INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

NOTE TO USERS

This reproduction is the best copy available.

The Development of a Simulation Model of

Pipeline Network Systems with Check Valve

Tianhe Wen

A Thesis
in the Department of
Mechanical Engineering

Faculty of Engineering and Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

August 2001

© Tianhe Wen, 2001

l*l National Library Bibliothéque nationale

of Canada du Canada
Aeqruisiﬁons and Acquisitions et)
Bibliographic Services services bibliographiques
Otawa ON. K1A 0N Ottows ON KTA 0N
Canada Canada
Your Sle Votre réidrence
QOur B Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64071-x

Canada

ABSTRACT

The Development of a Simulation Model of
Pipeline Network Systems with Check Valve

Tianhe Wen

The objective of this thesis is to design and implement a software package to
model and simulate pipeline network systems with check valves. The application package
is written under thé window’s environment to provide the hydraulic engineer a user
friendly interface for ease of simulation and analysis without requiring to write code.

Discussion of the phenomenon of hydraulic transients, derivation of the
differential equations, comparison of different kinds of analysis methods, and
investigation of the method of characteristics solution and basic boundary conditions are
all established. The check valve dynamic equation is investigated for the analysis of
pipeline transients, and formulae for flow torque acting on the valve discs are derived by
introducing the orifice sequence model. Dynamic behavior of pumps is considered during
the pipeline transients, and the analysis of this behavior combines the method of
characteristics with check valve dynamics, pump characteristic and pump boundary
conditions both for pump failure and pump start up. Numerical solutions to pipeline
transients, check valve dynamics and pump characteristic are established. Finally, the
implementation into a working simulation program of a dynamic model for pipeline
network systems with check valves is described, and a user guide for the software

HydroAnalysis and HydroGraphic is presented.

iii

ACKNOLEDGMENTS

The author wishes to express his gratitude to his supervisors Dr. J. V. Svoboda
and Dr. H. Hong, for their guidance and inspiration throughout the author’s graduate
studies.

The author appreciates the cooperation and support given by Mr. D. Barclay,
former President of Ritepro Inc. Also, the author would like to express his gratitude to
Mr. P. Major, the Chief Engineer of Ritepro Inc., for his technical assistance throughout

the research.

v

Table of Contents

Chapter 1 Introduction 1
1.1 Summary 1
1.2 Classification of Hydraulic Transients 2
1.3 Classification of Check valves 3
1.4 Review of Previous Work 5

1.4.1 Hydraulic Transients 5

1.4.2 Check Valves Dynamics 6
1.4.3 Computer Program Simulation of Transients in Pipelines and

Check Valves | 7

1.5 Thesis Outline 8

Chapter 2 Transients in Pipelines ..o 11
2.1 Introduction 11
2.2 Basic Equations of Transients in Pipelines 12

2.2.1 Continuity Equation 12
2.2.2 Equation of motion 15
2.3 Comparison of Method of Transient Analysis in Pipelines 16
2.4 The Method of Characteristic 17
2.4.1 Introduction 17
2.4.2 Characteristic Equations 18
2.4.3 Finite Difference Formulations 20
2.4.4 Basic Boundary Conditions 23
2.4.4.1 Reservoir 24
2.4.4.2 Series Junction 25
2.4.4.3 Branch Junction 26
2.4.4.4 Valve or Orifice 29
2.4.5 Boundary Conditions for Pump 31
2.4.5.1 Introduction 31

2.4.5.2 Boundary Conditions for Pump Failure

2.4.5.3 Boundary Condition for Pump Start Up

Chapter 3 Check Valve Dynamics
3.1 Introduction '
3.2 Check Valve Differential Equation

3.3 Component Torque

3.3.1 Counterweight Torque

3.3.2 Spring Torque
34 Check Valve Flow Torque
3.4.1 Introduction
3.4.2 Check Valve Pressure Drop
3.4.2.1 Coefficient of Resistance of a Wafer Swing-Disk Check Valve..............

3.4.2.2 Coefficient of Resistance of Forward Flow

3.4.2.3 Coefficient of Resistance of Reverse Flow
3.4.3 Swing-Disk Check Valve Flow Turque
3.5 Boundary Condition for Check Valve

Chapter 4 Simulation and Model of Pipeline Network
Transients with Check Valve System

4.1 Introduction

4.2 Algebraic Solution to a Piping System

42.1 Algebraic Representation and Continuous Storage Data.........cocoeveeeeecenes
422 Indexing
4.2.3 Simulation of Piping System

43 Numerical Model and Simulation for Check Valve
43.1 Check Valve Dynamic System Model

43.2 The Runge-Kutta Numerical Solution to

the Check Valve Dynamic Equation
44 Newton-Raphson Solution to Pump Boundary Condition

37

39
39
40
4l
42
43
45
45
46
47
50
53
54
57

59
59
60
60
63
66
68
68

70
73

Chapter 5 Software Implementation of Transients in
Pipeline Network and Check Valve System ...

5.1 Introduction

5.2 Analysis for Hydro-Analysis Software Package

5.2.1 Problem Description

5.2.2 Input Parameters

5.2.3 Output Requirement

5.3 Software Design

5.3.1 Algorithm for the Hydro-Analysis

5.3.2 Hierarchical Diagram

5.3.3 Object Oriented Programming Design for Hydro-Analysis
5.3.3.1 Major Class Description for Graphic User Interface

5.3.3.2 Class Description of Transients Simulation

5.3.3.3 Class Description of Graphic Output

5.4 Introduction to HydroAnalysis Software

5.4.1 Overview

5.4.2 User Guide for Software Program Package HydroAnalysis

5.4.2.1 Gerting started

........................

5.4.2.2 Setting System Parameters

5.4.2.3 Gerting Simulation Output

Chapter 6 Conclusion

6.1 Summary

6.2 Suggestions for Future Work

REFERENCES

APPENDIX A: Reviews of Method of Transient Analysis in Pipelines
APPENDIX B: Pump Characteristics

.......................

APPENDIX C: Simulation Results

APPENDIX D: Head Files for Software Hydro-Analysis

vii

100
100
112

116
116
120

List of Figures

Fig. 2.2.1 Notation for Continuity and Motion Equation 13
Fig. 2.4.1 Characteristic Lines in x-t Plane . 20
Fig. 2.4.2 The x-t Finite Difference Grid ... 21
Fig. 2.4.3 Reservoir Boundary: (a) Upstream end; (b) Downstream endoooeeeeeeennnnn. 24
Fig. 2.4.4 Series JUNCHOMouemrreeeeeereriee st eeset e s 26
Fig. 2.4.5 Branching Junction . 27
Fig. 2.4.6 Valve in line . 30
Fig. 2.4.7 Pump and Valve in Pipeline Systems 32
Fig. 2.4.8 Approximation of Pump Curve by a Straight Line erereeresresseeaeaaen 34
Fig. 2.4.9 Pump Start Up.. reeree et ae s aereses 38
Fig. 3.2.1 Schematic of Check Valve ... 40
Fig. 3.3.1 Counterweight.... ettt bbb 42
Fig. 3.3.2 Cylindrical Helical Bending Springccoeeeuencuncnenieiiicccnns 43
Fig. 3.3.3 Cylindrical Helical Torsion SPring......c...ceeeeeseeemsemsenemecncmimscri s 44
Fig. 3.4.1 Orifice Model for Wafer-Type Swing-Disc Check Valve.......ccooorcrccnecenns. 43
Fig. 3.4.2 Orifice Sequence Model eeeerereae ettt et e s 51
Fig. 3.4.3 Unsteady Flow Through an Check Valve.....ooiiii 54
Fig. 4.1.1 Block Diagram of Pump, Check Valve and Pipelines ..., 59
Fig. 4.2.1 x-t Diagram for Algebraic Representations in Series SysStemmocccoveenernne. ol
Fig. 4.2.2 Branching System with Pump and Check Valve................... 64
Fig. 4.2.3 Indexing of Branching SYStem. ... 65
Fig. 4.2.4 Flowchart of Piping System Simulation —7/
Fig. 4.3.1 Flowchart of Check Valve Numerical Simulation........c..covcuecerennncencencs 69
Fig. 4.4.1 Newton-Raphson Solution for Pump et nee et 75
Fig. 5.3.1.1 Flow Chart of Hydro-Analysis.......eceeeeeeeemeimmnic e 84
Fig. 5.3.2.1 (a) Hierarchical Diagram for Hydro-Analysis ... 85
Fig. 5.3.2.1 (b) Hierarchical Diagram for Graphic User Interface 85
Fig. 5.3.2.1 (c) Hierarchical Diagram for Transients Simulation 86
Fig. 5.3.2.1 (d) Hierarchical Diagram for Output Graphic 86

viii

87

Fig. 5.3.3.1 The operation and attributes of CMainFrame

88

Fig. 5.3.3.2 Operation of CChildFrame

88

Fig. 5.3.3.3 Operation of ChydroAnalysisView
Fig. 5.3.3.4 The operation and attributes of CFrontPageFormView
Fig. 5.3.3.5 Operation of CHydroAnalysisApp

89

90

Fig. 5.3.3.6 Operation of ChydroAnalysisDoc

90

Fig. 5.3.3.7 The operation and attributes of PlotPrintoutDlg

91

Fig. 5.3.3.8 The operation and attributes of Pipe

(]

92

Fig. 5.3.3.9 Operation of PipeNet2Cv & PipeNet2NoCv

({1}

93

Fig. 5.3.3.10 Operation & Attributes of PumpFail

Fig. 5.3.3.11 Operation & Attributes of PumpStart

94

.95

96

Fig. 5.3.3.12 Operation & Attributes of CheckValve

99

Fig. 5.3.3.13 Description of HydroGraphic Classes
Fig. 5.4.2.1 Main Window of HydroAnalysis

Fig. 5.4.2.2 Dialog Box for Connection Parameters

Fig. 5.4.2.3 Dialog Box of Indexingcceeumsceemsemcrvurincunnees

Fig. 5.4.2.4 Dialog Box of Simulation

Fig. 5.4.2.5 Dialog Box of Plot & Print

Fig. 5.4.2.6 Dialog Box for Pump Check Valve Parameters .

Fig. 5.4.2.7 Dialog Box of Pipeline Parameters

Fig. 5.4.2.8 Dialog Box of Reservoir Parameters

Fig. 5.4.2.9 Dialog Box of Control Valve Parameters

Fig. 5.4.2.10 Dialog Box of Junction Parameters
Fig. 5.4.2.11 Menu File Window

Fig. 5.4.2.12 Save Model As Window

Fig. 5.4.2.13 Open Model Window

Fig. 5.4.2.14 HydroGraphic Main Page (With Check Valve)

Fig. 5.4.2.15 Display of the Plot Data

Fig. A 1 Circuit Represent of Lumped Parameter Method

Fig. A 2 Block Diagram for Single Pipeline

101
102
103
104
105
106
107
108
108
109
110
111
112
113
114

130
134

Fig. B 1 Polar Diagram of 6

Fig. B 2 Complete Pump Characteristics

Fig. C I Simple Pump, Check Valve , and Pipe System

Fig. C 2 Indexing of Branching Systems

Fig. C 3 Graphic Display of Branching System Without Check Valve
Fig. C 4 Graphic Display of Branching System With Check Valve

140
141
144
151
152
152

Nomenclature

A Area of pipe, Project area of the disc and disc arm.

Ag, Pump characteristics parameters, Project area of the disc and disc arm
normal to the flow stream

A Pump characteristics parameters

Ag Area of valve opening

a Wave speed

aj, a; Constants to describe pump head-discharge curve

B Pipeline characteristics impedance

By, B, Known constants in compatibility equations

B, Calculate parameter in compatibility equations

C Pipeline capacity

cC Name of characteristic equations

Co, Cq Valve or orifice discharge coefficient

Cu, Cp Known constants in compatibility equations

Cwxp Normal drag coefficient

Ca Calculate parameter in compatibility equations

Cv, Cv Valve flow coefficients

D, d Pipe diameter

Fp, Fp Disc forward and reverse flow forces

f Friction factor

g Gravitational acceleration

H Pressure head

Hpg Rated pressure head of pump

Hs Pump start up shutoff head

Hy Stead state or mean pressure head

h Dimensionless pressure head for pump failure
Moment of inertia of rotating parts for pump ‘

J Total moment of inertia for check valve

Jew Moment of inertia of counter weight for check valve

Jv Moment of inertia of the disc and arm assemble for check valve
K Bulk modulus of elasticity

K K Valve coefficient of resistance

K, K> Valve coefficient of resistance; Disc friction constant

K; K Valve coefficient of resistance

ki ks, k3, ks Fourth order Runge-Kutta parameters

Ks Spring constant

L Pipe length

m Mass

N Rotational speed of pump

Ng Rated speed of pump

n Number of reach in pipeline

0 Discharge

Qin Inflow

O Junction or nodal flow

Qp Pipeline flow; Pump flow

Oy Check valve or valve flow

R Pipeline resistance coefficient

T Torque on pump or check valve; Time
To Stead state torque of pump

T Bearing friction torque of check valve
Tew Counterweight torque

Tr Flow torque of check valve

Tz Rated torque of pump

Ts Spring torque of check valve; Pump start up shutoff time
Tvw Weight torque due to rotating disc

t Time

14 Velocity

v Dimensionless velocity

w Velocity ; Weight

xii

Wa, Wy Dimensionless pump characteristics

X Distance along the pipeline; Angular position in pump characteristic curve
Zc Characteristic impendence

b4 Elevation of pipe above datum

o Dimensionless speed ratio for pump failure; Torque ratio for pump start up
B Dimensionless torque ratio for pump failure

Y Specific weight of fluid

3 Angle of torssonal spring

1 Pump efficiency

0 Opening of Check valve

A Multiplier in characteristics method

\ Dimensionless flow ratio for pump failure

p Mass density

T Dimensionless valve opening

© Angular velocity

Xiii

Chapter 1

Introduction

1.1 Summary

A pipeline system is a combination of piping components with the objective of carrying
incompressible or compressible fluid to one or several users. An industrial pipeline
system may be considered, for most of its operating time, to be in a steady state of flow.
But a rapid velocity (or pressure) change, an accident or a non-normal operation in a
pipeline system will result in a hydraulic transient. This can shorten the life span of
certain pipeline components and even damage them.

Common examples of the causes of transients in engineering systems include:

I. Opening, closing of valves in a pipeline

[

Starting or stopping the pumps in a pumping system
3. Starting-up a hydraulic turbine, accepting or rejecting load
4. Vibrations of the vanes of a runner or an impeller, or of the blades of a fan.

Check valves are pieces of equipment which were originally developed and fitted
to pipelines in order to prevent the lines draining backwards when pumps stopped - They
were sometimes also used to prevent downstream reservoirs from emptying. In addition.
they prevent reverse rotation of pumps, thereby avoiding damage to seals and to the gear

of the driving motor.

The undesired effects of flow reversal vary depending on the application. Some

examples where check valves are used include:

o In tank fill-up applications, a check valve is installed on a supply pipe which is below
the water line to prevent draining the tank in the case of flow supply pressure drop.

e A check valve installed on the output of a pump would prevent high downstream
pressure from driving the pump in reverse in the event of a power failure.

e In an intermittent pumping application where the fluid supply level is below the
pump, a check valve is installed at the foot of the inlet suction line to prevent draining

of the pipe and hence unnecessary priming of the system.

1.2 Classification of Hydraulic Transients

Hydraulic transients may be classified into the following three categories:

I. Transients in closed conduits

(8]
.

Transients in open channels

L

. Combined free-surface-pressurized transient flows.
The analysis of transients in closed conduits may be further subdivided into two
types:
1. Distributed systems
2. Lumped systems
In distributed systems, the transient phenomenon occurs in the form of traveling
waves. Places in which such transients occur include water supply pipes. power plant

conduits, and gas-transmission lines.

In the analysis of lumped systems, any change in the flow conditions is assumed
to take place instantaneously throughout the system, i.e., the fluid is considered as a solid
body. Mathematically, transients in the distributed systems are represented by partial
differential equations, whereas the transients in the lumped systems are described by
ordinary differential equations. If wL/a is much less than 1, then the system may be
analyzed as a lumped system; otherwise, the system must be analyzed as a distributed
system. In the previous expression, w= frequencyv of oscillation, L = length of the
pipeline, and a = wave velocity.

In this thesis, discussion will focus mainly on transients in closed conduits.

1.3 Classification of Check valves

Some of the most commonly used check valves are classified here according to operating
principle.

A ball check valve consists of a ball inserted into the flow to permit essentially
unrestricted flow in the preferred direction. Flow in the reverse direction carries the ball
to the seat, immediately blocking the line. The valve may be spring or gravity loaded so
that the minimal flow per operation is controllable. The ball check valve is used for high
viscosity liquids, in small size (max. 2") transport lines, and in hydraulic and pneumatic
power systems.

A piston check valve consists of a piston similar to a globe valve disc, which. in
normal operation, is kept suspended by the flow forces. The piston falls by gravity when

the flow forces become insufficient or negative. This type may also be spring or gravity

loaded. The piston check valve is widely used for liquids and gases and is particularly
effective for high-pressure steam services.

The swing-disk check valve consists of a disc inserted into the line and rotating
about a pivot shaft. In normal operation, the disc is kept open by the flow forces. The disc
closes due to gravity when the fluid forces become insufficient. Counterweights.
dashpots, or springs may be added to control the disc closing characteristics.

The swing-disc check valve is the most commonly used type in industrial
pipelines, in a wide range of pipe dimensions (from 2” to over 48" diameter) and
operating pressures. In the following, the investigation is focused mainly on the swing-
disc check valve.

The category of Swing-Disc Check Valves can be further subdivided into the
following types:

1. Conventional bore or reduced orifice swing check valves
2. Full bore swing check valves
3. Wafer swing check valves, which are essentially conventional bore types. with

reduced length and weight and favorable economic and installation characteristics.

The disc of the swing check valve can reach dimensions of over 100 cm diameter
and a weight of over 2 tons, for such large disk. counterweights become necessary to
open the valve in normal operating conditions and dampers are required to reduce the

dynamic forces.

1.4 Review of Previous Work

1.4.1 Hydraulic Transients

The study of hydraulic transients began with the investigation of the propagation of
sound waves in air, the propagation of waves in shallow water, and the flow of water in
pipes.

In 1897, Joukowski conducted extensive experiments in Moscow on pipes that
were, respectively, 7620 m long and 50 mm in diameter, 305 m long and 101.5 mm in
diameter, and 305 m long and 152.5 mm in diameter. Based on his experimental and
theoretical studies, he published his classic report [1] on the basic theory of the water
hammer. He developed a formula for wave velocity, taking into consideration the
elasticity of both the water and the pipe walls. He also investigated the relationship
between the reduction of flow velocity and the resulting pressure rise by using two
methods: the conservation of energy and the continuity condition. He discussed the
propagation of a pressure wave along the pipe and the reflection of the pressure waves
from the open end of a branch, and studied the effects of air chambers, surge tanks. and
spring safety valves on water hammer pressures. Finally, he found that the pressure rise

was a maximum for closing times, T, <2L/a, in which L= length of the pipeline and a

= wave speed.

Allievi [1] published the general theory of water hammer in 1902. He obtained an
expression of the pressure rise at the valve and presented charts for the pressure rise and
drop caused by a uniformly closing or opening valve. He also studied the rhythmic

movement of a valve. He proved that the pressure cannot exceed twice the static head.

Based on Joukowski’s theory, in 1920, Gibson [l] presented a paper that
included, for the first time, nonlinear friction losses in the analysis. He also invented an
apparatus to measure the turbine discharge using the pressure-time history following a
load rejection.

Schnyderc [1] included complete pump characteristics in his analysis of water
hammer in pipelines connected to centrifugal pumps. He was the first to include the
friction losses in the graphical analysis .

Since 1951, several books [2-10] have been published on the subject. Several
methods of analysis have been developed, such as Method of Characteristics [4.7.33].
Lumped Parameter Method [14,15] in time domain, Four-Pole Equations Modeling

Method [6] and Transmission Line Modeling Method [37.38,39] in frequency domain.

1.4.2 Check Valves Dynamics

The investigation of check valve dynamics and check valve related pressure surges have
been conducted by Pool. Porwit and Carlton [11]. Their work focused on modeling the
check valve dynamics more accurately in order to obtain better surge pressure
predictions. Swing-disc and tilting-disc check valves were considered.

Csemniczky [12] studied the hydraulic performance characteristics of pressure
' drop and momentum for tilting-disc check valves. He derived a semi-empirical formula
describing the momentum acting on the disc shaft.

Hong and Svoboda [13, 14], in 1981, presented the computer model of a swing

check valve suitable for use in lumped parameter pipe network simulation. The valve is

" viewed as a variable resistor with a resistance being the function of the disc angle. The
fluid was treated as incompressible.

Cavazzoni [15], in 1983, used an Orifice Sequence Model to determine the
coefficients of resistance for check valves. The valve dynamic system was represented by
a second order, non-linear differential equation. Additional elements such as
counterweights and springs were examined and introduced, as additional terms. into the
general differential equation.

In 1983, Provoost [16] presented results of the study of the dynamic
characteristics of several types of check valves. he noted the importance of the local
reverse velocity and the deceleration of the liquid during closure.

Significant contributions ware made by Thorley [17] in 1987, where valve
characteristics have been studied with a view to defining a boundary condition for
computer coding and also to establish the ‘right’ type of check valve to use in a particular

installation.

1.4.3 Computer Program Simulation of Transients in Pipelines and Check

Valves

The arrival of the 1960s and the advent of the high-speed digital computer began a new
era in transient analysis of pipelines and check valves. In 1967, Streeter and Wylie [4]
showed the application of the computer to complete a comprehensive hydraulic transients
analysis. Watters [6] gave a FORTRAN program to solve simple pipe and pipe networks
in 1979. Cavazzoni [15] simulated pipes and check valves separately by a FORTRAN

program in 1984. Hong [14] combined pipes simulation and check valves simulation n

; 1983. In 1994, Cavazzoni developed a C++ program [I8] to solve transient flow in
pipeline networks systems using the finite element method. Sadfa designed the
FORTRAN program [18] to solve for the transient piping network flow in 1998.

Today the emphasis on pipeline transient analysis is almost entirely concentrated
on computer applications and window program. Jenkins [19] developed a window
program HAMMER which simulates the effects of the water hammer in a reservoir and
pipeline system in which a valve at the downstream end is opened or closed by the user.
Faast [20] designed software Faast-3 which is an interactive, graphical finite-element

program for analyzing fluid flow in piping systems.

1.5 Thesis Outline

The objective of this thesis is to model and simulate pipeline network systems with check
valves. The study focuses on three major areas:

I. Analysis of hydraulic transients for pipeline network system

(3]

. Analysis of check valve dynamics, especially for swing-disc check valve dynamics

w

Computer program implementation of combined pipelines and check valves

This study will begin by developing the governing equations for the transient flow
in closed conduits. In Chapter 2, continuity and momentum equations will be introduced.

Several assumptions are made and then condensed into a simplified version. The

" characteristics method will also be discussed in Chapter 2. Finally, basic boundary
conditions including valve and pump will be investigated in this chapter.

Chapter 3 will present the study of pressure drops across the check valve, and
flow forces acting on the valve disc. An orifice sequence model will be developed, in
order to predict the pressure drop through a valve as a function of a disc angle, for direct
and reverse flows. Coefficients of resistance for the valve and for the disc alone will be
developed, and the disc flow torque will be investigated to determine a relationship
between drag forces and total torque. The check valve dynamic system will be
represented by a second order, non-linear differential equation.

Chapter 4 will give the procedure for implementing computer simulation of
pipelines with check valves. This chapter will give consideration to the integration of the
pipelines simulation, check valves dynamics. and pump characteristic analysis. The
solution to pipeline transient by the characteristic method. to check valve dynamics by
the Runge-Kutta method, and to pump characteristic equations by the Newton-Raphson
method will also be discussed in this chapter. Some algorithms, flow chart and code will
also be presented.

Chapter 5 will present analysis of the pipeline network systems from the view
point of software engineering; design and implementation will be done using Object-
Oriented Programming techniques. The analysis will include some high-level algorithms.
hierarchical diagram and detail descriptions of the class and some objects. The user guide
for the software HydroAnalysis and HydroGraphic will also be given in this chapter.

Finally, Chapter 6 will include results and the conclusion to this study in addition

to suggestions for further work.

Appendix A gives the review of several solution methods used in hydraulic
transient analysis. Most of the major methods used in the analysis are introduced. The
lumped parameter, Four-Pole Equations Modeling, and transmission line methods are
then given in detail. Appendix B is the pump characteristics which will be used in this
study. Appendix C gives the extra simulation results of pump failure and start up.
Appendix D lists the head file for the program package HydrauAnalysis and

HydrauGraphic.

Chapter 2

Transients in Pipelines
2.1 Introduction

Flows in pipes are usually in an unsteady state. Altering the rate of flow can cause large
pressure fluctuations which can endanger the integrity of the pipe. Such pressure
fluctuations are called pressure transients and the state of flow in which they occur is
called transient flow.

In solid body mechanics, one may analyze the situation of a mass when being
acted on by a force. The mass is considered to be concentrated at its center of gravity and
Newton's second law is applied, taking into account any frictional forces present. If the
force is not co-linear through the center of gravity, angular momentum and angular
accelerations must be considered. This technique can be applied to a mass of water with
equal validity but, if the mass of water is very long and thin, as occurs in pipelines, such
an approach is unrealistic. This is because of the fact that when a force is applied to a
long mass of water, that force is propagated through the water by wave action.
Consequently this process occurs over a finite period of time and so the entire mass
tnvolved does not experience the force at the same time. An analysis that takes account of
this effect is called an elastic analysis, wheicas the usual method of analyzing solid
bodies is said to be a rigid body analysis.

From the above, there are two basic methods for the analysis of unsteady flows:

rigid column theory and elastic theory. Obviously the elastic theory is more accurate than

1L

the rigid column theory. Therefore discussion will focus on the elastic theory in this

chapter.

2.2 Basic Equations of Transients in Pipelines

Two equations are used to solve problems of unsteady flow in pipes, one being a form of
the continuity equation and the other being a form of the momentum equation (or motion
equation). Since the flow velocity and pressure in transient flows may be functions of

time as well as distance, these equations are a set of partial differential equations.

2.2.1 Continuity Equation

To derive the continuity equation, we apply the Reynolds transport theorem (8] for the
conservation of mass. First, we chose the control surface and control volume as show in
Fig. 2.2.1. where x is the distance, V is the velocity, and W is the velocity of section
moving.

Applying Reynolds transport theorem to the above control volume gives
d Xy
ZJ‘pAd.H-pZAQ(Vz ~W,)-p, AV, -W,)=0 @.2.1)

The above equation can be simplified:

ldp 1dA oV
——t——t+—=0
pd Adt ox

[
[
"~
~

This equation holds for converging or diverging tubes as well as for cylindrical

12

pipes on a slope or horizontal. It is also valid for any fluid, and for rigid or highly

deformable tubes, as no simplifying assumptions have been required.

Fig. 2.2.1 Notation for Continuity and Motion Equation

To write this equation in terms of the variables of interest, as pressure p and

velocity V, we express the derivatives of p and A in terms of p and V as following. The

introduced with the definition of bulk modulus of elasticity of a fluid.

k=L (2.2.3)
dplp

This equation can be written as

Q:ﬂd_p (224
d Kat
The second term in (2.2.2) deals with the elasticity of the pipe wall and its rate of

deformation with pressure. For prismatic tubes, area is a function of pressure only

I3

d_didp

dt dp dt

Substituting (2.2.4) and (2.2.5) into (2.2.2) yields
(2.2.6)

Ldpf Kdi) v _
KdtL Adp| ox

K
2 14

Now wedefine [7]: a° = KA

I+ ——

A dp

where a is the speed with which a pressure wave travels back and forth in an elastic

conduit filled with slightly compressible fluid

From (2.2.7), (2.2.6) becomes
dp 2 aV
—+pa"—=0 2238
dr dx (2.28)
In the above equation,
b _Spdt @ _yd. % (2.29)

AT AR
The above equation can be approximated by neglecting the spatial variation of V

whenever both spatial and time-varying terms appear in the same equation, because in
29

general, spatial variation is much less than time-varying variation. So that (2.2.9)

becomes: @ = a—p (2.2.10)
dt ot
So (2.2.8) is simplified as:
(2.2.11)

It is a common practice in hydraulic engineering to compute pressures in a

pipeline in terms of the piezometric head, H, above a specified datum and use the

14

discharge, Q. as the second variable instead of the flow velocity V

p=pg(H-2)
Q=VA

in which z = elevation of the pipe centerline.

From (2.2.12), the slope term is usually small and may be neglected,

dp dH v _ 1499

—=pg— = — 2.2.13
ar ar ox Aodx ()
With the above assumption, (2.2.11) becomes
H, a0 (2.2.14)
ot gA dx

This is the simplified continuity equation.

2.2.2 Equation of Motion

For the equation of motion, the Reynolds Transport Theorem [8] for the conservation of

momentum can be used. We can obtain
d .
[Vodv +[pAV -WIV], - (oA -WWL =T F @215)

The above equation can be simplified:

VLD, sng+ Vg (2.2.16)
dr pox 2D

where f = Darcy-Weisbach friction factor. The above equation is valid for converging or
diverging pipe flow.

Similar reason as (2.2.10), (i.e., % = %—‘:), and (2.2.16) reduces to:
t

15

av ldp

Vivi
+——+gsinf+——=0 2.2,
o pox § 2D (2:2.17)
From (2.2.12), we can get the following
g oH odz
ap pg(—-—‘) pg(—-smﬂ) (2.2.18)
Substitution into (2.2.17)
av BH fV |V|
-—+g 2.2
at ax 2D (22.19)
Since Q=VA, we finally derive
B_Q BH f 9 I Q| =0 (2.2.20)

or a.r 2DA
which is the simplified hydraulic-grade-line form of the equation of motion. It is

restricted to less compressible fluid (such as liquids), flowing at a low velacity.

2.3 Comparison of Methods of Analysis

The continuity and motion equations are the basis of hydraulic transients analysis. They
are quasi-linear, hyperbolic, partial differential equations. A closed-form solution of these
equations is not available. However, by neglecting or linearizing the nonlinear terms,
several methods have been used for numerically integrating nonlinear, hyperbolic partial
differential equations, such as method of characteristics, finite-difference method, finite
element method, and linear element method.

The method of characteristics converts the two partial differential equations of

motion and continuity into four total differential equations. This method has become

16

quite popular and is extensively used. For the analysis of systems having complex
boundary conditions, this method has proven to be superior to other methods in several
aspects, such as its stability, accuracy, easy of programming, and efficiency of
computations.

In the finite-difference method, the partial derivatives are replaced by finite-
difference approximations such that the unknown conditions at a point at the end of a
time step are expressed in terms of the known conditions at the beginning of the time
step. Since the algebraic equations for the entire system are solved simultaneously, the
analysis of complex boundary conditions by iterative procedures may require a large
amount of computing time. The linear element method and finite element method even
need 20 times more computation time to solve the same problem [15]. But for complex
pipelines, the method of characteristics is superior to the finite difference method, mainly
for its efficient handling of boundary conditions. Therefore, the method of characteristics
is chosen after comparing with the above methods and with other methods such as the
lump parameter method and the transmission line method, which reviewed in Appendix

A

2.4 The Method of Characteristics[7, 30, 31, 33]

2.4.1 Introduction

In section 2.3, it was demonstrated that the method of characteristics be superior to the
other method. Several methods used for the solution of hydraulic transients will be

discussed and compared in Appendix A. The details of the method of characteristics are

17

presented in this section. In this method, the partial differential equations will be
transformed into particular total differential equations. These total differential equations
will then be integrated to yield finite difference equations, and furthermore algebraic
equations, which can be conveniently handled. Simple, basic boundary conditions are

also discussed in this section.

2.4.2 Characteristic Equations

The motion and continuity equations (2.2.20) and (2.2.14) can be rewritten respectively:

[=, L19l_, @24.1)
ct ox 2DA
L=a%, g% _ (242)
ox ct

Let us consider a linear combination of Eq.(2.4.1) and (2.4.2) using a unknown multiplier

A
L=L +iL,
&0 zc’?Q) (6H leH‘) f (2.4.3)
(aﬁ)T G T 1)t 219k

Any two real, distinct values of A will yield two equations in terms of the two dependent
variables H and Q that will be equivalentto Eq. (2.4.1) and (2.4.2). Appropriate selection
of two particular values of A leads to a simplification of Eq.(2.43).

If H = H(x,t) and Q = Q(x,?), then the total derivatives are

g:@{.@é ﬂ:@_+££ (2.4.9)
d ad oxdt dd o oxdt

The unknown multiplierA is defined as

18

la*=—= 24.
d A (24.3)
The solution of Eq.(2.4.5) yields two particular values of A,
1
A== (24.6)
a

Substitution of these values of A into Eq.(2.4.3) leads to two pairs of equations which are

grouped and identified as C* and C~ equations.

gAdH dQ f i

e 0 (2.4.7
oo a " a a9 (47

% =a (2.4.8)

and
gAdH dQ f

- el S AP S =0 (249
c-:{ a d 2DAQIQI- (24.9)

% =-a (2.4.10)

Thus two real values of A have been used to convert the original two partial
differential equations to two total differential equations in the independent variable t.
However, a price has been paid for this simplification: Eq.(2.4.1) and (2.4.2) were valid
everywhere in the x-t plane: in contrast Eq.(2.4.7) is valid only along the straight line

given by Eq.(2.4.8), and (2.4.9) is valid only along the straight line given by Eq.(2.4.10).
In the x—t plane, Eq.(2.4.8) and (2.4.10) represent two straight lines having slopes il.

a

These lines are called the characteristic lines as shown in Fig. 2.4.1.

19

‘ Characteristic Lines
/
P
to+At ! /
At G, &
to A B
Ax=aat

— X

Fig 2.4.1 Characteristic Lines in x—t Plane

2.4.3 Finite Difference Formulations

In practice, the pipeline is divided inio an even number of reaches, N, each Ar in length,
as shown in Fig. 2.4.2. Assuming that the values of Q and H at point A and B are known,
and we want to determine their values at point P, this can be done by solving Eq.(2.4.7)
and (2.4.9) as follows.

By multiplying the left-hand side of Eq.(2.4.7) by dt and integrating, we obtain

g e £)
A deQ’szAfQIQIdt (24.11)

in which we use subscripts A and P to indicate locations in the x—t plane. For example,

H, and Q, are the head and discharge at point P.

20

‘ Ax Ax
2At LPY 22
P
At 32 2 >
0 i) B _
| 2 i1 i i+1 N N+l X

Fig. 2.4.2 The x—t Finite Difference Grid

The first two integral terms of Eq.(2.4.11) may be evaluated easily. However, this cannot
be done for the third term, because the variation of Q with respect to ¢ is not explicitly
known. Thus an approximation must be introduced in this evaluation. A number of
options exist. The objective is to maintain a simple form that will provide reasonable
accuracy in general unsteady flow and that will hold conditions steady during steady
flow. It is therefore best to use the trapezoidal rule to maintain the linear form of the
integrated equations. It is of second-order accuracy, and is a satisfactory approximation

for most problems.
[folold=a,(0,| (2.4.12)

By substituting Eq.(2.4.12) into (2.4.11), and noting thatAx = *qAt, integration along the

characteristic line AP, and similarly along the characteristic line BP results in

21

A
H,,-anA(Qp-QA) 2sz 0.10,|=0 (2.4.13)
A
H,-Ha-i(Qp-Qa)-sz; 0,105 =0 (2.4.14)

These two compatibility equations are algebraic relations that describe the transient
propagation of the piezometric head and flow in a pipeline. By solving for H;, these
equations may be written

C*: H,=H,-B(Q,-0,)-R0,|0,| (2.4.15)

c: H,=H, +B(Q, -0;)+RQ, |0, | (2.4.16)

In which B is a function of the physical properties of the fluid and the pipeline, often
called the pipeline characteristic impedance:

p=2 Q2.4.17)

gA
and R is the pipeline resistance coefficient:

fAx

= S 24.18
2gDA" ()

The friction factor f may be a constant, or it may be adjusted with the local Reynolds
number in accordance with the Moody diagram in each reach at each time step during
calculations.

The solution to a problem in liquid transients usually begins with steady-state
conditions at time zero, so that H and Q are known initial values at each computing
section (Fig. 2.4.2), for t = 0. The solution consists of finding H and Q for alternate grid
points along ¢ = A4t, then proceeding to ¢t = 24¢, and so on, until the desired time duration

has been covered. At any interior grid intersection point, point P at section i , the two

compatibility equations are solved simultaneously for the unknown Q; and H; .

Eq.(2.4.15) and (2.4.16) may be written in a simple form

C: H =C,-B,0, (2.4.19)
C: H;=C, +B,0, (24.20)

Where
C,=H_ +BQ,_ B, =B+R|Q_| (2.4.21)
C,=H,-BQ, B, =B+R|Q. | (2.4.22)

solving for H;and Q;:

H, = C’i" :g“ B (24.23)
P M
0 = gr - g.w (24.24)
pt Oy

Thus the computation procedure uses the current values of H and Q at point i ~ 1
and { + I to compute their values at point i at one time interval 4r later. Usually, the
starting values are known for a steady flow condition, which is called the boundary
condition. The discussion conceming the boundary conditions will be presented in the

next section and in a later chapter.

2.4.4 Basic Boundary Conditions

In the last section, it was indicated that boundary conditions are required to determine the
transient-state head and discharge at the boundaries. Devices such as pump, valve,

reservoir and junctions form these boundaries. They may be located at either end of a

pipeline or at some intermediate point. If they are located at the downstream end (x = L),
Fig. 2.4.3, the C* characteristic equation (2.4.19) can be used, while if it is at the
upstream end, the C characteristic equation (2.4.20) can be applied. The following are

typical boundary condition equations:

2.4.4.1 Reservoir

1. At the upstream end of the line: Fig 2.4.3a

ae)
%
"'U_

AX

n,

NS=N+1

(a) {b)

Fig. 2.4.3 Reservoir Boundary: (a) Upstream end; (b) Downstream end

At a large upstream reservoir the elevation of the hydraulic grade line normally can be

assumed constant during a short-duration transient. This boundary condition is described

as H; = Hpg, in which Hg is the elevation of the reservoir surface above the reference

datum. At each time step, H; is known, and Q; is determined by a direct solution of
Eq.(2.4.20)

H, -C,
BM

Q= (2.4.25)

The subscript 1 refers to the upstream section, at point P, Fig. 2.4.3a; Cy and By are
variables in the computational procedure but are dependent only on known values from

the previous time step, in this case point B, section 2.

2. At the downstream of the line Fig. 2.4.3b:

The boundary condition is described as: Hys = Hg, Similarly, Eq.(2.4.19) is used

= CP —HNS

2.4.26
B, (2.4.26)

Qs

where the subscript NS refers to point P, Cp and Bp can be calculated by the previous

time step.

2.4.4.2 Series Junction

This type of junction, although shown in fig. 2.4.4 as a diameter change, applies equally
well to a single-diameter pipe with a change in roughness, thickness, or constraint
condition, or any combination of these possible variables. At the junction (Fig. 2.4.4),

Eq.(2.4.19) is available for pipe I, and Eq. (2.4.20) is available for pipe 2.

Fig 2.4.4 Series Junction

The continuity expression and the condition of a common hydraulic-grade-line

elevation provide two equations, as follows:
Qixs =0y Hy=H, (24.27)
where the first subscript refers to the pipe number and the second one refers to the end

condition. By solving these equations simultaneously with Eq.(2.4.19) and (2.4.20), the

following is obtained:

C,-C
Q,, = < -

= (2.4.28
B s T B ",)

2.4.4.3 Branch Junction

A junction is visualized as a point connection of elements in a system, at which there are

two variables: a nodal flow, Q,, which may be zero, with inflow being positive, and a

nodal pressure or hydraulic-grade-line elevation. Fig. 2.4.5 shows a branching junction of

pipeline with a potential nodal flow Q,.

Fig. 2.4.5 Branching Junction

There are two types of junctions or nodes:
1. A constant pressure
2. A constant flow
Referring to Fig. 2.4.5, a continuity equation is written at the junction summing
the inflow,
¥0.=Y0,+0,=0 (2.4.29)
in which the EQP is the summation of all instantaneous pipeline flows. When minor

losses are neglected, we have

H=H ,=H,=H;;=H, (2.4.30)

The compatibility equations are also available in each pipe: Eq. (2.4.19) for pipe 1 and 2,
Eq. (2.4.20) for pipe 3 and 4.

For a junction with a known pressure head (unknown nodal flow), such as at a
reservoir or pressure tank, the pipeline flows are determined directly from appropriate
application of Eq.(2.4.19) and (2.4.20), and the nodal flow Q, is then determined directly
from Eq.(2.4.29).

For a junction with known Q, (may be zero), the compatibility equations are

written in the following form:

C s H
C, H
Qz.‘vs = —BL - E"’
P A
Cu, H
Q= K 'E;
C H
0 =gt
M, M,

The summation of these equations gives
2.0, =5:-S;H (2.4.31)
in which
G, 5Ce _yl,y L
and includes all the pipelines connected to the junction. Substitution into Eq.(2.4.29)

yields an equation form similar to the compatibility equations to compute the pressure

head:

28

H=C,+B,0, (24.32)

in which C, = z—c and B, = -Sl— The compatibility equations then yield the flow in each
8 8

pipe. This method may be applied to any number of pipes and can be extended to non-

pipe elements such as valves and pumps.

2.4.4.4 Valve or Orifice (32, 36]

Valves or orifices may be located within a given pipeline, between two different lines, at
the reservoir, at pipeline terminations, or in any number of other positions in systems.
Fig.2.4.6a shows a valve between two pipelines, and Fig. 2.4.6b shows a schematic
representation of the valve with nodes a and b as the interconnecting junctions on both
sides of the valve.

Use of the steady state orifice equation neglects any inertia effects from
accelerating or decelerating flow through the valve opening and also implies that there is
no opportunity for a change in the volume of fluid stored in the valve body. For positive

flow, Fig 2.4.6b, with H; ns = H; and H; | = H, the orifice equation is

Quvs =0, =0, =C,Az[28(H, - H,) (2.4.33)

in which Ag is the area of valve opening and Cj is the discharge coefficient.

For steady state flow, the similar equation is

0, =(C,4c)0y28H, (24.34)

29

in which the subscript zero refers to steady conditions for each variable. A dimensionless

Fig. 2.4.6 Valve in line

valve opening is useful in specifying valve motions as a function of time and is defined as

r=_Cefs (2.4.35)
(C446)q

For the steady flow of Qg and the corresponding energy loss of Hy, T = 1, and for no flow
with the valve closed, © = 0. By dividing the unsteady Eq. (2.4.33) by the steady state

flow Eq.(2.4.34), we obtain

Qs =0y, =0, = f;l—r\/fl,, -H, (2.4.36)
1]

Applying Eq. (2.4.19) in pipe 1 and (2.4.20) in pipe 2, combined with Eq.(2.4.36), we

get

30

Q, =-C,(B; +B,) +,/CX(B, +B,,)* +2C,(C, -C,.) (2.437)

in which
(2.4.38)

For flow in the negative direction the orifice equation is

Ouws =0 = J——JH -H, (2.4.39)

and when combined with Eq.(2.4.19) and (2.4.20), we can get

Q. =C,(B, +B,,)~[CX(B, +B,,)* -2C,(C; -Cy,) (2.4.40)
Once the flow is known, Eq.(2.4.19) and (2.4.20) can be used to find the pressure head.
The above describes only the most basic boundary conditions used in analyzing

pipeline-check valve transients. The check valve boundary condition will be discussed

specifically in detail in Chapter 3.

2.4.5 Boundary Conditions for Pump

2.4.5.1 Introduction

The method of chafacteristic may be used to analvze the hydraulic transients during
pump failure or start. Since the pumping head and discharge depend upon the pump
speed, transient-state speed changes must be taken into consideration in the analysis. For
this purpose, special boundary conditions for the pump end of a pipeline must be

developed. In this section, the dynamic behavior of pumps is considered. A method for

31

" the determination of the boundary conditions for the pump end is developed. This is
followed by discussions of pump failure and pump startup for single. series and parallel

pump connections.

2.4.5.2 Boundary Conditions for Pump Failure [7, 8, 25]

The dynamic behavior of a pump failure depends on the instantaneous pressure-flow
response in the piping system, the momentum equation for the rotating masses. and the
pump characteristic curves as described in Appendix B. The primary element equations
are the torque-angular deceleration equation describing the speed change in response to

the resisting torque, and an equation that describes head balance across the pump.

Qa P Q
L\ 2 - 7 _4
Loy < £t

G —o—5—
Pump Valve

Fig.2.4.7 Pump and Valve in Pipeline Systems

Referring to Fig 2.4.7, a pump with discharge valve in a pipeline system will be
used to illustrate the handling of a pump failure. If the nodal flows are zero and there is
no change in liquid storage between nodes a and c, the instantaneous flow, Q, is the same

at the pipe ends and through the pump and valve.

32

With one pipe only at node a the nodal equation is the C* compatibility equation
for pipe 1:
F,=H,-C,+B,0=0 (2441)
The comparable equation at node ¢ is :
F,=H _-C,, -B,0=0 (2.4.42)
At node b the equationis: Q@ =0, =0;.

The element equation for the valve is:

F;,=H,-H.-AH, =0 (2.4.43)
where
_010| .
AH, = 2C. (2.4.44)
Q.7

For a control discharge valve, C,p = , as discussed in Sec. 2.4.4.4 (Eq. 2.4.38),

20H,

with the head loss across the valve equal to AH o when the flow is QR and 7=1.The

valve position, T , is given as a function of time during the transient calculation.

1. Head Balance Equation

The head balance relationship across the pump at any instant is

H,+H=H, ' (2.4.45)
in which H is the total dynamic head acrc;ss the pump. This total dynamic head is given
by Eq(B.8) and (B.5)

H=Hnh=H(c +*)W, (2.4.46)

33

‘ \//WH(‘)=A¢+:\1 X

Aprox. X ‘

Fig 2.4.8 Approximation of Pump Curve by a Straight Line

To use the curve of Wy in Eq.(2.4.46), a straight line is used to replace the curve

of Wy for the proper vicinity of of x. In Fig. 2.4.8 where x is the approximate location of

aVv i
m+tan™ —, obtained by extrapolating v and & from previous calculations, a straight
74

line is defined through the two adjoining data points. as: i = =~ +1.
X

Ttis is a integer arithmetic expression that locates the subscript for the data point
to the left. Then (i —1)Ax,W,, (i) and iAx,W, (i +1) are the Cartesian coordinates of the

two data points. By substitution into W, = 4; + A x,

A= W, (i+1)-W, (@)

‘ Ax (2.447)
Ay =W, (i +1)~iAAx

Now, we know the values of A; and Aq by the pump characteristics curve (or

tabular data). The Eq.(2.4.46) becomes

34

H=H, (@ +V)[A +4<zz+mn"£)1 (2.4.48)
and the Eq.(2.4.45) becomes
H,—H, + Hy(® +V")[4 +4(7r+tan“£)]=0 (2.4.49)

The above equation relates the head on each side of the pump to the variables ¢ and v.

When combined with Eq. (2.4.41—2.4.43), noticing that O =1Q,, the following
is obtained:

AL

F, =C,=C, =\0:(B, +B,)+ Hy(cF +V*)[4 +4(7r+tan“-c—z 0

(2.4.50)

This equation contains unknown ¢t and v only, and it is valid for control valves.

2. Speed Change Equation

The change in rotational speed of the pump depends on the unbalanced torque applied:

T=-1 ga_)
dt
or
T=-1 _Zﬁﬂ (2.4.51)
60 dr
in which [=-—%-: W is the weight of rotating parts plus entrained liquid, R, is the

g
. A do .
radius of gyration of the rotating mass, @ is the angular velocity in radians, and e is

the angular acceleration. On the basis of Eq.(B.5), Eq.(2.4.51) may be written as

35

B=-1—"F— (2.4.52)

In this equation,

_ 601 40,

Ty
27N g1,

¥ = specific weight of liquid
1r = pump efficiency at rated conditions.

Since

T

ﬂozi.: B=

aoz— a=

N (2.4.53)
N, N, o

T

TR

Eq.(2.4.53) is solved over two time step, by using an average value of f§ during the time
step, and so it become:

ﬁ+ﬂ0 =_[272NR a-aﬂ
1 60 T, A

This can be simplified to:

7 Nya,-a
=] R0 - _ 2.4.54
B=1 T B (24.54)

By defining

Eq.(2.4.54) can be written
F.=8+f,-Ci(a,—a)=0 (2.4.56)

Referring to Fig. B.2, the characteristics torque equation is

36

W,(x) =

4 2

=B, +B (7 +tan™ =) 2.4.57)
+v a

in which Bg and B, are found in the same manner as Agand A, that is
Wi +1)-W, (i)

B = Ar (24.58)
B, =W, (i +1)-iBAx

So Eq.(2.4.56) become:
F, =(a* +v*)(B, + B,(z +tan™ §)1+ B, ~Cr(c, -@) =0 (2.4.59)

This is the speed change equation in v and .
To develop the boundary conditions for a single pump, Eq.(2.4.41) to (2.4.44)
and (2.4.49) must be solved simultaneously , or Eq.(2.4.50) and (2.4.59) must be solved

directly and simultaneously for v and & using the Newton-Raphson method [7].

2.4.5.3 Boundary Condition for Pump Start Up

Centrifugal pump startup is usually accomplished with the discharge valve closed; as the
pump approaches operating speed, the valve is opened slowly.
Analysis for pump startup is generally based on the assumption that the speed

rises from zero to N linearly. After a reasonable Ts is selected, @ is known:

a=

a3~

T<T,

a=1 T>T;
Thus the pump speed is known during the transient conditions, and we do not

have to use the torque characteristics and the polar moment of inertia to determine ¢

37

at different time. This simplifies the necessary computations considerably.

Fig. 2.4.9 Pump Start Up

In homologous form, the curve for the pump in Fig. 2.4.8 takes the form
H, -H =« ‘H s $a,00, s+ zQ;:vS (2.4.60)

in which Hs is the shutoff head, and a; and a; are constant, normally negative, to describe
the pump characteristic curve.
When Eq.(2.4.60) is combined with Eq.(2.4.19) and (2.4.20), the discharge may

be determined as

o 2 Ba% B ~aaf [_de@H+C,-C,, (2.4.61)

If a check valve is put near a pump, one must consider the valve head loss and

simultaneously solve Eq.(2.4.60) and (3.4.3).

38

Chapter 3

Check Valve Dynamics

3.1 Introduction

Check valves are placed in pipelines to prevent back flow. They are usually located at
pumping stations, but may also be used at other locations in systems. Ideally, when the
flow reverses at the location of the check valve, it closes, thus preventing back flow.
More realistically, since the valve position is controlled by the flow and valve dynamics,
closure occurs after some degree of back flow is established. This causes an
instantaneous stoppage of the reverse flow with the corresponding pressure rise. The
large pressure rises associated with the reduction of this reverse velocity accelerate the
closure, resulting in higher pressure which ultimately slams the moving element onto its
seat.

It is important to know the dynamic behavior of the check valve in the analysis of
pipeline transients. Dynamic torque or force equation is therefore required in the analysis
together with an energy equation to describe the losses across the valve which are
accrued by back flow prior to its sealing.

A swing-disk check valve typically contains a relatively freely moving part such
as a disk, whose motion is dictated by several elements including the movement of the
fluid, its weight, external forces such as a spring or counter weight, friction, and possibly

a damping device.

39

In this chapter, the check valve differential equation of motion will be introduced,
followed by a detailed discussion of various torque and forces such as flow force and
pressure drop. An orifice sequence model will be introduced for predicting the pressure
drop through a valve as a function of disk angle. The disk flow torque will be
investigated and an equivalent torque arm and a torque arm coefficient will be introduced

to determine the disk torque that depends on coefficient of resistance and flow conditions.

3.2 Check Valve Differential Equation [12, 16, 17]

For a swing check valve, Fig. 3.2.1 provides a schematic in which @ is the open angle of

the valve disk.

] N
NNNNN

g\\\\§%/////// NN

Fig. 3.2.1 Schematic of Check Valve

The clockwise moments about the pivot point are considered positive. The torque

equation becomes:

Tyy +Toy +T,+T. -T, =(J, ”‘“')% (3.2.1)

where J, is the moment of inertia of the disk and arm assembly and J cw is the moment

of inertia about the hinge for an attached counter weight.

The torque due to the weight W, of the rotating disk is given by T,,, ,
T, =W.L, cos6 (3.2.2)
T, is the bearing friction torque. It may be a constant related to a frictional

coefficient, the pivot pin radius, and the submerged weight of the gate, but is also likely

to depend on at least the angular velocity [21]. The friction torque would be of the form

LAY
T,=K +K,| — 323
-] 29

in which K, and K, are constants and n an arbitrary but constant power.
T, is the counterweight torque, T, is the flow torque, and T; is the spring

torque. Some of the above torque can be obtained by theoretical derivation, some of it
can only be obtained by experiment. In the next section, the torque components are

separately discussed.

3.3 Component Torque

The torque component [15] includes the counterweight, external spring and others such

as dash-pot. They cause the torques which can be easily determined from valve structure,

41

dimension and material properties. In this section, only the normal components such as

counterweight and external spring are discussed.

-

g7 Sk
V Z _/;?5\2 S8

~o /N
o
\ / [\\Q

-

"/'

i
i

Fig 3.3.1 Counterweight

33.1 Counterweight Torque

A counterweight is an auxiliary, external device, used to modify the static and dynamic
characteristics of a clapper-hinge system. It may be used:

to reduce the weight torque in the open position

—
.

"~
L

to modify the weight torque in the closed position
3. toincrease system inertia

The counterweight dynamic equation (referring Fig 3.3.1) is:

., d0 .
m.L." *(%IT) =W.L.*sin(y +8) (3.3.1)
Referring to Eq.(3.2.1), the counterweight inertial and counterweight torque are:

Jow =m.L2 (3.3.2)

T,y =W L, *sin(y +6) (33.3)

3.3.2 Spring Torque

Adding springs is the most common way of reducing the check valve closing time.
Springs are also used to increase, or to generate, a closing torque, when the disk is in a

near-closed position.

Fig 3.3.2 Cylindrical Helical Bending spring

There are two types of springs (Fig. 3.3.2 and Fig. 3.3.3):

L. Cylindrical helical springs subject to bending

2

| J— |

(a) Torsional Spring

Cylindrical helical springs subject to torsion

Ls

(b) Kinematic of Torsional Spring

Fig. 3.3.3 Cylindrical Helical Torsion Spring

Helical springs subject to bending (Fig. 3.3.2) do not require rigid pivot connections, or

external devices, yet they cannot be changed without removing the disk. The bending

spring contribution to the valve differential equation is

T, =K;*(6-6,)
in which
K is the spring constant
6, is the spring angular pre-load

T, is the spring torque

(3.3.4)

Helical springs subject to torsion (Fig. 3.3.3) require a rigid connection, but they

can be easily inspected and changed.
The torsion spring torque is

Ty = Ko *(Lg ~ Lgg)* Log *sin &,

in which, K is the spring constant and Lg, is the spring free length.

Ly =yLs* +Ly* - 2L, L, cos(@ +8)

5 = cos™ Ly + L};z Ly’
2Ly

5 =cos™ L' +L -L;*
l 2L, Ly

3.4 Check Valve Flow Torque

3.4.1 Introduction

(3.3.5)

With a pipeline in normal operating conditions, flow forces act on the disk surface,

keeping it in the open position. These flow forces are a combination of lift and drag

effects. The magnitude and point of application of lift forces depend on the fluid-dynamic

characteristics of the disk and hinge and on the angle of attack c. The lift forces increase

with the opening angle and reach a maximum for opening angles to 70°. Magnitude,

direction and point of application of lift forces depend on the pressure distribution on the

upper and lower surfaces of the disk-hinge systems.

45

The magnitude of the drag forces may be determined when the valve's total
pressure losses are known. There are two ways by which to determine drag forces: one is
the experimental coefficient representation; the other is by which the orifice sequence
model, in which the drag forces can be seen as the sum of five elementary components
corresponding to the five contractions and expansions of pipe.

In this section, the orifice sequence model is introduced and used to determine the
pressure drop for forward and reverse flow. Afterward, the flow torque for forward and

reverse flow can be determined.

3.4.2 Check Valve Pressure Drop

A wafer check valve (Fig.3.4.1) may be modeled as a sequence of orifices in which the
valve's coefficient of resistance can be assumed as a combination of the coefficient of
resistance of the elementary contractions and expansions.

Pressure drop and flow through an elementary contraction or expansion are

related by the following Darcy Formula:

AP = E—& (34.1)
D 2
We can substitute
K= L and Vv =—Q-"- (34.2)
D A
into Eq.(3.4.1) to obtain:
ap=kP2_ (3.4.3)
2A°

The flow rate can be rewritten as:

al2
p
=—1Z /AP 344
Qv JE ()
Letting:
K= |
= C (34.5)
Eq.(3.4.4) becomes:
.. 2
Q,=C, A\/;JAP (3.4.6)
. 0.}
Referring to (Eq.2.3.38): ¢ =="—
gto (Eq): C,
)
0, = £’-~/AP (3.4.7)
Pg

Compare Eq. 3.4.6 and Eq. 3.4.7:

c =48

== AgC')? (3.4.8)

In Eq. 3.4.5, the K is the coefficient of resistance, and represents an equivalent

length, in pipe diameter of straight pipe:
1 L
K = rery =f=-—= 3.4.9
c f D K ()

3.4.2.1 Coefficient of Resistance of a Wafer Swing-Disk Check Valve

Hong [14] studied the pressure losses through a wafer valve, using water as the fluid. The

check valve was modeled as two restrictions in series. The upstream restriction was due

47

to the orifice and the downstream restriction was due to the wide-open disc. Each

restriction was composed of an entrance contraction followed by an exit expansion (Fig.

34.1).

' Q T
; Orifice .
Restriction Disc
AN Restriction
i " (b) Orifice Model for Wafer-type

(a) Valve geomertry Swing-disc Check Valve

Fig. 3.4.1 Orifice Model for Wafer-Type Swing-Disc Check Valve

The coefficients of resistance for the orifice and disc can be assumed as independent. The

overall normalized resistance coefficient is given by:

[C. C.ﬁ
C, =—-"T""—, (3.4.10)
C, +C,,’
in which
d, .,
=)
C = _ d,

= Cu (3.4.11)
2 d,
— JK[+ =-1
\Jp d,

48

[] 1 F
C,--—C”—'=—————° - (3.4.12)
\/E JK, +(F, -1}
p
F, =1-—d—’c056-4—A‘: (3.4.13)
s

where Aq is the projected area of the disc and disc arm normal to the flow stream. Iis

value can be calculated as [14]:

d. o2 da . 2X
A, =Xo((?) - X,)+(—2'-) arcsm(—d—“)

1
-[XM/(%)2 X0+ (%)z arcsin(zdﬁ)}ose (3.4.14)
it 3
-2L, X (1-cos8) +2d X, sind
where Xg and L, are the half width and total length of the disc arm and d, is the disc shaft
displacement with respect to the seat plane, and K; and K; are given as:

. 0.04

K, (3.4.15)

(1 —3—3-] sin(90-6

k=9 (3.4.16)

4

Also, we can write K;and Kj as:

2
4
g L 4 (34.17)

49

L (3.4.18)

Referring to Eq. (3.4.9), another expression may be used to represent the resistance

coefficient when disc angle greater than 15°.

— I —-—

1 1 _ 1
VK K, K +K,+K, +K, |[fRptK+KtKy

C, =

(34.19)
where Kj is the equivalent length of the valve.
The value of the equivalent length for wafer disk check valves depends on valve
sizes and disc opening angles. For a widely open valve, the equivalent length of a wafer

check valve can be approximated as:

K,=16 (3.4.20)

3.42.2 Coefficient of Resistance of Forward Flow

Cavazzoni [15] had improved the above orifice model with the following assumptions
(Fig.3.4.2):

The valve’s internal geometry may be idealized as an orifice, the seat area, and a
circular disc, and the vertical projection of disc and hinge (the disc arm) area. Four
characteristic surfaces can be identified and their area assumed to be the surface area of

four orifices in sequence. Using Fig. 3.4.2 notations:

50

N
D

—l\
NN
N

N

N

N
\

—a] e. Heao—
%

\I\\ﬁ—
N
NN
N

(a) Valve Geometry (b) Disc Idealization (c) Sequence of Orifices

Fig 3.4.2 Orifice Sequence Model

¥ =0.7 (form coefficient)

Sy =myd’

dy =Lyg6

S, =md,d,

dg; =m

The coefficient of resistance for each elementary contraction and expansion can be

calculated as follows:

51

0.04
Ke=—r0o (3.4.21)

d, .,
(d‘)
d, .Y d
(- oy
- dg ds,
K, = (3.4.22)
(Zeys
dSl
d, .\d
0.5 1- (=) [(=by*
fi-des)
Ky = = = (3.4.23)
Ls1ys
(4,)
(1 + ((‘:—’)2 }‘/sin@o -6) (:—')
K= 3t L (3.4.24)
Geys
dSl
[1-(‘:—‘)’
K, = . (3.4.25)
Geys
dl
and
K=K +K, +K,. +K,. +K_, (3.4.26)

the above formula is valid for :
15° <8< 70°

For disc angle less than 15°, the coefficient of resistance may be considered as
using:

1
K=___Si;""> (3.4.27)

3.4.2.3 Coefficient of Resistance of Reverse Flow

Using the same notations as Fig. 3.4.2, the elementary coefficients of resistance for a

reversed flow are:

!Hﬁ)’ '
k. =L dl (3.4.28)
lre (ﬁ)‘

dl

d, .Y d
1-(=43 | (=2*
K. < (dz)] A (3.4.29)
e d!l 4
=5
o.s(1-(:;2)2](;—‘)‘
Kc= R (3.4.30)
)
dSl
(1-(:—’)’] (%)‘
K, = L ' (3.4.31)
(e
dSl
! -0 '
Koo =i (3.432)
5!
dl
and K=K, +K, +K,c +K, +K,. (3.4.33)

The above formula is valid for:

10° <4 <70°

For disc angle less than 10° the coefficient of resistance may be considered as:

3434
g (3.4.34)

53

Now that the coefficient of resistance for forward and reverse flow has been
obtained, Eq. (3.4.3) can be used to determine the pressure drop for the forward and

reverse flow condition.

3.43 Swing-Disk Check Valve Flow Torque

Fig.3.4.3 shows the important parameters for the unsteady flow condition through a
check valve. Due to the fluid forces acting against the valve disc, a torque Ty is created

which acts on the disc shaft forcing the disc to swing with the angular velocity w.

g\\\\\\\%\ % m\\\\\\\\})

Fig 3.4.3 Unsteady Flow Through a Check Valve

The relative uniform fluid velocity Vg with respect to the angular velocity of the

disc forward flow is given by:

V, =V, - Lawcosf (3.4.35)

54

where La is the hinge arm length and 8is the disc opening angle.

And V, = i—" where Qv is the flow through the valve and A; is the orifice area.
For reverse flow,
Ve =V, - Lawcosf (3.4.36)

and V' = -ii . Where A is the pipe area.

-

The flow force is acting normal to the disc center and is expressed in terms of the
normal drag coefficient Cyp:

F, ='1ch.voA3VR IVR I (3.4.37)
where A; is the disc area and p is the density of water.

This may also be written in the form of Qv :
F,=LpK, ., =~ (3.4.38)

where K1 is the total coefficient of resistance.
The flow torque acting on the disc shaft for a wafer swing-disc check valve is
given as:

T, =F,L (3.4.39)

s
For complete description of the fluid torque acting on the valve disc, the normal drag
coefficient must be determined as a function of disc angle and pipe flow Reynolds
number. This may be obtained through experimentation.

If the orifice sequence model is introduced, the drag force can be seen as the sum
of five elementary components corresponding to the five contractions and expansions.

Referring to Fig. 3.4.2,

55

Fp, == pK, == (3.4.40)

and

FDC=FDI+F02+F03+FD4+FDS (3.4.41)

Now, the Torque Arm Coefficient (TAC) is introduced. It can be obtained through

experimentation [19], or represented by the following approximation:
0 <8<20r TAC=0.74 (3.4.42)
20" <6 <70° TAC =0.0209 *6 + 0.322 (3.4.43)
The disc shaft torque can be modified as:
Tp=TAC*L *F,. (3.4.44)
For reverse flow, the flow force can be written as:

0

F, = é oK, A (3.4.45)
and
Foc = Fpy + Fpy + Fs + Fpy + Fi (3.4.46)
The algebraic expression of TAC is:
0 <f<20 TAC =0.65 (3.4.47)
20°<f<45° TAC=0.0117*6+0416 (3.4.48)
45 <6<70° TAC=0.0583*6-1.6820 (3.4.49)
The reverse flow torque is:
T =TAC*L, *F,,. (3.4.50)

56

3.5 Boundary Condition for Check Valve {21,24]

If the check valve is located inline, referring to section 2.4.4 and section 3.4.2, using

Eq.(3.4.8), Eq.(2.4.40) becomes:

A? A’g
0,= (8, +Bu,)-J()

RTVM,

(.5.1)

or:

0, = 4'¢C. By + By)~ 42C. By +By,) ~24%C.(C, ~Cir)
(3.5.2)
Once the flow is known, Eq.(2.4.19) and (2.4.20) can be used to find the pressure head.

If the check valve is located near a pump, referring to section 2.4.5.2, using

Eq.(3.4.8), 'Eq.(2.4.50) becomes:

Fy =Co-Co 0y B +B) @ 4 At ar - AUZ K g
a ZA‘g
(3.53)
or:
=G, —Cy —WQ(B, +B,)+ Hy(& + P[4y + Az +tar)] vivige _
M zAng
(3.5.4)

K or Cv is the coefficient of resistance, and may be obtained by using the

equation discussed in Sec. 3.4.2.1—3.4.23.

57

It has been demonstrated that all the torque represented in section 3.3 and
Eq.(3.2.1) are available for calculation and numerical representation. Therefore, it is
possible to represent check valve dynamics by using a set of ordinary differential

equations, which can be solved using numerical techniques.

58

Chapter 4

Simulation and Model of Pipeline Network
Transients with Check Valve System

4.1 Introduction

Experimental investigation of pipeline transients with a check valve system would be
very expensive. In a large pipe and valve system, it also would be very difficuit and time
consuming. As an alternative, an adequate computer simulation would be a valuable
substitution as a design aid and for system performance evaluation.

The complete numerical model consists of the pipeline system model, the check
valve dynamics model, and the pump characteristic model. The relation of these three

model parts is shown in Fig. 4.1.1.

Pump
Characteristic AP
Qpump| Hpump
Coefficient of}
Valve o} Resistance 4 Pipeline Qpipe
Dynamics %@ $x |iaP,Qy |Simulation
Phipe

Valve simulation

Fig. 4.1.1 Block Diagram of Pump, Check Valve and Pipeline

59

The simulation of the pipeline, check valve and pump system makes use of the
material presented from chapters 2 and 3. In this Chapter, discussion focuses on the
solution of the proceeding chapters. The detailed solution of the characteristic method for
a pipeline transient will be studied in séction 4.2. The check valve dynamic equation will
be solved by the Runge-Kutta method in section 4.3. The pump characteristic equation
will be solved by the Newton-Ralph method in section 4.4. In this chapter, an example of
a network pipeline system will be presented, and the detailed flow chart and an algorithm

for the system simulation will be discussed.

4.2 Algebraic Solution to a Piping System [33, 34]

4.2.1 Algebraic Representation and Continuous Storage Data

The C™ and C characteristic equations may be transformed into other forms in which
time is a subscript, and in which the characteristic lines extend to more than one reach,
generally the full pipe length. The equations are called Algebraic Equations. These
equations may be used to solve most problems handled by the method of characteristics,
but they have a form which is particularly convenient for transient calculations in piping
systems and networks.
The algebraic forms of the equations have the following properties:
I. They are compatibility equations applied over one or more reaches of a pipe.

2. Time is indicated by an integer subscript.

" 3. The time increment is At = L/(Na), with N being an integer.

4. The section numbers along the system may also be subscripted or, for simple systems,

the location of head and discharge may be identified by a change in variable name

(C.O.HA,Q,\).
Ke K at
1 5 Savp____. —— e
§ 4 davp____ B
4 3 Jatl____./| B
32 2atp .. —— e 2,
21
I 0
5 -l
4 -2
3 -3

AT)Ripe LN

V‘le,',\./

Fig. 4.2.1 x—t Diagram for Algebraic Representations in Series System

There are several forms of numerical studies. in the following focus will be on discussion
of double-subscripted notation. The schematic diagram of a series system is shown in
Fig.4.2.1 with nodes at pipe ends, continuous sectioning, and an integer number of
normal reaches for each pipe, N = Lfa At). It is noted that each pipe needs only two
computational sections, one at each end. With the data shown, at node 2. the equations
extending the full pipe iength become:

C:

H ¥ H LK-v Bl (Qz.x - QI.K—N.) - R: l Qn.x-xv‘ ! QZ.K 4.2.1)

c” Hypy=H, gy +By(OQs 0 —Qspn,) + Ry 10,y 105

61

in which the first subscript indicates section number and the second indicates the time

counter K = t / At. The pipeline characteristic impedance and resistance coefficient may

be applied to the total pipe length, sothat B = 2 _adR= L = .
gA 2gDA"

Referring to Fig. 4.2.1, each of the variables H and Q is dimensioned to the size of
the maximum value Ky in the entire system, Ky = L/ (a 4t) + 1. The integer K is used as
a counter for each time step, and Kp is used as a pointer to identify the position in vector
H or Q at which current values of the variables are stored. At each iteration when K is
incremented, so is Kp, the value of the pointer. When K exceeds Ky, the value is set
back to zero, so that it points to the first position in the vector. In this example,
information must be retained in pipe 2 for N> + I = 5 computational steps. Since, for this
system, the characteristic lines of pipe 2 extend back the farthest, Ky = 5. By starting the
xt diagram Ky —! computational increments before the transient starts (Fig. 4.2.1), and
storing the steady state values, the equations may be solved at each pipe end, with the
incorporation of boundaries and nodal conditions.

The advantages of these algebraic representations over the normal characteristic
equations are:

1. They are normally applied over several reaches, with no need to calculate the
transient at the intervening sections.

2. They are computationally efficient for solution of multipipe systems such as
networks, because interior point calculations are avoided.

3. They use a small At = LANa), so that the boundary condition detail is preserved.

But there are some disadvantages inherent in this method, because the characteristic lines
are generally extended over more than one reach, the friction term may be less accurate
for high-friction systems. Also, since the information must be retained from time steps
extending backward in time more than one time step, more computer storage is needed to
complete the calculation. However, because of the sophistication of modem computers
which are used in these simulations, memory storage is not a crucial issue. It therefore is
sensible to choose the algebraic equations to calculate for the pipeline-check valve

transient simulation.

4.2.2 Indexing [18]

If the algebraic form of the equations in multi-pipe systems is to be used, first the method
for storing the system topology must be established. This is called the indexing method.
An index vector is provided which offers one form of bookkeeping to describe the system
connection. It is oriented around the nodes of the system and, for each node, the
following information is given: the node number, the number of elements attached to the
node, and an element number with a sign to indicate whether it is the upstream or
downstream end of the element, and the number of the element section adjacent to the
node for each element attached.

The form of the index vector is:

L. node number (a node represents a connection point, such as a pump, valve,

accurnulator, reservoir, and pipe junction)

2. number of elements (number of pipes connected to the node)

63

3. element number (pipe number: - sign for flow out from the node
+ sign for flow into the node.)

4 element section number adjacent to the node

5. second element number
6. element section number adjacent to the node
7. if there 3 or more elements connected to the node, then steps 5 and 6 are
repeated as needed.
2 3
pump

' 4 . . 1

Check

Valve

Fig. 4.2.2 Branching System with Pump and Check Valve

@ ---Node number ‘I‘ ---Section number
—-element number

Fig. 4.2.3 Indexing of Branching System

Referring to Fig. 4.2.2 and 4.2.3, for a check valve represented by node number 1;
there are two pipe elements connected to this node. The first is pipe number 1, in which
flow is out from the node by this element, so its sign is minus (-1) and the section number
for this pipe adjacent to the node is 1. Element number 5 is the small length of pipe that
connects the pump to the check valve. Flow is into the node by element 5 and the section
number adjacent to the node is 10.

The index for node 1 is:

,2,-1,1,5,10

The above index describes that at node number 1 we have 2 elements. The first
element is —I, section number 1; the second element is 5, section number 10.

For the pipe branch represented by node 2, the index is:

2,3,1,2,-2,3,3,5
The above index means that at node 2, there are 3 elements (pipes), pipe 1 is flow

into the node, the sign is positive, and the section number is 2. The other two pipes are

65

flow out of the node, so they are -2 and -3, and the section numbers are 3 and 5
respectively.

For the reservoir represented by end node 4, the index is:

4,1,3,6

The index indicates that node number 4 has I pipe element number 3 connected to
it, and the adjacent section is number 6.

The index vector does not provide all of the information needed for transient
analysis, but it does give the necessary data to enable calculations at junctions and
boundaries, especially in connection relationship. The physical parameters that describe
each element are needed, in addition to nodal information such as the nodal flow,

pressure, and elevation.

4.2.3 Simulation of Piping System

To compute transient-state conditions in a piping system, the shortest pipe in the system
is divided into a number of reaches so that a desired computational time interval, At is

obtained [25,26] by:
Ar=—1 (i=1toN) (4.2.3)

The remaining pipes in the system are divided into reaches having equal lengths by using
Eq. (4.2.3). If necessary, the wave velocities are adjusted to satisfy Eq. (4.2.3) so that
characteristics pass through the grid points. The steady-state discharge and pressure head

at all the sections are then computed, and their values are saved or printed.

66

The time is then incremented, and the transient conditions are computed at all the
interior points and at the boundaries. This process is continued until transient conditions

for the required time are computed. Fig. 4.2.4 show the flowchart of this procedure.

Save or Print flow and Head

No X Stop)
Yes

K=k+1, Kp=Kp+ Lt=K*At

h 4

Compute Q. H; at Junction
Compute Qp. H at boundaries

A 4

Store Qp. Hp as Q, H for the System

Fig. 4.2.4 Flowchart of Piping System Simulation

67

4.3 Numerical Model and Simulation for Check Valve

4.3.1 Check Valve Dynamic System Model

The complete numerical model consists of the combination of a valve dynamics model
with a model of the piping system in unsteady flow conditions. While the piping system
model has been investigated in the last section, in this section the check valve numerical
model is developed. The Runge-Kutta method is used to solve the second order
differential equation, representing a general valve system operating under unsteady
conditions.

The check valve dynamic system is represented by a second order, nonlinear,
differential equation, described in Section 3.2, Eq. (3.2.1). Before this dynamic equation
is solved, the relationships between the pump and check valve, and the piping system and
check valve, must be considered.

Fig. 4.1.1 shows these relations. The check valve dynamics requires information
for torque Tj and flow rate Qv initial conditions. After simulation, the check valve disc
opening angle 6 and disc angular velocity @ can be obtained. Then, from the disc angle
information, the check valve coefficients of resistance K are calculated. Given the check
valve pressure drop Ap and the flow coefficient, the flow rate Qy through the check valve
is calculated. The flow torque Ty created at the disc arm is then calculated using the check
valve flow and coefficients of resistance. The total torque must include the appropriate
components of the disc weight torque, counterweight torque, spring torque, damper

weight torque and the inertia. As described above, the flowchart for numerical simulation

€38

of the check valve is shown in Fig. 4.3.1.

[Call from Piping or Pump simulation]

A 4

\ Initial Condition /

A

Compute Geometrical Parameter
No
Yes
Forward Flow Reverse Flow
Coefficient of Resistance Coefficient of resistance

] }
Flow Torque Flow Torque

v v
Total Torque Total Torque

i

Runge-Kutta Solution

!
/I{sc Angle 0, Angular Velocity}/

Fig4.3.1 Flowchart of Check Valve Numerical Simulation

69

4.3.2 The Runge-Kutta Numerical Solution to the Check Valve Dynamic

Equation

In section 3.2, the check valve differential equation was described as a second order
ordinary differential equation. Referring to Eq. (3.2.1), it may be written in the general

form as a nonlinear function of torgue:

J 5‘—.3 =T(t,0,0) (4.3.1)
dr”
dé
—_—= 432
dt v ()

Therefore Eq. (4.3.1) can be rewritten as:

7% _10.6.0) 4.3.3)
dr

where J is system total moment of inertia, and T is system total torque as a function of
disc angular velocity @, disc opening angle 6, and time .
0 is disc opening angle
w is disc angular velocity
The system total moment of inertia are the sum of the moments of inertia of all
moving parts, including disc, coumenveight,.damper, and so forth. The system total
torque term T is represented by a set of relations describing:
s Coefficient of resistance
s Flow torque
s Counterweight effect
® Spring effect

® Damper effect

70

® Valve geometric and dynamic parameters
The Runge-Kutta fourth order algorithm [27,28] can be applied to Eq. (4.3.2 and
4.3.3) simulmnéous[y.

Consider a first ordinary differential equation with initial condition y(0),
dy
o f) ¥y0)=y, (4.3.4)

We can calculate y,,, at the next time increment ¢, , =¢, + h, with a known

value of y, at the previous time step ¢,. The fourth order Runge-Kutta formula is written
as:
k[=hf(yu'ln)

k h
k, =1 +=Lr +—
: lf(yn > e 2)

h

k,
s .—.hf(y,, +-2—.tn +EJ (4.3.5)

k, = hf(y, +k;,t, +h)

Yor =, +%[1<l 2k, +2k, +k,]
For Eq. (4.3.2), the first derivative variables are:
h=At y=6 fy.t)=w(d.r)
and at the same time for Eq.(4.3.3), the second derivative variables are:
h=At y=w fy.1)=T(w,6,r)
and the known initial condition are:
ot =0)=w, 6t =0)=86,

According to Eq. (4.3.5), the following is the C™ code for the Runge-Kutta method:

71

double Kl. K2. K3, K4, L1, L2, L3, L4, Tr, theta, thetaR, OmegaR;

ToJ = GerTotalTorque(QfJpump-1], itheta, Omega);

Kl =ToJ * Dr; / for coefficient of Eq. (4.3.3)

Ll=0mega * Dt; / for coefficient of Eq. (4.3.2)
Tr=T+0.5*Dr;

theta = itheta * Pi/180; / 8in radium at t, 6 is at t+Dr

thetaR = theta + 0.5 *LI;

thetaD = thetaR * 180/ Pi; // 8 in degree

OmegaR = Omega + 0.5 * KI; // wis the angular velocity at 1, ak is at t+Dt

Qcv = GetValveFlow (Tr, thetaD);
ToJ = GetTotalTorque(Qcv, thetaD, OmegaR);

K2 =ToJ * Dt;
L2 =OmegaR * Dt;

Tr=T+0.5*D:;

thetaR = theta + 0.5 * L2;
thetaD = thetaR * 180/ Pi;
OmegaR = Omega + 0.5 * K2;

Qcv = GetValveFlow (Tr, thetaD);
ToJ = GerToralTorque(Qcv, theraD, OmegaR);

K3 =Tol * Dt;
L3 =OmegaR * Dr;

Tr=T+ Dt

thetaR = theta + L3;
thetaD = thetaR * [180/ Pi;
OmegaR = Omega + K3;

Qcv = GetValveFlow (Tr, thetaD);
ToJ = GetTowalTorque(Qcv, thetaD, OmegaR);

K4 =ToJ * Dt;
L4 = OmegaR * Dt;

fDiscAngularVelocity = Omega + (Kl + 2 *K2 + 2 * K3 + K4)/6;
fdiscAngleRad = theta + (L1 + 2 *L2 + 2 * [3 + L4} /6; // these two variables will be stored
in Systems

The above program can be called at a pump junction or a piping junction according to the

valve placement.

4.4 Newton-Raphson Solution to Pump Boundary Condition (7]

In chapter 2, the head balance equation and speed change equation for the pump
conditions were derived as:

viv|AH

a4V

F, =C,-C,, —v0p(Bs + B,)+ Hp(a® +v*)[4, + 4, (7 +tan)] —t-z—°=0
(2.4.50)
F. =(a*+v*)[B, +B,(r +tan™ £)1+ B, -C,(a,-a)=0 (2.4.59)

These equations can be solved simultaneously for o and v as following by using the

Newton-Raphson method:

F, +ﬁAv+§-FlAa=0
dv da
(44.1)
oF; oFT
F.+—LAv+—Aa=0
Tty da

As a first step in the solution « and v are approximated at the new time step by an
extrapolation of the previously computed values, two time steps, o, Vo, and four time

steps, Olog, Voo, earlier.

V=2V, =V, a=2a, -a, 4.4.2)
Next the coefficients F},, OFy , oFy F;, ok , OF; are evaluated for thisc and v.
v Oa dv Oa

The derivatives are:

oF, - 2AI'I v

» —2 =-Q0,(B, +B,)+ H, 2v[A0+A,(7t+tan‘—)]+H Aa ‘;l I (4.4.3)
oF, B

E;—-—H r2a[A, + A (7 + tan —)] -Hp Av 444)

%i— =2v[B, + B,(r +tan” —)] +Ba (44.5)
oF;
a—--Za{B , +B,(r+tan™ -)] Bv+C; (4.4.6)
Eq. (4.4.1) can be solved for A and Av:
r g [,
Ag=—rl v) Bv (4.4.7)
OF, [dF, OF, [dF; o
da/ dv da/ dv
oFy
F, H ¥
Av=—g Ao 4.4.8)
v v

Let ¢ and v"" be the initial estimated values, and &' and v*® be the values

after first iteration. Then, the following equations yield improved values of & and v:

a® =a" +Aa
. 4.4.9)
v =y +Av

This procedure is repeated either a fixed number of times or until the sum of the
absolute values of the corrections A and Av is less than an acceptable tolerance (e.g.,

0.0002). The flowchart of Fig. 4.4.1 illustrates the above procedure.

74

[Call from Piping System

\

v=2V,—V, ,azz% ~Cg

\kk:O,ki=0 /

y

Compute X, i, A;, Ag, B, B, No kk>¢ es
Compute Fy, Fr, and their }:IYCS NN
Derivation Using Eq.(4.4.3--6) y
(Stop)
Compute Aa, Av Using
Eq.(4.4.7), (4.4.8) kk=kk+1

, |
a® =arAa ki=kir+_ﬂ

L R T

l

v"v
r=r+un " —
[+ 4

arivietans
<

Yes

=
Ax e+l

i =

No
ii= =i t 1 =11
Yes

Initialize Vo, ,,G0 0. B B
for the next time steps

Compute Q, Hp.

(Remm}

Fig. 4.4.1 Newton-Raphson Solution for Pump

75

In this chapter, the numerical aspect of algebraic representation for the characteristic
method, check valve dynamics equation, and pump boundary conditions has been
discussed. An elegant solution for pipeline transient analysis was shown to be achieved in
the use of algebraic solution, continuous data storage, and indexing for system topology.
A flowchart and C++ code were given for clear and direct illustration to the check valve
and pump dynamic simulation. The software design which implements this analysis will

be given in the following chapter.

76

Chapter 5
Software Implement of Transients in

Pipeline Network and Check Valve System

5.1 Introduction

In the previous chapters, the main focus was on the theory and methods for dealing with
hydraulic transients. The basic equations, the methods of analysis, the specific solution,
and specific boundary conditions were investigated. As well, pipeline configuration, the
pump characteristics, and the check valve dynamics were discussed. Hydraulic transients
in the pipeline network system are implemented by, and interacted with the pump and
check valve dynamic behavior and software program. Therefore, the following chapter
will focus on the analysis of the pipeline network system with a view of software
engineering and design and coding for the Hydro-Analysis program package using
Object-Oriented Programming techniques.

The analysis, which includes the problem specification and requirement analysis,
simulation analysis, input and output analysis, and the user interface analysis will be
performed in Section 5.2. The design will inciude high level algorithm and hierarchical
diagrams that will be given in Section 5.3. Also in this section, C™* program language
will be used to perform transient analysis. As well, visual C™ will be used to design the
user interfaces for user-friendly input and graphics output. The introduction to all classes

used in this package will be given in this section as well, and Section 5.4 will simulate a

pipeline network system. What follows is an in-depth step-by-step description of how to

use this software package.

5.2 Analysis for Hydro-Analysis Software Package

5.2.1 Problem Description

The application should input the pipeline connection information, the individual pipes,
pump, and valve geometrical and charactenistic data, and then simulate the system for a
period of time. Next it should determine the pressure at certain nodes and flow rate at
certain sections during the occurrence of transients. After finishing the simulation, the
application should save the output data, such as the Head (pressure) and Flow rate with
respect to time, and also produce a graphic output for the Head and Flow rate.

The pipeline network transients analysis and simulation should combine the
pipeline transients, pump and check valve dynamic simulation. This simulation should be
performed at different situations, such as in pump start-up, pump failure, and cases in
which the control valve is closed and when it is opened. The application can also handle
different network connections: the series system, the parallel system, the branch system,
and network system. It can deal with different pump arrangements, including single
pump, series pumps, the pafallel pumps, and complex pumps. Finally, it can simulate the

system for different sizes and types of check valves.

78

5.2.2 Input Parameters

As described in Section 4.2.2, the connect relationship for a network pipeline system is
given by an index vector. The flow direction for a pipe and the type of junctions should
be specified. The input data for the connection, pipe, junction, pump, check valve, valve
and reservoir is as follows:
The connection parameters include:
I. Index data
2. Number of index
3. Number of pipes
4. Number of junctions
5. Number of pumps
6. Upstream junction numbers of a pipe
7. Downstream junction numbers of a pipe
The junction parameters include:
1. Type of a junction
2. Junction head
3. Junction flow rate
4. Junction elevation
The pipeline parameters include:

1. Pipe length

(28]
.

Pipe diameter

W

. Pipe friction factor f

The pump parameters include:

9

1. Pump start up

o

Pump failure
3. Pump normal run
4. Pump stop
For the pump start up, the following must be known:
* Pump coefficient Ag, Ay, and A;
* Time to gain speed T,
* Pump shut off Head H
For the pump failure:
s Rated pump flow rate
s Rated pump head
* Rated pump torque
* Rated pump speed
® Pump specific speed
* Pump characteristic data
For the pump normal operation:
= Pump coefficient Ag, A[, and A;
The check valve parameters include:
L. Check valve size
2. Pipe diameter
3. Disc weight

4. Hinge length

80

5. Auxiliary device parameters such as counterweight, extension spring,
dash pot and so on
The control valve parameters include:
= Valve performance character T
» Valve closure time T,
The reservoir parameter is:
s Elevation of the reservoir
The simulation parameters are:
s Start time of simulation
= Stop time of simulation
The output parameters are:
= Plot location
* Printing or saving data location
For the plot locations, the following must be known:
* Junction number for head vs time
* Pipe section number for flow rate vs time
Finally, for the print out and save location, the following must be known:
* Junction number for head vs. time (Maximum 3)

* Pipe section number for flow rate vs. time (Maximum 3)

5.2.3 Output Requirement

The output of the application includes the file output and the graphic output.

8L

The file output gives the following data:
I. Time
2. Flow rate at the pump element
3. Flow rate at certain pipe locations (the pipe number are indicated by the user,
maximum 3)
4. Head at certain junctions (the junction numbers are indicated by the user,
maximum 3)
5. Check valve disc opening angle (if there are check valves in this system)
The graphic output should have the following features:
1. Plot the Head vs. Time and Flow rate vs. Time simultaneously on the screen.
2. Display the following information:
* pump start-up, pump failure, or pump normal run
* with or without the check valve
* the pipe number for the flow rate plot, the junction number for the head
plot
3. A plot from which the user may easily obtain the data

4. Easy control of graphic output display such as line type, color, and style

5.3 Software Design

5.3.1 Algorithm for the Hydro-Analysis

The high level algorithm can be summarised as following:

82

begin the application

read data (information for the network connection, pipe, junction, pump, check valve,

valve, reservoir)
read information on saving results and plotting results

construct the network system
determine the initial flow rate for each pipe and head for each junction
save and print the initial flow rate, head and check valve disc angle

While the time is less than time maximum (the time of simulation)

if the element is check valve
do check valve dynamic analysis
get check valve disc angle

end if

calculate the pipe element flow rate and head
calculate the pump element flow rate and head

store the flow rate, head and check valve disc angle for next time step use
save and print the flow rate, head of indicated location and check valve disc
angle
time increment for the next step
end while

graphic display the result of flow rate Vs. time and head Vs. time

end the application

83

Fig 5.3.1.1 shows the flow chart of the above algorithm:

/ Read dara(information for connection.
components, s'ave and print)
Construct the pipeline network
L 4
Determine the initial parameters
y—

Store, save and print the initial parameters

Graphic display H-t. Q-t

Check valve dynamic Calculate pipe element H. Q
analysis .get 6 Or pump element H. Q

__,@'_‘

Store, save and print H.Q. 8

v
t=t+AL end

]

Fig 5.3.1.1 Flow Chart of Hydro-Analysis

5.3.2 Hierarchical Diagram

Before outlining the object-oriented-programming design, the hierarchical diagram for

the Hydro-Analysis (Fig. 5.3.2.1) is presented below:

84

Hydro-Analysis

Graphic Transients Graphic
User Interface Simulation Output

Fig.5.3.2.1 (a) Hierarchical Diagram for Hydro-Analysis

> &% CMainFrame A8 CindexPara_DIg
= » %8 Clunction1Dl
- &8 CChildFrame 4 ~unctien’s
5
8 : % CPipe1Dlg
g 5 > (51818 CHydicAnalysisView
S EH %2 CPunpCheckVaveDig
(3 | [B3 CFrontPageFomView
=) : B8 CCulValveDlg
! &-®% CHydroAnalysisApp
» % CReservioDlg
> -8 CHydroAnalysisDoc
$® CSimulationDig
Ly @3- ClnputParameterDig
b ®12 PlotPrintoutDlg

Fig. 5.3.2.1 (b) Hierarchical Diagram for Graphic User Interface

&1-™1% Pipe

&-™8 PipeNet2Cv

28 .

.§ = "3 PipeNet2NoCv
g2

< H

E & &1--™18 PumpFalil

1% PumpStart

E-*18 CheckValve

Fig. 5.3.2.1 (¢) Hierarchical Diagram for Transients Simulation

&-%8 CHydioGraphicApp

&8 CHydroGraphicDoc

-8 CHydioGraphicView

@ CMainFrame

- %13 Graphs

Graphic
Output

%18 Pagel

&% QCBaseGraph

@-*8 QCBasePage

L 2

Fig. 5.3.2.1 (d) Hierarchical Diagram for Qutput Graphic

86

5.3.3 Object-Oriented Programming Design for Hydro-Analysis

In this project, the Object Oriented Programming (OOP) [29] technique is used to design

the Graphic User Interface, Transient Analysis and Graphic output.

5.3.3.1 Major Class Description for Graphic User Interface

1. CMainFrame:

This class provides an enclosed space on the desktop within which all application
interactions take place. This frame window is the frame to which the menu and

toolbars are attached.

®:2 CMainFrame
‘- - @ AssertVaid()
* - @ CManframe(]
-~ @ “CMainFrame()
- @ Dump(COumpCantext & dc}
- 94 OnCreate(LPCREATESTRAUICT lpCreateStruct}
: - @ PreCreateWindaw{CREATESTRUCT & c3]

-~ m_pFrontwnd
- -9 m_wndStatusBar
9% m_wndTooBar

Fig 5.3.3.1 The operation and attributes of CMainFrame

2. CChildFrame:

CChildFrame is the frame that holds the CHydroAnalysisView class and passes messages

and events to the CHydroAnalysisView class for processing or display.

#8 CChildFrame
i— @ CChidFrame(]
— @ ~“CChidFrame(]
. @ Dump(COumpContext & dc)
i @ PreCreateWindow(CREATESTRUCT & cs)

Fig.5.3.3.2 Operation of CChildFrame

3. CHydroAnalysisView:

This is the class that displays the visual representation of the document for the user. This

class passes input information to the CHydroAnalysisDoc class and receives display

information from the CHydroAnalysisDoc.

&2 CHydroAnalysisView

-~ @ AssertValid()

-0 CHydroAnalysisView()

~— @ “CHydroAnalysisView(]
= @ Dump(CDumpContext & dc}
— @ GetDocument()

3¢ OnBeginPrinting{COC * pDC. CPrintinfo * pinfo)
~— @ OnDraw({CDC *pDC)

~9¢ OnEndPrinting{COC * pDC. CPrintinfo * pinfa)
9@ OnPreparePrinting(CPrintinfo * pinfo]

— @ PreCreateWindow{CREATESTRUCT & cs)

Fig 5.3.3.3 Operation of ChydroAnalysisView

88

4. CFrontPageFormView

The CFrontPageFormView class is the form frame. It holds visible objects attached to the

form. It is the base class for views containing controls. It is used to provide form-based

documents in applications. It coordinates and interacts with the transient analysis (such as

PipeNet, CheckValve, PumpFail, PumpStart) class and graphic output application.

B8 CFiontPageFomView
—50 AssertVaid)
‘@ CFrontPageFormView()
—@ ~CFrontPageFamView()
~3¢ DoDataE xchange{CDataE xchange * pDX)
—3¢ Dump(CDumpContext & dc)
~3¢ OnButindex1()
-3¢ OnButindex2()
-3¢ OnConect()
-3¢ OnCiValveParam()
-5@ OnFieOpen(
—3@ OnFisSave{]
~9¢ OrFieSaveAs()
"-9@ OnlunctionParam1{]
~9@ OnlunctionParam2(}
—5¢ OnPipeLineParam1()
9@ OnPipeLineParam2(]
—9¢ OnPlotParam()

9@ OnPumpCheckValveParam()
¢ OnReservorParam()

%@ OnSimulationP aram{)

¢ OnStart

—3¢ PreCreateWindow{CREATESTRUCT & cs)
— @ SaveModel(CSting szPath)
— @ ConectionData

- @ ConlioMaivData

‘— @ IndexData

- & JunctionData

~~ ¢ m_nSaved

- @ m_szFiePath

- @ pipeLineData

-~ g PlotPrintoutD ata

-~ 3 PumpCheckVaivData

- & ReserviarData

-~ (@ SimulationData

Fig 5.3.3.4 The operation and attributes of CFrontPageFormView

5. ChydroAnalysisApp

The CHydroAnalysisApp class creates all of the other components in the application. It is

also the class that receives all event messages and then passes the messages to the

CFrontPageFormView and CHydroAnalysisView classes.

'_'-: CHydreAnalysisApp
-~ @ CHydoAnalysisApn]
— @ Initinstance(]
-~ @ OnAppAbout()

Fig 5.3.3.5 Operation of CHydroAnalysisApp

6. CHydroAnalysisDoc

The CHydroAnalysisDoc class houses the document. This is the location of all the data
structures necessary to house and manipulate the data that makes up the document. This
class receives input from the CHydroAnalysisView class and passes display information
to the CHydroAnalysisView class. Finally, this class is also responsible for saving

and retrieving the document data from files.

& CHydrcAnalysisDoc
@ AssertValid()
9@ CHydraAnalysisDoc()

- @ “CHydroAnalysisDoc()
" @ Dump(CDumpContest & dc}
- @ OnNewDocument()
® Serialize{CArchive & ar}

Fig 5.3.3.6 Operation of CHydroAnalysisDoc

7. ClnputParameterDlg

ClnputParameterDlg includes the following classes:

e (CindexPara_Dig

90

e ClunctionDlg

e CPipeDlg

e CPumpCheckValveDlg
o CCrriValveDlg

® CReserviorDlg

e (CSimulationDlg

¢ PlotPrintoutDig

88 PlotPrintoutDlg
e DaDataE xchange({CDataE xchange * pDX]
~— @ PlotPrintoutDIg(CwWnd * pParent = NULL)
— @ m_fPlotunNum
~— @ m_fPlotPipeNum
— @ m_fPrintoutjunl
-~ & m_fPrintoutiun2
~ ¢ m_fPrintout/un3
.— @ m_fPrintoutPipel
- g m_fPrntoutPipa2
- @ m_fPrintoutPipe3

Fig 5.3.3.7 The operation and attributes of PlotPrintoutDIg

All of these classes receive data which is inputted via the dialog box, and then
transfer the data to the CFrontPageFormView class. Fig. 5.3.3.7 is the operation and
attributes of one of these classes. Other classes perform similar operations but with

different attributes.

91

; 5.3.3.2 Class Description of Transients Simulation

I. Pipe

The Pipe class is the base class for pipe simulation. It analyzes one element only. It can
calculate flow rate Q and head H for each reach of pipe or pump. It also calculates A, B,
and R, where A is the adjusted sound wave, B is the pipeline characteristic impedance,
and R is the pipeline resistance coefficient (referring to Eq. 2.4.17 and 2.4.18). Other
attribute such as Ndn, Nreach, and Nup record number of down junctions, reach and up
Jjunctions for this pipe.

Fig. 5.3.3.8 shows the operation and attributes of the class Pipe. Pipelnit...)
obtains the data from the CFrontpageFormView class and transfers it to PipeNet2Cv.

ValveDownF _H() then proceeds to analyze the system if there is a control valve in this

pipe.
3 Pipe

~ @ GetFlow(int)
— @ GetHead(int} — QA
~ @ Pipe]) ~ 98
~ @ “Pipe{) ~ ¢ Dt
@ Pipelnitint, int, int, float, float [], float [| float [L int{Lint [] @9 H
] PipejmcF_H[int] -« 4 Ndn
— Pupal.l..mcHead[] .- & Mreach
-~ @ Relnitiaize{int) ~- 4 Mup
----- & TimeStep() @ Q
- @ ValveDownF_H(float, int, const float [], float. float} - &R

Fig 5.3.3.8 The operation and attributes of Pipe

2. PipeNet2Cv and PipeNet2NoCv

8 PipeNet2Cv
— @ GetH(nt, int)
— @ GetHN({int) .o
— @ Get(int, int) Emﬁﬁfgﬂ
- : Ffﬁ l::i]nq - & PpaluncF_H, it
- @ PpeluncF_Hfit, it — @ PipeNet2NCvlint, int[L i, ik, int. int,
| @ PpeNet2Cufr, it [| in . n, fat. float [| float [| float [Lint (1 int [
float [| float {1, float [L int []

int, int, float, float (], float [| float[L mt [int[]

float (] fioat 1 float (L it [| foat, int] 7= @ Pumpluncf_Hfloat. inf

~— @ PumpluncF_Hffloat. int)
- @ Pumpluncf_H(float. int, float)

Fig.5.3.3.9 Operation of PipeNet2Cv & PipeNet2NoCv

PipeNer2Cv class inheritance the class Pipe, PumpStart, PumpFail and CheckValve. This
is the class that connects all pipes, pumps and check valves together, forming a whole
pipeline network system. PipeNet2Cv class simulates the system that includes check
valves, while the class PipeNet2NoCv does not include the check valve. The operation of

these two classes is shown is Fig. 5.3.3.9.

3. PumpFail

PumpFail class is another base class for pipeline network simulation. It simply
concentrates the hydraulic transient analysis during pump failure, interacting with the
class Pipe if there is no check vaive located after pump, and class CheckValve when there

is a check valve located after the pump. Referring to Fig.5.3.3.10, the operation is:

93

8 PumpFal —9A —9DT — QKMAX

~ @ InterpolatedValueldouble, it.int) — @ ALD — @DX —@N o
— @ PipaJHQ(n) — QA0 — @EL 5—-90 o
— & PumpFailint) —9M —oF —el Il
— @ PumpFai] — 98B —9G — 90 o
i— @ ~PumpFai() — @BET0 — @H — @R WS
‘~ @ PumpValveBClrt] — QBETA — @ Hp 5"2?: o
‘— @ Relnitiakzef - 9CK —~QHR —

™ Pl — @D — QKT —e@TiL *g;’.ﬂﬂ

Fig. 5.3.3.10 Operation & Attributes of PumpFail

PumpFail() and ~PumpFail() are respectively, the constructor and destructor of
the PumpFail class. PumpFail (int) overloads the constructor. Therefore, only when there
is a check valve after the pump, PumpValveBC(int) will Analyze the system. Otherwise,
PipeJHQ(inr) will suffice.

The attributes:

A--the wave speed

ALQ, ALOQ -- dimesionless pump speeds «, at successive time step
AR, XL--pipeline area, length

B--pipeline impedance, referring to Eq. (2.3.17)
BETO,BETA--previous and current dimensionless torque
CK--valve loss coefficient in velocity head

DT-time step |

DX-dimensionless pump data spacing, rad
EL--elevation of the pump node

F—Darcy-Weisbach friction factor

G--gravitational acceleration

94

H, Hp, Q, Qp, N--head and flow rate and speed during the transients
HR, QR, TR, RN--pump rated head, flow rate, torque and speed
KIT, KMAX--number and maximum number of Newton’s method
TM--duration of transients

TOL--tolerance in Newton’s method

V, V0, V00--dimensionless discharges at successive time steps
WB, WH--homologous torque and head data

WRR--rotational moment of pump

4. PumpStart

PumpStart class is a base class, it gets the data from CFrontpageFormView class, and
then initializes the pump characteristic curve, so that the pump flow rate or head can be
determined by using this characteristic curve.

Referring to Eq. (2.3.60), the attributes A/ and A2 are constants for the
characteristic curve, Hs is the pump shutoff Head, and Ts is the time for the pump to gain
speed. Jpump is the initial element number for pump.

-8 PumpStart
-~ @ PumpStart(]
= @ ~“PumpStart()
— @Al
— A
— @HS

~ @ Jpump
— @ Ts

Fig. 5.3.3.11 Operation & Attributes of PumpStart

95

5. CheckValve

The base class CheckValve performs the check valve dynamic analysis. The check valve
dynamic analysis considers operation of added components, such as:
counterweight(CTWTorque(float)), spring(TorqueFromExtensionSpring(float)), and
DiscTorque(float). Using the specifics discussed in Section 3.3, other appropriate
components can be added.

Fig. 5.3.3.12 shows the operation of the CheckValve class. CheckValve(), and
~CheckValve() are, respectively, the constructor and destructor of this class.
CheckValvelnit(float,int) creates the check valve with different valve size and maximum

disc opening angle.

[
N V. .
:'_C:e ?.’;;“,Z{;;,V,G — @ [CoefficientsOiResistance
— @ ~CheckVaivel] ~ @ [CTwWMomentOfinertia
~ @ CheckValvelnifioat. it . g ;D':e' v h’"’ fque
— @ CTwTorqueffloat T .
- : DitectFi M[ﬂ 2) — g fD!scAngulaNelocxky
— @ DirectTorqueAmn(int] . ? g::g‘“
-— @ DiscTarque{float} - ? fD;scMmetni{Oﬂ .
— @ FlowTorqueffloat, float, float) —9 i Tome neitia
— @ GeometricParameters{fioat] - g mm?;hi
— @ GetCoefficientsQfResistance{] _ 9 ExtensionSpringTorque

— @ GetDiscAngle] :
— @ GetJoverT(float, foat) : g g::,:que
— @ GetTotalT orqueffioat. float) — @ [PipeDiameter

— @ ReverseFlow(: .
— @ ReverseTorqueAmi{int — @ [PpeFriction

— @ tid{foat *, foat floa, float *, float, float () (st . ozt] = oo
-~ @ TorqueFromExtensionSpring{float) i @ DiscMaxAnge

-— @ ValveDynamics{ficat, float, float, float)

Fig. 5.3.3.12 Operation & Attributes of CheckValve

96

Referring to Eq. 3.2.1, before performing the check valve dynamic analysis, the
flow torque TF, and the bearing friction torque 7, must both be known. In this analysis,
the bearing friction torque will not be considered, because it is a very small term
compared with other component terms such as the counterweight and spring.

The operation DirectFlow(float), DirectTorqueArm(int), ReverseFlow(),
ReverseTorqueArm(int), and FlowTorque(float float float) are all for the analysis of the
flow torque Tr in Section 3.43. GeomericParameter(float) and
GetCoefficientsOfResistance() are used to determine the coefficients of resistance for the
check valve dynamic analysis, as discussed in Section 3.4.2. GerTotalTorque(float float),
GetJoverT(floatfloat), GetDiscAngle() and ValveDynamics(float,float float float) are
invoked in the final stage of the check valve dynamics analysis. Rk4(......) is used to
solve the dynamic equation by Runge-Kutta method. The attributes of this class are

shown in Fig. 5.3.3.12. The meanings are clear and will not be discussed.

5.3.3.3 Class Description of Graphic Output

The graphic output application is separated from the HydroAnalysis software package.
During a run, the HydroAnalysis starts the HydroGraphic program and then sends the
analysis results to it. HydroGraphic receives the data and displays the Head and Flow
Rate plot.

In the Hydro-Graphic application, the classes CHydroGraphicApp,

CHydroGraphicDoc, CHydroGraphicView, and CMainFrame have the same

97

functionality as the CHydroAnalysisApp, CHydroAnalysisDoc, CHvdroAnalysisView, and
CMainFrame in the Hydro-Analysis.

QCBaseGraph and QCBasePage are two base classes for graphic output.
BuildGraph(PGRAPH_DEF,HDC) is used for initializing the base graph, and
BuildPage(PPAGE_DEF) is used for initializing the base page.

Class Graphs is inherited from the class QCBaseGraph.
BuildGraph(PGRAPH_DEF,HDC hdc) implements the plot. It gets the data from
HydroAnalysis application, and then plots two graphs on the same page. The attributes of
this class are as follows: m_nGraphNumber is the graph number on the page;
m_pDynGrDesc is the pointer to graph descriptions for dynamic graphic plotting, and
m_pStaGrDesc is the pointer to graph descriptions for static graphic plotting.

Class Pagel is inherited from class QCBasePage. BuildPage(PPAGE_DEF)
implements the page setting, indicating the page size, color, and position. The attributes
of this class are as follows: m_pGraphl and mpGraph?2 are the graphic identity in this
same page. Fig 5.3.3.13 shows the description of HydroGraphic Class.

5.4 Introduction to HydroAnalysis Software

5.4.1 Overview

HydroAnalysis is a program which simulates the hydraulic transient in pipeline networks
with a check valve system. The program can solve the transient flow problems in simple,

branch and complex pipeline systems.

98

&@ HydroGraphic classes
8-*18 CAboutDlg
"8 CHydioGraphicApp
68 CHydroGraphicDoc
618 CHydroGraphicView
- CMainFrame
5-* Graphs
9@ BuldGraph(PGRAPH_DEF, HOC hdc)
- @ Graphs{int nNum]
— ¢ m_nGraphNumber
- ¢ m_pDynGiDesc
-— € m_pStaGDesc
&-*8 Pagel
9@ BuldPage(PPAGE_DEF)
- @ Pagel(}
- @ “Pagel(]
— ¢ m_pGraphl
;@ m_pGraph2
- QCBaseGraph
: i~ @ BuldGraph(PGRAPH_DEF. HOC}
=-*8 QCBasePage
‘- @ BuldPage(PPAGE_DEF)
&-{_] Globals

Fig. 5.3.3.13 Description of HydroGraphic Classes

The program HydroAnalysis is completely interactive using the Microsoft
WINDOW Graphical User Interface. The user can set and change all of the parameters
which describe the pipeline network and check valve system. The simulation of the
hydraulic transients caused by pump start up, pump failure, or valve operation can only
be undertaken once all of the parameters describing the pipeline, pump, check valve,
valve and reservoir have been defined.

When running the simulation, the pressure head at indicated junctions (node) and
flow rate at indicated pipe are both written to a text file at each time step. The file is

saved to the working directory, and the user can read and print it at any time later. The

99

results of simulation can be visualized as a graph plotting the pressure head versus time at
an indicated junction, and flow rate versus time for an indicated pipe.

The solution procedure adopted in the program does not make any allowance for
water column separation, which occurs when the pressure in the pipeline reaches the
saturated vapor pressure of the fluid. Therefore, care should be taken when dealing with
negative pressures produced by the program. It should be noted that this program is to be
used strictly for liquid simulation, because the compressibility of the fluid was not
considered.

To run the HydroAnalysis program, the user will require a computer system

running either Microsoft WINDOWS 95 or later, or WINDOWS NT 4.0 or later.

5.4.2 User Guide for Software Program Package HydroAnalysis

5.4.2.1 Getting started

To simulate a pipeline network with an check valve system, one needs only need to run
the application HydroAnalysis. The HydroGraphic will be executed automatically during
the running of HydroAnalysis. After starting the application HydroAnalysis, the main

window appears (see Fig.5.4.2.1).

5.4.2.2 Setting System Parameters

1. Setting the Connection Parameters

100

Under the main window, one must set the connection parameter first. Pressing the button

Connection Parameters, the following dialog box is displayed (Fig. 5.4.2.2):

@ ---Node number ‘I‘ ---Section number

---element number Rl

- Reservoir

Fig. 5.4.2.1 Main Window of HydroAnalysis

101

[i Pracame ter f

-Hﬂﬂﬂ_ﬂ_--‘

P
o
1 EEEREREEER

Wumuumumwmm!

. __
---I-_-Il
TP PP p PP
PP rFEPFPRPPP P

- F PP PP P PP FE

Fig. 5.4.2.2 Dialog Box for Connection Parameters

The pipeline network and check valve system is displayed as shown in the main window
(Fig. 5.4.2.1). One may set the number of pipes, junctions, pumps index, and up and
down junction numbers of pipe and pumps as shown in Dialog Box (Fig.5.4.2.2). One
also must indicate the minimum reach number and sound speed. Normally, the minimum

reach number is set to 2 or 3, and the sound speed is set between 1400 to 1550 m/s for

water.

102

2. Setting Index, Plot, Print and Simulation Parameters

Referring to Section 4.2.2, the index for this system is shown in Fig. 5.4.2.3. It should be

noted that the non-pipe elements should be numbered last. Any others pipe elements may

be numbered by the user.

1 -1 11 0 0 0 0

2 3 2 B 4§ 1 2 0 0

2 -3 15L 2 4 0 0 0

4 3 . 11 B 6 5 10 {0 0
4 4 8 5 19 -7 Q13 15

3 IG 12 ¥ 14 19 18 [0 0

2 [8 16 3 §7 10 IO P 0

8 1 10 {19 {0 0 0 0 0 0

2 10 1 jJa o 0 0 0

0 0 0 0 0 0

Fig. 5.4.2.3 Dialog Box of Indexing

The user must also choose the duration of simulation. Fig. 5.4.2.4 shows the Dialog Box
of Simulation Parameters. The user must define the duration of the simulation before the

program will begin that simulation. It should be noted the solution procedure used

103

is based on the method of characteristics, and the computational time step is set at
the time it takes for an sound wave to travel from one reach to the next along the pipe.
The program will save three pressure head records and three flow rate records at each
time step into file. The time duration cannot be set too large, because the size of the file

depends on the duration of the simulation which is selected by the user.

Sunubation Focometes

Fig. 5.4.2.4 Dialog Box of Simulation

Fig 5.4.2.5 shows the Dialog Box of Plot Print parameters. The print and plot locations
are to be set by the user. The program will plot only one junction location for head and
one pipe location for flow rate, but will print (or save) a maximum of three locations for
head and three pipe locations for flow rate.

After print out or display, if the user needs to print or display more locations, they
can do so by returning to the main window and resetting the Plot and Print dialog box to

the desired parameter.

104

Plot ot B oacanee-tes

Fig. 5.4.2.5 Dialog Box of Plot & Print

3. Setting Pump and Check Valve Parameters

The pump-check valve parameter dialog box is shown in Fig. 5.4.2.6. The user must set
the following data:
* Check valve diameter: the user can set it by choosing from a list box. If the user
checks the check box of WithOutCheckValve, this list box will be greyed.
* Set pump operation status: the user can choose from the four radio buttons in the box.
1) If the user chooses pump start up, the first group edit box will appear, in which
the user can set the pump start up data such as Ts, Hs, 40, A1, and A2. The other

two boxes will be greyed. See Fig. 5.4.2.6 in the left column.

105

2) If the user chooses pump failure, the second group edit box will appear, and the
other two will be greyed. The user can set Rated pump flow, head, torque, and
speed. See the middle column of Fig. 5.4.2.6.

3) If the user chooses pump normal run, the last group edit box will appear, the user
will only need to set 40, 41, and A2 for this operation status. See the right column
of Fig. 5.4.2.6.

4) If the user chooses the last radio button Pump Stop, all of these three groups are

grayed, and the user is not required to set any data at all.

Ghil

|
L

.
!
I
i
L
i
y !
{
P
.

-

-

|
.

Fig. 5.4.2.6 Dialog Box for Pump Check Valve Parameters

106

4. Setting Pipe, Junction (Node), Reservoir, and Control Valve Parameters

The effect of transients in the pipeline will be different depending on the physical
properties of the pipe, junction, reservoir, and valve. It is assumed at the start of the
simulation that steady state conditions exist in the pipeline network system. Fig. 5.4.2.7,

5.4.2.8, and 5.4.2.9 show the pipeline, reservoir and junction parameters dialog box.

Pipe Line Potameton

Fig. 5.4.2.7 Dialog Box of Pipeline Parameters

107

Ve e ont Boacantietey

Fig. 5.4.2.8 Dialog Box of Reservoir Parameters

If the transients in the pipeline are caused by the control valve closure or opening, the
valve opening and valve closure or open time can be defined by the user. The control

valve parameters Dialog box is shown in Fig. 5.4.2.9.

t Lontiol Valse BParameten

|

L

Fig. 5.4.2.9 Dialog Box of Control Valve Parameters

108

The steady state of flow will be controlled by the reservoir head, the diameter, length and
friction factor of the pipeline, the junction type, the head, flow, and elevation of junction,

and the initial valve settings as showing in Fig. 5.4.2.10 .

Fig. 5.4.2.10 Dialog Box of Junction Parameters

109

5. Save Model to a file, open a model from previous file

After all of the parameters are set by the user, it is recommended that the model be saved
to a file for later repeated use. At the main window menu, under File, Save Model 4s...,
the Save As window appears, allowing the user to save the model at any directory
indicated by the user, by entering the file name and then saving. The user is not
required to give the file extension, because the system will add the mod

extension automatically. Please refer to Fig. 5.4.2.11 - 5.4.2.12.

HypdiaAnalyy e talth sty mod|

Fig. 54.2.11 Menu File Window

110

Fig. 5.4.2.12 Save Model As Window

After the user saves the model as a model file, pressing the Start button under the main
window begins the simulation. Next time, if the user wishes to run a simulation, he or she
can start with a2 New or Open the model file. Referring to Fig. 5.4.2.11, under the File
menu, Open Model, the following Open widow will display (Fig. 5.4.2.13).

It should be remembered that initial data must be set by the user before a
simulation can be started. Therefore, the save function of this program is very useful for
users who intend to do multiple simulations of the same system, and the user is only

required to open the exiting model.

11

J @ e NIENM

Fig. 5.4.2.13 Open Model Window

5.4.2.3 Getting Simulation Output

After the user finishes inputting all of the data settings and presses the START button
under the main window of HydroAnalysis, the HydroGraphic page will display. There are
two plots displayed in this page (Fig. 5.4.2.14). One graphs the Head (Pressure) versus
Time, and the other graphs Flow Rate (Discharge) versus Time.

In the Head (Pressure) Vs Time Plot for this case, it is shown that this plot is for
Pump start, with check valve at the location of junction (Node) number 5. The Flow Rate
(Discharge) Vs Time plot shows that the curve is at the location of Pipe Number 4, pump
start, and with the check valve. The simulation results of simple pipe with pump failure
will be shown in Appendix C. Simulation results of other example pipeline network

systems will also be illustrated in this Appendix.

112

Fig. $.4.2.14 HydroGraphic Main Page (With Check Valve)

The user can change display characteristics of the plot such as the line type or line
attributes by double-clicking the plot field under the main page. The plot parameters
window will appear. The plot data can also be displayed on the screen by clicking the
Data Button from the plot parameters window, a list of data will display on the screen.
The user can then copy the resulting plot data to an Excel, Word or Text file, for further

analysis. (Fig. 5.4.2.15).

113

Flowtioabe T

o

)

&2

12 X3

%

TR .

I P Cche
s ; . Lohe
LobhAn g ; 100 it

ey

Vo , \ b
HERE RS
ooy e

I 0be
e
AN e by

Fig. 5.4.2.15 Display of the Plot Data

The system saves Head (Pressure) and Flow Rate (Discharge) of a maximum of
three locations automatically. The user can open the file containing this data under the
defauit directory by using NotePad or WordPad. The user can also plot other locations of
this system by closing the Main Page, retuning back to the Main Window, changing the

Plot Parameters, and restarting the simulation.

114

In this chapter, analyses of the problem, input, and output were first introduced:
next, the Hydro-Analysis and Hydro-Graphic software were implemented by using
algorithms, hierarchical diagrams, and description of major classes. A users guide was
provided, giving detailed demonstrations for this software. This software creates an
effective simulation for hydraulic transients in pipelines with check valve systems. It has
a user-friendly graphic interface and allows a user plenty of choices for convenient

simulation and analysis of pipeline systems.

115

Chapter 6

Conclusion

6.1 Summary

The purpose of this thesis was to design and implement a software package to model and
simulate pipeline networks including check valve systems. This objective was achieved
by analyzing hydraulic transients for pipeline network systems, analyzing check valve
dynamics, and implementing the software package which combines the pipelines with
check valves.

After introducing the continuity and motion equations. Chapter 2 obtained the
Hvdraulic-Grade-Line form of the equations of motion and continuity by using some
assumptions and simplifications. The equations are most suitable to the hydraulic
transients analysis for pipeline network systems, but are restricted to less compressible
fluids flowing at a low velocity.

The method of analysis of hydraulic transient flow in pipeline systems started
with the equations of motion, continuity and other physical property relationships. From
these basic equations, different methods employing different restrictive assumptions have
evolved. The characteristics method was analyzed and compared to the lumped parameter
method in the time domain, the four-pole equations and the transmission line modeling
method in the frequency domain.

The method of characteristics has several advantages over other methods that are

particularly relevant for hydraulic transients problems. These include an explicit solution

116

" and a procedure that is relatively simple with approximations. Therefore, it is partictlarly
suitable for the analysis of systems with complex boundary conditions.

Besides using the basic method of characteristics in this study, some improvement
has been added to this method. The Finite Difference Formulations and Algebraic
Representation were combined to the method of characteristics. During the
implementation of the integrating characteristic equation (2.4.7) and (2.4.9), the
trapezoidal rule was introduced for maintaining the linear form of the integrated
equations, at the same time keeping the second-order accuracy.At end of this chapter. the
introduction of the pump characteristic and the derivations of the boundary conditions for
pump failure and pump start up were included.

In Chapter 3, the check valve dynamic equation was investigated for the analysis
of pipeline transients. The torque due to the weight of the rotating disk. T, . the bearing
friction torque, T; , the counterweight torque, T, . the tlow torque. Tr . and the spring
torque Ts, were included in the dynamical equation. The flow torque was included in the
valve analysis, in which the orifice sequence model was introduced. then determined the
pressure drop for forward and reverse flow.

An important issue was to determine the coefficient of resistance of a check valve.
The coefficient of resistance of the check valve is a function of the valve geometry and
disc opening angle. During the occurrence of transient, the coefficient of resistance is
calculated at each time step. Finally, the check valve boundary condition was introduced.

Chapter 4 presented the numerical model used to simulate pipeline network
transients including the check valve. This included the pipeline system model. check

valve dynamics model, and the pump characteristic model.

17

The pipeline system model was developed based on the method of characteristics
which was investigated in Chapter 2. The solution was algebraic. The use of continuous
data storage, connection index vector, and a flowchart of the simulated procedure were
introduced.

The advantages of algebraic representations over the normal characteristic
equations can be summarized as:

e They are normally applied over several reaches, with no need to calculate the
transients at the intervening section; they are therefore a computationally
efficient solution for multipipe systems such as networks.

e They use a small Az=L/(Na), so that the boundary condition detail is
preserved.

The variables H and Q of each time step are continually stored by using Ky
(Ky=L/(a At) +1) which is the maximum size in the system. K which is used as a counter
for each time step, and Kp which is used as a pointer to identify the position in the vector
H or Q at which current values of the variables are stored. At each iteration when K is
incremented, so is Kp, the value of the pointer. When Kp exceeds Ky, the value Kp is set
back to 0, so that it points to the first position in the vector. This procedure will save
much torage space during computation.

The system topology must be stored before starting the simulation. An indexing
method was introduced which offers one form of bookkeeping to describe the system
connection. [t was oriented around the nodes of the system and, for each node, the
following information was given: the node number, the element number (sign) attached

to the node, and the element section number adjacent to node.

118

The check valve dynamic system model was represented by a second order.
nonlinear, differential equation. This equation can be solved using the fourth order
Runge-Kutta algorithm. It must be solved simultaneously with the pipeline simulation or
pump dynamic simulation. Check valve dynamics need torque To and flow rate Qv as
initial conditions. At the end of each time step of simulation, the check valve disc angle 8
and disc angular velocity @ is obtained. Then, from the disc information. the check valve
coefficient of resistance K, check valve pressure drop AP, and flow rate Qv are
calculated. The flow torque Ty is calculated by Qv and K. The above procedure is
illustrated by a flowchart in Fig.4.3.1.

The pump characteristic model includes the head balance and speed change
equations. These equations can be solved simultancously for ¢ and v using Newton-
Raphson method. The flowchart of this solution was illustrated in Fig.4.4.1.

Chapter 5 described the implementation of the dynamic model of pipeline
network systems with check valves into a working simulation program. This program
includes three parts: Hydro-Analysis, User Graphic Input. and User Graphic Qutput.
which were involved in two application. One was the HvdroAnalysis application (Hydro-
Analysis and User Graphic Input), and the other was the HydroGraphic (User Graphic
Output).

An overview of the program was given including the analysis and the design of
the Hvdro-Analysis and Hydro-Graphic applications. The analysis application consisted
of problem description, input and output requirement. The design was focused on the

algorithm, the hierarchical diagram, major class descriptions, and their inter-relationship.

19

The user interface is essential in achieving the goals of this work. The Microsoft
Windows Graphic User Interface was used. The user could easily set and change all of
the parameters describing the pipeline network and check valve system through a window
dialog box, button control, edit box, and other standard interface methods. This
application simulates hydraulic transients caused by pump failure, pump start up. or
control valve operation (closing, opening). It can also be used in the system with or
without the check valve. The results of simulation can be visualized as a plot in which
pressure (head) Vs. time at indicated junction and flow rate Vs. time at indicated pipe.
The indicated pressure and flow rate can also be stored in text file which can be printed
or read at any time later.

In conclusion. the contributions of this thesis are:

o Provided a hydraulic transient simulation package under the window’'s
environment with graphics user interface for ease of use.

e Included pump dynamics. and check valve dynamics in the pipeline
transient analysis.

o Improved algebraic representation and continuous data storage to the

method of characteristics.

6.2 Suggestions for Future Work

The program HydroAnalysis is only the first step towards the simulation of pipeline
systems with check valves. The solution procedure adopted in the program did not

consider the problem of water column separation. Although this only occurs when the

" pressure in the pipeline reaches the saturated vapor pressure of the fluid, it should be
considered in the method of characteristics. Streeter and Wylie [7] introduced a procedure
in which the development, growth, and collapse of a cavity were considered as an internal
boundary condition. The pressure of column separation computed by using this approach
was, however, found to be higher than those measured on a prototype. Therefcre, there
remains more work on this topic, especially in program implementation.

An experimental analysis of the Orifice Sequence Model for the check valve
dynamic analysis is required. Experimental tuning is also necessary for program
HydroAnalysis. Since all concepts and most algorithms are only considered for the
incompressible flows, compressibility will need to be integrated into the dynamic and
transients flow model in the future.

The user interfaces in this application only meet the basic requirement for this
project. Throughout this thesis. great effort was made to fulfill basic usable requirements.
but there remains room for a great deal more work in this area. At present. an index
vector has to be input through the window interface point by point. The complexity of the
pipeline networks system is limited by the size of arrays which were used for parameters
input of pipes, junctions, pumps, and valves. A well defined database should be created to
store the pipe parameters, pump characteristic data, and check valve parameters. A
graphic user input should be introduced for the pipeline topology data. so that the user
would need only to drag in, and connect each element. and input parameters graphically.
Finally. the graphic output should be improved to display and store more plots as freely

chosen by the user.

REFERENCES

. Wood, F. M., “History of Water Hammer”, Report No. 65, Department of Civil
Engineering, Queen’s University at Kingston, Ontario, Canada, April 1970.

. Rich, G., “Hydraulic Transients”, McGraw-Hill Book Co., New York, 1951

. Parmakian, J., “Water Hammer Analysis”, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1955.

. Street, V.L., and Wylie, E. B., “Hydraulic Transients”, McGraw-Hill Book Co.,
New York, 1967.

. Fox, J. A., “Hydraulic Analysis of Unsteady Flow in Pipe Networks’, John
Wiley & Sons,Inc., New York, 1977.

. Watters, G. Z., "“Modem Analysis and Control of Unsteady Flow in Pipelines”,
Ann Arbor Science Publications, Ann Arbor, MI, 1979; 2™ ed., Butterworth,
Boston, London, 1983

. Wylie, E. B and Streeter, V. L., “Fluid Transients”, McGraw-Hill Book Co.,
New York, 1983.

. Chaudhry, M. H., “Applied Hydraulic Analysis” 2™ ed., Van Nostrand
Reinhold Co., Princeton, N. J., 1987.

. Fox, J. A., “Transient Flow in Pipes, Open Channels and Sewers”, John Wiley
& Sons, Inc., New York, 1989.

10.Sharp, B. B. and Sharp D.B., “Water Hammer: practical solutions”, Amold
Publishers, London, 1996.

11.Pooal, E. B., Poiwit, A. J. and Carlton, J. L., *Prediction of Surge Pressure from
Check Valve for Nuclear Loops™ Paper 62-WA-219, Amer. Soc. of Mech.
Engrs, October 1962.

12.Csemniczky, J., “Hydraulic Investigations of the Check Valves and Bufferfly
Valves”, Proceedings of the Fourth Conference on Fluid Machinery,
AKADEMIA, 1972,PP. 293-305.

13.Hong, H. and Svoboda, J., “Model of Swing-disc Check Valve Suitable for
Lumped Parameter Piping Network Simulation”, Report, Concordia University,
Montreal, Quebec, Canada, 1981.

14.Hong, H., “The Design of Wafer Swing-Disc Check Valves for Optimal
Performance”, Thesis of Master of Engineering in the Facuity of Engineering,
Concordia University, Montreal, Canada, 1983.

15.Cavazoni E. M, “Design Optimization and Performance Evaluation of a
Gravity Check Valve for Gas Service”, Thesis of Master of Engineering In the
Department of Mechanical Engineering, Concordia University, Montreal,
Quebec, Canada, 1984.

16. Provoost,G.A., “A Critical Analysis to Determine Dynamic Characteristics of
Non-Retum Vaive”, 4™ Int. Conf. On Pressure Surges, Bath, 275-286, 1983.

17.Thorley, A.R.D. “Check Valves Behavior under Transient Flow Conditions, a

State-of-Art Review”, Trans. A.S.M.E. J Fluids Engineering 111 178-183,
1987.

123

18.Sidi Ould Sadfa, “Simulation for the Dynamic Response of a Transient
Hydraulic System”, Project report, Dept. of Mechanical Engineering,
Aerospace Engineering, Concordia University, 1998

19. “Simulation of Water Hammer in Pipes with HAMMER" Version 2.0
http://www.civl.bee.qut.edu.au/projects/hammer.htmi

20. “Faast Software for fluid transients”, http:/fwww.faast.com/

21.Thorley, A.R.D., “Dynamic Response of Check Valves” 4-" international
Conference On Pressure Surges, Bath, 231-242, 1983.

22.V. L. Streeter, and E. B. Wylie, “Fluid Mechanics”, 8™ ed., McGraw-Hill, New
York, 1985.

23.A. R. D. Thorley, “Fluid Transients in pipeline Systems”, D. & L. George,
Herts, England, 1991.

24.A. R. D. Thotley, and J. H. Oei, “Dynamic Behavior of a Swing Check Valve”,
Proc.5™ int. Symp. Water Column Separation, IAHR, Obernach, Germany,
Sept. 1981

25.M. Suda, “Simulation of Valve Closure after Pump Failure in Pipeline”, Journal
of Hydraulic Engineering, Vol. 117, No. 3, March 1991

26.Krasimir P. Ivanov and Emil G. Bournaski, “Combined Distributed and
Lumped Parameters Model for Transient Flow Analysis in Complex Pipe

Networks”, Comput. Methods in Appl. Mech. Engrg. Vol. 130, 1996

27. B. Camahan, H. A. Luther, and J. O. Wilkes, “Applied Numerical Methods”,
John Wiley & Sons. Inc., New York, 1969.

124

28. Shoichiro Nakamura, “Applied Numerical Methods with Software”, prentice
Hall, Inc. New Jersey, 1991.

29. David Budgen, “Software Design”, Addison-Wesley, 1994

30. B. W. Kamey and D. Mcinnis, “Efficient Calculation of transient Flow in
Simple Pipe Networks”, Jounal of Hydraulic Engineering, Vol. 118, No. 7,
July 1992

31. M. S. Ghidaoui and B. W. Kamey, “Equivalent Differential Equations in
Fixed-Grid Characteristics Method", Journal of Hydraulic Engineering, Vol.
120, No. 10, October 1994

32. D. A. Mcinnis, B. W. Karney and D. H. Axworthy, “Efficient valve
Representation in Fixed-Grid Characteristics Method”, Journal of Hydraulic
Engineering, Vol. 123, No. 8, August 1997

33. B. W. Karney and M. S. Ghidoui, “Flexible Discretization Algorithm for Fixed-
Grid MOC in Pipelines”, Journal of Hydraulic Engineering, Vol. 123, No. 11,
November 1997

34. P. Krus, K. Weddfelt and J. O. Paimberg, “Fast pipeline Models for
Simulation of Hydraulic Systems”, Journal of Dynamic Systems,
Measurement, and Control, Vol. 116, March 1994

35. T. Chen and R. F. Boucher, “Junction Characteristics of Energy Wave
Methods”, Proc Instn. Mech. Engrs, Vol. 211 Part C, 1997

36.A. S. Elansary, W. Silva and M. H. Chaudhry, “Numerical and Experimental
Investigation of Transient Pipe Flow”, Journal of Hydraulic Research, Vol. 32,

No. 5, 1994

125

37. E. E Kitsios and R. F. Boucher, “Transmission Line Modeling of a Hydraulic
Position Control System”, Proc Instn. Mech. Engrs, Vol. 200 No. B4, 1986

38. R. F. Boucher and E. E. Kitsios, “Simulation of Fluid Network Dynamics by
Transmission Line Modeling”, Proc Instn. Mech. Engrs, Vol. 200 No.C1, 1986

Simulated Drilf Strings Undergoing Water hammer”, Proc Instn. Mech. Engrs,
Vol. 209, Part C: Journal of Mechanical Engineering Science, 1995

126

AppendixA Review of Methods of Transients

Analysis in Pipelines

A 1. Introduction

There are two kinds of unsteady flow in pipes. One is the transient state flow that
represents the intermediate-flow condition when flow is changed from one steady state to
another. The other is the oscillatory flow that may be developed into a resonance which

depends on the characteristics of the piping system and of the excitation.

A 2 Methods for Analyzing the Oscillatory Flow

Oscillatory flow may be analyzed either in the time domain or in the frequency doain.

In the time domain, one can use the Method of Characteristics. Using this method,
the partial differential equations describing the unsteady flow are converted into ordinary
differential equations and then solved. Analysis of the oscillatory flow by this method
assumes that the initial steady-state discharge and pressure head in the piping system are
equal to their mean values or equal to zero-flow conditions. The specified forcing
function is then imposed as a boundary condition, and the system is analyzed by
considering one frequency at a time. The disadvantage of this method is that it requires a
considerable amount of computer time. The main advantage is that the nonlinear

relationships can be included in the analyses.

127

In the frequency domain, there are two methods of analysis available:

1. Impedance Method

In this method, the Terminal Impedance, Z, which is the ratio of the oscillatory
pressure head to the discharge, is computed by using the known boundary conditions. An
impedance diagram between w¢ and |[Z{ is plotted. The frequencies at which |Z{ is
maximum are the resonant frequencies of the system.

Because of the lengthy algebraic equations involved, the method is suitable for

digital computer analysis only.

2. Transfer Matrix Method

The second method for doing frequency analysis is the transfer matrix method. It
has been used for analyzing structural, mechanical vibrations and electrical systems. The
method is based on the linearized equations and on sinusoidal flow and pressure
fluctuations.

The transfer matrix method is simpler and more systematic than the impedance

method. This method is suitable for both hand and digital computations.

A 3 Method for Analyzing Transient State Flow

All methods of analysis of transient flow in pipes start with the equation of motion,

continuity, or energy and equations of state and other physical property relationships.

128

- From these basic equations several different methods, each employing different

restrictive assumptions, have evolved.

Time Domain

1. Method of characteristics 7, 31, 32, 33] -

The characteristic method of analysis transforms the partial differential equations
of motion and continuity into ordinary differential equations. It has several advantages
over other methods that are particularly relevant in water hammer type problems. These
include a firmly established stability criterion, an explicit solution so that different
elements physically removed from one another in systems are handled independently. and
a procedure that is relatively simple for approximations. Therefore. the method is
particularly suitabie for the analysis of systems having complex boundary conditions.

Its primary disadvantage is the requirement of strict adherence to the time step-
distance interval relationship. The method of characteristics has been discussed in detail

in Section 2.4.

2. Lumped Parameter Method {14, 26]

In the lumped-parameter method, the pipe is divided into n-sections of equal
length, where the fluid inertia, fluid capacitance and pipe elasticity and shear stress
between the fluid and pipe walls are lumped. Fig. A 3.1 is a circuit representation of one
section of a pipeline. Between each consecutive node a lumped resistance R and fluid

inertance I represent, respectively, the friction losses and the fluid inertia in the

corresponding sections. At each interior node a capacitance C connects the node to
ground. C represents the sum of half the capacitance of adjacent lumps.
With reference to Fig. A 1, the coupled non-linear differential equations relating

pressure head H at each interior node to the flow rate Q through each section, are given

by:
dH, 1 :
7 = E(Q"l -Q‘) 1 = 2,3,...,” (A.I)
dg, 1 N .
_;t- - T(H' - le - RQ:) = 1,2,3,...,11 (A.Z)
In which [14]
= (A3)
2gd,A'n
L
l=——— A4
Py (A4)
c=$4L (AS)
an
Section i-1 Section i
\\ \
i-1 1 i 1 i+1
H. R I H R [Hix
T W ——" "W
—=C Qi C

:l—_ C Qi

T
I

Fig. A1 Circuit Represent of Lumped parameter method

130

where, f is the Darcy-Weisbach friction factor, L is the length of the pipe, d, is the pipe
diameter, A, is the pipe area, n is the section amount, a is the pressure wave propagation
speed for the fluid.

The lumped-parameter method describes the system pressures and flows by
coupled non-linear differential equations. This rnetf;od may be satisfactory at very low
frequencies and with a large enough n, but it requires excessive amounts of computer

time.
Frequency Domain
3. Four-pole Equations Modeling Method (6, 34, 35]

In order to derive the four-pole equations, the continuity and motion equations

can be solved by using Laplace transformation (22, 23]. One can obtain

—P(deiz 5) o (A6)
dP(x,s) bs _
D B 0N () =0 (A7)

In which E is the bulk Modulus for the fluid and

LR o« & (k')-
J,(R) s
; '(k+2)'

N(s)=
(—)

131

a 4 s 2s®
=—+————— ————— . "

+
s 3 18a 1352°

Where, J,(7R) is called Bessel functions of order n.

- (_,2p2 a0k
J, (R) = (?)" Z(_ﬁ_/“_)

27 & Kn+k)!

And

where, a is called “viscosity factor”.

An approximation over the whole frequency range is made, especially for the

Is| = w< 300
o5 s w
Niy=Zepe 33, 25 . 1000 (A.8)
s + 5 s s

1+ [+
33 -« 1000-a

We introduce the characteristic impedance Z. and the sonic velocity a

z = - E NNy
A p

The equation (A.2) and (A.3) can be rewritten as the following:

P= _.aiig. (A.g)
s dx

P__ZS oy (A.10)

dx a

Elimination of the pressure P from the above

32

—=_-2_.Q-N=0 (A.11)

The solution of this second-order differential equation

=F =[5
O(x,s)=Cie® +C,e *°
P(x.5) =-Z, JF[+ Cerw - c,e_«”] (A.12)

when x=0, at the input end of the pipe, P = P; and Q = Q, so:

1 P
—(Q, y A.l3

1 P,
C — - ! C1
1 2 (Q‘ Z“\[N—) 2

Letting P= P, and Q = Q, at x = L, the output end of the pipe and introducing the wave

propagation time along the pipe line

r=L
a

The four-pole equations are obtained as follows:

1
,=coshTsyN-Q, - sinhTsm-R=A Q.+B.P
. ZAN S
P, =-Z_JN -sinhTsJyN -Q, +coshTsyN -P. =C,Q, +D, P, (A.14)

We can write above equation in the form of matrix

IR e el IFIRFR

P -Z,«/;Vsinh sV cosh Ts N
(A.15)
The block diagram shown in Fig. A.2 can be used to represent the dynamic behavior of

one single pipeline.

133

The four-pole equation provides a practical solution in the frequency domain. It is
very useful for the analysis, synthesis and design of hydraulic pipelines.

Solutions in the time domain can be found theoretically. By inverse Laplace
transformation, the frequency domain can be transformed into the time domain. However,
this procedure turns out to be extremely complicated. The main difficulty comes from the

frequency dependent friction factor N.

Fig A.2 Block Diagram for Single Pipeline

The use of four-pole equations may be considered for simulation. Using Simulink
toolbox in Matlab, one may build block diagram for the single simple pipeline; however,

for large and complex pipeline systems, it remains difficult.

4. Transmission Line Modeling Method [37, 38, 39]

Transmission Line Modeling (TLM) is essentially a time-delay method, borrowing its
main concepts and fundamentals of its computational solution scheme from the field of

electrical power lines. In its elementary form, a fluid network is treated as a set of pipes

134

(or pipe segment) where waves travel with a pure time delay. Connecting the pipes are
junctions of various types at which the waves are scattered (transmitted, reflected and /or
attenuated).

Similar to the four-pole equation system analysis, The transmission line equation

are obtained as follows:

- -El—sinhTD coshTD

P, coshTD -Z_sinhTD P
. (A.16)

m, m,

where P and m are pressure and mass flow at stations 1 (upstream) and 2 (downstream),
T is the acoustic time delay between stations, Z. is the characteristic impedance and D is
the D operatori.e., e CF(t)= F(t+T).

Equation (A.16) is rearranged as:

2 _ | A w1 A _ -m :
Pz\lz:‘—-ﬁ[‘/.z_‘i-ml\/Zjle +*/§[./Z mn/Zj!e (A.17)

mzﬁ=—‘/%|:\/iz‘_-+mn[2—‘}e°m -Tli-[%-mnfz_t}e’m (A.18)

The first and second bracketed terms of both equations (A.17) and (A.18) represent

rightward (u) and leftward (v) travelling waves respectively,

b

(A.19)

Equation (A.19) defines « and v, the decoupled wave variables. The pressure and flow are

thus simply determined from them as

135

P= |2 +v) (A.20)

m= ’2; (u-v) (A.21)

The relationship between « and v at each end of a transmission line may be confirmed

now by substituting for P and m in equation (A.16), giving

u, | _[e™ 0 -. u,
[VI}_[0 eva [V[] (A.22)

Since the e ™” is the delay operator

u,(t)=u,(t-T)
v()=v,(t-T)

(A.23)
Thus, u# and v waves are linearly related to right and left going p and m waves, and
therefore undergo only a time delay in the line.

To use TLM method in network modeling, all lines are divided into a number of
identical time delay lengths (At) along which u and v waves travel unaltered. Each line is
modeled computationally by a pair of software resisters, one each for the left- and right-
going waves. A feature of the method is that all dynamic elements are modeled as
distributed elements—namely as lossless transmission lines. Inertance and capacitance
are modeled by equivalent opened- or closed-end transmission line stubs of delay At.
Resistance (simply, although not essentially, linear) is lumped at the junctions where all
wave transformation (via scattering or attenuation) is thus concentrated. Thus the model

consists only of resistive junctions and transmission lines (using both actual lines and

short stubs representing dynamic elements). The system can be represented by a general

136

scattering matrix which acts on the incident wave vector to produce the reflected wave
vector.

If u; represents incident waves and v; emergent waves from a junction, a matrix §
can be constructed which contains all the junction scattering coefficients. This matrix
operates on the u vector of incident waves to produce a v vector of emergent waves. One
time step later this emergent vector of waves becomes the incident vector at the junction.
A forcing term F may be included as following:

v].. =S[u), + F[P] (A24)
where S is scattering matrix, F is the linear array of forcing coefficients and [p] is the
forcing vector. Thus, the major concem is to find the scattering matrix § by studying
different pipe connections and different elements.

From the above analysis, this kind of method combines the lumped parameter and
distributed parameter models, frequency domain analysis, and the time domain
implement. It can therefore be used to solve the problem of simple pipeline network, and
possible be extend for use in analyzing more complex systems.

There are other methods which may be used in hydraulic transient analysis, such
as the graphical water hammer method in which friction is neglected in its theoretical

development, but taken into account by correction.

137

Appendix B

Pump Characteristics

The relationship between the pump discharge, Q, and the pumping head, H, must be
specified in a mathematical model. The discharge, Q, of a centrifugal pump is a function
of the rotational speed, N, and the pumping head, H, whereas transient-state speed
changes depend upon the net torque, T, and the combined moment of inertia of the pump,
motor, and liquid entrained in the pump impeller. Thus, four variables are involved in the
characteristics, the pump dynamic head H, the discharge Q, torque 7, and the rotational
speed N. Two of these variables may be considered independent (i.e., for a given Q and
N, H and T are determined from the characteristics).

Since flow conditions may be described for a turbine in the same manner as a
pump. we can use turbine characteristics to pump. For a given geometrically similar
series of turbine, with D representing the linear dimension, the homologous equation [8]

becomes:

H____ H, o _ o
(N\D))* (N,D,)’ ND} N,D;}

®.1)

where the subscripts 1 and 2 refer to two different-sized units of the homologous series.
When restricted to 2 particular unit, with the subscripts referring to two homologous
operating situations, Eq.(B.1) reduces to

Hl HZ Ql - Ql 9
AN N, N, ®2)

138

The homologous theory assumes that efficiency does not change with the size of unit, so
that

TN, T.N,
—_—— .3
0H, 0.H, ®3)

Combination of Eq.(B.2) and (B.3) obtain:

T, - T, H, = H, it S (B.4)
N© NS 0°) Q- i

Various variables at the point of best efficiency are referred to as rated conditions. By

using these values as a reference, the following non-dimensional variables may be
defined:

3
0, N B.5)

where the subscript R indicates the rated conditions.

On the basis of Eq.(B.5), the dimensionless-homologous relations may now be
expressed as

L

— VS.
pE

VS.

N>

N}<

v
74 v v

Vs, — (B.6)
v

. h v . . i
According to the homologous theory, — vs. — is the head-discharge relation
a” a

for any speed & of that unit, and similarly _l_’;_ vs. i is the representation of the torque-
e

discharge relations for any speed « of that unit.

During normal pump operation, h, £ v, and « are all positive. However, during

the transient-state conditions, they may become negative individually or in groups.

139

Because the above relations are difficult to handle, the following method may be used to

overcome this difficulty.

Y 4V
— vs. tan"~ — ——— vs. tan" — B.7)
2 a at +v? o

. . v 1 h
It is noted that for a given — one can develop ——— from a plot of —- vs.
o4 T4Vt a”

a”+v

z , S0 that homologous relationships are preserved in Eq.(B.7).
a

Vv
6=arc tan o

Fig B.1 Polar Diagram of 0

140

If one had complete pump data for all zones of operation, referring to Fig.(B.1), a polar

diagram of

a Vv
8=tan™—

a

h
VS. r=———

a - +v

and vs. r= —

a +v

complete characteristics of the pump by two closed curves [7].

2

would represent the

Pump Charactristics Ns=1270
1 -5 '
1 1\
o’ P .
0.5 gt AN ._A 7
,"' .\-—‘. \ /
2] 7 .\‘
; 0 . .". ’ ‘\‘ /
T ! 3
; ‘0.5 : ‘ 7 "
] .
g f \
; "\ ?
| \ i' !
: \ A :
'1 .5 : " "' |
! v |
| -2 : .
0 zl2 /4 3nl2 T
x=m+unlv/g TTWHW® © @ Wk
v=0 =0 v=0 o=0 v=0
Turbine Dissipation Normal Reversed Speed
Dissipation
Zone Zone Zone Zone
v<0 v<0 v20 v>0
a<0 a20 20 a<0
0 /2 /e n/2 2z

Fig B.2 Complete Pump Characteristics

141

a4V
The angle X =7 +tan 'a' may also be plotted as an abscissa against Wy(x) or

Ws(x), where

W, (x) = h W, (x) = B t=7z+tan"-‘-’—
et R a

(8.8)

. . av .
To obtain the rectangular coordinate plot (Fig B.2), the 8 =tan™ — is an angle between
a

= T and + 7 . It holds for all real values of v ande except v=0 and a=0 at the same
time. The parameter x varies from 0 to 2. We can determine sets of values of H, Q, T,

and N, or H, 0, N, and efficiency 7 for various operating points throughout the zone.

QHy

Since Tw==— for a pump, and Tw=QHym for a turbine, T may be
n

determined. Thus the four values &, B, v, and @ can be obtained, when rated values Hjg,
Tg, Qg and Nj are given. From Eq. (B.8), x, Wy, and W3 may be determined for each

operating point.

142

Appendix C

Simulation Results

143

1. Simple pump, check valve and pipe system simulation during pump failure

Fig. C1 Simple Pump, Check Valve, Pipe Systems

The results of the simulation are as following:

144

t Qo Qo1 0[] 0r4] 0
' 4.14276 4.14276 (.i4276 4.14276 4.14276 thm-é.o‘

t= 0
t= 0.1 3.46655 4.14276 4.14276 4.14276 4.14276 theta=60
t= 0.2 3.47303 . 3.46981 3.47308 4.14276 4.14276 thetas=€2
= 0.3 3.47981 3.4762¢4 3.47945 3.47629 2.81568 theta=66
See . 0.4 3.48675 3.48298 2.82762 2.82147 2.82721 theta=70
ts 0.5 2.18783 2.834 2.83966 2.83332 2.83939 theta=70
ts 0.6 2.20318 2.19553 2.2036 2.84568 2.85193 theta=70
t= Q.7 2.21916 2.2112° 2.21944 2.21188 1.57543 theta=70
t= 0.8 2.23549 2.22738 1.59394 1.58451 1.59354 theta=70
t= 0.9 0.975052 1.60359 1.61258 1.60294 1.61229 theta=70
t= 1 0.994977 0.985031 0.995373 1.62187 1.63141 ctheta=70
t= 1.4 1.015858 1.00529 1.01584 1.00594 0.382074 theta=70.
t= 1.2 1.03657 1.02609 0.403323 0.392514 0.402944 theta=70
t= 1.3 =-0.206973 0.414364 0.424771 0.413742 0.424529 theta=70
t= 1:4 -0.185892 -0.196429 ~-0.185515 0.435546 0.446551 theta=70
t= 1.8 -0.16408 -0.174983 -0.16384 -0.174367 =0.795208 theta=70
t= 1.6 -0.141809 =-0.152942 =0.773046 -0. 784308 =0.77343 theta=70
t= 1.7 -1,37975 . -0.76156 -0.750725 -0.76219 =0.750972 theta=70
t= 1.8 =-1.35649 -1.36809 -1.28608 =0.739529 =0.728107 theta=70
t= 1.9 ~1.3326 -1.34452 -1.33233 -1.34386 -1.9575 theta=70
t= 2 -1.30837 -1.32046 -1.9316 =1.94472 -1.932 theta=70
t= 2.1 -2.52432 -1.91828 -~1.90569 -1.91895 «1.90596 theta=70
t= 2.2 -2.49592 -2.51006 -2.49548 -1.89276 -1.87963 theta=70
t= 2.3 -2.46706 ~-2.48143 -2.46675 ~2.48071 -3.07801 theta=70
t= 2.4 -2.438 -2.45247 -3.04568 ~3.06199 -3.04611 theta=70
t= 2.5 -3.61449 -3.0292 -3,01356 ~3.02992 -3.01385 theta=70
t= 2.6 -3.57863 -3.59645 -3.57814 -2.99762 -2.9815 thetas70
t= 2.7 -3.54255 -3.56049 -3.54219 -3.55968 -4.13265 theta=70
t= 2.8 -3.5065 ~3.52442 -4.09201 -4.11245 -4.09247 theta=70
t= 2.9 -4.6288 -4.07144 -4.05187 -4.07223 -4.05221 theta=70
T s 3 -4.5841 -4.60628 -4.58354 ~4.03205 -4.01211 theta=70
t= 3.1 -4.53948 -4.56162 -4.53904 -4.5607 -5.10296 theta=70
t= 3.2 -4.49516 -4.51715 -5.05309 -5.07812 -5.0536 thetas=70
t= 3.3 -5.55202 -5.028 -5.00411 -5.02889 -5.0045 theta=70
t= 3.4 =5.49806 -5.5248 -5.45741 -4.98002 -4.95586 theta=70
t= 3.5 =-5.44453 ~5.47106 ~5.444 -5.46999 -5.977 thetas=70
t= 3.6 -5.39164 =-5.41785 -5.91796 -5.94755 ~5,91853 theta=70
t= 3.7 -6.37549 -5.88837 -5.86023 ~5.88939 -5.86068 theta=70
t= 3.8 -6.31277 ~-6.3438 -6.31201 -5.83194 -5,80363 theta=70
L= 3.9 -6.2508% -6.28149 -6.25021 -6.28024 ~6.74929 theta=70
t= 4 -6.1899 -6.22006 -6.68195 -6.71566 ~6.68259 theta=70
L= 4.1 -7.09667 ~6.64829 ~6.61634 -6.64945 -5.61686 theta=70
t= 4.2 -7.02639 -7.06112 -7.02553 -6.5843 -6.55228 theta=70
t= 4.3 -6.95726 -6.99142 ~-6.95651 -6.99 -7.42 theta=70
t= 4.4 -6.88942 -6.92295 =7.34%81 -7.38291 -7.34652 theta=70
t= 4.5 =-7.7181 -7.30878 -7.27374 =7.31009 =7.27434 theta=70
t= 4.6 -7.64191 -7.67952 -7.64054 -7.23865 -7.20361 thetas70
t= 4.7 -7.56716 =7.60406 ~7.56631 -7.60246 =7.99367 theta=70
t= 4.8 -7.49399 -7.53012 -7.91441 -7.95403 =7.91518 theta=70
L= 4.9 ~ -8.24598 -7.8749 -7.83761 -7.87635 -7.83828 theta=70
t= 5 -8.16573 -8.20831 -8.16467 -7.8003 -7.76306 theta=70
t= 5.1 -8.08716 -8.12892 -8.08621 -8.12415 -8.47785 theta=70
t= 5.2 -8.01037 -8.04825 -8.39541 -8.43661 -8.39625 theta=70
t= 5.3 -8.68889 -8.35433 -8.31568 -8.35591 -8.31642 theta=70
t= 5.4 -8.60643 -8.64707 -8.60529 -8.27703 -8.23845 theta=70
t= S.5 -8.52582 -8.56555 -8.52478 -8.56365 =8.88183 theta=70
N t= 5.6 -8.44711 -8.48591 -8.79801 -8.8399 -8.79891 theta=70
t= 5.7 -9.05653 -8.75628 -8.71707 -8.75794 -8.71768 theta=70
t= 5.8 -8.97359 -9.01444 -8.97239 -8.6779 -8.6388 theta=70
t= 5.9 -8.89256 -8.93247 -8.89146 =8.93046 -9,21556 theta=70

145

146

o Q[0] Qf1] Q21 Q3] O[4] 6
WAL d [(e g =

t= 18 «10.5421 =10.5449 -i’c?. 553 «10.5557 «10. 5532 theta=70
[L 1@ <1l -10.5%58 -10.5502 «10.5479 -10.5506 «10.548 thetas?0
ts 18.2 -10.5%32 «10.5556 -10,.553 «10.5454 «10.5428 theta=70

3= 18.3 «10.5484 -10.5507 «10.5482 «10.5504 -10.5578 theta=70
- 18.4 =10.5434 «10.5459 =10.5531 -10.5555 -10.5533 theta=70
t= 18.5 -10.5576 -10.5506 «10.5485 «10.5509 -10.5487 theta=70
t= 18.6 -10.5533 -10.5554 «10.5531 -10.5463 «10.544 thetas70
ts 18.7 -10.5489 -10.5511 «10.5488 -10.5508 -10.5573 theta=70
t= 18.8 =10.5445 «10.5467 «10.5832 -10.5553 «10.5533 theta=70
t= 18.9 -10.5571 -10.5509 «10.5491 -10.5512 =10.5492 theta=70
t= 19 -10.5533 «10.5552 «10.5532 «10.5471 «10.545 thetas70 A

- b= 19.1 «10.5494 «10.5513 «10.5493 -10.5511 -10.5569 thetas70
t= 19.2 -10.5455 «10.5474 «10.5532 «10.5551 -10.5533 theta=70
t= 19.3 -10.5567 -10.5512 =10.549S «10.5515 -10.5497 thata=70
t= 19.4 «10.5533 =10.55% -10.5532 =10.5478 «10.5459 thetas70
= 19.5 =10.5499 «10.5516 =10.5497 «10.5513 =10.5565 theta=70
ts 19.6 -10.5463 «10.5481 -10.5%32 «10.5549 «10.5533 theta=70
t= 19.7 -10,.5563 «10,5514 =-10.5499 «10.5517 «10.55 thetas=70
ts 19.8 =10.5533 -10.5548 =10.8%32 =10,.5484 «10.5467 theta=70
t= 19.9 -10.5502 -10.5517 «10.5501 -10.5515 «10.5561 thetas70
t= 20 -10.5471 -10.5486 «10.5532 «10.5547 =10.5533 theta=70
[<] 20.1 =-10.5559 «10.5516 -10.5%03 «10.5518 ~10.5504 theta=70
tw 20.2 «10.5533 -10,.5546 «10.58531 -10.5489 «10.5474 theta=70
tw= 20.3 -10.5508 -10.5519 =10.5504 «10.5516 =10.5858 theta=70
t= 20.4 -10.5477 -10.5491 -10.5531 -10.5545 -10.5532 theta=70
L= 20.5 «10.5556 «-10.5517 =10.5505 -10.5519 -10.5506 cheta=7Q
= 20.6 -10.5532 =-10.5544 -10.5531 -10.5493 -10.548 theta=T70
t= 20.7 =10.5508 -10.552 «10.5507 -10.5518 -10.5554 theta=70
t= 20.8 -10.5483 -10.5495 -10.5531 «10.5543 «10.5532 theta=70
t= 20.9 -10.85852 -10.5518 -10.%508 -10.552 -10.5509 chetas=70
t= 21 -10.5532 -10.5542 «10.5531 -10.5497 «10.548S thetas70
t= 21.1 «10.551 -10.552 -10.5509 «10.5519% «10.5551 thatas=70
t= 21.2 -10.8487 =-10.54%8 «10.58%3 -10.5541 «10.5531 thata=70
t= 21.3 «-10.555 -10.5519 -10.851 «10.5521 «10.5511 cheta=70
t= 21.4 «10.55831 -10.554 «10.583 -10.5% «10.5489 cheta=70
t= 21.5 -10.8512 -10.5521 -10.5511 «10.5519 «10.5549 theta=70
t= 21.6 -10.5492 «10.5501 «10.553 «10,554 -10.55831 theta=70
t= 1.7 -10.5547 =10.552 -10.5512 =10.5521 «10.5512 theta=70
t= 21.8 «10.553 «10.5539 «10.553 «10.5503 -10,5493 thetas=70
s 21.9 «10.5513 «106.5522 «10.5512 :10.552 -10.5546 theta=70
t= 22 «=10.5495 -10,5504 «10.553 «10.5538 -10.5%3 thetas70
t= 22.1 «10.5545 «10,5521 -10.5513 -10.5522 «10.5514 cheta=70
t= 22.2 710.553 «10.55837 «10.5529 «10.5508 «10.5497 thetas70
ts - 22.3 «10.5514 -10.5522 «10.5514 -10.5521 =10.5544 chetas70
ts 22.4 -10.5498 «10.5506 -10.5529 -10.5537 -10,.553 theta=70
t= 22.5 -10.5543 «10.5%21 =10.5514 «10 ._5522 -10.5515 thetas70
t= 22.6 -10.5529 =10.5536 «10.5%29 -10.5507 «10.55 thetas70
t= 22.7001 «-10.5516 -10.5522 «10.5515 -10.5521 ~10.5542 theta=70
t= 22.8001 «10.5501 -10.5508 flO .5529 «10.5535 «10.5529 thetas70
t= 22.9001 «-10.5541 «10.5521 «10.5515 -10.5522 «10.5516 cheta=70
t= 23,0001 -10.5529 «10.5538 «10.5528 «10,.5509 «-10.5503 cheta=70
t= 23.1001 -10.5517 «10.5523 «10.5516 -10.5521 «10.554 theta=70
t= 23.2001 -10.5504 «10.551 -10.5528 «10.5534 -10.5529 theta=69
t= 23.3001 -10.5529 «10.5522 ~10.5516 -10.5523 =10.5517 thatas=é8
t= 23.4001 -10.5509 -10.5524 -10.5519 «10.5511 -10.5505 theta=67
t= 23.5001 -10.5487 «10.5504 -10.5498 -10.5513 «10.552 theta=66
t= 23.6001 «-10.5465 -10.5482 «10.549 «10.5505 -10.5491 thetas6s
t= 23.7001 -10.5467 «10.5472 «10.54%9 «10.5476 «10.5461 theta=§4
t= 23.8001 «-10.5427 «10.5454 -10.544 =-10.5444 «10.5429 thetasé3
t= 23.95001 «-10.5385 «-10.5414 -10. 5399 «10.5424 =10.542 theta=62/

~ t u(‘)"l; 9] o Q2] 3
= 240001 -10.53¢1 -10.5%h1 -10.5%7 <15:8354
te 24,1001 -10.5318 -10.5338 -10.8315 -10.5344
te 24.2001 -10.5255 -10.5295 ~10.5271 -10.529

_t= 24,3001 -10.5189 -10.5232 -10.5206 -10.5244
ve 24.4001 -10.512 -10.5165 -10.5148 -10.5189
v 24.5001 -10.8067 <10.5104 =10,507 -10.5113
m 24.6001 -10.4978 -10.5033 ~-10.4997 -10.5032
te 24.7001 -10.4883 -10.4942 -10.4504 -10.4957
= 24.8001 -10.4783 -10.4846 -10.4815 -10.4871
te 24.9001 <10.4696 -10.4753 -10.4705 -10.4765
te 25.0001 -10.4574 -10.4649 -10.4598 -10.4653
= 25.1001 -10.4445 -10.4525 -10.4471 -10.4543
= 25.2001 ~-10.4272 -10.4393 -10.4344 -10.4421
te 25.3001 -10.4102 -10.4226 -10.4162 -10.4278
t= 25.4001 -10.3892 ~10.404 -10.3373 -10.4092
te 25.5001 -10.3666 -10.3827 ~=10.3723 -10.3865
te 25.6001 ~-10.3361 -10.3565 -10.3459 -10.3613
tw 25.7001 -10.3039 -10.3259 =-10.3132 -10.3327
tm 25.8001 -10.2658 -10.2917 -10.2779 =10.299
tw 25.9001 -10.3237 -10,2526 -10.2381 -10.2598
te 26.0001 -10.1721 -10.2068 ~-10.188 -10.2156
te 26,1001 -10.1154 -10.154 -10.1318 -10.1651
te 26.2001 -10.0494 -10.0941 ~-10.0693 -10.1063
te 26.3001 =9.96525 -10.0256 -9.99569 -10.0385
ve 26.4001 -9.87474 =9.9365 -9.90348 -9.9615
te 26.5000 -9.7733¢ - -0.84289 -9.80459 -9.86394
t= 26.6001 -5.65593 -9.73637 =-9.6839 =-9.75063
te 26.7001 -9.50437 -9.60507 -9.55168 -9.62889
t= 26.8001 -9.33934 -9.45282 -9.39279 -9.48973

_ t=26.9001 -9.14425 -9.28135 ~ -9.2118 -9.3211
tm 27.0001 -8.82381 -9.07709 -8.98932 =9.12145
e 27.1001 -8.31571 -8.73986 -8.64195 =-8.8875
te 27.2001 -7.38821 -8.22337 -8.10659 -8.51947
te 27.3001 -5.28199 -7.28074 =7.06123 <7.877
t= 27.4001 0 -5.07978 -4.7104 -6.67426
= 27.5001 o 0.153088 1.11192 =3.93778
t= 27.6001 0 0.758545 2.67249 3.02963
t= 27.7001 o 1.91199 6.87294 7.65904
t= 27.8001 0 4.94767 4.59348 6.50214
t= 27.9001 0 -0.33873 -1.07109 3.848
t= 28.0001 0 -0.732097 -2.59339 -2.93594
= 28,1001 0 -1.85943 -6.69448 =-7.45275
t= 28,2001 0 -4.82242 -4.4824 -6.33874
t=.28.3001 0 0.325326 1.0328 =3.76243
t= 28,4001 0 0.707225 2.51856 2.8475
= 28,5001 o 1.80956 6.52509 7.25721
= 28.6001 0 4.7035 4.37673 6.18343
t= 28,7001 0 -0.312793 -0.996827 3.68078
t= 28.8001 O -0.683798 -2.44767 -2.76388
t= 28.9001 0 -1.76219 =-6.3641 -1.07161
t= 29.0001 0 -4.59045 -4.27608 -6.03561
te 29.1001 0 0.301054 0.96297¢ =-3.60278
t= 29.2001 0 0.661698 2.38043 2.68472
te 29.3001 0o 1.71713 6.21091 6.89521
t= 29.4001 0 4.48284 4.1801 5.89475

_ te 29.5001 0 -0.290039 -0.931069 3.52819
e 29.6001 0 -0.640822 -2.31656 -2.60967
t= 29.7001 0 -1.67421 -6.0649¢ -6.72734
t= 29.8001 0 -4.38028 -4.08846 =5.76037
t= 29.95001 0 0.279687 0.900956 -3.45678

147

4

=10.537
-10.5318
-10.5263
-10.%5226
-10.5152
-10.5074
-10.4992
-10.4924
«10.482
-10.4711
=10.4596
~10.4491
-10.4352
-10.4208
-10.3981
-10.3752
-10.3478
-10.3181
-10.2804
«10.2398
-10.1921
-10.1388
=10.0746
-10.0033
-9.92073
-9,80856
-9.69411
-9,.56525
-9.41602
-9,2284
-5.01696
-8.76095
-8.28317
-7.4789
-5.88319
-2.01179
8.04777
7.27782
$.7392
1.97525
-7.82526
-7.08724
-5,.60223
-1.94018
7.61459
6.90637
5.47179
1.90649
-7 [‘1“7
-6.73447
-5.3474
-1.8741
7.22525
6.57091
5.220866
1.84293
-7.04499
-6.41508
-5.11819
-1.81291

6
thetasél
theta=60
theta=59
theta=58
theta=57
theta=56
theta=55
thetas=S4
theta=53
thetas$2
thetas5l
theta=49
theta=47
theta=45
thetas4l
theta=41
theta=39
thetas=l?7
thetas=35§
thetae33
theta=31
theta=29
thetas27
theta=25
theta=23
thetas=21
theta=19
theta=1l7
theta=15
theta=12
theta=9
theta=6
thetas3
theta=l
theta=1
thetasl
thetasl
thetasl
theta=l
thetas=l
thetasl
thetas=l
thetasl
thetas=l
thetasl
thetasl
thetasl
theta=l
thetas=l
theta=l
theta=l
thetas=l
thetas=l
thetasl
thetas=l
theta=l
theta=1
theta=l
thatasl
thetasl

148

t HOI H[Il HP2l H3 H4] 6
0 315.841 » 305.63 295.42 288.21 275 theta=60
0.1 -1.78086 308.63 29%.42 28s.21 275 theta=60
0.2 =1.78754 -10.4598 -19.1455 285.21 275 theta=62
0.3 -1.61016 -10.4731 ~19.1654 -27.8378 275 thetaw=66
0.4 -1.316%94 -10.3032 290.05 . 282.429 275 theta=70
0.5 -0.430787 297.798 290.367 282.621 275 theta=70
0.6 =0.436947 -6.080642 -13.5321 282.746 275 theta=70
0.7 =0.443281 =-7.08208 =-13.0852 =20.3028 278 thetas=70
0.8 =0.449869 -7.21272 286.634 280.724 275 thetas70
0.9 =0.0855724 292.665 286.941 280.91 275 thetas=70
1 =0.0890889 ~5.31939 =10.7352 281.031 275 thetas70
1.1 -0.0928377 -5.5047 -11.038 -16.2689 275 theta=70
1.2 ~0.0967416 -5.626 285.112 279.967 275 theta=70
1.3 0.00385429 290,37 285.402 280.144 275 theta=70
1.4 0.00311399 -4.89856 -9.9764 280,258 275 theta=70
1.5 0.00242059 -5,07469 -10.264 -15.1658 275 cthetas=70
1.6 0.00181129 -5.18686 284.623 279.722 275 thetas=70
1.7 0.171388 289.64 284.918 279.901 275 thetas=70
1.8 0.165615 ~-4.15235 -8.65954 280.017 275 theta=70
1.9 0.15982 -4.34125 -8.96812 -13.287 275 theta=70
2 0.154082 -4.4668% 282.602 278.707 275 theta=70
2.1 0.573591 286.623 282.914 278.895 275 theta=70
2.2 0.560698 -2.32008 -5.40699 279.019 275 thatas=70
2.3 0.547832 -2.52546 -5.74273 -8.62524 275 theta=70
2.4 0.535082 -2.66892 278.949 276.875 275 theta=70
2.5 1.175%6 281.162 279.28% 277.074 275 theta=70
2.6 1.15274 0.483499 -0.416331 277.211 275 thetas70
2.7 1.12969 0.2539%8 -0.791887 =-1.46395 275 thetas70
2.8 1.10673 0.0846436 273.866 274.325 275 theta=70
2.9 1.92865 273.565 274.237 274.54 275 theta=70
3 1.89143 4.09029 6.02452 274.696 275 theta=70
3.1 1.85481 3.82711 5.59382 7.78861 275 tcheta=70
3.2 1.81886 3.62281 267.617 271.188 275 thetas70
3.3 2.77478 264.225 268.036 271.427 275 theta=70
3.4 2.72096 8.3022 13.5761 271.608 275 theta=70
3.5 2.686835 7.99683 13.0787 18.6513 275 theta=70
3.6 2.61669 7.7488 260.497 267.614 275 theta=70
3.7 3.65856 253.598 260.978 267.881 275 theta=70
3.8 3.58693 12.9133 21.8841 268.093 275 theta=70
3.9 3.51707 12.5608 21.304 30.6231 275 theta=70
4 3.44882 12.263 252.804 263.752 275 theta=70
4.1 4.5332% 242.107 253.348 264.0S 275 theta=70
4.2 4.44382 17.7331 30.6161 264.296 275 theta=70
4.3 4.35705 17.3308 29.9512 43.231 275 theta=70
4.4 4.27241 16.9808 244.812 259.739 275 theta=70
4.5 5§.36207 230.171 245.424 -260.07 275 theta=70
4.6 5.25639 22.5987 39.4792 260.351 275 theta=70
4.7 5.15422 22.1443 38.7311 56.0587 275 theta=70
4.8 5.05534 21.7447 236.756 255.695 275 theta=70
4.9 6.12059 218.1¢4 237.43% 256.058 275 thetas70
H 6.00198 27.3688 48.2355 256.374 275 thetas=70
5.1 5.88724 26.8739 47.4109 68.7639 275 thetas70
5.2 5.77586 26.4289 228.832 251.718 275 theta=70
5.3 6.79583 206.3 229.57 252.11 275 theta=70
5.4 6.66756 31.9536 56.7027 252.457 275 theta=70
5.5 6.54283 31.4222 55.812% 81.0832 275 theta=70
5.6 6.42289 30.9383 221.183 247.881 275 theta=70
5.7 7.38317 194.868 221.973 248.297 275 theta=70
5.8 7.24834 36.2831 64.7529 248.672 275 theta=70
5.9 7.118 35.7244 63.8105 92.8282 275 theta=70

149

t HI0] H[1] H[2] H[3} H[4] 0
T ried nu,’ X7 1o >

t= 18 10.0038 74.8745 144.8681 “95 21‘ thetas70
te 18.1 10.034 79.9421 145.039 209.98 275 thetas?70
t= 18.2 10.0251 75.1948 "140.278 210.058 275 thetas70
ts 18.3 10.0158 75.1093 140.117 205.284 275 theta=70
Tem 18.4 10.0062 75.0248 144.621 209.773 275 thetas?0
B2 18.5 10.033 79.5415 144.765 209.847 275 theta=70
t= 18.6 10.0251 75.3133 140.521 209.918 275 theta=70
t= 18.7 10.017 75.236 140.377 205.662 27 thetas70
t= 18.8 10.0084 75.1591 144.39 209.661 275 thetas70
ts 18.9 10.0324 79.1848 144.521 209.728 275 thetas=70
t= 19 10.0251 75.4193 140.741 209.792 27% theta=70
t= 19.1 10.0178 75.348 140.609 .- 206 275 theta=70
t= 19.2 10.0102 75.2792 144.183 209.561 275 theta=70
t= 19,' k | 10.0318 78.8663 144.303 209.622 275 thetas70
t= 19.4 10.0253 75.5134 140.936 209.681 275 thetas=70
t= 19.5 10.0184 75.4489 140.815 206.301 275 theta=70
ts 19.6 10.0116 75.3853 143.999 209.472 275 theta=70
ts 19.7 10.0307 78.5823 144.109 209.527 275 theta=70
t= 19.8 10.0248 75.597 141.11 209.581 275 thetas70
t= 19.9 10.0189 7%.5383 140.999 206.569 2795 theta=70
t= 20 10.012% 75.4801 143.835 209.392 275 theta=70
t= 20.1 10.0302 78.3299 143.936 209.443 275 theta=70
t= 20.2 10.0252 75.6719 141.264 209.493 275 theta=70
t= 20.3 10.0194 75.6183 141.163 206.808 275 theta=70
ts= 20.4 10.0143 75.5653 143.69 209.322 275 thetas70
t= 20.5 10.0293 78.1047 143.781 209.367 275 thetas70
ts 20.6 . 10.0248 715.7375 141.401 209.413 275 thetas70
ts 20.7 10.0201 75.6892 141.31 207.021 275 theta=70
t= 20.8 10.0153 75.641 143.561 209.259 275 thetas=70
t= 20.9 10.0287 77.9045 143.644 209.301 275 thetas70
~e= 21 10.0246 75.7963 141.523 209.342 275 theta=70
ts 21.1 10.0203 75.752 141.44 207.209 275 theta=70
t= 21.2 10.0164 75.7084 143.445 209.203 275 thetas70
t= 21.3 10.028 77.72%9 143.521 209.241 27% theta=70
t= 21.4 10.0244 75.8485 141.633 209.28 275 thetas70
t= 21.5 10.0212 75.8089 141.%56 207.378 275 theta=70
t= 21.6 10.017 75.7687 143.343 209.154 275 theta=70
t= 21.7 10.0279 77.5668 143.412 209.189 275 theta=70
ts 21.8 10.0242 75.8954 141.729 209.223 275 thetas70
t= 21.9 10.021 75.8583 141.659 207.529 275 theta=70
t= 2 10.0179 75.8222 143.252 209.109 275 thetas70
t= 22.1 10.0278 77.425 143.314 209.141 275 theta=70
t= 22.2 10.0245 7%.936% 141.816 209.173 275 thetas=70
e= 22.3 10.0214 75.9039 141.752 207.663 275 theta=70
L= 22.4 10.0183 75.8638 143.169 209.07 275 theta=70
t= 22.5 10.0265 77.298 143.227 209.098 278 theta=70
t= 22.6 10.0243 75.9731 141.892 209.128 275 theta=70
ts 22.7001 10.0216 75.9438 141.834 207.782 27% theta=70
t= 22.8001 10.0191 75.9124 143.086 209.038 275 theta=70
t= 22.9001 10.0264 77.1865 143.15 209.061 275 thetas?0
t= 23.0001 10.024 76.0057 141.961 209.089 275 theta=70
t= 23,1001 10.022 75.9793 141.907 207.888 © 275 thetas70
t= 23.2001 10.0192 75.9498 143.032 209.004 275 theta=69
t= 23.3001 10.4769 77.086 143.081 209.028 275 theta=68
t= 23.4001 10.9615 76.4804 142.461 209.053 275 thetas=67
t= 23.5001 11.4843 76.9356 142.885 208.416 275 theta=66
~—~ t= 23.6001 12.0481 77.4272 143.983 209.455 275 theta=6s
t= 23.7001 12.6617 78.5881 144.13 209.526 275 thetas=64
t= 23.8001 13.3108 78.2083 143.687 209.602 275 thetas63
t= 23.9001 14.008 78.7813 144.18 209.092 275 theta=62

_t HOI HIl HOl HOL H4] 6
t= 24.0001 14.7553 79.3979 1‘5.5‘78 ’ 213 .07S 275~ theta=6l
t= 24.1001 15.5637 80.6193 . 145.54 210.202 275 theta=60
t= 24.2001 16.4181 80.4859 145.206 210.336 275 tchetass9
~t- 24.3001 17.3311 81.2078 145.87 209.955 275 theta=58
ts 24.4001 18.307 81.9825 147 210.902 275 theta=57
t= 24.5001 19.356 83.307 147.397 211.095 275 " theta=56
t= 24.6001 20.4622 83.4437 147.347 211.299 275 thetae=55
t= 24.7001 21.6402 84.3533 148.048 211.051 275 thetas=Sd
t= 24.8001 .22.8937 85.3219 149.242 211.9684 275 thetas=53
t= 24.9001 24.2345 86.7947 149.799 212.255 275 theta=52
t= 25.0001 25.6449 87.2331 149.973 212.541 275 thetasSl
t= 25.1001 27.1409 88.3696 150.819 212:433 275 cthsta=49
t= 25.2001 30.4655 89.5737 152.111 213.373 275 theta=47
t= 25.3001 34.2118 92.9582 154.548 213.733 275 thetas=4S
t= 25.4001 38.3889 95.7643 156.971 215.787 275 theta=43
t= 25.5001 43.0457 99.5462 158.73 216.179 275 theta=4l
t= 25.6001 48.0265 102.19% 160.969 217.534 275 theta=39
t= 25.7001 53.7114 106.741 164.153 . 218.423 275 theta=37
t= 25.8001 60.272 111.067 167.569 , 220.7 27% thetas=35
t= 25.9001 67.8326 116.701 170.942 221.854 275 thetas=33
t= 26.0001 76.4424 122.00% 175.068 224.088 275 thetas31
t= 26.1001 86.3089% 129.41 180.25%9 225.984 275 thetas=29
t= 26.2001 97.5567 137.06 185.96 229,233 275 thetas=27
t= 26.3001 115.087 146.338 191.997 231.696 275 theta=25
t= 26.4001 131.083 160.565 203.676 235.256 275 thetas=23
t= 26.5001 149.261 173.994 213.513 243.319 275 thetas=2i
tw 26.6001 170.256 188.598 220.174 245.172 275 thetasl9
t= 26.7001 194.415 201.671 231.304 249.943 275 thetas=l?
t= 26.8001 224.282 223.78 248.551 256.284 275 theta=l5
—~ t= 26.9001 262.325 248.757 267.123 267.138 275 thetasl2
t= 27.0001 351.016 280.323 287.85¢ 274.894 275 theta=9
t= 27.1001 512.617 357.67 356.854 287.812 275 thetasé
t= 27.2001 864.23 510.158 495.252 343.426 275 theta=3
te 27.3001 1757.03 846.014 774.036 425.965 275 thetasl
te 27.4001 4052.01 1678.51 1520.16 621.264 275 theta=l
t= 27.5001 3722.05 3887.03 3532.2¢ 1170.18 275 thetas=l
t= 27.6001 3013.2 3367.63 2472.14 2634.2 275 theta=l
t= 27.7001 1226.48 2119.84 -205.948 130.036 275 theta=l
t= 27.8001 -3397.05 -1085.29 -933.314 -59.2783 275 theta=l
t= 27.9001 -3080.51 -3238.78 -2896.37 -595.509 275 thetasl
t= 28.0001 -2396.38 -2738.44 -1867.64 -2023.17 275 thetas=l
t= 28.1001 -658.768 -1527.57 738.973 414.358 275 theta=l
t= 28.2001 3847.71 1554.47 1448.46 §98.004 275 theta=l
t=.28.3001 3543.7 3595.71 3364.54 1122.09 275 theta=l
t= 28.4001 2882.81 3213.25 2365.86 2515.29 275 theta=l
t= 28.5001 1191.8 2037.3 -173,017 140.889 275 theta=l
t= 28.6001 -3203.56 -1005.88 -865.447 -37.3816 275 theta=l
te 28.7001 -2911.26 ~3057.41 -2737.61 ~549.852 275 theta=l
t= 28.8001 -2272.26 -2591.76 -1766.61 =1910.33 275 theta=l
t= 28.9001 -625.518 -1448.89 707.994 404.192 .275 thetasl
t= 29.0001 3664.2 1519.34 1384.13 577.358 275 thetasl
t= 29.1001 3382.86 3523.53 3214.08 1078.7 275 theta=l
t= 29.2001 2764.52 3073.69 2269.69 2408.07 275 theta=l
t= 29.3001 1159.89 1962.2 -143.829 150.428 275 theta=l
t= 29.4001 -3029.27 -934.69 -804.385 -17.8871 275 theta=l
- t= 29.5001 -2758.23 -2893.75 -2594.07 -508.559 275 thetael
t= 29.6001 =-2159.39 -2458.81 ~1674.95 -1808.31 275 thetasl
t= 29.7001 -594.86 -1377.13 680.452 395.226 275 theta=l
t= 29.8001 3438.45 1451.79 1326.1 §58.925 275 thetasl
t= 29.5001 3237.09 ae?.m 3077.33 1039.36 275 cthetasl

150

2. Branching system with check valve and without check valve simulation

---Section number

|
4

---Node number

2
E
=]
§
B
2
3

@

Fig. C 2 Indexing of Branching System

i51

Fig. C3 Graphic Display of Branching System Without Check Valve

Fig C4 Graphic Display of Branching System With Check Valve

152

Simulation Result of Branching Svstem without Check Valve:

Tine Qpuxrp Q1 Q2 Q3 Hn 1 Ba 2 Hn 3
0 0 1.14192e-007 1.14192e-007 1.56917 73 73 70
0.275] 0 -0.0935833 1.60888 73 79.0731 70
8.585 e 0 -0.0935833 1.60888 73 79.0731 70
0.82%] ¢ -0.0935833 1.60888 73 79.0731 70
1.1 i} 0 -0.0935834 1.60888 85.1462 79.0731 70
1.37% Q 0 -0.0935834 1.60888 85.1462 79.0731 70
1.65 0.0377519 ©.0377519 -0.0935834 1.60888 87.5963 79.0731 70
1.925 0.272221 0.272221 -0.00312854 1.64991 102.814 85.3492 70
2.2 0.379502 0.379502 -0.00312854 1.64991 109.777 85.3492 70
2.475 0.610683 (0.610682 0.0333626 1.66647 124.781 87.8811 70
2.75 0.676052 0.676052 0.259966 1.76927 129.425 103.604 70
3.025 0.672864 0.672864 0.451206 1.85538 129.218 105.11 70
3.3 0.667551 0.667551 0.674S531 1.95664 129.038 120.606 70
3.575 0.659796 0.659796 0.740656 1.98662 129.564 125.194 70
3.85 0.741184 0.741184 0.737577 1.98522 123.954 124.98 70
4.125 0.725837 0.725837 0.733677 1.98345 123.973 124.71 70
4.4 0.804542 0.804642 0.733846 1.98383 129.392 124.721 76
4.675 0.797343 0.797343 0.8218S1 2.02261 128.904 118.672 76
4.95 0.793823 0.793823 0.814584 2.01932 128.657 118.168 70
§.225 0.794058 0.794058 0.9294S3 2.071 128.673 121.238 70
5.8 0.88316 0.88316 1.14896 2.16787 122.707 106.016 70
§.775 0.883401 0.883401 1.25103 2.21179 122.689 98.9109 70
6.0S 1.00356 1.003S6 1.47464 2.30983 126.116 84.4173 70
6.325 1.22574 1.22574 1.53933 2.33766 111.107 80.0203 70
6.6 1.3594¢ 1.35946 1.53624 2.33632 106.078 80.2193 70
6.878 1.79221 1.79221 1.61577 2.37225 105.228 86.2624 70
7.18 1.95541 1.95541 1.61134 2.37028 107.253 85.9322 70
7.425 2.15616 2.15616 1.63786 2.38104 120.703 87.8399 70
7.7 2.2082 2.2082 1.83279 2.46909 124.982 102.343 70
7.97% 2.19891 2.19891 2.00%56 2.54507 124.334 103.696 70
8.25 2.18903 2.18903 2.20012 2.62924 123.883 117.487 70
8.52S 2.17567 2.17867 2.28582 2.65165 124.9 121.51 70
8.8 2.24767 2.24767 2.2817 2.64518 119.751 120.529 70
9.075 2.22523 2.22823 2.2436 2.64009 119.492 119.965 70
9.35 2.29249 2.29249 2.24465 2.64063 124,287 120.049 70
9.625 2.2897 2.2897 2.32434 2.67467 123.39 114 378 70
3.9 2.28447 2.28447 2.30702 2.66697 123.01 113.79 70
10 178 2.2897¢ 2.2897¢ 2.4021 2.70805 123.371 116 .751 70
10.4S 2.37062 2.37062 2.59609 2.79046 117.8 103.0S1 70
10.7285 2.36633 2.366313 2.68616 2.82593 118.088 96.4724 70
11 2.46717 2.46717 2.8882 2.90779 121 428 84.0282 70
11.278 2.6576 2.6576 2.94264 2.92799 107 .872 80.1446 70
11.88 2.7689S 2.76895 2.93382 2.91975 102.416 80.7188 70
11.825 3.14218 3.14218 2.99902 2.94802 101.206 86.346 70
12.1 3.2828 3.2828 2.98863 2.94341 102.96 85.4775 76
12 378 3.44428 3.44428 3.00209 2.948695 114.64 86.649 70
12.65 3.4815 3.4815 3.15969% 3.01823 118457 99.13088 70
12.928 3.46657 3.46657 3.308%S 3.08117 117.28S 100.43 70
13.2 3.45231 3.45211 3.46981 3.14687 116.661 112.066 70
13.475 3.4364 3.4364 3.51298 3.16061 118.099 115.476 70
13.7% 3.49728 3.49727 3.50688 3.14706 113.539 113.737 70
14.025 3.47096 3.47096 3.49428 3.13681 113.064 113.013 70
14.3 3.52583 3.525854 3.49716 3.13428 117.241 113.234 70
14.57S 3.82767 3.52767 3.56576 3.16164 116.034 108.138 70
14.88% 3.8197 3.5197 3.83818 3.14966 115.607 107.758% 70
15.128 3.5291S 3.5291S 3.61066 3.17936 116.257 110.741 70
15.4 3.59851 3.59851 3.77213 3.2468 111.248 99 .1493 70
15.675 3.587%4 3.58754 3.8468 3.27302 111.936 §3.3417 70
15.9S 3.66578 3.66878 4.01983 3.33897 115.332 83.3456 70
16.225 3.81672 3.81672 4.06164 3.35108 103.147 80.072 70
16.5 3.90241 3.90241 4.04644 3.33452 98.1016 81.0431 70
16.77S 4.20745 4.2074S 4.09793 3.38372 96.837S 86.13%9 70
17.08 4.32297 4.32297 4.08303 3.34334 98.3774 84.6693 70
17.328 4.44398 4.44398 4.08357 3.33968 108.221 85.1227 70
17.6 4.4867S 4.4675 4.20407 3.39481 111.523 §5.7004 70
17.875 4.44973 4.44973 4.32789 3.44566 109.86 96.6234 70
18.1S 4.4325 4.4325 4.45432 3.49605 109.154 106.032 70
18.42S 4.41701 4.41701 4.48498 3.8022% 110.943 108.851 70
18.7 4.4661S 4.4661S 4.47654 3.48571 107.078 106.567 70
18.978 4.4379S 4.4379S 4.46073 3.4716% 106.48S 105.806 70
19.2% 4.4797S 4.47978 4.46659 3.46539 110.0582 106.213 70
19.5825 4.48527 448827 4.5233% 3.48531 108.647 101.814 70
19.8 4.47457 4.47457 4.4878S 3.46645 108.235 101.72 70
20.075 4.48674 4.48674 4.538 3.48524 109.057 104.713 70

Slmulatlon Results of Branching System With Check Valve:

1.378

1.925
2.2
2.475
2.75
3.025
3.3
3.57S

Opu-p

o000

0.0195362
0.0222236
0.0226339
0.0432003
0.0646612
0.0896989
.116614
.154208
0.17379
.201284
.225749
.239633
. 254572
.3077S3
.331941
.367872
.396242
0.42283
.455104
.499634
.521096
.542931
.559138
.536847
.547622
6.55078
0.563886
0.580297
0.590685
0.57126S
0.582997
0.590672
.602241
.619727
.633863
.640692
.646714
.6505892
.644466
.651508
.649189
.645616
.640202
.634267
0.63113
.643397
.638172
.629381
.624751
.619412
.612309
.609109
.607126
.605215
.608659
.604917
.60S11S
.607986
.61123S
.613409
.614153
.606559
.609613
.616907
0.61883
6.619087
0.622764

[~X=]

QQOQOQQ OQC’QDOQO

QQODQQDQQQQQ

QQ‘:QQQQQQDQQQQQOQQO

Q1
0-

Q2

0.0007

0-0.0935833
0-0.0935833
0-0.0935833
0-0.0935834
0-0.0935834
1 650.006825580.00682557-0.0935834
0.0195363-0.00312854
0.0222237-0.00312854
0.02263390.00346921
0.0432002 0.0157554

0.0646612
0.0896968
0.116614
0.154207
0.17379
.201284
.225748%
.239633
.254572
.3077s83
.331941
.367872
.396242
0.42283
. 455104
.499634
.52109¢6
.542931
.559138
.536847
.547623
0.55078
.563886
.580297
.590685
.57126S
.582997
.890672
602241
619727
633863
640692
646714
650592
644466
651505
649189
645616
640202
.634267
0.63113
.643397
.638172
.629381
.624751
.619412
.612309
.609109
.607126
.605218
.608659
.604917
.60511S
.607986
611238
.613409
.614153
.606559
.609613
.616907
8.61883
.619087
0.622764

°F’_°P,°.°,°_°,°,°_°Poc:cona coocoooo_oooaooeo

OQQQDQQQ@QDQQQQQQQO

0.105952
0.106349
0.129248
0.149989
0.174407
0.20083
.243108
.262045
.295984
.332616
.35138S
.367104
.352317
.397081
.450772
.493561
.469079
.519345
.566455
0.53257
.605402
.611409
0.5981
.615738
.622695
.628561
.651297
677947
0.716176
0.70S667
0.682315
0 667751
6.68772
.664229
629686
.622409
.628957
.627146
.629979
.620749
.616153
.615618
.605071
.589051
.569718
.580061
.597808
.601584
.583483
.596413
.622614
.622949
.609513
.611397
0.6156
.620443
0.62062
.620002
0.626424
0.636271
0.645335
0.636566
0.624336

QQQQQ [=Q =} QQOQQDQQOQQOO

Q Q 0OOO0OOOOMNOO0OO0O0O00000O00

Q3
1.56917
1.60888
1.60888
1.60888
1.60888
1.60888
1.60888
1.64991
1.64991
.65291
.65848
.6988S
.69903
.70941
.71881
.72989
.74187
.76038
.76896
.78428
.80078
.80852
.81564
.80874
.82884
.85293
.87208

.86053
1.8831
.90409%
.91852
.92043
.92297
.91709
.92456

.92707
1.9292

1.9389¢

1.95042

1.96702
1.96177
1.95031
1.94361
1.96264

1.941S
1.92543

1.9217
1.92408
1.92258
1.92288
1.91839
1.91574
1.91SS
.91066
.90318
.89428
.898S1
.906592
.90697
.897%6
.903s2
.91471
.91482
.90879
.90947
.91134
.91303

.91233
1.9114
1.91361
1.91765S
1.92093
1.91697
1.91158

alalalatalate HHHHHHMHHHHHHHHHHHH

atadatalalal ol ol ol ol o al el ol

154

Hn 1

74.617
73.9571

79.
79.
79.
79.
79.
79.

Hn 2

73
0731
0731
731
0731

0731
8731

85.3492
85.3492
85.807

.6594
.1548
.1823
L7712
.2103
.904S
.7379
.5156
.8296
.2978

.188S

82.882

83.

79.
80.
.5789

80
79

84.

9194
8161
1348

.9971
5133

85.456

8s.

83.

0316
5366

82 499

73.
72.
71.
71.
69.

0.8555
.9307

.3666

L3451
.4765

.2602
.8447
7801
7772
3171
5155
7974

69.014

69.
78.
70.
71

6001
5329
6651
1308

68.847

€9
72.
73.
72.
74.
74
74.
75.

.8857

5465
2833
9055
1216

.5022

7895
4548

75.38

76.
76.
76.
75.

1688
6621
1796
8172

75.6S6
75.661
76.865

.2311
.4107
.1883
.0634
.4032
.7606
.7784
.687%

Theta

[=X~=X-R—J-N-R-—N—1=]

1.14728
2.45847
3.88487
5.42649
7.08334

§.8554
10.7427
12.7452
14.8629
17.095%
19.4441
21.9074
24.4861
27.1799

29.989
32.9132
35.9527
39.107S

Appedix D

Head File for HydrauAnalysis And HydrauGraphic

155

JE TPPIIRTEERIEL 20000000 EET 80 E L E0IELi80000100001000000000111)
//

// @ ProntPageFormView.h : interface of class

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University
;;///I///////////////I//////////l///////////////////////////I/////////

#if

tdefined (AFX_FRONTEAGEFORMVIEW_H__9F6EBCB8_AEDE_11D2_A4E3_0 0A0CS7497%A__INCLUDE
#3etine

AFX_FRONTPAGEFORMVIEW_H__S$F6EBCBS_AEDE_11D2_A4E3_00A0C9743979A__INCLUDED_

$if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

// FrontPageFormView.h : header file

l/

#¢include "DefinedbData.h"

JITETITIIE R T I 0200000000000 0000000 0000000000008 000000000000701171110777
// CProntPageFormView form view

#ifndef __AFXEXT_H__
#include <afxext.h>
#endif

class CFrontPageFformView : public CFcrmView

{

protected:
CFrontPageFfcrmView(); // protecsed constructer used bty dynamic
creation

DECLARE_DYNCREATE (CFrentFageFormView)

// Form Data
public:
// {{AFX_DATA(CFrontBagefcrmView)
enum { IDD = IDD_FRCNT_BAGE }:
// NOTE: the ClassWizard will add cdata members here
//}}AFX_DATA

// Attributes

public:

RESERVIOR_DATA ReserviorData;
CONTROL_VALVE_DATA ControlvValvbData;
SIMULATION_DATA Simulationbata;
BIPE_LINE_DATA pipeLineData(17]; // you have 17 pipes
JUNCTICON_DATA JunctionData[16]; // sixteen now
PUMP_CHECK_VALVE_DATA PumpCheckValvData(3]; // 3 now
PLOT_PRINTOUT_DATA BlotPrintoutbata;

CONECTION_DATA ConectionData;

INDEX_DATA IndexData(200];

// Cperations

public:

BOOL SaveMcdel (CString szBath):
CString m_szFilePath;
BOOL m_nSaved;

// Overrides
// ClassWizard generated virtual function overrides
// {{APX_VIRTUAL (CFrontPageFormView)
protected:
virtual void DoDataExchange (CDataExchange* pDX):; // DDX/DLV support
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}}AFX_VIRTUAL

// Implementation
protected:
virtual ~CFrontPageFormView();
#ifdef _DEBUG
virtual void AssertvValid() const;
virtual void Dump(CDumpContext& dc} const;
#endif

// Generated message map functions
/71 { (AFX_MSG(CFrontPageFormView)
afx_msg void OnPipeLineParamli();
afx_msg void OnPipeLineParam2();
afx_msg void OnReservorParam();
afx_msg void OnSimulationParam();
afx_msg void OnJunctionParaml();
afx_msg void OnJunctionParami();
afx_msg void OnStart();
afx_msg void OnCtrlvalveParam();
afx_msg void OnPumpCheckValveParam();
afx_msg void OnFileOpen();
afx_msg void OnFileSave();
afx_msg void OnFileSaveas();
afx_msg void OnPlctBaram!);
afx_msg void OnConect();
afx_msg void On3utIndexl();
afx_msg void CnButlndex2();
//}}AFX_MSG
DECLARE_MESSAGE_MAF()

};

JI1ITIT L0000 0000000000000 7000000000000 00000700000 0000000400087170000717147
// ((AFX_INSERT _LOCATICN}}

// Microsoft Develcper Studio will insert adéitional declaraticns immediately
before the previous line.

$endif //

téefined (AFX_PRONTPAGEFORMVIEW_K__ 9F6ESCE8_AFDE_11D2_A4E3_00AQ0C374379A__INCLUDE
D.)

157

JITITIRIR 20 E 022 P AT 0820008000000 000E0000000080000000101114¢8111
//

// @ CheckValve.h: interface for the CheckValve class.

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

1/

JITITIDEZL2 LTI 0T 000000008 LI EaiiEtiidittietirtilireieitiiilii

#if 1defined (AFX_CHECKVALVE_H__22ES8C968_DDEB_11D2_986A_444553540000__INCLUDED_)
#define AFX_CHECKVALVE_H_ _22E8C968_DDEB_11D2_986A_444553540000__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#define KDIRECTTOT 1
#define KDIRECTSEAT 2
#define KDIRECTINTERM 3
#define KDIRECTEXIT 4
#tdefine DIRECTARM S
#define KREVTOT 6
#define KREVSEAT 7
#define KREVINTERM 8
#define KREVEXIT 9
#define REVERSEARM 10

#define MAXANGLE 70

class CheckValve
{
public:
CheckvValve() ;
virtual ~CheckValwve();

float fFlowTorgue;

float fDiscTorque;

float fCTWTorque:;

float fTcotalTorque;

flcat fDiscAngularvVelocity:
float fDensity;

float fPipeDiameter;//Dl

float fPipeArea;

float fSeatDiameter;//D2

float fSeatArea;

float fDiscDiameter;//DCL

float fDiscArea;

float fshaftOffSet;//DIs

float fEingeLength;//aLA

float fEingeWidth;//2 * XD

float fDiscMcmentOfInertia;//aAJV
float fDiscWeight;//WV

flocat fDiscCenterOfGravity;//ALG
int iDiscMaxAngle;//TETAF

float fDiscOffSetAngle;//ATETAV
float fPipeFriction;

float fExitingOrificeDiameter;
flocat fIntermediateCrificeDiameter;
float fPipeTcSeatkX;

float fIntermediateOrificeX;
float £ExitingOrificek;

float fValveTotalK;

float fCTWWeight;

float fCTWLever;

float fCTWAngle:;

float fCTWMomentOfInertia;

float fSpringArmInitialAngle;
float fSpringArmLength;

float fSpringPivotShaftDistance;
float f£SpringExtension;

float fSpringExtensionFactor;
float fRestedSpringLength;

float fExtensionSpringTorque;
float fCoilSpringFactor; // Nm/o
float £CoilSpringInitialAngle;//o
float fCoilSpringTorque; //Nm

float fCoefficientsOfResistance(MAXANGLE][10];
float GeometricParameters(float);

float DirectFlow(float);

float ReverseFlow();

float FlowTorque(flocat, float, float);
float DirectTorqueArm(int);

float ReverseTorgqueArm(int);

float DiscTorque(float);

float CTWTorque(£float);

float TorgqueFromExtensionSpring(float):
flocat TorqueFromCoilSpring(float);

float ValveDynamics(flecat, fleat, flcat);
float ValveDynamics(float, float, float, floac);
float GetDiscaAngle();

veid CheckValveinit(float,int);

float GetCoefficientsCfResistance();

float GetTotalTorque(float, float):

float GetvValwveFlow({flecat, float, flcat);

void rkl(flecat *, float,float, flcat *,flcat,flcat (*) (£lcat), £icat{], £lcat
[1, int);

float R_K4(floact, float, float, £loat, flcat, ficat)

rivate:
float fDiscanglefub;

}:

#endif //
!defined(AFX_CHECKVALVE_H__2ZESCSG8_0953_1102_9865_444553S40000__INCLUDED_)

159

T2 1100020000000 0 0000000000880 80 0000000000800 000001000010001001701717
/!

// @ ChildFrm.h : interface of the CChildFrame class

// @ author: Tianhe Wen, 139¢

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/] @ Concordia University

/7

JII2EL020000 0000000000000 000000008000 0000080000000800001000010107107118117

§iftdefined (AFX_CHILDFRM_H__B66D4DSF_49D1_11D3_BD31_00E029112567__INCLUDED_)
#define AFX_CHILDFRM_H__B66D4DSF_49D1_11D3_BD31_00E029112567__INCLUDED_

#1f _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CChildFrame : public CMDIChildWnd
{

DECLARE_DYNCREATE (CChildFrame)
public:

CChildFrame();

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virzual functicn cverrides
/7 { (AFX_VIRTUAL (CChildFrame)
virtual BOOL PreCreateWindcw{CREATESTRUCT: c¢s);
//}YAFX_VIRTUAL

// Implementaticn
public:
virtual ~CChildFrame();
#ifdef _DEBUG
virtual void AssertValid() censt:
virtual veid Dump(CDumpContexts dc) cconst:
#endif

// Generated message map Junctions
protected:
// ({AFX_MSG(CChildFrame)
// NOTE - the ClassWizard will add and remove member functicns
here.
/7 DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
¥

LILIPEELTET LI TI IR0 R L0000 0 000 TEIE it it irieirririrtiineitil
// { {AFX_INSERT_LOCATION}}
// Microsoft Developer Studioc will insertc additicnal declarations immediately

before the previocus line.

#endif //
1defined (AFX_CHILDFRM_K_ B66D4DSF_49D1_11D3_8P31_00E029112567__ INCLUDED_)

160

J0 JI2IIILETIELIEL IR IELT 0 8d bt i I iieieisettiitiiertitiieeiiieys
//

// @ ConectionPara.h : interface of class

// @ author: Tianhe Wen, 1998

// & Version:2.0

// @& Copyright: Ritepro Inc.

// @ Concordia University

/7
JILIILIITETELRLE0 IR 0TI L0807 080000001118 000E0114000171717

#if
1defined (AFX_CONECTIONPARA_H_ ACSCS122_£120_11D2_986A_444553540000__INCLUDED_)
#define AFX_CONECTIONPARA_H__ACS5CS122_E120_11D2_986A_444553540000__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

$endif // _MSC_VER >= 1000

// ConectionPara.h : header file

N A e
// CConectionPara dialcg

class CConectionPara : public CDialog
{
// Construction
public:
CConectionPara(CWnd* pParent = NULL):; // standard constructor

// Dialog Data
// {{AFX_DATA (CConectionPara)
enum { IDD = IDD_DLG_CONETCTION }:
UINT m_£NumPige;
UINT m_£fNumJunct;
UINT m_£NumPump;
UINT m_£fNumIndex;
UINT m_nDowlNpipel2;
UINT m_nDowdNpipell;
UINT m_nDowlNpipel3;
UINT m_nDowJNpipe(4;
UINT m_nDowJNpipe(s;
UINT m_nDowJdNpipeQ6;
UINT m_nDowJNpipel7;
UINT m_nDowJNpipeO8;
UINT m_nDowdNpipe09;
UINT m_nDowdNpipell;
UINT m_nDowJNpipell;
UINT m_nDowJNpipell;
UINT m_nDowJNpipel3;
UINT m_nDowJNpipeld;
UINT m_nDowJNpipelS;
UINT m_nDowJNpipel§;
UINT m_nDowJNpipel7;
UINT m_nDowJNpipel8;
UINT m_nDowJNpipel$;
UINT m_nDowJNpipe20;
UINT m_nDowINpipell;
UINT m_nDowdNpipe22;
UINT m_nDowJNpipe23;
UINT m_nDowdNpipe24:
UINT m_nDowJNpipe25;
UINT m_nDowINpipe26;
UINT m_nDowJNpipe27;

161

UINT m_nDowJNpipe28;
UINT m_nDowJNpipe2$;
UINT m_nDowJNpipe30;

UINT m_nMinReach;
float m_fSoundSpeed;
UINT m_nUpJNpipe(Ol;
UINT m_nUpJNpipe02;
UINT m_nUpJINpipe03;
UINT m_nUpJNpipe0O4;
UINT m_nUpJNpipe0S;
UINT m_nUpJdNpipel6;
UINT m_nUpJNpipe07;
UINT m_nUpJINpipe08;
UINT m_nUpJNpipe09;
UINT m_nUpJNpipelO;
UINT m_nUpJdNpipell;
UINT m_nUpJdNpipel2;
UINT m_nUpJdNpipell;
UINT m_nUpJNpipeld;
UINT m_nUpJNpipel5;
UINT m_nUpJdNpipel6;
UINT m_nUpJNpipel7;
UINT m_nUpJdNpipel§;
UINT m_nUpJNpipel$9;
UINT m_nUpdNpipe20;
UINT m_nUpJNpipe2l;
UINT m_nUpJNpipe22;
UINT m_nUpJdNpipe23l;
UINT m_nUpJNpipe24;
UINT m_nUpJdNpipelS;
UINT m_nUpJINpipel6;
UINT m_nUpdNpipe27;
UINT m_nUpJdNpipe28;
UINT m_nUpdNpipe29:;
UINT m_nUpdNpipeld;
//}}AFX_DATA

// Overrides
// ClassWizard generated virtuval function overrides
// ({AFX_VIRTUAL (CConecticnPara)
protected:
virtual void DeoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
// ({AFX_MSG(CConecticnPara}
/1 afx_msg void OnButlIndexli():;
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
}:
// { (AFX_INSERT_LOCATION}}
// Microsoft Developer Studic will insert additiocnal declarations immediately
before the previous line.

#endif //
1defined (AFX_CONECTIONPARA_H__ACSCS122_E120_11D2_986A_444553540000__INCLUDED_)

162

1/ l//////l///////IIIII////////////I/////I/I/l///////////////I/////II
//

// @ CrrlvalveDlg.h : interface of class

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepre Inc.

// @& Concordia University

/7
/////////////////////////////////l/////////////////////////////l//////

#if
!defined(AFX_CTRLVRLVEDLG_ﬁ;_?6576583_C08D_11D2_A4E4_00AOC974979A__INCLUDED_)
#define AFX_CTRLVALVEDLG_H__?6576583_COBD_IID2_A4E4_00AOC97497SA__INCLJDED_

$if _MSC_VER >= 1000

$pragma once

#endif // _MSC_VER >= 1000

// CtrlvalveDlg.h : header file
/////!////////////////////////////////I///////////////I////I/////////////////
// CcCtrlvalveDlg dialog

class CCtrivalveDlg : public CDialeg
{
// Construction
public:
CcCtrlvalveDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
/7 { (AFX_DATA(CCtrlvalveDlg)
enum { IDD = IDD_DLG_CTRL_VALVE }:
flocac m_£Taul;
float m_£Taul;
flecat m_£Taul;
float m_£Tau4;
fleat m_£Taus;
float m_£Taus;
flecat m_£Tau7;
long m_nTime;
//Y}Y}ATX_DATA

// Qverrides
// ClassWizard generated wvirtual function cverricdes
/7 {{AFX_VIRTUAL (CCtrlvalveDlg)
protected:
virtual void DoDataExchange(CDataZxchange* pDX); // DDX/DDV support
//}YAFX_VIRTUAL

// Implementation
protected:

'// Generated message map functicns
// {{AFX_MSG(CCtrlvValveDlg)
// NOTE: the ClassiWizard will adé member functions here
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
Y

// { (AFX_INSERT LOCATION}}

// Microscft Developer Studic will insert additional declarations immediately
before the previcus line.

#endif //
!defined(AFX_CTRLVALVEDLG;ﬁ__ﬂ6576583_COBD_IIDZ_A4E4_00AOC974979A__INCLUDED_)

163

J1 1701000000080 00 0000000008008 0000000007 000000000008080110111111111
/7

// @ DefinedData.h : interface of class

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

/7

JIEIIELIREI LI T 0002000000000 I 0TI E008018000000000°00711111

#ifndef DEFINEDDATA_H
#define DEFINEDDATA_H

typedef struct (
float fHeadRl;
float fHeadR2;
float fHeadR3;
float fHeadR4;
} RESERVIOR_DATA;

typedef struct {
float fTau(7];
int nTime;

} CONTROL_VALVE_DATA;

typedef struct (
float fStartTime;
float f£StopTime;
} SIMULATICN_DATA;

typedef struct
UINT fPlctJunNum;
UINT fPlotPipeMum;

UINT f£PBrintoutPipel;

UINT fPrintoutPipel;

UINT £PrintoutPipe3;

UINT £Printcoutdunl;

UINT £PrintoutJun2;

UINT £PrintoutJunl;
} BPLOT_PRINTCUT_DATA;

typedef struct(
UINT nNumPipe;
UINT nNumJunct;
UINT nNumPump;
UINT nNumlIndex;
UINT nMinReach;
fleat fSoundsSpeed;
/! int fIndex(200];
UINT nUpJdNPipe(40];
UINT nDwJNPipe(40];
} CONECTION_DATA;

typedef struct {
int nIndex;

} INDEX_DATA;

164

typedef struct {
float fDiameter;
float fFricticn;
float fLength;

} PIPE_LINE_DATA;

typedef struct (
int aJuncType:;
float fElevation;
float fFlow;
float fHead;

} JUNCTION_DATA;

typedef struct {
int nPumpStatus; // startup, fail, normal, stop
int nDiameter; // always effective, it is 0 based index, it is not
the real diameter value
//you selected, but it is the position, starting from 0, this is
true
//for the specified speed alsc
int nCheckvalve;

float £A0; // effective on startup
£loat fAl; V2 A

float £A2; Y 2 2
float £Hs; Y A

float £Ts: Y 2 2
float fFlow; /! effective cn fail
float fEead;) 2 2 Y
£loat £Tcrg: Y U

float f£Speed;
int nSpecifiedSpeed; //..... ...t
float fNormaldl; // efiective cn normal
£loat £NormalAl;
floatr fNcrmalAl;
} SUMP_CHECK_VALVE_DATA;

#endif

165

0 TIEEEFLI 00T ET 000080000t PELiIIEariaidfitiiriniitetisfiliitstily

// @ Frontwnd.h : interface cf class
// @ author: Tianhe Wen, 199%

// 8 Version:2.0

// @ Copyright: Ritepro Inc.

/7 & Concordia University
/7

JITIETIEIIIIL220 0000000000 0001 00000000 000000000000000002010001010111117

#if 1defined (AFX_FRONTWND_E_ S9ES54C02_B1FD_11D2_A4E3_00AQCS74979A__INCLUDED.)
#define AFX_FRONTWND_H__S$ES4C02_B1FD_11D2_A4E3_00A0CS74979A__INCLUDED_

#if _MSC_VER >= 1000
#pragma once

gendif // _MSC_VER >= 1000
// FrontWnd.h : header file
/7

JITIIETERERT 0TI 2000000000000 00000000 0000000 000000000000 00008 0007010010701010707
// CFrontWnd window

class CFrontWnd : public CWnd
{
// Construction
public:
CFrontWnd();

// Attributes
public:

// Operations
public:

/! Overrides
// ClassWizard generated virtual functicn cverrides
// ((AFX_VIRTUAL (CFronthind)
//Y}Y}YAFX_VIRTUAL

// Implementation
public:
wvirtual ~CFrcntWndl();

// Generated message map functions
protected:
// {{AFX_MSG (CFrontWnd)
afx_msg void OnPaint();
/7}}AFX_MSG
DECLARE_MESSAGE,MAP()
}:

JITIIIETTIELI IR R 2ETERTIIIIEEL I I ERITIELIIPLirierriiiattirtrtittiriiisi
7/ ({AFX_INSERT_LCCATION}}
// Microsoft Developer Studic will insert additicnal declarations immediately

before the previous line.

#endif //
1defined (AFX_FRONTWND_HE__S9ES4C02_B1FD_11D2_A4E3_00A0CS74979A__INCLUDED_)

166

JITIIIIIIII 0T 02000000 00000000000 00000100000 0020008080 0000000100801001111
/7

// @ HydroAnalysis.h: main header file for the HYDROANALYSIS application
// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// é Concordia University

l/

JIEITILETILTT AL 0000000 0000 E0IEEIETTTe0t0 080000 0000000101111111

#if
1defined (AFX_HYDROANALYSIS_H_ B66D4D53_4901_11D3_BD31_00E029112567__ INCLUDED)
gdefine AFX_HYDROANALYVSIS_H_ B66D4D59_49D1_11D3_BD31_00E029112567__INCLUDED_

#if _MSC_VER >= 1000
$pragma once
#endif // _MSC_VER >= 1000

#ifndef _ AFXWIN_H__
$error include ‘stdafx.h’ before including this file for BCH
#endif

#include "resource.h” // main symbols

JIPITIIIIIIT 000 0TI L0000 8810000000000 0070000000000000000100121001017117
// CHydroAnalysisApp:

// See HydroAnalysis.cpp for the implementaticn of this class

/7

class CHydéroanalysisapr : public CWizape
{
public:

CHydroanalysisacgl)

// Overrides
// ClassWizard generated virctual functicn cverrides
// { {AFX_VIRTUAL (CEydroanalysisacp)
public:
virtual BCOL InitInstancel():
//}}YAFX_VIRTUAL

// Implementation

// { (AFX_MSG (CEydrcAnalysisapp)
afx_msg void OnAppabout();
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated ccde !
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

}:

FIETEIETIIIITITEI I a0 E 0 b0 LI LdLItTIITIIId I iidrirziirtiiiiestiirireiid
/7 { {AFX_INSERT_LOCATION}}
/! Microsoft Develcper Studio will insert additional declarations immediately

before the previocus line.

gendif //
1defined (AFX_HYDROANALYSIS_H_ B66D4DS9_49D1_11D3_BD31_00E029112567__INCLUDED_)

167

//I/////I/////////III/I////I////////I/////I///////II////I///////////I
/7

// @ HydroAnalysisDoc.h : interface of the CHydroAnalysisDoc class

// @ author: Tianhe Wen, 1899

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/7 @ Concordia University

//
/I///////I//////////I/////////////////////////l///////////////////////
$if

1defined (AFX_KYDROANALYSISDOC_H__B6 6D4D61_49D1_11D3_BD31_00E0291 125687__ INCLUDED

)
#define AFX_HYDROANALYSISDOC_H__B6GD4D61_4901_11D3_BD31_005029112567__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CHydroAnalysisDec : public CDocument

{

protected: // create from serialization only
CHydroanalysisboc();
DECLARE_DYNCREATE (CHydroAnalysisDec)

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual functicn cverrides
/7 {{ASX_VIBTUAL (CHydrcanalysisDcc)
public:
virrual BOOL OnNewCccument():
virteal void Serialize(Carchivei ar);
//}YAFX_VIRTUAL

// Implementation
public:
virtual ~CEyZreanalysisDoc();
#$ifdef _DEBUG
virtual void AssercValid() comst;
virtual void Dump (CDumpContext& dc) const;
#endif

protected:
// Generated message map functions
protected:
/7 {{AFX_MSG (CEydroAnalysisDac)
// NOTE - the ClassWizard will adé and remcve member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG
DECLARE_MESSAGE_MAP ()
};
///////////////////////////////////////l//////l/////////I////////////////////
// { {AFX_INSERT_LOCATION}}
// Microsoft Develcper Studio will insert additicnal declarations immediately
before the previous line.
#endif //
tdefined (AFX_HEYDROANALYSISDOC_E_ B66D4D6 1_4%D1_11D3_BD31_00E0291125 67___INCLUDED
)

168

/////////////////////l/I/Il/II/I/////II/l///////////////////////I/I//I/
!l

// @ HydroAnalysisView.h : interface of the CHydroAnalysisView class

// @ author: Tianhe Wen, 1988

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

/7
///////////////////////////////////I/////////////////1////////////////

#if!defined(AFX_HYDROANALYSISVIEW_H__366D4D63_49D1_11D3_BD31_002029112567__INCL
UDED_)

#define
AFX_HYDROANALYSISVIEW;H__BS6D4D63_49D1_11D3_BD31_005029112567__INCLUDED_

#if _MSC_VER »>= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CHydroRAnalysisView : public CView

{

protected: // create from serialization only
CHydroAnalysisView() ;
DECLARE_DYNCREATE (CHydroAnalysisView)

// Artributes
public:
ChydroAnalysisCoc* GetDocument();

// Operations
public:

/! Qverrides
/! ClassWizard generated virtual functicn overrides
/7 {{AFX_VIRTUAL (CHydroanalysisView)
public:
virtual vcid CnDraw(CCC® pCC); // overridden to draw this view
virtual BECOL PreCreateWindew(CREATESTRUCT& cs);
protected:
virtual BCOL OnPreparePrinting(CBrintIanfc~* pinfa):;
virtual void CnBeginPrinting(CCCr pDC, CPrintInfe* pInfc);
virtual void OnEndPrinting(CDC* pDC, CZrintInfe* pInfo);
//}YAFX_VIRTUAL

// Implementaticn
public:
virtual -CHEydroAnalysisView():;
#ifdef _DEBUG
virtual void Assertvalid() const;
virtual void Dump (CDumpContext& dc) censt;
$endif)

protected:

// Generated message map functions

protected: ’
/7 { (ATX_MSG(CHydroAnalysisView)
// NOTE - the ClassWizard will add and remove member functions here.
1/ DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

169

#ifndef _DEBUG // debug version in HydroAnalysisView.cpp

inline CHydroAnalysisDoc* CHydroAnalysisView::GetDocument ()
{ return (CHydroAnalysisDoc*)m_pDocument; }

#endif

////I//////////////////////////////////I////////////////I/////////////////I//

/1 ({AFX_INSERT_LOCATION}}
/! Microsoft Developer Studic will insert additional declarations immediately

before the previous line.
#endif //

1defined (AFX_HYDROANALYSISVIEW_H_B66D4D63_49D1_11D3_BD3 1_00E029112S567__INCLUDE
D_)

170

J1 10LETETERTE0R 2000000000800 00000 0800000000 80000007001001171717
1/

// @ IndexPara_Dlg.h : header file

// @ author: Tianhe Wen, 199¢%

// & Version:2.0

// @ Copyright: Ritepro Inc.

/7 € Concordia Universicy

/7

JIITIIIIIE0 LI 0000000002000 0 0000000000000 1000080100000 71100711871171

#if
1defined (AFX_INDEXBARA_DLG_H__BOEFC8E2_E3C6_11D2_986A_444553540000__INCLUDED.)
#define AFX_INDEXPARA_DLG_H. BOEFCSE2_F3C6_11D2_$86A_444553540000__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

JIIEIIIL2 0000000000000 002000000000 0000000000000000000000070071707010177771
// CIndexPara_Dlg dialog

class CIndexPara_Dlg : public CDialcg
{
// Constructicn
public:
CindexPara_Dlg(CWnd* pParent = NULL); // standard constructer

// Dialcg Data
/7 {(A®X_DATA (CIndexPara_Dlg)
enum { IDD = IDD_DLG_INDEX1 };

int m_nIndexdl;
inc m_nIndex02;
inc a_nIindex03;
inc m_nIndex04;
inc m_nIndex0S;
ine m_nincex06;
inc m_nIndex07;
int m_nIndex08;
intc m_nIndex09;
inc m_nindexl0;
inc m_nIndexll;
int m_nIndexl2;
int m_nIndexl3;
int m_nIndexl4;
int m_nIndexl5;
int m_nindexl6;
int m_nIndexl7;
int m_nIndexl18;
int m_nIndexl$;
int m_nIndex20;
int m_nIndex2l;
int m_nIndex22;
int m_nIndex23;
int m_nIndex24;
int m_nIndex2S;
int m_nIndex26;
int m_nIndex27;
int m_nIndex28;
int m_nIndex29;
int m_nIndex30;
int m_nIndex3i;
int m_nIndex32;
int m_nIndex33;

171

int m_nIndex34;

int m_nIndex35;
int m_nIndex36;
int m_nIndex37;
int m_nIndex38;
int m_nIndex3%;
int m_nIndex40;
int m_nIndex4l;
int m_nIndex42;
int m_nIndex43;
int m_nIndex44:;
int m_nIndex45;
inc m_nIndex46;
int m_nIndex47;
int m_nIndex48;
int m_nIndex49;
int m_nIndexS0;

//}}YAFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
// { (AFX_VIRTUAL (CIndexPara_Dlg)
protected:
virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
//}}AFPX_VIRTUAL

// Implementation
protected:

// Generaced message map functicns
/7 {{AFTX_MSG(CIndexPara_Dlg)
// NOTE: the ClassWizard will adcé memker functicns here
//}IATX_MSG
DECLARE_MESSAGE_MAPB()

Y
// {{AFX_INSERT_LCCATION}}
// Microsofc Developer Studio will insert additicnal declaraticns immediately

before the previous line.

g¢endif //
!defined(AEX_INDEXPARA_DLG_H__SOEFCSEZ_EECG_IIDZ_S&GA_444553540000__INCLUDED_)

172

L0 LIEETIT L8000t iieriiiiriiririirieitrirtiirtiilteeertitesiilst
/7

// @ JunctionlDlg.h : header file

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyrxght Ritepro Inc.

// @ Concordia University

//

1217100070007 08 000000007007 7000000000000707000000700807110200071010100107117

#if
!defined (AFX_JUNCTION1DLG_H__76576585_COBD_11D2_A4E4_00A0C974973%A__INCLUDED_)
#define AFX_JUNCTIONIDLG_H__76576585_COBD_11D2_A4E4_00A0CS7497%A___INCLUDED_

#1f _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

/7

TI2IITI77000 0000000000 000000 000800000000 00000000700000001008000001070071077107¢01¢7
// CJunctionlbDlg dialog

class CJunctionlDlec : public CDialeg
{
// Comstruction
public:
CJunctionldDlg(CWnd* pParent = NULL); // standaxd ccnstructor

// Dialog Data
// { {AFX_DATA (CJunctionlDlg)
enum { IDD = IDD_DLG_JUNCTIONL };
BOOL m_kCheckl;
BOOL m_kCheck2;
BOOL m_kCheck3;
BOOL m_EChecki:;
ECOL m_bChecks;
BOOL m_kChecks;
BOOL m_kChesk7;
BOOL m_ECheckS8;
float m_fElevl:
float m_£f=ZlevZ;
float m_f=Zlevl;
flocat m_£=levd;
float m_f£=levs;
float m_£=Zlev6;

flcat m_£21lev7;
float m_£Elevs;
floar m_£fFlecwl;
float m_£fFlew2;
float m_£fFlew3;
float m_£Flcwd;
float m_fFlcws:
float m_£Flows;
float m_£fFlcw?
flocat m_fFlcw8
float m_fEeadl
flocat m_£X¥easZ
float m_£Reac3

flocat m_fHeacd
float m_fHeads
float m_£fHeads
float m_fHead?7
float m_fHeac2
//}}AFX_DATA

~v LT T T TR TR DO TR T 1

173

// Qverrides
// ClassWizard generated virtual function cverrides

/7 { (AFX_VIRTUAL (CJunctionlDlg)

protected:
virtual void DoDataExchange (CDataExchange* pDX); // DDX/DDV support

//}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions

// ({AFX_MSG(CJunctioniDlg)
// NOTE: the ClassWizard will add member functions here

//}YAFX_MSG
DECLARE_MESSAGE_MAP()
Y
// {{AFX_INSERT_LOCATION}}
// Microsoft Develcoper Studio will insert additional declarations immediately
before the previous line.

#endif //
!defined(AFX_JUNCTIONlDLG_H__?GS?6S85_C050_1102_A4E4_00AOC97497QA__INCLUDED_)

174

I///////////I/////I/////////////////////I//////////////////////////II/
/7

// @ MainFrm.h : interface of the CMainFrame class

// @ author: Tianhe Wen, 1999

// 8 Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

//
////////////I///I/I///

#if !defined(AFX_MAINFRM_H__B66D4DSD_49Dl_11D3_BD31_005029112567__INCLUDED_)
#define AFX_!BINFRM_H__BG6D4DSD_49D1_11D3_BD31_002029112567__INCLUDED_

#if _MSC_VER >= 1000

//#include "FrontWnd.h"

#pragma conce

#endif // _MSC_VER >= 1000

#include "FrontWnd.h"

class CMainFrame : public CMDIFrameWnd
{

DECLARE_DYNAMIC (CMainFrame)
public:

CMainFrame();

// Actributes
public:
// Operations
public:
// Overrides
// ClassWizard generated virtual funcrien cverrides
// {{AFX_VIRTUAL (CMainFrame)
virtual BOOL PreCreateWindew(CREATESTRUCTL cs);
//}}YAFX_VIRTUAL
// Implementation
public:
virtual ~CMainframe();
#ifdef _DEBUG
virtual void AssertValid(} ccmst:
virtual void Dump(CDumgContext& dc) const;
tendif

protected: // control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;
// Generated message map functions
protected:
/7 {{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LBECREATESTRUCT lpCreateStruce);
// NOTE - the ClassWizard will add and remove member functicns here.
// DO NOT EDIT what you see in these blocks of gererated code!
//}}AFX_MSG
DECLARE_MESSAGE_MAB()
private:
CFrontWnd* m_pFrontWnd;
1
///l/////////////////////////////////
// { {AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately
before the previous line.

#endif //
!defined(AFX_MEINFRM;ﬁ;_E66D4DSD_49D1_11D3_BD31_002029112567__INCLUDED_)

175

T THITILLI2P 0008000000770 00 0007007000000 00000 800000080800 81017771
/7

// @ Pipe.h: interface for the Pipe class.

// @ author: Tianhe Wen, 1599

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/7 e Concordia University

/7

LHITITTI0IT 0072800008277 0 0800700000000 000070070007000200088011077177177

#if 'defined(AFX_PIPE_H__22ESCS62_DDEB_11D2_2883_444553540000__INCLUDED_)
#define AFX_PIPE_H__22ES8C962_DDEB_11D2_9863_444553540000__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

LITELETITITELEL T LI L0000 00000700000 0000020010018¢000107010101011271711
#define NPipe 20

#define NPump 3

#define PI 3.1415927
#define DEGTORAD 0.0174533
#cdefine RADTODEG 57.2957°

#include <string.h>
#include <math.h>

#include <iostream.h>
#include <stdio.h>
#include <conic.h>
#include <stdlib.h>
#include <fstream.h>
#include <iomanip.h>

#define NumReach 4
#cdefine g 9.81//32.2

class Pipe
{
public:
Pipe();
virtual ~Pipe();
void PipeInit(int,inc,inc, £loat, flecat(], float{], fleat{],inc(!, inc(]):

£lcat B(NPipel],R{NPipe],A(NEipe],Dt;
int Nreach(NPipe+NPump], Nup (NBipe+NPump],Mén[NPipe+NPumc];

void PipeJuncF_H(int);
flecaz PipeJuncHead();

void ValveDownF_HE(float, int,const float(], ficat, float):;
veid ValveTauDownFH(float, float, int,const ficat(], float, float, float, £loat);

float PumpJunc():

void ResvUpF_H(float);
£loat ResvUpHead(float);
flcat GetFlow(int);
float GetHead(int);
void Relnitialize(int);
flocat TimeStep();

176

private:
float Q(NumReach+l]:
float H{NumReach+l];
flcat Qp({NumReach+l];:
float Hp(NumReach+l];

}i
#endif // !defined(AE’X_PIPE_B_ZZESCS62_DDEB_11D2_986A_444553540000_INCLU'DED_)

177

L0 TT1IT00700 0000000000 000000000700002007 00070000007 007810100¢801181801177¢27
//

// @ PipelDlg.h : header file

// @ author: Tianhe Wen, 1999

// & Version:2.0

// @ Copyright: Riteprc Inc.

/7 @ Concordia University

/7

TIITIEITEP000 0000000000070 000000000800 000 00800002207 08710712171711¢111¢17

#if !defined(AFX_PIPEIDLG_H__76576588_COBD_11D2_A4E4_00AQ0CS74979A__ INCLUDED_)
#define AFX_PIPEIDLG_H__76576588_COBD_11D2_A4E4_00A0C974979A___INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
/1l

/!

TILTITT0700 0000800000070 700000077708 07070080800070000807778007170710717107171117
// CPipelDlg dialcg

class CPipelDlg : public Cbhialog
{
// Construction
public:
CPipelDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

// {{AFX_DATA(CPipelDlg)
enum { IDD = IDD_DLG_PIPFE_LINEL };
float m_fDiameterl;
float m_£fDiameter?;
float m_fDiameterl;
float m_fDiametery;
flcat m_fDiameters;
flocat m_fDiameters;
flocat m_fDiameter?;
float m_fDiameter§;
float m_£fDiameter$;
flcat m_f£fFfricticnl;

float m_£Friction;
float m_£fFrictioni;
float m_£fFrictiond;
float m_fFriccions:
flocat m_£fFrictionsé;
float m_fFriction?;
float m_fFriction§;
float m_£Friction$;
flocat m_fLengthl;

float m_fLength2;

float m_fLength3;
float m_£fLengch4;
float m_£fLengthS;
float m_fLengthé;
float m_fLength7;
float m_fLength8;
float m_£fLength$;
//}}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides

178

// ({AFX_VIRTUAL (CPipelDlg)

protected:

virtual void DoDataExchange (CDataExchange* pDX): // DDX/DDV support
//}}ASX_VIRTUAL

// Implementation
protected:

// Generated message map functions
/7 {(AFX_MSG(CPipelDlg)
// NOTE: the ClassWizard will add member functions here
//}YAFX_MSG
DECLARE_MESSAGE_MAP()
Y
// { (AFX_INSERT_LOCATION}}
// Micresoft Developer Studio will insert additional declarations immediately
before the previous line.

#endif //
tdefined (AFX_PIPEIDLG_H__76576588_COBD_11D2_A4E4_00A0CS74979A__INCLUDED_)

179

I1 TITET 0000200000000 0 0000000000070 0 008000007 010700007717771101711117
1/

// @ pPipeNet2Cv.h: interface for the PipeNet2Cv class.

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

/7

JIIPITIIL2 0000000000000 0 000000000 000000007708070180771011000071117171117

#if 'defined (AFX_PIPENET2CV_K__714869CS_EB39_11D2_986A_444553540000__INCLUDED_)
#define AFX_PIPENET2CV_H__714883CS_EB39_11D2_986A_444553540000__INCLUDED_

#1f _MSC_VER >= 1000
fpragma once
#endif // _MSC_VER >= 1000

#define NumJ 20

#define Nump 20

#define NIND 200
#define KM 11

#include °*pipe.h"

#include *PumpStart.h”
#include *CheckValve.h"”

class PipeNet2Cv :
public Pipe,
public PumpStarct,
public CheckValve
{
public:
PipeNetr2Cv();
virctual ~PipeNet2Cv();

PipeNet2Cv(int,int(], int, int, int, int, £loat, flcat{], fleac(], flcac(], int(], inc(],
float(],float(],flcat{l,inc(], float, int, £float, flcat, £loat, £loat) ;

void InicialF_H(int);

void PipeJuncf_H(int,int);

void PumpJuncfF_K(fleoat,int);

void PumpJuncfF_H(flcat, int, float):

float GetHEN(int):

float GetQN(int);

float GetH(int,int);

float GetQ(int,int);

float Z(NumJ],CN(NumJ],BM{NumI],QE[NumB+1], IND{NIND];
flcat CC(NumJ][10],BC(NumJI][10];

int Ntype(NumJ], Ipp{NumJ];

private:
float QN[NumJT],EN[NumJ],BE[2*(NumP+1)+1] (KM],Q[2* (NumP+1)+1] [KM];

¥

#endif //
tdefined (AFX_PIBENET2CV_H__714869CS5_EB39_11D2_986A_444553540000__INCLUDED_)

180

JE T1IPLEPEIEL00 000000007000 0800070807707080071000077108700180010017711711
/!

// @ PipeNet2NoCv.h: interface for the PipeNet2NoCv class.

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// e Concordia University

/!

JI101ILTET0 2702008000000 8000000008000 000007080001010007180074001710111717

#if
tdefined {AFX_PIPENET2NOCV_H__22E8C967_DDEB_11D2_986A_444553540000__INCLUDED_)
#define AFX_PIPENET2NOCV_H__22E8C967_DDEB_11D2_986A_444553540000__INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
#define NumJ 20

#define NumP 20

#define NIND 200

#define KM 11

#include "Pipe.h”
#éinclude "PumpStart.h”

class PipeNet2NoCv : public Pipe , public PumpStart
(
public:

BipeNet2NeCv{) ;

PipeNez2NeCv(inc, inc(], int, int, int, int,
float, float(], flcac(], £loat(],inc(],inc(], £loac(],
float[], floac({],int(], lcatr, ficat, £loat, flcat);
virzual ~PipeNet2NaoCv();
void InitialF_H(int);
void PipeJuncf_H{int,int);
void FumpJduncF_H(float,int);
float QM([NumJ],EN(NumJ],Z{NumJ],CN(NunJ],BN{NumJ],
QE(NumP+1}/*,Nup [NumP+1],Ndn {NumP+1]*/, IND[NIND] ;
flecat CC(NumT]([10],8C(NumT](10];
int Ntype(NwnJ], Ipp(NumT];

//private:
flcat H[2* (NumP+1)+1] (KM],Q[2~(NumB+1)+1] (RM];

}:

#endif //
!defined(AEX_PIPENET2NOCV_H__2228C967_DDES_11D2_986A_444553540000__INCLUDED_)

181

I L1011 00000 0000000000000 00 0000000000000 0000080000 0000100810712871121111

l/

// @ PlotPrintoutDlg.h : header file

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/1 @ Concordia University

//

LIITTELT20I0 2200000000000 0000000007070 0701028007708080021000010181810721711147

#if

!defined (AFX_PLOTPRINTOUTDLG_H__SBAES188_E(097_11D2_986A_444553540000__ INCLUDED_
)

#define AFX_PLOTPRINTOUTDLG_H__ SBAES188_E097_11D2_986A_444553540000__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

TIIITTTEET0T 0000000000007 00000000007 00007 70000000 0000070000000000010010101077117171
// PlotPrintoutbDlg dialog

class PlotPrintoutDlg : public CDialog
{
// Construction
public:
BlotPrintoutDlg(CWnd* pParent = NULL); // standard constructor

// Dialeg Data
// {(AFX_DATA(BlotPrintoutDlg)
enum { IDD = IDD_DLG_PLOTDLG }:
UINT m_fPlotJunNum;
UINT m_£fPlocPipeNum;
UINT m_£PrintoutPipel;
UINT m_£PrintcucPipel;
UINT m_£PrintoutPipel;
UINT m_fPrintoutJun2;
UINT m_fPrintoutJunl;
UINT m_£PrintoutJun3;
//}}AFX_DATA

/! Overrides
// ClassWizard generated virtual function overrides
// {{AFX_VIRTUAL (PlotPrintoutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}YAFX_VIRTUAL

// Implementation
protected:
// Generated message map functions
// ((AFX_MSG(PlotPrintoutblg)
// NOTE: the ClassWizard will add memter functions here
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
Y

// {{AFX_INSERT LOCATION}}
// Microsoft Developer Studic will insert additional declarations immediately

before the previous line.
#endif //

tédefined (AFX_PLOTPRINTOUTDLG_H__SBAES188_EQ0S$7_11D2_986a_444553540000___INCLUDED_
)

182

J1 T1ELP02 0000000000080 1070 0070080000 807000710¢8774707177771171177711717
/7

// @ PumpCheckValveDlg.h : header file

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/7 e Concordia University
xl/////l////I////////////////I////////////////////////////////////II/

$if

tdefined (AFX_PUMPCHECKVALVEDLG_H__76576584_COBD_11D2_A4E4_00A0CS74979A__INCLUDE
ggifine

AFX_PUMPCHECKVALVEDLG_K__76576584_C0BD_11D2_A4E4_00AQCS74979A__INCLUDED_

#1if _MSC_VER >= 1000

$pragma once

#endif // _MSC_VER >= 1000

T1ITL0IIT 000000000000 00 7000070000000 0000000000 0000000000000870000717071771111177
// CPumpCheckValveDlg dialog

class CPumpCheckValveDlg : public CDialog
{
// Construction
public:
CPumpCheckValveDlg(CWnd*® pParent = NULL); // standard censtructor

// Dialog Data
// { (AFX_DATA (CPumpCheckValveDlg)
enum { IDD = IDD_DLG_PUMP_CHECK_VALVE };
CComboBox m_ListSpeed3;

CComboBox m_ListSpeedl;
CComboBox m_ListSpeedl;
CComboBox m_ListDiameter3;
CComboBox m_ListDiameterl;
CComboBox m_ListDiameterl;
float m_£A0;

flocat m_£Aal;

float m_£A2;

fleat m_£NormalAG:

float m_£NormalAl;

float m_£fNormala2;

float m_£XsPumpl;

float m_fHsPump2;

flocat m_£HsPumpl;

float m_fFlowPumpl;
float m_£FlowPump2;
float m_£FlowPumpl;
float m_fEeadPumpl;
float m_fHeadPumpl;
float m_£HeadPumpl;
flocat m_£fSpeedPumpl
flocat m_£SpeedPump2
float m_fSpeedPumpl
float m_£TorgPumpl;
float m_£fTorgPumpl;
loat m_£TorgPumpl;
float m_£TsPumpl;

float m_f£TsPump2;

float m_£TsPumpi;

float m_fPump2Al;

float m_£Pump3Aal;

we vy s

183

float m_fPump2Al;
float m_£PumpldAl;
float m_£fPump2A2;
float m_fPump3A2;
float m_fPump2NorAQ;
float m_£fPump3NorAl;
float m_£Pump2NorAl;
float m_fPump3NorAl:
float m_fPump2NorA2;
float m_fPump3Nora2;
int m_nPumplStatus;
inc m_nPump2Status;
int m_nPump3Status;
BOOL m_bNoCheckValve;
//}Y}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
// { {(AFX_VIRTUAL (CPumpCheckValveDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}YAFX_VIRTUAL

public:

// index for the diameter, and speed
int m_nSpeedl;

int m_nSpeed?2;

int m_nSpeedl;

inc m_nDiameterd;

int m_nDiameter2;

int m_nDiameterl:;

// Implementation
proteczed:
// Generated message map functions
1/ { (AFX_MSG (CPumpCheckValveDlg)
afx_msg void OnPumplRadiol():
afx_msg void OnPumplRadio2();
afx_msg void OnPumplRadiocl3 ()
afx_msg void OnPumplRadiod ()
afx_msg void OnPump2Radiol();
afx_msg void OnPump2Radio2();
afx_msg void OnPump2Radiol():
afx_msg void OnPump2Radioc4();
afx_msg void OnPump3Radiol() :
afx_msg void OnPump3Radio2():
afx_msg void OnPump3Radio3():
afx_msg void OnPump3Radiod();
virtual BOOL OniInitDialog():
afx_msg void OnSelchangeComboDiameterl();
afx_msg void OnSelchangeComboDiameter2();
afx_msg void OnSelchangeCombeDiameter3(};
afx_msg void OnSelchangeComboSpeed();
afx_msg void OnSelchangeComboSpeed2 () ;
afx_msg void OnSelchangeComboSpeed3 () ;
afx_msg void OnCheckvalve():
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
private:
void SetControls();
void ShowStarcupWndPl(BOOL bShow = TRUE);
veid ShowNormalWndPl({ BOOL bShow = TRUE);

184

void ShowFailwndPl{ BOOL bShow = TRUE);
void ShowStartupWndP2(BOOL bShow = TRUE);
void ShowNormalwndP2(BOOL bShow = TRUE);
void ShowFailwndP2(BOOL bShow = TRUE);
void ShowStartupWndP3(BOOL bShow = TRUE);
void ShowNormalWwndP3 (BOOL bShow = TRUE);
void ShowFailwndpP3l(BOOL bShow = TRUE};
void ShowCheckvalvelWnd(BOOL bShow =TRUE)};

}:

// {{AFX_INSERT_LOCATION}}
/! Microscft Developer Studio will insert additional declarations immediately

before the previous line.
#endif //

1defined (AFX_PUMPCHECKVALVEDLG_H__76576584_CO0BD_11D2_A4E4_00AQ0CS74979A__INCLUDE
D_)

1835

T111T0T000 0000000000808 0 0700070000000 000000700080 0000771717771¢11111171
//

// @ PumpFail.h: interface for the PumpFail class.

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

/7

T21017170000 0000700000000 000007070 77000800000000000007707807101101010711177

#if !defined(AFX_PUMPFAIL_H__S549E1951_0B07_11D4_BDSE_O0QE029112567__INCLUDED_)
#define AFX_PUMPFAIL_H__S49E1951_0B07_11D4_BDSE_0OE029112567__INCLUDED_

#1f _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class PumpFail

{

public:
PumpFail();
PumpFail (int);
virtual ~PumpFail():

public:

float A, XL, EL, D, F, QR,HR,TR,RN,WRR, G,TM,TOL,VI.R,B,AR,CX;//V
fleaz DX,V0,V00,ALO,ALO00,DT,BETA,BETO;

float WH[89],WB(89],Q(S1,¥(5],.8p(S5].Qpel5];

int N,KIT,KMAX;

void PipeJHQ(int);

void PumpValveBC(int);

void DownstreamResceiv(float,int);
void Relnitialize(int):

double InterpclatedValue(double, intc, int):

#endif //
tdefined (AFX_PUMPFAIL_H__S4981951_0B07_11D4_BDSE_O00E029112567__INCLUDED_)

186

J11 TEETIETEL 0002000000000 000 08000000000 000000000000100000171171171117
/7

// @ pumpStart.h: interface for the PumpStart class.

// @ author: Tianhe Wen, 1999

// @ Versicn:2.0

// @ Copyright: Ritepro Inc.

// @ Concordia University

'y

TEEIILIE20 0070000000000 000007000000000000000000000700000000110020107117

#if 1defined(AFX_PUMPSTART_H__22E8C964_DDEB_11D2_9$86A_444553540000__INCLUDED_)
#define APX_PUMPSTART_H__ 22ES8CS64_DDEB_11D2_986A_444553540000__INCLUDED_

#if _MSC_VER >= 1000
$pragma once
#endif // _MSC_VER >= 1000

class PumpStart

{

public:
PumpStart();

virtual ~PumpStart():;
void PumpStartInit(flcat, float, float, float, int, int);

int Jpump;
float HS,Al,A2,Ts;

|

#endif //
1defined (AFX_BUMBPSTART_KE_ 22E8C964_DDEB_11D2_986aA_444533540000__INCLUDED_)

187

J1 JI100000 0000000000800 00 00000000000 00001000000000000001171107171107

/7

// @ ReserviorDlg.h : header file

// @ author: Tianhe Wen, 1989

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/7 @ Concordia University

7/

JI2IDIEITIEI2 0200000000000 000000000000 0000070000000100000010¢01800111717

#if
!defined(AFX_RESERVIORDLG_H__76576582_COBD_IIDZ_A4E4_0OAOC974979A__INCLUDBD_)
#define AFX_RESERVIORDLG_H__?GS765SZ_COBD_l192_3434_00AOC974979A__INCLUDED_

#if _MSC_VER >= 1000

#§pragma once

#endif // _MSC_VER >= 1000

/7

JIIITI2ELLE 0000000000020 0000000000 0000000000000000801000017017111177
// CReserviorDlg dialog

class CReserviorDlg : public CDialog
{
// Construction
public:
CReservicrDlg(CWnd* pParent = NULL); // standard constructer

// Dialecg Data
//{{AFX_DATA(CReserviorDlg)
enum (IDD = IDD_DLG_RESERVOIR };
float m_£Xeadl;
float m_fHeadl;
floats m_fXeadl;
flocat m_£Xead4;
//}YAFX_DATA

// Overrides
// ClassWizard generated virtual functicn overrides
/7 {{AFX_VIRTUAL (CReserviorDlg)
protected:
virtual vecid DoDataExchange(CDataExchange* pDX): // DDX/DDV suppcrt
//}}AFX_VIKRTUAL

// Implementaticn
protected:

/! Generazed message map functions
// { {AFX_MSG(CReserviorDlg)
// NOTE: the ClassWizard will add member functions here
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
Y
// {(AFX_INSERT_LCCATION}}
// Microsoft Developer Studic will insert additicnal declaracions immediately
before the previcus line.

#endif //
!defined(AFX_RESERVIORDLG_H__76576582_COBD_11D2_A4E4_00AOC974979A__INCLUDED_)

188

LL 1ITPP00700 0070000080020 0 8000000000000 0007000 0000000100070 8010217111117

/7

// @ SimulationDlg.h : header file

// @ author: Tianhe Wen, 1999

// @ Version:2.0

// @ Copyright: Ritepro Inc.

/7 € Concordia University

/7

.

#if

'defined (AFX_SIMULATIONDLG_H__DC9B7C92_COD1_11D2_A4E4_00A0CS74979A_ INCLUDED_)
#define AFX_SIMULATIONDLG_H___DC9B7C92_COD1_11D2_A4E4_00A0C974979A_ INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
//

/7

LIELTTIT P70 0000 0080000000000 0708 800000007007 010002707107871000010187127111017111171
// CSimulacionDlg dialog

class CSimulationDlg : public CDialog
{
// Construction
public:
CSimulaticnDlg{CWnd* pParent = NULL); // standard constructor

// Dialeg Data
// {{AFX_DATA(CSimulatcionDlg)
enum { IDD = IDD_DLG_SIMULATION };
float m_fStarcTime;
float m_£SctopTime;
//}}AFX_DATA

// Querricdes
// ClassWizard generated virtual function overrides
// {(AFX_VIRTUAL (CSimulationDilg)
protected:
virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV supgort
//}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functicns
// {{AFX_MSG(CSimulationDlg)
//}}YAFX_MSG
DECLARE_MESSAGE_MAP()

}:

/7 {{(AFX_INSERT_LCCATION}}
// Microsoft Developer Studio will insert additional declarations immediately
before the previous line.

#endif //
tdefined (AFX_SIMULATIONDLG_H__DCSB7C92_COD1_11D2_34E4_00A0C974979A_ INCLUDED_)

189

JH12001100000 000078000000 00 000700 0080000007 0000000007018 78087071074877177171
1/

// @ HydroGraphic.h : main header file for the HYDROGRAPHIC application

// @ Author: Tianhe Wen, 1399

// @ Version: 1.5

// @ Copyright: Ritepro Inc.

// @ Concordian University

//

JIPI02E001700000 000070000000 700008 0080000008800 00000070000007010088120771777¢17

#if
tdefined (AFX_HYDROGRAPHIC_H__F63D25ES5_4682_11D3_BD31_00E029112567___INCLUDED_)
#define AFX_HYDROGRAPHIC_H___F63D2SES_4682_11D3_BD31_00E029112567__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
#error include ’‘stdafx.h’ before including this file for BCH

#endif

#include "resource.h” // main symbols
#include "qcwin.h*
#include *gcwrt.h”

J110770000000700 00800070008 000077000007000070000000807071001820087110707010001077171117
// CHydroGraphicApp:
// See HydroGraphic.cpp for the implementation of this class

class CHydroGraphicApp : public CWinAgp
{

public:
CBydrcGragnicapp();
public:
HDATA m_hDatal; // data set handles

HDATA m_hData2;
realtype rNewVals ([8];

// Overrides
// ClassWizard generated virtual function cverrides
/71 { (AFX_VIRTUAL (CHydroGraphicApr)
public:
virtual BCOL InitlInstance();
//}}AFX_VIRTUAL

// Implementation
/1 {{AFX_MSG (CHydroGraphicapp)
afx_msg void OnAppAbout(}:
// NOTE - the ClassWizard will add and remove member functions here.
/7 DO NOT EDIT what yocu see in these blocks of generated ccde !
/1}}AFX_MSG
DECLARE _MESSAGE_MAP()
}:
TIILLETT7 0000807000000 00 8700000000070 0000000000000 000700000777707077077818101047
extern CHydroGraphicApp theapp:
// {{AFX_INSERT_LCCATION}}
// Microsoft Developer Studic will insert additional declarations immediately
before the previous line.

#endif //
tdefined (AFX_HYDROGRAPHIC_H__F63D25ES_4682_11D3_BD31_Q00E029112567___INCLUDED_)

190

TIIIPTEL2 70070000000 0000 0000000000000 00000700080087000010071010127701111111717

17

// @ BydroGraphicDoc.h : interface of the CHydroGraphicDoc class

// @ Author: Tianhe Wen, 1899

// @ Version: 1.5

// @ Copyright: Ritepro Inc.

/1l e Concordian University

17/

JHILTELITT 700000000007 000087770000070077700104000077017171200107277817111711777
#if

'defined (AFX_HYDROGRAPHICDOC_K__F63D2SEB_4682_11D3_BD31_00E029112567__INCLUDED_
) .
#define AFX_KYDRCGRAPHICDOC_E__ F63D25EB_4682_11D3_BD31_00E029112587__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CHydroGraphicDoc : public CDocument

{

protected: // create from serialization only
CHydroGraphicDoc();
DECLARE_DYNCREATE (CHydroGraphicDoc)

// Attributes
public:

// Operations
public:

// Cverrides
// ClassWizard generated virtual functicn cverrides
// { {QAFX_VIRTUAL (CHydrcGraphicDec)
public:
virtual void Serialize(CArchivek ar):;
//}YAFX_VIRTUAL

// Implementation
public:
virtual ~CEydroGraphichec();
#ifdef _DEBUG
virtual void Assertvalid() const;
virtual void Dump(CDumpContext& dc) const:

g#endif

protected:

virtual BCOL OnNewDocument();
// Generated message map functions
protected:

// { (AFX_MSG (CHydroGraphicDoc)
/7 NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated ccde !
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
}:
IIIILTEET 0070078780000 0 0000000000000 00007 00000000007 00008700710270101070177
// {{AFX_INSERT_LOCATION}}
// Microsoft Develcper Studic will insert additional declarations immediately
before the previocus line.
#endif //
tdefined (AFX_KYDROGRAPHICDOC_H__ F63D2SEB_4682_11D3_BD31_00EG2$112567__INCLUDED_
)

191

[0 1710107000000 000 00000007000 00000000000707000700000000800070007771117711¢117
/7

// @ HydroGraphicView.h : interface of the CHydroGraphicView class

// @ Author: Tianhe Wen, 1999

// @ Version: 1.5

// @ Copyright: Ritepro Inc.

// @ Concordian University

//
TIIITEIEIEIII 0200000000000 000008000000 000 000700000000 80000001087071018071¢01070117

#if
tdefined (AFX_HYDROGRAPHICVIEW_H__F63D25ED_4682_11D3_BD31_00E029112567__INCLUDED

=) .
#define AFX_HYDRCGRAPHICVIEW_H__F63D25ED_4682_11D3_BD31_00E023112567__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

LHITIIIITIE LTI 00 L2700 0800000000000 010000000100100000010101001

/""""'""""""9"'"'""""""'"""""""""""'-""""/

// define graph class based on BaseGraph

/""""""'"""""""""'"'""""'""""""""""I""t"'/

class Graphs : public QCBaseGraph

{
public: // constructor
Graphs (int nNum);
PGRAPE_DEF m_pDynGrDesc; // pointer to gragh descriptor
PGRAPH_DEF m_pStaGrDesc;
intc m_nGraphNumber; // graph numker in page
protected:

virtual void BuildGraph (PGRAPE_DEF, HDC hdc); // user graph buildin
funccion
}:

class Pagel : puklic QCBasePlage
(
protected:
wvirtual veid BuildPage (PPAGE_DEF); // user function initializing page
public:
Graghs* m_pGraphl;
Graphs* m_pGraph2:;

Pagel() {(m_pGraphl = m_pGragh2 = NULL:};
~Pagel();
}:

THITITEITLEEIIT70 000000807000 80007080000000000200100100110011810117

class CHydroGraphicView : public CView

{ .

protected: // create from serialization only
CHydroGraphicView() ;
DECLARE_DYNCREATE (CHydroGraphicView)

protected:
Pagel *m_pFgl; // pointer to the pace object
Pagel *m_pPg2;
BBAGE_DEF m_pFageDesc;
PPAGE_DEF m_pPageDesc2;

192

// Attributes
public:
CHydroGraphicDoc*® GetDocument();
A Y
// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
// ((AFX_VIRTUAL (CHydroGraphicView)
public:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual void OnInitialUpdate(void);
virtual BOOL PreCreateWindow (CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrinting(CPrintInfo* pinfo);
virtual void CnBeginPrinting(CDC* pDC, CPrintiInfc® pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrincInfo* pInfo);
virtual void CnPrint{CDC* pDC, CPrintInfor pInfo);
//}}AFX_VIRTUAL

// Implementation
public:
virtual ~CHydroGraphicView();
#ifdef _DEBUG
virtual void AssertValid() const;
virtual veid Dump (CDumpContext& dc) const;
#endif

protected:

// Generated messace map functicns

prctected:
// { {AFX_MSG (CrydrcGraphicView)
afx_msg veid CnSize(UINT nType, int cx, izt ¢yl
//afx_msg vcié OnFileSavel():
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

rivate:
CRect m_rcPrintRect;

}:

#ifndef _DEBUG // debug versicn in HydrcGraphicView.cpp

inline CHydroGraphicDoc* CHydroGraphicView::GetDocument ()
{ return (CHydrcGraphicDoc*)m_pDocument; }

#endif

TETITIE770 0200000020800 000000000 0000270000000 0000800 700000000700700007120717
//((AFX_INSERT_LGCCATICON}}
// Microsoft Developer Studic will insert additicnal declarations immediately
before the previcus line.

#endif //
tdefined (AFX_HYDROGRAPEICVIEW E__F63D25ED_4682_11D3_BD3 1_00E029112567__ INCLUDED

=)

FLLLTEELELLINLEL 00T 0L R0 0T8T TETIILE 1000 A 00000000 000000000070127010017
/7

// @ MainFrm.h : interface of the CMainFrame class

// @ Author: Tianhe Wen, 1§99

// @ Version: 1.5

// @ Copyright: Riteprso Inc.

// @ Concordian University

//

LIPIELLITTINIT L0 TP T 0000000000007 00 0000000800000 0000 200001000118 0000140717
#if !defined(AEX_MAINFRM_H;_?GBDZ539_4682_11D3,BD31_003029llZSE?__INCLUDED_)
#define AFX_MAINFRM_H__F63D2SES_4682_11D3_BD31_00E029112567__INCLUDED_

#if _MSC_VER >= 1000

$pragma once .

#endif // _MSC_VER >= 1000

class CMainFrame : public CMDIFrameWnd

(
protected: // create from serialization cnly

DECLARE_DYNCREATE (CMainFrame)
// Attributes
public:
CMainFrame():
// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
/7 {{AFX_VIRTUAL (CMainFranme)

/7 virtual ECOL PBreCreateWindcw(CREZATESTRUCTE cs);
//}YAFX_VIRTUAL

// Implemencaticn

private:
inc m_nCounc;

public:

virtual ~CMainFrame();
#ifdef _DEBUG

virtual vecid AssertvValid() consc;

virtual vcid Dump(CCumpCentexts éc) ccnst;
#endif

protected: // contrel bar embedded memkers
CStatusBar m_wndStatus3ar;

CToolBar m_wndTcolBar;
// Generated message map functicns
protected:

/7 {{AFX_MSG(CMainFrame)

afx_msg int OnCreate(LECREATESTRUCT lpCreateStruct);
afx_msg void OnDestroy():

afx_msg void OnTimer (UINT nIDEvenc);

// NOTE - the ClassWizard will add and remcve member functions here.
// DO NOT EDIT what ycu see irn these blozks of generated ccde!
//}}AFX_MSG
DECLARE_MESSAGE_MAZP()
}:
PELELTITIPIIIT 0000000200 F 000070000000 000 000007000007 02007070008070100114171
/7 {{AFX_INSERT_LOCATION}}
// Micxrosoft Developer Studioc will insert additional declarations immediately
before the previous line.
#endif //
tdefined (AFX_MAINFRM_H_ F6ID25E9_4682_11D3_BD31_00E029112567__ INCLUDED_)

194

