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ABSTRACT
Utilizing the notion of removable blocks to enhance program slicing algorithms
Bhaskar Airody Karanth

Program slicing is a program decomposition technique that transforms a large program
into a smaller one that contains only statzments relevant to the computation of a selected
function. Applications of program slicing can be found in software testing, debugging
and maintenance where program slicing essentially reduces the amount of data that has to
be analyzed in order to comprehend a program or parts of its functionality. In this thesis,
two program slicing algorithms based on the notion of removable blocks are presented
and they are (1) a general static program slicing algorithm and (2) criterion based hybrid
program slicing algorithm. The thesis introduced new syntax tree representation using
removable blocks and theorized a new navigation technique for the same. The new static
slicing algorithm combined with the enhanced dynamic slicing algorithm is used to
derive the criterion based hybrid slicing algorithm. The hybrid program slicing algorithm
allows the user to define the range of accuracy between static and dynamic program
slicing. These algorithms compute slices that are executable for structured and object-
oriented programs. It uses the executable property of new static slicing to reduce the
input source code to dynamic slicing to save the time and space. The introduced program
slicing approaches are part of Montreal Object-Oriented Slicing Environment (MOOSE).
MOOSE utilizes the information derived from the program slicing algorithms to enhance
the functionality and usability of the framework. The preliminary tests with the basic
hybrid program slicing algorithm indicate that hybrid program slicing can reduce the
algorithmic time and space for the slice computation as compared to the dynamic

program slicing.
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1. Imtroduction

The comprehension of source code plays a prominent role during software maintenance
and evolution. Poor design, unstructured programming methods, and crisis-driven
maintenance can contribute to poor quality code, which in turn affects program
comprehension. The goal of program comprehension is to acquire sufficient knowledge
about a software system so that it can evolve in a disciplined manner. There are varieties
of support mechanisms for aiding program comprehension, which can be grouped into
three categories: unaided browsing, leveraging corporate knowledge, experience, and
computer-aided techniques like reverse engineering. In this thesis, focus is on reverse

engineering as it can be applied effectively in program comprehension [3, 18, 45].

One approach to improve the comprehension of programs is to reduce the amount of data
that has to be observed and inspected. In this research, program slicing is utilized to
enhance the comprehension of software systems. The notion of static program slicing
originated in the seminal paper by Weiser [56,57]. Weiser defined a slice S as a reduced,
executable program obtained from a program P by removing statements such that §
replicates parts of the behavior of P. Weiser's approach is based on program
dependencies; slices are consecutive sets of indirectly relevant statements. A static
program slice consists of those parts of a program P that potentially could affect the value
of a variable v at a point of interest. The static algorithm uses only statically available
information for the slice computation; hence, this type of program slicing is referred to as
a static slice. Different extensions of the original static slicing approach have been

proposed, e.g., [11]. Korel introduced a major extension of program slicing, with Laski



[23], called dynamic slicing. The dynamic slicing approach not only utilizes static source
code information, but also dynamic information from program executions on some
program input. The dynamic slice preserves the program behavior for a specific input, in
contrast to the static approach, which preserves the program behavior for the set of all
inputs for which the program terminates. By considering only a particular program
execution rather than all possible executions, dynamic algorithms may compute slices
that are significantly smaller than the slices computed by the static slicing algorithms.
Different types of dynamic program slices have been proposed, e.g., [2,4,13,21,23,28].
The reason for this diversity of slicing types and methods is the fact that different
applications require different properties of slices. The notion of dynamic slicing has also
been extended for distributed programs [7,10,26]. Program slicing is not only used in
software debugging but also in software maintenance and software testing
[3,14,15,17,22,27,33,38,44,54,58]. Slicing has been shown useful in program debugging
[8,23,48,56], testing, and program comprehension and software maintenance

{1,5,12,20,24].

Hybrid program slicing algorithms were introduced to take advantage of both static and
dynamic slicing properties. These algorithms use static information to lower the run time
overheads and dynamic information is used for more accurate handling of dependencies
[47]. Gupta and Souffa proposed in [15] to use both static and dynamic information for
the computation of program slices for structured programs. Schoenig and Ducass’e in [47]
proposed a hybrid backward slicing algorithm for Prolog, which computes an executable

slice.



1.1 Motivation and objective

In this thesis, the objective is to investigate enhanced program slicing and its usability in
program comprehension. The underlying principle of removable blocks is used in the
theorized program slicing algorithms. Korel and Laski in [23] introduced dynamic
program slicing with removable blocks but did not extend the same notion for static
program slicing. This has prompted the current research to hypothesize a new algorithm

for static program slicing based on removable blocks.

The process of program comprehension can become aggravating in software maintenance
and debugging because programmers usually debug someone else’s programs and often,
they only poorly or partially understand these programs. A new general static program
slicing algorithm is presented in the current research that extends the algorithm for
unstructured programs based on Korel’s algorithms [30]. This algorithm can be adapted
for all programming language constructs as they can be found in major procedural
programming languages, e.g.; procedures, functions, recursion, nested procedure calls,
exit, abort, exception handling, local and global variables. In addition, a formal proof is
presented to show that the new general static program slicing algorithm computes correct

slices.

A hypothesis is proposed in this research, that developing nov'el static and hybrid
program slicing related concepts would help the comprehension by reducing the time and
resources required for the generation of precise slices for a range of values. As part of a
program slice computation, different types of information are determined and usually
discarded after the slice computation. In this research, new hybrid program slicing related

features are proposed to exploit this information for the purpose of program



comprehension and comprehension of program executions, e.g., executable hybrid
program slices, partial static and hybrid program slicing. Two hybrid program slicing
concepts are suggested in this research and they are known as “Basic Hybrid Program
slicing Algorithm (BHPSA)” and “Criterion Based Hybrid Program Slicing Algorithm
(CBHPSA). For BHPSA, both static and dynamic program slicing algorithms were used
sequentially. Similar to static program slicing, a formal proof is presented to show that

the criterion based hybrid program slicing algorithm computes correct slices.

The BHPSA has been implemented within MOOSE (Montreal Object-Oriented Slicing
Environment). MOOSE was developed as an open comprehension framework to guide
programmers during the challenging task of understanding large traditional and object-
oriented programs and their executions. Certain number of tests were carried out to

understand the behavior of such hybrid program slicing algorithms.

1.2 Scope of the dissertation

The presented thesis consists of six sections including this section.

In section two, an overview and a survey of related literature and existing approaches of
static, dynamic and hybrid slicing algorithms is provided, as well as a general comparison

of these algorithms.

In the third section, a general static program slicing algorithm based on removable blocks
is presented. A formal proof of the algorithm is presented and it is based on Korel’s

dynamic algorithm [30].



In the fourth section, two novel hybrid programs slicing related concepts on the source
code level is presented. Also presented is an algorithm on criterion based hybrid slicing

that is an extension to Korel’s dynamic program slicing algorithm [30].

In the fifth section, an overview of MOOSE environment is presented. A brief note on,
preliminary tests that are conducted using MOOSE environment are shown. In addition,
in this section, properties on which further experiments are to be carried out are outlined

for future work.

In the last section, conclusions of the present work and propose future directions related

to this research.

In appendix A, the formal proof of general dynamic slicing from Korel [30] is reproduced
to belp the readers to understand the concept removable blocks applied to dynamic

slicing.



2. Background

Program comprehension is a crucial part of system development and software
maintenance. It is expected that a major share of systems development effort go into
modifying and extending pre-existing systems, about which programmer usually know
little. Change to a system may be necessitated for adaptive, perfective, corrective or
preventive reasons. Understanding the system, incorporating the change, and testing the
system to ensure that the change has no united effect on the system are the three facets of
software maintenance [13,35,53]. For all of these maintenance activities, software
comprehension plays a pivotal role. A commonly used technique to enhance the
comprehensibility of software systems is through reverse engineering. This technique is
used to analyze a subject system with the goal to: (a) identify the system’s components
and their inter-relationships (b) to create representations of a system in another form at a
higher level of abstraction and (c) to understand the program execution and the sequence
in which it occurred. Numerous theories have been formulated and empirical studies are
conducted to explain and document the problem-solving behavior of software engineers
engaged in program comprehension. Cognitive models have been introduced to describe
the comprehension processes and knowledge structures used to form a mental

representation of the program under examination [39].

Typically, a program performs a large set of functions/outputs. Rather than trying to
comprehend all of a program’s functionality, programmers will focus on selected
functions (outputs) with the goal to identify which parts of the program are relevant for
that particular function. Program slicing provides support during program

comprehension, by capturing the computation of a chosen set of variables/functions at



some point (static slicing) in the original program or at a particular program execution
position (dynamic slicing). This will lead to a smaller, simplified version of the original

version of the program without changing the local semantics of the extracted slice.
2.1 Basic program slicing terminology

Program slicing terminology is based on program dependence theory and it reuses its
terminology. Most of the slicing algorithms are represented by a directed graph, which
captures the notion of data dependence and control dependence in programs. The
program structure is represented by a flow graph G = (N, A4, s, e) where (1) N is a set of
nodes, (2) A, a set of arcs, is a binary relation on N and (3) s and e are, respectively,
unique entry and exit nodes. A node corresponds to an assignment statement, an input or
output statement or the predicate of a conditional or a loop statement, in which case it is

called a test node. A path from the entry node s to some node k, k € N, is a sequence <,

n,n>ofnodessuchthatn =s,n
2 g 1 q

= k and (n;, nm) €A, foralln;, 1 <i<gq. Apath
that has actually been executed for some input will be referred to as an execution trace. A
path is regarded feasible only if there exists some input data, which causes the path to be
traversed during a particular program execution. A program trajectory has been defined
as a feasible path that has actually been executed for some specific input. Notationally,

an execution trace is an abstract list (sequence) whose elements are accessed by position

in it, e.g., for trace Ty in Figure 2, Ty(4)=4, T5(5)=8. Node Y at position p in Ty (e.g.,

T (p)=Y) will be written as YP and referred to as an action. Y is a test action if Y is a test



node v4 denotes variable v at position g, i.e., variable (object) v before execution of node

Tx(g).

For example,

Ty = <1,2,3,4,9,10,11,12> is the execution trace when the program in

Figure 1 is executed on the input x: MSRP = 25000; this execution trace is presented in

Figure 2.
1. normal_profit = 100;
2. bouus_profit = 1500;
3. cin >>MSRP;

{

}

4. if (MSRP > 30000)

5. bonus_profit = MSRP + bonus_profit ;

6. normal_profit =MSRP + normal_profit ;

7. Showroom_price = MSRP + bonus_profit + normal_profit;
}

8 else
{

9. Showroom_price = MSRP + normal_profit ;

10. cout<< normal_profit;
11.cout <<bonus_profit;

12.cout<< Showroom_price;

Note: Compiler specific declarations
are excluded for clarity

Figure 1: Sample program



1'  normal_profii = 100

2° bonus_profit = 1500;

3> cin>>MSRP;

4*  if (MSRP > 30000)

8° else

9° Showroom_price = MSRP +normal_profit ;
10’  cout<< normal_profit;

11 cout <<bonus_profit;

12°  cout<< Showroom_price;

Figure 2: An execution trace of the sample program on input MSRP = 25000

A use of variable v is an action in which this specific variable is referenced. A

definition of variable v is an action, which assigns a value to that variable. The
following assumptions are made: U(YP) is a set of variables whose values are used in
action Y? and D(YP) is a set™of variables whose values are defined in ¥P. Sets U(¥P)

and D(YP) are determined during program execution, especially for array and pointer
variables because it is possible to identify the specific array elements that are used or

modified by the action during program execution.

Static data dependence captures the situation in which one node assigns a value to an
item of data and the other action uses that value. Data dependence is based on the
concepts of a variable definition and use. Thus a node j is data dependent on node i if
there exists a variable v such that: (1) v is defined in node i, (2) v is used in node j and (3)

there exists a path from i to j without an intervening definition of variable v. In the



sample program of Figure 1 there exists data dependence between node 5 (using the

variable MSRP) and node 3 (defining the variable MSRP).

Static control dependence is based on the concepts of post-dominance. Informally this
can be thought of as one program statement determining in some way, whether or not
another statement will be executed. The control dependence is defined as [11]: Let Y and
Z be two nodes and (Y, X) be a branch of Y. Node Z postdominates node Y iff Z is on
every path from Y to the exit node e. Node Z post-dominates branch (Y, X) iff Z is on
every path from Y to the program exit node e through branch (Y, X). Z is control
dependent on Y iff Z post-dominates one of the branches of Y and Z and does not post-
dominate Y. The concept of post dominance means that all execution paths in a control
flow graph from a specific node i to the program end must pass through another node j
before they reach the program end [19]. For example, in the sample program of Figure 1,
there exists a control dependence between the node 5 and node 4, where node 5 is control

dependent on node 4.

2.1.1 Backward program slicing

In backward slicing, slices are computed by gathering statements and control predicates
through backward traversal of the program dependencies, starting at the node defined by
the slicing criterion [54]. The slices are mostly obtained by traversing the edges of graph

towards the root node.

10



212 Forward program slicing

A forward program slice contains all statements and control predicates dependent on the
slicing criterion. A statement is ‘dependent’ on the slicing criterion: 1) if the value
computed at that statement depend on the values computed at the slicing criterion or 2) if
the values computed at the slicing criterion determine the fact if the statement under

consideration 1s executed or not.

2.1.3 Removable Blocks

Korel introduced the notion of removable blocks in [28] and described it as the part of
program text (code) that can be removed during slice computation. A block is described
as the smallest component of the program text that can be removed (e.g. assignment
statement, input and output statements, etc.). Test nodes (predicates of conditional
statements) are not removable individually, and, therefore, they are considered part of a
complex block where they can be removed if none other block in the complex block is
said to be not removable. Intuitively, a block may be removed from a program if its
removal does not "disrupt” the flow execution on some input x. Each block B has a
regular entry to B and a regular exit from B referred to as r-entry and r-exit, respectively.
In unstructured programs, because of jump statements, execution may enter a block
directly without going through its r-entry; in this case, one can say execution enters the
block through a jump entry. Similarly, execution can exit a block without going through
its r-exit; in this case, the execution leaves a block through a jump exit. Let By; B»; Bs;
be a sequence of three blocks in a program. Block B> may be removed, if during

execution of the program on some input x, the execution exits from block B; through its

11



r-exit, enters block B- through its r-entry, leaves B, through its r-exit, and enters block Bs
through its r-entry. If block B> is removed and the resulting program is executed on the
same input x, the program execution will after leaving B, through r-exiz, enter block B;
directly through its r-entry. In this case, the flow of execution is not disrupted by the
removal of block B, Figure 3 shows the sample program represented in Korel’s

removable block concept.

1L.nomal_profit = 100: B1
= M B
3[ cin >>MSRP:; B3
40 if (MSRP > 30000) B4
{
5. _ = . ; B
6.  (normal profit = MSRP + normal_profit ; Bf
7. [Showroom_price = MSRP + bonus profit + normal profit; B7|
}
8| else B8
{
9. [Showroom_ price = MSRP + normal profit ; BY
}
10[ cout<< normal_profit; B10
11jcout <<bonus_profit; B11|
12[cout<< Showroom_price; B12

Figure 3: Sample program( Figure 1 ) with removable blocks

12



2.2 Static program slicing

Based on the original definition of Weiser [57] a static program slice S consists of all
statements in program P that may affect the value of variable v at some point p. The slice
is defined for a slicing criterion C=(x,V), where x is a statement in program P and Vis a
subset of variables in P. Given C, the slice consists of all statements in P that potentially
affect variables in V at position x. Static slices are computed by finding consecutive sets
of indirectly relevant statements, according to data and control dependencies. The
program dependence graph (PDG) was originally defined by Ottenstein and Ottenstein
[40] and later refined by Horwitz et al. [19,41,42]. Data and control dependencies
between nodes may form a program dependence graph that can be used for the
computation of static slices by traversing backwards along the edges of the program

dependence graph from a point of interest.

2.2.1 Program dependency graph(PDG)

Program dependence graph is formed by combining all data and control dependencies
that exist in the program. The existing static program slicing algorithms use the notion of
data and control dependencies to compute program slices. A static program slice can be
easily constructed using the PDG by traversing backwards along the edges of a program
dependence graph starting at a node i. Figure 4 shows the program dependency graph for
the sample program shown in Figure 1. The nodes, which were visited during the
traversal, constitute the desired slice [40]. Figure 5 shows the executable slice created by
the static slicing algorithm for the sample program in Figure 1. For this example, one

need to first traverse backward through all nodes with edges from the starting node 12

13



(variable Showroom_price for which the slice is computed). The edges which can be

traversed backwards from node 12 through the PDG are the node 7 and node 9.

Data flow
dependence

Control flow
dependence

Figure 4: Program dependence graph for the sample program from Figure 1

In the next step all the edges which can be traversed backward from node 7 and node 9
are visited. The set of all nodes which could be traversed backwards through the PDG
from starting node 12 are shown in Figure 4. This set of nodes {1,2,3,4,5,6,7,8,9,12},
represents the static program slice for variable v at node i, which includes all statements
affecting the variable Showroom_price at node 12. For this example, the static program
slice is only slightly smaller than the original sample program (see Figure 5). The only
statements, which are not included in the static program slice, are the output statements at

nodes 10 and 11.

14



1'.  normal_profit = 100;
2°.  bonus_profit = 1500;
3. cin>>MSRP;

4*  if (MSRP > 30000)

{

5. bonus_profit = MSRP + bonus_profit ;

6. normal_profit = MSRP + normal_profit ;

7. Showroom_price = MSRP + bonus_profit + normal_profit;
}

8. else
{

9. Showroom_price = MSRP -+normal_profit ;

}

12'°  cout <<Showroom_price;

Figure 5: Static slice for Showroom_price on input MSRP = 25000
222 Data Flow Based Slicing Techniques

The two algorithms based on Weiser’s [57] original data-flow model for computing
program slices is presented by Gupta et al. [14], which they describe “backward” and
“forward” walks. These algorithms are based on the concept of “backward” and
“forward” program slicing. They identify the definitions and uses that are affected by a
program. Both algorithms use a control flow graph representation of the program in
which each node represents a single statement. The algorithms compute data flow
information to identify the affected def-use associations, but they do not require history
of data flow information. Furthermore, the algorithms are slicing algorithms in that they
examine only relevant parts of the control flow graph to compute the required data flow

information. These algorithms are designed based on the approach taken by Weiser for

15



computing slices [57]. This approach lets relevant program slices be computed without
exhaustively computing the def-use information for the program. The algorithms assume
that only scalars are being considered and the technique is easily extended to include
arrays by adding a new condition for halting the search along paths. The algorithms from

[14] are presented below explain the concept.
Algorithm BackwardWalk{14]

The backward walk algorithm identifies statements containing definitions of variables
that reach a program point. The technique uses the definitions that reach the statement,
along with the uses in the statement, to form def-use associations. It should be noted that
if a variable being considered is undefined along a path, then the search will terminate
once it reaches the start node of the control flow graph. Algorithm BackwardWalk, shown
in Figure 6, identifies the statements containing definitions of a set U of variables that
reach a program point s. BackwardWalk inputs the program point or statement s and a set
U of program variables, and outputs DefsOfU, a set of statements or nodes in the control
flow graph corresponding to the definitions of variables in U that reach s. BackwardWalk
traverses the control flow graph in the backward direction from s until all variables of U
are encountered along each path. The algorithm collects the statements containing the

definitions in DefsOfU and returns the set.

To assist in the traversal process, BackwardWalk maintains two additional sets of
variables, In and Out, for relevant nodes in the control flow graph. Out[i] contains the
variables whose definitions were not encountered along some path from the point
immediately following i to s; In[iJcontains the variables whose definitions the algorithm

has not encountered along some path from the point immediately preceding i to s. Since

16



the algorithm walks backward in the control flow graph, it computes Out[n]as the union
of the In sets of n’s successors. The algorithm uses another set of variables, NewOut, to
store temporarily the newly computed Out set. During the backward traversal, the
algorithm maintains a Worklist, consisting of those nodes that must be visited; Worklist
indicates how far the traversal has progressed. BackwardWalk maintains Worklist as a

priority queue based on a reverse depth first ordering of nodes in the control flow graph.

algorithm BackwardWalk(s,U)
input s ;program point/statement
U :set of program variables
output DefsOfU :set of statements/nodes in the control flow graph
declare In[i], Out[i], NewQut:set of program variables
Worklist :statements/nodes in the control flow graph, maintained as a priority queue
n, n; :program point/statement
Pred(i), Succ(i)returns the set of immediate predecessors(successors) of i
begin
DefsOfU = Worklist= D
forall n £ Pred(s) do Worklist = n,y+ Worklist
In[s}=U; Outs]=0D
forall ni # s do In[n; }=Outn; 1=2
while Worklist # & do
Get n from head of Worklist
NewOut =, ¢ uce(ny VW Inlp]
if NewOut # Out{n] then
Out[n]=NewOQut
if n defines a variable u £ U then
DefsOfU = DefsOfU U {n}
In[n]}=Outin]-{u}
else In[n]=0ut|n]
if In[n] # D then
forall x & Preds(n) do Worklist = x4+ Worklist
return(DefsOfU)
end BackwardWalk

Figure 6: Algorithm BackwardWalk [14]

17



The algorithm also uses n and »; to represent statements or nodes in the control flow
graph, and functions Pred(i) and Succ(i) to compute the immediate predecessors and

successors of node i, respectively.

Algorithm BackwardWalk begins by initializing all sets that it uses. After initialization,
the only entries in Worklist are the predecessors of s. The main part of the algorithm is a
while loop that repeatedly processes statements in Worklist until Worklist is empty. To
process a statement n, BackwardWalk first computes NewQut for n as the union of the In
sets of the successors of 7 in the control flow graph. If NewQut and Qut{n] are the same,
there has been no change from the last iteration of the while loop, and processing along
the path containing » terminates; the comparison of NewQOut and Out[n] causes each loop
to be processed only one time. i NewOut and Out[n] differ, there is a change from the
last iteration of the while loop. In this case, BackwardWalk assigns NewQut to Out[n],
and examines 7 for a definition of a variable in U. If the algorithm finds such a definition,

it adds 7 to DefsOfU

Additionally, the algorithm removes « from In/r] since it no longer needs to search for a
definition of u along this path. If BackwardWalk finds no definition of a variable in U in
n, it assigns Out[n] to In[n] and adds all immediate predecessors of n to Worklist. Each
statement n added to Worklist represents a point in the program along which the
backward traversal must continue, since not all variables in U were defined along a path
from a successor of n to point s. Thus, BackwardWalk only adds a node to Worklist if the
In set of one of its successor is not empty. When Worklist is empty, the algorithm has
encountered all definitions of all variables in U along all backward paths from s and the

algorithm terminates.
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Algorithm ForwardWalk{14]

The forward walk algorithm identifies uses of variables that are affected directly or
indirectly by either a change in a value of a variable at a point in the program or a change
in a predicate. The def-use associations returned by the algorithm are triples (s, &, V)
indicating that the value of variable v at statement s, affected by the change, is used by
statement u. A def-use association is directly affected if the triple represents a use of an
altered definition. A def-use association is indirectly affected in one of the two ways: (1)
the triple is in the transitive closure of the changed definition or (2) the triple is control

dependent on a changed or affected predicate.

Algorithm ForwardWalk, presented in Figure 7, inputs a set of Pairs representing
definitions whose uses are to be found, along with a Boolean, Names, that indicates
whether the walk starts with a set of variable names at a program point or a set of
definitions. Names is true if the walk begins with a set of variable names v at a point p,
represented by (p, v). Otherwise, the walk begins with the pairs of affected definitions
(s,v). ForwardWalk outputs a set of def-use triples, Triples. For each statement node n, In
and QOut sets contain the pairs representing definitions whose uses are to be found, since
their values are affected by the edit. The set In[n](Out[n]) contains the values just before
(after) n whose uses are to be found. Each value is represented as a pair (d,p)indicating
that the value of variable p at point d is of interest. If ForwardWalk encounters a
statement 7 that uses the value (d,p) belonging to In[n], it adds def-use triple (d,n,p)to the
list of def-use pairs affected by a change in the value of variable v at statement s. The

value of the variable defined by statement 7 is also indirectly affected.
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algorithmForwardWalk(Pairs, Names)
input Names :boolean is true if change is only a predicate change
Pairs :sets of definitions, (s, v), where s is a program point/statement and v is a variable
output Triples :set of (point/statement, statement, variable)
declare In[i], Owt[i], Kill, Newin :set of pairs, point/statement,variable)
Worklist, Cd[i], PredCd, AffectedPreds :set of point/statement
DefsOfV :set of (s, v)of definitions
v ;program variable
k, n :statement/node
Pred(i), Succ(i)-returns the predecessors(successors) of i in the control flow graph
Def (i): returns the variable defined by statement /
begin
Triples=Q
forall (s,v) €Pairs do
forall n € Succ(s) do Worklist = n 4+ Worklist
forall statements #; not in any pair in Pairs do In[n; }=Out[n; |=D
forall (s, v) € Pairs do In[s]= O;0ut[s]={(s,v)}
if Names then AffectedPreds ={s; }else AffectedPreds = &
while Worklist + & do
Get n from head of Worklist
Newlin = Uy ¢preamy Outl pl
if NewIn # In[n] then
In[n]=Newin
PredCd ="U, ¢preany Cd( p)
if PredCd - Cd(n) + © then UpdateAffinfo
if  has a c-use of variable v such that (d,v) € In[n] then
forall (d,v) € In[n] do Triples = Triples U {(d n,v)}
Kill ={(s,Def (n)): (s, Def (n)) elnfn]}
Outln}=(In[n]-Kill) L {(n, Def (n))}
elsif n has a p-use of variable v such that (d,v) € In[n] then
forall (d,v) eln[n] do Triples = Triples U {(d,n, p)}
DefsOfV = BackwardWalk(n {v}) - In[n]
In{n]=In[n] O {(n, v; ):(d,v;) eDefsOfV}
Out{n)=In[n]
AffectedPreds = AfffectedPreds \ {n}
elseif n defines a variable v A Cd(n) N AffectedPreds # Othen
Out[n]=0ut[n] U {(n, Def (n))}
else Oui[n)=In[n]
if Out{n] + D then
forall x € Succ(n) do Worklist = x,+ Worklist
return(7riples)
end ForwardWalk

Figure 7: Algorithm ForwardWalk [14]
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If the algorithm encounters a new definition of a variable p at statement n, then the values
of p belonging to In[njare killed by this definition, and the search for these values along
this path terminates. The set Kill in the algorithm denotes the set of values killed by a
definition. The Kill set is needed to compute Out/njfrom In[n]. Since the algorithm
walks forward in the control flow graph, In[n] is computed by taking the union of the Quz
sets of n’s predecessors. During this traversal, a work list, Worklist, consisting of those
nodes that must be visited, indicates how far the traversal has progressed. ForwardWalk
maintains Worklist as a priority queue based on a depth first ordering of nodes in the
control flow graph. The algorithm examines the statements in Worklist for c-uses and p-
uses of the definitions in the In sets along with definitions in statements that are control
dependent on a changed or affected predicate. As the algorithm examines the statements
in Worklist, it adds additional statements to be considered to Worklist. ForwardWalk also
uses DefsOfV, a set of definitions, v, a program variable, and k and n, statements in the
program. Functions Pred, Succ and Def return the predecessors, successors and variable

defined by statement i, respectively.

procedure UpdateAffinfo
begin
forall k (PredCd - Cd(n)) N AffectedPreds do
In[n)=In[n]-{(k, v; )for all v; }
AffectedPreds = AffectedPreds -{k}
forall (k, u, v)inTriples do
Triples = Triples ~{(ku,v)}
forall (d, v) € DefsOfV do
Triples = Triples U {(d, u, v)}
end UpdateAffinfo

Figure 8: Procedure UpdateAffinfo [14]
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In the first part of ForwardWalk, all variables are initialized. The main part of the
algorithm is a while loop that processes statements/nodes on Worklist until Worklist is
empty. For each statement n removed from Worklist, processing consists of first
computing Newln for n by taking the union of the Out sets of the predecessors of n, and
then determining if Newln is the same as the previous value of In[n].Xf these sets are the
same, there has been no change since the previous iteration, and the forward walk along
this path terminates at n. If these sets differ, n is processed further: Newln is assigned to
In[n),and PredCd is assigned the union of the control dependence information for n’s
predecessor(s). If PredCd contains nodes on which # is not control dependent, then the
forward walk along this path has moved into a different region of control dependence,

and AffectedPreds must be updated accordingly.

Procedure UpdateAffInfo shown in Figure 8 handles this task. Then, node » is checked to
see if it has a c-use of variable v. If so, def-use associations for any pairs in In/n] are
added to Triples, and the variable defined at n is added to Out[n] since it is indirectly
affected. If there is no c-use of v at n but n contains a p-use, def-use associations for any
pairs in In[n] are added to Triples. Since a p-use signals an affected predicate, any
definitions that reach n is found using BackwardWalk; these definitions are used to

identify indirectly affected def-use associations.

If neither type of use is found at n, the statement is inspected for a definition; if one is
found at n, the appropriate data flow sets are updated. Finally, if no definition or use of
the variables is found atn, the data flow information is propagated through n. If Out[n] is
not empty, then the successors of » must be processed, and they are added to Worklis:.

When Worklist is empty, processing terminates and Triples is returned.



223 Advantages and disadvantages of static program slicing

Static program slicing [57] derives its information through the analysis of the source

code. Its strength can be found particularly in the following areas:

(a) The computation of a static program slice is relatively cheap (compared to the
dynamic program slice) as only the static analysis of the source code and no analysis

of program execution is required

(b) It helps the user to gain a general understanding of the program parts that contribute
to the computation of a selected function with respect to all possible program

executions.

(c) No operational profile required.

However, static program slicing has some major drawbacks and they are as follows:

(a) For programs containing conditional statements, dynamic language constructs like
polymorphism, pointers, aliases, etc., static slicing has to make conservative

assumptions with respect to their run-time contribution that might be relevant for the

slice computation.

(b) Due to its static nature, static program slicing does not provide any information with
respect to the analysis of program executions as slices are based on static

information.

(c) In most cases, static program slicing produces larger program slices than the

dynamic program slicing algorithms.



2.3 Dynamic program slicing

The goal of program slicing is to find the slice with the minimal number of statements but
this goal may not be always achievable in general static program slicing. A dynamic
program slice overcomes the limitations of the static program slicing algorithms as it is
based on a particular program execution (program input). A dynamic program slice, as
originated by Korel and Laski [23], is an executable part of the program whose behavior
is identical, for the same program input, to that of the original program with respect to a
variable of interest at some execution position. In the existing dynamic program slice

algorithms the major goal is to identify those actions in the execution trace that contribute

to the computation of the value of variable y? by identifying data and control

dependencies in the execution trace. However, it is also important to identify actions that

do not contribute to the computation of yZ. The more such "non-contributing” actions
that can be identified, the smaller will be the dynamic program slice computed by the
algorithm. A slicing criterion of program P executed on program input x is a tuple
C=(x,y?) where y? is a variable at execution position q. A dynamic program slice of
program P on slicing criterion C is any syntactically correct and executable program P’
that is obtained from P by deleting zero or more statements. In addition, the dynamic
program slice when executed on program input x produces an execution trace 7", for
which there exists a corresponding execution position ¢’ such that the value of y? in T
equals the value of y? in T’;. A dynamic program slice P’ preserves the value of y for a
given program input x. The goal to find the smallest slice may be difficult, however, it is
possible to determine a safe approximation of the dynamic program slice that will

preserve the computation of the values of variables of interest. Most of the existing
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algorithms of dynamic program slice computation use the notion of data and control
dependencies to compute dynamic program slices. Dynamic program slicing algorithms
presented in [3,13] do not compute correct slices for unstructured programs (shown in
[30]) and/or procedural language constructs. In [21] an algorithm for the computation of
inter-procedural slicing of structured programs was presented. However, this algorithm is
limited to structured programming language constructs. In [30] a dynamic program
slicing algorithm based on the notion of removable blocks was introduced. This
algorithm computed correct executable slices for unstructured non-object-oriented
programming languages. Later, the algorithm was further refined in [45] for all language
constructs found in major procedural programming languages. A forward computation of
dynamic slices for structured programs was introduced in [28] that does not require the
recording of an execution trace. A dynamic program slicing for object-oriented programs
based on forward computation was introduced in [59] that computes non-executable

program slices but it is not based on the notion of removable blocks.

By last definition LD (»k) of variable vk in execution trace Ty , it means, action ¥? such
that (1) v € D(¥P) and (2) for all i, p <i<kand all Zsuch that Ty (i)=Z,v € D(Zi), in

other words action ¥P assigns a value to variable v and v is not modified between
positions p and k. For example, the last definition of variable Showroom_price at node

127 in execution trace of Figure 2 is action 9.

Dynamic data dependence captures the situation where one action assigns a value to an

item of data and the other action uses that value. For example, in the execution trace of

Figure 2, 33 assign a value to variable MSRP and 4% uses that value.



Dynamic control dependence captures the influence between “test” actions and actions
that have been chosen to be executed by these “test” actions. The concept of control
dependence may also be extended to actions by using the concept of control dependence
between nodes. Action Z* is control dependent on action Y’ iff (1) p <k, (2) Zis control
dependent on Y, and (3) for all actions X between ¥* and Z, p < i<k X is control
dependent on Y. For example, action 9% is control dependent on action 4* as action 8° is
control dependent to 4* in the execution of Figure 2. Figure 9 shows a dynamic program
slice for variable Showroom_price at node 12, with input MSRP = 25000. A dynamic
program slice can be regarded as a refinement of the static program slice. By applying
dynamic analysis [23] it is easier to identify those statements in the program, that does

not have influence on the variables of interest.

1. normal_profit = 100;
3% cin>>MSRP;
4*.  if (MSRP >30000)
{
}
8*. else
{
9° Showroom_price := MSRP + normal_profit;
}

12°  cout<<Showroom_price;

Figure 9: Dynamic slice for Showroom_price atnode 12,
with input MSRP = 25000
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23.1 Dynamic backward program slicing algorithm

The dynamic backward program slicing algorithm as presented by Korel [23] is shown in
Figure 10. In the first step (line 1) of the algorithm, a program P is executed on input x
and the execution is recorded up to execution position g. In step 2, all nodes in the
execution trace are set to unmarked and not visited. The third step finds the last definition
of the variable y” and sets it as marked. On each step of the while loop (4-10) a marked
and not visited action X* is selected and set as visited (lines 5 and 6). Line 7 that
corresponds to finding data dependencies between actions, all variables used in X* are
identified and marked. Line 8 corresponds to finding the control dependencies for the
node X* and marks existing control dependencies on action X*. In line 9, all multiple
occurrences of action X in the execution trace are marked. The while loop iterates until all

marked actions is visited.

Korel’s Algorithm:
Input: a slicing criterion C=(x,y);
T be an execution trace up to execution position 4.
Output: a dynamic program slice of variable y at position q
1. Execute program P on input x and record execution trace Ty up to position g
2. Setall nodes in Ty as unmarked and not visited
3.  Find last definition of y” and set y” as marked
4. While there exists a marked and not visited action X* in Ty do
5. Select a marked but not visited action X* in T
6. Set X* as visited
7. For all variables v € U(X ) do Find and mark last definition v of v
8. Mark all actions Z' such that there exists a control dependence between Z' and X*
9. Mark all multiple occurrences (actions) of node X.
10 End-While
11. Show a dynamic program slice that is constructed from P by removing nodes

(statements) whose actions were not marked in 7

Figure 10: Backward algorithm for computing dynamic slices[23]
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232 Dynamic forward program slicing algorithm

The main motivation for developing the forward approach of computing dynamic slices
was to overcome the execution trace recording in the backward algorithm approach. The
forward computation of dynamic slices was proposed by Korel and Yalamanchili [28]. In
the approach, a dynamic program slice is computed during program execution on input x
and no major execution trace recording is required. The underlying idea of the forward
approach of dynamic program slice computation is that during program execution on
each exit from a block the aigorithm determines whether the executed block should be

included in a dynamic program slice or not.

The necessities to record the execution trace during program execution that results in its
limited usability for relatively short executions. The idea of finding dynamic program
slices is based on the notion of removable blocks. The forward algorithm computes a
dynamic program slice for every program variable defined during the program execution
for input x. The forward algorithm starts from the first node in the program and proceeds
“forward” with program execution and at the same time perform the computation of the

dynamic slices for program variables along with the program execution.

The forward approach uses the notion of a NODESLICE(X) which is similar to the notion
of dynamic program slice SLICE(v) with the major difference that NODESLICE(X)
preserves the behavior of all executions of a node whereas Slice (v) preserves the values

of variables.

The following two conditions describe the general rules under which the executed blocks

may not be included in dynamic slices.
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> X*is an action corresponding to the execution of a simple block. If X is not included
in the dynamic program slice for the variable before the execution of X* and v is not
defined in the node X*, then the node X does not have to be included in the slice, since
variable v is not modified during the execution of node X* and X does contribute to

the computation of the value of v.

» If the value of variable v has not been modified in block B, and for none of the nodes
executed inside of block B, and B does not belong to the Slice for that specific
variable after leaving the block, the slice for the variable remains unchanged from the
beginning of the block, hence it does not contribute to the computation of the value of

v at the exit of the block.

The forward slicing algorithm presented in [28] is shown in Figure 11. The following is a

list of all major data structures used in the forward computation of dynamic slices.

SLICE (v) Slice(k,{v}), is a dynamic program slice of variable v at the current

execution position k.

NODESLICE (X) is equivalent to NodeSlice(k,X) at the current execution k

B is a block id.

BL is a stack of blocks inside of which the program is being currently
executed.

BV(B) is a set of variables modified during the current execution of block B.

TopSlice(B,v) contains a dynamic program slice of v at the entry to block B.

BlockFlag(B,v)  is marked if during the execution of block B a node belonging to

TopSlice(B,v) is executed.
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Execute program P on input x. On entry node do:
for all ve Vdo SLICE (v):=2:
for all X € N do NODESLICE (X):={X};

Node X*: On each execution of node X* the following steps are performed
1. Action X*

a.
NODESLICE (X) := NODESLICE(X) USLICE(v), ve U(X*)
b.
for allveVdo
if ve D(X*) then
SLICE(v) := NODESLICE(X)
for all B on BL do BV(B) := BV(B) Lu{v}
else
if X € SLICE(v)) or (X is not simple block)
then SLICE (v):= SLICE(v) U NODESLICE(X)
end if
for all Bon BL do
if X € TopSlice(B,v) then
BlockFlag(B,v)
end for
end for

2. Entry into block B
BL :=Push Bon BL
BV(B) := @2
for all ve Vdo
TopSlice(B,v) := SLICE(v)
BlockFlag(B,v):= unmarked
end for
3. Exit from block B
BL :=Pop B off BL
for all ve Vdo
if (v ¢ BV(B)) and (BlockFlag(B,v) = unmarked)
then SLICE(v) := TopSlice(B,v)
end for

4. k = g (execution reaches position g);
Display SLICE (y)

Figure 11: Forward algorithm for dynamic program slicing[28]
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When program P is executed on some input x at each step of its execution, the forward
algorithm computes dynamic slices for all program variables. For this purpose, at the

execution of each action X, the following steps are performed.

In step 1a (line 8,9), NODESLICE(X) is computed for the currently executed node X. In
Step 1b, the dynamic slice for each variable v in the program is created, resulting in two

cases which must be considered:

1. If variable v is defined at X, then the slice of v is given (in line 13) by SLICE(v) =

NODESLICE(X).

2. If X is not a simple block (e.g. a test node) or if X already belongs to dynamic

program slice SLICE(v) then the slice is computed in line 17.

Finally, in step 1b, a data structure, BV(B) is used to store all the variables that are
modified in the current block B; this is used later in step 3. In addition, the algorithm
checks as to whether or not the currently executed node X belongs to the dynamic
program slice of each program variable at the top of the current block; if the node X
belongs to the dynamic program slice then the algorithm sets a corresponding entry in

data structure BlockFlag(B,v) as marked.

At each entry to block B step 2 is performed. In step 2, the algorithm is storing currently
computed dynamic slices in TopSlice(B,v) for each program variable v. In addition a set
BL of currently executed blocks is maintained. On the exit from block B, step 3 is
executed and the algorithm checks the following condition for each program variable v. If
during the current execution of block B, variable v is not defined or BlockFlag (B,v) is

unmarked, then the dynamic program slice of v is set to TopSlice(v). Finally when
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execution reaches the execution position g the algorithm terminates and displays dynamic

slice SLICE(y) in step 4.

233 Advantages and disadvantages of dynamic program slicing

As already stated, dynamic program slicing is further refinement of static program

slicing, the following are considered main advantages as compared to the later:

(2) Dynamic program slicing allows a reduction in the slice size and a more precise

handling of arrays and pointer variables at runtime.

(b) Dynamic program slicing computation can utilize information about the actual
program flow for a particular program execution, which leads to an accurate
handling of dynamic and conditional language constructs and therefore leads to

smaller program slices.
(c) Allows for additional application in performance analysis and debugging.
There are few associated disadvantages to get the above benefits and they are:

(2) In dynamic program slicing (compared with static slicing), it is necessary to identify
relevant input conditions for which a dynamic program slice should be computed. A
commonly used approach to identify such input conditions is referred to as an
operational profile, which is a well-known concept that is frequently applied in

testing and software quality assurance.

(b) The computation of dynamic slices is based on a particular program execution that
incurs a high run time overhead due to the required recording of program executions

and/or analysis of every executed statement.
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2.4 Hybrid program slicing

Hybrid program slicing algorithms takes advantage of the best properties of both static
and dynamic slicing to derive a compromising slicing solution. However, very few
research works focus on this type of slicing. Gupta and Souffa in [15] used pre-set
breakpoints history information in their static slicing to solve conditional predicates. The

procedure is characterized by them as follows:
e The user sets the breakpoints and starts the execution.

e When the breakpoint is encountered, the user examines the values of variables at

breakpoint.

e If the values are as expected, the user resumes the program execution. However,
before resuming the execution the user may disable some breakpoints or add new

ones.

e If the values are incorrect, the user requests slicing information for selected variables

to potential cause of error.

Information on conditional predicates helped to reduce the size of the static program slice
without having to generate complete execution trace of the program. It assumes user can
identify the breakpoints at various points in the program. Limitations of this approach are
that it only supported structured programs, assumes user’s knowledge of program for
breakpoints and it might not compute executable slice. It is generally agreed that mixing
of static and dynamic program slicing is a good compromise between accuracy and time
performaiices. However, the user should interfere as little as possible to compute the slice

[47]. Gupta et al, in their paper [15], have presented an algorithm based on breakpoint
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history and some experimental results of their work. Schoenig and Ducass’e [47] hybrid
backward slicing algorithm for Prolog and is only applicable to a limited subset of
Prolog programs. They claimed only preliminary prototype and there is no further

research evidence on their algorithm or test results.

24.1 Comparison of hybrid program slicing with other program slicing

approaches

Dynamic program slicing algorithms have advantage with respect to their accuracy in
handling dynamic language constructs. However, the computation of dynamic slices is
based on a particular program execution that incurs a high run time overhead due to the
required recording of program executions and/or analysis of every executed statement.
The time and space required for recording execution trace and traversing the same
depend on the number of times each of these executed statements might be significant.
For example, the if the program has a “for” loop for n times and has m statements in the
loop, then the m x n entries have to be stored/traversed and analyzed. Many statements
are executed merely because they are part of the program flow but their execution might
not be relevant at all for the computation of the selected function. In the above example,
for instance, say there is only 1 statements that are relevant to the computation of the
selected function. This will result in unnecessary tracing and traversing of ((m-I)+1) x n

executed statements during slice execution.

As the source code size grows, space and time complexity increases drastically for the
dynamic program slice computation due to number of executed statements that have to be

stored and analyzed.



Static program slicing, on the other hand, only analyzes the source code and requires
therefore less of an overhead during the slice computation. As already known it computes
conservative program slice which is an undesirable property. At the same time, the cost

computation is far cheaper than the dynamic program slicing.

In nutshell, hybrid program slicing shall use the cheaper computation property of static
program slice as in [15] but should improve the accuracy of the slice with some
incremental cost. However, the algorithm presented in [15] is clearly not the choice for
larger programs as it is impractical set the breakpoints for every conditional statement

unless user has very good comprehension of the code.

Definitely, the quality of the slice should be progressed towards dynamic program slice.
To achieve better slicing algorithms, one of the logical steps is to give the user some
choices to choose between size and accuracy. Other choice is to reduce the size of the
execution trace recording in dynamic program slicing by some means. One of the ways
to reduce the recording trace is to use the condensed program such that unwanted
statements are executed in the first place. Other way is to suspend the execution trace

recording at a given criterion.

In the current research, an attempt is made to get the above properties to enhance the

program slicing algorithms and is detailed in section 4.
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24.2 Advantages and disadvantages of hybrid program slicing

As stated earlier, the hybrid program slicing uses the properties of both static and
dynamic program slicing, the combination of the two yields certain advantages and they

are:

(a) It allows for reduction of the space and time for the computation as it keeps out the

non-specific statements as compared to pure dynamic program slicing.

(b) It will give more precise slice than a static program slice, if not it is same as static
program slice.
(c) It will help the programmer to carry out multiple executions at a low cost with

various values for the same variable to understand behavior of the source code.

However, to bring the two major program slicing techniques together, hybrid program

slicing has to carry out additional work and it poses a few disadvantages and they are:

(a) Additional run time required as compared to static program slice if the programs
relatively small as in hybrid program slicing use both static and dynamic slicing
algorithms.

(b) Not all the hybrid program slicing guarantees the accuracy of dynamic slicing as it
depends on the hybrid program slicing algorithm and criterion.

This section presents the critical review of the existing program slicing techniques that
forms the foundation of this thesis. The review shows that the previous algorithms
require further refinement and new additional concepts based on notion of removable

blocks required for better usability of program slicing techniques.
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3.  Static program slicing based on removable blocks

The general static program slicing algorithm introduced in this section computes correct
program slices for all language constructs found in major object-oriented programming
languages. Existing static program slicing approaches rely upon a collection of data flow
equations and related control flow graphs(CFG). Other approaches use program
dependence graph (PDG) combined with some variations of a syntax tree by essentially
using nodes and their edges to represent control and data dependencies between nodes
[16]. Static program slicing algorithms that derive their information through static
inspection of the source code were originally introduced for imperative procedural
programming languages. This type of technique may be inadequate for object oriented
programming constructs (e.g.: inheritance, dynamic binding, polymorphism, etc.).
Therefore, have to make conservative assumptions with respect to dynamic language
constructs. A number of approaches have been proposed for to extend static slicing for

object programs [6,34,36,37,54,59].

In this section, a new general static program slicing algorithm is presented and it extends
the notion of removable blocks applied for dynamic program slicing [28]. In the new
static program slicing algorithm, a further refining of the static slicing is used. This
extended notation of removable blocks for object-oriented programming language
constructs is explained below and it applies for the general static program slicing

algorithm.
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3.1 Extended notation of removable blocks

The following are extensions and definitions of removable blocks that are introduced to

provide support for object-oriented programming constructs:
Dynamic Binding/Polymorphism

In object-oriented programs, messages are sent to objects instead of calling procedures.
Heterogeneous sets of objects can be treated uniformly at the sender side while
appropriate reaction on the receiver side is guaranteed. Polymorphism and dynamic
bindings provide much of the power of object-oriented programming and at the same
represent (in particular) for static algorithms a major challenge. A static analysis of
dynamic binding/polymorphism was presented in [52]. For the general static program
slicing algorithm presented in this research, classes and their associated member
functions are treated as regular removable blocks based on the original definition of
removable blocks. The only exception as part of this definition is that both, the
“constructor” and “destructor” within a class are treated as non-removable blocks see

block B5 in Figure 12, to ensure the computation of executable program slices.

3.1.1 Slice computation in the presence of inheritance and template

classes

Inheritance allows objects to derive attributes and behavior from their parent classes. A
base class that do not have an instance can only be removed if none of the inherited

classes or any statements in these inherited classes are included in the program slice.
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class Person{ B1

public:
[ virtual void output) { ]
3
class Employee:public Person{ B§
public:
int salary; B4

Employee(){salary = 1000;}

using Person::output;

Jvoid output(int vears) {3} 57
}.

Figure 12: Block representation of an OO program

Figure 12 shows clearly that if block B5 (Employee) is part of the slice (not removable)
then the “constructor”, “destructor’ (implicit or explicit) and associated class construct
like “using” with this class cannot be removed. The inherited class has also to be
included in the program slice (represented by block BI) to ensure an executable program

slice. The same rules will apply for the computation of slices for the templates.

3.2  Static program slicing algorithm

The general static program slicing algorithm is based on the notion of removable blocks
that was originally introduced in Korel’s [28] dynamic program slicing algorithm.
Korel’s dynamic program slicing algorithm [30] is shown in appendix A, and it includes

theories that are applied to derive general static program slicing algorithm.

The hypothesized static program slicing algorithm differs from many classical
approaches of static program slicing by combining the notion of a syntax tree with
removable blocks. At the same time, it shares the values of detection slices in line with
Weiser [57] and others. The syntax tree with removable block concept is new to static
program slicing and it improves the visualization properties as compared to data flow

graph based representation. The underlying principle of the static program slicing
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algorithm is based on the assumption that each statement corresponds to a block that is

either contributing, non-contributing or neutral.

g int shares=1;

1 class Person{ B1
nrl | public:

2 wvirtual vod output()

3

4

nr2

nri

5 class Employee:public Person] BS
nrS | public:

6 | [intsalay B§

nrs Employee(){salary = 1000;}

nrS using Person::output;

7 void output(int years) B7,
{

8 for (int I=1;1 < years; 1++)

9 [{shares++ BY
10
11 salary= sala .01, Bl
nr8 }

)
q

N

B12

12 | class Manager: public Employee {
nrid public:

13 | [intyears; B1d
nri2  using Employee::output;

nrigd_%
17 | void man() { B17
18 Employee our_employee; B1

22 for (i=1; i<100; ++) 822
a2 | {

23 | | [Cour manageril.years=i, 823
if (i < 80)

25 [_our_manageri].output{30); 829
26 else B

32 [T cout <<shares<<endl, _ =
22 |}
nr17 }

Figure 13: A Sample program with removable blocks
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A sample program with removable blocks is shown in Figure 13. The tree structure of the
blocks follows the syntax flow in question rather than control and data dependencies. The
new syntax tree representation for the sample program is shown in Figure 14. As already
stated, the algorithm is based on the notion of removable blocks, where each removable
block can be either a simple or a complex block. Each function or class is represented
using a new syntax tree (as shown in Figure 14). This new approach simplifies the syntax
diagram by reducing essentially into blocks encompassing the nodes that are considered
removable in the beginning. By utilizing the notion of removable blocks organized in the
presented tree structure, the identification of the scope of a particular block (statement) is

made clear.

The organization of the removable blocks with syntax tree structure (Figure 14 and
Figure 15) also simplifies the navigation and the identification of the scope of a particular
block (statement). If any inner block is considered as non-removable, then automatically
all outer blocks encompassing the inner block are considered non-removable where as in
other approaches (e.g. CFG), one has to traverse over the edges to find the relevant parent
nodes. For example, consider block 30 to be included in the slice, one has to include
{29,27,26, 24,22,17} as well as the blocks they depend for data (Figure 14). In the
current approach, a system dependence graph (SDG)-like principle is used for handling
procedure-calling contexts to jump to the relevant syntax tree and later follow the general

approach presented above.
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Figure 14: Illustration static syntax tree with removable blocks.

3.2.1 Static syntax tree with removable blocks

As a pre-requisite for the static program slicing, the source code statement information is
extracted using general MOOSE parser. Using the information derived by the parser, one
or more syntax trees are created and stored in the memory. Each free function and class
will have a separate tree structure as shown in Figure 14. All the syntax trees are known
to the framework and it can be used to for reaching for a particular tree during the

navigation. Each tree starts with a root block and is usually the function or class
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declaration. Each removable block sequentially takes its place in the tree either as child
or sibling depending on its reachability from root. It should be noted that always the last
removable block is the right most block of the tree and similarly first block (root block) is

the left most block.

main{)

%)

(32 )

Simple
block

7 an )

©

Complex
block

Legend
— Syntax flow
—p Left & Up navigation
-----p down & Right navigation
B—> Start navigation(based on the statement of interest)
—p-0 Stop navigation (root block)

Figure 15: Illustration of static syntax tree navigation.
As explained earlier, inherited classes and their methods may become non-removable

based on their instances. For example if there is no instance of class Manager, then class

and its methods are not included in the resulted slice for particular slicing criterion. On
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contrary, if there is an instance of class Manager and no other parental class instances, as
mentioned earlier, all the parental class body that is neutral (Example: constructor, class
declaration etc.) would be included.

The hierarchy of inclusion is shown by an upward arrow in Figure 14. Figure 16, shows
the removable blocks after algorithm’s navigation and evaluating for “shares” at
statement 32. It is clear that the algorithm includes the entire “test” blocks or neutral
blocks that form the hierarchy. The blocks {29,27,26,24,22,17} are considered non-
removable blocks. For example, say only block 30 is required by definition and use
algorithms, then all the blocks encompass block 30 are included in the slice. The
inclusion and exclusion of a block is determined by its relative position to the other
blocks. Any inner block inclusion will automatically include all outer control or predicate

blocks.

3.22 Static syntax tree navigation

One of the most important properties of this new tree approach is its navigation technique
where each block can be navigated without requiring any duplicated efforts to check
whether a particular block is removable or not. Two important navigation principles are
used to navigate through the tree: “left & up” and “down & right”. The “left & up”
technique traverses the tree from “right” to “left” and “down” to “top”. The “down &
right” technique traverses the tree from top to down and left to right. It should be noted
that both techniques applied recursively, always carry out the complete navigation from
last leaf block to root block. Figure 15 illustrates the navigation methods used in the

algorithm.



Removable
Block

( 30 )
N\ _/
Non-
Removable
Block

Legend

—» Syntaxflow
—» Left & Up navigation

--—---p down & Right navigation
m——) Start navigation (based on the statement(block) of interest)
—3-1 Stop navigation(root block)

Figure 16: llustration syntax tree after navigation for “shares” at statement 32
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3.2.3 Similarities with Korel's algorithm

The static program slicing algorithm takes advantage of several properties: (1) The
algorithm utilizes the same notion and definitions of removable blocks as the general
dynamic program slicing algorithm introduced by Korel [30] which is shown in appendix
A. (2) The same proof of correctness holds for the general static and dynamic algorithm
since both are based on the same notions and principles. (3) The internal representation
(syntax tree and removable blocks) and navigation used in the algorithm is easy to derive
and to implement and it is an enhanced block tree concept presented in [30]. (4) The
algorithm computes executable static slices for all program language constructs. It should
be noted that the algorithm applies a conservative approach towards the handling of
dynamic language constructs and might be therefore compute larger (less accurate)
program slices than the dynamic algorithm. Similarly, to the problems described in
Steindl [52], the presented algorithm will handle polymorphism and dynamic binding by
including all possible candidates with respect to the dynamic binding/polymorph

functions in the static program slice, without requiring any user interaction.

3.24 Definitions of static program slicing algorithm

For the general static programming algorithm, the notion of a tree trace is introduced that
can be regarded as a variation of the block trace definition introduced in [30]. A tree trace

T1race (B, p1, p,) of block B that belongs to Ry; by finding r-entry and r-exit of B at
position p,, and p where p; and p represent tree position based on the applied tree
navigation. General static program slicing algorithm based on removable blocks is shown

in Figure 17.
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3.25 Description of algorithm

The algorithm identifies a set of removable blocks Ry,;. In the first step of the algorithm,

the program is initialized with tree trace T7;; and is stored in memory. All blocks in the

tree trace Trp are set as unmarked and not visited . Set Ry initially contains a set of all

blocks in the program. In step 3, a set of contributing blocks [ is initialized as an empty

set. In step 4 the algorithm identifies and marks the last definition Y7 bl of variable y’b l,
this step (procedure) is presented in more detail in lines 47-51. The algorithm iterates in
the repeat loop 5-8 until all marked blocks are visited. There are two major steps inside of

the repeat loop.

In step 6, the algorithm identifies blocks that contribute to the computation of y"b ! 1n
step 7, for the given set of contributing blocks, the algorithm identifies non-contributing
blocks by finding a set of tree traces. These blocks are visited on the next iteration of the
repeat loop. The process of identifying contributing and non-contributing blocks
continues in the repeat loop until all blocks are classified as either contributing or non-

contributing actions.

In the following paragraphs, a more detailed description of the major steps of the static
program slicing algorithm is presented. In step 6, the algorithm identifies contributing
blocks. This step (procedure) is presented in more detail in lines 10-22. The major

component of this “while” loop is that during each iteration a marked and not visited

block X?! is selected and set as visited in line# 13. In addition, X?" is inserted into Ip; in

line# 14. All last definitions of all variables used in XP’are identified and marked in
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line#15-17. In line# 18 -20, all blocks that contain node X are removed from Rbl- The

“while” loop iterates until all the marked blocks are visited. In step 7 the algorithm

identifies non-contributing blocks for the set Iy,; of contributing blocks (the blocks are set

as visited) and for the set of blocks Ry, This step (procedure) is presented in more detail
in lines 23-41. The goal of this step is to find as many non-contributing blocks as

possible. The procedure identifies non-contributing blocks by finding a set @y of tree
traces for the set of blocks Ry. All tree traces of Py contain only unmarked blocks. The

procedure explores the tree trace from the s looking for blocks that are not set as marked.
If such an block is found, then the procedure tries to identify tree trace Tryac. (B, pbl;, pbl)

of block B that belongs to Ry by finding r-entry and r-exit of B at position pbl : and pbl,
respectively. If such a tree trace is found then it is inserted into @;. One may notice that

there are two main differences between static and dynamic slicing algorithms [30]. The
first difference is that there is no identification and marking of the neutral blocks method
in the repeat loop. This method has been replaced by Identify-parent-declarations to
identify the parents and declarations that are explained detail in lines 52-55. The second
difference is non-contributing procedure starts from the last visited block than starting
from the root. Since all blocks in tree trace T7.. (B, pbl;, pbl) are non-contributing
blocks, the algorithm continues the search for non-contributing blocks starting from

position pblI. This process of identifying tree traces of blocks that belong to Ry

continues until the tree trace has reached root position of a particular syntax tree.

Similar to the generic dynamic program slicing algorithm, the identification of the last

variable definitions and their scopes and the identification of inherited classes are also



included in the current static program slicing algorithm. As part of the object-oriented
languages constructs, additional variable types and their variable scopes have to be
considered. The function in line# 47-51 not only identifies the scope of variables, it also
has to take into consideration the variable types, e.g.; user defined, passed by value,
passed by reference, etc. The function identify_inheritance in line# 42-46 handles the
identification of inheritance and multiple inheritance cases as described earlier, by

marking all classes from which the current class inherits as non-removable.
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Algorithm

Input: a slicing criterion C=(y*%))
Output: a static program slice for C
Legend:
Trp;:  Tree with bl blocks : £
Rpp:  Set of blocks for program P Loops.
@y Set of non contributing blocks recursively
I;:  Set of contributing blocks (default is visited)
Np;  non-contributing blocks
Cp;  contributing blocks
- x¥1  current evaluated block position
yb! Variable y at simple block s
1. Initialize Ry to a set of all blocks in program P
2. Set all blocks in Trp] as not marked and not visited.
3. I =9
4. Find last definition y??! of variable y*?! and set y??! as marked
5. repeat
6. Identify Cy;
7. Identify Ny,
8. until every marked block in Trp; is visited
9. Create static program slice by removing all blocks e R,
10. function Identify Cy;
11. while (contributing and not visited block in Trp))
12. Select a contributing and not visited block X2 in Tr
13. Set XP! as a visited block & Identify-parent-declarations, Identify-inheritance
14. Iy =1Ipu { X!}
15. for aii variablesve U (Xb I) do
16. Identify + mark last definition of v as contributing block
17. end-for
18. for all blocks B € Ry} do
19. if X! ¢ N(B) then Ry =Ry; - {B}
20. end-for
21. end-while
22. end Identify Cp;

Figure 17: General static program slicing algorithm(continued)
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23.  function Identify Ny,

2. PO

25.  pbl=last marked and visited block

26. do

27.  LetXPPlbe ablock at position pbl in Trp;

28.  #xPPle I then

29. y™le Iy be the closest Cp; from position pbl by navigating
the syntax tree (left & .@ & right) such that thl<pbl

30. if there exists block B € Rp; such that

31. (1) B has an r-exit at position pbl, and

32. (2) there exists no inheritance and function call

33. (3) B has an r-entry between tbl and pbl then

34. Let pbl . be the closest position of an r-entry of B from position pbl, where
tbl<pbl;<pbl

35. Pp= Ppp I Trrace (B,pbl, pbl)})

36. pbl; = pbl-1 by navigating the syntax tree (leﬁmown & right)

. —=F

37. end-if

38. end-if

39. pbl =pbl-1

40.  while pbl!=1

41.  end Identify Np;

42.  function Identify inheritance

43.  if current class is derived then

44. set XPPL a5 contributing + move left & up to mark parent class

45.  end-if

46.  end Identify-inheritance

47.  function Find last definition

48.  Find last definition of variable y??! in global scope

49. If not found last definition then

50.  searchlast definition of P2 within local scope

51.  end Identify-last-definition

52.  function Identify-parent-declarations

53.  move left & up to mark parent of XPV!

54. if XPP! s not used in the last definition, move left & up to mark declarations

55  end Identify-parent-declarations

Figure 17: General static program slicing algorithm
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The static program slicing algorithm utilizes two methods for navigating through the
syntax tree. The first navigation method “left & up” starts left from the block of interest
and then moves up towards the root block. The second navigation method “down &
right” identifies blocks containing the last definitions of variables within the given scope.
The navigation method is responsible for positioning the pointer at the current analysis
position and identifying the last block that is connected syntactically to the starting block.
The navigation algorithms are exemplified in Figure 15 using bold arrows. The starting
point, by default, is from the last block of the syntax tree if there is no specific block
requested. The navigation is initiated with a “left & up” method, by default, from the
user-selected starting point on the syntax tree and the starting point is “marked” in the
beginning of the algorithm.

In the example, we start from the last block (statement 32) with variable of interest
“shares™, which is automatically “marked”. Both navigation methods are used to find the
previous definition of the current variable(s) by traversing recursively through the syntax
tree. The navigation path for a complex block is illustrated in Figure 16 and is self-
explanatory. To derive a static program slice for a pair (V,n) containing a set of variables
V and starting point n, we have to traverse through all the relevant blocks of the syntax
tree. . In the example, navigation for, V = “shares” and n =32 is shown. The algorithm
has two separate methods for marking and visiting, and they use the navigation methods
“left & up”, and “down & right” as mentioned above. The slicing algorithm starts by
searching for the last “marked” (or highest block number of the particular tree) from the

current block using “left & up”.
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Whenever the navigation encounters a “function” call in a block tree, it checks for re-
definition of the current variable either in the form of pointer reassignment or as a global
variable for later processing. The navigation will then continue until it finds a new
deﬁnitior; within the current syntax tree or it encounters a root block of the syntax tree. If
the “marked” block belongs to a complex block like “if-else, while, for, etc.” then further
navigation is carried out until the beginning of that complex block without terminating
the search. All the possible blocks that define, the current variable within the complex
block scope are “marked”.

Once the last definition for all used variables at the current block are analyzed, then the
current block will be marked as “visited” indicating that it is not a removable block. If the
current block has a function call, then the navigation on the current syntax tree is
suspended to traverse through the new syntax tree that includes function definition. In the
algorithm, “goto” and “label” blocks are considered contributing blocks if the particular
outer most complex block encompassing both of the constructs is a non-removable block.
If the above condition is satisfied then they are considered non-removable blocks. They
are “marked” and “visited” during the traversing of the syntax tree along with others. The
algorithms also consider the outer blocks until the root block as their contributing blocks

and they are therefore not removable.

Any derived object that is included in a slice will have its parent class constructs included
in the slice along with its own constructs including all the class variables. However, user
defined methods in the parent class are not part of the slice unless a derived object
method uses a specific parent’s method. Figure 18 shows the extracted slices from the

new static and Korel’s [30] dynamic slicing algorithms.

53



g intshares=1;

1 fciass Person{ B1 :m ﬁ;erson{ 81
nr1 {public: 2 ol vord

2 Fiual void GUipUt() ‘égm:"wﬂo-ﬁ
3 shares = shares+10000; 5 3 = shares+10000;

n2| {} nr2 ]

nr1 |} nrt 1}

5 [class Employee:public Person] B 5 [ class Employee:public Person{ BS
nrS | public: nS blic:

T 6 | Limtsalay: =

n ployee({salary = : =

nrS| using Person::output; :2 sg_lplogee(){s?lary = 1000;}

7 I int years ng Person:output,

nr7 ns | )

8 or (int i=1;i < years; i++)

9 {[shares++; 89 12 | class Manager: public Employee { B12
nr8 } 12 | public:

n7 i nri2| using Employee:output;

nrS (g ori2 Lk

12 [class Manager: public Employee { B12 ;g vo,::anm:xgr;(zém anager ooy, B
nri2pybli 21 | [FF = g
13 int years: §’_:1 Lut = =

nr12| using Employee::output; 22 Tor (=T, 1<T00; F+)

14 | [void o char on T m22) ) {

15 {{shares = shares+100; 815 24 if (i < 80)

nri4 } 26

nri2l); 27 if (i< 99)

17 [Vvoid mam( { B17] 29 —Elss

20 | [Manager our_manager{100]: % 30
21 | [inti; 32 cout < <endl:

22 | for G=%; 1<100; or) 22

nr22

24 7 G < 80) 17

25 [ our_managerjil.oulput(40), 623

26 Blse

27 F{1L<99)

28 our_managerfil.output(M");

29 [efse

30

32

nr22 (}

nr1t}

Figure 18: Static and dynamic program slice for variable “shares” at statement 32

3.3 Extended version of the static slicing algorithm

With the extended algorithm, an attempt is made to improve the accuracy of algorithm
with respect to the handling of polymorphism and therefore allowing for the computation
of smaller slices. In an object-oriented program, a polymorphic reference can, over time,
refer to instances of more than one class. Therefore, the static representation should
represent this dynamic feature of the object-oriented paradigm. In C++, polymorphic
method calls occur with an indirect de-reference, and the type of the referenced object is

unknown at the time [59]. In the presented general static program slicing algorithm, a
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conservative approach is used for polymorphism to overcome this problem and it allows
including all the methods in the related group of classes. For the extended version of
static program slicing algorithm, optimized handling of polymorphic function call is
introduced. Optimization is carried out by checking and matching related variable types
in the method calls with the method definition of groups of related classes to identify a
particular function call. If extended algorithm identifies a non-resolvable match, then it
will apply previous conservative approach as in original algorithm and will include all the

possible candidates in the slice.

1 class Person( 81
nr3 | public:
2
3
4
Legend n
1.32 Block Numbers
nrx Non removable statement of a particular block.
g Global
—» method call
. 5 [ class Employse:public Person] B3
$ Inheritance nrS | public:
6 | Gitsalary, _____—_____©a
ars Employee(){salary = 1000;}
nrS using Personc:output;
7 VOId OUTPUT{Mt years) B
Match {
:g v - 3 5ia B17 var type (int =151 < years; 1-+)
B O = 9
19 | CPersmour perso ' 10
gg it i . g "
22 for (i=1; i<100; i++) = Malkh ar ype ﬁ )J
2 ns
24
25
26
g 12 | class Manager: public Employee { B12
2o nrig public:
% 2 using EMpIOYSeEOUHUE
2 Matchvartype_ 14
7 )

Figure 19: Function prototype matching
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The presented static program slicing algorithm and criterion based hybrid slicing
algorithm share a common characteristic: the notion of removable blocks. Another
additional concept that is common among the algorithms is N(B) that represents a set of

all nodes (statements) that belong to block B.

3.3.1 Proof of correctness of generic static program slicing algorithm

The same theorems and lemmas presented in [30] to prove the correctness of the
algorithm also applies to the following generic static program slicing algorithm. The

following section provides a summary of the theorems and lemmas.

Theorem:

The generic static program slicing algorithm presented in Figure 17 correctly computes a
static program slice for the slicing criterion C=(ySb l).

In order for the generic static program slicing algorithm to compute correct static slices,
the algorithm has to satisfy Lemma 1 and 2 presented in [30]. The same formal proof
might be applied for the general static program slicing algorithm. N(B) means a set of all
statements (r-blocks) that belong to block B. Let T1.,.(B,pbli,pbls) be a tree trace in
contrast block trace in [30] where pbl; and pbl, represents r-entry and r-exit respectively.

M(T+rqce) means a set of all blocks in a given tree trace Try,. i.e.,

M(Try) = {yPP! Try(pbl) =y and 1 <pbl <sbl }. Two tree traces Tyace(B1,pbli,pbl) and

Trrace (Ba,tbly,tbl) are disjoint if they do not contain the same block.
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We create the following loop invariant, presented at line#8 of the algorithm in Figure 17.

1. Dbl is a set of all blocks set as marked or visited in 77,

M(Try) - U M (T1race (B,pbll ,pblz)) =D bl where Trrace (B,pbll,pblg) ed bl

2. LD*Ph e 1y,
3. for all blocks XPPle I variables ve UPPY, LDGPPY) eIy,

2. for all blocks XPP! eIy, for all blocks Be Ry, X & N(B).

Proof of the loop invariant

The loop invariant at line 8 is true for each of the loop iterations. Notice that I in the
algorithm is a set of all blocks that are set as visited, whereas Dy is a set of all blocks
that are set as marked or visited. Therefore, I bl is a subset of Dbl' Steps 7 and 13(second

part Identify parents and declarations, which are neutral in some cases) satisfy condition
1 of the loop invariant. Step 7 ensures that all the identified tree traces that are included in

Dy, exclude blocks set as visited (lines 27, 28 and 34). Notice that all tree traces in @y

are disjoint because when a tree trace T7...(B,pbli,pbly) is found (in lines 30-35), the
search continues from the first block following the last block in Trr.(B,pbli,pbly) In

addition, only traces of tree that belong to Ry, are considered (line 30). Condition 2 of the
loop invariant is true because step 4 marks the last definition of y**’. Condition 3 is
satisfied because for each block XP? that is set as visited in step 15 all last definitions of

all variables used in XP?! are set as marked in step 15&16 (if they were not marked
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before). All these last definitions are visited and inserted in [j; on the next iterations of

the while-loop 11-21. Condition 4 is satisfied because for each block XP bl that is set as

visited in step 13, all blocks to which X belongs is removed from Rp; in step 19.
Proof of correctness of the theorem

A proof of the correctness of the theorem on the generic static program slicing algorithm

is presented Figure 17 computes correct static program slices for the slicing criterion
bl
C=(y"%".

On the termination of the repeat loop 5-8 of the algorithm, the loop invariant is combined
with the termination condition. Since on the termination of the loop there are no more

marked and not-visited blocks in the tree trace, Dy, equals to Iy (Dp,; = Ip,7). Combining

this condition with the loop invariant, the following conditions are true on the exit from

the repeat loop:

LM(Trer)- \J M(Trrace (B.pbl1.pblh)) =1 bl where Trrace (B,pbl1,pbl2) € ¢bl

2. LD*Ph e 1y,
xpbl - Dbl Dbl
3. for all blocks €1 variables ve U(X*™"), LD(W™") eIy,

4. for all blocks XPP! e Iy 5, for all blocks Be Ry, X & N(B).

As a result, a static program slice constructed from program P by removing all blocks
that belorig to Ry from it, is a static program slice for the slicing criterion C=(y3b l) and is

an correct executable slice.
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3.3.2 Application of general static program slicing algorithm

The static program slicing algorithm (Figure 17) is applied on the sample program shown
in Figure 13. Figure 20 presents the algorithm iteration details. The step 13 is used in

last column which marks the statement based either parent or based on inberitance. @ ;

column shows the block that are non-contributing blocks as identified by the algorithm.

As one can see that at the end, blocks in Rp; is same as D p1 and are non-contributing.

By removing these blocks, behavior of the program will not change for the variable
“shares” at statement 32. The step 13 repeatedly marks the same parent or inherited node
such that it will make sure that all the inheritance and parent blocks are included to

preserve the executable property of program slice.

Iy Ry Dy Marked
by Line 13
1 (&) 1‘ ,4,9,6,7,8,9,10,11,12,13,14,15,16,17,18,1 2] (31,2431} 222117
B o 2‘3..‘4‘52'61'721'8223'15019;13;1 T RRRIEE ol ozrzezemait]
3_’ (32.30,3} :1 2,4,56,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 2 2.1
W——E
4l{2.3032.1) (;85,257.72.;:.3:13;1‘1,12.13.14.15,1G.17.18,19.20.21m.24 29.27.26,.24.22.21.17
Sleesoazize BSe s OITE e 2726202001 17
ees021 2929 R R TN P
R — 2.75.;.‘7.3,9.10.11.12.13.14.15.17.13.19.2:2,22.2324.25 Te. 15.1112(11; .
al2a0son 292150012 (436,70 AT 0202 B2 B B T, o
9](32.30,3.2,1.20.28,15,14,12,27.26) (4,56.7.8.9,10,11,13,16,17,18,19,20,21,22,23,24,2531) 202,17
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Figure 20: Application of general static slicing algorithm
(P,v) = ( Sample program shown in Figure 13, “shares” at statement 32)
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4. Enhanced hybrid program slicing based on removable
blocks

The hybrid program slicing techniques are introduced to use the best of both static and
dynamic program slicing. In particular it uses the accuracy in handling dynamic language
constructs from dynamic program slicing. However, it uses static program slicing to
reduce the computation of dynamic slices (for example see Figure 21) that incurs a high
run time overhead due to recording the program execution and/or analysis of every
executed statement. The time and space required for recording execution trace and
traversing for amalyzing is reduced either supplementing the original code with a
statically reduced code or applying static slicing criterion within the dynamic slicing. In
the next section, two hybrid program slicing algorithms are introduced that represent the
part of program slicing framework incorporated in MOOSE. The two hybrid program
slicing algorithms combine the properties of the general static and dynamic program
slicing algorithms, and they utilize common information between the two algorithms to

enhance their usability for a particular task.

4.1 Basic hybrid program slicing algorithm

The first hybrid program slicing algorithm is conceptually a combination of a pre-
processed static program slice that provides the input (based on a specific slicing criterion
P(V,n)) to a dynamic program slicing algorithm (for the refined slicing criterion P(i,V, n)
with input i). The static program slice conservatively includes all the possible
polymorphic routes that are not uniquely identifiable by the algorithm. The approach for
the basic hybrid program slice algorithm is as follows: (1) First, a static program slice for

a slicing criterion P(V,n) is computed. This static program slice reduces the program size
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by eliminating all statements from the original program that are not relevant for the
computation of the slicing criterion without changing the program’s behavior. In other
words, it will help to project the statements that are used for the slicing criterion. (2) The
static program slice then will become the input for the dynamic slicing algorithm
computing a dynamic program slice for the refined slicing criterion P(i,V,n), but for a
particular program execution rather than all possible program executions. Figure 21

illustrates the concept of basic hybrid program slicing.

Utilizing the reduced static program slice as input to the dynamic slicing algorithm rather
than the original source code allows a reduction in the number of statement that w1ll have
to be executed and analyzed by the dynamic slicing algorithm. Only at the first time for a
particular slicing criterion P(V,n), both the static and dynamic program slice, have to be
generated. Later, only dynamic program slicing algorithm needs to be revisited for
evaluating the boundary behavior of the slice variety of inputs within the slicing criterion

P(V,n).
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Static slicing criterion P(V,n) l

Hybrid slicing criterion PV, n)
I Dynamic slicing criterion P(,V,n)

Xx statements

(x statements)

Hybrid slicing Module

(x-s) statements

(x-s)statements

Static Slice

(x-s statements)

N
(x-d) statements

Dynamic Slice
(x-d statements )

d>=s

Legend:

P(V,n}. Set of variables V at statement n.
P(i,V,n). Set of variables Vwith input value 7at statement n
x :Number of statements in source code

s: Number of statements removed in static slice

d: Number of statements removed in dynamic slice.

Figure 21: Concept of basic hybrid program slicing algorithm

The major advantages of this algorithm are as follows: (1) Shorter program executions,

because the static program slice contains fewer statements that have to be executed and

analyzed by the dynamic program slicing algorithm. (2) There is no loss in accuracy. The

algorithm will still provide the accuracy of the regular dynamic program slice. (3) The

computation of the basic hybrid algorithm can be made completely transparent to the

user.

The main disadvantage of this algorithm is that it will only provide significant

improvements if the static slicing algorithm can provide a significant reduction in the

source code size and the number of executed statements for the slicing criterion P(V,n).
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4.2 Criterion based hybrid program slicing algorithm.

The criterion based hybrid program slicing algorithm is an enhanced dynamic program
slicing algorithm that provides options to users to use static slicing algorithm for certain
language constructs. The static program slicing information is used to reduce the
overhead involved in recording and analyzing all the executed statements. If the user
selects no static criterion, then it will compute pure dynamic program slice, on contrary if
the user selects the entire available static criterion, then it will compute more or less static

program slice.

The criterion based hybrid program slicing algorithm takes the advantages of both the
general static and dynamic program slicing algorithms are based on removable blocks.
The criterion based hybrid program slicing algorithm involves three different steps: (1)
The user selects a slicing criterion P(V,n), complete syntax tree for P is created and
stored. (2) The user selects certain language constructs, such as function calls, loops etc,
that should be handled by the static program slicing algorithm utilizing static information,
rather than analyzing these statements dynamic program slicing algorithm. (3) Program’s

execution trace T, is recorded excluding the user selected language constructs.

Whenever, the hybrid program slicing algorithm encounters one of the selected languages
constructs during program analyses, the algorithm will suspend its analysis and switch to
the static program slicing algorithm. After completing the static analysis, the algorithm

will continue with hybrid program slicing.

The static program slicing algorithm will determine the contribution of each block within

the selected construct and its associated blocks. An example is shown in Figure 22 where

63



the user has selected all the procedure calls that shall be avoided for dynamic program

slicing, instead static program slicing is used on these procedures.

if function, jump to syntax tree of fx

1
Legend nr
2
1.32  Block Numbers 3
nrx Non ola block. 4,
[-] Global
——= method call nrl

:)“W”“ ) featx 1

3

Zx if function, jump 1o syntax tree of tx

M~
‘ﬂ’ output{char)

Figure 22: Criterion based hybrid program slicing

3 ﬂﬁs@ﬁﬁ%ﬁ?BéBﬁB

In the above example, every time the execution encounters our_manager(I).ouput(40),
the program identifies it for static program slicing of function output(int years) and at the
same time, the program suspends the recording of the execution trace until it returns. For
the example above, the hybrid algorithm will reduce the required recording/dynamic
analysis of the execution trace for the function output (int years) by 79 x 40 statements.
Clearly, the hybrid program algorithm reduces the space and time complexity of the slice
computation. The final hybrid slice is derived by combining the partial dynamic program
sﬁce with the partial static program slice. The accuracy of the hybrid program slice will

be higher or equal to the static program slice, but less than or equal that of the dynamic



program slice, depending on the number and type of criterions selected to handle

statically.

4.2.1 Description of Algorithm

The presented algorithm (Figure 23) uses the definitions stated in static and dynamic
program slicing algorithms discussed in the previous section. Algorithm identifies a set of
removable blocks Rc. In line #1 of the algorithm, a syntax tree Try for program P is
initiated. In line#2 of the algorithm, the program is executed and its execution trace is
recorded up to the execution position g excluding LaBlock that is to be handled statically.
In line#3, set R¢ is initialized with all blocks of program P. In line#4, all actions in the
execution trace are set as unmarked and not visited . In addition, blocks of Try are also

set as unmarked and not visited. In line#5, a set of contributing blocks I, = Ip; =(J, is
initialized as an empty set along with Rp] which will later hold the blocks based on

LaBlock. In line#6 the algorithm identifies and marks the last definition yP of variable y9,
more details of this procedure is presented in line# 97- 101. The algorithm iterates in the
repeat loop in line# 7-15 until all marked actions are visited. There are five major steps
inside of the repeat loop. In line# 8, the algorithm checks if a contributing action (C;) is

to be handled statically (LaBLock).
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Algorithm

Input: a slicing criterion C=(x, y9)
Output: a hybrid program slice for C
Trpi: Tree with bl blocks

T,  execution trace up to position g

@D, Setof block traces

R;:  Set of blocks (dynamic)

Rc (LaBlock) - Set of blocks (dynamic) used by the selected criterion.
Trbl( LaBlock ) € Trbl s Tree trace relevant to R, ( LaBlock)

set of contributing actions (default is visited)

non-contributing action(dynamic)

Set of blocks (static)

Set of contributing blocks (default is visited)
non-contributing blocks (static)

contributing blocks (static)

current evaluated block position

¥l = ysbl Variable y at simple block s where s<gq

N

0 ONo kW

11.
12.

13.

14.
15.

16.

Create static Try; for P

Execute program P on input x and record execution trace T, up to position g, do
not record LaBlock

Initialize R, to a set of all blocks in program P

Set all actions in Ty and all blocks in T7;; as not marked and not visited.
I.=1Iy1=Rp] =

Find last definition yP of y4 and set yP as marked

repeat
If Cc= LaBlock
Rpl = Rp] " H{R¢( LaBlocky}
Rc = Rc —{ Rc( LaBlocIc)}
Identify Static_analysis for LaBlock
Else Identify Cc_Dynamic
Identify Nc Dynamic
Mark remaining actions

until every marked action in T was visited
Create Hybrid program slice by removing all blocks € (R U Rp])

Figure 23: Criterion based hybrid-program slicing algorithm (continued)
66




17.

18.
19.
20.
21.
22.

23.
24.

25.
26.
27.
28.

29.
30.
31.
32.

33.

34.
35.
36.

37.
38.

39.
40.
41.

42.
43.

45.
46.
47.
48.

49.
50.

51.
52.

53.

function Static_analysis
Find last definition y??! of variable y*?! and set y??! as marked

repeat
Identify Cg Static

Identify N 5 Static
until every marked block in T7py 1a8i0ck) is Visited

end Static_analysis
function Identify C s Static
while(contributing + not visited statement in LaBlock)

Select a contributing and not visited block X2 in Trsy ragioct)
Set X?! as a visited block & Identify-parent-declarations, Identify-inheritance
Iy=Ip o { X%}

for all variables v e U (X)) do
Identify + mark last definition of v as contributing block
end-for
for all blocks Brasiock € Rpj do

if X?! ¢ N(BLostoct) then Rpy= Ry - { Brasiock }
end-for
end-while
end Identify C i Static
function Identify Ce
while (contributing and not visited action in Ty,

Select a contributing and not visited action Xk in Ty

Set Xk as a visited action
Ie=Icv {Xk}
for all variables v € U (Xk) do
Identify + mark last definition of v as contributing action
end-for
for all blocks Be R.do
if X € N(B) then R.=R_ - {B}

end-while
end Identify Cc
function Identify Ny Static

Do D

pbl = last marked and visited block
do

Let XPPL be a block at position pb! in Trp;

Figure 23: Criterion based hybrid-program slicing algorithm (continued)
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55.

56.

57.
58.
59.
60.

61.

62.
63.

65.
66.
67.

68.
69.
70.
71.

72.
73.

74.

75.
76.
77.
78.
79.

80.
81.

82.
83.

85.
86.

87.
88.

89.
90.

it PP ¢ 1, then
ylel b1 be the closest Cp,; from position pb! by navigating

the syntax flow (leftmwn & right) such that tbl<pbl
if there exists block Brasie € R Sich that
(1) Bragioc has an r-exit at position pbl, and
(2) there exists no inheritance and function call
(3) BLasiock has an r-entry between tb! and pbl then
Let pbl , be the closest position of an r-entry of Brapi,x from position pbl, where
tbl<pbl;<pbl
Dp= Ppp N Trrace (Brasiock-Pbl, .pbl) })
pbl; = pbl -1 by navigating the syntax flow (left &up/down & right)
end-if ~—7
end-if
pbl:=pbl—1
while(contzibuting + not visited statement in LaBlock)
End- Identify Ny Static
function Identify N
D= %)
p=1
do
Let XP be an action at position p in T
if XP ¢ I.then

YeI ¢ the closest C, from position p such that z>p
if there exists block B € R, such that
(1) B has an r-entry at position p, and
(2) there exists no inheritance
(3) B has an r-exit between p and ¢ then
P s closest r-exit of B from position p, where p<p;<?

D= PcU{SB.ppP}H
p=p;-1
end-if
end-if
p=p+1
while p >¢g
end Identify Nc
function Mark remaining actions
for all actions XX that are not identified C¢ nor as N¢

Set Xk as marked
end-for

Ficure 23: Criterion based hvbrid-orogram slicine aleorithm (continued)
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91. end Mark remaining actions
92. function Identify inheritance

93. if current class is derived then

94. set all Xbase classes as contributing
95. end-if

96. end Identify-inheritance

97. function Find last definition

98. Find last definition of variable y? in global scope
99. I not found last definition then

100.  search last definition of y” within local scope
101. end Identify-last-definition

102. function Identify-parent-declarations

103.  move left & up to mark parent of XPP!

104. if xPP! is not used in the last definition, move left & up to mark declarations
105. end Identify-parent-declarations

Figure 23: Criterion based hybrid-program slicing algorithm

If the language construct is to be handled statically, the algorithm removes set of blocks
Rcrapiock) belong to the particular LaBLock and transfers it to the Ry in line#9 and 10.

Later in line# 11, call for Static_analysis made to analyze the blocks that contributes to

the computation of y4 (=y$bl) in syntax tree. In line# 17-23. Static_analysis procedure is

shown. IdentifyC._Dynamic in line#12 the algorithm identifies the actions that contribute

to the computation of y4 using the execution block trace. Similarly, based on the outcome
of line# 8, line#13 identifies, non-contributing actions by finding a set of block traces. In
line#14, all the remaining actions/statements, i.e., actions that are not identified either
contributing or non-contributing actions, are marked. These actions are visited on the
next iteration of the repeat loop. The process of identifying coitributing and non-
contributing actions continues in the repeat loop until all actions are classified as either

contributing or non-contributing actions. The hybrid program slice is derived by
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removing the blocks belonging to (R. U Rp]) , in other words by combining both

dynamic and static non-contributing set of blocks.

Static_analysis procedure (line# 17-23) uses part of the tree trace Trp; dictated by the

LaBLock. Similar to static program slicing algorithm, this procedure iterates in the repeat

loop line# 19-23 until all marked blocks are visited within the scope of LaBLock. In line#

20, the algorithm identifies blocks that contribute to the computation of fb l. In line# 21,
for the given set of contributing blocks, the algorithm identifies non-contributing blocks
by finding a set of tree traces. It is important to mention that, for the hybrid program
slicing, no block gets both dynamic and static analysis. In other words, only one type of

analysis applied for each of the block.

All other procedures are similar to either static or dynamic program slicing and are
explained along with the algorithms presented in their respective sections. For example,
“function Identify C s Static” hybrid program slicing is similar to “function Identify

Cp;” of static program slicing and so are the others, hence they are not explained in

detail here to avoid the repetition. The major difference between them is the scope of
analysis, in hybrid program slicing, only selected part of the whole tree trace is analyzed

where as in static program slicing the whole tree trace is analyzed.

The major advantages of this algorithm are (1) it provides the user with the ability to
select the properties that are most important for him/her for the specific task (either
accuracy of the slice or time and space complexity). (2) The user can choose to have all
language constructs such as function calls, different loops being handled statically to

reduce the time and space complexity required by the hybrid program slicing algorithm.
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The disadvantages of this algorithm are (1) it compromises the accuracy to maximize the
time and space savings as compared to the pure dynamic program slice computation. (2)
In some cases, expected time and space savings from the static analysis are not
significantly different from dynamic analysis, the dual computation of static and dynamic

slices might cause extra overhead.

4.2.2 Proof of correctness of hybrid program slicing algorithms

As stated in previous section, the proofs of lemmas presented in [30] to prove the
correctness of the algorithm also apply to the following hybrid program slicing
algorithms. For the “Basic hybrid program slicing algorithm™ (BHPSA), proof is straight
forward as it uses both proven algorithms in sequence. First, it uses static program slicing
algorithm (SPSA) to get static slice. Later, it uses proven dynamic program slicing
algorithm (DPSA) get the final slice. As both algorithms proved true in different

occasions [30], their union is also true. Mathematically,

SPSA =True, DPSA = True (Proved in previous section and in [30])
(SPSA A DPSA )= BHPSA.

True A True = BHPSA

BHPSA = True
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The following section provides a summary of the theorems and lemmas for criterion

based hybrid-slicing algorithm.

Theorem:

The criterion based hybrid program slicing algorithm presented in Figure 23 that
correctly computes a hybrid program slice for the slicing criterion C=(x, y9).

In order to compute correct hybrid program slices, the criterion based hybrid program
slicing algorithm has to satisfy Lemma 1 and 2 presented in [30]. The same formal proof

might be applied for the hybrid program slicing algorithm.

4.2.3 Definitions used in static and dynamic program slicing algorithms

The following definitions are repeated from static program slicing and dynamic program
slicing for ready reference.
Static program slicing algorithm:

Let Trrac(B,pbli,pbls) be a tree trace in contrast block trace in [30] where pbl; and pbl>
represents r-entry and r-exit respectively. M(7t.,..) means a set of all blocks in a given

tree trace Try,.. i.e.,

M(Trsr) = (PP Try(pbl) =y and 1 < pbl < sbl }. Two tree traces Tryace(B1,pbl1,pbh) and
T1race (B2,2bly,tblo) are disjoint if they do not contain the same block.

Dynamic program slicing algorithm:

Let S (B, k;, k2) be a block trace; by M (S (B, ki, k2)) we denote a set of all actions that

belong to S (B, kI, k2). Similarly, M(Tx) denotes a set of all actions in a given execution
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trace Ty, i.e., M(Ty)={YP! Ty(p)=Y and 1 < p < g}. Two block traces S(B1.k1,k2) and

S(B»,11,1>) are disjoint if they do not contain the same action.

4.24 Definitions of criterion based hybrid program slicing algorithm

The following are defined for criterion based hybrid program slicing algorithm:

Set of all blocks of program P is unique for both static and dynamic program slicing, in

all cases S(Bs.k1,k2) # Trace (Brpbli,pblz) as pbli&pbl: # ki & k»
Also, for unique slice, RpyNR. =D and I pjn I, =D and P p P =T

Let Ry, be the removable blocks for correct slice of the hybrid slicing, then
Rpc=RpjV R,

The criterion based actions in a given execution trace Ty = M(T) and similarly criterion

based blocks used in criterion base tree trace Trruce = Mcrrace (T1race)
The following loop invariant is created from line 15 and 22 of the algorithm in Figure 23.

1. Dc is a set of all actions set as marked or visited in Ty and Dy, is a set of all blocks

set as marked or visited in Try; and DM \Dy; =0

Mc (Tx)‘ U M c(S(BJCl K2))=Dc, Migiock (Trs1)- U Mcrrace (TTrace(Bbbpbll .pb))=D bl
S(B.ky.kz) € P Tyrace (Bpbly.pbla) € Py

and @D bzn ¢c=®
2. LDGY) e I, and LDGPh e Iy where Ipinl, =2

3. for all actions Xke I variables ve U(Xk), LD(»JC) el c and
for all blocks XPPle I ) variables ve UGPPY), LD(PPY) eIy and Iy~ 1, =2

4. for all actions X*e I, for all blocks Be R,, X & N(B) and, for all blocks XP? eI, for
all blocks By Ry, X € N(B) and Ry ~Rc =2
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Proof of the loop invariant

The loop invariant at line 15 and 22 is true for each of the loop iterations. Notice that I,

and I3, in the algorithm are a set of all blocks that are set as visited.- D¢ and Dy, are set of
all blocks corresponding to that I and I,y that are set as marked or visited. Therefore, I, bl
is a subset of Dy, similarly I, is a subset of D¢. Steps 12, 20, 40 and 27 (second part

Identifies parents and declarations, which are neutral in some cases) satisfy condition 1 of

the loop invariant. Step 13 and 21 ensures that all the identified tree traces that are

included in @, (72,73 and 79) and P}, (lines 53,54,60) exclude blocks set as visited
Notice that all tree traces in Py are disjoint. This is because tree trace Trrace(B,pbl1,pbl)

is found (in lines 56-61), the search continues from the first block following the last

block in T7uce(B,pbli,pblz). In addition, only traces of tree that belong to Ry are
considered (line 56). Similarly all block traces for @, are disjoint and the block trace

S(B,p,p1) is found,(lines 75-80) the search continues first action following the last action

in S(B,p,p;). Condition 2 of the loop invariant is true because step 6 and 18 marks the last
definition of y7 and ySbl respectively. Condition 3 is satisfied for static program slicing
because for each block XPP! that is set as visited in step 29 all last definitions of all

variables used in XP?! are set as marked in step 29 and 30 (even if they were marked

before). All these last definitions are visited and inserted in Ip; on the next iterations of
the while-loop 25-35. Similarly for dynamic program slicing condition 3 is satisfied

because each action X* that is set as visited in step 40. In addition, last definitions of all

74



variables used in Xk are set as marked in step 45and 46 (if they were not marked before).

All these last definitions are visited and inserted in [~ on the next iterations of the while-
loop 38-47. Condition 4 is satisfied because for each action XK that is set as visited in step
40, all blocks to which X belongs is removed from R. in step 46. Also, condition 4 is

satisfied for static program slicing because for each block XP bl that is set as visited in

step 27, all blocks to which X belongs is removed from Ry, in step 33.

Proof of the theorem
A proof of theorem on the criterion based hybrid program slicing algorithm is presented
Figure 23 computes correct hybrid program slices for the slicing criterion C=(x, y9).

On the termination of the repeat loop 7-15 of the algorithm, the loop invariant is
combined with the termination condition. Since on the termination of the loop there are

no more marked and not-visited blocks in the block trace or LaBLock tree trace, D, equal
to I. and Dy, equals to Ip; . Combining this condition with the loop invariant, the

following conditions are true on the exit from the repeat loop:

1. Mc(Ty)-\U M%(S(B,kl,kz))=Dc, Muggiock (Tron)-\J  M{(Trrace(Bot,pbli,pbla))=Dp
C

S(Byky k) € Treace (B:pbly,pbl) €d 4
and @y P =D

2. LDO?) e I, and LD(Ph e I where I3~ 1 . =2

3. for all actions X*e I - variables ve UX®, LD(F) €1 _and
for all blocks XPPe I ; variables ve UXPP), LDPPh) el and 14y~ 1, =2

4. for all actions XkeIc, for all blocks Be R., X ¢ N(B) and, for all blocks Xpbl €lp,, for
all blocks By Ry, X € N(B) and Ry R. =@
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As a result, a criterion based program slice constructed from program P by removing all

the blocks that belong to R\ Ry, from it, is a criterion based hybrid program slice for

the slicing criterion C=(x, y9).

4.2.5 Application of criterion based hybrid program slicing algorithm

The criterion based hybrid program slicing algorithm shown in Figure 23 is applied with
two criterions on the sample program shown in Figure 13. The execution trace summary
for the same is shown in Figure 24. In Figure 24, left column shows the execution trace
with no static slicing criterion and the right column shows with the static criterion of
function calls. One can easily visualize that, using static slicing for specific language
constructs, the space and time can be saved. The resulting slices from the two criterions
are as follows (legend: “=" leads to, “<>” in between the two):
e Hybrid Criterion Static = None; => Dynamic program slicing

> Execution Trace size : 16,577

> Executable Slice (16 out of 32 statements):

{1,2,3,5,6,12,17,20,21,22,24.26,27,29,30,32}

e Hybrid Criterion Static = Function calls; => Static <>Dynamic program slicing

> Execution Trace size : 855

> Executable Slice (21 out of 32 statements ):

{1,2,3,5,6,7.8.9,12, 14.15,17,20,21,22,24.26,27,29,30,32 }
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Hybrid Criterion Static = All; = Static program slicing

S

> Execution Trace size : 32

> Executable Slice (23 out of 32 statements):

{1,2,3,5,6,7.8.9,12,14.15,17,20,21,22,24 25 26,27.28,29,30,32}

As stated earlier, the criterion based hybrid program slicing improves the static program
slicing and minimizes the space requirements for recording the execution trace. The two
extreme cases of hybrid program slicing are dynamic and static program slicing where
one has no criterion another will use the entire criterion. Advantage of this type of

program slicing is that users can select the slicing accuracy.

This section has introduced two hybrid program slicing techniques that are derived from
the static and dynamic program slicing techniques based on the notion of removable
blocks. The benefits of these algorithms are that they allow the user to have some

flexibility at the same time improving the accuracy of the static program slicing.
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Critirion based Hybrid Program Slicing Execution Trace

Criterion static= None Criterion Static= Function calls
/‘ 1 71 1 71 \
182 182
5° 5%
6* 6
1% 15
—_ 6 6 S
Execution trace for % 19 19 Execution trace
criterion =none.-\ 17 17 > criterion = Function calls
segmenti 203 209 segmenti
12° 12°
50
61 1
112
\ 29 13
2214
2315
13’6
24"
251 8
Loop x 79 7'
g%
Loop x 9%
+79)/2 10%
112
31 24
3%
2216357
2316368
2 41 6369 2 4649
2g16370 26850
27" 27%!
Loonx20] Execution 29" 29  Execution NOT E 20
P recorded(typical) 30767 30°2 /™ recorded|(typical) oop
141897 148
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Figure 24: Condensed execution trace for sample program in Figure 13



5. Integration with MOOSE

5.1 MOOSE a comprehension framework

The MOOSE (Montreal Object-Oriented Slicing Environment) project was developed to
provide an open software comprehension and maintenance framework [45]. The MOOSE
framework is developed using a program slicing tool presented in [31,32]. It provides a
platform for the development of advanced program slicing algorithms, slicing related
features, applications and visualization techniques for both functional and object-oriented
programs. The motivation for the MOOSE project is to provide an open environment that
supports a variety of cognitive, visualization and algorithmic comprehension models to
guide users during various program comprehension tasks. For example, understanding
and analysis of existing source code the comprehension of program executions, etc.
Providing higher levels of visual abstraction might not be enough to guide programmers
during the complex tasks such as software comprehension of large software systems
[5,21]). Most program comprehension tools represent more a collection of somewhat
independent tools that provide certain analysis or visual abstraction approaches. Users (in
particular novice users) are frequently confronted with these tools in significant initial
learning curve caused by the large set of less intuitive functions and their associated
information. Within the software engineering community, well-known concepts of good
software design are module cohesion and module coupling. In the MOOSE environment
we try to overcome limitations of current comprehension tools with respect to their
functionality and learnability, by applying the concepts of coupling and cohesion on the
functional level of program comprehension tools. One of the MOOSE design goal is to

maximize the cohesion and minimize the coupling of the available functionality within
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the tool. Functional cohesion means a collection of tools that form from a user and task
perspective a set of coherent functions that provide users with the functionality required

to master a particular task and its associated information (Figure 25).

Traditional Comprehension MOOSE - a coherent set of
Tools task driven functionality

Figure 25: Task-oriented functional cohesion from a user perspective

5.1.1 MOOSE - Architecture

The MOOSE architecture (Figure 26) is based on five major components: (1) task and
user centered approach that will guide users during comprehension of specific tasks, (2)
an algorithmic framework, providing analysis and metric functionality, (3) an application
framework that provides a set of applications supporting various comprehension tasks,
(4) the visualization support, and (5) a underlying repository that provides a

communication and interaction interface among all the parts of the environment.
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Figure 26: MOOSE program comprehension framework

The MOOSE environment was designed with two major goals in mind. The first goal was
to provide a suite of tightly integrated tools with a set of coherent functionality. The
second goal was to create an open environment that can easily be extended with new
tools, algorithms, and applications to meet future demands. These goals are achieved by

creating a general framework that consists of several sub-frameworks as illustrated in

Figure 27.
Visualization C omprehension
framework " task

framework

Repository

Algorithmicm

Application
framework

>

Figure 27: The open MOOSE architecture with sub frameworks
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The Figure 28 shows the abstract system design of the MOOSE framework. The system
design allows addition of modules without having to modify the total system as they
exchange the data using an adapter. The new modules such as static and hybrid program

slicing algorithms need to use adapter for external data storage and retrieval.

VISUALIZATION

- PARSER

REPOSITORY

Source code Intermediate files

Figure 28: MOOSE System design
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5.2 Analytical analysis

A few preliminary tests were carried out with basic hybrid program slicing algorithms

using various sample programs to illustrate the benefits of the approach. The following

table shows a sample of the data collected.

Program Number of executable  Percentage of - Percentage of
statements reduction after static  reduction after. .
_ slicing . dynamic slicing
Program 1 32 19 50
Program 2 90 40 70

Figure 29: Comparative data on sample programs

As anticipated, the preliminary tests showed hybrid program slicing run time is more than
the static program slicing, which is a small price to pay for better accuracy. The hybrid
program slice run time is much lower than dynamic program slicing because many non-

contributihg statements have been removed using static program slicing.

However, further analytical experiments have to be carried out to compare the hybrid
program slicing algorithm with static and dynamic program slicing. Through this
analytical analysis, properties are identified which will allow further study the slicing
algorithms in the context of their accuracy, limitations, time and space complexity and
behavior for different types of programs and program executions. The properties

identified for the analytical analysis is following:
Correctness

Correctness of the slice is defined for each of the language constructs that are handled

properly by the algorithm. This property has to be tested with sample programs with

83



different language constructs, for example conditional statements, loops, class constructs

etc. for the proposed algorithms with the existing algorithms.
Accuracy

The goal of slicing is to compute a smallest executable subprogram from the original
program. This property is referred to as accuracy of the program slicing algorithm.
Again, this property has to be tested with sample programs with algorithm as well as

other existing algorithms.
Time complexity

Time complexity is dependent on the execution length and size of the program to be
sliced. This property can be analytically verified using the computation time for different

algorithms with same slicing criterion.

Space complexity

Space complexity is dependent on the amount data used for the analysis in any algorithm
at any one time. This property can be verified by memory requirements during the

computation of slice using different algorithm with the same slicing criterion.

Further experiments needs to be carried out in the above category with the same
conditions across the experiments. In other words, the comparison with different
algorithms shall use the same sample program, slicing criterion and where applicable
same execution length. This data could be useful in optimizing the slicing algorithms

further to use with the MOOSE framework.



Program  Computation Time for Computation Time for Computation Time

Hybrid slicing static slicing for dynamic slicing
Program1 X1 seconds Y1 seconds Z1 seconds
Programx Xx seconds Yx seconds Zx seconds

Figure 30: Computation time for slicing the sample programs

Program  Memory resources for  Memory resources for  Memory resources

Hybrid slicing static slicing for dynamic slicing
Programl X1kB YIkB Z1kB
Programx XxkB YxkB ZxkB

Figure 31: Memory resources for slicing the sample programs

Using the above information, MOOSE user can determine the particular type of slicing

for the particular use case based on the time and space availability.

The above are only few tests which are required for basic understanding of pros and cons
of the specific algorithmic support. However, different types of tests are to be carried out

in addition to the above depending on the usability of MOOSE.
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6. Conclusions and future work

In this thesis, two new general program slicing algorithms based on the notion of
removable blocks are presented. The representation of removable blocks in the form of a
syntax tree simplifies the visual information as it shows the logical tree structure with
clear scope of each block. The representation provides simplified automated inclusion

and exclusion of blocks based on their position relative to each other.

The thesis also introduces two hybrid program slicing approaches that improve the
performance and usability of MOOSE framework. As part of the current implementation
of the hybrid program slicing framework, the hybrid program slicing algorithms
combines and utilizes commonalties among general dynamic and static program slicing

algorithm.

Both algorithms compute correct program slices for all language constructs found in
major object-oriented programming languages, e.g., polymorphism, inheritance, late
binding, exception handling, local and global variables. A proof, based on the theorems
and lemmas presented in [30], is presented showing that both algorithms compute correct

and executable program slices.

The results from our preliminary experimental analysis show encouraging prospects for

hybrid program slicing and the MOOSE framework in general.

Future work

As part of the future work, it is proposed to include criterion-based hybrid slicing
algorithm in MOOSE framework to extend its algorithmic support. New slicing related

concepts, as well as new visualization techniques should be derived to take advantage of
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the algorithms. The present results are still in preliminary experimentation phase and a
more detailed usability and experimental analysis shall be conducted. In addition,
integration of forward program slicing algorithms within hybrid slicing framework has to

be developed to investigate additional usability aspects of MOOSE environment.

Current trends in the software engineering community are towards improving the
usability of software systems. This is mainly due to the inability shown by current
software developers to produce software that is easy to use and provides the required
functionality. Desmarais [9] shows that only 50% (+20%) of the services of most
software applications is ever mastered. The other half of the services are either not useful
to specific tasks, or users have never had the time to master it, or users ignore their
existence. Many CASE tools have not performed as expected due to the inability of the
products to be consistent with the needs of CASE users and system developers. Object-
oriented software development utilizes new design methodologies. The use of the term
"quality in use" implies that it is necessary to take into account human-centered issues in
evaluating software products. "Quality in use" is the extent to which an entity satisfies
stated and implied needs when used under specified conditions [46,48,49]. Therefore, it is
proposed that not only planning to investigate the usability of the presented concepts but

also to derive new slicing related features based on the user feedback with the tool.
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Appendix A

General dynamic program slicing algorithm

The algorithm presented in [30,45] identifies a set of removable blocks R In the first step

of the algorithm, the program is executed and its execution trace is recorded up to
execution position g. All actions in the execution trace are set as unmarked and not

visited. Set R initially contains a set of all blocks in the program. In step 4, a set of

contributing actions I~ is initialized as an empty set. In step 5 the algorithm identifies and

marks the last ’deﬁnition YP of variable y9, this step (procedure) is presented in more
detail in lines 53-57. The algorithm iterates in the repeat loop 6-10 until all marked

actions are visited. There are three major steps inside of the repeat loop.

In step 7, the algorithm identifies actions that contribute to the computation of y. In step
8, for the given set of contributing actions, the algorithm identifies non-contributing
actions by finding a set of block traces. The more non-contributing actions can be
identified, the smaller dynamic slices may be computed. In step 9, all the remaining
actions, i.e., actions that are not identified as contributing or as non-contributing actions,
are marked. These actions are visited on the next iteration of the repeat loop. The process
of identifying contributing and non-contributing actions continues in the repeat loop until

all actions are classified as contributing or non-contributing actions.

In what follows, a more detailed description of the major steps of the dynamic slicing
algorithm of is presented. In step 7, the algorithm identifies contributing actions. This

step (procedure) is presented in more detail in lines 12-23. The major component of this
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while loop are that during each iteration a marked and not visited action X is selected

and set as visited in lines 15 and 16. In addition, Xk 1s inserted into IC. All last definitions

of all variables used in Xk are identified and marked in line 17-19. In line 20-21, all
blocks that contain node X are removed from Rc. The while loop iterates until all marked
actions are visited. In step 8 the algorithm identifies non-contributing actions for the set
I, of contributing actions (the actions are set as visited) and for the set of blocks R This
step (procedure) is presented in more detail in lines 24-42. The goal of this step is to find
as many non-contributing actions as possible. The more non-contributing actions can be
identified, the smaller dynamic slices may be computed. The procedure identifies non-

contributing actions by finding a set @D of block traces for the set of blocks R All
block traces of @ contain only unmarked actions. The procedure explores the execution

trace from the beginning looking for actions that are not set as visited. If such an action is
found then for this action the procedure tries to identify block trace S (B, p, pI) of block

B that belongs to R by finding r-entry and r-exit of B at position p and pj, respectively.
If such a block trace is found then it is inserted into P Since all actions in block trace §

(B, p, pl) are non-contributing actions, the algorithm continues the search for non-

contributing actions (block traces) starting from position p;. This process of identifying
block traces of blocks that belong to R continues until the end of execution trace is

reached at position g. In step 9, all actions that have not been identified as contributing
or as non-contributing actions are marked in step 9 because they are considered as

contributing actions. This step (procedure) is presented in more detail in lines 43-47
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Algorithm

Input: a slicing criterion C=(x, y9)
Output: a dynamic program slice for C
Legend:

Ty  execution trace up to position g
D,: Setof block traces

Rc:  Set of blocks
I.:  Setof contributing actions (default is visited)

No non-contributing action

Cc  contributing action

1. Execute program P on input x and record execution trace T, up to position g
2. Initialize Rc to a set of all blocks in program P

3. Set all actions in Ty as not marked and not visited.

4. I, =0

5. Find last definition y? of y4 and set yP as marked

6. repeat

7. Identify C,

8. Identify N

9. Mark remaining actions

10. until every marked action in T, was visited

11.  Create dynamic program slice by removing all blocks e Rc
12.  function Identify C,

13.  while (contributing and not visited action in Ty,)

14. Select a contributing and not visited action X*in Iy
15. Set X* as a visited action

6.  Ip=Icui{xh)

17.  forall variables v & U (X*) do

18. Identify + mark last def of v as contributing action
19. end-for

20. for all blocks B € Rc do

21. if X € N(B) then Rc =Rc - {B}

22. end-while

23.  end Identify C,

24.  function Identify N,

Figure 32: General dynamic program slicing algorithm [30](continued)
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25.

26.
27.

28.
29.

30.

31.
32.
33.
34.
35.

36.
37.

38.
39.

41.
42.

43.

45.
46.
47.

49.

50.
51.
52.

53.

54.
55.

56.
57.

D=9
p=l
do
Let XP be an action at position p in Ty
if XP ¢ I. then
LetYe I ¢ be the closest C. from position p such that z>p
if there exists block B € Rc such that
(1) B has an r-entry at position p, and
(2) there exists no inheritance

(3) B has an r-exit between p and ¢ then
Let p; be the closest position of an r-exit of B from position p, where p<pj<?

D= PcV{SB.pp}H
p=p;-1
end-if
end-if
p=p+1
while p 2¢g
end Identify N,

function Mark remaining actions
for all actions Xk that are not identified C, nor as N, c
Set Xk as marked

end-for
end Mark remaining actions

function Identify inheritance
if current class is derived then

set all XP%5€ classes as contributing
end-if
end Identify-inheritance
function Find last definition
Find last definition of variable y? in global scope
If not found last definition then

search last definition of yP within local scope
end Identify-last-definition

Figure 32: General dynamic program slicing algorithm [30]
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One of the extensions presented in [45] for generic dynamic slicing algorithm is the
identification of the last definition of variables and their scopes and the identification of
inherited classes. As part of the object-oriented languages constructs, additional variable
types and their variable scopes have to be considered. The function in line 53-57 not only
identifies the scope of variables, it also has to take into consideration the variable types,
e.g.; user defined, passed by value, passed by reference, etc. The function identify
inheritance in line 48-52 handles the identification of inheritance and multiple
inheritance cases as described earlier, by marking all classes from which the current class

inherits as non removable.

It should be mentioned that the presented generic dynamic slicing algorithm also
computes correct dynamic slices for the programming construct like nested function calls

and recursion.
Proof of the correctness of generic dynamic slicing algorithm

The same theorems and lemmas presented in [30] to prove the correctness of the
algorithm also applies to the following generic dynamic slicing algorithm. The following

section provides a summary of the theorems and lemmas.

Theorem:

The generic dynamic slicing algorithm presented in Figure 32 correctly computes a
dynamic program slice for the slicing criterion C=(x,y9).
In order for the generic dynamic slicing algorithm to compute correct dynamic slices the

algorithm has to satisfy Lemma 1 and 2 presented in {30] . The same formal proof might

be applied for the general algorithm.
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We create the following loop invariant, presented at line 10 of the algorithm in Figure 32.

1. Dcis asetof all actions set as marked or visited in T.

M(Ty) \J M(S(B.k1.k2))=D¢, where S(Bki.kz) € Pc

2. LD e I
3. for all actions X*e I~ variables ve U(X¥), LDOX) el

4. for all actions X*e I, for all blocks Be R, X & N(B).

Proof of the loop invariant

The loop invariant at line 10 is true for each of the loop iterations. Notice that I~ in the
algorithm is a set of all actions that are set as visited, whereas D~ is a set of all actions

that are set as marked or visited. Therefore, I~ is a subset of D Steps 8 and 9 satisfy

condition 1 of the loop invariant. Step 8 ensures that all identified block traces that are

included in P, exclude actions set as visited (lines 28, 29 and 35). Step 9 sets all actions

that are identified as either contributing or as non-contributing actions as marked. Notice

that all block traces in @ are disjoint because when a block trace S(B,p,p1) is found (in

lines 31-36), the search continues from the first action following the last action in

S(B,p,p1). In addition, only traces of blocks that belong to R are considered (line 31).

Condition 2 of the loop invariant is true because step 5 marks the last definition of y9.

Condition 3 is satisfied because for each action X that is set as visited in step 15 all last
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definitions of all variables used in X* are set as marked in step 17&18 (if they were not

marked before). All these last definitions are visited and inserted in I~ on the next

iterations of the while-loop 13-22. Condition 4 is satisfied because for each action X that

is set as visited in step 15, all blocks to which X belongs is removed from RC in step 21.
Proof of the theorem

A proof of theorem on the generic dynamic slicing algorithm is presented in Figure 32
computes correct dynamic slices for the slicing criterion C=(x,y9).

On the termination of the repeat loop 6-10 of the algorithm, the loop invariant is
combined with the termination condition. Since on the termination of the loop there are

no more marked and not-visited actions in the execution trace, D equals to I~ (D¢ =
I). Combining this condition with the loop invariant, the following conditions are true

on the exit from the repeat loop:

L. M(Ty)- \J M(S(B.ki k) = I where S(Bkik;) € Pc

2. LDG?) el

3. forall actions X*e I~ and variables ve UX®), LD(Fyel
4. for all actions Xk €l for all blocks B € R, X € N(B).

As a result, a dynamic program slice constructed from program P by removing from it all

blocks that belong to R~ is a dynamic program slice for the slicing criterion C=(x,y9).
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