INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI







AN OBJECT-ORIENTED DESIGN
OF A SUBSUMPTION ARCHITECTURE

NADIA ANDREA GANTCHEV

A THEsIs
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2001
© NADIA ANDREA GANTCHEV, 2001



i+l

National Library
of Canada du Canada
Acquisitions and
Bibliographic Services
385 Wellington Street

Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68515-2

Canadi

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Voire rétérence

Our fle Notre rétdrence

L’ auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.



Abstract

An Object-Oriented Design of a Subsumption Architecture

Nadia Andrea Gantchev

The hardware subsumption architecture for robots as developed by Rodney Brooks
1s implemented in software in an object-oriented way and used for strategies of trucks
in the Truckin’ simulation game.

The subsumption architecture is a lavered mediator invented bv Rodney Brooks
for behaviour-based control of robots. The lavers are minimally dependent and use
minimal communication. We develop an object-oriented software design for the sub-
sumption architecture. and demonstrate that each layer can be used as a slot for a set
of plug-and-play components that implement different micro-strategies for achieving
a particular goal. Guidelines for the development of specific layers and components

of a subsumption architecture are also presented.
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Chapter 1
Introduction

Subsumption architecture was originally proposed by Rodney Brooks in 1986. pro-
viding a new architecture for the control of mobile robots. Since then. applications of
the architecture has been primarily to mobile robots or simulations of mobile robots.

Many intelligent systems such as agents, knowledge-based systems. planners. and
adaptive software need to be able to integrate and reuse a variety of decision-making
components. Today most of these systems are developed in software. although there
is still strong interest in autonomous robots that have such capabilities.

The subsumption architecture is a lavered mediator invented by Rodneyv Brooks
for behaviour-based control of robots. Behavior-based systems consist of task-oriented
modules implementing domain-specific solutions with representations de-emphasized.
and control decentralized. In subsumption. each laver of behavior includes as a sub-
set the behaviour of the lower lavers. There is a fixed priority arbitration scheme
to handle conflicts between layers, and a layer may suppress or inhibit lower lavers.
The layers are minimally dependent and use minimal communication. \We develop an
object-oriented software design for the subsumption architecture, and demonstrate
that each layer can be used as a slot for a set of plug-and-play components that im-
plement different micro-strategies for achieving a particular goal. Furthermore. a set
of guidelines for the development of specific layers and components of a subsumption
architecture is also presented.

This thesis is an application of subsumption architecture in a new context: genetic
programming. Specifically, we will present an object oriented design of a plaver in

the game called Truckin’ modeled on Brook's subsumption architecture.



1.1 Owur Context

The software architecture, and the reuse of micro-strategy components, is validated
by developing truck agents within the Truckin’ simulation game. The game is plaved
in a simulated country. In this country, there are three kinds of dealer: producers,
retailers, and consumers who trade in a single commodity. The producers, retailers.
and consumers have fixed locations and cannot trade directly. They relv on trucks
to ship goods from one place to another. Trucks can buy. sell. move, or make phone
calls to gather information. Trucks can move around the country, using gas. The
country contains several gas stations at which trucks can buy gas. A truck that does
not trade will eventually not have enough money to buy gas. A truck without gas is
stuck and can do nothing. The objective of the game is for retailers and trucks to
trade in such a way that there is a steady flow of goods from producers to consumers.
The winning truck is the one with the most capital at the end of the game. (The
original Truckin' game was invented by Mark Stefik and others at Nerox PARC as
part of their research into expert systems.)

The development of truck agents for Truckin' demonstrates that the subsumption
architecture provides a well-designed structure for strategies. and that micro-strategy
components can be reused as plug-and-play components within the subsumption ar-
chitecture.

The design characteristics drawn from the context are :

1. The experimental objective of OOT requires a design that is reuseable and

extendable.

2. Genetic programming requires a design that manages interchangeable compo-

nents.

3. The analysis of genes is through the analysis of behavior: a design should capture

the relationship between genes and behavior.

1.1.1 The Truckin’ Game

The Truckin® Project is part of a research program coordinated by Peter Grogono
and Greg Butler. The goal of the research is to explore ways in which object oriented

software can dynamically evolve by means of genetic programming. Object Oriented
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Truckin® was developed to serve as a framework for developing programs that adapt
to their environment. It is loosely based on a game invented at the Xerox Palo Alto
Research Center by Mark Stefik and others during the eighties [3]. Object Oriented
Truckin' models a country in which commodities are distributed by trucks. Trucks
negotiate with dealers to buy and sell commodities. The simulation can be viewed as
a competition between trucks, where the winner at end of a simulation is the truck
that was most successful at buying and selling commodities. The objective of running
the simulation is to evolve trucks that are increasingly successful at trading.

The game is played in a simulated country. In this country. there are three kinds
of dealer: producers, retailers, and consumers who trade in a single commodity. It
doesn’t really matter what the commodity is. but it should be something for which
there is a steady demand. such as BMWs or spinach.

A producer produces the commodity in large quantitics. called crates. and will sell
any amount in exchange for payment. Retailers buy crates. split them up into smaller
quantities called units, and sell the units to consumers. The incentive for a retailer
to trade is a price difference: for example. producers might sell crates containing
100 units at $100/crate. and consumers might buy units at $2/unit. Producers and
consumers do not need an incentive: they simply produce and consume as requested.

The producers, retailers. and consumers have fixed locations and cannot trade
directly. They rely on trucks to ship goods from one place to another. A truck can
buy crates from a producer and sell them to a retailer. or it can buy units from a
retailer and sell them to a consumer. or it can do both.

Trucks can move around the country. using gas. The country contains several gas
stations at which trucks can buy gas. A truck that does not trade will eventually not
have enough money to buy gas. A truck without gas is stuck and can do nothing.

The objective of the game is for retailers and trucks to trade in such a way that
there is a steady flow of goods from producers to consumers. Since the game is
simulated by computer, the actual objective is to write code for a retailer or truck.
The retailer or truck that has the best performance in a simulation is the winner of

the game.



1.1.2 Evolutionary Programming

Darwin’s theory of evolution through natural selection is the underlying rationale for
genetic programming. Darwin argued that a population of a given species includes
individuals of varying characteristics. The population of the next generation will con-
tain a higher frequency of those types that most successfully survive and reproduce
under the existing environmental conditions. Thus the frequencies of various types
within a population will change over time [4]. Variety among individuals in a popula-
tion is key. otherwise no amount of selective reproduction will affect the composition
of the population. The mechanism that provides variation is the gene. Genes con-
trol the development of an individual, and variations in the genes cause variation in
the individuals of a population. Therefore it is important that we devise a genetic
description of a truck that allows for variety in the expression of genes. and permits
sensible genetic recombination: the product of recombination should be a functioning
truck.

There is a very close link between genes and behavior. Often when we describe
a gene we are in fact describing a trait or behavior. This is because the trait or
behavior is the observable effect of the interaction of the gene with the environment,
the phenotype of the organism’s genotvpe. If we know which genes are responsible
for a specific behavior than the effect of varying these genes are apparent through
changes in the behavior. In Truckin’ the evolution of trucks is based on profitability.

the outward effect of trading.

1.1.3 Brooks’ Subsumption Architecture

In the mid-eighties researchers in artificial intelligence began developing a new ap-
proach to designing mobile robots. Robots based on traditional Al approach were
not able to operate in real time in a real world. They relied on a perfect internal
representation of the world which can not be achieved in a dynamic unpredictable
environment, and the focus on “depth” search to provide solutions was not timely
enough in an environment where quick reaction is critical. Rodney Brooks argued
that internal world models that are complete representations of the external world
were unnecessary for robots to act in a competent manner. According to Brooks the
world is its own best model [6]. Inspired by ethology and biology, he observed that

actions of a robot are separable and that coherent intelligence could emerge from the
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interaction of independent reactive sub components with the environment [7]. Brooks
aimed to build robots with intelligence on the scale of insects as the first step towards
building robots with higher intelligence [4]. Brooks’ approach to building insect-
like robots is in many ways orthogonal to the approach taken earlier. Instead of a
top-down, centrally controlled system built around an internal world model. Brooks'
system is built bottom-up, has distributed control, with the components interfacing

directly with the world (see Figure 1). This approach is referred to as behavior-based

robotics.
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Figure 1: Traditional Approach vs Behaviour-based Approach

Brooks described the subsumption architecture as an instance of behavior-based
robotics used to build robots that operate in the real world [11]. It is a framework
from which to build behavior-based robots. Maes [20] argues that the behavior-
based approach is appropriate for the class of problems that require a system to
autonomously fulfill several goals in a dynamic, unpredictable environment. She gives
examples of applications, such as virtual actors, process scheduling, interface agents
to name a few. where the behavior-based approach could be applied. While Maes
argues for the generality of the behavior-based approach. Bryson {13} suggests that
subsumption architecture can serve as a general framework to develop behavior-based
systemis.

Rodney Brooks points out that traditional Al had difficulty with the integration of

multiple sensor devices, achievement of multiple goals. robustness. and extensibility



when it came to systems for control of autonomous mobile robots [7]. The subsump-
tion architecture was developed to address those difficulties. The fundamental ideas
of the subsumption architecture are a decomposition into layers of task-achieving
behaviors, followed by an incremental composition through debugging in the real
world [6].

Brooks proposed a decomposition of an autonomous intelligent system based on
desired external manifestations of the system. The decomposition resulted in a collec-
tion of simpler independent behaviors which when composed produced more complex
behavior. Each behavior should achieve a task that is in some way observable. A set
of behaviors together provide the robot with some level of competence. The behav-
iors should be designed so that as new behaviors are added to the system the level of
competence of the system increases. A set of behaviors that produces a level of com-
petence is referred to as a layer. and the process of increasing the level of competence
by adding new behaviors to existing sets of behaviors is called layering [4;. Each layer
connects its own sensing to action and is not dependent on any other laver to decide
what it should do. The layers operate in parallel with minimal communication.

The overall system is robust and extensible. Multiple distributed lavers of behavior
mean there is less chance that the svstem will collapse given some drastic change in
the world. Each layer has its own sensors to monitor the world. by sensing the
environment often enough, it is able to decide on the appropriate goal to pursue in
light of the current environment. The layers are able to make timely adjustments to
their goals in response to changes in the world. New lavers are added to the svstem
without changing the original system. all that is required is to interface the new layer
to the existing system.

Brooks’ computational model is organized as an asvnchronous network of aug-
mented finite state machines, with a fixed topology of unidirectional connections.
Each layer of control is a finite state machine with some instance variables. and in-
put/output lines that can send and receive typed messages. The connections between
layers are predefined wires which allow higher layers to suppress and replace input.
or inhibit the output of lower layers. The messages sent over connections are small
numbers. The meanings of the numbers are determined by the designers of the sender
and receiver, and are dependent on the state of both the sender and receiver. The

layers operate asynchronously, each layer outputs actuators in response to its own



sensory information. There is a fixed priority arbitration scheme to handle conflicts
that occur when more than one layer produces actuators at the same time. Under
this scheme only one layer has control of the robot’s effectors at a time. All data
is distributed over many computational elements, and there is no central locus of
control.

The three key ideas [11] introduced in the subsumption approach above are

1. Improvements in performance come about by incrementally adding more situa-
tion specific circuitry while leaving old circuitry in place, able to operate when
new circuitry fails to operate. Each additional collection of circuitry is referred
to as a new layer, and each new layer produces some observable behavior in the

system interacting in the environment.

[N

Keep each added layer as a short connection between perception and actuation.

3. Minimize the interaction between lavers.

1.2 Contribution of the Thesis

We develop an object-oriented software design for the subsumption architecture. and
demonstrate that each layer can be used as a slot for a set of plug-and-play components
that implement different micro-strategies for achieving a particular goal. The software
architecture uses a communication backplane that acts as a short-term memory. and
as a communication channel. to provide the feedback from the “real world” to the
layers.

The design for the subsumption architecture is implemented in C+-. It is incor-
porated into a C++ implementation of the Truckin’ simulation game.

The software architecture. and the reuse of micro-strategy components. is vali-
dated by developing truck agents within the Truckin’ simulation game.

Furthermore, a set of guidelines for the development of specific lavers and com-
ponents of a subsumption architecture is presented.

This work has led to a conference paper [14] and a journal paper [15].
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1.3 Organization of the Thesis

Chapter 2 presents the background on the Truckin' simulation game. evolutionary pro-
gramming. and the subsumption architecture. Chapter 3 presents the object-oriented
design for the subsumption architecture. Chapter 4 concludes with a discussion of
the validation of the design by developing truck agents within the Truckin' simulation
game. and with a presentation of a set of guidelines for the development of specific
layers and components of a subsumption architecture.

We assume the reader is familiar with object-oriented modeling as in OMT 726,
or in the Unified Modeling Languuge (UML) 13]. and with the features of the draft

ANSI standard C++ programming language [28].



Chapter 2

Background

2.1 The Truckin’ Experimental Workbench

Object Oriented Truckin' (OOT) is a framework for developing programs that adapt
to their environment. It is loosely based on a game invented at the Xerox Palo Alto
Research Center by Mark Stefik and others during the eighties. The goal of the
design of OOT is to provide an environment that is sufficiently complex to provide
interesting behaviour and vet simple enough to achieve such behaviour with modest

programming effort.

OOT models a country (OOTland) in which commodities are distributed by
trucks. Trucks negotiate with dealers to buy and sell commodities. The game can be

seen as a competition between trucks and dealers to maximize their profits.

OOT is implemented in C++. The simulation code contains a base class TRUCK
from which all other truck classes must be derived. The objective is to build an
adaptive truck. The evolution of truck strategies is the primary rationale of the
simulation. Running the simulation for an extended period of time should vield

trucks of increasing sophistication.



2.1.1 Features of Object Oriented Truckin’
2.1.1.1 Topography

OOTland is a square country with a grid of highways. Avenues run north-south and
streets run east-west. All highways allow traffic to travel in both directions. All
events take place at intersections of the grid. In the current version of the simulation.

there are 10 avenues, 10 streets. and 100 intersections.
A place is determined by two coordinates: an avenue number and a street number.

A step is a move between adjacent intersections.

2.1.1.2 Dealers

At each highway intersection, there is a dealer who trades in a particular commodity.

The commodities that are traded are: NONE. CRATES. ITEMS, and GAS.

There are five types of dealers:

A dealer who trades in NONE will not buy or sell anvthing.

A Producer: a dealer that produces and sells CRATES. a bulk commodity.

Crates are produced at a fixed rate by the producer. The selling price is fixed.

and it is the same for all producers.

e A Consumer: a dealer that buys and consumes ITEMS. small quantities of a
bulk commodity. Items are consumed at a fixed rate by the consumer. The

buying price is fixed, and it is the same for all consumers.

e A Retailer; a dealer who buys CRATES. converts crates to items. and sells
ITEMS. The retailer has a limited storage capacity to store crates and items.

Each retailer sets its own buying price for crates, and selling price for items.

* A Gas-station; a dealer who trades in GAS. A gas-station sells gas but does

not buy it. Quantities are unlimited: gas-stations do not run out of gas.
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Trucks transport bulk goods from producers to retailers and small quantities from
retailers to consumers. The rate of flow of commodities through the system is con-
trolled by consumers. who attempt to consume at a fixed rate (they may fail to receive
all that they want, but they never buy in excess of their requirements). The retailer
sets a buying price for crates, and a selling price for items. In most cases, retailers
will set the unit buying price of crates less than the unit selling price of items to
profit by trading. Prices vary across the country, however. Truckers and retailers are

motivated by differentials between buving and selling prices.
Table 1 shows the commodities and fows. Crates are shipped by trucks from

producers to retailers, who unpack the items from the crates. The individual items

are shipped by trucks from retailers to consumers.

Commodity Produced by Consumed by

Crate producer retailer
[tem retailer consumer
Gas gas station truck

Table 1: Commodities and Flows

2.1.1.3 Trucks

Trucks travel around the country trading with dealers. At the start of the simulation,
each truck has a certain amount of money (its capital). and a certain amount of gas.
The truck attempts to increase its capital by trading. At the end of the simulation.

the winner is the truck with the most capital.

A truck can obtain information. travel along the highways. and trade. Each of

these activities consumes resources: time. money, and gas.

2.1.2 Features of the Simulation

The simulation program models the country and its features, as described above. and

includes a number of instances of classes derived from the base classes TRUCK and
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DEALER. These instances are referred to as “trucks” and “dealers”.

Trucks and dealers do not have direct access to the data structures representing
OOTland. To prevent cheating, all of their actions are mediated by two other classes.
Associated with every truck, there is an instance of class CONTROL (instances are
“controllers”): trucks obtain information and perform actions by sending messages
to their controller. Similarly, there is an instance of class MLANAGER (instances are
“managers”) associated with each dealer, and dealers can send messages only to their
managers. The controllers and managers ensure that all actions are consistent with

the rules of the simulation.

2.1.2.1 Time

The simulation time increases in steps of 10 minutes. The 10-minute intervals are

called time slots or simply slots.

2.1.2.2 The Referee

The referee is in charge of the simulation. The referee sends a message to each truck
and each manager at the beginning of each time slot. The referee also informs each

controller of the current simulation time.

2.1.2.3 The Map

The unique object of class MAP represents the highway system. At each highwayv
intersection, there is a manager and a dealer. Many of the dealers are “default"
dealers who trade only NONE. Trucks cannot access the map directly but can obtain
information about it from their controllers. Similarly, dealers can obtain information

from their managers.



2.1.2.4 Controllers

The referee passes the simulation time to each controller at the beginning of each time
slot. All other messages to a controller come from its truck. The controller screens
all of the truck's actions, verifving that the truck has sufficient resources to pay for

the action before either executing the action or forwarding it to the appropriate object.

2.1.2.5 Trucks

At the beginning of each time slot. each controller sends the message PLAY() to its

truck. During the time slot, the truck can perform any of the actions listed below.

e A truck can obtain the time since the simulation started. the time remaining
in the current slot, and the simulation time remaining. It can also obtain its
current position. its current capital. its current stock of each commodity, and
information about the dealer at the current position. All of this information is

provided without cost to the truck.

e A truck can make a telephone call to another intersection to obtain the commod-
ity, buying price. and selling price of the dealer there. A telephone call failsif the
commodity traded at the intersection is NONE and succeeds otherwise. A suc-
cessful telephone enquiry lasts 3 minutes and cost $3: an unsuccessful enquiry

lasts 1 minute and costs $1.

¢ A truck can move any number of steps in a single direction. Moving one step

consumes 6 minutes and 1 litre of gas.

e A truck can attempt to buy or sell from the dealer at its current position. The
dealer must honour its advertised buying and selling prices but is not obliged

to exchange the quantity requested.

If the actions require more than 10 minutes, the truck loses some of the next time
slot. For example, a truck may choose to travel two steps. which requires 12 minutes.
The journey would require all of the current time slot and 2 minutes from the next

time slot.

13



The controller is the truck’s interface to OOTland. All of the truck’s request are
sent to the controller. The controller ignores requests from a truck that does not
have the resources required. For example, a truck that has exhausted its capital is
not allowed to spend money; a truck that has run out of gas cannot travel; and a
truck that has used up its time slot cannot do anything that consumes time. It is the
responsibility of the truck to ensure that it has the resources required to perform a
task and to check that its request achieved the desired effect.

2.1.2.6 Managers

Each manager monitors the action of a dealer. Managers receive messages from con-
trollers. Managers ensure that dealers trade honestly and maintain positive capital

and stock.

2.1.2.7 Dealers

A dealer is given an initial buying price. selling price. and stock. A dealer can change
the buying and selling prices during the simulation. For example. a dealer with ex-

cessive stock might raise its buying price and lower its selling price.

2.1.2.8 Rules and Scoring

OOTIland has 10 avenues and 10 streets with intersections 10 kilometres apart. Trucks
drive at 100 km/h and consume gas at the rate of 10 litres per 100 kilometres. They
therefore require 6 minutes and 1 litre of gas to travel between intersections. The

truck starts with a full tank of gas containing 50 litres.

Money is measured in cents. Each truck starts with 50,000 cents ($500.00). Gas-

stations may set their own prices, but a typical price for gas would be S1/litre.

The actions of trucks and dealers are restricted by the interfaces of controllers and
managers. The simulation runs for a certain time that is announced at the beginning

of the run and can be obtained by a truck. When this time has elapsed, the simulation

14



is stopped and the assets of each truck and dealer are recorded. The only asset of a

truck is its capital. Commodities on the truck, including gas, have a zero value.

2.2 Evolutionary Programming

Evolutionary programming addresses the problem of how to generate computer pro-
grams automatically. It provides a methodology to design systems that generate
computer programs that improve as they experience the data on which they are
trained. It is part of a larger area of research called machine learning. the study of
computer algorithms that improve automatically through experience [2!. Evolution-
ary programming models Darwin’s theory of evolution through natural selection to

evolve computer programs.

Darwin argued that a population of a given species includes individuals of varying
characteristics. He considered evolution to be a process that creates a match between
the species and the environment. Organisms with traits better suited to the environ-
ment have a greater chance of surviving and will leave more offspring. as result the
species becomes better adapted to the environment over time. The relative probabil-

ity of survival and rate of reproduction is called Darwinian fitnoss.

Genetic variation drives the evolutionary process. otherwise no amount of selec-
tive reproduction will affect the composition of the population. There are two main
sources of genetic variation : mutation. and recombination. Mutation is the source
of genetic variation. but due to a relatively low rate of mutation in nature. it does
not drive evolution. Genetic recombination. which creates variation much faster than

mutation, pushes evolution forward.

Evolutionary programming mimics aspects of natural evolution, natural selection.
and reproduction. In evolutionary programming a quality criterion is defined and
then used to measure and compare candidate solutions in an stepwise refinement of a
set of data structures. A near optimal individual is located after a number iterations.
Solutions are represented by genotypes, genomes, or chromosomes. The quality cri-

terion is often referred to as fitness and it is with this standard that individuals are



selected for reproduction.

Variation in evolutionary programming comes from two operators: mutation and
recombination. The mutation operator generates a random change to a parameter
in the solution. If applied to every parameter, the result is a completely new so-
lution. This operator ensures that different aspects of the problem are tried. The
recombination operator preserves parameter values of discovered solutions. as well as
introducing variation. It recombines the parameter values of two solutions forming
a different solution. The variation operators are normally applied to the most fit
solutions at each iteration. The driving force of simulated evolution is referred to as

fitness-based selection.
The steps that make a complete run of evelutionary programming :

1. Create a random population of programs.

2. Evaluate each program assigning a fitness value according to a pre-specified

fitness function which measures the ability of the program to solve the problem.

3. Using a predefined reproduction technique copy existing programs into the new

generation.

4. Genetically recombine the new population with the crossover function from a

randomly chosen set of parents.

5. Repcat steps 2 onwards for the new population until a pre specified termination

criterion has been satisfied or a fixed number of generations has been completed.

6. The solution to the problem is the program with the best fitness within all

generations.

2.2.1 Genetic Programming
2.2.1.1 Tree-Based Genetic Programming

Genetic programming, a variant of evolutionary programming, was established as a
method for automatic programming by J. Koza. He used a tree structure as the pro-

gram’s representation in a genome, a crossover operator for genetic recombination,
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and fitness-proportional selection to solve a variety of problems (18].

The structures that undergo evolution are hierarchical computer programs based
on LISP-like symbolic expressions. The size, shape. and structure of the solution is
left unspecified and is found by the genetic programming operators. Solving a prob-
lem is a search through all possible combinations of symbolic expressions defined by

the programmer.

The creation of a program is a combination of the domain dependent symbolic
expressions. The symbolic expressions are divided into two sets, a terminal set and
a function set. The terminal set includes all zero argument functions and constants.
while the function set contains all functions with one or more arguments. Each ex-
pression must be evaluated without error for all possible arrangements of expressions.

and some combination of expressions must be sufficient to solve the problem.

Consider the tree representation of the LISP expression (+(*5(-61))(*~
535)). The terminal set in this example is 1. 5. 6. the function set is +. -. * . and
the search space is all programs that can be composed recursively using the elements
of the two sets. The standard convention for execution of this tvpe of structure is to
repeatedly evaluate the leftmost node for which all inputs are available, referred to

as postfix order.

The two primary operators for modifying programs undergoing adaptation are
fitness-based reproduction and crossover. Koza did not introduce mutation. Repro-
duction is an asexual operator, which takes one parent program and produces one
offspring. The result is a copy of the parent. The crossover operator combines the
traits of two parents and produces at least one offspring. The parents are chosen from

the population based their relative fitness.

The crossover operation begins by randomly and independently choosing a node
in each parent. The entire sub-trees rooted at the chosen nodes are than swapped.

In this example two offspring result from the crossover.



2.2.1.2 Features of Genetic Programming

Since Koza introduced tree-based genetic programing, many other genetic program-
ming systems have been developed. The systems vary in genome representation, and
in the rates of crossover and mutation. Despite the variety of systems developed. theyv

features in common.

Features of genetic programming [2]:

¢ Assembles a population of variable length program structures from basic units.
The actual assembly of the programs from basic units occurs at the beginning

of a run when the population is initialized.

e Uses genetic operators to transform programs in the population. Crossover be-
tween two individual programs is a principal genetic operator. Other operators

include mutation. and reproduction.

¢ Simulates evolution by means of fitness-based selection. Fitness-based selection

determines which programs are selected for further improvements.

e Uses pseudo-random numbers to mimic the randomness of natural evolution.

2.3 Subsumption: An Instance of Behavior-Based
Robotics

In the mid-eightics researchers in artificial intelligence began developing a new ap-
proach to designing mobile robots. Robots based on traditional Al approach were
not able to operate in real time in a real world. They relied on a perfect internal
representation of the world which can not be achieved in a dynamic unpredictable
environment. and the focus on 'depth’ search to provide solutions was not timelyv
enough in an environment where quick reaction is critical. Rodney Brooks™ argued
that internal world models that are complete representations of the external world
were unnecessary for robots to act in a competent manner. According to Brooks the
world is its own best model {6]. Inspired by ethology and biology, he observed that

actions of a robot are separable and that coherent intelligence could emerge from the
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interaction of independent reactive sub components with the environment {7]. Brooks
aimed to build robots with intelligence on the scale of insects as the first step towards
building robots with higher intelligence [4]. Brooks’ approach to building insect-
like robots is in many ways orthogonal to the approach taken earlier. Instead of a
top-down, centrally controlled system built around an internal world model, Brooks’
system is built bottom-up. has distributed control, with the components interfacing

directly with the world. This approach is referred to as behavior-based robotics.

Brooks described the subsumption architecture is an instance of behavior-based
robotics used to build robots that operate in the real world [11;. It is a framework
from which to build behavior-based robots. Maes [20] argues that the behavior-
based approach is appropriate for the class of problems that require a svstem to
autonomously fulfill several goals in a dynamic. unpredictable environment. She gives
examples of applications, such as virtual actors, process scheduling. interface agents
to name a few. where the behavior-based approach could be applied. While Maes
argues for the generality of the behavior-based approach. Bryson {13; suggests that
subsumption architecture can serve as a general framework to develop behavior-based

systems.

2.3.1 The Behavior-Based Approach

In traditional AI . the system is decomposed along functional modules such as percep-
tion. execution, planner, inference engine. The modules are developed independently
and rely on some central representation as their means to interface. The modules are
modeled to be as domain independent as possible to facilitate module reuse across
domains. The control structure is sequential with each module taking its turn to
process the internal representations. Normally the perception module updates the
internal model, then planning produces a plan, finally an execution module executes
the plan. The behavior of the systems emerges from the interaction of the functional

components.

In contrast, the new behavior-based approach, decomposes the system into task-
achieving behaviors. The modules communicate directly with very simple messages.

or indirectly through the environment; by changing some aspect of environment a
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module may trigger another module. The modules are specifically designed for a task
in a given environment. Each module is responsible for doing all the representation,
computation, execution necessary to carry out its task, and is free to employv com-
pletely different techniques and representations. The modules operate in parallel,
each one independently produces commands in response to its particular view of the
world. There is a simple arbitration method to select or fuse the commands produced
by the modules. Functionality, like planning. emerges from the interaction among

behavior modules and the environment.

The behavior-based approach concentrates on modeling systems that are situated
in both space and time, reducing the need to build an internal world model. The
space or environment can be used as an external memory for reminding the system
what has been done or what it must do. or it has particular characteristics that the
system can exploit. Situated in time means that the svstem must react in a timely
fashion and deal with interrupts. but it also allows for the construction of an iterative,

incremental solution to the problem.

Behavior-based Al takes advantage of the interaction dvnamics between the SVS-
tem and the environment, and between different components within the svstem. It is
often possible. based on the properties of the environment. to find an interaction loop.
a set of feedback or reflex mechanisms that will produce the desired behavior. As a
consequence. a relatively simple system can operate in a complex environment. Sim-
ple interaction dynamics of components within the system can also lead to emergent
behavior, as a result inter-module communication and dependence can be minimized

and control can be distributed among the modules.

Behavior-based systems consist of task-oriented modules implementing domain-
specific solutions with representations de-emphasized. and decentralized control. The
systems tend to react quickly because they have fewer layers of information to process.
are distributed, non-synchronized, and require less computation. They are able to deal
with unforeseen situations since they rely on the environment for information and as
a determiner of what to do, rather than on a possibly outdated or incomplete internal

model. They are robust because all modules are equally critical and they incorporate




redundant methods.

2.3.2 Behavior-Based Control Systems

An architecture provides a set of principles for organizing control systems and a
set of constraints on the way control problems can be solved. There are four ba-
sic approaches to autonomous agent control: planner-based. reactive. hyvbrid. and

behavior-based.

Traditional Al systems are planner-based systems. They rely on an internal cen-
tral world model and a reasoning engine to generate a sequence of actions. Sensory
information is fused into the internal model, the planner then works on this model to
determine which goals should be fulfilled. which are than translated into a sequence
of actions. The plans and goals of the system are explicitly defined. The behaviors
emerge from the interplay of the planner. goals of the systemn. and the world model.
The internal model is necessarily as complex as the external world making the task of
modeling very challenging for complex environments. An environment that changes
often means that the system must frequently replan slowing reaction time to the
extent that the agent does not respond to all changes in the world. Planner-base

systems are not workable for complex dynamic environments.

Reactive systems consist of a collection of preprogrammed condition-action pairs
with minimal internal state. They do not have internal models and do not perform
searches. They apply a simple mapping of stimuli and appropriate responses. [he
system links sensing directly to action, and rely on fast feedback from the environment
to ensure that the appropriate action is executed. The behaviors are the emergent
property of this kind of system. The system encodes an action for everv input state,
the designer is responsible to account for all possible input states. as a consequence

these systems do not scale well to complex environments.

Hybrid systems combine reactive and planner-based approaches in one system.
Usually a reactive system is built to handle low-level real-time control issues. and

a planner is built to handle higher-level decision making. The result is a control



system that is composed of two communicating independent parts: a reactive pro-
cess to take care of survival and a planner process to select action sequences. The
reactive component’s actions can change the world or the state of the agent, as a con-

sequence the planning component must be able to replan and recover from interrupts.

Behavior-based systems are an extension of reactive architectures and often fall be-
tween reactive and planner-based extremes [24). Behavior-based systems use various
forms of distributed representations and distributed computations. unlike planner-
based systems which have centralized representation and computation, and reactive
systems which are limited to lookup and execution of simple functional mappings. In
these systems the behaviors are explicitly defined and higher-level activities such as

planning and goal setting emerge from the interaction of the behaviors in the envi-
ronment.

The general constraints imposed on behavior-based systems are a decentralized
control structure of behavior producing modules that interact primarily through the
world and not internally. The behaviors should be relatively simple but with more
time-extended capability than a reactive rule. and they should be designed to be in-

crementally added to the svstem.

The organization methodology of behavior-based svstems concerns the coordina-
tion of many behaviors functioning in parallel. making behavior-arbitration the most
challenging part of the design [24]. The problem of behavior-arbitration is. given a
set of behaviors outputting some actions. which ones of those should be given prior-
ity, or how should their outputs be combined. In the subsumption architecture. for
example. behavior-arbitration is based on a built-in, fixed control hierarchy imposing
a priority ordering on behaviors. Other methods involve selecting a behavior or a set

of behaviors to activate based on voting schemes or spreading of activation.

2.3.3 Brooks’ Subsumption Architecture for Robots

Rodney Brooks points out that traditional AI had difficulty with the integration of

multiple sensor devices, achievement of multiple goals, robustness. and extensibility

o
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when it came to systems for control of autonomous mobile robots [7:. The subsump-
tion architecture was developed to address those difficulties. The fundamental ideas of
the subsumption architecture are a decomposition into layers of task-achieving behav-

iors, followed by an incremental composition through debugging in the real world [6'.

Brooks proposed a decomposition of an autonomous intelligent system based on
desired external manifestations of the system. The decomposition resulted in a collec-
tion of simpler independent behaviors which when composed produced more complex
behavior. The organization of the decomposition followed two principles [4]: One con-
cerned individual behaviors, the other with sets of behaviors. Fach behavior should
achieve a task that is in some way observable. A set of behaviors together provide
the robot with some level of competence. The behaviors should be designed so that
as new behaviors are added to the system the level of competence of the system in-
creases. A set of behaviors that produces a level of competence is referred to as a
layer. and the process of increasing the level of competence by adding new behaviors
to existing sets of behaviors is called layering [4]. Each laver connects its own sensing
to action and is not dependent on any other layver to decide what it should do. The

layers operate in parallel with minimal communication.

The overall system is robust and extensible. Multiple distributed layers of behav-
lor mean there is less chance that the system will collapse given some drastic change
in the world. Each layer has its own sensors to monitor the world. by sensing the
environment often enough. it is able to decide on the appropriate goal to pursue in
light of the current environment. The layers are able to make timelyv adjustments to
their goals in response to changes in the world. New layers are added to the system
without changing the original system, all that is required is to interface the new layer

to the existing system.

Brooks’ computational model is organized as an asynchronous network of aug-
mented finite state machines, with a fixed topology of unidirectional conrections.
Messages sent over connections are small numbers whose meanings are dependent
on the dynamics designed into both the sender and receiver. Each layer of control

is a finite state machine with some instance variables. and input/output lines that
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can send and receive typed messages. The layers are connected by predefined wires
which allow higher layers to suppress and replace input, or inhibit the output of lower
layers. The layers operate asynchronously, each layer outputs actuators in responds
to its own sensory information. There is a fixed priority arbitration scheme to handle
conflicts that occur when more than one layver produces actuators at the same time.
Under this scheme only one layer has control of the robot’s effectors at a time. All
data is distributed over many computational elements, and there is no central locus

of control.

The first three layers of behavior defined by Brooks for the robot Allen [3]

1. Avoid obstacles.
2. Wander aimlessly around without hitting things.

3. Explore the world by seeing places in the distance that look reachable and

heading for them.

Each layer of behavior includes as a subset the earlier lavers of behavior. Explor-
ing includes the ability to wander without hitting things. wandering without hitting
things includes the ability to avoid contact with objects. This permits layvers to be
built incrementally beginning with lowest layer on up. The design of a laver can rely
on the presence of successful operational earlier lavers. The lavers do not call on one
another explicitly, instead their reliance is implicit. The Wander layer does not have
to worry about avoiding obstacles because there is an operational Avoid Obstacles

layer that successfully ensures that obstacles are avoided.

The lowest level layer of control (avoid obstacles) was implemented and completely
debugged before adding a higher layer. This laver results in a robot that avoids colli-
sion with objects. The robot moves away from approaching objects. and halts before
colliding with stationary objects. When the next level of control (wander) is added
the robot moves in a random direction every few seconds. The Wander layer sup-
presses the heading produced by the Runaway module of the Avoid Obstacles laver.
In fact the Avoid module combines the two headings resulting in a heading that

points in the direction specified by the Wander module, but avoids any obstacies.



The Wander layer subsumes the Avoid Obstacles laver when it suppresses the output
of the Runaway module.

The Explore layer looks for corridors of free space then moves the robot towards
the free space. The Whenlook module of the Explore laver looks for a corridor of
open space whenever it detects that the robot has been idle for a few seconds. It
inhibits the Wander layver so it can take some pictures and process them without
wandering away. The Avoid Obstacles laver continues to operate. ensuring that no
objects collide with the robot. Once a free corridor is found a heading is sent to the
Avoid module suppressing any heading that may have been produced by the Wander
module. The Wander layer in turn suppresses the Runaway module of the Avoid
Obstacles layer. The Explore layer subsumes the VWander layver whenever it inhibits

or suppresses the Wander layer.

The three key ideas introduced in the subsumption approach above are (11

 Improvements in performance come about by incrementaily adding more situa-
tion specific circuitry while leaving old circuitry in place. able to operate when
new circuitry fails to operate. Each additional collection of circuitry is referred
to as a new laver. and each new layer produces some observable behavior in the

syvstem interacting in the environment.
e Keep each added layver as a short connection between perception and actuation.

e Minimize the interaction between layers.

2.3.4 Implementations using the Subsumption Architecture

The subsumption architecture resulted in the first mobile robot capable of a navigat-
ing in a dynamic world. Since then various implementations of mobile robots using
this architecture have shown that the subsumption approach can incorporate non-
reactive competencies, planning and goal setting, and learning about representations
in the world. Different methods of behavior activation have also been tried, demon-
strating that the approach works as more behaviors are added. indicating that the

approach scales to more complex systems. Since the introduction of this architecture.

N
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it has been used primarily in robotics whether as purely subsumption systems or hy-
brid systems consisting of a reactive subsumption component coupled with a symbolic
planner. More recently it has been used as a control structure for applications outside
of robotics. Software applications operate under different technological constraints
than those of mobile robots, as a consequence the computational models for software
agents can be different from that used by Brooks for mobile robots. One software
application incorporates a knowledge base as part of a layer in the architecture. What
is important is that the computational model used results in layers that react in a

timely fashion to changes in the environment.

2.3.4.1 Allen

The first implementation of the subsumption architecture was the robot Allen [5; de-
veloped by Rodney Brooks at the MIT Artificial Intelligence Laboratory. This robot,
described in 2.3.3, is almost entirely reactive. The lowest layer uses sonar readings to
keep away from moving obstacles while not colliding with stationary obstacles. The
highest laver is non-reactive since it selects a goal to head towards. and then move
towards the goal while the reactive layer avoids obstacles. The robot demonstrates
that the subsumption architecture can combine reactive and non-reactive capabilities

using the same sort of computational mechanism for both.

2.3.4.2 Herbert

The second robot, Herbert [16]. illustrates that the external world can serve as the
only medium for inter-module communication and integration. Herbert wanders
around looking for soda cans, picks one up. and brings it back to where it started
from. Herbert uses a laser scanner to find soda cans, proximity sensors to navigate by
following walls and going through doorways, a magnetic compass for global position.
and arm sensors to pick up cans. Herbert does not maintain internal state longer than
three seconds and there is no communication between behavior generating modules.
Each module is connected to sensors on the input side, and a fixed priority arbitration

on the output side of the modules determines the actuators to pass on to the robot’s



effectors. The integration of behaviors and communication between modules is car-
ried out through the environment. For example, the soda can object finder moves the
robot so that its arm is lined up with a soda can. the arm behavior which monitors the
wheels. notices that the robot is not moving which triggers its activation. When the
arm locates the soda can. it moves the hand so that the two fingers line up on either
side of the can, breaking an infrared beam between the fingers. The grasp reflex is
triggered whenever this beam is broken causing the hand to grasp the can. Modules
never explicitly pass any information to, or call upon any other module. integration of
behavior and communication results from a module changing the environment. which

in turn causes another module to react.

2.3.4.3 Toto

Toto [21] demonstrates that subsumption systems can make plans. and have goals
without central representations or symbolic representations. Toto explores its envi-
ronment. builds a map as it explores. and carries out path planning. The map is an
active decentralised structure which does the computations necessary for path plan-

ning.

Toto wanders around office environments building a map based on landmarks.
The primitive layers of control let Toto wander around following boundaries. A laver
that detects landmarks runs in parallel. This layer informs the Map laver whenever
it detects a landmark. The map itself is a topological network of processes corre-
sponding to landmarks in the environment. Each process has its own rules and state.
A landmark is described by a type, a compass heading, and its position relative to
other landmarks. When a landmark is detected, it is broadcast to all the processes
in the map. If none recognizes it. it is added to the map. otherwise the process that
recognized the landmark becomes the robot’s current position on the map. Planning
is accomplished by distributing the goal through the map network. The user selects
a goal location whose associated landmark becomes activated. Activation is spread
to its neighbors, and propagated throughout the graph in the form of a spreading
wave front [21], estimating total path length. The activation eventually arrives at

the current position on the map with a recommendation of the direction to travel to
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follow the shortest path to the goal. This scheme can have multiple active goals, the
robot will head towards the nearest one.

2.3.4.4 Attila

A complex behavior repertoire requires some mechanism which integrates many com-
peting behaviors. This mechanism should be decentralised. non-manipulable. and
not have central control or representation to meet the criteria of the subsumption ar-
chitecture. Brooks introduces such a mechanism in [8]. where a hormonal activation
scheme is used to integrate multiple behaviors of the mobile robot Attila. The hor-
mone system can be viewed as low band width global communication system, where
the release of hormones and activation of behaviors are local. It provides a global
repository of state which predisposes appropriate behaviors to be active. and a way

to switch behaviors on or off as the global state changes.

Attila is a six legged planetary explorer robot intended to operate for many dayvs
without any external commands. Its task is to manage its internal needs such as
recharging its batteries from solar power. shut itself down in a low energy overnight
mode, wander around in local exploratory mode. recovers from falls. do long traverses
L0 get to new areas, carry out measurements with scientific instruments. and choose
interesting views to digitize and radio back to a relay station. Behaviors which pro-
cess sensory information are able to excite a condition in the hormone svstem which
contributes to the level of a hormone. The hormone level at any point in time is a
function of the current levels of excitement of some conditions. The excitation level
of a condition decays by a programmer defined rate. Each behavior has an activation
level which is a function of hormone levels. and which causes the behavior to become
active when it passes some threshold. The hormone levels together reflect the global
state of the robot, as conditions in the environment change, so do the hormone levels,

causing a different set of behaviors to become active.



2.3.4.5 Sumpy

Sumpy is a non-robotics implementation of the subsumption architecture. It is a
software agent that lives in and helps to maintain a UNIX file svstem for better disk
space utilization [27]. One of Sumpy’s layers utilizes a fuzzy controller employing a
knowledge base consisting of fuzzy inference rules, and an inference engine. The laver
supplies the fuzzy controller with input values. and receives a Boolean solution from

the controller.

The Sumpy senses its environment by issuing UNIN commands and noting the re-
sponses. Each layer issues sensory commands for its own purposes, and all lavers can
note the response. Sumpy has four layers: wander around the file system. compress
files as needed. backup files as needed. and put Sumpy to sleep. The Wanderer laver
moves Sumpy randomly through the file system. It issues a “pwd” command to know
where it is, a “Is” command to find a directory to go to. and “cd” command to change
to that directory. The Compressor layer notes the result of the “pwd” command is-
sued by the Wanderer layer. when Sumpy is in a new directory the Compressor laver
inhibits the Wanderer layer. and looks for files that need to be compressed. The
Compressor layer makes use of a built-in fuzzy controller which determines whether
to compress a file or not. The Compressor selects a file and gathers information
for the fuzzy controller. The controller returns a signal to the Compressor, telling it
whether or not to compress the file. When all files in the directory have been checked.
the compressor uninhibits the Wanderer. The Backup laver also notices when Sumpy
is in a new directory causing it to compare the new directory with its list of recently
serviced directories. If the new directory is not on the list, Backup suppresses Com-
pressor and inhibits Wanderer, then proceeds to backup files in the directory. When
completed the Backup layer unsuppresses Compressor and uninhibits Wanderer. The
highest layer, Sleepy. checks the CPU load regularly. When the load passes a certain
threshold, it puts Sumpy to sleep by suppressing all three lower layers. When Sleepy

notices that the CPU load has fallen. it unsuppresses the lower layers.



2.3.4.6 The Reactive Accompanist

The Reactive Accompanist is another non-robotics example of a subsumption soft-
ware. It is a software “folk musician” developed by Joanna Bryson. The software
accompanies unfamiliar melodies in real time without knowledge of music theory or
any form of rule base [13]. The goal of the software is to derive chord structure from

a melody in real time.

Bryson proposed the following levels of competencies for her system:

1. pitch recognition — transforms notes to pitches.
2. chord recognition — transforms pitches to chords.
3. time recognition — transforms chords tc timed sequences of chords.

4. structure recognition (not implemented)

Ut

. song recognition ( not implemented)

The Note module is a neural network that transforms the input melody to a
weighted array representing pitches. The output units correspond to the pitches that
the net was trained on. The Chord module uses a neural network of predefined chords
to transform the input pitches to chords. All the other modules are modeled on finite
state machines.
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Chapter 3

Object-Oriented Design of the

Subsumption Architecture

This chapter explains the design of the software architecture for subsumption and
presents the validation of the reusability of micro-strategies within the Truckin' sim-
ulation game. The design follows the OMT notation [26] and was implemented in
C++[28.

3.1 Overview

The software version of the subsumption architecture preserves the essence of sub-

sumptinn:
e a lavered architecture.
e a fixed priority scheme between layers.
e the ability of a layer to inhibit lower layers, and

e the use of the “real world” as the source of feedback on the consequences of

actions.

The major differences between the software architecture and the hardware architec-
ture for subsumption are the sequential nature of the trucks and the lack of “sensors’
to the “real world” since a truck is embedded in an existing Truckin® simulation

framework.
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Figure 2: Conceptual View

The major concepts, see Figure 2, are the following:

e A BEHAVIOURLAYER is concerned with one particular set of behaviours and
subgoals. The BEHAVIOURLAYERSs are linearly ordered in a fixed priority. where
a BEHAVIOURLAYER subsumes the behaviour of the BEHAVIOURLAYER below
it. and may inhibit all BEHAVIOURLAYERs below it.

e A PLANOFACTION is generated by a laver in order to make progress towards

its subgoals.

® An ACTION is one of the primitive steps available to the agent. and are the

components of a PLANOFACTION.

In the Truckin simulation. trucks can perform a combination of four actions. namely
move, buy. sell, or phone for information. Each action has associated costs in terms
of money. time, capital, and/or gas. The lavers are associated particular subgoals,

namely

1. Gas Getting. in order to retain the ability to move:

o

Capital Maintenance, in order to make a profit from the current trade with the
local dealer;

3. Trading, in order to maximize overall profit from trades over the entire game:

and



4. Gather information, in order to have knowledge of distant positions in the sim-
ulation world.
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Figure 3: Overview of Architecture

The major architectural design decision is the use of a communication backplane.
The backplane acts as a short-term memory. and as a communication channel. to
provide the feedback from the “real world™ to the lavers. As short-term memory. the
backplane stores the proposed plans of action and the inhibition information. With
the fixed priority scheme, this memory allows the mediated selection of the current
course of action. This selection is also recorded by the backplane and allows each layer
to acquire the necessary feedback about the state of the world following the execution
of the selected actions. Once the feedback has been acquired. the short-term memory
is cleared.

The use of a communication backplane leads to a two phase behaviour of the
layers: first obtain feedback, then propose a plan of action (and optionally inhibit
lower layers).

3.2 Major Classes

Besides the classes representing the main concepts, BEHAVIOURL AYER. ACTION,
and PLANOFACTION, there are classes for the control and feedback mechanisms.
namely SELECTOR, EXECUTOR. and COMMUNICATIONBACKPLANE. These mecha-
nisms utilise the CONTROLDATA class.
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Figure 4: Object Model of the Design

A BEHAVIOURLAYER is concerned with one particular set of behaviours and sub-
goals. Associated with a BEHAVIOURLAYER is a layer/D that determines its rank
in the linear order of priorities, and information about a BEHAVIOURLAYER is usu-
ally indexed by its layerID. The behaviour of a BEHAVIOURLAYER is done in two
phases: first to gather feedback from the *real world” using dofFeedback/). and sec-
ond to determine a plan of action using doGo(). The method doGof() may inhibit
all BEHAVIOURLAYERs below it. (These are the ones with higher priority.) A BE-
HAVIOURLAYER subsumes the behaviour of the BEHAVIOURLAYER below it.

A PLANOFACTION is generated by a laver in order to make progress towards its
subgoals. In the detailed design. this class does not exist: rather. it is a collection of
actions stored within a CONTROLDATA object.

An ACTION is one of the primitive steps available to the agent. In the Truckin’
simulation. trucks can perform a combination of four actions. namely move. buy. sell.
or phone for information. Each action has associated costs in terms of money, time.
capital, and/or gas. An ACTION is given effect by calling the doAction() method.

The COMMUNICATIONBACKPLANE implements the associations amongst lavers
themselves, and the associations amongst lavers and the SELECTOR and the Ex-
ECUTOR. The COMMUNICATIONBACKPLANE acts as a short-term memory. and as a
communication channel, to provide the feedback from the “real world” to the layers.
As short-term memory. the backplane stores the proposed plans of action and the
inhibition information: for each layer this is stored in a CONTROLDATA object. The
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SELECTOR uses the fixed priority scheme and the inhibition information to select the
current course of action, and records this selection in the COMMUNICATIONBACK-
PLANE. This allows each laver to acquire the necessary feedback about the state of
the world following the execution of the selected actions. Once the feedback has been
acquired, the short-term memory is cleared.

The SELECTOR is responsible for interpreting the fixed priority scheme, as defined
by the layerID of the layers, and for interpreting the inhibition information in the
COMMUNICATIONBACKPLANE in order to select a plan of action. The SELECTOR also
controls the deliberations of the subsumption layers. The method select() controls the
two phase behaviour of layers by (1) calling doFeedback() for each layer, (2) clearing
the short-term memory of the COMMUNICATIONBACKPLANE, (3) calling doGo() for
each layer. and (4) selecting the plan of action.

The EXECUTOR is responsible for executing the selected plan of action. Its ere-
cute() iterates over the actions in the plan. and calls the doAction/) method of the
action.

The CoNTROLDATA class is responsible for storing a plan of action and whether
that plan has been inhibited or not. A CONTROLDATA object is associated with each
layer and is internal to the COMMUNICATIONBACKPLANE.

3.3 Behavioural Description

We describe the behaviour of the subsumption architecture in a top-down fashion.
first explaining how the behaviour of the Truckin' framework leads to calls to the
play() method of TRUCK. and then how play() utilises the subsumption architecture.
Last we describe the internal behaviour of an individual BEHAVIOURLAYER.

The outcome of a Truckin' simulation is determined by a truck’s performance in a
competition with other trucks. Each competition consists of a series of games. Games
vary in the starting position of trucks, and in the position (and kind) of dealers in
the simulated country. but all games have the same participating trucks. A game is
played for a certain number of rounds where first the dealers play and then the trucks
play. The order amongst dealers and amongst trucks is random from one round to
the next, however all dealers play before any truck plays. When it is a truck’s turn
to play, the Truckin’ framework calls the play() method of the truck’'s CONTROLLER.



which in turn calls the play() method of the truck.

Allinteractions between a truck and the Truckin' framework go through the truck’s
CONTROLLER, which guarantees that the truck obevs the rules of the game, and
correctly calculates usage of resources.

A truck plays a turn within a given time slot. A truck can do several actions
within that time. Using the subsumption architecture, a truck repeatedly calls the
select() method of the SELECTOR followed by the erecute() method of the EXECUTOR
until the time slot expires. Figure 5 shows a sequence diagram of this behaviour and

Figure 6 an extended object diagram with pseudocode.
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Figure 5: Dynamic Model of Architecture

The SELECTOR requests each layer to perform its feedback phase by calling
doFeedback(). The SELECTOR then clears the short-term memory of the CoMMU-
NICATIONBACKPLANE. Then the SELECTOR requests each layer to determine its
plan of action by calling doGo(). Finally, the SELECTOR uses the priority scheme
and the available inhibition information in the COMMUNICATIONBACKPLANE to flag
one of the plans as the selected plan of action.

During doFeedback(), a layer requests from the COMMUNICATIONBACKPLANE the
plan of action that was selected previously. During doGo(), a layer creates a plan of ac-

tion and commuunicates that plan to the COMMUNICATIONBACKPLANE. Optionally,
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a layer may also communicate inhibit signals to the COMMUNICATIONBACKPLANE

The EXECUTOR fetches the selected plan of action from the COMMUNICATION-
BACKPLANE, and requests that each action be executed by calling doAction(), which
in turn calls the corresponding method of the truck’s CONTROLLER.
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Chapter 4
Conclusion

The subsumption architecture is a lavered mediator for behavior-based control of
robots. In subsumption. each layer of behavior includes as a subset the behaviour of
the lower layers. there is a fixed priority scheme to handle conflicts between layers,
and a layer may suppress or inhibit lower layers.

We develop an object-oriented software design for the subsumption architecture.
and demonstrate that each laver can be used as a slot for a set of plug-and-play
components that implement different micro-strategies for achieving a particular goal.
The software architecture uses of a communication backplane that acts as a short-
term memory, and as a communication channel, to provide the feedback from the
“real world” to the lavers. Furthermore. a set of guidelines for the development of
specific layers and components of subsumption architecture is presented.

The software architecture. and the reuse of micro-strategy components. is vali-

dated by developing truck agents within the Truckin® simulation game.

4.1 Validation of Design using Truckin’

Within the Truckin® project we explore the use of genetic algorithms for developing
robust, reliable components. In this context, a gene is represented by a laver, and the
alleles (or specific manifestations of the gene) by the different instances of a laver. The
genetic algorithm experiments consider many different combinations of alleles: each
combination defines a truck. The natural selection amongst trucks is done through a

Truckin’ competition, and the “fittest” trucks are used to breed the next generation
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of trucks.

For each layer we develop five components as instances of strategies. The strategies
range from very basic to moderate in complexity. While most strategies are designed
as state machines, they are not implemented as such. These are not strategies for the
overall goal of winning the game, but strategies for achieving the subgoal(s) of one
behaviour layer, so we call them micro-strategies.

A micro-strategy is a C++ subclass. It is derived from one virtual base class, the
LAYER class. The LAYER base class contains the data and interface required by a
behavior layer to function properly in the subsumption architecture. It is the wiring
required by a micro-strategy to plug into the subsumption architecture. A subclass of
the LAYER class is a specialized subsumption laver coded to execute a specific micro-
strategy. It is completely dedicated to executing its strategy. All micro-strategies are
subclasses of the LAYER class.

A truck’s gene set is determined by the behavioral decomposition of the truck.
We associate each layer of behavior with a gene. Our truck was decomposed into
the following four layers of behavior: “Gas getting”. “Capital getting”. ~Trading”.
and “Information gathering”™. The chromosome of a truck is a fixed length string.
Each entry of the string is a gene in the gene set. In our case the chromosome is a
string with four entries, the first entry represents the “Gas getting~ gene, the second
entry represents the “Capital getting” gene and so on. The value stored within
each entry maps to a specific strategy from the population of strategies for the gene
represented by that entry of the chromosome string. We produced a unique reference
to each strategy within a specific gene population by enumerating the strategies in
the population. Chromosome "0312". for example. is a truck that has “Gas getting”
strategy numbered 0. “Capital getting” strategy numbered 3, “Trading” strategy
numbered 1, and “Information gathering” strategy numbered 2.

The subsumption truck is a C++ class. The constructor method of this class
is responsible for instantiating all the components of the truck. The truck's chro-
mosome string is an argument of the constructor method. The constructor uses the
chromosome string to instantiate the appropriate subclasses of the Layer base class.
The relationship between the chromosome string and Layer subclasses is implemented
by this method. The position of an entrv on the chromosome string determines the

specific behavior layer, and its value determines which subclass of that behavior
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layer to instantiate. Given chromosome “03127, the constructor will instantiate “Gas
getting” subclass numbered 0. “Capital getting” subclass numbered 3. “Trading”
subclass numbered 1. and “Information gathering” subclass numbered 2.

The Truckin simulation consists of several runs of the Truckin game; each run
begins with a generation of trucks. The game executes for a pre-defined interval of
time, this represents the truck’s lifespan. At the end of the game the performance of
the trucks are evaluated according to total profit made by each truck during the game.
The top most profitable trucks are selected for genetic recombination. The genes of
the selected trucks. their offspring. and some randomly generated gene combinations
makeup the next generation of trucks.

Truck reproduction is applied to the chromosomes of the most profitable trucks
at the end of a Truckin game. The chromosomes of these trucks makeup the mating
pool. Chromosomes are randomly selected from this pool to form mating pairs. The
crossover operation is applied to each pair of chromosomes resulting in two offspring
per mating pair. A crossover point is a randomly generated number between 1 and the
total number of genes on the chromosome. For each mating pair a crossover point is
generated. the chromosome string of each parent is divided at this point producing two
sub strings each. Two offspring are produced from these sub strings. One offspring
chromosome is the string resulting from concatenating the left sub string from one
parent with the right sub string from the other. the second from concatenating the
remaining sub strings. For example. mating chromosomes “0312" and "1023". and
crossover point 3 results in sub strings 031" and “2” from one parent. “102" and 3"
from the other. The offspring are 0313 and “1022".

In our experiments 80% of the trucks in each generation were selected by truck
reproduction. They included the top 40% most profitable trucks from the previous
generation plus their offspring. The remaining 20% were produced randomly.

The subsumption development process requires extensive testing of the svstem
in its environment. The Truckin simulation has the following parameters: number
of games. number of trucks per game, and length of time per game. By varying
the simulation parameters we are able to perform a variety of experiments. \We ran
Truckin games with 1, 5. 10, 15, and 20 trucks for 1000. 5000, 10000, and 15000 time
intervals. Each combination of number of trucks and time interval was run for more

than 1000 games. Extensive testing during the development process validates the
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system decomposition and permits thorough debugging of the code.

4.2 Guidelines for Subsumption Systems

Subsumption systems model the interaction dynamics of the components of the sys-
tem and the environment in order to produce the desired results. As a consequence.
the designer must determine the reflex modules and how they should be combined
for each task and environment. It's often not possible to transfer a solution for one
class of problems to another, instead. the architecture provides a set of principles and
a set of examples that might be useful to the designer.

Brooks provided a methodology to develop subsumption robots that manages the
complexity of achieving emergent behaviors. and addresses the complexity associated
with distributed control. A bottom-up decomposition. incremental design. testing and
debugging in the real world, offers a controlled way to achieve the desired behaviors.
Distributed control of many modules is simplified by the minimization of inter-module
dependence and communication. The guidelines that follow. derived from [4. 5. 22,
keep the development process within the boundaries of the subsumption methodology.

It must be emphasized thar these guidelines are not a subsumption program recipe.
They serve to help the designer apply the subsumption methodologv. They act as

signposts that direct the development process towards a subsumption program.

Guideline 1: Decompose the system into task-achieving behaviors beginning with
the basic set of reflexes that provide survival in a dynamic unstructured world. A task-
achieving behavior is observable in the world. Proceeding bottom-up, define task-
specific modules which when combined with existing modules increase the capabilities
of the system. See {22] for heuristics describing the process of using task-specific
constraints to generate behaviors.

This guideline provides a qualitative way to decompose the system, resulting in
layering of behaviors that can be incrementally designed and implemented. The
overall behavior of the system provides top-down constraints on the bottom-up de-
composition, as a consequence every behavior is geared towards the purpose of the

whole system.
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Guideline 2: A layer is a collection of task-achieving behavior modules that to-
gether produce a level of competence. The activity of a layer is stimulated by events
in the environment, not instructions from another layer. Most information is obtained
directly by the layer itself through sensing the environment. Perception should be
tightly coupled to action within a layer. A layer is designed to take small incremental
steps towards its subgoals relying on frequent sensing of the world for dyvnamic error
correction. At each step a layer must react quickly enough to able to sense changes
in the environment as they occur.

The effect of this guideline is autonomous reactive layers whose integration and

communication medium is the environment.

Guideline 3: Layers may interact with lower layers via their input and output. A
higher layer may suppress the input or inhibit the output of a lower layer. Suppression
includes the ability to replace the input to a lower layer. whereas inhibition causes
the output of the layer to be ignored.

This guideline contributes to extensibility. Direct inter-layer communication is
minimized resulting in simple laver interfaces. Simple interfaces coupled with a hi-
erarchical ordering of layers facilitates the process of layering: incrementally adding

higher levels of competence to the system.

Guideline 4: There should be no simplified test environments. Subsumption ap-
plications must cope with unpredictability in the environment. and with imperfect
sensory information.

The layers are designed to take advantage of the dynamics of their actions on
and in some environment. Testing in a simplified environment could lead to a design
of a layer that depends on some simplified property. which is not true in the real
environment. This dependency will then propagate to the higher layers who rely on

the lower layers.

Guideline 5: Each layer should be tested, and debugged extensively in the real
world before adding another layer to the system.
This guideline helps to simplifv the debugging process. When a new layer is added

to the existing system any bugs are likely to be in the new layver, or in the interface



of the new layer with the system, and not in the existing system. Any bug fixing will
be confined to the new layer.
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