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Abstract

Generation of SDL Specifications from UML and MSC Use Cases

Stephan Bourduas

As software systems are becoming more complex, errors in the implementation of user
requirements have become common. Methodologies that incorporate formal and semi-
formal techniques into the development process thus minimizing errors would be
beneficial to the software engineering community as a whole. The inclusion of graphical
notations such as UML (Unified Modeling Language), MSC (Message Sequence Charts)
and SDL (Specification Description Language) in the development process will allow for
a much higher level of automation resulting in fewer errors and ultimately better quality

software.

In this thesis, we developed and implemented an approach for specifying distributed
systems in UML and MSC, where MSC use cases are used to express the requirements
and UML is used to describe the architecture of the distributed system under
consideration. To specify the behavior, the MSC language is used to describe high-level
use cases that are then refined in a stepwise manner into design MSCs. For each
refinement, the newly obtained MSC is validated against the previous MSC using a
conformance relation that we defined. UML, more precisely Class Diagrams and Object
Diagrams, are used to specify the architecture of the system. A distributed system
specification style in UML was developed and mapping rules were defined to enable the
translation from a UML to SDL architecture. The approach then makes use of an existing
methodology that combines the design MSCs and the SDL architecture into a full SDL

specification, which is correct with respect to the design MSCs and is free of deadlocks.

Our approach takes advantage of the formality of SDL while using the two very popular
and intuitive notations, UML and MSC, as a front end. The formal semantics of SDL
allow for simulation and validation. In addition, commercial tools support automatic code

generation.
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Chapter 1

Introduction

1.1 Software Lifecycle

Traditional engineering disciplines deal with the invariant constraints of the real world.
For example, electrical engineers can use mathematics to verify the correctness of their
designs. Software engineering is more abstract and informal and currently lacks
predictive models and techniques [1]. The design of software is an intellectual endeavor
that 1s not limited by physical laws [1], and hence is more difficult to verify for
correctness. As such, a problem can be solved in many ways, but not all of the solutions

will be acceptable.

Early software systems were simple due to the fact that computers were relatively
primitive compared to today’s technology. They were text-based and running single-
threaded operating systems that were mainly used for batch processing and number
crunching. As the complexity of software systems increased, errors in the
implementation of user requirements became more frequent. A major reason is that the
techniques used to develop the small early systems did not scale up for large systems [2].
In addition, many errors can be attributed to the fact that the methods employed by
software practitioners are mostly informal and require a great amount of intuition and
experience in order to create quality software systems. Hence, methodologies that add
more structure and minimize errors would be beneficial to the software engineering

community as a whole.

The objective of software engineering is to produce qualiry software while incurring
reasonable costs within a predictable amount of time [2]. The lifetime of a software
system can be divided into stages, which if managed properly, would result in high
quality software. A methodology that defines how the development process progresses
from stage to stage is referred to as a software lifecycle model. One of the most widely

used models is the Waterfall model as shown in Figure 1.1.

1



Testing

Figure 1.1: Waterfall Lifecycle Model.

The waterfall model is document driven, where the output of a stage is the input to the

next.

If an error is detected at any stage, a feedback mechanism allows for the

corrections to be made at the appropriate stage, after which, the changes must be

propagated throughout the rest of the stages. The different stages of any software

lifecycle are:

il.

1ii.

v,

Requirements: The client defines the desired features offered by the system at

this stage.

Design: The system is partitioned into subsystems that will implement the
desired functionality. The design documents serve as a blueprint for the
implementation team. It is also possible to have multiple design documents that
show different levels of abstraction (high-level view or a low-level view for

instance).

Implementation: The design documents are realized into a working system by

the implementation team.

Testing: The implementation is tested with regards to the user requirements. If
an inconsistency is detected at this stage, the feedback mechanism will be used

to correct the error.



V. Maintenance: Once the system has been completed and delivered to the client,
any changes such as adding features or correcting errors fall under the

maintenance category.

1.2 Formal and Semi-Formal Notations

The methodologies and notations that are used for designing software systems can be

classified into two groups:

1. Formal: A formal language has a formal syntax and semantics that is based on
mathematics. Algorithms can therefore be applied to a formal specification in
order to simulate, verify and validate a system. The semantics of a formal
language is fully defined and thus there is no ambiguity in a formal

specification.

ii.  Semi-Formal: A semi-formal language may have a standardized syntax, but the
semantics is not completely defined (or not formally defined). They are often
based on natural languages and as a result, mathematical algorithms cannot be

applied to them.

Both formal and semi-formal languages have their strengths and weaknesses. An
advantage of semi-formal languages is that they offer great flexibility when specifying
systems and are generally intuitive and relatively easy to learn. Formal languages, even
though they are very rigidly defined, allow for the application of mathematical modeling
that increases the confidence in the finished specification, but they are more difficult to

use and learn, and are not as intuitive as semi-formal notations.

MSC (Message Sequence Charts) and SDL (Specification and Description Language) [3,
4] are widely used for telecommunication software engineering, and they fall into the
category of formal languages. SDL can be used to create high or low-level specifications
that can be simulated and validated. In addition, commercial tools such as ObjectGeode
[5] and SDT Tau (6], can automatically generate source code from a low level SDL
specification. The MSC language can be used to express the behavior of a system at

varying granularities (generally used at the requirements stage) and is very intuitive.

3



The Unified Modeling Language (UML) is a semi-formal language that has gained in
popularity in recent years in the object-oriented (OO) community. It is a very expressive
notation where a software practioner with only a basic knowledge of the language can

design complex systems.

1.3 Using MSC and UML to Generate SDL Design specifications
The purpose of this thesis is to develop an approach for designing software that

encompasses all of the stages of the software lifecycle, and that lends itself to automation,
allowing for conformance relationships and mapping rules that can be rigidly enforced so

that the introduction of human errors can be minimized.

A use case describes some functionality offered by a system as perceived by the user or
an external actor of the system [7, 8, 9]. The user sees the system as a black box that
responds to an input with a specified output. Use cases are not formally defined and are
very often specified using a combination of text and diagrams that must be interpreted by
the system designers and translated into a more concrete representation. It would be
beneficial to represent use cases in an unambiguous way from the start, thereby reducing
the probability of misunderstanding, and enabling the use of CASE tools. The MSC
language [10, 11, 12] is an excellent candidate, as discussed in [13]. A use-case model
can be developed through interactions with the system designers and the customers as
described in [7, 8, 18] and expressed formally using MSC. The process starts with the
user requirements being described as MSC Use Cases that represent an abstract view of
the system. The first methodology (shown in Figure 1.2) deals with the incremental
refinement of MSC use cases into design MSCs. The MSCs are then refined in a
stepwise manner, guided by the system architecture, until a detailed design is obtained.
To guarantee that the resulting design MSCs are correct, a conformance relation between
two MSCs was defined. The conformance relation checks if a modified MSC preserves
the event orderings of the original. The conformance relation is used after every
refinement thereby allowing a user to have confidence in the correctness of each

refinement, and ultimately in the final design specification.
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Figure 1.2: The overall process.

The popularity of UML, and most importantly its expressiveness, makes it an ideal
notation to use at the early stages of development. On the other hand, its lack of
formality becomes a liability at the later stages of the development process. SDL, with
its formal semantics, is a perfectly suited language for specifying detailed designs. By
analyzing the strengths and weaknesses of both languages, it becomes apparent that the
two can be used together at different stages of the software lifecycle to create an
approach that is superior to using them separately. For the purposes of this thesis, the
architecture of a system is defined to be the specification of the components of the system
and their interconnections minus any behavioral specification. The second methodology
depicted in Figure 1.2 uses UML to describe a distributed system architecture that can be
translated into SDL. The architecture of the target system is described using a stylized
form of UML that is then translated into SDL via mapping rules.

The work presented in this thesis is intended to leverage an existing methodology by
building on top of it. The methodology in question generates a full (behavior and
architecture) SDL design specification from behavioral requirements given in design

MSCs and the architecture of the target system given in SDL [14, 15]. Typically, design
5



MSC:s are created in an ad-hoc, stepwise manner where a designer adds more and more
detail until they are satisfied with the result. This sort of approach is error prone because
there is no guarantee that the detailed design conforms to the requirements. To remedy
this problem, the aforementioned different, but complimentary methodologies were
developed. The design MSCs obtained from the first methodology are combined with the
SDL architecture obtained from the second to automatically generate a full SDL
specification (architecture plus behavior) using the MSC-to-SDL tool [14, 15,], as shown

in the bottom portion of Figure 1.2.

The automation of formal methodologies like the ones we have developed encourage the
widespread use of these techniques to develop robust software systems by experts and
novices alike, thus significantly reducing the costs normally associated with complex

systems.

1.4 Organization of Thesis

The thesis is organized in the following way:

® Chapter 2: Introduces the reader to the UML, SDL and MSC notations. In
addition, the MSC to SDL methodology that generates a full SDL specifications
from MSCs for a given target architecture specified in SDL is briefly described.

e Chapter 3: Describes our MSC use-case refinement approach. The conformance
relation that we developed is first explained. Next, our stepwise refinement
approach is described for bMSC, and then expanded to include HMSC. The

approach is then illustrated with an example.

o Chapter 4: Describes our stylized use of UML for describing distributed system
architectures. The UML to SDL architectural mapping rules that we defined are

then presented and the approach is illustrated via two examples.

o Chapter 5: Discusses the implementations of the two methodologies, and the
limitations of the tools. An example that illustrates how the two methodologies

from chapters 3 and 4 are combined is then presented.

6



® Chapter 6: Outlines the contributions of this thesis and presents some ideas for

expanding upon them.



Chapter 2

Background

This chapter introduces concepts that are needed to understand the material presented in
Chapters 3. 4 and 5. The first three sections present UML, MSC and SDL respectively.
The last section introduces the MSC to SDL methodology that is used to generate full

SDL specifications.

2.1 Unified Modeling Language
The Unified Modeling Language, or UML, evolved from the combined work of Grady

Booch, James Rumbaugh and Ivar Jacobson. They each had their own notations from

which they took the strengths of each and combined them into UML.

The UML has become the defacto standard for the documentation and design of software
systems. The software engineering community has embraced UML with enthusiasm
because it enables designers to communicate their ideas in a simple yet powerful
graphical notation. As UML is an object-oriented modeling language, using UML
extensively in the design phase will in general result in well designed software that saves
money by reducing implementation costs, testing and maintenance (fixing problems after
delivery). An added advantage of using UML extensively during the design phase is that
most of the documentation will be finished before the system is even implemented. It is
well known that for various reasons, most organizations do not document their software
properly. Having good documentation is crucial when bugs need to be fixed, or when
features are added or modified. Without documentation, it is very difficult for a
programmer who is unfamiliar with the system to identify and change the correct parts of

a program without introducing more bugs.

The following sections will introduce the aspects of UML that are needed to understand
the material presented in this thesis. Readers interested in learning more about UML can

visit [16] or [17].



2.1.1 Static Modeling

A UML class diagram shows the static relationships between the classes that make up a
system [7, 8]. The class diagram is used as a blueprint for later on in the development
process, where the static relationships between classes must be respected when the

dynamic aspects of the system are modeled.

2.1.1.1 Class

Figure 2.1 depicts the graphical UML notation for a class. The class shown in Figure

2.1(a) is comprised of three compartments:

. Name: The name of the class, which should make sense with respect to the

system being designed and be as unambiguous as possible.

.  Anribute: Class attributes are values that describe the characteristics of a
class/class instance. Attributes can have different visibilities (i.e. public,

private, protected) and be of different types.

iit.  Operation: The operations of a class can be used to manipulate the attributes
(variables) or state of a object. Operations are defined by visibility, return type

and parameter list, which together make up the signature of the operation [7].

Ataibute

Name Compartment
Compartment
Circle

double radius; /

double getRadius{void)
Operation r—/
Cemparmment @ o)

Figure 2.1: Representing a class in UML.

The graphical representation of a class is not restricted to the form in Figure 2.1(a), which
shows all of three compartments. Figure 2.1(b) shows a shorthand version of a class with
only the name compartment shown. The name compartment of a class must always be

shown, but the other compartments are optional. In addition, UML allows for the

9



creation of custom compartments by a user, although it is not usually needed or

recommended for compatibility reasons.

2.1.1.2 Extending UML

The elements provided by UML are generic in nature and can be used to define systems
in any domain. It is sometimes desirable to extend or modify existing elements for
custom applications such as creating domain specific elements. UML itself provides the
means of customizing model elements. This feature makes UML very powerful because

customizations can be made while still using the standard UML notations.

In order to understand some of the topics discussed in Chapter 4, it is necessary to
understand two extension mechanisms provided by UML, which are explained in the next

two sections.

2.1.1.2.1 Stereotypes

The stereotype [7] extension mechanism can be applied to any UML model element for
the purpose of defining a new element that is based on an existing one. UML has

predefined stereotypes that can be used in certain situations.

Stereotypes are often used to add meaning to an additional model element [8]. When a
stereotype is created, the characteristics belonging to the new stereotype are also defined.
Henceforth, whenever the stereotype is applied to a model element, it will be understood
that the model element has the characteristics of the stereotype. Figure 2.2 shows an

example of a class with the UML Actor stereotype applied to it.

<cActr>>
Persen

‘—1 Sereotype

Figure 2.2: UML stereotypes.
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The name of the stereotype is placed in brackets (guillemets) in the name compartment
(above the name) [8]. The Actor stereotype is a pre-defined stereotype that indicates that

the Person class is an external agent that interacts with the system.

2.1.1.2.2 Tagged Values

Tagged values can be used to attach any kind of additional information to elements of a
model [7, 8]. As with stereotypes, UML has some predefined tagged values. One of the
more commonly used tagged values is the abstract value as shown in Figure 2.3. A

tagged value is always shown in braces.

Shape
{IIBW!} ———' T@‘m‘u

Figure 2.3: UML tagged values.
2.1.1.3 Relationships Between Classes

2.1.1.3.1 Association

A system will usually consist of more than one class. The classes that comprise a system
will have relationships with each other that need to be expressed in UML. The most
common and simple type of relationship is called an association [7]. A line connecting
two classes together denotes an association in UML. An association is given a name to
make the relationship between two classes more clear (the name is often a verb). A bi-
directional association, where each participant is aware of the other (programmatically
speaking), is most commonly used. Since association names are commonly verbs, using
an arrowhead after the name can show the direction of the action. A bi-directional

association can have two names (optional) as shown in Figure 2.4(a).

11
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m‘“‘“""“ l /——| Multiphcity
‘Owns [ Mg
o) Persen Car

Figure 2.4: Representing associations in UML.

An association can be shown to be unidirectional (or navigable) by adding an arrowhead
at one end of the association [8], which means that the association can be used only in the

direction of the arrow, as shown in F igure 2.4(b).

The multipliciny of each class is shown at their respective association ends as shown in
Figure 2.4 (by default, the multiplicity is one). The multiplicity defines how many
instances of each class involved in the association will be present when the system is
running. The example of Figure 2.4(b) states that a person (1 by default) can own zero or

more (0..*) cars.

2.1.1.3.2 Aggregation and Composition

Aggregation and composition are two specialized types of association. Aggregation
means that the relationship between the two classes is some sort of part-whole
relationship and can be described as ‘“‘consists-of” or “is part of”’ [7]. Aggregation is
shown by using a hollow diamond at one end of the association as shown in Figure
2.5(a). The composition relationship is stronger where the parts live only as long as the

whole does. Composition is shown using a blackened diamond as seen in Figure 2.5(b).

1 has 4
@) Car Wheeb
L—‘i Aggregation symbol
® G ﬁ contain Buten
|

] Comporsition symbel

Figure 2.5: Aggregation and composition in UML.
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The difference between aggregation and composition is subtle and it is usually not
incorrect to use the aggregation exclusively since composition denotes a stronger form of
aggregation [7, 8]. To illustrate the difference, the wheels of a car can be removed and
used on another car whereas the buttons contained in a graphical user interface (GUT) will
die when the GUI is closed. The relationship between the buttons and the GUI is

stronger than that of the wheels and the car.

In order to enable the use of the concept of inheritance from object-oriented
programming, UML provide designers with the generalization relationship [7] shown in
Figure 2.6. Generalization is used to show a relationship between a general superclass
and a more specific subclass. The superclass is often times an abstract' class as shown by
the Shape class in Figure 2.6. The shape class can have an operation called “getArea”
where the area of the shape is returned. The subclasses of the shape class must each
implement this operation to retum their respective areas. For instance, the area of a

square is computed differently than the area of a circle.

Shape
{abstract)
PaN

Figure 2.6: Generalization in UML.

2.1.1.4 Type and Implementation Classes

There are two standard stereotypes that are of interest. These are the type and

Implementation Class stereotypes.

" An abstract class is not instantiable. It is used to group common characteristics together that can be refined by subclasses.
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A ppe stereotype applied to a class is used to specify operations applicable to a set of
objects without defining the physical implementation of that class [18]. These types of

classes cannot be instantiated (much like an abstract class).

An Implementation Class may realize a number of different Types. An Implementation
Class realizes a Type if it provides all of the operations defined for that Type [7]. An
object may have at most one Implementation Class. However, an object may conform to
multiple different Types [7, 18]. All of the standard UML associations can be used to
show relationships between Type classes. Implementation and Type classes, on the other
hand, can only be related by the realization relationship {7, 18]. The implementation of a
type is shown by the realization relationship between the type and implementation
classes (a dashed line with a solid triangular arrowhead). This is demonstrated in F igure

2.7.

<<implementationClass>>
<<type>> Computer
meuse
rightclick() R meClick)
leftclick() eQClick)
keytyped()

Figure 2.7: Realization relationship in UML.

2.1.1.5 Interface
Another type of class that is commonly used in UML is called an Interface. An interface
consists of operation signatures that have no implementation (abstract operations) [8].

Figure 2.8 shows and example of an interface class called “Shape”.

<<interface>> Interface
Shape Sereetype
Operation t——-dmbb getArea)) {(sbstract}
signature

Figure 2.8: Interfaces in UML.

Interfaces are used to create uniformity in systems. Different classes that use the same
interface will be able to “understand” each other. Classes can be dependent on, or

14



realize, an interface. Figure 2.9 shows how two classes relate to the Serializable'
interface. The DiskAccess class has a save operation that takes objects of type
Serializable. As long as a class implements the Serializable interface, it can be passed to

the DiskAccess class for saving to disk.

Interfaces are very useful because a class can implement multiple interfaces, which will
allow a single class to be compatible with many other classes that may understand only

one interface.

c<ingerfaces>> DiskAccess
Serializable
Commmmmmm oo oo Save(Sernlizable)
Byte[] toBytes() {abstract} \
N
f Can save sbjects that
= implement the
Database Serializable inserface.
Byte[] toBytes)),
getRecord();
createRecord() Abstn.ct
speration
implermened

Figure 2.9: Using an interface in UML.

2.1.1.6 Package

A package in UML is used to group related classes together to make a model more
manageable. Packages can have relationships between each other and use the extension
mechanisms just like classes [8]. A package can contain classes or other packages.

Figure 2.10 shows a package called Application that is dependent on the API package.

! The Serializable interface in Java allows an object in memory to be converted into a byte array that can be stored or: disk or sent over

the Intemet, the original object can then be reconstructed using the byte array. This allows the state of an object to be preserved.
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Figure 2.10: Packages in UML.

2.1.2 Dynamic Modeling

Dynamic modeling shows how the system will behave during the execution of a system
using State, Sequence, Collaboration/Object and Activity diagrams [7]. For the purposes

of this thesis, only Object diagrams are considered.

An object diagram shows how instances of classes (objects) are related during runtime.
An object is represented as a box containing the name of the object and the name of the
class separated by a colon. The two names are underlined to denote an object instance.
Figure 2.11 shows a simple object diagram. The lines that connect the objects are called

links and are instances associations that are defined in class diagrams.

Object name Porxche ; C

Mercedes ; Car
Class name

Figure 2.11: UML Object Diagram.

2.2 Message Sequence Charts

Message Sequence Charts (MSC) is a specification language that is standardized by the
International Telecommunications Union (ITU) [10]. It is a formally defined language
and has both graphical and textual representations, but people work mostly with the
graphical notation. Due to its intuitive nature, the MSC language has been widely
adopted across the telecommunications industry because it is especially useful in

describing the behavior of distributed systems.
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As the MSC language can be used at any level of abstraction, it may be used for the
following purposes during the software lifecycle:

I To describe use cases and user requirements.
ii.  To design the system under consideration.
iii.  To develop test cases.

iv.  To capture simulation/execution traces.

Using the MSC language to describe use cases requires a high level of abstraction,

whereas the design of a system will require a low level of abstraction.

Although the MSC language is very rich and allows for the description of complex
behaviors, only the relevant features will be mentioned in this thesis. Basic and High-
Level MSC represent two levels of abstraction that can be used together to describe

complex systems. They will be introduced in the next two sections.

2.2.1 Basic Message Sequence Charts

Basic Message Sequence Charts, or bMSC [12, 18], are used to show how parallel
processes communicate with each other. A bMSC consists of process instances that have
vertical lines (lifelines) and arrows representing messages connecting these lines. An
example of a bMSC is shown in Figure 2.12. The element name of a process represents
the class name (in object-oriented terminology) and the instance name represents the
instantiated object name. Another important feature of a bMSC is the fact that messages

can be sent to and from the environment, which allows open system to be modeled.
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Figure 2.12: A basic MSC.

Messages in an MSC are asynchronous [18], which means that a process instance can
send a message and continue its execution without waiting for some sort of reply. The
events on the axis of a process are ordered in time, which increases in the downward
direction. A message consists of two events, sending and reception. The sending event
must always occur before the reception, unless a coregion is used. A coregion [10, 12]
can be used to relax this restriction for selected parts of a process axis. This feature can
be useful because the order may not have been decided on yet, but will be finalized later.
A coregion is indicated by drawing a portion of the process axis as a dotted line, as

shown in Figure 2.13.

msc Coregion

i Coregion

¢

o

-
—

Figure 2.13: A coregion example.

——

A bMSC does not have to consist of only messages being passed back and forth.

Designers can use conditions, actions, timers and inline expressions to add more



complexity to a MSC. Figure 2.14 shows the inline expressions that are available in

MSC 10, 12]:
® Alternative: Only one section will be executed.
® Parallel: The events all sections are executed in parallel.
® Loop: The events enclosed by the loop expression are executed multiple times.
® Optional: The events enclosed may or may not be executed.

® Exception: Represents an exceptional case in the execution.

msc Alternative msc Parallel msc Loop
L rm | [ e ] L »m | [ p ] Lm | [ = ]
ahl a ’uI a Inp! a
B 3 ) o
msc Optional msc Exception
L.em | [P | m | [ r |

I | | I

Figure 2.14: MSC inline expressions.

Conditions [10] are used to specify states within the system. Figure 2.15 shows the three

types of conditions is MSC:
i Global: A state that applies to all instances within an MSC.

1. Non-Global: A state that applies to a subset of the instances of an MSC.
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il Local: A state that applies to only one instance of an MSC.

Global
condition

Non-Glebal
condition

I

[

mic Samplk ;) 2 o
B _db

-

-

l

>
a

Se—

*

condition

Figure 2.15: MSC conditions.

Timers [10] can be used express timing constraints. Timers can be set, reset, and can

timeout. When they expire, timers generate a message that is put into the input queue of

the process. Figure 2.16 the graphical notations for timer events in MSC.

Timer
reset

Timer
set

L

Figure 2.16: MSC timers.

2.2.2 High-Level Message Sequence Charts

Timer
expiration

Describing a complex system with only one MSC is impractical because it would be too
large to be of any use. High-Level Message Sequence Charts (HMSC) allow many small
bMSCs to be related to each other in an easy to understand manner [12]. An HMSC

shows the system at a higher level of abstraction where the execution trace of the system

can be followed in terms of bMSC, and not individual messages like in HMSCs. An

example of an HMSC is shown in Figure 2.17.
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Figure 2.17: An HMSC example.

In Figure 2.17, after the Login bMSC is executed, any of the following bMSCs can be
executed, which offers conditional execution of whole bBMSC to be defined. Afier either
the Deposit or Withdraw bMSCs, the flow of execution loops back to a connector where
a choice of bMSCs is once again available. HMSCs are simple but powerful and enable

complex systems to be designed using the MSC language.

2.3 Specification Description Language

The Specification and Description Language (SDL) is a standard defined by the
International Telecommunications Union (ITU-T), and is referred to as recommendation
Z.100 [3]. Like the MSC language, SDL has a graphical and textual notation. SDL can
be used to simulate, validate and verify a system due to the fact that it is formally
defined. This has led to its widespread use in the telecommunications industry for

modeling distributed systems.

A complete SDL specification consists of two parts, the structure of the system and the

behavior. Each will be discussed in the next two sections.

2.3.1 Structural SDL

An SDL system is made up of a hierarchy of components. In UML, The static and
dynamic portions of a system are presented separately. In SDL, the static and dynamic

portions are presented on the same diagram. This may seem confusing at first, but SDL
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is quite intuitive and easy to leamn. SDL is a large standard, and so only a subset will be

presented in this section.

There are two possible ways to describe the architecture of a system in SDL. The first is
local specification (to specify elements directly), which is the original (old) style. The
second is to use remote specifications using SDL fpes. The old style has three major

components that are used to design a system [3, 4]:

i. Process: A process is the basic behavioral unit in SDL and has it’s own thread
of execution. A distributed system is made up of multiple processes executing
in parallel. The behavior of a process is defined using extend finite state

machines and will be discussed in the next section.

ii.  Block: A block can contain either other blocks or processes. This allows a

system to be specified in a hierarchical manner.

ili. Channel: Channels connect blocks and processes together and allow for the

exchange of asynchronous messages (or signals) back and forth.

The combination of blocks, processes and channels allows the system architecture to be
defined. Figure 2.18 shows an example of a system specified using the old style of SDL
(using Blocks and Processes exclusively). A disadvantage of the old style is that it is not

object-oriented and so reuse is not easily accomplished.

Figure 2.18 also shows examples of two other important SDL features, the text symbol
and signal list. The text symbol is used for variable declarations and the signal list is
used to specify which signals are valid for a particular direction of a channel. A bi-

directional channel has two signal lists, one for each direction.



Signallist f————— ] Texteymhel
system sample N
S1, 82,83, S4;
—t—1 Bieck
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Figure 2.18: Old style SDL specification.

Using the old style of SDL can be compared to writing a program using a sequential
programming style. Of course, these days it is desirable to use object-oriented languages
for programming because such systems tend to be of better quality. The equivalent in
SDL is to use types [3, 4], which allows referenced systems to be modeled. A type is
similar to a Class in UML. A type can be defined once, and instantiated many times.
Figure 2.19 shows a system similar to Figure 2.18, but using a Block Type instead of

blocks and processes.

system sample
signal
! S1, 82,83, 84; ﬁ
Block Type | Seype
)
3,84 chl
Block Type B1 : btype gl gl B2 : btype
Instance / ss;. z,]
Connectvia /
Spedific gate

Figure 2.19: SDL specification using types.

A designer must be familiar with the following SDL components in order to use types:

® Process Type: The behavior of a process type is defined using extended finite
state machines just like a process. The only distinction between the two is that a

process type is instantiable.
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® Block Type: A block type is conceptually the same as a block except that it
represents an instantiable element. A block type can contain other block types

(and block type instances) and process types (and process type instances).

® Gate: A gate is used to specify the interfaces that are used to connect type

instances together.

In Figure 2.19, each block type instance has a label near the channel end (arrowhead).
The label in this case is “gl”, and this represents an SDL gate. The gate actual gate
definition is contained in the block type specification as shown in Figure 2.20. A feature
of SDL present in the diagram is a signallist, which is simply a variable name used to
represent a set of signals. Inside the block type specification, there is a process type
defined, and a process instance. The architecture of the system shows that gate gl

connects the external environment (with regards to the block type) to the process type

instance.
/ | Soat:
btype signal S1,52,53, 54, /
(L) g signallist L = S1, 52, 53, 54 Gaw
Process Type |_—
(L) 1_] gl
fe————>
) Ly M L]
Process Ty A:ptype g2
“Tnsrante - | Channet

Figure 2.20: Block Type specification.

2.3.2 Behavioral SDL

Once the structure of the system has been determined, the behavior must be defined. As
was previously mentioned, the behavior is defined using extended finite state machines
inside of process types (and processes). A subset of the graphical notation is presented in

this section.

24



An EFSM is either in a stable state or in a transition between states. In SDL, a process

has an input queue where incoming messages are stored until they are consumed. A

transition can only be triggered by the reception of a signal. A transition always has a

starting state and a terminating state. Figure 2.21 shows an example of an EFSM with

some elements that are used to define the process behavior, they are [4]:

Variable Declaration: The declaration of any local variables can be made using a

text symbol as previously seen.

Start Node: The start node defines where the execution of the EFSM begins when

the process is first initialized.
State: A stable point in the behavior of a process.

Inpur: A transition can be triggered upon reception of a signal. As long as the

input queue of a process is empty, the transition will not start.

Output: During a transition, a process can send signals through channels that

connect it to other processes, the environment, or itself.

Save: The input queue of a process may have many messages waiting to be
consumed. If the current state does not allow for the consumption of the message
at the head of the queue, SDL will discard the message. The save construct
allows the process to bypass that message and consume another one while saving

the bypassed message for later consumption.

Decision: A transition may be split into multiple branches depending on a
condition. It is not necessarily a Boolean operation. A decision consists of two

parts, the question and the possible answers.
Task: A task is used to assign a new value to a variable.

Stop: At this node, the process terminated execution.
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Figure 2.21: An example of an SDL behavioral specification.

2.4 MSC to SDL Methodology

As previously mentioned, the approach presented in this thesis builds on an existing
methodology for the automatic generation of SDL specifications from design MSCs and a
given target architecture specified in SDL [14, 15, 19]. The generated SDL behavior,
expressed as extended finite state machines, will be consistent with the original MSC
specification. Moreover, the generated SDL specification is free of deadlocks and

common design errors that can be encountered in distributed system specifications.

The order of sending and consuming events in MSCs is explicitly defined, but the actual
arrival order of messages into the input queue of a destination process is not. The arrival
order depends on the system architecture and the process interleaving. An SDL process
discards messages that are not expected at the current state, but which may be needed at a
later state. When the process reaches that later state, it will block because the signal has
been discarded, which can lead a system to eventually deadlock. To avoid this

possibility, the MSC-to-SDL methodology detects that for a given state, message
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interleaving is possible, and the SDL save construct is used in order to save an out-of-

order message for later consumption.

The methodology is best explained through the use of an example. The bMSC in Figure
2.22 shows the desired behavior of the system under consideration. To illustrate the

approach, two different architectures are used as shown in Figure 2.24.

Figure 2.22: bMSC describing desired behavior.

system mec2sdl ['w".": ]ﬁ system msc2sdl [.w..'": ﬁﬁ
Bl Bl chl (3]
(ae) () (el ()
Architecture 1 Architecture 2

Figure 2.23: SDL architectutures.

The architecture of the system affects the generated behavior, as shown in Figure 2.24.
Processes P1 and P3 are the same for both architectures, but the behaviors for process P2
are different. For the first architecture, in state “s1”, message “b” can arrive before
message “a”, and therefore must be saved at that state. Examination of the second
architecture reveals that “a” and “b” are sent to P2 via two different channels. If “a” is
delayed and “c” arrives first, it must be saved at “s1” or else the system will deadlock at

state “s3”.
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Figure 2.24: Resulting SDL behavior.

The addition of the SDL saves to the generated process behaviors guarantees that
deadlock will be avoided, and the messages will be consumed according to the specified
orders in the bMSC specification. The MSC-to-SDL approach detects errors such as
deadlock, process divergence, non-local choice and unspecified reception. The interested

reader can refer to [14, 15, 19] for more detailed information.
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Chapter 3

Stepwise Refinement of Message
Sequence Charts

This chapter describes our MSC use case refinement approach as introduced in [20]. The
conformance relation that we developed is first explained. Next, our stepwise refinement
approach is described for bMSC, and then expanded to include HMSC. The approach is
then illustrated with an example.

3.1 Introduction

Distributed software systems, like any software system, go through requirement, design,
implementation and testing phases. Ensuring consistency throughout the software
process is a difficult task. At the start of the development process, the target system is
defined in high-level interactions with the user called Use Cases. The Use Cases
represent an abstract view of the system that will be refined as the project progresses until
the final product is delivered. During the many phases, mistakes due to ambiguities or
omissions in the specs, or miscommunication between participants can occur. These
types of errors may not be detected until late in the development process, or even after

the product is delivered, and can be expensive to correct.

Use Cases are generally expressed in a textual format that states that when a user
performs some action X, the system responds with Y. Since the English language can be
used to express the same ideas in many ways, errors due to simple misinterpretations
frequently happen. If a more formalized approach for documenting use cases were used,
these types of errors could be virtually eliminated. Furthermore, having use cases in a
formalized notation enables the introduction of higher levels of automation than are

currently available.

29



The MSC language is currently used to express desired program executions at low levels
of abstraction, which will be referred to as design MSCs. When a designer sits down in
front of a blank page to translate a use case into a complex scenario using MSCs or UML
sequence diagrams, they first start with a few messages being passed between processes.
Over time, the designer will incrementally add more details until the specification is
complete. This process is unstructured and cannot guarantee consistency with the use

case being modeled.

Since MSCs can be used to express different levels of abstraction, it should be possible to
use them for expressing use cases as well as design MSCs. Since the design MSC will be
a representation of how the use case is actually implemented, it is evident that there exists
a relation between the two. Furthermore, if a relationship can be defined between the use
case and design MSCs, there should be a definable relationship between intermediary
MSCs.

The approach develops a use-case model through interactions with the system designers
and the customers as described in [7, 8, 9]. The result of this represents the functional
requirements of the system under construction. Once the use cases have been agreed on,
the designers must specify the architecture of the system. Guided by this architecture, the
use cases are then refined in a stepwise manner. The method defines two types of
refinement, horizontal and vertical. Horizontal refinement consists of adding new
messages or actions to existing MSC axes. Vertical refinement consists of decomposing
an axis into at least two other axes following the architecture of the system. In both cases,
the enriched MSC must conform to the previous (or parent) MSC. It is therefore
necessary to define a conformance relation between MSCs that can be used to validate
refinement steps made by the designer. These relationships will be more fully discussed

in the rest of this chapter.

3.2 Describing Use Cases with MSC

Jacobson introduced the concept of use cases in the Object-Oriented Software
Engineering (OOSE) method [9]. Use cases are now part of the UML standard. The fact

that they are not formalized allows for flexibility in the early stages of development. This
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flexibility can be a detriment if inexperienced designers are expected to interpret the use
cases and then produce a design specification. In [13], the authors propose a method for
formalizing use cases using MSCs. We follow this approach for the modeling of use

cases with the MSC language, and introduce a stepwise refinement process of these use

cases into design MSCs.

3.2.1 Basic MSC Use Case

Basic MSCs, or bMSCs, are simple diagrams that capture the interactions between
system components, and between system components and the environment. For use case
modeling, bMSCs are used to show the interactions between the system and the
environment as illustrated in Figure 3.1. The user sees a “black box” represented by a
single process instance in the MSC. The axis represents the system boundary that
interacts with the user. In this example, the user sends message “a” to the system, and the

system reacts by sending message ‘b’ to the user.

System

I e—

Figure 3.1: A bMSC use case.

For simple use cases, a single bMSC is sufficient to show the behavior, but complex
behaviors such as conditional executions or alternatives can lead to large and unreadable

bMSCs. To avoid this sort of problem, high level MSCs are considered.

3.2.2 Using High-Level MSC

High-level MSC, or HMSC, allows for a more abstract view of the system [12, 13].
HMSCs improve the readability of the system by hiding low-level details and showing
graphically how a set of MSCs can be executed to produce a program trace. They are

viewed as roadmaps composed of MSCs using sequential, alternative and parallel
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operators. HMSCs are seen as directed graphs where the nodes are: start symbol, end

symbol, MSC reference, a condition, a connection point, or a parallel frame.

For more complex use cases, it is easier to use several bMSCs and then combine them
using a single HMSC. Figure 3.2 shows how a bMSC can be split up into multiple
bMSCs and the relations between the new bMSCs are shown in a HMSC. This
minimizes the use of operators within bMSCs and results in more simple and
straightforward MSCs.

o
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e e — —
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bMSC Use Case hMSC Use Case

Figure 3.2: A HMSC use case.

A use case describes one possible usage of a system. Most systems will have many
functions that will result in many use cases. In order to be able to organize many use
cases and to allow a designer to view and navigate them with ease, a HMSC which
references the HMSC use cases could be used to show an even higher level of

abstraction. Figure 3.3 shows a HMSC that references two use case HMSCs.
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Withdraw Deposit

Figure 3.3: Multiple use cases in one HMSC.

Recall that a use case specifies an interaction with a user from the start of a scenario until
its completion. If there were multiple use cases that start the same way, and then diverge
at some later point to perform different functions, there would be repetition of the initial
behavior across multiple use cases. In order to avoid this repetition, the shared behavior
can be defined in one MSC that can be executed before the different scenarios diverge.
Figure 3.3 shows two use cases that are common functions of an ATM machine. Before
one can withdraw or deposit money from/to an account, a user must login first. This
login step is an example of a shared behavior between the two use cases that can be
extracted to create a pseudo use case. This is shown in Figure 3.4 where a new HMSC
reference “Login” has been added. There are two different execution paths in the HMSC.

Each complete path represents a use case.
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Figure 3.4: Extracting redundant behavior from use cases.

Using three levels of abstraction allows us to specify the use cases for an entire system.

Figure 3.5 shows how the various levels relate to each other.
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Figure 3.5: Three levels of abstraction.

The system level expresses the functional view of the system by using a top-level HMSC.
An abstract view of the system as a set of use cases is given at that level. The structure
level describes each use case (using HMSC) without going into details. The basic level
shows the interactions between the system and the environment using bMSC. A bMSC
at that level cannot refer to a HMSC as allowed in the standard [10]. A bMSC at the
basic level does not contain alternatives or optional behaviors. Any alternative or optional
behavior can be represented using HMSC at the structure level. In this thesis, the HMSC
language is restrained to the weak sequencing operator, alternative operator and iteration.

The parallel operator is not taken into consideration.

3.3 Conformance Relation for MSCs

In [20], conformance relations between bMSCs and HMSCs have been introduced and

are explained in this section.

3.3.1 bMSC

The bMSC refinement process consists of several steps. My is the bMSC obtained after

refinement k. In order to preserve, throughout the refinement process, the semantics of
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the original use case defined by the user, each newly obtained bMSC should preserve the
semantics of its parent bMSC. In other words, bMSC M, must preserve the behavior
described by bMSC M,.;. M, must have the events of M, and for these events M,
preserves the orders defined in M,.;. The new messages and events introduced in M, are
not constrained. Informally, we say that a bMSC M, preserves the behavior of (or
conforms to) a bMSC M, if and only if for each axis A;, in M, there is a corresponding
set of axes {Aaz1, A, ..., Az} in M; with all events of A, included in {Az1, -.., A}, and

all the orders defined between events in M, are preserved in M,.

For a formal definition of the conformance relation, a formal definition of a bMSC is

needed. The definitions introduced in [21, 22] are used for this purpose.

Definition 1 (bMSC): A bMSC is a tuple <V, <<, P, M, L, T, N, m> where

L V is a finite set of events,

° << € V x V :is a transitive and acyclic relation,

o P is a set of processes.

L M is a set of message names,

o L: V -> P is a mapping that associates each event with a process,

. T: V > {send, receive, local} defines the types of each event as a send,

receive or local,
. N: V > M maps every event to a name

] m: a partial function that pairs up send and receive events.

The relation << is defined between the sending event (sm) and the receiving event (r,,) of
message “m” as sy << rm, and between events e, and e; in the same axis, ) << e,, if e,

appears before e,.

Definition 2 (Conformance for bMSCs): A bMSC MSC. = <V,, <<, P2, M3, La, T3, N3,
my> conforms to a bBMSC MSC, = <V,, <<;, P,, M}, L,, Ty, Ny, m,>, if and only if there
exist an injective mapping I': V, >V, and a surjective function ¢: P, & P, such that:
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e  Lie)=¢L:(I(e))

e Ti(e)=TxI(e))

*  Ni(e)=Nx(I'(e))

e if mye)=f then myI(e)) = I(f)
e ife <<, fthen [(e) <<, I(f)

The conformance relation introduced in [20] is similar to the matching relation defined in
[21, 22]. However, there are two major differences. The first one is related to the MSC
semantics. Our conformance relation does not distinguish between the visual order and
the enforced order as is done in [21, 22]. The visual order being the transitive and
reflexive closure <<* of <<, while the enforced order depends on the communication
architecture where some visual orders may not hold, because of race conditions [23]. In
the formal semantics of MSC (for bMSC [24]), the visual order has to be enforced. The
issue of whether a specific architecture allows for order or not is another issue. The
second difference, as mentioned earlier in our conformance relation, is an axis in bMSC
M. may correspond to a set of axes in bMSC M-;. In other words, there may exist a one-

to-many relationship between axes, contrary of the one-to-one relation in [21, 22].

Mauw and Reniers have proposed a refinement relation for interworkings [25]. This
refinement consists of decomposing an instance into its constituents and adding internal
messages between these constituents. Beside the semantic issues, our conformance
relation can be seen as a combination of the refinement relation in [25] and the matching
relation in [21, 22]. In this thesis, the term “refinement” and “conformance” are not
synonymous. The term “refinement” to means that a MSC has been modified, but does

not ensure conformance.

For an illustration of the conformance relation, consider the bMSCs in Figure 3.6. A
mapping [" between M1 and M2 that associates each event to itself and a function ¢ that
associates each process to itself satisfy the conditions in Definition 2. bMSC M2
conforms to bMSC M1. A message was added to M2 and as a result more messages and

events are in M2, but these events preserve the orders defined in M1. The bMSC M3
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also conforms to M1. However in the case of M3, the function ¢ associates P21 and P22
to P2.

mac M1 mec M2
L, | [ P,k ] [P ] L. | [P ] [ ®»m ]
[3)) x (&3 b x (2 )
) z .l
(ed) Y 3) (cd) ! (%))
] L] ] ; L] L ]
mse M3
L e | [e1 | [P | [P ]
D z 2

(5) t
\- (e6)
(C)) ()]
+ O + EE—

Figure 3.6: Examples of conformance between bMSCs.

Now consider the bMSC M4 in Figure 3.7. In this case, no mapping of events that
preserve the orders defined in M1 exists. In fact, reception of message “x” by P21 and

reception of “y” by P22 are not ordered as specified in M1.

msc M4
L m ] [e | [ ] [P ]
D X )
(e6) ! 5)
) ! »

Figure 3.7: Example of non-conformance between bMSCs.
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3.3.2 HMSC
In order to build complex behaviors from simple behaviors, the MSC standard [10] has

defined weak sequential, iteration, alternative and parallel compositions of MSCs.
Informally, weak composition of two bMSCs can be seen as a concatenation of the axes

of the common processes in the bMSCs.

Definition 3 (Weak compesition of bMSCs). Given two bMSCs, M/ = <V, <<, Py,
M[, Ll, T[, N[. m;> and M2 = <V2, <<, Pz, Mg, Lz, Tz, Ng, mo->, with Vl M V3 = Q, Ml
oM2-= <\’| \JV:, <<, P[ UPI, M[ UMI, Lyv Lz, T| UT:, N[ UN;, m; U my>, where <<

=<y U <<: U {(e. €2). such that L(e;) = L(e:), &, € V,and e; € V,}.

From the syntactical point of view, a HMSC defines a roadmap where MSCs are
combined using weak sequential, iteration, alternative and parallel compositions. As
previously mentioned, the parallel operator is not taken into account. From a semantic
point of view, a HMSC is defined as a potentially infinite set of alternatives of (infinite)
weak sequential composition of bMSCs [20].

Definition 4 (HMSC). A HMSC H1 is a set of sequences seq; (or bMSCs), with seq; =
Mil o Mi2 o Mi3 o ... 0 Miq, where Mij is a bMSC, for J=1,..,qandi=1,....n

The set and the sequences could be infinite. The iteration is defined as the repetition of a

given bMSC using weak sequential composition.

As defined in [20], a HMSC H1 conforms to HMSC H2, if and only if for each altemnative
bMSC M1 in H1 there is a bMSC M2 in H2, such that M2 conforms to Mi1. M2 preserves
the behavior of M1. H2 may contain more alternatives than H1, but each alternative of H1

is preserved in at least one alternative of H2.

Definition 5§ (Conformance for HMSCs). Given two HMSCs, H1 = {seql;,i=1, ..., n}
and H2 = {seq2;, j = 1, ..., m}, H2 conforms to Hl. if and only if for each seql; in H1

there exist seq2; in H2 such that seq2; conforms to seq|..

The conformance between seql; and seq?; is given in Definition 2. Both conformance

relations (for bMSCs and HMSCs) are transitive and reflexive.

39



3.4 From Use Cases to Design Specification

The ultimate goal of the approach is to enable a designer to refine the initial use case
MSC incrementally into a MSC design specification while preserving the interactions
specified by the use case. The refinement is guided by the system architecture. At every
stage of the refinement process, the resulting MSC is checked for conformance against

the parent MSC.

3.4.1 Stepwise Refinement of bMSCs

A use case is an abstract description of some desired functionality provided to the user of
a system. The use case description sees the system as a black box that generates some
output for a given input. Typically, designers will use their experience to generate design
specifications from a textually represented use case. This can produce errors in
implementation if the use cases are unclear. How these types of errors can be avoided is

the goal of the approach proposed by this chapter.

Using MSCs to describe use cases would result in clearly defined graphical
representations of desired behavior that are easy to understand by designers. This would
reduce the risk of misunderstanding, but the risk of error introduced during the design
phase still exists. The reason for this is that in general, designers translate high-level use
cases into complex behavioral specifications in an ad-hoc manner. It would be greatly
beneficial if clearly defined methods were to enable software engineers to go from high

to low-level specifications in an incremental fashion with some guidance.
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Figure 3.8: Overall refinement process.

Figure 3.8 shows how a use case given in the form of a MSC can be incrementally
refined into a design specification. By using this sort of refinement coupled with the
conformance relation discussed previously, a method of going from use cases to design
specifications can be developed. This will reduce the risk of inadvertent errors being

introduced by designers.

The system architecture plays an important role in the stepwise refinement of MSC use
cases. A refined MSC must conform to its parent MSC and follow the underlying system
architecture. This system architecture can be represented using either UML or SDL. The
stepwise refinement methodology of use cases is to be used in conjunction with existing
tools for translation of a UML architecture into a SDL architecture [26], and the
generation of a SDL specification from a given target architecture and MSCs [14].

3.4.1.1 Vertical Refinement

A system can be viewed as a black box that can respond to user input. This box is
composed of other components that in turn can contain components. The entire system
can be viewed as a hierarchy. Figure 3.9 shows an example of such a system hierarchy.

The topmost level represents the system level and each sub-level represents a more
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detailed view of the system. Vertical refinement is closely related to the architecture of

the system.
| — E;
Level 2 ™
é —
/ s B s B s
Level 3
& mng

Figure 3.9: System hierarchy.

The system in Figure 3.9 has three levels. Each level has a corresponding MSC that
describes its behavior. The Level 1 MSC represents a use case for the system. The
second level shows the single component of the top level decomposed into two
components. This decomposition is reflected in the MSC for level 2, where there are two
process instances. In fact, the number of process instances is always equal to the number
of components present in the system architecture for the level in question. As the
refinement process goes deeper into the architecture, the generated MSCs will have more

process instances to reflect this.

3.4.1.2 Horizontal Refinement

By inspecting the MSCs in Figure 3.9, it is apparent that more detail about the system
behavior is added at every level. This cannot be done automatically, but must be done by
the designer. New messages can be introduced in the lower levels, but the previously
defined event orders must be preserved. The MSCs of each lower level must conform to
the MSCs in the higher levels. Vertical refinement deals with decomposing instances
into their lower level constituents. A method for adding more details within a level is
needed; this is called horizontal refinement. The goal is to refine an MSC in an

incremental manner by adding behavioral information. Suppose a designer wanted to
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refine the Level 1 MSC from Figure 3.9 into the Level 2 MSC. Vertical refinement of
Level 1 to Level 2 would yield the MSC from Figure 3.10a. Horizontal refinement of
Figure 3.10a would result in the MSC represented by Figure 3.10b, which is the same as
the MSC for Level 2 of the architecture shown in Figure 3.9.

= =

®) ©

Figure 3.10: Horizontal refinement.

Now suppose the designer wanted to enrich the behavior of Figure 3.10b. Another
iteration can result in Figure 3.10c for instance. It should be noted that the MSC in Figure
3.10a is a vertical refinement of the top level MSC and that it represents the system
architecture, but it does not conform to its parent MSC. However, after one horizontal
iteration, Figure 3.10b does conform to the top-most MSC. In general, a combination of
vertical and at least one horizontal refinement is needed in order to generate a MSC that

may conform to the previous level.

3.4.1.3 Basic MSC Refinement Methodology

Vertical refinement reflects the architectural decisions, while horizontal refinement
allows the designer to make additions to a bMSC. Both types of refinements, vertical and
horizontal, are used together to incrementally refine a use case bMSC into a design
specification. Figure 3.11 illustrates how both types of refinements are combined to

reach a design specification.
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Figure 3.11: Overall refinement methodology.

The refinement process is dependent on the system architecture. The number of layers
used in the architecture limit the number of vertical refinements. There can only be one
vertical refinement per layer. Each vertical refinement step splits a bMSC instance into
several instances according to the architecture. The instances that are not decomposed
keep the same names. When an instance is decomposed the designer has to distribute its
events amoing the new instances. For each message “m”, the names of the associated
events (sending and receiving) are kept unchanged. The messages and events associated

with instances that are not refined are kept unchanged and re-generated automatically.

Horizontal refinement is concerned with adding messages, events and local actions to the
bMSC. The designer can add new messages, sending and receiving events as well as local
actions. The messages that can be used in a horizontal refinement are specified in the
architecture of the system at that level and the designer cannot introduce messages that
are not specified in the architecture at the current level of refinement. Unlike vertical
refinement, there is no limit to the number of horizontal refinements that can be
performed at any given layer. After each horizontal refinement, the refined bMSC can be

automatically checked via a CASE tool for conformance.



The verification of the conformance relation between bMSCs is implemented with the
Event Order Tables (EOT) introduced in [14, 15]. As mentioned earlier, the bMSCs used

do not contain alternative or optional behaviors.

3.4.2 Event Order Tables (EOT)

An EOT for a bMSC is a matrix that shows precedence relationships between events of
the MSC. Figure 3.12 shows a bMSC and its corresponding EOT. Each arrow represents
the sending of a message from one instance to another. Consequently, each message sent
between instances corresponds to two events: sending and receiving. Once the events on
a MSC have been labeled appropriately, the EOT can be constructed. Following the

MSC semantics and the relation <<, two rules are followed to generate the EOT [14]:
1. Each instance is totally ordered (except for co-regions).
ii. A reception event happens after its matching sending event.

Inspection of each process axis in Figure 3.12 reveals that the first rule must be applied to
P2, yielding the relation e2 << e3. Applying the second rule to the MSC of Figure 3.12
yields {el << e2, e3 <<e4}. The transitive closure <<* of << allows for the construction
of the EOT. For instance, el << e2 and e2 << e3 implies el << e3. A cell in the EOT is

set to true if the row event occurs before the column event.

Pl P P3
1 a el | e2 T e3 [ esd
) €2 e T T T
e2 T T
S ,

©3) e =
S———— —— e—— Event Order Table
bMSC

Figure 3.12: A bMSC and its EOT.
Definition 6 (Inclusion for EOTs) [20]. An EOT T, is included in EOT T,, if and only if

i. All the events of T1 are in T2, and
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1. For each pair of events (ei, ej) if ei << ej in T1 then ei << ej in T2.

It can be said that that M., conforms to M;. if and only if the EOT of M; is included in
the EOT of My+1.

Proposition 1 (Conformance of bMSCs using EOTs) [20]. Given two bMSCs, M, and
M., provided that events in M, are mapped into themselves in M,-;, M,., conforms to
M, if and only if EOT of M, is included in the EOT of Mi...

Proof: The proof is straightforward. The refinement approach (and untimately a tool)
maps events in M, into themselves in M,.,. The orders defined in M are preserved in

M,.; if and only if the EOT of M is included into the EOT of M;-,. [end proof]

Figure 3.13 shows a bMSC that conforms to the bMSC in Figure 3.12, the message “c”

sent from P2 to P3 has been added. In order to preserve the original event labels, the

event labels €5 and e6 have been used for the new events.
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Event Order Table

Figure 3.13: Example of conformance using EOTs.

The EOT in Figure 3.12 specifies an ordering of events that is maintained by the new
bMSC. In fact, the EOT in Figure 3.12 is included in the EOT in Figure 3.13. The old

relations are bolded in Figure 3.13; as long as these are not violated, the new bMSC
conforms to its parent bMSC.
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For illustration of a non-conforming example, consider the bMSCs in Figure 3.14. The
corresponding EOTs are shown in the same figure. The second bMSC is a refinement of
the use case bMSC. The single instance in the use case bMSC is split up into two
instances. A new message “c” from P2 to P1 has been added. The EOT of the new
bMSC shows how the events are related to each other. The refinement has violated the
order e2 << e3, for instance. The circled part of the EOT in Figure 3.14 reflects this
violation. Therefore the refinement does not yield a bMSC that conforms to its parent

bMSC. This refinement cannot be accepted.
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Figure 3.14: Example of non-conformance using EOTs.

3.4.3 Stepwise Refinement of HMSCs

A HMSC is composed of a number of bMSCs following a certain roadmap. To enrich a
use case HMSC, the bMSC:s are refined separately. A HMSC is refined according to the

following rules:

1. The roadmap remains unchanged.
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ii.  For vertical refinement, all bMSCs are vertically refined at the same time so
that each bMSC has the same number of instances and reflects the same

level of abstraction.
iii. Each bMSC can be refined horizontally independently of the others.

Vertical refinements are done automatically according to the system architecture and the
current level of abstraction, after which the user can perform horizontal refinements of
the resulting bMSCs. However, it is important to note that because a refined bMSC
conforms to its original, it is not necessarily true that the corresponding HMSCs conform.
The reason for this is that when an axis is decomposed and the messages are distributed
across the refined axes, the new message orderings may not respect the ones specified in
the original. In Figure 3.15, when M1 is executed before M2, the sending of “x” always
precedes the sending of “y”. This is not the case for when M1’ and M2’ are
concatenated; P12 may send “y” before P11 sends “x”, which violates the message

ordering in M1 and M2.
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Figure 3.15. Non-conformance between HMSCs.

Theorem 1 (Conformance between HMSCs) [20]. Given a HMSC HI and its
refinement HMSC H2, (with the same roadmap), if:
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1 Each bMSC in H2 conforms to its corresponding bMSC in H1.

ii. In the HMSC H2, for each pair of bBMSCs, M1’ and M2, such as M1’ o M2’
in H2, for each set of axes {All, ..., Aln} in M1’ and M2’ resulting from the
decomposition of Al (in M1 and M2 in H1), the order between the last event
of Al in M1 and the first event of A! in M2 is preserved,

Then H2 conforms to HI.

Proof. Consider two HMSCs, HI and its refinement H2 obtained following the rules
mentioned above. From a semantic point of view, each HMSC is a set of alternatives of
concatenation of bMSCs. Roadmaps of H! and H2 are identical, each bMSC in H1 has a
corresponding bMSC in H2. Any sequence of concatenation seq! in HI has its
corresponding sequence of concatenation seq2 in H2, using corresponding bMSCs in H2.
In order to show that H1 conforms to H2, we have to show that seq2 conforms to seql.
For that we only have to prove that if M1’ conforms to M1 and M2’ conforms to M2, M1’
and M2’ are obtained with our refinement approach, M1’ 0 M2’ conforms to M1 o M2.

M1’ conforms to M1 means that orders in M1 are preserved in M1°. M2’ conforms to M2
also means that orders of M2 are preserved in M2'. M1 o M2 (before decomposition of
axes) imposes orders on events in the same axes and these orders have to be preserved in
M1" o M2’. The second condition of the theorem ensures the preservation of these orders

in MI'o M2’. Therefore, M1’ 0 M2’ conforms to M1 o M2. (End of Proof]

During the refinement of HMSC use cases, the conformance between the new HMSC and
its parent HMSC is verified by checking the conformance between each pair of bMSCs.
When a bMSC in the new HMSC does not conform to its corresponding bMSC in the
parent HMSC, the refinement is not accepted. New refinement and modifications have to
be applied to the new bMSC and the conformance checked again. Notice in the
refinement approach, the conformance of bMSCs is a sufficient condition and not a
necessary one. However, in order to ensure the conformance between HMSCs, the
conformance between pairs of bMSCs is enforced. The study of all the possible necessary

conditions is left for future studies.
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3.5 Application

The advantage of using MSCs is that they are formally defined and comprise of both
graphical and textual notations. This means that an algorithm can be applied to bMSCs
to automatically generate and compare EOTs. Automation reduces the likelihood of

human error and increases the confidence in the generated specifications.

This section illustrates the refinement approach through an example. Figure 3.16 shows a
system architecture representing an ATM machine using SDL. There are two processes,
namely “ATM” and “BANK”. There is a channel that allows the user of the system to
interact with the ATM process instance, and another channel allows for the two process
instances to interact with each other. The signals these processes exchange with each

other and their environment are specified in the architecture.

system ATM_Machine

CNAL O

NG_MIGJUUM_Cardnv_pin_ms3g 1meout_Msg.optic. peint_batance feq_amourt.
mn_mm Hore_TIns A pnﬂh_m‘:;wnv_pnm  Sthdrpw.onk_amount.
[vaid nvalid batance Zmourt_1pproved not_sporoved, venty 2bot feq_bEance approve_amount

— (L= (.
= | 2l gl

Figure 3.16: ATM_Machine system architecture in SDL.

Two functions provided by an ATM machine are the ability to withdraw and deposit
money. Both of these functions have a common starting point. The user must first insert
a card and enter the correct PIN before a transaction can occur. Figure 3.17 shows the

system and structure level HMSCs.
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Figure 3.17: System and structure level HMSCs for the ATM example.

The system level shows three different use cases, “Exit”, “Deposit” and “Withdraw”.
The system level HMSC also shows that each use case has the common behavior denoted
by the “Login” block. The structure level shows more detail. The “Login” HMSC has
only one bMSC, *“Valid_Pin”. Later on, the system designer can decide to add an
“Invalid_Pin” scenario to the “Login” HMSC that would not affect the rest of the system.
The *“Withdraw” HMSC shows that the withdraw use case can have two results,
“WithdrawOK” and “WithdrawNOK”.

For the purpose of illustrating the method, refinements on only “Login” and WithDraw”
are performed. The same process can be applied to the other use cases. Figure 3.18
shows the two bMSCs ““Valid_Pin” and “WithdrawOK" being refined vertically. Note
that there is no new behavior added, only a splitting of the instances to reflect the

architecture of Figure 3.16.
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Figure 3.18: Vertical refinement of ATM use cases.

Once vertical refinement has been performed, the designer can now enrich the bMSCs.

Horizontal refinements are shown in Figure 3.19.

mse Valid_Pin msc WithdrawOK
[ am ] [ Bank ] [ am | | BANK
Cad withdraw
Req pin req_amount
) Enter_pin . N ent_amount
vernify Verify_amount
vahid
Amount_approved
R L] I
give_money

Figure 3.19: Horizontal refinements.

Once the user has finished performing a horizontal refinement, the new MSC is verified

for conformance against the previous MSC. If the new MSC conforms, the user can

perform another horizontal refinement. Figure 3.20 shows a second refinement
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performed on the WithdrawOK MSC. Since the new MSC conforms to the MSC in
Figure 3.19, by extension, it also conforms to the MSC in Figure 3.18.

msc WikhdrawOK
I ATM l BANK
withdraw
req_amount
ent_amount
Verify_amount
Amount_approved
@ve_money -
N req_balance
balance
Pant_Trans
+ EE———

Figure 3.20: Another horizontal refinement of WithdrawOK.

Now suppose that the ATM block of Figure 3.16 was further decomposed into three
separate processes as shown in Figure 3.21. The ATM block now contains three

processes, Dialogue, MoneyHandler and Printer.

ava

[ ; - e b ~

i Oratogre ;:

ol [mmmeez [ ] —y

Punter

- .

Figure 3.21: Inside the 47M Block.

Following the refinement process, the MSC of Figure 3.20 must first be refined vertically
to show the decomposition of the ATM block. This refinement is followed by a
horizontal refinement with the addition of messages. The resulting MSC, that conforms

to the MSC in Figure 3.20, is shown in Figure 3.22.
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Figure 3.22: Vertical Refinement of WithdrawOK.
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Chapter 4
UML to SDL

This chapter introduces our stylized use of UML for describing distributed system
architectures. The UML to SDL architectural mapping rules that we defined are then
presented and the approach is illustrated via two examples.

4.1 Introduction

The Unified Modeling Language (UML) [7] is a set of standard notations for modeling
software systems at different stages of their development. Although the lack of formality
in UML is beneficial at the early stages of development, this very property changes into a
liability when the time comes for simulation, validation and implementation phases,
where SDL is better suited. It should also be noted that UML is still relatively new,
whereas SDL has been around for many years. Instead of throwing away all the
experience accumulated with SDL over the years and starting from scratch with UML,

the two can be combined so that the advantages of both languages could be used.

The translation from UML to SDL necessitates a proper mapping between UML and

SDL. For that purpose, two different approaches can be taken:

1. Use UML stereotypes to map SDL directly into UML so that UML to SDL
translation becomes one-to-one, which is the approach taken in the (Z.109) [27,
28] standard.

ii.  Use the standard elements of UML so that a designer need only have basic
knowledge of SDL, which is the approach taken in this thesis.

The first approach requires a designer to learn SDL before being able to design a system.
Since this method maps SDL into UML, then why not use SDL directly? A drawback is
that by importing UML into SDL, the advantages that UML has over SDL in the early
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phases of development are lost (since we would in a way be formalizing UML by

importing a formal language).

The second approach is the one that we have adopted. We use UML in such a way that
all the advantages of UML are preserved. Anyone familiar with UML should be able to
use the methodology with a minimum amount of leaming. Our approach uses standard
UML concepts described in the OMG UML Specification 1.3 {7}, but in a stylized way

similar to a profile.

4.2 Distributed System Architecture Description Using UML

Currently, UML is the most popular language for describing software systems, but it still
has deficiencies when dealing with real time distributed systems [29, 30, 31]. A number
of researchers and practitioners feel that in order to overcome the limitations of the
current version of UML, the language should be extended to support concepts from other
notations. There is much debate on the subject, but the prevailing opinion is that
extending UML to accommodate everyone (people from different domains) would result
in a bloated and unwieldy language. It is also generally agreed that the UML extension
mechanisms such as stereotypes and tagged values are sufficient for any domain specific
customization [7, 8] The UML extension mechanisms has allowed for the development of

UML profiles for domain specific applications

A problem faced by designers of real-time distributed systems is that UML, being a semi-
formal language, is unsatisfactory for simulation, verification and validation. Real-time
distributed systems are much more complex than regular systems and the specification
and verification of complex behavior in time is an essential feature not currently offered
by UML (29, 30, 31].

The technique introduced in this chapter uses UML to model distributed systems
architectures. By architecture, it is meant that different components of the system and
their connections for communication minus behavior are modeled. The behavior of such
systems will be specified with MSC, which in its latest version [12] includes UML

Sequence Diagrams.
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Standard UML elements with as little customization as possible are used so that the
specifications developed by the technique would be easy to understand. For the
description of the architecture of a distributed system, UML Class and Object Diagrams
are used. The following subsections explain the way in which these diagrams are used for

the description of distributed systems components and their interconnections.

4.2.1 Class Diagram
UML Class Diagrams are used to show static relationships between elements in the
system [7, 18, 30]. The way different model elements are employed to accomplish this is

described in the following subsections.

4.2.1.1 Subsystems

A package is a method of organizing model elements. A subsystem on the other hand
represents a behavioral unit in the model. The subsystem stereotype applied to a package
shows this distinction. A subsystem may or may not be instantiable [7, 8, 18]. For the
purposes of this thesis, all subsystems are assumed to be instantiable. The graphical

representation of a subsystem is shown in Figure 4.1.

1

<<subsystem>>
SemeSytem

Figure 4.1: Subsystem representation.

Instantiable subsystems are of interest because they have their own threads of execution
and can be treated as stand alone processes. As a result, they can be instantiated and

deployed across many locations.

Instantiable subsystems are the major building blocks that are used to describe a
distributed system. These components are interconnected through channels. If an
appropriate method is used for describing these channels, the subsystems can be made to
be as weakly coupled as possible, which is a prime concern in object oriented design.

Using an appropriate method for channel descriptions will also enable a designer to have
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tight control over the valid signals that can be passed between components. The
following subsections describe our approach for specifying inter-component

communication.

4.2.1.2 Communication Between Classes

When describing a distributed system, a distinction between two types of channels must

be made:

1. Subsystems to subsystem channels that allow classes inside a subsystem to

communicate with a component inside another subsystem.

ii. ~ Component to component channels that allow components to communicate

with each other inside a subsystem.

In a distributed system, messages are passed between model elements via channels. The
obvious approach to show communication between classes would be to simply connect

them with associations as shown in Figure 4.2.

ot W Save
webpageQ e CWedbPagr(Q
Bl
2
PleSaver
euFileQ

Figure 4.2: Communication through simple associations.

The drawback with this approach is that it is difficult to specifically indicate which
signals travel over which channels. How would we specify that “file” could only be sent
to class Client via *“ch2” but not via “ch1™? This could be accomplished using Type and

Implementation Classes.

To show the existence of a channel between two classes, associations between Type
classes are used. The channel will then exist between the classes that implement the

Types. The messages or signals that can be passed along these channels are the
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operations that are defined within the associated Type classes. An example of two

classes communicating via two channels is shown in Figure 4.3.

__________________ {> <yper> AD \ CQper> 54,---_---_______-_-_
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T T T —— \I
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................ - e ac 5 <> 5<]"+"""""""'
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1

—_—de - —
(™ Logical Chanset |

Figure 4.3: Communication using two channels.

The logical channel indicated in Figure 4.3 consists of two type classes. In this particular
example, two channels are used to connect two implementation classes. The operations
defined over the associated types denote the allowed signals that can be passed over the
channel. Unlike the previous example shown in Figure 4.2, defining channels in this
manner allows designers to explicitly denote which signals can be sent over specific

channels.

This use of type and implementation classes is similar to the Proxy pattern [32] where the

type classes are analogous to proxies and control access to the implementation classes.

4.2.1.3 Communication Between Subsystems

Another reason why straightforward associations between components are impractical is
in the case of inter-subsystem communication. When designing a subsystem that can be
deployed, the interface that a subsystem offers the “outside” world must be clearly

defined. Using associations in the standard UML manner leads to confusion.
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<<gubsystan>> «<<subsystan>>
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Figure 4.4: Inter-subsystem communication using normal associations.

In the Class Diagram shown in Figure 4.4, there are two associations between the client
and server subsystem. Suppose that during runtime, there are five instances of each
Client class and one Server object. This means that there would be 10 logical
connections with the Server object. If a designer wanted to limit the number of channels
between the two subsystems to one channel (perhaps there is a physical limitation), it
would be impossible using the notation shown in Figure 4.4. To accomplish this, it is
necessary to use some sort of buffer mechanism, which allows components within a
subsystem to “see outside” and other subsystems to “see inside” in a strictly defined way.
Since packages denote collections of components and are not components themselves,
package-to-package communication is done through components contained within the

communicating packages. The components in question are Type classes.

<<gubsystan>> <<gubsystan>>

Figure 4.5: Inter-subsystem communication using type classes.

The Type classes shown in Figure 4.5 are depicted using a dotted border to denote the
fact that they are nor instantiable. The services offered by the type classes are
implemented by Implementation Classes contained within the subsystem. The Type
classes can be seen to behave as interfaces between the two subsystems, and the
association between them denoted the communications link between the two and can be

thought of as channels between the subsystems.
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By using Type classes as interfaces between components in this manner, the subsystems
become more modular. Use of straightforward associations as described in Figure 4.4
can result in components that are tightly coupled. By decoupling subsystems as much as

possible by strictly defining their interfaces, the possibility of reuse is much greater.

Using type classes to provide a more unified interface to the subsystems is similar to the
Fagade pattern presented in [32]. The common use of the Facade pattern allows for
unidirectional message passing for traditional (sequential) object-oriented systems. For
distributed systems with concurrent threads of execution, bi-directional communication
needs to be provided between two processes in a distributed environment. The technique
therefore uses a facsimile of the Fagade pattern, where bi-directional communication is
enabled. It should also be noted that the technique allows a subsystem to provide more
than one “Fagade” or interface to the outside world. That is to say that a “Facade” in our
case provides access to implementation classes based on the messages being passed, and

is not an aggregation of all the functionality provided by the contained classes.

Figure 4.6 shows an example of two subsystems (client and server) that communicate
with each other. The client subsystem consists of two client classes that communicate
with the server class contained in the server subsystem. The Type classes that link the
two Subsystems (C and D) are empty. They act as a buffer mechanism for connecting the
subsystems. The operations are defined in the Type classes that are actually implemented

by the Implementation Classes (Type A for instance).
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Figure 4.6: Clienv/Server class diagram.
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In Figure 4.6, Type A inherits from type C. Since Type C has an association with type D,
type A can communicate with any class derived from D. Therefore by implementing
type A, Clientl can communicate with the server in the other subsystems. This
relationship is an example of the Liskov Substitution Principle (LSP) which states that a

child class can be substituted for a parent class in general [2].

4.2.1.4 Communication with the Environment

A class that has the “actor” stereotype applied to it represents an abstraction that lies Just
outside the system being modeled. An actor is defined to be outside the system, but may

still be of interest when specifying how they interact with external agents. [7]

For the purposes of describing the architecture of a system using UML, it is necessary to
show the interaction with the environment. In this case, the environment is loosely
defined as anything extemal to the system in question. Figure 4.7 shows an actor called

“Client” which communicates with the system “‘server’”.

<<qbsynian»>
saEver
--------- . Fececeaan .
<AL ; <<Type»> ! ) <<Typer»» ! . ““él‘h:m
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Figure 4.7: Communication with the environment.

Operations defined inside the actor class represent messages that can be sent to the
environment by the system. Using actor classes allows for the explicit specification of
allowable messages that can be exchanged between the environment and the system,; this

would not be possible without them.

4.2.2 Object Diagrams

Class diagrams describe the static relationships between objects and subsystems. They
do not convey what the system will look like when it is running. The main problem is
that multiple instances of the same class that interact with different objects are difficult to
show in a class diagram. For this reason, Object Diagrams are used to show class

instances explicitly. It is possible to show the entire system in one diagram, but this is
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not practical for large systems. To avoid overly large diagrams, Object Diagrams are

used in two ways.

4.2.2.1 Internal Structure Diagrams

As previously described, a subsystem contains classes that communicate with each other
or with other subsystems. In order to show exactly how many instances of each class are
present within a subsystem, an object diagram for each subsystem is created. The internal
structure diagrams for the client and server subsystems described in Figure 4.6 are shown

in Figure 4.8.

clientA : client seIverA : server

[FS:FRetemnr | [WS: WekSerer

Figure 4.8: Internal structure of Client/Server example.

At runtime, the system will have one instance of the client and server subsystems. Both
subsystems will have exactly one instance of their contained classes. The channels
between subsystems are not shown in these diagrams. They will be shown at a higher

level of abstraction as explained in the next section.

4.2.2.2 Interconnection Diagrams

Once the internal structures for all subsystem have been determined, the actual
connection between subsystems must be shown. Only subsystems are shown in the
interconnection diagrams; this results in straightforward diagrams that reflect the
architecture of the system. It was mentioned in the previous section that links that go
outside of a subsystem are omitted in the Internal Structure Diagrams. These links are
shown in the Interconnection diagram. These diagrams show a more abstract view of the
subsystems where the internal details of the subsystems are omitted. The Interconnection

Diagram for the client/server model (Figure 4.6) is shown in Figure 4.9.
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Figure 4.9: Subsystem interconnections for Client/Server example.

The link between the client and server could translate into one or many channels
depending on the class diagram (Figure 4.6). It is known from the class diagrams
through which type classes subsystems communicate, and hence the signals they send to

each other. It is therefore unnecessary to show them in these diagrams.

4.3 From UML to SDL

In this section the mapping of a UML architecture into an equivalent SDL architecture is

discussed.

4.3.1 SDL Channel Description
The precise specification of channels (and their signal lists) between communicating
components was found to be the most difficult obstacle to overcome. We have

considered three possibilities.

4.3.1.1 Type and Implementation Class Stereotypes
In a UML Class Diagram, a fype stereotype can be used to show that a class has some
behavior but that it cannot be instantiated. Another class that is stereotyped

implementationClass must implement the Type class [7, 18].

The Type classes are used to show in more detail how the communication between
objects happens. The Implementation Classes that implement the Type classes become
Process Types in SDL. By using these two stereotypes to describe a system, one can tell
at a glance which classes are instantiable and will become elements (Process Types) in a

SDL specification.

The disadvantage of using these stereotypes is that they may not be widely known. They
are defined in the UML specification, but are omitted in most basic UML books.
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4.3.1.2 The Interface Stereotype
Communication between objects can be done through Interfaces in UML. The problem
with interfaces is that in UML and SDL, they define exported operations available to

other objects. This makes showing bi-directional communication difficult.

The convention in UML is to show a dependency arrow between an object and an
interface [7]. This type of relationship is commonly understood as being unidirectional.
In order to shown bi-directional communication, associations between Interface Classes
could be drawn, but this is not the accepted way to use Interface Classes and would be

confusing to most people familiar with UML.

4.3.1.3 Abstract Classes
Communication between two classes could be shown using abstract classes instead of
using Interface classes. The advantage of this method is that it uses UML in a commonly

understood way that achieves the same results as described in the preceding two sections.

The only difference between using Type and Implementation stereotypes with simply
using abstract classes is the semantics. For these two cases, the class diagrams would be

the same except for the stereotypes.
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Figure 4.10: Using abstract classes.

Figure 4.10 shows the system defined in Figure 4.6 using the abstract constraint instead
of Type and Implementation Class stereotypes. Note that this diagram could map very
easily into two SDL Block Types that communicate through one channel. It is intended

that C and D would become Gates in SDL.
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The main difference between Type/Implementation Class and abstract classes is that
Type and Implementation classes can only be related through a “realizes™ relationship
whereas abstract and concrete classes have no such limitation (they can be related with

associations, aggregations, etc) [18].

Showing bi-directional communication using Interfaces goes against UML convention
and therefore cannot be used in this way. One option is to use Interfaces to show
unidirectional communication and thus use two unidirectional channels to describe one
bi-directional channel. This idea will lead in practice to more complex diagrams. Figure

4.11 depicts the system in Figure 4.10 using Interface classes.
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Figure 4.11: Client/Server system using unidirectional channels.

4.3.2 Translation of UML Architectures into SDL

The following sections describe the actual mappings that are used to translate a UML

architecture into an equivalent SDL architecture.

4.3.2.1 Class Diagrams

UML Class Diagrams are used to show static relationships between elements in a system.
The static Class Diagrams also show how components communicate with each other.
Channels and the valid signals that can be sent over them are explicitly defined. The
UML elements that are used and the way in which they are employed in the Class

Diagrams are shown in the following subsections.
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4.3.2.1.1 Subsystems
Since a subsystem is a self-contained element that has its own thread of execution, it
maps nicely into a SDL Block Type. An example of the subsystem notation is shown in

Figure 4.12.a. Figure 4.12.b shows the equivalent SDL representation.

I |
<<subsystem>>
A A
(a) UML (b) SDL

Figure 4.12: Instantiable subsystem.

Block types are the main building blocks used for describing distributed systems in SDL.
Blocks communicate with each other through channels [3, 18]. We must therefore find a
way to describe these channels in UML. The goal is to make subsystems as weakly
coupled as possible to preserve the concepts of object-oriented design. Communication

between components will be discussed in later sections.

4.3.2.1.2 Classes
In general, Blocks in SDL contains other Blocks or Processes [3, 4]. The subsystems
described in the previous section will contain classes or other subsystems. Obviously,

classes map well into Process Types in SDL.

We are interested in two UML stereotypes for describing the active components in a
system and their interconnections. These are the Implementation Class and Type

stereotypes.

4.3.2.1.2.1 Type Stereotype

A ppe stereotype applied to a class is used to specify operations applicable to a set of
objects without defining the physical implementation of that class. These types of classes
cannot be instantiated (much like an abstract class). All valid UML associations can be

used between Type classes.
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4.3.2.1.2.2 Implementation Class Stereotype

An Implementation Class may realize a number of different Types. An Implementation
Class realizes a Type if it provides all of the operations defined for that Type. An object
may have at most one Implementation Class. However, an object may conform to
multiple different Types. As with Type classes, all valid UML associations can be used

between Implementation Classes.

4.3.2.1.2.3 Implementation Class and Type Stereotypes
Implementation Classes and Type Classes can be used to explicitly define how objects
communicate with each other, including the definition of a valid set of signals that can be

sent over a specific channel.
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Figure 4.13: Communication between components.

Figure 4.13 shows two Implementation Classes, Person and Arm. The two type classes
define the valid signals that each Implementation Class can receive. The Atm class
implements the fromPerson Type and the Person class implements the SfromAtm Type.
The association between the two Type classes signifies a channel and allows the Person
class to communicate with the Arm class. The operations defined in the Type classes
define the set of valid signals that can be sent over the channel. For instance, a Person

can send Deposit and Withdraw signals to the Atm class.

Using Type and Implementation classes in this manner allows for the unambiguous
specification of channels between components. Suppose a vending machine class was
added to the system shown in Figure 4.13. This new class addition is shown in Figure
4.14.
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Figure 4.14: Adding a new class.

Only the signals Candy, Coins and Selection can be sent over the channel that connects
Person with VendingMachine. It would be undesirable to allow the Atm class to send a
Candy message to the Person class. This is a clear demonstration of why the choice to

use the implementation class and type stereotypes was made.

Implementation Classes translate into SDL Process Types. The Types that a given
Implementation Class realizes map into SDL Gates and the operations defined within
these types become the signal lists for the gates. The equivalent SDL representations of

the implementation classes shown in Figure 4.13 are depicted in Figure 4.15.

signal Mores, Ealance, signal Depcait, Withdraw, i
signallist F = Mor.ey. Ealance. signallist A = Deposiz, Withdraw, J
S F] fal
l Person fromAtm u‘—*» ﬂ Atm fromPerson
+ [A] A d {F]

Figure 4.15: Process types derived from UML.

It has been mentioned that channels connecting classes are shown by drawing
associations between Type classes. The UML Class Diagrams have been used to define
allowed connections between classes in a given subsystem, inter-subsystem

communication is discussed in the next section.
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4.3.2.1.3 Inter-Subsystem Communication

It has been shown how two classes can communicate by using Type classes. A
mechanism for communicating between subsystems is also needed. By using Type

classes the same way, channels can be explicitly defined between subsystems.

<<subsystan>> <<qbsystmn>>
pasen

.............

Figure 4.16: Communication between subsystems.

Figure 4.16 shows how paired Type classes can be used to define channels between
subsystems. The Type classes become SDL Gates. The rest of the classes inside the

subsystems are hidden for simplicity. Figure 4.17 shows the full system.
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Figure 4.17: Classes communicating between subsystems.

In the subsystem people, fromAtm inherits from P, which does not have, any signals
defined of its own. The type P will become an SDL Gate, and the signal lists will be the
union of all signals defined in the Type classes that inherit from it. The subsystems will

map into SDL Block Types, which are shown in Figure 4.18.
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Figure 4.18: Block rypes derived from UML.

4.3.2.2 Additional Concepts
So far, only basic relationships between classes have been addressed. There are a few
specialized cases that need to be looked at. These are discussed in the following

subsections.

4.3.2.2.1 Inheritance

The concept of inheritance is present in both UML and SDL. For the purposes of
translating from UML to SDL, only classes with the Implementation Class stereotypes
are allowed to have inheritance relationships. Multiple inheritance is not allowed. An

example of inheritance is shown in Figure 4.19.

<<implementatonQass>> ____._________DE <<Type>>
Person © fromAm
{ 1
<<mplementazonQass>> <<implementanonQass>> i <<Type>> . C— <<implementanonQass>>
BusinessMan HouseWife . fromPerson : Amn

Figure 4.19: UML inheritance.

The BusinessMan and HouseWife classes inherit from the Person class. As a result, both

can communicate with the 4rm class.

Figure 4.20 shows the SDL representation of the inheritance relationship between the

Person, BusinessMan and HouseWife classes shown in Figure 4.19.
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signal Mogey, Balance,

signallist P = Money, Balance,

( [P]
Person fromAm

[A]

[ 4 ki
Q BusinessMan ) ( HouseWife j

Figure 4.20: SDL inheritance.

4.3.2.2.2 Abstract Classes

Abstract classes and packages in UML are mapped to abstract process and block types
respectively. Abstract components cannot be instantiated and must be specialized by
other components. This is accomplished by using inheritance where sub-classes will

inherit from an abstract class.

4.3.2.2.3 Regular Class

A normal class that does not have any stereotypes applied to it becomes a SDL Newtype

that is similar to a “struct” in C. Figure 4.21 shows how a class is translated into a SDL

Newtype.
Car newtype Car struct
Char[] Model
Char[} Mcde! Char{] Color
Chas[] Color Integer Year
Integer Year endnewtype
(a) UML () SDL

Figure 4.21: SDL newtype.

4.3.2.2.4 Interface Class

An interface in UML describes the externally visible and accessible behaviors of
components. Similarly, an interface in SDL lists the externally visible set of stimuli
(input signals, procedures and variables). An interface with an agent’s name is implicit.

Therefore, UML interface classes can be easily mapped to SDL interfaces.
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4.3.2.3 Object Diagrams
Object Diagrams are used to show class instances explicitly. It is possible to show the
entire system in one diagram, but this is not practical for large systems. To avoid overly

large diagrams, Object Diagrams are used in two ways.

4.3.2.3.1 Showing the Internal Structure of Subsystems

A subsystem contains classes that communicate with each other or with other subsystems
as previously described. In order to show exactly how many instances of each class there
are, an object diagram is used for each subsystem. An example of Object Diagrams for

the subsystems in Figure 4.17 is shown in Figure 4.22.

:people :benks

Jack Fersca il Fersor TD Atm Roval Atm

Figure 4.22: Subsystem object diagrams.

The purpose of these diagrams is to show how a subsystem will initially look when it is
first instantiated. For example, the people subsystem will have two instances of Person,
namely Jack and Jill every time a new instance of people is created. Communication
links between components within a subsystem are shown in these diagrams, but inter-
subsystem communication links are omitted. These will be shown in another Object

Diagram.

The equivalent SDL representations of the object diagrams in Figure 4.22 are shown in

Figure 4.22 and Figure 4.23.
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Block Type people

signal Money, Balance, Jack:Person  fromAmm

signallist P = Money, Balance,

P
( Person &omg([—Lﬁ ( Jill Person  fromAtm
[A]

Figure 4.23: Block Type People.

Block Type banks

signal Deposit, Withéraw,
signallist A =Depos:, Wittdraw,

[A]
( Atm fromPerso;(—> ( Royal Atm fromPerson
[P]

TD Atm fromPerson

Figure 4.24: Block Type Banks.

The SDL types (double bordered components) in the diagrams represent instantiable
elements similar to classes. The unconnected arrows represent the connection points of
the types where channels can be connected upon instantiation. The square brackets “[ |”
enclose the allowable signals to and from a connection point of a type. The instances
(stmple bordered components) show these connections. If we look at Figure 4.24,

TD:Atm is an instance named “TD” of the type “Atm” (same convention as UML).

4.3.2.3.2 Showing Inter-Subsystem Communication

The previous section dealt with specifying what the internal architecture of subsystems
look like. The next step is to show the instances of the subsystems and how they are
linked together. This is accomplished by using Object Diagrams where the objects are
the subsystems and the internal structures are omitted. Using the subsystems described in
Figure 4.17, an Object Diagram showing how actual instances of the subsystems can be

interconnected is shown in Figure 4.25.
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chl

Quekec people

Canada banks

Ontanc people

ch2

Figure 4.25: Interconnecting subsystem instances.

The links can be given names that will

translate into channel names in SDL.

equivalent SDL representation of Figure 4.25 is shown in Figure 4.26.

dgnal Money, Balance,

sgnallist I = Mozey. Balance,

people P >

sgnal Depont, Withdraw.
signallist A = Deposit, Withdraw,

banks B

Quebec people P

[Al

B Canada banks

Ontano peopie P

{1l

ch2

Figure 4.26: SDL system representation.

4.3.2.4 Summary of Translations

Table 1 shows how different UML components are mapped into SDL components.

UML

SDL

Subsystem

Block Type

Implementation Class

Process Type

Abstract Subsystem

Abstract Block Type

Abstract Implementation Type

Abstract Process Type

Class New Type
Type Gate
Associations Between Type Classes Channels
Operations described by Type classes Signal List
interface interface

Inheritance between Implementation Classes

Inheritance between Process Types

Inheritance between Subsystems

Inheritance between Block Types

Table 1: UML to SDL mapping rules.
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4.4 Related Work

The Z.109 [28] recommendation imports SDL into UML by making use of the extension
mechanisms available in UML. Thus the “SDL UML” language that is described in
Z.109 is a specialized subset of UML. An advantage of the use of the UML extension
mechanisms is that all SDL concepts can be imported into UML. This is good for
designers that are already familiar with SDL. Someone unfamiliar with SDL would have
to learn it in order to use the Z.109 specification. This means that there is a relatively
steep learning curve for this method. It should also be noted that the Z.109 is not part of
the OMG Specification of UML (v1.3) but is a customized version of UML for the
purpose of using SDL and UML together. Telelogic is developing tools that support
translation of UML into SDL based on the Z.109 recommendation [27].

On the other hand ObjecTime has introduced a methodology for describing real time
systems using UML [30, 31]. In this approach, concepts from ROOM [33] are introduced
into UML via stereotypes. There is no attempt to map UML into SDL, but it is
straightforward to map the ROOM-UML elements into SDL. The approach has been
extended into mapping SDL into UML [34]. The main reason behind this mapping is that
UML is more popular than SDL and consequently it is better to use UML for design,
simulation and verification. However, it should be noted that UML does not have formal

semantics yet and tools for simulation and validation are not available yet.

The Integrated Method or TIMe [35] uses UML for object modeling and MSC for
showing the interactions between objects. SDL is used to fully specify the system in
terms of architecture and behavior. The TIMe method has loose mapping rules for going
from UML to SDL that are based on the Z.109 recommendation. As such, TIMe method
requires that designers manually do the translations. This can lead to errors and
inconsistencies. The approach discussed in this thesis automates the translation process
and is combined with existing tools [14, 15, 19] for automatically translating MSCs into

SDL extended finite state machines.

In [36], Verschaeve and Ek present three scenarios for combining SDL and UML. They

defined a mapping between the two notations including the behavior models. The
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mapping of basic structures such as subsystem and class are similar to our method. The
main differences are in the specification of signals and inter-subsystem communication
and the usage of object diagrams. Another difference is in the behavioral specification,
where our technique uses MSC to describe the behavioral aspect of a system, Verschaeve

and Ek use the UML state diagrams.

4.5 Automatic Teller Machine Example

Figure 4.27 shows a description of a system in UML. The system is composed of one
subsystem. The subsystem contains three Implementation Classes, User, Atm and Banks.
These are connected through Type classes in the same manner as discussed previously.
Figure 4.28 is an object diagram of the ATM_Block subsystem. Figure 4.29 shows the
SDL representation of the system with one instance of the ATM _Block block type.
Figure 4.30 shows the internal specification of 4TM Block that is derived from Figure
4.27 and Figure 4.28.

<<mb system >>
ATM_Block
<<Type>> <<Type>>
<<mplexentazenClass>> > Ul ' Al - <<implementationClass>>
e \ -
User Req_Pm) Cuedg At
Processrg Msg Enter_pin)
* Retwn Card)) Canxcel)
D wmv_pn_megd i etbalence(
tum eos:_msg) : withdrew()
- e_smoun) .
;::_?dm:eo - <<Type>>
req_emours( : A2
Eve_moneyo ‘
pant_ung) Valid)
ac_posable_msg) Invalid)

—_— Balance)
wnoust_spproved)
aot_spproved) :

' <<ryp::> ;
<<implementationClass>> | o Bl
Bank ; VenfyQ
Abor)
req_balenceQ
epprove_emourt)

Figure 4.27: ATM_Block Subsystem.
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:ATM _Block

Jack User

cal

¢hZ

Interact ATM

Koval Bank

Figure 4.28: ATM_Block Object Diagram.

system example

ATM_Block

B1:ATM_Block

Figure 4.29: SDL Representation.

block type ATM_Block

signal Req PinQ),Procesmng_Msg),
Retuzn CaurdQanv. _pm_msg0).

tum eoust_m sg)), opticn().prat_balance().
req_amownt(),gve_money(),
paz_wng).nx_posable_msg),
dagnallisnl] =

Req PunQ.Procesang Msg).

Retizn CudQunv_pmn_msgd).

m equt_e 5g0), option) . puat_balaze(.
req_smownt().gve_moneyQ,
Fr_vwn).nxk_possble_msg).

User

fL1}
U1
[L2}]

{L4]
=
[L3]

[L2]
)

Jack User

=

(L1

7

signal vV enfyO.Abart() req_balance),
spprove_smours(),

sgnallig 13 =
V eay0.Abat) req_balance),
spEove_umouwre(),

signal Cud) Enter_gm(.Cancell.
gebalance(), mthdraw(, ent_am ount),
signallist12 =
Card.Enter_pmQ.CanceiC.
gethadlance(), mthdraw().ent_em cunt)),

signal V wid0.lavasd) BalenceQ,
amourt_sppraved(, not_spproved),
sgnallig L3 =

V akd) Invesd).Baance)),
amoure_spproved), not_spproved),

[(L1)
ckl
(L2}

Al
Interact ATV
A2

[L3]
ch2

Figure 4.30: ATM_Block SDL Specification.
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4.6 Inres Protocol Example

This section shows another architecture that models the Inres protocol. Figure 4.32
shows the class diagram of the system. The environment can communicate with the inres
subsystem, and the inres subsystem communicates with the medium subsystem. The

implementation classes are Inres, Coder and Medium, the rest are type classes, except for

the Environment class which is an actor class.

Emarcnment

Public vour3 IKONnag
public wot ICONcontQ
Pudlic voxs IDATind)
public woug 1IDSina

prrez

[

Figure 4.32 shows the top-level object diagram for the system. Two instances of the

inres subsystem communicate with each other through one instance of the medium

subsystem.

tares

>

public voud ICONegd
Public void ICONre 30
Pubdic void IDATrRQO
Public woid [DISreg0

Pudlic voud CRY
public woid CCo
Ipubic void DT
public void DRY

€2

Public void MOCATreq 0

[«
p e oder
public void CRO
<}— public voit MDATind 0 public woid CCO
Pubic voud OT)
public void DR)
chpnnell
vandium ‘,
MC1 M1 Mediym

Figure 4.31: Inres Protocol Class Diagram.
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INRES] : inres

INRES2? : inres

MEDIUM : medium

Figure 4.32: Inres protocol top-level object diagram.

The object diagrams which show the internal structure of the inres and medium

subsystems are shown in Figure 4.33.

CoderProcess : Coder

Figure 4.33: Object diagrams for the /nres and Medium subsystems.

Figure 4.34, Figure 4.35 and Figure 4.36 show the equivalent SDL architecture obtained

InresProcess : inres

MediumProcess : Medium

Medium Subsyseem

by applying the UML-to-SDL mapping rules.
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INRES! : inves ol pirsey
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[aon7ind]
G @ - >
4 [weonTind] INRES2 : inves [mg] cht [&%}
162 OATreq. AT,

medum chant Seq 1DISing

v

[m0aTng) chan2
ees [maTeg]
MG1
MEDIUM : medium
Figure 4.34: Inres protocol system architecture in SDL.
ok ype Mmedium
[a508 7ind]
[V gy By [V ) u‘ & ‘ m.‘
[Mm'(nq] cho [MDITn] [Maﬂnq]
Figure 4.35: Medium subsystem specification in SDL.
R,
S 1G1
Pl [mon7g]
e L w
[wor7ed | [asoaTed]

Figure 4.36: /nres subsystem specification in SDL.
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Chapter 5

Tool and Application

This chapter gives an overview of the UML to SDL and MSC refinement tools. The high
level architecture of each is described, and then the limitations of each tool are discussed.

The chapter concludes with an illustration of the use of both methodologies together.

5.1 Overview

As previously stated, two methodologies have been developed with the intention of using
them in conjunction to aid in the design of distributed systems from requirements to
design. The UML to SDL methodology was implemented in Java [37]. The MSC Use
Case methodology was then implemented and added to the tool. The structure of the two
combined implementations is shown in Figure 5.1. The gui package is the front-end

graphical user interface that allows both tools to be accessed.

]

eventhandler msc2sdl

[Foom 2

[
|

eventhandier | | =

Figure 5.1: Tool Class Diagram
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5.2 UML to SDL Transiation

To create UML models, ArgoUML([38] was used. ArgoUML is a freely available UML
editor that saves the model information in XML Metadata Exchange (XMI) [39] format,
which is text-based and can easily be parsed and manipulated. The XMI file is parsed by
the UML to SDL tool and a UML data structure is created. The UML data structure can
then be translated into an SDL architecture and outputted in a format recognized by
ObjectGeode. The SDL architecture can then be viewed and edited in ObjectGeode.

The uml2sdl package in Figure 5.1 represents the implementation of the UML-to-SDL

algorithm. The major components of the tool are:

® eventhandler: Processes events generated by the user and performs functions
such as reading in XMI files and parsing them into a UML data structures. It will
then perform the translation from UML to SDL and create an SDL data model,
which is combined with the MSC input file by the MSC-to-SDL tool.

® Umi: Contains classes that represent UML elements. This package allows a

UML data structure to be created by the eventhandler package.

e Sdl: Contains classes that represent SDL elements. This package allows a SDL

data structure to be created by the eventhandler package.

® Xmi: Contains all the keywords used in the XMI input file. This package allows
the XMI input file to be parsed so that the evenhandler package can create a UML

data structure.

® Msc2sdl: The MSC2SDL tool is a C program that is accessed using the Java
Native Interface (JNI). This package contains mechanisms that allow the java
program to access the C program to combine the MSC behavioral specifications
with the SDL architecture to generate a full SDL specification.

As previously mentioned, ArgoUML 0.7 is used to create the UML models. Version
0.8.1a is currently available. The newer version is much better, but it is not backwards

compatible. The developers of ArgoUML changed the format of the XMI output by the
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tool, and as a result, version 0.7 must be used to create the models. To upgrade to the

newer version, the algorithm that parses the XMI files will need to be modified.

A bug that is somewhat problematic was discovered while testing the UML-to-SDL tool.
When ArgoUML 0.7 loads a previously saved model, some information is lost. It seems
that for some reason, the links in object diagrams are set to have null endpoints, instead
of referencing objects. If the model is then saved and used as input to the UML-to-SDL

tool, an error will occur. This error has been fixed in the current version of ArgoUML.

5.3 Stepwise Refinement of MSCs

Figure 1.2 (shown on page 5) shows how the MSC refinement tool is combined with
existing tools. The tool can guide the user through the refinement process and verify that
the resulting MSCs conform to the original use cases and follow the system architecture

at every step.

The usecases package in Figure 5.1 shows the structure of the tool. The major

components of the tool are:

o eventhandler: Processes events generated by the user and performs functions
such as reading in the MSC files and constructing event order tables to check if

the conformance relation holds for a set of MSCs.

e msc: Contains classes that represent MSC elements. The eventhandler package

uses these classes to create msc data structures.

e eor: Contains classes that allow the eventhandler package to use the MSC data

structures to create event order tables.

The MSC refinement methodology is guided by an architecture specified in UML. By
using the umi2sd! package, the tool can read a UML model from disk and then translate it
into SDL via the msc2sdl package. The resulting SDL architecture is then used to guide

the refinement process.
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The MSC refinement tool must be used in conjunction with a MSC editor. In our case,
ObjectGeode is used to edit the MSCs. This requires that for every refinement, the user

must do the following:
i Load the MSC into ObjectGeode.
il Refine the MSC.
iii. Save the MSC.
iv. Use the MSC refinement tool to check the new MSC against the old one.

This process is not very user-friendly. The ideal situation would be to have the

refinement algorithm and editing capabilities integrated into a single tool.

Another issue is the fact that the MSC-to-SDL tool requires that global conditions be
included in the design MSCs to properly translate them into SDL. As a result, the
designer must add global conditions to all the MSCs at the end of refinement process.

The ideal scenario is for the use of conditions to be optional.

5.4 SIP Example

In this section, the generation of an SDL specification from a UML architecture and MSC
use cases is illustrated. The example starts with the description of the different scenarios
that can arise during a telephone call established using the Session Initiation Protocol
(SIP). The second step is to specify the architecture of the system using UML, and
translating it into SDL via the UML-to-SDL algorithm. The third step is to refine the use
cases into design MSCs using the refinement methodology. Finally, the MSC-to-SDL
tool generates the SDL behavioral specifications by using the design MSCs and SDL

architecture as input.

5.4.1 MSC Use Cases

The Session Initiation Protocol (SIP) is a text-based signaling protocol used to create and

control multimedia sessions between two or more parties over IP based networks [40].
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The use cases presented in this section were derived from the SIP call flows presented in

[41]. The call flows presented model two scenarios:

L One user of the system calls another, and after they are finished talking, the
called party hangs up.

il.  The user tries to complete a call, but gets a busy signal and hangs up.

“

=
—
| CaBerdis | | Callee dis | Lsn;._ﬁﬂ
A

Figure 5.2: Telephone call using SIP.

Figure 5.2 shows the different MSCs that make up the system. The first action is to
initiate the telephone call by sending the appropriate messages across the network to the
destination, after which the call will either be completed successfully, or unsuccessfully if
the called party is busy. If the call was properly established, the called party will
eventually terminate the call. The MSC use cases that depict this behavior graphically

are shown in Figure 5.3.
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Figure 5.3: Use cases for SIP call model.

$5.4.2 Architecture Specification

The static relationships between classes are shown in Figure 5.4. The actor class User
can communicate with the relephonesystem subsystem via the Receiver type class. The

telephonesystem encapsulates two subsystems:

1. Pots: Represents the conventional telephone system. Contains the

implementation class Pbx, which models a conventional switch.

ii.  Sip: Represents an IP based network that offers SIP capabilities. Contains the

implementation classes Gateway and Proxy, which model a SIP gateway and

proxy respectively.
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Figure 5.4: Class diagram for the telephone system.
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The object diagrams depicting the dynamic system architecture is shown in F igure 5.5:
I The top-level system object diagram.

ii.  Shows the configuration of the phonesystem subsystem. Note that there are two
instances of the pors and sip subsystems. The diagram shows clearly that
POTS1 communicates with POTS2 via SIP1 and SIP2.

iii.  Shows the pots and sip subsystem respectively.

(a) Dfteve (ror=cyrem
80Ty pns 20722 ¢v
o) joht -
o
LA LN
oh)
© Ser R o Gmena; £s Preg

Figure 5.5: Subsystem object diagrams.
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Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 show the corresponding SDL
architecture obtained from the UML-to-SDL tool.
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Figure 5.6: sipexample SDL system specification.
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Figure 5.7: phonesystem block type specification.
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Figure 5.9: sip block type specification.
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5.4.3 Refinement of Use Cases into Design MSCs

The architecture of the system is three layers deep. The use cases represent the view of
the system at the top layer; therefore a maximum of two vertical refinements can be
performed on them. Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13 show vertical
and horizontal refinements of the use case MSCs from Figure 5.3. Notice that the single
axis shown in the use cases has been decomposed into four to reflect the architecture. In

each case, the refined MSCs conform to the use case MSCs.
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Figure 5.10: Vertical and horizontal refinement of the /nvite bBMSC.
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Figure 5.11: Vertical and horizontal refinement of the Successful bMSC.
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Figure 5.13: Vertical and horizontal refinement of the Busy bMSC.

A second vertical refinement decomposes the sip instance from the second layer MSCs
into two instances, Proxy and Gateway, again reflecting the architecture of the system.
Figure 5.14, Figure 5.15 and Figure 5.16 represent design MSCs that depict the lowest
level of the system architecture, and which conform with the layer two MSCs. Also,
global conditions have been added to the design MSCs so that the behavioral
specifications will be compatible with the MSC-to-SDL tool.
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Figure 5.15: Successful design bMSC.
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Figure 5.16: Callee_dis design bMSC.

The MSC in Figure 5.17 does not conform to the MSC in Figure 5.13 because there is no

restriction that B (referring to the figure) can only happen after A, which is incorrect with

regards to the previous MSC.
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Figure 5.17: Non-conforming refined bMSC Busy.

Figure 5.18 shows a design MSC that conforms with the previous MSC because the

ordering relationship between the “Release_Complete™ and “Diconnect” signals has been

maintained.
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Figure 5.18: Busy design bMSC.

5.4.4 Generated SDL Behavior
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Figure 5.19: Gareway process type specification.
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Figure 5.21: Proxy process type specification.
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Figure 5.23: Pbx process type specification.
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Figure 5.24: Pbx process type specification (continued).
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Chapter 6

Conclusion

6.1 Contributions of this Thesis

An approach that uses the UML, MSC and SDL languages together from the
requirements to design phases was presented. The MSC language was used as a starting
point to capture user requirements. UML was then used to describe the architecture of
the system. Once the architecture was complete, the MSC use cases were refined in a

stepwise manner into design MSCs.

A stylized use of UML enables the architecture to be mapped into SDL, but the UML
semantics are preserved without importing SDL via the UML extension mechanisms. A
UML architecture is translated into an corresponding SDL architecture using the UML to
SDL algorithm (and tool). The design MSCs describing the behavior of the system, and
the SDL architecture, are combined into a fill SDL specification using the MSC-to-SDL
tool. The resulting SDL specification can be simulated, validated, etc. It can also serve
as the starting point for code generation using existing tools, such as ObjectGeode [5] and
SDT [6].

Current unstructured methods of creating software systems are not adequately suited to
handle the increasing complexity of software systems. The use of formal and automated
techniques such as the ones developed in this thesis will enable the development of such

systems, which may otherwise be unfeasible.

6.2 Future Work

The approaches developed in this thesis are aimed at creating a suite of methodologies
and tools to automate the development process as much as possible to increase the quality
of software, reduce development time and errors, and increase confidence in the finished
product. In the pursuit of answers, more questions are found instead. In the field of

software engineering, it is impossible to define a single methodology that will work in
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every case, which means that there is always room for improvement. With that in mind,

possible extensions to the work presented in this thesis include:

1.

1.

v.

The MSC use case refinement approach can be expanded to support more of the

MSC language such as inline expressions.

Conformance checking algorithms between two HMSCs that have different

roadmaps can be explored.

In general, it is possible to express a single bMSC with inline conditions as a
HMSC with simpler bMSCs. It would be useful to develop algorithms that

allow a designer to compare a bMSC with inline expressions to a HMSC.

It may be interesting to develop a conformance relation that checks if a
modified SDL process behavior conforms to the design MSCs. This would

have value if additions to, or modifications of, the SDL specification were

necessary.

Real-time systems, which are notoriously difficult to develop, could be used
with a high degree of confidence if verified using conformance checking
algorithms such as the ones presented. It would therefore be greatly beneficial
to include real-time aspects in the modeling languages used for development,

namely UML, SDL and MSC.
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