desirable set of structural and geometric parameters that can
lead to lower maximum shear stresses in the belt layers for a tire in service.

e To propose an effective analytical procedure to estimate the 2-D tire-road
contact pressure distribution as a function of the inflation pressure and normal
load to enhance the point-contact models in the ride and pavement damage
analyses.

e To perform the free vibration analysis and investigate the influence of variations
in the anisotropy-related parameters on the tire natural frequencies.

Portion of the research results have been accepted as a few journal articles and

conference papers [174-178].

7.1.1 Development of the Nonlinear Finite Element Tire Model
A nonlinear finite element model of a radial truck tire is developed using the

commercial software, ANSYS®, to analyze the tensile stress distributions, deformation
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fields and the inter-ply shear stresses as a function of the normal load. The tire model is
established based on the considerations of the geometry, and orientations of the cords in
belts and carcass layers, stacking sequence of different layers and large deformations of
the multiple layers in order to predict the interactions between the plies. The model
incorporates the nearly incompressible property of the tread rubber block and anisotropic
material properties of the layers. The influence of normal load and thus the tire deflection
on the above response parameters are discussed. The validation of the model is examined
by comparing the computed tire load-deflection characteristics and the footprint geometry

with the measured data in a qualitative manner.

7.1.2 Parametric Study: Inter-ply Shear Stresses

The developed FE tire model is employed to perform a parametric study on the
maximum shear stresses generated in the belt layers of a truck tire. The parametric study
incorporates the geometric and anisotropic material properties of the individual layers in
the multi-layered system, and the orientations of the cords in different layers. The
parameters considered concerning the geometry of the tire include the aspect ratio, rim
radius and tread depth. The parameters related to structural features and material
properties of individual layers in the belts, such as cord angle, total number of belt layers
under the crown and number of twisted cords per unit width of an individual layer, are
further considered. The influence of these parameters on the maximum shear stresses
developed in individual belt layers are investigated for a non-rolling radial truck tire with
100 psi (690.3 kPa) inflation pressure, and 20 and 30 mm normal deflections. The results

are used to derive a more desirable set of structural parameters so that the maximum
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stresses within the loaded tire body can be reduced. The maximum inter-ply shear
stresses computed using proposed set of parameters is compared with those derived
corresponding to nominal parameters considered in the study.

The parameters are varied over a practical range, such that the variations pose
negligible effects on the load-deflection characteristics of the tire. The variations,
however, are considered to affect the maximum shear stresses in the layers. Hence the
presented results and the conclusions from the analysis for constant deflection condition
can be considered valid for nearly constant load conditions, which describe more realistic

loading situations of a in-service tire.

7.1.3 Estimation of 2-D Contact Pressure Distribution

A methodology to estimate the tire-road contact pressure distribution in the wheel
plane as a function of the inflation pressure and normal load for a truck tire is proposed.
The modeling process is based on the 3-D pressure fields obtained through the nonlinear
static stress analysis of the FE tire model. The 3-D pressure fields are analyzed to derive
2-D contact pressure distribution using the equivalent work as the basis. Curve fitting
techniques are applied to derive a polynomial function to describe the contact pressure
distribution as a function of the normal load, inflation pressure and coordinate along the
contact patch. The polynomial function is then applied to derive an estimate of the
contact patch length and contact pressure distribution corresponding to specific values of
the resultant tire force and inflation pressure. The validity of the proposed polynomial
function is assessed through comparison of the estimated contact pressure with that

obtained from the FE tire model.
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7.1.4 Modal Analysis

The nonlinear FE tire model is used to conduct a modal analysis of a truck tire.
The three dimensional (3D) mode shapes corresponding to natural frequencies below 112
Hz are extracted and the motions associated with each vibration mode of the tire under
specific inflation pressures are discussed. The vibration modes and frequencies for a
12.5R22.5 truck tire with different inflation pressure are studied incorporating the pre-
stress effects and nonlinearities derived from the static analysis. The effects of variations
in the inflation pressure and anisotropic property related structural parameters. such as
cord angles and number of cord ends per unit width in each layer and the number of
layers in the belt, on the natural frequencies of a radial truck tire are investigated in a
qualitative manner. The application of the model in conjunction with the adequately
measured material properties of layers in belt and carcass casing is expected to yield a

quantitative modal analysis of a specific tire.

7.2 CONCLUSIONS

Based on the studies conducted in this dissertation, the following major

conclusions are drawn:

e The majority of the reported FE tire models are primarily based on the linear
analysis of the multi-layered system, assuming small deformations of layers and
negligible shear interactions between the anisotropic layers.

e From the literature review, it can be concluded that almost no reported model

could produce reliable shear stress data for the layers as a function of the tire
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load and the influence of various structural and geometric parameters on the
shear interactions of a loaded tire have not been investigated.

e Although many studies have derived the contact pressure distributions from
various tire models, an effective methodology to estimate 2D contact pressure
distributions as a function of the inflation pressure and normal load has not been
proposed to enhance the application of point-contact models in pavement
damage analyses and vehicle dynamics studies.

e Almost no reported models are available to present the three-dimensional mode
shapes and natural frequencies of a tire as function of the anisotropy of the belt
layers and the inflation pressure, while considering the nearly incompressibie
property of the tread rubber block and the structural features of layers.

e The proposed finite element tire model is capable of predicting inter-ply shear
stresses between the layers and can be employed to analyze the shear
interactions between layers and the fiber forces in individual layers.

e The tire model is validated by comparing the finite element model results with
the test data on the normal force-deflection characteristics and the contact
geometry over a wide range of normal loads and inflation pressures. The
comparisons revealed reasonably good agreements between the model results
and the measured data.

e The highest values of the first principal-direction stress appear in the vicinity of
the center of the contact patch. The second and third principal stresses have their

maximum values in the shoulder areas in the cross section, which is considered
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to be resulting from the abrupt changes in the geometry and discontinuities in
the material properties associated with the carcass and the belts.

e The tensile stress fields of the belt layers and the corresponding displacements
are asymmetric about the circumferential axis, which is atributed to the
asymmetric stacking sequence of the layers. The tensile stresses in the carcass
layer are distributed nearly symmetrically about the contact patch centerline.

e An increase in the normal load tends to increase the stresses considerably in the
elements in the vicinity of the shoulder area. The tensile stresses in belts 4 and
3, located near the carcass layers, are considerably larger than those observed in
belts 2 and 1, located near the tread layer.

e The shear stresses derived from the elements in the lateral centerline of the
contact patch show that

(a) The magnitudes of the out-of-tire-plane inter-ply shear stresses (S,.) are
over ten times higher than the in-tire-plane stresses (Syx;) developed between
the belt 4 and the carcass layer;

(b) The influence of normal load on the Sx; is more significant than that on
the S,,. The out-of-tire-plane shear stresses Sy,, developed between the
carcass layer and belt 4, are significantly higher than the corresponding
shear stresses 'generated between the belt layers near the shoulder area.

(c) The peak values of Sy, generated between the belt layers tend to move
further away from the center of the contact patch to the outer periphery in

the cross-section of the tire when normal load increases.
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(d) The peak values of Sy, and Sy, occurring near the shoulder area may be
considered as the main factors causing the delamination damage in the tire.

e High tire-road contact pressures occur at inner side of the inner ribs under light
to medium loading (below 15 kN for 621.3 kPa inflation pressure). The pressure
peaks, however, tend to shift outward along the lateral direction under higher
normal loads.

e The ratio of peak pressures occurring in the outer ribs to those in the inner ribs
tends to increase considerably with increase in the normal load.

o Increasing the aspect ratio from 0.77 to 0.91 results in a large increase in the
maximum shear stress Sy, in layer 2 and a relatively small increase in the
maximum shear stress S, in layer 1, irrespective of the normal load considered.
The peak value of Sy, in layers 3 and 4, however, decreases with increase in the
aspect ratio. The maximum peak shear stresses in the belt layers could be
reduced with lower aspect ratio tires.

e Increasing the cord angle from 18 to 26 degrees yields considerably lower peak
values of Sy, in belt 2, but higher peak values in belts 3 and 4. The peak shear
stress in belt 1 decreases with increase in the value of cord angle from 18 to 22
degree, and then increases slightly with further increase in the cord angle from
22 to 26 degrees.

e The computed shear stress Sy fields for the three-layer-belt appear to be similar
to those of the layers 1, 2 and 3 of the four-layer-belt. In the case of five-layer-
belt, the shear stress fields of Sy, in layers 1, 2, 4 and 5 also appear to be similar

to those in the layers 1, 2, 4 and 3 for the four-layer-belt case.
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e As the number of belt layers increases from 3 to 5, the peak shear stresses Sy; in
layers 2 and 3 decrease significantly, irrespective of the normal load. The peak
value of stress S, in layer 1 tends to decrease slightly when the total number of
belt layers is increased from 3 to 4 and increases slightly with further increase in
the number of belt layers. The peak value of stress Sy, in layer 4 increases
slightly when one more belt layer is added. The addition of the fifth belt layer
tends to lower the maximum shear stresses in the layers 1 to 3, and has
negligible effect on the peak value of the stress S, of layer 4. The maximum of
the peak shear stress Sy, among all the layers are developed in layer 2 and are
significantly reduced with increase in the number of belt layers, irrespective of
the applied load.

e The variation in the rim radius from- 0.26 m to 0.32 m has negligible influence
on the peak values of Sy in different belt layers but has significant influence on
the peak values of shear stresses Sy, and Sy, for the considered loading
conditions.

e The variations in the tread depth from 3 to 10 mm yield almost insignificant
effects on the peak values of Sy, and S,y of individual layers. An increase in the
tread depth tends to lower the peak shear stress Sx; in belt layers under normal
deflection of 20 mm, and yields considerably higher values under normal
deflection of 30 mm. The design of the tread depth relies on factors other than
the shear stresses in multi-layered system, such as heat resistance and wear

resistance.

-234-



e Increasing the value of epc yields significant increase in the magnitude of the
peak shear stress Sy, in layer 2, and relatively small increase in the peak shear
stresses in all the other layers, irrespective of the normal load. The results reveal
nearly linear variation in the maximum shear stresses (Syz) in each belt layer as
a function of the values of epc. For the simulation conditions considered, a
lower value of epc, in the 3.5 to 4.5 range, yields a lower peak value of S, in all
the layers.

e Increasing the normal load yields considerable increase in the peak shear
stresses Sy in all the layers.

e A more desirable set of these parameters has been proposed to reduce the
maximum shear stress developed in the layers of a truck tire under the
prescribed loading conditions. The use of the selected set of parameters, yields
35-45% lower values of Sy, in belts 2 and 3, and 6-13% lower values of Sy; in
belts 1, depending upon the normal load. The peak shear stress S,. developed in
layer 4, however, increases considerably. The comparison reveals that the
highest peak stresses Sy, in the belt layers, attained using the selected
parameters, are 21.6-23.4%, 18.3-27.9% and 18.6-25.8% lower than those
computed for the nominal parameters, under inflation pressures of 690.3, 552.2
and 828.4 kPa, respectively.

e The reductions in the maximum shear stresses S, are achieved at the expense of
relatively higher peak shear stresses Sxy and Sy, which is considered acceptable

in view of the considerably lower magnitudes of Sxy and Sy;.
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e The three-dimensional contact pressure field derived from the finite element
model can be effectively expressed in terms of two-dimensional tire-road
contact pressure distribution in the wheel plane as a function of the inflation
pressure and the normal load. The proposed function can be conveniently
applied to vehicle models for studies on pavement damage potentials and ride
quality. The estimated contact pressure distributions show reasonably good
agreement with those derived from the finite element model and with the data
reported in the published studies.

e Higher contact pressure peaks occur in the vicinity of inner ribs near the central
circumferential line, when the normal load is lower than a critical value. The
pressure peaks tend to shift towards the outer ribs, when the normal load is
increased. The critical value of the normal load increases with increase in the
inflation pressure.

e Under light normal load and high inflation pressure, the contact pressure peaks
occur in the vicinity of the central point of the contact patch. The pressure
peaks, however, tend to shift towards front and rear edges of the contact patch,
under high normal loads or low inflation pressures.

e The pressure peaks tend to shift towards the outer ribs from the inner ribs, when
the normal load is increased. The ratio of the peak pressure occurring in the
outer ribs to that in the inner ribs tends to increase most significantly when the
normal load is increased beyond a critical value, specifically for the lower
inflation pressures. Under lower inflation pressures, the contact pressure peaks

shift to the outer ribs very rapidly with increase in the normal load.
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e The length of the contact patch increases significantly with increase in the
normal load for constant inflation pressure, but reduces slightly with increase in
the inflation pressure under a given normal load.

e Under a lower normal load (20 kN), the variations in p; exhibit relatively small
effect on the contact pressure-distribution and the pressure peaks. Under a large
normal load (45 kN), the variations in p; influence the contact pressure
distribution in a significant manner. Lower inflation pressure results in more
rapid shifting of the contact pressure peaks to the two edges of the contact
patch. A higher inflation pressure yields nearly constant contact pressure
distribution around the central point of the contact patch.

e The first three vibration modes of the tire model based upon nominal and
selected design parameters involve the translational motion along the axial
direction, rotational and oscillatory movements in- and out-of-the-wheel planes,
respectively.

e The motions associated with higher frequency modes yield more complex
deflection patterns comprising coupled rotational, twisting, oscillatory and
bending motions, as well as expansion and shrinking of the carcass along
different directions.

e The side views of the deflection patterns associated with some of the modes in
the mode 4 to 9 range appear as ovals, triangular and quadrangle with rounded
corners. These are most likely attributed to the presence of the standing wave.

e The variations in the cord angles yield significant effect on the natural

frequencies above 60 Hz and relatively small influence on the lower mode
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frequencies. Increasing the cord angles in the layers yields a decrease in the
natural frequencies.

e The number of cord ends per unit width in each layer has considerable effect on
the natural frequencies. Increasing the value of epc yields higher values of
natural frequencies associated with almost all of the considered modes.

e Increasing the number of layers in the belt yields lower values of natural
frequencies fi, f2, f3, fs, fs, fs and fo, but higher frequencies fs and f7.

o Increasing inflation pressure results in a significant increase in all the natural
frequencies.

e The natural frequencies f; and fs for the tire model based upon the nominal
parameters appear nearly the same as those derived from the model with
selected set of parameters. The natural frequencies f;, f3, f7, fg and fy increase,
while the frequencies f, and fs tend to decrease slightly when the selected tire

parameters are used.

7.3 RECOMMENDATIONS FOR FUTURE WORK

The thesis research presents a fundamental nonlinear finite element analysis of a
truck tire involving the shear interaction between the belt and carcass layers, the
estimation of the contact pressure distribution in the tire-road interface, the mode shapes
and natural frequencies. It is reccommended to undertake the following future studies to
further explore the validation and the application potentials of the proposed concepts and

methodologies to facilitate its realization and implementations.
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e The frictional force in the tire-road interface may have influence on the shear
stress fields developed in the belt and carcass layers of a loaded tire. This
influence needs to be investigated.

e The layered elements arranged along the central circumferential line over the
contact patch may be employed to analyze the tensile stress distribution in the
belt and carcass layers in the vicinity of the contact patch as a function of the
normal load and the inflation pressure.

e The model can be modified to explore the possibility of performing transient
analysis, by defining a support as a rounded step, which moves at a steady speed
towards the statically loaded truck tire. In this way, the maximum dynamic
response, in terms of the peak shear stresses in the belt and carcass layers, can
be investigated as a function of the speed of a totally braked vehicle moving
toward an obstacle on the road. The impact effect on the tire and the axle and
thus the vehicle can be investigated.

e The model can be used to incorporate the thermal effects on the stress fields,
when the material property as a function of the temperature is known.

e The tire model can be further employed to perform the modal analysis on high
frequency (above 112 Hz) properties of the considered tire, concerning the
standing wave phenomenon, noise generation, etc.

e Further experimental work need to be conducted to obtain the reliable material
properties of the anisotropic belt and carcass layers to perform quantitative

analysis of the finite element tire model.
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