INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

IMPLEMENTING QUERY PROCESSING USING VIEWS
IN SEMISTRUCTURED DATABASES

Ze Hut Liu

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
ConNcoRDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2001
© Ze Hut L, 2001

l*' National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services biblicgraphiques
395 Wi Str 385, rue Weilli
oo
Canada Canada
Your Sl Votre réidrence
Our Re Notre réMrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the ~ droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64086-8

Canadi

Abstract

Implementing Query Processing Using Views in Semistructured

Databases

Ze Hui Liu

Since XML’s introduction. this new eXtensible Markup Language. has quickly
emerged as the universal format for publishing and exchanging data in the World
Wide Web. As a result, data sources, including object-relational databases, are now
faced with a new class of users: clients and customers who would like to deal directly
with XML data rather than being forced to deal with the data source particular
schema and query languages. XML is also rapidly becoming popular for representing
web data as it brings a finely granulated structure to the web information and exposes
the semantics of the web content. In all these web applications including electronic
commerce and intelligent agents, view mechanisms are recognized as critical and
are being widely employed to represent users’ specific interests. Rewriting the user
queries using views is a powerful technique in the above described applications, which
can be categorized as data integration, data warehousing and query optimization.
The current implementation experiments the feasibility of using rewritings for query
processing in semistructred data. Experiments showed that computing rewriting is
very time efficent even for many views as for example 500 views. The implematation

is using automata.

To my family

iv

Acknowledgments

[would like to take this chance to thank my supervisor Dr. Gé6sta Grahne for his help
and kindness. His expertise of the field has give me a great chance to learn. And also
[would like to thank Alex Thomo for his help and patience. And also I would like to

take this chance to thank Dr. shiri Nematollaah for his suggestions and comments.

Contents

List of Figures viii
1 Introduction 1
I Preamble 1
1.2 Semistructured Databases and Regular Path Queries 5
1.3 Outlineof thereport T
2 Rewriting of Regular Path Queries 8
21 Introduction 8
2.2 L-Rewriting of Regular Path Queries. 9
2.3 Complexity of Computing the L-Rewriting 11
3 Query Processing in Information Integration Systems 13
3.1 Imtroduction 13
32 Warm-Up 16
3.3 Formal Background 17

34 P-Rewriting

3.5 Computing the P-Rewriting

3.6 Design for Implementation of the P-Rewriting

3.7 Source code for Implementation of the P-Rewriting

3.8 Experiment for Implementation of the P-Rewriting

4 Conclusion and Future work

Bibliography

vii

20

22

28

29

44

55

59

List of Figures

~N

i |

10

I1

13

i4

XMLasagraph. 4
An example of a graph database 6
The DFA for the query and the corresponding “view” automaton. . . 10
The resulting l-rewriting given by DFA B. 10
An exampleofaviewgraph, .. 13
Viewgraph S 16
The smallest possible databases 17
A query and a source collection. 18
Visualisation of the proof for Theorem 7. 21
A finite transducer T L. ..., 22
Decomposing a “macro” transducer I. 23
Decomposing a “macro” transducer II. 23
Query automaton and macro transducer. 25
Transducers for the substitution and inverse substitution. 25

16

17

18

Automaton of the p-rewriting. 25
Source collection for Example 4 27
architecture diagram 30

Performance Analysis Chart

ix

Chapter 1

Introduction

1.1 Preamble

The electronic data which until a few years ago was limited to a few scientific and tech-
nical areas is now becoming universal. Most People see such data as web document.
but these documents. rather than being manually composed, are now increasingly
generated automatically from databases. It is possible to publish enormous volumes
of data in this way, and we are now starting to see the development of software that
extracts structured data from Web pages that were generated to be readable by hu-
mans. The emergence of XML (Extended Markup Language) as a standard for data
representation on the Web is expected greatly to facilitate the publication of electronic

data by providing a simple syntax for data that is both human and machine-readable.

Since its introduction, XML, the eXtended Markup Language, has quickly emerged
as the universal format for publishing and exchanging data in the World Wide Web.
As a result, data sources, including object-relational databases. are now faced with a
new class of users: clients and customers who would like to deal directly with XML
data rather than being forced to deal with the data source particular schema and
query languages. XML is also rapidly becoming popular for representing web data
as it brings a finely granulated structure to the web information and exposes the

semantics of the web content.

XML versus HTML. Consider the following example of a common situation
in the data exchange of Web. An organization publishes data about books, articles
and softwares. The source for this data is a relational database, and the Web pages
are generated on demand by invoking an SQL query and formatting its output into
HTML. A second organisation wants to obtain some product analyses of this data
but has only access to the HTML page(s).One first solution to this problem is to
write software to parse the HTML and convert it into a structure suitable for the
analysis software. This solution has a serious defect: It is brittle, since a minor (text)

formatting change in the source could break the parsing program.

In XML, the schema information is stored with the data. Structured values are

called elements, attributes and tags. For instance

<person><name>Ullman</name><address>Stanford</address></person>

is a well-formed statement in XML. Thus. XML data is self-describing and can nat-
urally model irregularities that cannot be modeled by relational or object-oriented
data. For example, data items may have missing elements or multiple occurrences
of the same element: Also elements may have atomic values in some data items and"
structured values in others. and collections of elements can have heterogeneous struc-

ture.

XML as a graph. We can consider an XML database to be an edge labelled
graph. In this graph the nodes represent the objects in the database and the edges
represent the attributes of the objects, or relationships between the objects.

For an example suppose we are given the following XML file.

(3]

<BOOK bookId="ds">
<TITLE>Distributed Systems</TITLE>
<AUTHOR authorId="smith">
<NAME>Dan Smith</NAME>
<EMAIL>ds@cs.zmegill.ca</EMAIL>
</AUTHOR>
<AUTHOR authorld="bouret">
<NAME>Emil Bouret</NAME>
<EMAIL>bouret@alpha.net</EMAIL>
</AUTHOR>
</800K>

<ARTICLE articleId="xml">
<JOURNAL>DACM J. 2000-12</JOURNAL>
<TITLE>XML Programming</TITLE>
<AUTHOR authorld="smith"/>
<REF refId="ds"/>

</ARTICLE>

<ARTICLE articleld="vb">
<JOURNAL>PCWorld 2000-12</JOURNAL>
<TITLE>VBScript Iategration</TITLE>
<AUTHOR authorld="Bouret®/>
<REF refId="xml"/>

</ARTICLE>

<SOFTWARE>
<COMPARY>Microsoft</COMPANY>
<PRODUCT>Ms0ffice</PRODUCT>
<SOFTWARE>

<PRODUCTOMS Access 97</PRODUCT>

</SOFTWARE>
<SOFTWARE>

<PRODUCTOMS PowerPoint 97</PRODUCT>

</SOFTWARE>

<SQFIWARE>
<PRODUCT>Word</PRODUCT>
<SOFTWARE>

<SOFTWARE>
<COMPANY>Borland</COMPANY>
<PRODUCT>Boriand C++</PRODUCT>
<CATEGORY>Programming</CATEGORY>
</SOFTWARE>

<PRODUCT>MS Equations</PRODUCT>
<CATEGORY>Mathematics</CATEGORY>

</SOFIWARE>
</SQFTWARE>
</SUFTWARE>

<SOFTWARE>
<COMPANY>Microsoft</COMPANY>
<PRODUCT>MsPaint</PRODUCT>
<CATEGURY> Inages</CATEGORY>
</SOFTWARE>

Emil Bouret bourct@cs.mgill.ca

Equations mathematics

Figure 1: XML as a graph.

Intuitively, this XML database can be represented as the graph of Figure 1. Consid-
ering the graph abstraction of XML, instead of XML text. makes it more convenient
to study the theoretical database relevant properties and to establish powerful query

languages.

1.2 Semistructured Databases and Regular Path

Queries

As mentioned before, we abstract the XML data by a data-graph which is the visual
representation of the so called semistructured data model. Semistructured data is
a self-describing collection, whose structure can naturally model irregularities that
cannot be captured by standard relational or object-oriented data models [ABS99].
Semi-structured data is usually best formalized in terms of labelled graphs, where
the graphs represent data found in many useful applications such as web information
systems, XML data repositories, digital libraries, communication networks, and so

on.

Formally. let A be a finite set, called the database alphabet. Elements of A will be
denoted R,S.T.R',S'..... R,.S...... etc.

Now. assume that we have a universe of objects D. We will denote the objects by
a.b.c,d’. b, a;,by,.... and so on. A graph database DB over (D, A) is a pair
(N, E), where N C Dis aset of nodes and E C ¥ x A x NV is a set of directed edges
labelled with symbols from A. Figure 2 illustrates an example of a graph database.

In order to traverse arbitrarily long paths in graph databases, almost all the query
languages for semistructured data provide a facility to the user to query through
regular path queries, which are queries represented by regular expressions. The design
of regular path queries is based on the observation that many of the recursive queries
that arise in practice amount to graph traversals. These queries are in essence graph
patterns and the answers to the query are subgraphs of the database that match the
given pattern [MW95, FLS98, CGLV99, CGLV2000]. For example, the regular path
query (_* - article) - (=* - ref - * - (ullman + widom)) specifies all the paths having at
some point an edge labelled article, followed by any number of other edges then by
an edge labelled ref and finally by an edge labelled with ullmen or widom.

Formally, we consider a (user) query @ to be a finite or infinite regular language over

A. We denote by re(Q) a regular expression describing the regular language Q.

Q=
d R

Figure 2: An example of a graph database

If there is a path labelled R;, Rs. ..., Ri from a node a to a node b we write

Ri.R2..R
a 237 p,

Let DB = (.V. F) be a database and Q be a query. Then the answer to Q on DB is
defined as

ans(Q.DB) = {(a.b): {a.b} C N and a <5 b for some W € Q}.

Example 1 For instance, if DB is the graph in Figure 2. and Q = {SR.T}. then
ans(Q. DB) = {(b.d).(d, b).(c,a)}.

Query rewriting using views is a well known problem in semistructured data, data
integration, data warehousing and query optimization. [LMSS95, Ul97, CGLV99,
Lev99]. Simply stated, the problem is: Given a query @ and a set of views {V,...,V;},
find a representation of @ by means of the views and then answer the query on the

basis of this representation.

Query rewriting in relational databases is by now rather well investigated. Several
papers investigate this problem for the case of conjunctive queries [LMSS95, Ul97,
CSS99. PV99]. These methods are based on query containment and the fact that the
number of subgoals in the minimal rewriting is bounded from above by the number

of subgoals in the query.

However, in the framework of semistructured data the problem of rewriting queries

using views has received much less attention until recently. In this report we identify

6

some difficulties with currently known methods for using rewritings in semistructured

databases and deal with the problem in one realistic scenario.

This senario is related to information integration systems such as the Information
Manifold, in which the data sources are modelled as sound views over a global schema.
We give in this setting a new rewriting, which we call the possibility rewriting, that
can be used in pruning the search space when answering queries using views. The
possibility rewriting can be computed in time polynomial in the size of the original
query and the view definitions. Finally, we show by means of a realistic example that

our method can reduce the search space by an order of magnitude.

1.3 Outline of the report

This report will include the theoretical part . a design and implementation of some
algorithm as well as the experiment results. The report includes concluding remarks

and some future directions.

In theoretical part, it introduce the basic concept of XML as graph database,

rewriting the Regular path Queries. P-Rewriting for information intergration systems.

In the experiment part.the design and the source code of the implementation are
included. How the experiments were conducted and the performance analysis are also
supplied.

We also give the conclusion and some suggestions for the future work at the end
of the report.

)

Chapter 2

Rewriting of Regular Path Queries

2.1 Introduction

[t is obvious that a method for rewriting of regular path queries requires a technique
for the rewriting of regular expressions, i.e. given a regular expression E and a set of
regular expressions £}, Es, ..., E, one wants to compute a function f(E.E,,.... E,)

which approximates E.

Example 2 [GT2000] Let E = (R+ S)* and E, = RS. E; = SR, E3 = R. Then
the best approzimation of E using E|, E, and Ej is

E'=(E +Ey+Ey)".

As far as the author knows, there are two methods for computing such a function f
which best approximates E from below. The first one of Conway [ConT71] is based
on the derivatives of regular expressions introduced by Brzozowski [Brzo64], which
provide the ground for the development of an algebraic theory of factorization in the
regular algebra [BL80] which in turn gives the methods for computing the approx-
imating function. The second method by Calvanese et. al. [CGLV99] is based on
automata theory. Both methods compute the same rewriting, which is the largest
subset of the query, that can be represented by the views.

8

In the next section we formalize the problem of query rewriting using views and
shortly present the query rewriting proposed by Calvanese et. al. [CGLV99], which
is called l-rewriting (lower-rewriting) in the sequel. The complexity of computing the
l-rewriting is double exponential in the worst case and is discussed at the end of the

section.

2.2 L-Rewriting of Regular Path Queries.

Let V = {V1,....V,} be a set of view definitions, with each V] being a finite or infinite
regular language over A. Associated with each view definition V; is a view name v;.
We call the set Q = {vy,...,vn} the outer alphabet, or view alphabet. For each v; € Q,
we set def(v;) = Vi. The substitution def associates with each view name v; in the
alphabet Q the language V;. The substitution def is applied to words. languages. and

regular expressions in the usual way (see e. g. [HUT9]).

A lower-rewriting (l-rewriting) of a user querv @ using V is a language Q' over Q.
such that

def(Q) € Q.

If for any I-rewriting @" of @ using V., it holds that def(Q") C def(Q') we say
that Q' is mazimal. If def (Q') = Q we say that the rewriting Q' is eract.

Calvanese et. al. [CGLV99] have given a method for constructing an l-rewriting Q'
from @ and V. Their method is guarantced to always find the maximal l-rewriting, and
it turns out that the maximal l-rewriting is always regular. An exact rewriting might
not exist, while a maximal rewriting always exists, although there is no guarantee on
the lower bound. For an extreme example. if V = @, then the maximal rewriting of
any query is 0.

Their algorithm is as follows:

1. Construct a DFA Ag(A, S, sq, p, F) such that Q = L(Ag).

2. Construct an automaton B = (Q, S, sg, ¢/, S — F), where s; € (s, v) iff 3W €
V' such that s; € p*(s;, W).

3. The maximal l-rewriting is the Q language accepted by complementing the B

automaton.

Step 2. says: Consider each pair of states. If they are connected in Ag by a walk

labeled with a word in V;, put an edge v; between them in B.

DFA 4g NFA B

Figure 3: The DFA for the query and the corresponding “view” automaton.

Example 3 Let Q = (RS)" be the regular path query and Vi = R+ S%, 15 = S,
Vi = SR, Vi = (RS)? the regular path views. Then the minimal' DFA Ag for the
query Q is given in Figure 3, left and the corresponding B automaton with view
symbols is given in in Figure 4, right. The resulting complement automaton B is
given in Figure §. Note that the “garbage” and unreachable states have been removed

for clearness.

B

Figure 4: The resulting l-rewriting given by DFA B.

1The constructed DFA for the query does not need to be minimal.

10

Observe that, if B accepts an Q-word v; - - - v, then there exist n A-words W1, ...,
W, such that W; € V; fori = 1,..., n and such that the A-word W, ... W, is rejected
by Ag. On the other hand if there exists a A-word W7 ... W, that is rejected by Ag
such that W; € Vi fori =1,...,n, then the Q-word v; - - - v, is accepted by B. That is
B accepts an Q-word v, - - - v, if and only if there is a A-word in def ({v,---v,}) that
is rejected by Ag. Hence, B being the complement of B accepts an Q-word if and
only if all A-words W = W, ... W, such that WV, € V; for i = 1.... n, are accepted
by Aq.

2.3 Complexity of Computing the L-Rewriting

Unfortunately, the complexity of computing the l-rewriting of a regular path query Q
given aset V= {1},..., Va} of view definitions is very high as the following results

in [CGLV99] show.

Theorem 1 The problem of generating the Q-mazimal rewriting of a regular path
query with respect to a set V = {V1,...,V,} of regular path view definitions is in
EXPTIME.

In order to use the l-rewriting Q' of a query Q alone for query answering, the
rewriting should be algebraically exact (see [CGLV99)), i.e. def(Q’) = Q. So before
talking how the rewritings can be utilized for answering the query (Chapter 3), let

us shortly show an optimal algorithm for exactness testing, which is presented in
[CGLV99].

Their algorithm for testing if an Q rewriting of query Q is exact is as follows.
L. Construct an automaton B = (A, Sp.sge,ps. Fg) that accepts def(Q’), by
replacing each edge labeled by v, in the automaton for @, say 4¢, by an

automaton ; such that L(4;) = def(v;) for ¢ = 1,....n. Each edge labeled
by v; is replaced by a fresh copy of 4;. We assume without loss of generality,

11

that A; has unique start state and accepting state, which are identified with
the source and target of the edge respectively. Observe that, since Q' is an
l-rewriting of Q, L(B) C Q@ = L(4g).

2. Check whether L{Aq) C L(B), that is. check whether L(4gNB) = 0.

Theorem 2 The l-rewriting Q' is an eract rewriting of the query Q with respect to
a set V of regular view definitions, if and only if L(4g N B) = 0.

Corollary 1 An ezact rewriting of Q with respect to V ezists if and only if L(4g N
B)=0.

Theorem 3 The problem of verifying the ezistence of an eract rewriting of a regular

path query Q with respect to a set V of reqular view definitions. is in 2EXPSPACE.

Observe that, if we construct L(4g N B) = 0.. we get a cost of SEXPTIME, since
B is of triply exponential size with respect to the size of the input. However, we
can construct B “on the fly”: whenever the non-emptiness algorithm wants to move
from a state s; of the intersection of g and B to a state sy, the algorithm guesses
s, and checks that it is directly connected to s;. Once this has been verified. the
algorithm can discard s;. Thus. at each step the algorithm needs to keep in memory
at most two states and there is no need to generate all of B at any single step of the

algorithm.

In [CGLV99] it is shown that the complexity bounds established in the previous

theorems are essentially optimal.

Theorem 4 The problem of checking whether there is a non-empty rewriting of a
regular path query Q with respect to a set V of regular view definitions, is EXPSPACE-

complete.

Note that Theorem 4 implies that the upper bound established in Theorem 1 is
essentially optimal. If we can generate maximal rewritings in, say, EXPTIME, then
we could test emptiness in PSPACE, which is impossible by Theorem 4.

12

Chapter 3

Query Processing in Information

Integration Systems

3.1 Introduction

Much of the work on answering queries using views has been spurred because of its
application to data integration systems. A data integration system provides a uniform
query interface to a multitude of autonomous hetereogeneuos data sources. Prime
examples of data integration systems include enterprise integration, querying multiple
sources in the World Wide Web, and integration of data from distributed scientific
experiments. The sources in such an application may be traditional databases, legacy
systems, or even structured files. The goal of data integration is to free the user from
having to find the data sources relevant to the query, interact with each source in

isolation. and manually combine data from the different sources.

To provide a uniform interface, a data integration system exposes to the user a
mediated schema. A mediated schema is set of virtual relations, in the sense that they
are not stored anywhere. The mediated schema is designed manually for a particular
data integration application. To be able to answer the queries the system must also

contain a set of source descriptions that specify the contents of the data sources.

13

One of the various approaches that has been adopted in several systems, is to
describe the contents of a source as a view over the mediated schema. In order to
answer a query, a data integration system needs to translate a query formulated on
the mediated schema into one that refers directly to the schemas in data sources.
Since the contents of the data sources are described as views, the translation problem

amounts to finding a way to answer a query using a set of views.

We illustrate the problem with the following example. where the mediated schema
exposed to the user is our bookstore database graph of Figure 1 with the binary
relations specified by the edge labels in the graph.

Suppose. we have the following three data sources. The first provides us a listing
of each pair (r. y) of objects such that r is an article that refers to the article or book

y. This source can be described by the following view definition.
ArticleRefArticle: ref.

The second source is supposed to contain all the pairs (z. y) of objects such that r is
a book and y is either a book. article or software referred to. directly or indirectly. in

the book. This source can be described by the following view definition.
BookRefs: ref* + ref*.software.

And the third source contains all the pairs (z.y) of objects such that y is a sub-

software of r. This source can be described by the following view definition.

SoftwareAndSubs: software*

[f we were to ask now, “which objects are somehow related to some other objects”,
and we have only the contents of the above data sources available, then we would be

able to answer this querv using the following regular expression.

Q: ArticleRef Article” + BookRe fs.Software AndSubs + Software AndSubs.

It is important here to note that this formulation of the query is to be answered
against the so called “view graph” which consists of nodes representing the objects

14

Bookref:

ArticleRefArticle

SoftAndSubs

Figure 5: An example of a view graph

found in the data sources and edges labeled with view names. An edge labeled for
example with BookRef between the objects z and y shows that the pair (z,y) is in
the data source described by the second view definition. An example of a view graph

is given in Figure 3.

In the previous chapter we showed what is a lower or contained rewriting of a
regular path query with respect to a set of regular view definitions, and how to
compute a maximal l-rewriting. Posed in the framework of [GM99]. we show that
the answer to the query that we get if we use the (maximal) l-rewriting only, is a
(sometimes strict) subset of the certain rewriting. If we want to be able to produce
the complete certain answer. the only alternative left is then to apply an extremely
intractable decision procedure of Calvanese et. al. [CGLV?2000] for all pairs of objects
(nodes) found in the views. One of the contributions of this thesis is an algorithm for
computing a regular rewriting that will produce a superset of the certain answer. The
use of this rewriting in query optimization is that it restricts the space of possible
pairs needed to be fed to the decision procedure of Calvanese et. al. We show by
means of a realistic example that our algorithm can reduce the number of candidate

pairs by an order of magnitude.

The outline of the chapter is as follows. In Section 3.3 we formalize the problem of
query rewriting using views in a commonly occurring setting, proposed in information
integration systems. in which the data sources are modeled as sound views over a
global schema. We give some results about the applicability of previous work in this
setting, and discuss further possibilities of optimization. At the end of Section 3.3 we

15

give an algorithm for utilizing simultaneously the “subset” and a “superset” rewriting
in query answering using views. In Section 3.4 we present our main results. First we
give an algebraic characterization of a rewriting that we call the possibility rewriting
and then we prove that the answer computed using this rewriting is a superset of the
certain answer of the query, even when algebraically the rewriting does not contain
the query. Section 3.5 is devoted to the computation of the possibility rewriting. It
amounts to finding the transduction of a regular language and we give the appropriate

automata-theoretic constructions for these computations.

3.2 Warm-Up

Let the user query be Q@ = R3R; + R3Rs + R\ Ry + RyRs and suppose that we have
the following data sources available.

1. = R ext(V1) = {(a.b)}
Va2 = Ry+ Ry with ext(Va) = {(a.b)}
Vi = R,+R; ext(V3) = {(b,¢)}

These data sources can be graphically represented as the view-graph! S in Figure

6. It is easy to see that, the only contained rewriting of Q using the views is Q' = 0,

‘9

v3 -
Figure 6: View graph S

and therefore ans(@’,S) = 0.

'We will use interchangebly the terms “view graph” and “source collection” throughout this
thesis.

16

o

/V.C b\)c b\,r.c b,r.c
R4

Rs R, R;
Figure 7: The smallest possible databases
However, what about the rewriting

Q" ViV + 1515, with
ans(@".8) = {(a,0)}.

If we examine all the possible databases we can see that the pair (a,c) always
belongs to the answer of the query (see Figure 7). We say that the pair (a.c) is a

certain answer to the query, and observe that it is contained in ans(Q”. S).

3.3 Formal Background

Views and answering queries using views. Let Q@ = {v,....uv,} be the view
alphabet and let V = {V],....V,} be a set of view definitions as before. Then a

source collection S over (V,(2) is a database over (D,(). A source collection S
defines a set poss(S) of databases over (D, A) as follows (cf. [GM99)]):

poss(S) = {DB : SC |J {(a.v,b): (a,b) € ans(V;, DB)}}.
ie{l,...n}

Suppose now the user gives a query Q in the database alphabet A. but we only
have a source collection § available. This situation is the basic scenario in information
integration (see e.g. [U1197, LMSS95, GM99]). The best we can do is to approximate
Q by

(| ans(Q,DB).

D B¢ poss(S)

17

Il

Figure 8: A query and a source collection.

This approximation is called the certain answer for Q using S. Calvanese et. al.
[CGLV2000], in a follow-up paper to [CGLV99] describe an algorithm Aq s(a.b) that
returns “ves” or “no” depending on whether given pair (a.b) is in the certain answer
for Q or not. This problem is coNP-complete in the number of objects in S (data
complexity), and if we are to compute the certain answer, we need to run the algorithm
for every pair of objects in the source collection. A brute force implementation of the
algorithm runs in time exponential in the number of objects in S. From a practical

point of view it is thus important to invoke algorithm Ag s for as few pairs as possible.

Restricting the number of input pairs is not considered by Calvanese et. al. In-
stead they briefly discuss the possibility of using rewritings of regular queries in
answering queries using views. Since rewritings have proved to be highly successful
in attacking the corresponding problem for relational databases [Lev39], one might
hope that the same technique could be used for semistructured databases. Indeed,
when the exact rewriting of a query Q using V exists, Calvanese ef. al. show that,
under the “exact view assumption™ the rewriting can be used to answer @ using S.

Unfortunately, under the more realistic “sound view assumption® ” adopted in this

2If all views are relational projections, the exact view assumption corresponds to the pure uni-
versal relation assumption, and the sound view assumption corresponds to the weak instance as-
sumption. For an explanation of the relational assumptions, see [Var88].

18

chapter we are only guaranteed to get a subset of the certain answer. The following
propositions hold:

Theorem 5 Let Q' be an l-rewriting of Q using V. Then for any source collection
S over V,
ans(Q.S)C [ans(Q,DB).

DBgEposs(S)

Proof. Let (a.b) € Q'(S) and let DB be an arbitrary database in poss(S). Since
(a.b) € Q'(S) there exist objects ¢, ...c;, and a path avy 6, ... U, b in S such
that v, ...v,,_, € Q. Since DB € poss(S), there must be a path a Wie, ...c Wi, b

in DB, where W, € def(v;). for j € {1,...,k + 1}. Furthermore we have that
Wi ... Wy, € def(Q') € Q. In other words. (a.b) € ans(Q, DB).]

Theorem 6 There is a query Q and a set of view definitions V., such that there is an
ezact rewriting Q' of Q using V, but for some source collections S, the set ans(@'. S)

15 a proper subset of \pgeposs(s) ans(Q. DB).

The data-complexity for using the rewriting is NLOGSPACE. which is a consid-
erable improvement from coNP. There is an EXSPACE price to pay though. At the
compilation time finding the rewriting requires exponential amount of space mea-
sured in the size of the regular expressions used to represent the query and the view
definitions (expression complexity). Nevertheless, it usually pays to sacrifice expres-
sion complexity for data complexity. The problem however is that the l-rewriting is
guaranteed oaly to produce a subset of the certain answer. We would like to avoid
running the testing algorithm Ag s for all other pairs of objects in S.

In the next section we describe a “possibility” rewriting (p-rewriting) Q" of Q
using V., such that for all source collections S:

ans(@".8)2 () ans(Q,DB).

DBé€poss(S)

The p-rewriting Q" can be used in optimizing computation of the certain answer
as follows:

19

—

. Compute Q' and Q" from @ using V.

[AV]

. Compute ans(Q',S) and ans(Q",S). Output ans(Q’, S)

[

. Compute Ag s(a,b), for each (a,b) € ans(Q",S) \ ans(Q’,S). Output those
pairs (a, b) for which Ag s(a.b) answers “yes.”

3.4 P-Rewriting

As discussed in the previous section, the rewriting Q' of a query Q is only guaranteed
to be a contained rewriting. From Propositions 5 and 6 it follows that if we use Q' to
evaluate the query. we are only guaranteed to get a subset of the certain answer (recall
that the certain answer itself is an approximation from below). In this section we will
give an algorithm for computing a rewriting Q" that satisfies the relation ans(Q”. S) D
NpBepssis) ans(Q. DB). Our rewriting is related to the inverse substitution of regular
languages and as consequence it will be a regular language.

Definition 1 Let L be a language over Q*. Then L is a p-rewriting of a query Q.
using V. ifforall v, ...v;, € L. thereexists W, ... W... € @ such that Wi, € def (vy,).
forje{l..... m}, and there are no other words in Q* with this property.

The intuition behind this definition is that we include in the p-rewriting all the
words in the view alphabet Q, such that their substitution by def contains a word in
Q. The p-rewriting has the following desirable property[GT2000]:

Theorem 7 Let Q" be a p-rewriting of Q using V. Then

ans(Q".S)2 (] ans(Q,DB),

DBeposs(S)

for any source collection S.

Proof. Assume that there exists a source collection S and a pair

(a,b)e () ans(Q,DB),

D Beposs(S)

20

m, € def(vi,) db
0

Figure 9: Visualisation of the proof for Theorem 7.

such that (a.b) € ans(Q".S). Since the pair (a.b) is in the certain answer of the query
Q. it follows that for each database DB € poss(S) there is a path a 2, b, where
W € Q. Now. we will construct from S a database DBg such that ans(Q. DBs) 3
(a.b). For each edge labelled v, from one object z to another object y in S we choose
an arbitrary word I, € def(v;) and put in DBg the “new” objects cy..... Cik-1. Where
k is the length of 1}, and a path z,cy,.... Ck-1.y labelled with the word ¥,. Each
time we introduce “new” objects, so all the constructed paths are disjoint. Obviously,
DBs € poss(S). It is easy to see that ans(Q, DBs) ¥ (a,b) because otherwise there
would be a path v, ...v;, in S from a to b such that def(v;, ...v;,)N Q # 0, that is
Ui - - Ui, € Q" and (a,b) € ans(Q".S), From the fact that ans(Q, DBg) # (a,b) it
then follows that N pgeposs(s) an5(Q. DB) F (a.b); a contradiction. For a visulalisation
of the proof see Figure 9. a

It is worth noting here that the Theorem 7 shows that ans(Q",S) contains the
certain answer to the query @ even when algebraically def(Q") 2 Q.

VIVI / R Vzls Vi /R

m@ v,/SRS @ ess @

Figure 10: A finite transducer T

3.5 Computing the P-Rewriting

Recall that the definition of a view name v; € Q is a regular language def(V;) over A.
Thus def is in effect a substitution from Q to 22°. The wnverse of this substitution is
defined by. for each IV € A",

def ™' (W) = {U € Q" : W € def(L)}.

It is now easy to see that a p-rewriting Q" of Q using V equals def “}(Q). This
suggests that Q" can be computed using finite transducers.

A finite transducer (see e.g. [Yu97]) T = (S.1,0.6.s. F’) cousists of a finite set
of states S. an input alphabet /. and output alphabet O, a starting state s. a set of
final states F. and a transition-output relation § C S x [* x S x O0°. An example of
a finite transducer ({qo,q;, ¢}, {ti. 1w}, {R.S}, 4, {g2}) is shown in Figure 10.

Intuitively. for instance (gq, v2.q1. SRS) € § means that if the transducer is in
state go and reads word vy, it can go to state q; and emit the word SRS. For a given
word U € I*, we say that a word W € O* is an output of T for U if there exists a
sequence (s,l7,q, W) € 4, (1. 02,2, W5) € 4, ... (@n-1,Uny Gn, W,) € & of state
transitions of T, such that ¢, € F, U = Ur..UpelI’,and W = W,. W, e 0.
We write IV € T(U), where T(U/) denotes the set of all outputs of T for the input
word U'. For a language L C I*. we define T(L) = Uye, T(U).

A finite transducer T = (S.1,0.6.5. F) is said to be in the standard form, ifd is
a relation in S x (I'U {e}) x S x (O U {e}). Intnitively. the standard form restricts
the input and output of each transition to be only a single letter or €. It is known

that any finite transducer is equivalent to a finite transducer in the standard form
(see [Yu97]).

22

(p) VIE) . g/E; . \\\
[}

. v/IE;..-E; . . e/E; . €/Ekol..’,,

Figure 11: Decomposing a “macro” transducer .

g/E

o 3w o

Figure 12: Decomposing a “macro” transducer II.

From the above definitions. it is easy to see that a substitution can be characterized
by a finite transducer. Start with one node representing both the starting state and
the final state. Then build a “macro-transducer” by putting a self-loop corresponding
to each v; € Q on the sole state. In each such self-loop we first have the view symbol
v; as input and a regular expression representing the substitution of v; as output.
After that. we transform the “macro-transducer” into an ordinary one in standard
form. The transformation is done by applying recursively the following three steps.
First. replace each edge v/(E, + ... + Ey). n > 1, by the n edges v/E;, v/ E,.
Second, for each edge of the form u/Ey...Ey from a node p to a node g (Figure 11,
left), we introduce k£ ~ 1 new nodes ri, ...Tx-1 and replace the edge v/E, ... E;, by
the edges v/E, from p to ry, €/E, from ry tory, ..., ¢/Ex from k-1 to q (Figure 11,
right). Third, we get rid of “macro-transitions” of the form v/E*. Suppose we have
an edge labelled v/E™ from p to ¢ in the “macro-transducer.” (See Figure 12, left).
We introduce a new node r and replace the edge v/E* by the edges v/e from p to r,
¢/E from r to r, and €/e from r to q, as shown in Figure 12, right.

By interchanging the input and output of the finite transducer, we see that the
inverse of a substitution can also be characterized by a finite transducer.

We now describe an algorithm that given a regular language L and finite trans-
ducer T constructs a finite state automaton that accepts the language T(L). Let
A=(P,1,04,s.F4) be an e-free NFA that accepts L, and let T = (S, [, O, 7, py, Fr)

23

be a transducer in standard form. We construct an NFA:
A = (P X chy(sy ('POJIO):F.-\ X FT)v

where ¢ is defined by,

o,
Il

{((p.q),v.(p.4") : (p, R, P') € 64 and (g, R.¢',v) € &7}
{

u ((P~ Q)v v, (p~ q,)) : (qv €, q'r 'U) € JT}

Theorem 8 The automaton A accepts ezactly the language T(L).
Collecting the results together, we now have the following methodology.

Corollary 2 Let V = {V1...., 1.} be a set of view definitions, such the def (v;) = V,
forallv; € Q, and let Q be a query over A. Then there is an effectively characterizable
regular language Q" over Q that is the p-rewriting of Q using V. [|

Example 4 Let the query be Q@ = {(RS)": n > 0} and the views be vy, . v3,and vy,
where def(v1) = {R.SS}. def (va) = {S}, def(vs) = {SR}. and def(v,) = {RSRS}.
The DFA? A accepting the query Q is given in Figure 13 (left), and the transducer
characterizing the substitution def is given in Figure 13 (right). We transform the
transducer into standard form (Figure 14, left), and then interchange the input with
output to get the transducer characterizing the inverse substitution (Figure 14, right).
The constructed automaton A is shown in Figure 15, where o = (po, Q). 7. = (1, Q)

.

ra = (po.¢2) and the inaccessible and garbage states have been removed.

Our algorithm computes the p-rewriting Q" represented by (vg + viv3ve)*, and
the algorithm of Calvanese et. al. [CGLV99] computes the l-rewriting Q' represented
by v;. Suppose that the the source collection S, is induced by the following set of
labelled edges:

{Gv,a):1<i<n—-1}U
3An e-free NFA would do as well.

24

v)/ R+S?

. v2/S

WIRSY o

Figure 13: Query automaton and macro transducer.

Figure 14: Transducers for the substitution and inverse substitution.

|/
V2 £

Figure 15: Automaton of the p-rewriting.

[\~
c

{(a,-,vg,.i+1) | Sl STI.—].}U
{(a, 3,811} : 1 <i<n—-1}U
{G,vpi+2): 1< <n -2}

The above source collection is visualised in Figure 16.
We can now compute

ans(Q".8,) = {(i.j):1<i<n-Li<j<n}
and
ans(Q'.S,) = {(i.2k): 1 <i<n-1,0<k < n/2}.

Then we have that the cardinality of

lans(Q".S)ll = n+...+2

xR

and the cardinality of

lans(@.$0ll = X(|7]+

Q2

Q2

Thus the cardinality of ans(Q”, Sa)\ ans(Q'. S,) is approximately n?/2—n?/4 = n?/4,
that is 16 times better that (2n)? which the number of all the possible pairs. |

Now let us calculate the cost of our algorithm for computing the “possibility”
regular rewriting.

Theorem 9 The automaton characterizing Q" can be built in time polynomial in the

size of the reqular ezpression representing Q and the size of the regular expressions
representing V. [|

Figure 16: Source collection for Example 4

We note that the above complexity analysis is wrt expression and not data com-
plexity. Since the decision procedure of [CGLV2000] is coNP-complete wrt data com-
plexity, and this data is very large in DB system reducing the set of candidate pairs

is very desirable.

3.6 Design for Implementation of the P-Rewriting

This section contains the design of the Implementation of P-Rewriting. The intent is

to provide a clear and understandable view of Implementation architecture.

The implementation targets on the feasibility experiment of P-Rewriting algo-
rit hm. We need to run some hundred views using this implementation. So, the
performance constaint will be our highest priority. We decide to choose C as our
implementation language for its efficiency. The implementation will use Unix on a

convension architecture.

The implementation wiil use input files which contains the data for the query and
views. and store the parsed data in the inner data structure , which in our case is the

STL vector. In addition. this implementation can optionally output the result in a
file.

For the user interface. we will not have any Graphical User Interface. We will use
command line user interface which will have the command line argument format at
the prompt as:

% execuable query viewl view?2 ...

For the file we are using as our input and output will have the format as follows:

for example:
2 * 2

B {1,3} {-1}
¥ {-1} {0}

The first line indicate the number of rows and columns of the table. And each row
represents a begining state and column represents the input and data inside curtly
bracelets represent the ending state.

B represents the this row is both the start state and end state.

N represents this is a normal state.

S represents this is a start state.

F represents this is a final state.

-1 inside curtly bracelets represents there is no ending state from the start state with

corresponding input.

For the main data structure. we will use STL vector to modelling the transition
talbe and views, which in our case will be using three dimension to modelling the

automata gragh.

In Figure 17, shows the inner relationship between the components. The input file
of query will be parsed and stored in the inner data structure as NFA by calling the
function Createy F A(). and input view files will be parsed and stored also in the inner
data structure as transducer by calling the function C reateT ransducer(). The output
of the above two functions will be the input of the function Cartesianproduct()
to do the cartesian product. Then this output will be the input to the function
cartesian2.V F A() and returns the result. For the algorithm , please refer to {GT2000j.

3.7 Source code for Implementation of the P-Rewriting

We are using the tables to implement the automata and transducer to represent the
data structure of the views. And we also do the cartesian product of the NFA and

Transducer to come up with a new NFA.

This implementation has been experimented with 500 views and has completed

the computation rather fast which shows that the theroy of the query rewriting enjoys

29

Comew > Cavrme

CreatsTransduces() Cesate NEAQ

Result File

Figure 17: architecture diagram
efficient and reasonable preformance.

The main function will take the input as command line argument and output will
be in the output file.

We have provide comments in the code so that it will be self explanatory.

The following is the code:

#include <iostream.h>
#include <strings.h>
#include <vector.h>
#include <fstream.h>
#include <stdio.h>

using namespace std;

30

struct state_and_output {
state_and_output(int state, int output) {
this->state = state;

this->output = output;

}

int state;

int output;

b

struct cart_state_and_output {
cart_state_and_output(int NFA_state, int TRANSDUCER_state, int output) {
this->NFA_state = NFA_state;
this->TRANSDUCER_state = TRANSDUCER_state;
this->output = output;
}
int NFA_state;
int TRANSDUCER_state;
int output;

};

// The function will create the NFA

{\bf void create_NFA}(vector<int>** &NFA,
vector<int> &start_state,

vector<int> &final_state,

vector<char> &indicator,

char* filename,

int &n,

int &m) {

// n is row number and m is colum number

31

char s[8000];
char* tokeni;
char* token2;

int i;

//open the datafile

ifstream fin(filename);

//get row number and colum the vector NFA
fin.getline(s,8000);
tokenl = strtok(s," *");

n=atoi(tokenl); // the row number
tokenl = strtok(NULL," #*");
m=atoi(tokeni): // the colum number

//cout<<"row is "<<n <<" and colum is "<<m<<endl;
//allocating memory

NFA = new (vector<int> *) [n];

for(i=0; i<n; i++)

NFA[i] = new (vector<int>) (m];

// read from the file to get the state and symbol

for(i=0; i<m; i++){
fin.getline(s,8000);

tokeni = strtok(s," "); //get the status S or F or N
//cout<<tokeni<<endl;

//create start state and final state vector for later

32

//use
if ((char)*tokenl == ’S’) start_state.push_back(i);
else if ((char)+tokenl == °F’) final_ state.push_back(i):

//insert the status of the state in the indicator vector
indicator.push_back((char)*tokent);

vector<char*> temp;
for(int j=0; j<m; j++) {

tokenl = strtok(NULL," ");
if (tokenl != NULL) temp.push_back(tokenl);

//Start processing the vector temp.
for (int j=0; j<m; j++) {
token2= strtok(templj], "{,}\b");

while (token2 != NULL){
NFACil [j].push_back(atoi(token2));
token2 = strtok(NULL,"{,}\b");

// the algorithm 4 steps which will be repeated.

// notation -100 means lumta, -i from 1 to 99 means views

void create_T_Algorithm(vector<state_and_output>++ &TRANSDUCER,
vector<int> =*NFA,

vector<int> start_state,

33

vector<int> final_state,

int start, // start postion in the transducer
int n, int m, // the number of rows and colums in this view
int last, // the last row of the transducer

int viewnumber

H

int i,j,k,1;

//first step add lumta as outpyut to fm
int state;

for(i=0; i<n; i++){

for (j=0; j<m; j++) {

for (k=0; k<NFA[i][j].size(); k++)

{ if (NFALi1[j1001'=-1)

TRANSDUCER [start+i] [j] . push_back(
state_and_output (NFA(i] [j] [k]+start, -100));
else TRANSDUCER[start+i] [j].push_back(
state_and_output(-1, -100));

// third step

int startState;

for (i=0; i<start_state.size(); i++){

startState=start_state([i];

34

for (j=0; j<m; j++) {

for (k=0; k<NFA[startStatel[j].size(); k++) {
if (NFA[startState] [j1[0]!=-1){
TRANSDUCER [last] [j] . push_back(
state_and_output (NFA[i] [j] [k]+start, -100));

//fourth step

for (1=0; 1<final_state.size();l++)
if (NFA[i][j][k]==final_state[1])
TRANSDUCER [1ast] [j] . push_back(

state_and_output(last, O-viewnumber));

}

//fifth step

for(i=0; i<m; i++){

for (j=0; j<m; j++) {

for (k=0; k<NFA[il([j].size(); k++)
{ if (WFA[il[jl1001!=-1){

for (1=0; 1<final_state.size();1l++)
if (NFA[i]l[j] [(k]==final_state[1])
TRANSDUCER [(start+i] [j] .push_back(
state_and_output(last, O-viewnumber));
}
}

35

// create the transducer with row n and colum m

{\bf void create_TRANSDUCER}(vector<state_and_output>** &TRANSDUCER,
int argc, char** argv, int &n_final, int &m

M

int i,j,k,1;

vector<int> *=NFA;
vector<int> start_state;
vector<int> final_state;
vector<char> indicator;
char s[8000];

char* tokeni;

vector<int> temp;

int n=0;
for (i=2; i<argc; i++){
ifstream fin(argv[il);

//get row number and colum the vector NFA
fin.getline(s,8000) ;

tokenl = strtok(s,” *");

//put the row number of each file in the temp vector
temp.push_back(atoi(tokenl));

n+=atoi(tokenl); // the row number

tokenl = strtok(NULL," *");

36

m=atoi(tokenl); // the colum number

//cout << "n = "<< n << endl;

n_final = n+l; //one more for s’'0 state

//allocating memory

// we allocate n+1 row , because we need to add a new node
TRANSDUCER = new (vector<state_and_output> *) [n_final];
for(i=0; i<n_final; i++)

TRANSDUCER[i] = new (vector<state_and_output>) [m];

//second step add SO with all the imput to itself
/*

for (j=0; j<m; j++){

TRANSDUCER [n] [j] . push_back(

state_and_output(n, j));

}

*/

// create the NFA and using algorith step 2-5
int start=0;
int n1, ml; //nl is NFA row number and ml is NFA colum number
for (i=0; i<temp.size();i++) {
vector<int> start_state;
vector<int> final_state;
create_NFA(NFA,start_state, final_state,indicator,argv[i+2], ni, mi);
create_T_Algorithm(TRANSDUCER, NFA, start_state,
final_state, start, ni, ml ,n,i+l);

37

start+=temp[i];

// create cartisen _product
{\bf void cartisen_product}(vector<cart_state_and_output>** ZCARTISAN, vector<i
vector<state_and_output> **TRANSDUCER, int ni,int n2, int m) {

int 1= nl*n2;

//allocating memory
CARTISAN = new (vector<cart_state_and_output> *) [1];
for(int i=0; i<l; i++)

CARTISAN[i] = new (vector<cart_state_and_output>) (m];

for(int h=0; h<nl; h++)
for (int i=0; i<n2; i++)
for (int j=0; j<m; j++){
for (int k=0; k<NFA[h](j].size(); k++)
for (int 1=0; 1<TRANSDUCER[i][j].size(); 1++){
CARTISAN[h*n2+i] (j] .push_back(
cart_state_and_output(
NFA[R] [j1 (K],
TRANSDUCER[i] [j][1].state ,
TRANSDUCER[i] {1 [1].output));

38

// transfer the cartisen product format to our NFA format
{\bf void cartesian2NFA}(vector<cart_state_and_output>+* ZCARTISAN,
vector<int>** &CAR_NFA,

int nl, int n2, int m, int no_of_views){
int i,j,k, output;

//allocating memory

int 1= ni#n2; //lines in the cartesian product
CAR_NFA = new (vector<int> =) [1];

for(i=0; i<l; i++)

CAR_NFA[i] = new (vector<int>) [no_of_views + 1];
// +1 for the lambda

//We scan the cartesian product
for (i=0; i<l; i++)
for(j=0; j<m; j++)
//We scan inside the elements that are vectors
for(k=0; k<CARTISAN[i]([j]l.size(); k++){
output=CARTISAN[i] [j][k].output; //the third elment of the triple i.e. the
//output symbol
if (output==-100){ //lambda, so we put it in the last column
//1f one of the two elemnets of the triple is -1 it means empty
//so we put emty in the new NFA.
if ((CARTISAN[i] [j1[k] .NFA_state==-1){|
(CARTISAN[i] [j1[k].TRANSDUCER_state==-1)) {

39

if (CAR_NFA[i] [no_of _views] .size() == 0)
CAR_NFA[i] [no_of_views].push_back(-1);
}

else {

if (CAR_NFA[i] [no_of_views] .size() && CAR_NFA[i] [no_of_views][0] == -1) {
//1f we already have pushed in -1 this means that
//ve union with empty set. Since, it is no need to do so
//we pop out -1.

CAR_NFA[i] [no_of_views] .pop_back();

}

CAR_NFA[i] [no_of _views] .push_back(
CARTISAN(i] [j][k] .NFA_state*n2
+CARTISAN[i] [j] (k] .TRANSDUCER state);

}
}

else { //The third element is not lambda, it is view special symbol
//1f one of the two elements of the triple is -1 it means empty
//so we put emty in the new NFA.
if ((CARTISAN[i] (j1[k] .NFA_state==-1)1|
(CARTISAN[i] [j] [k].TRANSDUCER_state==-1)) {
if (CAR_NFA[i] [-1-output] .size() == 0)
CAR_NFA[i] [-1-output] .push_back(-1); //we put empty
}
else {
if (CAR_NFA[i] [-1-output] .size() && CAR_NFA[i] [-1-output][0] == -1) {
//1f we already have pushed in -1 this means that
//we union with empty set. Since, it is no need to do so
//we pop out -1.
CAR_NFA[i] [-1-output] .pop_back() ;
}
CAR_NFA[i] (-1-output] . push_back(
CARTISAN[i] [j] (k] .NFA_state*n2

40

+CARTISAN[il (j] (k] . TRANSDUCER state);

for(i=0; i<l; i++)

for(j=0; j<no_of_views + 1; j++){
if(CAR_NFA[i][j].size() == 0)
CAR_NFA[il [j].push_back(-1);

}

}

// printing a NFA
void print_NFA(vector<int> **NFA, vector<char> indicator,

int n, int m, char* filename){

ofstream fout(filename);
fout<<n<<” * "<<m <<endl;

for(int i=0; i<nm; i++) {

fout <<indicatorf(il<<" *“;

for(int j=0; j<m; j++) {

fout << "{";

for(int k=0; k<NFA[i](j].size(); k++){

fout << NFA[i][j1lk] << ",";
}

41

fout << "\b} ";
}

fout << endl;

}

}

//Printing a TRANSDUCER
void print_TRANSDUCER(vector<state_and_output> *+TRANSDUCER, int n, int m){
for(int i=0; i<n; i++) {

for(int j=0; j<m; j++) {

cout << "{"; int k;

for(k=0; k<TRANSDUCER[il([j].size(); k++)
cout << "(" <«
TRANSDUCER[1] [j] (k] .state << "," <<
TRANSDUCER[i] [j1 (k] .output << "),";

cout << "\b} ";

}

cout << endl;

}

}

//Print the result of cartisen product of NFA and TRANSDUCER
void print_cartisen_product (vector<cart_state_and_output>** CARTISAN,

int nl,int n2, int m) {

for(int i=0; i<ni*n2; i++) {

for(int j=0; j<m; j++) {
cout << "{"; int k;

for(k=0; k<CARTISAN([i][j].size(); k++)
Cout <4 ll(ll I'<<

42

CARTISAN[i][j] [k].NFA_state << "," <<
CARTISAN([i] [j] [k] .TRANSDUCER_state << "," <<
CARTISAN[i] [j] [k].output << "),";

cout << "\b} *;
}

cout << endl;

}

}

// the main function of Implementation

void main (int argc, charx argv []) {
int n1, n2, m; // n is number of row, and m is the number of colume

vector<int> **NFA;
vector<int> start_state;
vector<int> final_state;

vector<char> indicator;

vector<state_and_output> **TRANSDUCER;

create_TRANSDUCER (TRANSDUCER, argc, argv, n2, m);

COULSS kxkkkakkkhkhkhkhRrRRErhrihirkkiihieirkririkrk’<<endl;
print_TRANSDUCER (TRANSDUCER, n2, m);

COULKK kxkaxkkrhhbkakhahrrhhhrrrkrirrkihhirerkrkrkkri<<endl;
create_NFA(NFA,start_state, final state,indicator,argv(i],ni,m);
print_NFA(NFA, indicator, nl, m,"output");

COUt <" kkkkkkkkxkkkkrrkkibiiriririkehrrhhekakrrrersrs’<<endl;

//cartisan product

43

vector<cart_state_and_output>** CARTISAN;
cartisen_product (CARTISAN, NFA, TRANSDUCER, nl, n2, m);
print_cartisen_product (CARTISAN, nl, n2, m);

//transfer cartisan product to NFA

int no_of_views = argc - 2;

vector<int> **CAR_NFA;

cartesian2NFA (CARTISAN, CAR_NFA, nl1,n2, m, no_of_views);
printf("Hello!\n");

print_NFA(CAR_NFA, indicator, ni*n2, no_of_views+1,"cartisen.txt");

3.8 Experiment for Implementation of the P-Rewriting

The above code will be able to compile and run in Unix machine. We choose the

Orchid machine to do the experiment.

Experiment 1 For 100 views:

time table200 views/query views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/00L.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

44

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
output:

Cartesian product done!

Cartesian2NFA done!

Cartesian indicator done!

real 0.7

user 0.3

svs 0.0

Experiment 2 For 200 views:

time table200 views/querv views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

45

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/00L.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/00L.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view

output:

Cartesian product done!

Cartesian2NFA done!

Cartesian indicator done!

real 1.5

user 1.2

sys 0.0

Experiment 3 For 300 views:

time table200 views/query views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

46

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/00L.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

47

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/00].view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/(003.view views/004.view

output:

Cartesian product done!
Cartesian2NFA done!
Cartesian indicator done!
real 2.7

user 2.3

sys 0.0

Experiment 4 For 400 views:

time table200 views/query views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/00l.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

48

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views,/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/Q01.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

49

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/(003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

output:

Cartesian product done!
Cartesian2NFA done!
Cartesian indicator done!
real 4.9

user 4.5
sys 0.0

Experiment 5 For 500 views:

time table200 views/query views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/00L.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/00!.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/C02.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

51

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view

views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view

52

views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/001.view views/002.view views/003.view views/004.view
views/001.view views/002.view views/003.view views/004.view views/001.view views/002.view
views/003.view views/004.view views/00L.view views/002.view views/003.view views/004.view

views/001.view views/002.view views/003.view views/004.view

output:

Cartesian product done!
Cartesian2NFA done!
Cartesian indicator done!
real 7.6

user 7.0

svs 0.0

a3

Performance Analgsis chart

8%
CRE:
v 6
L4 A
w58
a1
'= 3 ;
L
il
1t
0
1 2 3 4 5
Nember of Yiews [wait: 100
views)

Figure 18: Performance Analysis Chart

For experiment purpose we only create 4 different views. As they repeat them-
selves, the system will treat them as new views when doing the cartesian product. We
comment off the output part of the application since we do not need to output our
result in a file in actual use. And file IO takes too much time which will not give us

the real picture of the performance. We follow the same idea for all our experiments.

From the above experiments. we draw the performance anlaysis chart in Figure 18.
As we can see from the figure. the x-axis represent the number of views we are using
to do the experiment and the v-axis represent the time consuming of the experiment.
For 500 views . it only takes 7 second to finish. Similar observation indicate that the

algorithm is scalable and feasible.

The above data may be different from each try based on the host we use and the
CPU usage rate. Even the result shows it will take more time than what we record,

it still can be considered as “good” and feasible performance.

Chapter 4

Conclusion and Future work

This implementation has been experimented with 500 views and has completed the
computation rather fast which has shown that the theroy of the query rewriting is

feasible and practical.

Although the data we have collected during the experiment may be different based
on the machine we choose to do the experiment and the CPU speed. we are convinced
that this algorithm is scalable, although we have not provided a formal argument to
support this. It can be used for some hundred views as experiment shows. Moreover,
we observed that the implementation has a somewhat linear behavior scales according

to the number of views.

To our knowledge , there is no other implementation on algebraic rewriting using
which we could find a super set of the certain answer of semi-structured query having

a set of views. So, we can not do any comparison at this moment.

In the current implementation we represent the automata and the transducer as
transition tables based on STL vector classes. As future extensions to our work we
would propose implementing the automata and the view transducer using other data-
structures. Since, the non-deterministic automata and transducers can be viewed
as labeled directed graphs, we could as well use the graph data-structures which

would best fit to our specific experimenting purpose. For example, implementing

the automata and the transducer by using an adjacent matrix instead, would greatly
simplify the procedure for garbage state removal, which in turn would enhance the
performance of computing the cartesian product. By using this way of modelling
the automata and the transducer. we could also produce a smaller cartesian product
which would have as a side effect a faster query answering computation. However, as
it is well known the adjancy matrix representation. is not efficient when the graphs
are sparse since there would be a lot of wasted memory. Hence, we also propose as a

future work. to conduct a study of memory-speed trade off for data-structure models.

56

Bibliography

[Abi97]

{ABS99]

[AD9S]

[AHVOS|

[AQM+97]

[Bun97]

[BDFS97]

[Brzo64}

'BL80]

[CGLV99)

S. Abiteboul. Querving Semistructured Data. Proc. of ICDT 1997 pp.
1-18.

S. Abiteboul. P. Buneman and D. Suciu. Data on the Web : From

Relations to Semistructured Data and Xml. Morgan Kaufmann. 1999.

S. Abiteboul. O. M. Duschka. Complexity of Answering Queries Using
Materialized Views. Proc. of PODS 1998 pp. 254-263

S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. L. Wiener. The
Lorel Query Language for Semistructured Data. Int. J. on Digital Li-
braries 1997 1(1) pp. 63-88.

P. Buneman. Semistructured Data. Proc. of PODS 1997, pp. 117-121.

P. Buneman, S. B. Davidson, M. F. Fernandez and D. Suciu. Adding
Structure to Unstructured Data. Proc. of ICDT 1997, pp. 336-350.

J. A. Brzozowski. Derivatives of Regular Expressions. JACM 11(4)
1964, pp. 481-494

J. A. Brzozowski and E. L. Leiss. On Equations for Regular Languages,
Finite Automata, and Sequential Networks. TCS 10 1980, pp. 19-35

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Rewriting of
Regular Expressions and Regular Path Queries. Proc. of PODS 1999,
pp. 194-204.

5T

[CGLV2000]

[CGLV2000]

[CSS99)]

[ConTl]

[DFF+99)

{DGI7]|

[FS98]

[FLS98|

[GMog)]

[GT2000]

[HU79]

[HRST6]

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Answering
Regular Path Queries Using Views. Proc. of ICDE 2000, pp. 389-398.

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. View-
Based Query Processing for Regular Path Queries with Inverse. Proc.
of PODS 2000. pp. 58-66.

S. Cohen, W. Nutt, A. Serebrenik. Rewriting Aggregate Queries Using
Views. Proc. of PODS 1999. pp. 155-166

J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall 1971.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, D. Suciu.
A Query Language for XML. WWW8/Computer Networks 31(11-16)
1999, pp. 1155-116.

O. Duschka and M. R. Genesereth. Answering Recursive Queries Using
Views. Proc. of PODS 1997. pp. 109-116.

M. F. Fernadez and D. Suciu. Optimizing Regular path Expressions
Using Graph Schemas Proc. of ICDE 1998, pp. 14-23.

D. Florescu, A. Y. Levy, D. Suciu Query Containment for Conjunctive
Queries with Regular Expressions Proc. of PODS 1998, pp. 139-148.

G. Grahne and A. O. Mendelzon. Tableau Techniques for Querying
Information Sources through Global Schemas. Proc. of ICDT 1999 pp.
332-347.

G. Grahne and A. Thomo. An Optimization Technique for Answering
Regular Path Queries. Proc. of WebDB 2000.

J. E. Hopcroft and J. D. Ullman Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley 1979.

H. B. Hunt and D. J. Rosenkrantz, and T. G. Szymanski, On the
Equivalence, Containment, and Covering Problems for the Regular and

Context-Free Languages. Journal of Computing and System Sciences
12(2) 1976, pp. 222-268

58

(Kari9l]

[Lev99)]

[LMSS93]

[MWO5)|

[MMMOT]

[MS99)]

(PV99]

[Cu97]

[Var88]

[Yu97]

L. Kari. On Insertion and Deletion in Formal Languages. Ph.D. Thesis,
1991, Department of Viathematics, University of Turku, Finland.

A. Y. Levv. Answering queries using views: G SuTvey. Submitted for
publication 1999.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava. Answering
Queries Using Views. Proc. of PODS 1995, pp- 95-104.

A. O. Mendelzon and P. T. Wood, Finding Regular Simple Paths in
Graph Databases. SIAM J. Comp. 24:6. (December 1995).

A. O. Mendelzon, G. A. Mihaila and T. Milo. Querying the World
Wide Web. Int. J. on Digital Libraries 1 (1), 1997 pp. 54-67.

T. Milo and D. Suciu. Index Structures for Path Expressions. Proc. of
ICDT. 1999. pp. 277-295.

Y. Papakonstantinou, V. Vassalos. Query Rewriting for Semistructured
Data. proc. of SIGMOD 1999, pp. 455-466

J. D. Ullman. Information [ntegration Using Logical Views. Proc. of
ICDT 1997, pp. 19-40.

VL. Y. Vardi. The universal-relation model for logical independence.
[EEE Software.

S. Yu. Reqular Languages. In: Handbook of Formal Lenguages.
G. Rozenberg and A. Salomaa (Eds.). Springer Verlag 1997, pp. 41-
110

