INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A PLOTTING TOOL FOR INTERNET BASED ON
CLIENT/SERVER COMPUTING MODEL

MENG CAI

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2001

© MENG CAL 2001

i+l

National Lib Bibliothéque nationale
of Canada g du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
OtawaONKIAONG Oawa ON KIA 0d
Canada Canada
Your file Votre rélérence
COur Re Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the ~ droit d’auteur qui protége cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64076-0

Canadi

ABSTRACT

A Plotting Tool for Internet Based on Client/Server Computing Model

Meng Cai

This report outlines the design, implementation, and deployment of a plotting tool based
on client/server distributed computing model. The tool plots mathematical functions for a
remote user over Internet. It provides a complete and friendly graphical user interface and
can be loaded into a conventional Web browser. The tool is simple, cheap, easy to learn
and easy to use. It is also reliable, portable and extensible.

The tool is designed and implemented based on the component programming model, and
integrates many cutting edge technologies, including Java Remote Method Invocation
(RMI), Java Native Interface (JNI), Java Foundation Class (JFC), and Java Plug-in.
Overviews of these technologies are given. For some of them, the altemnative
technologies are also discussed, and the reasoning for selecting a particular technology is
presented.

In addition, this report demonstrates the steps to reuse a legacy module written in C++ in

the plotting tool developed in Java. The benefits of reusing this module are discussed.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Peter Grogono,
for his guidance, support, patience and encouragement during the entire course of this

work.

v

Contents

List of Figures vii
1 Introduction 1
1.1 Project MOtIVAtIONcc.eevineinniiiiiiiiiiii e 1
1.2 A Summary of the Previous Workc.ccoiivimiiniiiiiiininn. 2
L3 Project GOalscoovvinmimiiniiiiiiiiiiiiii e 3
1.4 Detailed Requirement DesCriptionc.ceeuineninriaiiienienninnnn. 5
2 System Design 8
2.1 Programming Languagec...cceeoverinieieieniiiiiiiiennes 8

2.2 Choosing Distributed Object Middlewareccooeeiiiini. 11

2.2.1 DCOM,CORBA and RMIccoviimiiniiniiiiiiiiniinnee 11

222 RMIOVEIVIEW ...oeiniiiiiiiiiiiiccicinieee e 15

I 2 o U S 17

2.4 System Architecturec..coccoiiiiiiiiiiiiii 19

3 User Interface 21

JIJFC(Swing) vs. AWT .o 21

3.2 User Interface Descriptioncceeecmvenreeieienirnniniinnnennnnn. 22

3.2.1 The Main Interfacec.coocnieieiiiiiiiiiiiiiiiiiicinene. 22

322 The MENU «.ouoniniiniiee e e 24

3221 CUIVES .eenciinicienincieeeeienen e eereen et eas 24

3222 Settings ..c.oenruiinrinieiieieeeeeeee e e 24

3223 0pHONS ..eeeneeneeniecireec et een e 27

3224 Help oo 28

4 Implementation and Deployment
4.1 Defining Server Interfacecccoooviiiiiiiiiiiiiiiie
4.2 Implementing CHentcooooiiniiiiiiiiii e
4.3 Implementing SEIVETccovviniimiiinniiiiiiiiiiiiee e
4.3.1 Communicating with Clientccooiiiiiiinniinn
4.3.2 Reusing the Parser Componentccccovvvviininnnnnnnne
4.3.3 Implementing the Application Logicccccoevveennnnn.e.
4.4 Deploymentcccomieriiiiiiiiiii e
4.4.1 Prepare HTML fileccooiiiiiiiiiiiiienenens
4.4.2 Prepare Security Policy Fileccc.ooi
4.4.3 Generate Stubs and Skeletonscooeeiiiiin.
4.4.4 Compile and Deploy Java Filescooooiiiiiiiii
4.4.5 Register and Start Serverccoeeivvniiiiiiiiiinnnnn.
5 Conclusion
Bibliography
Appendix Selected Pieces of Code
A.1 The Java Code for INIc.coiiiiiiniiiii e
A2TheC++Code for INI ...ooeniiniiniiiiii e

A3 Converted HTML File .ooneininiiieie et e eeen e

List of Figures

10

11

13

The plotter client obtains reference to a server object via RMI registry and

communicates with the plotter server via stub and skeleton 17
The major components of the plotter applicationccccceeeenennns 19
The main user interface of the plottercocioiimiiiiiiiinienens 23
The Curves MENUcoeeminiiiiiiiiiiiiii e 24
The Settings MenUcooerininimininiiiiii e 25
The dialog box for entering eXpressionc.cc.ccoeeviiiiiiieninniennnn 25
The message window showing the parsing result 26
The dialog box for defining the variablec..cocooiiiiiiniiinn, 26
The Undefine Dialog Boxcooeiviiiiiiiiiiiiiiiienie 27
The window showing the current settingscoceveveevinieniinennon 27
The Options MENUcoooiviiiiiiiiiiiiiii e 28
The color ChOOSET ...o.oneinieiiiiiiiiii e 29
The select resolution dialog boxcocoiiiiiiiiiiiiiiiiiiin 29

Chapter 1

Introduction

In this chapter, I will briefly discuss the motivation for developing a 2-D plotting utility
based on the client/server model. The goals and the functional requirements of this utility

will also be summarized.

1.1 Project motivation

A 2-D plotting utility is very useful in helping people to visualize a mathematical
function or compare a group of functions. Today, there are plenty of plotting tools in the
market, for example, Mathematica [1], MatLab [2], and Maple[3]. Unfortunately, most of
them are expensive, hard to learn, and too sophisticated for casual users.

Recently, Ahn Phong Tran developed a simple 2-D graph plotter [4]. The plotter is
reliable, efficient and very easy to use. However, Tran's plotter is a standalone
application, and as a result, every user has to install a copy of it on his/her own computer.
In addition, when updating the software, a new version has to be distributed to each user
and the user has to re-install it.

On the other hand, rapid developments in computer networks and World Wide Web make
it feasible to let many users share a single copy of an application. A graph plotting utility
based on client/server distributed computing model perfectly satisfies this need. With the
client/server paradigm, users may load the client component using a Web browser across

an organization's Intranet or across the Internet, and access remotely the server

component installed on a host computer. Hence, a user only needs to have a conventional
browser to use the plotting utility. In this way, we may save the computing resources and
it is also particularly convenient for occasional users. Furthermore, once the application is
updated on the server computer, a user will automatically load the latest version of the

client component and access the latest version of the server.

1.2 A Summary of the Previous Work
Before describing the goals and the requirements of this project, let's summarize the
previous work completed by Ahn Phong Tran [4].
What Tran accomplished is a standalone 2-D Graph Plotter application which can be used
to plot simple algebraic expressions. At the start of the application, an /nput Dialog is
displayed to let user enter an expression. Next, user clicks the "Checking Expression
Syntax" button on the dialog to parse the expression based on the following grammar.

Expr-> [-] Term {('+'| ") Term;.

Term -> Factor {("*' | /') Factor}.

Factor -> Primary ["' Primary].

Primary -> NUM | VAR ['('Expr') '] | '('Expr’)’.
Where NUM represents a number, VAR represents either a simple variable or a built-in
function (for example, sin, cos, tan, atan, exp, log, fabs, or sqrt). Things of the form [X]
means that X may appear or not. Things of the form (X1/X2) indicates that one of the Xi
must appear once. Things of the form {X} indicate that X can occur zero or more times.
[f the expression is not syntactically correct, an error is reported. Otherwise, on the same

dialog, the user enters a variable name and its range, and optionally, a parameter name,

its step and range, and some constants and their values. The user then clicks the "Plot"
button, and a number of points are generated and plotted on the screen.

Internally, Tran's application consists of two major components, namely, a
parser/evaluator component and a user interface (including plotting) component.

The parser/evaluator component is responsible for parsing an expression, setting the
variable values in the expression, and gives back a value of the expression. To
accomplish this, it checks the expression syntactically, builds a parsing tree if the
expression is syntactically correct, assigns values to the nodes in the parsing tree, and
returns the value of the whole parsing tree. The parser was based on the recursive descent
method [5] and was written in C++ programming language.

The user interface component provides an /nput dialog for user inputs and a View on
which curves can be drawn. This component was implemented with Microsoft
Foundation Class (MFC). The Input dialog inherits MFC's CDialog class, and the View
derives from MFC's CView class.

Tran's tool is simple, easy to learn and it works well. However, the fact that it was
implemented as a standalone application makes it inconvenient in some circumstances, as

mentioned in Section 1.1.

1.3 Project goals

The goal of this project is to extend the above 2-D graph plotting tool based on the
distributed computing paradigm mentioned in Section 1.1. The application needs to be
component-oriented. More specifically, we need to develop a client component that

interacts with a user, and a server component that is responsible for expression parsing

and evaluation. The client and server components should be relatively independent, but
the client must be able to communicate with the server component via a well-defined
remote interface. The communications between client and server must be reliable,
efficient, scalable, and must be capable of handling network exceptions.

A user should be able to load the client component with a Web browser such as Netscape
or Internet Explorer. The client component runs on the user's computer and needs to
provide a complete graphical user interface (GUI) and keep some state information. The
GUI should allow a user to enter expressions and parameters, to select from a number of
options, and to view the resulting curves. The GUI must be straightforward and easy to
handle. It should also provide input validation and should be able to inform user if any
EITor OCCUTS.

The server component runs on a host computer. It is called by the client and is
responsible for parsing and evaluating expressions. The details of the expression formats
and functional requirements of the parser will be described in Section 1.3. Once an
expression is parsed or evaluated, the server component should return the results to the
client. The server component must be efficient and reliable. In particular, the server must
be able to report any singularities to the client.

Within each component, we need to follow the objected-oriented style. The object-
oriented paradigm expounds three major ideas, namely, encapsulation, inheritance and
polymorphism, which make system flexible, extensible, maintainable and easy to be

reused.

Finally, users should be able to access the plotter fron: various platforms (Windows,

Unix, Linux, etc.). The server is expected to be deployed on Windows/Windows NT, but

it should be easy to port it to other platforms.

1.4 Detailed Requirement description

The following details the core functional requirements of the plotter.

The plotter must be able to parse and validate an expression input by a user.
An expression consists of identifiers (with one or more letters), constant numbers,
function names (we support only built-in functions described in Section 1.2), and

operators. Here are some typical expressions:

Xr2+] ~ is the exponent operator

(x-1)*(x+1) parentheses allowed; no implicit multiplication
sin(x)+cos(x) function calls

exp(x)™2 =(e")

x-b blanks are allowed

The plotter must allow the user to define the role of identifiers:

There must be exactly one independent variable; one identifier may be specified as a
parameter; any other identifiers are assumed to be constants.

The user must specify the range of the independent variable by entering a minimum
and a maximum value. If there is a parameter, the user must specify the first value of
the parameter, the final value, and the interval. Also, the user enters constants by
specifying an identifier and a value. If an identifier is not defined by the user, by

default, it is assumed to be a constant that has value zero.

Once an expression is validated, and the identifiers are defined, the plotter should be
able to evaluate the expression, and present the resulting curve or curves to the user.
The plotter can be in one of the two states: the initial state and the plotted state.
Before any curve is plotted, the plotter is in its initial state. When plotting the first
graph, the plotter needs to find the minimum and maximum values in the desired
range and choose suitable scales. After plotting a graph, the plotter is in plotted state.
In plotted state, names (of variables, parameters, and constants) and scales on axes
can no longer be changed. However, we can modify the values of a parameter or the
value of a constant. In plotted state, the user may also introduce new expressions, and
plot them in the same graph. In addition, the user can explicitly switch the plotter
back to initial state by clearing the current graph.

The program should detect obvious singularities such as:

a/bwithb=0

sqrt(x) withx <0

log(x) with x<=0

[n these cases, the program should inform the user with a warning message and the
corresponding points are not plotted.

Other functionality:

1. User is able to select the resolution of the graph (i.e., to choose how many points to
plot).

2. If the user clicks in the graph display area, the program responds by displaying the
coordinates of that point.

3. The user is able to choose colors for axes and the graph background.

The remainder of the report is organized as follows. In Chapter 2, the system design
decisions will be addressed, including the architecture model, choosing appropriate
technology and programming language, and the reuse of existing components. In Chapter
3, we will discuss user interface issues, such as tool selection and interface design.
Chapter 4 summarizes the implementation highlights and how to deploy the application.

Selected pieces of codes will be presented in the Appendix.

Chapter 2

System Design

2.1 Programming Language

A decision about the programming language to be used is not normally made at this stage
of system design. For this project, however, we need to consider this issue early. The
reason is that, many distributed technologies are language-dependent, and obviously the
choice of technology has significant impacts on high-level system design, as well as other
important issues such as budget and schedule.

As far as the requirements are concerned, Java programming language is the natural
choice for implementing the client side of the application. Java is often referred to as the
programming language for the Internet. It integrates perfectly well with both Web
browsers and Web servers and thus provides excellent support for the development of
Web-based applications. In particular, Java supports an applet model that allows the
execution of Java code embedded in an HTML page. Specifically, Java applets are Java
programs that are referenced from HTML pages and downloaded when a client requests
the referring HTML page from the Web server. In the applet model, instead of invoking a
method on a remote project, the code for the class providing the method is transferred
across the network and executed locally by a Java Virtual Machine (JVM) inside the
client's Web browser. In addition, Java applets provide excellent support for complex

user interfaces through a variety of GUI class libraries such as AWT and JFC.

Based on the above features, we may implement Java applets as thin clients. A thin client

provides a complete GUI, and keeps some state information (for example, in this project,

it may cache current parameter settings, current plotting states, data of previous curves,

etc.) as well as some application logic (for example, in this project, the rules of validating

inputs, scaling, etc.). Since they contain state and some application logic, thin clients

overcome the limitations of the so-called null clients (for instance, stateless HTML pages

downloaded every time from a server) and send requests much less frequently to the

server. Yet it needs to be stressed that Java thin clients are not expected to implement

major application logic such as, in this example, expression parsing and evaluation.

These are the responsibilities of the server component of the application.

One alternative (and perhaps, the only practical altemative for this project) to the Java-

based design is to provide interactivity of traditional HTML-based interfaces through the

Common Gateway Interface (CGI). CGl-based distributed applications, unfortunately,

have a number of limitations and drawbacks:

¢ Clients (HTML) are stateless. The entire application (both server and the real client)
actually executes on the server side. Consequently, there is no way to implement
complex GUI on the client side and, to make things worse, the client side needs to
communicate with the server side much more frequently than a thin client.

¢ Non-type-safe interaction. This is because HTML does not support typing, and all
kinds of data are transferred as URL strings.

¢ Server has no clean mechanism to deliver notification to users.

o Performance bottlenecks. As a result of an invocation a complete HTML page is

returned to the client side (including all the hidden state and GUI information). These

HTML documents contain a lot of repeated text and formatting data that remains
unchanged since the last client action. The amount of unchanged HTML often
outweighs the amount of actual data produced by the application program.

From these discussions, it is clear that Java is definitely a more flexible, clean and

efficient solution for implementing the client-side component of the plotter application.

On the other hand, the programming language choice for the server side of the

application is more debatable. Many prd’gramming languages can be applied to

implement this component. Among them, C++ and Java are the most favorable choices
for their supports of object-oriented programming, wide availability and popularity in
industry. For this project, I've decided to use Java, for the following reasons:

e Java programs are highly portable due to the standardized byte-code representation
generated by Java compilers. This makes Java the ideal language for component
programming, since the deployment piatform is not determined by hardware or
operating system; the Java platform s the real deployment platform.

e Java provides a cleaner approach to object-oriented programming, with fewer
memory management responsibilities, no pointers, a less confusing syntax, and
simpler method resolution rules, etc.

e Most importantly, Java is supported by many distributed object technologies. As we
need to rely on at least one of these technologies to implement this project, by using
Java, we will have more alternative technologies to choose from. This issue will be

further discussed in the next section.

10

2.2 Choosing Distributed Object Middleware

We can always develop a distributed client/server application directly using lower-level
APIs, for instance, sockets. However, this approach is not only tedious but also error-
prone. For a rapid and effective development of distributed application, we need the aid
from middleware, a kind of software that provides a framework to shield programmers
from lower level details of networking protocols, as well as heterogeneous data
representation, hardware, and software environments across networks. A middleware also
supports a number of features and services to help managing distributed environments.
For this project, we need to select a proper middleware based on distributed object
technology. Distributed Objects refers to a means of building distributed applications
based on object technology. Through the characteristics such as abstraction,
encapsulation, inheritance and polymorphism, a distributed object model provides an
effective way to manage and reduce system complexities, reduce cost, and increase
flexibility and extensibility. A distributed object middleware provides a distributed object
infrastructure so that we can build and deploy systems in which objects may be used
independent of the platform, the network transport, the object implementation details and
the locations of objects in the network.

2.2.1 DCOM, CORBA and RMI

The next step is to choose a distributed object middleware from the three most popular
and powerful alternatives: Distributed Component Object Model (DCOM) [6], Common
Object Request Broker Architecture (CORBA) [7,8] and Java Remote Method Invocation

(RMI) [9]. An in-depth layer by layer comparison between DCOM and CORBA can be

It

found in [10]. Raj, on the other hand, has compared DCOM, CORBA and RMI from a
programmer's perspective [11].

DCOM is the distributed extension to COM (Component Object Model) developed by
Microsoft. With DCOM, the client first acquires a pointer to one of the server's
interfaces. Through the acquired interface pointer, the DCOM client calls into the
exposed methods of the server object as if the server object resided in the client's address
space. Remote access in DCOM relies on a protocol called the Object Remote Procedure
Call (ORPC). The ORPC layer is built on top of DCE's RPC and interacts with COM's
run-time services.

DCOM offers a number of distinct benefits. For example, it supports multiple interfaces
per object; it supports binary software integration and large-scale, cross-language
software reuse. The main problem with DCOM is that it is tightly integrated with the
Windows platform, and heavily relies on its registry system, COM services and security
model. Since we don't want limit this application to Microsoft platforms, the use of
DCOM is excluded.

CORBA is a standard of distributed object model proposed by the largest software
consortium in the world -- the Object Management Group with over 1000 members.
CORBA allows objects on one machine to communicate with objects running on any
number of different machines via the Object Request Broker (ORB). At a lower level, it
depends on a protocol called the Internet Inter-ORB protocol (IIOP) for remote
accessing.

The most significant advantage of CORBA is that it is a very open standard, which is

neither operating-system specific nor programming language dependent. The CORBA

12

objects can be written in virtually any language and can run on virtually any platform.
CORBA is currently the only technology that supports such a broad range of languages
and hardware environments. Besides, CORBA also has many other benefits. For
example, CORBA provides a wide range useful services such as naming services, event
services and lifecycle services. As well, CORBA is scalable for large systems.

However, CORBA also has some disadvantages. Above all, CORBA is only a standard
specification. To build our application on CORBA, we first need to purchase a specific
CORBA ORB product (for example, VisiBroker from Borland or Orbix from Iona
Technologies) and install it. The ORB products are typically very expensive and may use
a lot of computer resources. This is fine if we are building a large, complex enterprise
application. For this small application of 2-D plotter, however, the requirements simply
don't justify the cost. Second, on the client side, user needs to download the CORBA
ORB at run-time. This may significantly affect the performance of the application.
Although some browsers already include an ORB of some kind (for example, VisiBroker
2.5 is shipped with Netscape 4.x), others don't. Even for those browsers that do include
ORB, they are only compatible with a particular ORB product and they may not support
its latest versions. Third, despite the fact that OMG is aiming at solving the problem, the
interoperability of different ORB products continues to be a big issue. (For example, a
VisiBroker client may not communicate properly with an Orbix server). To make things
worse, ORB vendors update their products frequently while their support for back
compatibility are poor. Consequently, an application built on CORBA will very likely be
bound to an ORB product from a particular vendor and even to a particular version of that

product.

13

To conclude, although technically, CORBA can provide a solution for this application,
choosing CORBA as our middleware is against our goal of building a cheap, simple,
efficient and flexible plotter.

RMI is JavaSoft's solution for distributed object computing. RMI seamlessly supports
remote method invocation on objects across Java Virtual Machines. It relies on Java
Object Serialization for marshaling object data and a protocol called the Java Remote
Method Protocol (JRMP) for remote access. More technical details of Java RMI will be
given in the next section.

RMI is a pure Java solution and is specifically designed to operate in the Java
environment. With RMI, all client and server objects must be written in Java. This makes
it more difficult to reuse a legacy system written in other programming languages. This
problem, however, can be solved by a Java technology called Java Native Interface (JNI).
We will discuss this issue in Section 2.3.

Another problem with RMI is that the performance of a RMI-based application might
become slow when it is scaled. This, however, is not a severe problem for this particular
application. While the plotter should be able to perform well in a multiple-user
environment, it is not expected to be accessed by thousands of users concurrently (it is,
after all, not a database application).

Despite the above limitations, RMI exhibits many distinct advantages:

e RMI is smoothly integrated into Java and Web environments.

e Other technologies, such as DCOM and CORBA, require mappings from an interface

description language (IDL) to a particular programming language. This is not needed

14

for RMI. In RMI, component interfaces are defined in Java directly. It is thus type-
safe and easy to understand.

e [t is simple and easy to program.

e It can be used on diverse operating systems, as long as the platform has Java support.
It allows cross-platform execution in browsers.

o It supports passing object by value, which allows moving the code of the class from
one JVM to another. As a result, accessing the object will be always be a local
operation, which reduces the network workload. This feature is particularly useful for
the plotter application, since the server can wrap all the results (all data, ranges, data
size, error information, singularity information, etc.) into a single object and return it
to the client in one shot. (In contrast, CORBA normally passes object by reference.
Although latest CORBA specification has introduced pass by value, it is not yet well
supported by vendors.)

e Last, but probably most important, RMI is included in JDK. Since JDK can be
downloaded for free, using RMI means no additional cost.

From the above analysis, it is clear that Java RMI is the most suitable technology to

develop this project. Hence, RMI is chosen as the middleware for our distributed 2-D

plotter application.

2.2.2 RMI Overview

RMI is an extension of Remote Procedure Call (RPC). RPC abstracts the communication

interface to the level of a procedure call. RPC, however, does not translate well into

distributed object systems, where communication between program-level objects residing

in different address spaces is needed. On the other hand, RMI directly integrates a

15

distributed object model into the Java language. To accomplish this, RMI introduces local
proxy objects to manage the invocation on a remote object.

In the terminology of RMI, the proxy object which resides on the client side is called a
stub. The proxy on the server side is called a skeleton. The client can easily communicate
with the stub because they are in the same Java virtual machine. Likewise, the remote
server can easily communicate with the skeleton. The stub acts as a surrogate for the
server so that the client can access the server transparently. When the stub receives a
message from the client, it forwards the request and marshals the parameters across the
network to the server, obtains the server's response, and returns it the client. The skeleton
performs a similar function on behalf of the server. The communication between stub and
skeleton is based on the protocol of JRMP. At a lower level (the transport layer), JRMP
relies on TCP protocol by default. However, by installing a custom RMI socket factory, it
is possible to let the RMI transport layer use a non-TCP or custom transport protocol over
[P. Figure 1 sketches how the plotter client and plotter server components communicate
via stub and skeleton.

The codes for stub and skeleton can be automatically generated. To do so, first we need
to define the remote interface for a server object. The interface exposes a set of methods
that are indicative of the services offered by the server object. Once the interface is
defined, we can use a tool provided by Java to generate the proxy objects.

Before the client can invoke a method of the remote server object, it must obtain its
object reference. RMI provides a registry service that runs on the server machine. The
registry maintains a database of named remote objects. When a client wants to use a

remote object, it asks by name for the reference to the remote object. The registry scans

16

its database and returns a reference to the requested object. Figure 1 also shows how
RMT's registry works. Once the client obtains the object reference, it can call a method
implemented by the server object as if the server were running on the same Java virtual

machine.

Request for Reference
> Registry
Reference to Server
T Registration
A 4 I
Plotter Client Plotter Server
Server Stub Network Client
P Sleleton
Client Server

Figure 1: The plotter client obtains reference to a server object via RMI

registry and communicates with the plotter server via stub and skeleton .

2.3 Parser
For this project, it was decided to reuse the parser module that had been used in Tran's

project. As mentioned in Section 1.2, the parser was built using the recursive descent

method [5]. It performs the following tasks:

17

o Given an expression, determine if it is syntactically correct.
¢ Given the values of the independent variable, the parameter and the constants in the
expression, evaluate its value.
Details of the parser can be found in reference [4].
The main difficulty of reusing this parser lies in the fact that the parser was written in
C++, while the current project is intended to be written in Java. Fortunately, Java
provides the Java Native Interface (JNI) facility [12] that allows us to build a Java
interface to a non-Java legacy system. Specifically, the JNI is a native programming
interface. It is organized like a C++ virtual function table, through which Java code
running inside a Java virtual machine can interoperate with applications and libraries
written in other programming languages, such as C, C++ and assembly. With JNI, the
non-Java legacy system (in this case, the parser module) can be integrated in the form of
a dynamic link library (DLL).
From the standpoint of software engineering, the reuse of the parser component reveals
many benefits. First, it eases the development efforts significantly. To reuse this parser,
we only need to understand its interface. The internal details of the parser are no longer
our concern. Second, since the parser module has already been tested extensively, the
reuse of the parser makes the current application more reliable. Third, as the parser and
the rest of the system are clearly separated, they can be maintained and if necessary,
extended independently. Fourth, it is well known that Java is more powerful for Internet
programming, while C++ is faster, more efficient, and more flexible in performing

conventional but complex tasks such as parsing and mathematical computation on a local

18

machine. In this project, by reusing the parser written in C++, we are combing and taking

advantages of the strong points of both programming languages.

2.4 System Architecture

Based on the discussions in 2.1 - 2.4, Figure 2 summarizes the overall architecture of the

plotter application. The functionality and the details of each component are described as

follows.
Client Computer Server Computer
HTTP
Java-enabled Web Server
Web Browser
Plotter Client RMI/ Server Component
(Applet) JRMP
Plotter Server

JNI
[nterface

Parser DLL

Figure 2: The major components of the plotter application.
o PlotterClient: PlotterClient is the client-side component of the application. It consists

of a RectangleArea class that presents a view on which curves can be plotted, a

19

number of auxiliary classes, each of which represents an element in the graphical user
interface, and a PlotterClient class that manages the above classes. The PlotterClient
needs to be executed inside a Web browser, and communicates with PlotterServer via
RML.

PlotterServer: PlotterServer component is the server-side component of the
application. It accepts the requests from the PlotterClient, uses its application logic to
processes the requests and returns the results to the client. When processing the
requests, PlotterServer needs to call the Parser DLL to parse or evaluate an
expression. PlotterServer consists of three parts. The PlotterServer class is the core of
the component; the PlotterServerinteraface defines the RMI interface; and the Ser
class records the current request from a client.

Parser DLL: This is the reused parser. Its responsibilities have been described in
Section 2.4.

JNI interface: The JNI interface declares the native methods that allow the

PlotterServer to access the Parser.

[n addition, we need to implement the following elements:

Plotter.ntml: An HTML page into which the PlotterClient applet is embedded.

Results: An instance of this class wraps all the information that is returned to the
PlotterClient by the PlotterServer. The information includes the coordinates of all the
points on the curves, the ranges of the coordinates, the error messages (parsing error
or singularity information, if any). With RMI, a Results object can be parsed to the

client by value, in one shot.

20

Chapter 3

User Interface

3.1 JFC (Swing) vs. AWT

Providing a friendly graphical user interface (GUT) is one of the major responsibilities of
the client component. For this application, the goal of the user interface is simple, easy to
learn and easy to use.

Java provides a rich set of classes for GUI development. These classes are grouped in the
Abstract Window Toolkit (AWT). AWT is a powerful tool for developing GUI, but it uses
the facilities of the host platform to create and display user interface controls. On one
hand, this allows the AWT preserves the familiar look and feel of the host platform. On
the other hand, this makes it difficult to write portable program using the AWT, owing to
subtle differences from platform to platform in the behavior of native controls.
Furthermore, AWT components are restricted to the least common denominator of the
features that are present on every platform.

To overcome limitations of the AWT, Sun created the Java Foundation Classes (JFC,
also known as Swing) [13]. The biggest difference between the AWT components and
Swing components is that the Swing components are implemented with absolutely no
native code. As a result, a GUI developed by Swing may maintain a consistent look and
feel across platforms. Moreover, it lets programmer specify which look and feel a

program’'s GUIT uses. Because it does not use native code, the JFC completely controls

21

drawing all its components. The Swing components therefore are not restricted to the
features supported by the native platform, and as a result, have capabilities far beyond
what the AWT components offer. For example, Swing buttons and labels can display
images; the borders around most Swing components can be easily added or changed; the
behavior or appearance of a Swing component can be easily changed; Swing components
don't have to be rectangular. Although for now we may not need these features in this
application, it is good to leave the possibilities open for future extension. A feature of
JFC that we do need for this project is that, with JFC, we can use the "menu” system in
Java applets. (In contrast, with AWT, we can only use menu in standard Java
application.) By introducing menus, we may develop a simple, straightforward, yet
powerful GUI. Without menus, we would be forced to place many textboxes and buttons
on the front page, which makes the user interface very clumsy.

Based on the above benefits, JFC (Swing) is used to develop GUI for this application.

3.2 User Interface Description

3.2.1 The Main Interface

Figure 3 shows the main user interface of the plotter. As can be seen, it is embedded in a
Web browser. It consists of three parts: a menu bar on the top, a rectangular display
region in the middle, and an information bar at the bottom.

The menu bar allows user to enter expression, set variable range, parameter range, and
constants, retrieve current settings, and take actions such as plotting, clearing, etc. We

will describe it in detail in 3.2.2.

The information bar displays the coordinates of the point if the user clicks in the zraph

display area. This helps user to understand the expressions being drawn, and obtain the

data along a curve or at the intersections of multiple curves.

Figure 3: The main user interface of the plotter
The display area is used to draw the curves based on the expressions specified by user.
When the applet is started, the display area is nearly blank with only bare X and Y axes
on it. When the first curve is drawn, labels and scales are written on the axes, based on
the data ranges of the curve and the name of the independent variable. Multiple curves
(etther for different expressions, or for the same expression but different parameter or
constant values) can be drawn on the same view, each with a different color. User can

clear the display area at any time by selecting a proper menu item.

3.2.2 The Menu

The menu bar contains four menus: Curves, Settings, Option and Help.

3.2.2.1 Curves

Clicking on Curves with the left mouse button displays a pull down menu, as shown in
Figure 4. It provides two menu items: New and Plot. Selecting Plot draws a new curve. If
no valid expression is currently specified or the independent variable is not set, an error
message will be displayed in a separate window. In addition, if any singularities are
detected, a warning message window will be popped up (while the rest of the curve is
still drawn). Clicking Plot also moves the program from the initial state to the plotted
state (see the section 1.3 for the definitions and descriptions of these two states).

Clicking New does the opposite. It clears the display area, and if the program is currently

in the plotted state, it resets it to the initial state.

Figure 4: The Curves Menu

3.2.2.2 Settings
This menu allows user to enter an expression, to define variable, parameter, or constants,
and to specify their values or ranges of values. As shown in Figure 5, It has six menu

items: expression, variable, parameter, constants, undefine, and current.

24

Figure 5: The Settings Menu
Expression: Selecting this menu item brings up the dialog box shown in Figure 6. It
allows user to enter an expression. By clicking the Parse button, the expression will be
sent to the server and parsed there. After the expression has been parsed, a message

window will be displayed to let user know whether the expression is valid, as shown in

Figure 7.

Figure 6: The dialog box for entering expression
(Note: the warning message is a Java security feature [14] that

prevents Applet windows from initiating other applications.)

25

Figure 7: The message window showing the parsing result.
Variable: Selecting the Variable menu item brings up the dialog box shown in Figure 8.
It allows the user to specify the name and range of the independent value. The input is
validated. For example, if the name does not exist in the expression, an error message

will be displayed.

Figure 8: The dialog box for defining variable
Parameter: Selecting the Parameter menu item brings up a "Enter Parameter” dialog
similar to the one shown in Figure 8. The only difference is that it has one more text box
to let user specify the step for the parameter.
Constants: Selecting the Constants menu item brings up a "Add Constant” dialog box

that allows user to add one constant at a time, by specifying its name and value.

26

Undefine: Sometimes user may wish to change the definition of an identifier, for
instance, from "parameter” to "constant”. To do so, user must undefine the identifier first
and then define it again. Selecting the Undefine menu item brings up a dialog box that

allows user to undefine an identifier by specifying its name, as shown in Figure 9.

Figure 9: The Undefine Dialog Box.
Current: Selecting the Current menu item brings up a window showing the current
settings, including the expression, the name of the variable and its range, the name of the

parameter, its range and its step, and the names and values of the constants. (Figure 10)

BN ame: x Start 0.0 End: 10.0

- arameter:
o IName: p Start: 0.0 End: 100.0 Step: 10.0

fConstants:
JName: ¢ Vaiue: 2.0

Figure 10: The window showing the current settings.

27

3.2.2.3. Options

The Options menu has two menu items: Color and Resolution, as shown in Figure 11.

Figure 11: The Options Menu

Color: The menu item has two submenus: Background and Axes, which allow user to
change the background color of the display area and the color of the axes in the display
area respectively. Selecting either of them brings up a "color chooser”, as shown in
Figure 12. Clicking on a color and pressing "OK" will change the corresponding color in
the display area.

Resolution: Selecting this menu item brings up a dialog box that contains a radio button
group to let user specify the plotting resolution, as shown in Figure 13. With higher
resolution, the curve is smoother but the drawing is slower. With lower resolution, the
curve is rougher but it is faster. By defauit, the resolution is set at "Medium”, which
draws a point for every five pixels. For the "High" resolution, a point is drawn for every
pixel. For the "Low" resolution, a point is drawn for every twenty pixels.

3.2.2.4 Help

The Help menu has only one menu item: Summary. Selecting this menu item brings up a
window that summarizes the functions of all the menu items described above. It is

intended to help users to learn this tool quickly.

28

I olor Lhooser

-9 N
E" Select Resolution
3

Figure 13: The select resolution dialog box

29

Chapter 4

Implementation and Deployment

4.1 Defining the Server Interface

The first step of developing a client/server application with RMI is to define the remote

interface. The interface declares the functions that can be invoked remotely by a RMI

client. The following shows the PlotterServerinterface written in the Java language.

import java.rmi.*;

public interface PlotterServerInterface extends Remote

{

public

public

public

public

public

public

boolean checkExpr{String xpr) throws RemoteException;
boolean setParameter(String name, double first,
double last, double step) throws RemoteException;
boolean setVariable(String name, double min, double max)
throws RemoteException;
boolean setConstant (String name, double val)
throws RemoteException;
Results evaluate(double step)
throws RemoteException;

void clear() throws RemoteException;

As can be seen, the remote interface defines the signatures of six functions:

30

chec r: allows the client to specify the expression. The server, in turn, parsers the
expression, and returns a boolean to indicate whether the expression is acceptable by the
parser's grammar.

setParameter: let the client set the parameter for the expression, by specifying its name,
start value, end value, and step. The function retumns a boolean value to indicate whether
the name is valid. (It returns false if the name is not in the current expression.)
setVariable: let the client set the independent variable for the expression, by specifying
its name, start value, and end value. The function returns a boolean value to indicate
whether the name is valid, as an element of the current expression.

setConstant: let the client set a constant for the expression, by specifying its name and its
value. The function returns a boolean value to indicate whether the name is valid.
evaluate: method evaluates the current expression with the current settings of variable,
parameter and constants, and returns the results to the client. The argument "step"
corresponds to the resolution of the evaluation.

clear: method cleans up the current settings on the server side. It makes the server ready
to accept a new expression.

Here several things are worth noticing. First, the remote interface extends the
Jjava.rmi.Remote interface, as is required by RMI. Second, each method declares
Java.rmi.RemoteException in its throws clause. Because remote method invocations can
fail in very different ways from local method invocations, remote methods will report
communication failures by throwing a java.rmi.RemoteException. Third, the evaluate
method retumns a Results object, rather than a simple array of data. The Results

encapsulates the resulting data of the evaluation and several methods to help the client to

31

retrieve the data. The data include the coordinates of all the points, number of curve
segments (since the expression can have a parameter, the result may contain several curve
segments), the total number of points, error messages (including singularity information),
etc. The methods, for example, help client to find the maximum and minimum values in
the X and Y directions. RMI supports passing by value. Therefore, the methods in the
Results can be accessed locally by the client. To allow so, however, the Results class
must implement the Serializable interface. (In Java, the Serializable interface is a marker

interface. Objects implementing the Serializable interface can be written to streams.)

4.2 Client Implementation

PlotterClient is implemented as a Java applet. It manages three GUI components: a menu
bar (mb), a label (label) and a display area (rectangleArea). The label is a JLabel object,
and is used to show the coordinates of a point in the display area when user clicks it. The
menu bar is implemented by a JMenubar object, which contains a set of JMenu objects.
Each JMenu object handles a menu. A /Menu object is further associated with one or
more JMenultem objects. The PlotterClient implements Java's ActionListener interface,
and whenever user selects a2 menu item, it invokes a proper event handler. There are two
major categories of tasks that might be performed by an event handler. One type of task
is to invoke a method of the rectangledrea object, which, in turn, plots curves on the
display area, or communicates with the server. The other type of task is to pop up a
dialog box to let user enter inputs. A dialog box is represented by an instance of a class
that inherits the JDialog class. For example, for variable input, we have the Variablelnput
class, for parameter input, we have the Parameterinput class, and for selecting resolution,

we have the Resolnput class, etc. Each of these classes contains a set of GUI elements,

32

such as text fields (JTextField), buttons (JButton), radio buttons (JRadioButton). These
classes are also responsible for validating user inputs, and furthermore, each of them
stores a reference to the owner PlotterClient object, via which it may send validated user
inputs back to the PlotterClient.

A RectangleArea class inherits the JFC class JPanel. It has two responsibilities:

e [t manages the communication with the server.

e [t defines a display area and draws the graph on it.

To communicate with the server, in its constructor, the RectangleArea obtains a reference
to its remote server from the server host's RMI registry (known as rmiregistry), as

follows:

class RectangleArea extends JPanel {
PlotterServerInterface server;
static final String URL = "rmi://localhost/plotter";
public RectangleArea (PlotterClient controller) ({
this.controller = controller;
ery{
server =

(PlotterServerInterface)Naming. lookup (URL) ;

}

catch (Exception ex) { fatalError(ex); }

33

The static lookup method of the Naming class (imported from the import
Java.rmi.Naming package) takes an URL-formatted name, and returns a reference to an
object that implements the Remote interface. The constructor then casts the returned
value to a PlotterServerinterface.

Once the RectangleArea obejct obtains a reference to the server, it may act as a bridge
between the user interface (PlotterClient) and the server (PlotterServer). It has a number
of functions such as parseExpr, setParameter, setVariable, setConstant, and clear.
Whenever the PlotterClient receives user inputs, it invokes one of these methods, and the
invoked method, in turn, calls the corresponding method declared in the remote interface
PlotterServerinterface. Note that the RectangleArea also stores a reference (called
controller) to the PlotterClient object so that it can return the boolean flag (successful or
not) returned by the server to the PlotterClient. The PlotterClient is then responsible for
displaying this result to the user.

The RectangleArea implements a plotCurve method. Whenever user selects the Plot
menu item, this method is invoked by the PlotterClient. The plotCurve then calls the
server's evaluate method. As mentioned in 4.1, the evaluate method takes a parameter
representing the computing step. Thus, before calling this method, the RectangleArea
needs to compute this argument from the resolution (in pixels) specified by the user and
the scale in the X-direction (how much a pixel represents). The evaluate method returns a
Results object. In order to draw multiple curves in a single view, the RectangleArea
stores an array of Results objects. Whenever a new Results object is returned, it is added
to the array. Then the plotCurve method calls the repaint method, which, in turn,

implicitly invokes the paintComponent method to update the display area.

34

The rectangle also implements a set of auxiliary methods to assist graph plotting, listed as
follows.

drawAxis: this function draws the X and Y axes, and writes axis names. It also draws the
ticks for the axes, and writes the labels for the ticks.

formatText: this function is used to format tick labels. For very small or large numbers,
we use scientific notation. Also, for the sake of clarity, a number might be rounded so
that no more than two significant digits are displayed.

computeScale: this function finds suitable drawing scales from the minimum and
maximum values in the desired range.

Besides, RectangleArea implements a MouseListener that can catch any mouse-clicking
event in the display area. The MouseListener then calls the showCoordinate function to

display the coordinates of the point that is clicked.

4.3 Server Implementation

On the server side, a PlotterServer object is responsible for communicating with client,
implementing the application logic, and connecting to the parser component.

4.3.1 Communicating with the Client

In order for the PlotterServer to communicate with the PlotterClient, it must register itself

in the RMI registry, as shown by the following source code.

public class PlotterServer extends UnicastRemoteObject
implements PlotterServerInterface {
static final String SERVERNAME = "//localhost/plotter";

oo cee

public static void main(String (] args) {

35

System.setSecurityManager (new RMISecurityManager());
Try {
PlotterServer server = new PlotterServer(};
Naming.rebind (SERVERNAME, server);

System.out.println("Server ready."):;

}

catch (Exception ex) {

ex.printStackTrace() ;

As is shown, the main method first creates an instance of the PlotterServer object, then
binds a URL-formatted name of the form "//host/objectname" to the object using Naming
class's static method "rebinding”.

Also shown in the above code, the server needs to create and install a security manager.
For simplicity, here the RMISecurityManager is installed. However, it is also possible to
install a user-defined manager. A security manager needs to be running so that it can
guarantee that the classes that get loaded do not perform operations that they are not
allowed to perform.

Finally, the PlotterServer class extends java.rmi.server.UnicastRemoteObject. This
makes an instance of the server class be exported automatically upon creation. Once it is

exported, the object is ready for accepting incoming remote method calls.

36

4.3.2 Reusing the Parser Component
The reused parser component offers the services of parsing and evaluating expressions
through the following methods of its ParsEval class:

void parse (char *expression, bool & ok): it attempts to parse the given string, and set "ok’

to 'true’ if successful, 'false’ otherwise.

bool set (char *name, double value) : it sets the value of the variable 'name’ to 'value'.

double eval (): it evaluates the expression using current values of variables.

As mentioned, the parser was written in C++. In order to use them from the Java class
PlotterServer, we need to take advantage of the Java Native Interface (JNI) technology.
With JNI, first, we need to define a Java class Parselnterf. This class contains a set of
native methods that can be called by the PlotterServer class, including:

¢ public native int ParseExpr(String jexpr);

¢ public native int SetVariable(String jname, double value);

o public native double EvalExpr() throws [llegalArgumentException;

It also loads the parser library with the System.loadLibrary method. On the C++ side, a
file named ParsinterfImp.cpp is written. Its implements the following methods in C++:
JNIEXPORT jint JNICALL Java_Parsinterf ParseExpr (JNIEnv *env, jobject obj, jstring
Jjexpr): this function calls ParsEval's parse method, and can be called by the ParseExpr

method of the Parselnterf class.

JNIEXPORT jint JNICALL Java_Parsinterf SetVariable (JNIEnv *env, jobject obj,

jstring jname, jdouble value): this function is a bridge between the ser method of the

ParsEval class and the SetVariable method of the Parselnterf class.

37

JNIEXPORT jdouble JNICALL Java_Parsinterf EvalExpr(JNIEnv *env, jobject obj):

this function is a bridge between the eval method of the ParsEval class and the EvalExpr
method of the Parselnterf class.

As indicated from above, in ParsinterfImp.cpp, Java data types are mapped to their
machine-independent native equivalents, for example, Java's int is mapped to jint, String
is mapped to jstring, double is mapped to jdouble.

To connect the Parselnterf class and ParsinterfImp.cpp, we need to have a head file
called Parsinterf-h. This file can be generated by the javah tool of JDK with the
following two steps:

o Compile Parselnterf: javac Parsinterf.java

o Create Parsinterf.h from the Parselnterf class: javah -jni ParsInterf

Finally, the ParsinterfImp.cpp and the parser module (parseeval.cpp) are built together
into a library (called parser). For example, in Windows platform, they can be built into a

DLL with the Visual C++ command line compiler, as follows:

prompt> cl -Ic:\jdkl.2.2\include -Ic:\jdkl.2.2\include\win32 -LD -GX

parseval.cpp ParsInterfImp.cpp -Feparser.dll

4.3.3 Implementing the Application Logic

The PlotterServer class implements the remote interface PlotterServerinterface. In other
words, it provides methods bodies, or definitions, for each of the method signatures
declared in that interface.

The method bodies implement the application logic of the piotter. This can be
demonstrated by the implementations of the evaluate method. As shown in 4.3.2, the

parser treats all identifiers equally as variables. As a result, it is the evaluate method that

8

is responsible for distinguishing the constants, the parameter, and the real independent
variable. It uses the following logic to ensure all the points across the entire ranges of the
variable and the parameter are evaluated correctly. Suppose that there are n constants (the
i constant has name ci, and value vi), and there is one parameter p (starting at ps, ending
at pe, with a step of pr). Also suppose that the independent variable is named as v, which
starts at vs, ends at ve, and with a step of vt. The evaluate method implements the

following loops:

Initialize a new Results object.
for (int i=0; i<n; i++)
Call ParsInterf's SetVariable with (ci, vi);
int j = 0;
While (ps + j * pt < pe)
Call ParsInterf's SetVariable with (p, ps + j * pt};
int k = 0;
While (vs + k * vt < ve)
Call ParsInterf's SetVariable with (v, vs + k * vt);
Call ParsInterf's evalExpr();
Add the value returned by evalBExpr() to the Results;
k++;

J++;
After all the loops are executed, the evaluate method returns the Resuits object. The
evaluate method also handles singularities. When the parser encounters a singularity
point, it raises an Error exception that contains an error message. The exception is caught
by the Java_Parsinterf EvalExpr method defined in the ParsinterfImp.cpp. This method,
in turn, throws a java.lang.lllegalArgumentException that contains the original error

message. Finally, this exception is caught by the evaluate method. The evaluate method

39

then extracts the error message and inserts it into the Results object. It also sets a flag in
the Results object to indicate that singularities occur. When the Results object is returned

to the client, the client displays the error message to user.

4.4 Deployment

How to deploy an application is an important issue in the distributed environment. This
section details the steps to deploy the plotter project. It is assumed that the task is
performed on Windows/NT platform and the web server involved is Microsoft's IIS or
PWS (Personal Web Server). However, for other platforms, or web servers, the steps are
similar.

4.4.1 Prepare HTML file

To allow user load the PlotterClient applet in a Web browser, the applet must be

embedded in an HTML file (Plotter.html) as follows.

<APPLET CODE = "PlotterClient.class" CODEBASE = "myClasses/"

WIDTH = 400 HEIGHT = 400 ></APPLET>

The CODE specifies the name of the applet. The CODEBASE specifies the directory
below the directory from which the web page was itself loaded. All the Java class files to
be loaded should reside in this directory. WIDTH and HEIGHT specify the size of the
applet in the browser, in pixels.

[n order to use Swing applet (and in fact, many other features and capabilities of JDK,
such as RMI, NI, JaveBeans), Java Plug-in must be installed on the browser. The Java
Plug-in is a software product from Sun Microsystems Inc. It enables web page authors to

direct Java applets on their web pages to run using Sun's Java Runtime Environment

40

(JRE), instead of the browser’s default Java runtime. The Java Plug-in can be downloaded
for free [15].

To use Java Plug-in to run applets on web pages, applet tags on the HTML pages must be
converted to the format required by Java Plug-in. This can be done either manually or
automatically by the HTML Convertor tool. The tool is also made available as a free
download by Sun Microsystems Inc.[15] .

The converted Plotter.html is listed in the APPENDIX of this report. This file needs to
reside in the web server's public HTML directory (for IIS, or PWS, this directory, by
default, is inetpublwwwroot.).

4.4.2 Prepare Security Policy File

To enforce RMI security, a policy file needs to be provided. The following shows a

simple policy file that gives global permission to anyone from anywhere:
grant {

permission java.security.AllPermission;

i
This policy file can be placed anywhere on the server computer. However, its location
must be specified when the PlotterServer is started, as will be described in Section 4.4.5.
4.4.3 Generate Stubs and Skeletons
We use the JDK's rmic compiler to generate RMI stub and skeleton from the remote
interface.
First, we need to compile the remote interface:

javac PlotterServerInterface.java
This creates the class file PlotterServerinterface.class. Next, rmic compiler is applied:

rmic PlotterServerInterface

41

This creates the stub named PlotterServer stub.class, and the skeleton called
PlotterServer_skel.class. These two classes, as well as the PlotterServerinterface.class
need to be copied to the codebase directory specified in the HTML (namely, myClasses).
4.4.4 Compile and Deploy Java Files
We may place all the Java source files we wrote, the policy file, and the Parser DLL file
in a separate directory, say, c:\plotter. Next, we compiler the Java files:

javac *.java
The generated class files then need to be copied to the codebase directory.
4.4.5 Register and Start Server
Finally, we need to register and start the PlotterServer server. To start the RMI registry,
execute:

start rmiregistry
The following command starts the server:

start java -Djava.rmi.server.codebase=http://hostname/myClasses/

-Djava.security.policy=c:\plotter\policy PlotterServer

In the above command, we need to specify the java.rmi.server.codebase and
Jjava.security.policy properties with the codebase directory and the location of the policy
file respectively.

Once the registry and server are running, we can run the applet by loading it into a Web

browser using the URL of http://hostname/Plotter.html.

42

Chapter §

Conclusion

In this report, I have outlined the design and implementation of a tool for plotting
mathematical functions.

The tool is based on the client/server distributed computing model. This means that
users can share the computing resources and don't need to install the copies on their own
computers. It also means that if the tool is upgraded, users will automatically receive the
services from the latest version. As a result, it is very convenient for users, especially for
those users who use the software only occasionally.

The tool is simple and very easy to learn. A concise and straightforward graphical user
interface is provided to users. Users load and run the tool in a Web browser, an
environment that is familiar to them.

The tool is reliable. It is fully tested with a variety of mathematical functions and wide
ranges of variables, parameters and constants. It also handles singularities properly.

The tool is portable. All the technologies applied in this project support various
platforms. Although the project was developed and tested in Windows/NT, very little
efforts is needed to port it to many other platforms.

The tool is extensible. The tool was designed and developed based on component
technology and object-oriented programming. The various components (and, within each

component, the various classes) are loosely coupled, and can be upgraded independently.

43

The tool is cost-effective. All the technologies applied in this project are open and free.
There is no need to purchase any special software tools. These technologies are well
documented and widely used. In this way, the development cost is reduced to a
The report has also demonstrated how to reuse a legacy system written in a different
programming language. The reuse of the parser component has further reduced the
development and testing cost. It has also allowed us to adopt different programming
languages for different specialized purposes. For this tool, we have used Java for Internet
programming and C++ for parsing expressions. In this way, we can benefit from their
distinct features.

Although it is a relatively simple application, this tool integrates many cutting edge
technologies, such as RMI, JNI, JFC(Swing), and Java Plug-in. It shows that these
technologies can work together smoothly. It is a very useful prototype system either for a
more sophisticated client/server plotting software or for a similar system embedding
these technologies.

From this work, [have gained valuable experience of analyzing, designing, coding,
deploying and testing a distributed application. [have learned many exciting new
technologies. It was also an excellent opportunity for me to practicing and upgrading my
Java programming skills.

As for future work, this plotting tool can be extended in many ways. New functionalities
can be added, for example, printing capacity, scaling and rotation capacities, font support,
3-D support, etc. Security and user authentication features can also be included. The tool

can also be improved to handle large amounts of concurrent requests efficiently. It would

be equally interesting to develop this application with other competing technologies
(DCOM, CORBA, etc.) and compare their performance. Nevertheless, the enhancements
should not sacrifice the unique feature of this tool, that is, it is remarkably simple, cheap,

easy to learn, and easy to use.

45

Bibliography

[1] http://www.wolfram.com. The homepage of Mathematica software.

[2] http://www.mathworks.com. The homepage of MatLab software.

(3] http://www.maplesoft.com. The homepage of Maple software.

[4] Anh Phong Tran, 2-D Graph Plotter: A Tool for Plotting Functions, Master's Major
Report, Concordia University, 2000.

[5] William A. Barrett, Rodney M. Bates, David A. Gustafson, John D. Couch, Compiler
Construction: Theory and Practice, Science Research Associate Inc., 1979.

[6] Guy Eddon and Henry Eddon, /nside Distributed COM, Microsoft Press, 1998.

[7] Gerald Brose, Andreas Vogel, and Keith Duddy, Java Programming with CORBA,
third Edition, OMG Press, 2000.

[8] http://www.omg.org. Object Management Group's home page.

[9] http://java.sun.com/products/jdk/rmi. Java RMI's home page.

[10] P. Emerald Chung, Yennun Huang, Shalini Yajnik, Deron Liang, Joanne C. Shih,
Chung-Yih Wang, and Yi-Min Wang, DCOM and CORBA Side by Side, Step by Step,

and Layer by Layer, http://www.cs.wustl.edu/~schmidt/submit/Paper.html

[11] Gopalan Suresh Raj, 4 Detailed Comparison of CORBA, DCOM and Java/RMI,
http://www.execpc.com/~gopalan/misc/compare.html

[12] http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.htmi. JNI's home page

from Sun Microsystem Inc.

[13] http://www.javasoft.com/docs/books/tutorial/uiswing, JFC/Swing tutorial from Sun

Microsystem Inc.

46

[14] http://java.sun.com/sfag, Java Security FAQ from Sun Microsystems Inc.

[15] http://www.javasoft.com/products/plugin. Java Plug-in's page from Sun Micro-

systems Inc.

47

APPENDIX

Selected Pieces of Code

A.1 The Java code for JNI
The following shows the code in the Parserinterfjava (see section 4.3.2 for

description). It defines the native methods that can be called by the PlotterServer
class.

class ParsInterf {
public native int ParseExpr(String jexpr);
public native int SetVariable(String jname, double value);
public native double EvalExpr()
throws IllegalArgumentException;
public native void ClearExpr();
static {
System.loadLibrary("parser") ;
}
public int parseExpr(String expr) {
return ParseExpr (expr);
}
public int setVariable(String nm, double val) {
return SetVariable(nm, val);
}
public double evalExpr() {

return EvalExpr();

48

public void clearBxpr() {

ClearExpr() ;

A.2 C++ code for JNI

This section lists the code in the ParsinterfImp.cpp (see section 4.3.2 for description).

[t connects the Java native methods shown in A.1 to the reused parser module.

#include <jni.h>
#include "ParsInterf.h"
#include "parseval.h”
#include <stdio.h>
#include <iostream.h>
#include "string.h"
static Parseval* p = NULL; // a pointer to the parser object
// ifvalid is a flag to indicate if the current expr is valid
bool ifvalid = false;
// The method call parser's parse method to parse an expression
JNIEXPORT jint JNICALL
Java_ParsInterf ParseExpr (JNIEnv *env, jobject obj, jstring jexpr)
if (p == NULL)
p = new Parseval();
const char* expr;
expr = (env)->GetStringUTFChars(jexpr, NULL);
if (expr == NULL)
return 0;
char ex{100];

strcpy (ex, expr) ;

// Try to parse the expression.
p->parse(ex, ifvalid);
env->ReleaseStringUTFChars (jexpr, expr);
return ifvalid?1:0;
}
// This method call parser's set method to define a name
JNIEXPORT jint JNICALL
Java_ParsInterf_SetVariable (JNIEnv *env, jobject obj, jstring jname,
jdouble value) {
if (ifvalid) {
const char* name;
name = (env)->GetStringUTFChars (jname, NULL);
char nm[100];
strcpy (nm, name) ;
// Set variable 'am' to 'value'.
if (p->set(nm, value)) ({
env->ReleaseStringUTFChars (jname, name);
return 1; // successful
} else {
env->ReleaseStringUTFChars (jname, name) ;
return 0; // the variable name is not found
}
} else {

return -1; // no expr is defined.

}

// This method call parser's eval method to evaluate an expression
JNIEXPORT jdouble JNICALL

Java_ParsInterf_ EvalExpr (JNIEnv *env, jobject obj) {

50

if (ifvalid) {
double val;
// Evaluate the current expression.
try {
val = p->eval();

return val;

catch (Error *perr) |
char msg[200];
char* str = perr->getMsg();
strncpy(msg, str, 199);
delete str;
jeclass cls = env->FindClass
(*java/lang/IllegalArgumentException”);
if (cls != NULL)

env->ThrowNew(cls, msg);

/* free the local ref */

env-sDeleteLocalRef (cls) ;

} else {

return 0.0;

}

// This method deletes the current parser

JNIEXPORT void JNICALL

Java_ParsInterf ClearExpr (JNIEnv *env, jobject obj) {
if (p) {

delete p;

51

ifvalid = false;

A.3 Converted HTML File
The following shows the HTML file converted by the Sun's HTML Converter. It is

compatible with Java 1.2. (see section 4.4.1 for description.)

<!--"CONVERTED_APPLET"-->

<!-- CONVERTER VERSION 1.0 -->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 400 HEIGHT = 400
codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-
win32.cab#Version=1,2,0,0">

<PARAM NAME

CODE VALUE = "PlotterClient.class" >

<PARAM NAME

CODEBASE VALUE = "myClasses/" >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
<COMMENT>

<EMBED type="application/x-java-applet;version=1.2" java_CODE =
"PlotterClient.class" java_CODEBASE = "myClasses/"

WIDTH = 400 HEIGHT = 400
pluginspage="http://java.sun.com/products/plugin/1.2/plugin-
install.html"><NOEMBED></COMMENT>

</NOEMBED></EMBED>

</OBJECT>

<l--

<APPLET CODE = "PlotterClient.class" CODEBASE = "myClasses/"

52

WIDTH = 400 HEIGHT = 400 >

</APPLET>

<!--"END_CONVERTED_APPLET"-->

53

