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Abstract

Diagnostics for Generalized Linear Models
Sonia Benghiat

The analysis of residuals can capture departures from a parametrized model. In
this thesis we look at how the generalized linear model has become one of the most
important developments in statistics in the last thirty years, and on the adequacy of
regression model diagnostics that are meaningful and significant in a generalized linear
model context. Some asvmptotic properties are discussed and numerical examples are
provided to illustrate the techniques for binomial, Poisson, and gamma distributed

random variables.

Résumé

Des diagnostiques pour les modéles linéaires généralisés
Sonia Benghiat

L’analyse des résidus est un outil fort puissant qui nous permet de vérifier la va-
lidité d’un modéle paramétrique. Dans ce mémoire, je donne un apergu de I'importance
que les modéles linéaires généralisés ont eu sur le déroulement des statistiques dans
les trentes derniéres années. J'analyse la facilité que nous procurent de tels modéles
lorsqu’il s’agit des diagnostiques de régressions. J’éxamine également les lois as-
ymptotiques concernant ces modéles. Finalement, je présente des exemples pour des

variables aléatoires binomiales, Poisson, et gamma.
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Chapter 1

Introduction

1.1 The Linear Model

Most of the generalized linear model concepts stem from the theorv of the normal
linear model. Before introducing the generalized linear model, it is useful to set the
scene by providing a brief review of the normal linear model in this first chapter, and
hence to understand and see the parallels between the two types of models.

The normal-theory linear model is given by
y=XB+e, (1.1)

where y is an n x 1 observation vector, X is a n x p known design matrix, Sisapx1
vector of unknown parameters, called regression parameters and € is an n x 1 vector
of unobserved random variables with zero mean and constant variance o2, which are
independently and normally distributed. The model (1.1) is alternatively described

by the mean-vector and variance-covariance matrix of the observations Yy as

E(y) = X8. Var(y) = o?l.
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The linearity of the model is understood in terms of the regression parameters 3.
For estimation of the parameters, the maximum likelihood method can be used when
the errors are normal. Likewise, the principle of least squares provides the same
estimates of the regression parameters. However, it does not require any distributional
assumption. It is described below.

Least Squares Estimation of Parameters J

The least squares method estimates the regression parameters 8 by minimizing the

sum of squares:
Q) =3 € = e =(y - XBY(y — X0)
i=1
=Yy - 26Xy + X'Xp. (1.2)
Since
?)—;91- =0 -2X'y + 2X'X3 = 0,
the least square estimator 3 for 3 is given by the so-called normal equations
X'Xj3 =X'y.

This yields

B = (X'X) Xy, (1.3)

assuming that X is of full column rank. It is easily verified that 3 is unbiased for 8

and
Var(f) = e*(X’X)~1. (1.4)

In addition to being unbiased, the least square estimator (LSE) 3, has the following
properties:
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(1) bave minimum variance among all unbiased linear estimators (Gauss-Markov

theorem),
(2) consistent, and

(3) sufficient.

Projection Matrix and Residuals

The building blocks for detecting influential observations in a given data are generated
by the projection matriz, M, and residuals, e which are defined in what follows.
Consider the model (1.1) with corresponding fitted values (§) and residual vector (e)
defined by:

X3. (1.5)

@
I

o

"The projection matrix M = (n;;) is defined by:

M=I-H,
H = X(X'X)"'X'

is called the “hat matrix”. The projection matrix is most useful in the analysis of

residuals as it spans the residual space, i.c.,
e =My. 1.7)

The residuals e measure the difference between the observed and the fitted values,
with the following properties:

e E(e)=0.
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e Var(e) = 0% (I1 - H).

An unbiased estimator of o2 based on the residual e is given by
s2_ e _y"(I—H)y, (1.8)

n—p n—p

whereby (1.8) is denoted by MSE, the mean square due to ervor. Therefore,
Var(e) = MSE (I1-H) (1.9)
is an unbiased estimator of Var(e).

Theorem 1.1 The following are important properties related with the projection ma-
triz M:

1. H and M = (1 — H) are symmetric and idempotent,
2. rankM=rank(l — H)=tr(M) =tr I—H) = n —p,
I MX=(I-H)X=0
PROOF: (see Seber [24], Appendix A)
1. Symmetry is obvious as H' = [X'(X'X)!X] = X'(X'X) !X = H and the
idempotence is easily verified as
H-H = X(X'X)"IX'X(X'X)"IX’' = X(X'X)"'X = H,

and
I-H)-I-HH=1-H-H+H-H=1-H
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2. Since (I — H) is idempotent, rank(I — H) = tr (I — H). Furthermore, since

tr—-H)=trI - trH=n — &aX’X(X'X)™!
=n—trly,

=n-p.

then rank(I-H)=tr(I-H) = n —p.

(I- H)X = [I - X(X'X) X’ = X - X(X'X)"1X'X

=X-X
=0.
]
It can be further deduced that
E(y) = E(XB) = X8, (1.10)
and
Var(¥) = Var(Xf)
= o’ X(X'X) X’
=o’ H. (1.11)

1.1.1 Validity of Assumptions

In fitting a linear regression model, the residuals e can be used to justify the assump-

tions about the random errors . Since e is linear in y, e is a random variable following
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a normal distribution, and hence the assumption of normality can be used to draw
inferences about the linear model. Thus, an analysis which combines the residuals
and the fitted values will examine whether there are any departures from the linear
model with normal errors. The model departures to be examined are categorized as :

e non-linearity,

e non-constant variance,

¢ non-independence,

e non-normality,

e outliers,

e omission of independent covariates.

Graphical methods (see Draper and Smith [7], Chapter 4), involving the residuals
provide useful tools for detecting such model departures. They are described below:

1. Plots of residuals against independent variables will detect potential outliers,
non-constant variance, non-linearity of an independent variable or the need for

more independent variables,
2. Plots of residuals against the fitted values will detect non-constancy of variance,

3. Plots of residuals against time (if possible) will detect non-independence amongst
errors or if the time effect has been omitted from the model,

4. Box-plots, normal probability plots, Half-normal plots, histograms and stem-
and-leaf plots will check for normality and outliers, and
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5. Plots of residuals against other significant independent variables (if possible)
will detect whether such variables are to be included in the model.

Formal tests build statistics involving residuals which are used to test the validity of

the following normal linear regression model assumptions:
e randomness;
e homoscedasticity;
e normality; and

e outliers.

F-test for Adequacy of the Regression Model

Consider the linear regression model (1.1) whereby the errors ¢; are assumed to be
i.i.d.. The adequacy of the model is interpreted in the form of the significance of the
independent variables {x;}. i = 1.... .p — 1. The following hypotheses are tested:

Hi: Bi=Fo=...=fp =0
H, : notall 3;=0; j=1....,p—1.

It can be shown that the likelihood ratio test for H, vs. H, if H, is true yields the
following F-statistic:

MSR
F =g~ Frtayp (1.12)
where
msg=YA-Hy _ ce (1.13)

n—p n—p
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and
iy
Msp=YEH — 21Dy (1.14)
p—1
The critical region is given by
{F:F 2 Fap1n5} (1.15)

where, for any v,.1», € N~ F,,, ., is defined by

P[Fl'hl’z 2 Fa:"ls“!] =a. (1°16)

with the random variable F,, .., having an F-distribution with v, v, degrees of free-
dom. The critical region given in (1.15) is justified by the following facts:
(i) (n—p)23E ~ x2_,,

(i) (p—1) 232 ~ xr2_ (A). where A = #'X'(H— 111') X3, x/2(\) denotes the non-
central chi-square random variable with » degrees of freedom and non-centrality

parameter (ncp) A.
(ili) AMSFE and M SR are independent,
(iv) E(MSR) = o? + fX'(H - 111')X3/(p — 1) > 0®> = E(MSE).

The assertions (i)-(iii) are consequences of Cochran’s Theorem (see Searle [23], Chap-

ter 3), essentially by using the following theorem:
Theorem 1.2 Let z ~ N(O.I). Then,

(1) 2’ Az has a x?-distribution with rank(A )= degrees of freedom, iff. A is idempo-

tent;
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(2) 2 Az and ZBz are independent iff. AB = 0.

(3) The assertion in (1) changes to a non-central chi-square with ncp =’y in case
z~ N(p.1).

z'Az can be written as

MSE _y'(I-H)y €(I1—H)e _
= = - -

o o2 o2

(n —p) z’ Az,

where z ~ N(0.I) and A = (I — H).
Since A is idempotent with rank n — p (Theorem 1.1), it follows that

and, similarly
MSR y(H- %l'l)y

o2 P

(r—1)
has a non-central chi-square distribution with degrees of freedom=
trace (H — ~11') = p — 1 and non-centrality parameter

A=@X'(H - ;11- 11YX3/ o2.
Since HX = X, the non-centrality parameter simplifies to
A= @X(I- % 11NX3 / o2,

which is > 0 and equal zero iff. H, holds.
Independence easily follows since

(I - H)(H — %u') = —(I-H) % 11 = 0.

The assertion in (iv) is a strict inequality if at least one of the §; # 0.
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1.1.2 Other Diagnostics

Some diagnostic tools are used to detect influential and outlying observations in a
given regression model. The Studentized residual is very informative in examining
residuals under a normal model since it is standardized and it introduces the idea of
case deletion, where the fit for all observations is compared to the fit with the deleted

case. Also,
Var(e) = 02 M.
then
Var(e) = 6?M = MSE-M.
Furthermore,
€
o ~ N(0.1),
hence, the studentized residual e} is defined as
. __ €
€; = &J'Tﬁ’ (1'17)

where

m;=1—h;; 0<my; <1.

The diagonal elements m;; of the projection matriz depict those observations with
high-leverage (i.e. highly influential observations) since they are related to the dis-
tance between Xx; and X. Given that X is of full rank, then

Zh,—.-——-p = Zm;.-:n—p.

Hence, the average of diagonal elements m;; is 1 — p/n and high-leverage observa-
tions should have small values for m;; as compared to 1 — p/n. As a rule of thumb,
from Hoaglin and Welsch ([11]), if m; < 1 — 2p/n, then the ith observation is a
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high-leverage point. Thus, M is a useful diagnostic tool for detecting influential ob-
servations.

Another type of ill-fitting point which arises in model-fitting is an outlier. It does
not necessarily imply an influential observation in a given model. In fact, an outlier
may be outweighed by neighboring X-valued points. Still, the effect that an outlying
point exerts on the fit needs to be measured. The smaller the number of observations
involved in a model, the greater the effect of the outlier on the model. This can
be done through the diagnostic tool of Cook’s distance which measures the effect of
deleting an outlier from the data:

ce = (ABY X' X(AS). (1.18)

where A3 = 3 — B¢, B4 denoting the usual LSE of 8 with the fth observation
deleted from the data.

It gives the distance between the usual least squares estimator and the least squares
estimator obtained after the £th observation has been deleted and provides a measure
for the change in least squares estimates 3 for the deletion of the £th observation. It
can be shown that

s (XX) x%(ye — 5
Aj = EX) m:,(m 9e) (1.19)
hence, it can be written that
(ye — Ye)2hee
cz = W, (1.20)

The residual sum of squares (RSS) will also change as a result of an observation
deletion. This is measured by:

ARSS = RSS - RSS_,

— )2
- @l_n:_> (1.21)
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where RSS_, represents the RSS with the £th case deleted. Another approach is to
measure the perturbation of the fit by letting €; ~ N(0,02/v;). Consider

v, i=24¢,

Vs

1 else

where 0 < v < 1 is a weight factor defining the matrix V = diag(v;). The resulting
weighted LSE of g is denoted by B('L)

At v =1: [(1) = f3, the usual least squares estimate, and

at v =0: fi(O) = f_,, the least squares estimate when the fth point is deleted
from the data.

The normal equations are changed and consequently, so are the least squares esti-

mates. B(v) can be expressed as

B(r) = (X'VX) 1X'Vy (1.22)
. (XX)"x,(1 — v)(ye — 9e)
1 -1 —v)he] |
The perturbation effect is measured by differentiating (1.22) with respect to ©:
s _ OB (v)  (X'X)7 % (v — W) .
P == = A= v) P (1.23)

1.1.3 Remedial Measures

If the normality assumptions made on the least squares estimates for linear models
are not. met in practice, then some remedial measures need to be taken. Throughout
the extensive literature available on this topic, one of the most prominent solutions
is to use a transformation on the data which may keep the normal linear regression
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form. However, the implications involved with a selected transformation may not
necessarily be easy to interpret. Some of the standard remedial measures taken in
case of various model departures are described below.

e Non-linearity
Non-linear Least Squares Estimation:
When a model has normally distributed errors with constant variance, but is
non-linear in the independent variables, then the property of additive errors may

enable a linear model through a transformation of the independent variables.

The most common transformations are the following:

' =logz, T’ =z,
T =%, or  =exprz,
1
r— ' —z).
=, ' = exp(—z)

Such models are intrinsically linear ([7], Chapter 5). If these transformations
are not possible, then alternative non-linear models may have to be considered:

y =9(8.x) +¢,

where x represents a vector of predictor variables, g(83,x) is not linear in 8.
The least squares estimator of 3 for B is obtained through differentiation of
the p normal equations which are not linear, unlike in the case for ordinary
least squares. Hence, these normal equations are more complicated to solve.

Consequently, numerical methods are usually required to be used to obtain

solutions.

e Heteroscedasticity and/or non-independent errors
Weighted Least Squares Estimators:
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When the observations are independent yet have unequal variances, an ordi-
nary least squares regression may yield unbiased estimates, but it will not have
minimum variance. Then the observations need to be transformed in terms of
weights, u; > 0. Var(y;) = 02/w; such that

Var(y) = c*W™! = o2 - diag(1/u. . .. , 1/uy,).

Large weights w; imply small variances and have more impact in a regression
model.

Examples of weight components:

1. if the ith response is the result of an average of n; equally variable obser-
vations, then Var(y;) = 0?/n; where w; =n;;

2. if y; results from a total of n; observations, then Var(y;) = n;02 where
u; = 1 / n;,

3. if Var(y;) « x;. then Var(y;) = 02 z; wherew; = 1/x; .

Then, introducing the weight matrix, W, the modified estimator of 3 is given
by
Bw = (X'WX) 1 X'Wy.

Variance Stabilizing Transformations:

When the variances of the observations are not constant, it is possible to trans-
form (see Rao [22], Chapter 6) the observations to make the variance constant.
For this method to work, the form of the heteroscedasticity must be known,

which is often not the case. Hence, in practice, one seeks transformations in
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. a larger family and looks for an optimal member in this family, which closely
follows the assumptions of the model. One such transformation, known as the
Bax-Cox transformation, is discussed later.

e Non-normality of errors

Non-parametric Techniques:

The roughness penalty approach using cubic splines is a method for relaxing the
model assumptions in the normal-theory linear case. It addresses two equally
important problems in curve estimation: that of finding a good fit to the data
used and that of quantifying the rapid fluctuation of a curve. Consider a model

y=g(t) +e

which is specified without placing any restrictions on the curve g. Hence, if there
are no distributional assumptions made, then the normality of errors assumption
is relaxed. Methods associated with the above model come under the general
auspices of the topic of Non-parametric Regression and the literature on this

topic is extensive (see Green and Silverman [10}).

e Non-normality and Heteroscedasticity

Bax-Cox _Transformations:

y,\ - LA_}_’ A # 0
log(y). A=0

for a positive response variable y > 0. This transformation may bring symmetry
to a skewed response and reduce the heavy tails of a distribution while still
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retaining the simplicity of the normal linear model. When it does not provide
a good fit to the data, alternative approaches have to be explored. One such
approach is to use the generulized linear model (GLM), where the response is
assumed to belong to the exponential family. The assumptions made here are
based on the concept that the response depends on the predictors through a
linear form. Thus, the linear models are generalized through

1. a lmk function which relates the expectation of the response to the linear
predictor, and through

2. an exponential family distribution for the errors.

This model will be described in detail in Chapter 2 and is the highlight of this thesis.

1.2 Outline of Thesis

The next chapter introduces the GLM, with all the relevant notations. It gives the
properties of estimators and computational details for estimating the parameters for
common exponential families. Tests for goodness-of-fit and inclusion/exclusion of
variables are also included. The basic properties of residuals in the normal theory
linear models are used for extending the regression diagnostics to the generalized
linear models in Chapter 3. This extension is made possible through transformed
residuals, which is explained in detail in that chapter. The final chapter presents
numerical illustrations of the techniques discussed in Chapter 3 and gives a hands-on
experience with real data through computer programs developed using the S-Plus

software application.



Chapter 2

The Generalized Linear Model

2.1 Historical Aspects

The term “generalized linear model” was first introduced by Nelder and Wedder-
burn in 1972. The generalized linear model has been one of the most important
developments in the field of statistics in the last thirty years. Much used in applica-
tions to the social sciences and medicine, these models also play an important role
in the analysis of survival data. As their name suggest, these models generalize the
normal-theory linear models such that the usual linear regression component is used
to describe a wider class of probability distributions, specifically the exponential fam-
ily distributions. Although generalized linear models have had an important impact
on statistics, most introductory statistics textbooks however, still only present normal
linear models.

It was seen in Chapter 1 that an adequate linear regression model should include a y-
scale which ensures the combination of constancy of variance, approximate normality
of the errors, and additivity of the systematic effects. However, this scale does not

17
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always respect all three criteria. For example, if some discrete data is found to
have errors with an approximate Poisson distribution, the systematic effects may be
multiplicative, in which case log-linear models are usually employed. The following
choices of scaling are obtained by transforming y to :

e y'/? to ensure appraximate constancy of variance,
e */* to ensure appraximate symmetry or normality, or
e log y to ensure additivity of systematic effects.

Generally, none of these scaling possibilities combine all three criteria for an adequate
linear regression analysis. Alternatively, a generalized linear model encompasses ex-
ponentially distributed errors and a variance function which depends on the mean
in some known way, so that there is no need to scale y for normality of errors or
for constancy of variance. In fact, the scaling problem is reduced to ensuring that
the systematic effects are additive. It may be considered to be an extension to the
normal-theory linear model with some added modifications where the mean p of
an exponential family with response variable y is linearly related to the predictors
Xji..-- . Xp, by a link function, g(u). This is described in detail in the sections that

follow.
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2.2 Mean and Variance Functions in an
Exponential Family

An observation y follows an exponential family distribution if its probability density

function is given by

(y6 — b(6))
a(¢)

where a. b, and ¢ are some known functions, 8 is the location parameter and ¢ is the

f(y; 6.4) = exp { + ely. ¢)} , (2.1)

dispersion parameter. This is denoted by
y~ €@, ¢; a,b,c).

When the dispersion parameter ¢ is known, 8 is the canonical parameter. The mean
and variance of y are given by ¥(0) and a(¢)b”(8). Thus it can be written that

E(y) =p=10(0). (2.2)
Var(y) = a($)V (n). (2.3)
where
V(n) =0"(0)

is called the variance function. For example, in the case of the normal distribution,

0 = pn.V(p) =1 and a(¢) = 2. These may be derived from

ot
E (ﬁ =0, (2.4)

£ ()45 (%) =o @9
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respectively, where £ is the log-likelihood function. Note that

t = log {exp [(yf — b(0))/a(®) + c(y.9)]} = (¥ — b(8))/a(®) + c(y.d).

hence
9 y-—¥()
9 a(p)
Thus, equation (2.4) yields
pu—U(9)
—_— =0,
a(4) '
(2.6)
which implies that
E(y)=p = ¥(6).
Also
Pt —b'(9)
2~ "a(9) -
hence equation (2.5) vields
b gl 9E\? _ —b'(8)  Var(y) _
2 () +£ (%) = +g = ©
(2.7)

which gives
Var(y) = a(4)b"(0).

2.3 Description of the Generalized Linear Model

The observations belonging to a statistical model can be summarized in terms of a

systematic component and a random component. In the generalized linear model
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(GLM) discussed by McCullagh and Nelder [17], the random component is inherent
in the exponential family distribution of the observation, while the systematic compo-
nent assumes a linear structure in the predictor variables for a function of the mean.
This function is known as the link function. When the parameter 8 is modeled as
a linear function of the predictors, then the link function is known as the canonical
link. Therefore, for a given set of observations {%:}2,, where y; is considered to be

associated with predictor values x; = (z;,. .. ,Z;)’, the GLM is expressed as:
Yi ~ E(6;.¢; a,b,c) — random component,
where 6; is assumed to depend on x; through the relation
7 = g(p(6:)) = xi — systematic component.
If g is the canonical link, then, the link function is specified by
9(p) = 0. (2.8)

In practice, a given data set may be distributed according to some unknown member
of the exponential family and therefore, different link functions have to be evaluated.
The link function serves to determine the scale on which linearity is assumned, and the
form of the exponential family structures the variation in the data. If the parameters
Bi:--- ,Pn are unrestricted, then g(u) can take any value in R, hence the link function
is determined to some extent by the domain of variation of u. For example, if the
response is a proportion, then the link function ¢ must map the unit interval of the
domain of variation onto the unrestricted range (—00,00). In the case where the
response is limited to being positive, ¢ must map the positive interval onto R.

It is shown, as follows, that in the case of a canonical link, the sufficient statistic
for the linear parameter 3 is given by X'y, where X = (x;,, ...: Xp)' represents the



CHAPTER 2. THE GENERALIZED LINEAR MODEL 22

design matrix of the p predictor variables and y represents the column vector of the

n observations.
To see this, first note that u = ¥(#) and for the canonical link g(u) = 0, then it

follows that

b d _d0 [du]™t 1
g(u) = @y(#) = [E] = ¥y
hence by (2.3)
¢ = g (2.9)

This fact is used in deriving the maximum likelihood estimator of 3 which will be
consequently shown to depend on the observations y through X'y, proving the suffi-
ciency. Here, the log-likelihood function is given by

(i)=Y [”—%i’;‘”—’ +e(u ¢»)] , (2.10)

where 6; = x{3. Now, the differentiation of the likelihood function in equation (2.10)

gives
oK) ib: — b(6;)
o8 Z a0 |2 et 0] B Z"' e
Using equation (2.9) along with the above equation produces
Y xi- (w — ) =0,
i=1
which implies for canonical links that

X'y = X'- q(f),
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for some nonlinear function q. This is attributed to the fact that g(u) = 8 holds for
canonical links only. Hence,

p=g"%0) = f;=g'8)=g'(%H).

Now, canonical links for the binomial, Poisson and gamma families are given re-
spectively by the logit, log and inverse transformations. Consider the probability
distribution of the proportion y based on a sequence of m identical Bernoulli trials
with probability of success 7, then

f(y; 6.4) = exp { lvb — 1(172 +el log (:y) } :

where # = log ;=;. hence the canonical link is given by the logit transformation and

the generalized linear model is given by

P
)= 5B
: r=1

For the Poisson data with mean u, the probability distribution function is denoted
byv:

7 = g(7i) = log(

f(y; 6. ¢) = exp {(y0 —~ €°) — log(y)}.
where 6 = log u, then clearly the log transformation yields a canonical link. Similarly
for the gamma data with density

fly) = k"'l}(a) e—ﬂ/kya-—l,

it may be reparametrized such that @ = 1/¢ and k = —¢/6, hence to get

Y0 + log(—0)

” +c(y.9)}.

f(y; 6,¢) = exp {

whereby

(y,¢) = [(1/¢ — 1) log(ye) + log(¢) — log [(1/4)].
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Therefore, u = ka = —1/6 and consequently, the canonical link is given by
1
9(p) = w

Table 2.1: Dispersion Parameter, Canonical Link and Variance Function for Distri-
butions of the Ezponential Family

DISTRIBUTION  Notation a(¢) 6 = g(u) Name V(p)
Normal N(u.0?) o? m identity 1
Poisson Poi(y) 1 log(u) log I

Binomial Bin(m, 7) L log(:27) logit £(1-£)
Gamma Gam(a.k) 1/a — inverse u?
Inverse Gaussian Inv(u.02) o2 —‘—‘25 1/mu? u?

Table 2.1 gives canonical links and other components for common distribution
families with respect to the exponential family given by equation (2.1) [17]. The choice
of a proper link function that will satisfy the criterion of the domain of variation pis
based on:

1. how the link function will easily interpret the parameters in the linear predictor;
2. how the link fits to the data; and

3. the existence of a simple sufficient statistic.
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Possible link functions associated to some important members of the exponential
family are cited in Table 2.2. In summary, generalized linear models make up a
general class of probabilistic regression models with the assumptions that:

(1) the response probability distribution is a member of the exponential family of

distributions;
(2) the response y; i =1,... ,n is a set of independent random variables;

(3) the explanatory variables are linearly combined to explain systematic variation

in a function of the mean.
In a practical data situation, GLM fitting involves the following;
e choosing an error distribution that is relevant;

e identifying the independent variables to be included in the systematic compo-

nent; and
e specifving the link function.

The next section presents the maximum likelihood method for estimating the regres-
sion parameters assuming that the above have been specified.

2.4 Maximum Likelihood Estimation
for the GLM

If the probability specifications of an exponential family model are known by f(y.90),
then the best way to fit a generalized linear model is by Maximum Likelihood Esti-
mation of the parameters § for the data observed (Silverman and Green [10]). With



CHAPTER 2. THE GENERALIZED LINEAR MODEL 26

many desirable properties of maximum likelihood estimators such as consistency, effi-
ciency, sufficiency and asymptotic normality, it is natural to consider such a method
for GLMs. In general, the maximum likelihood equations which result from GLMs
cannot be solved explicitly and hence recourse must be made to numerical methods.
Three methods are described in this section: the Newton-Raphson method, the Fisher
Scoring method, and the Iteratively Weighted Least Squares method. But first, the
maximum likelihood equations are derived. Given the responses y,. ... . Yn, Where y;
is considered to be generated from a member of the exponential family £ (6.9; a.b.c),
the likelihood function is written as

- & i0; — b(6;
Hf(yi;oi-¢) =Hexp{y——M +c(y.-,¢)} . (2.11)
i=1l i=1 a(¢)
Then the log-likelihood is given by
= [v:6; — b(6; .
(B; ¢) = Z [EE—M + c(y;,¢)] = Ze‘-, (2.12)
2|
whereby ¢; is the ith component to the log-likelihood and is therefore given by
= y:0; — b(6:)
(=Y BE 0 4 omi. @) 2.13
; ORI, (2.13)

The likelihood implicitly depends on the parameters Bi.3=1....,p, firstly through
the link function g(u) and secondly through the linearity that it encompasses with
respect to [3; values. The derivatives of the log-likelihood with respect to Bj, otherwise
known as the score functions, are evaluated by the chain rule:

ot >\ O¢; do; dp; O .
—_— = ___—————=0; =1,,,,_ . 2.14
0f; ~ &= 36, dp; dn: 9B; 7 P (2.14)
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It is easily seen that
o _y—-Vl:) _wi—p
99; a(®) a(¢) °

doi_ LY R et =1,
ap, = GO = Vi),
O 035\ Bizij R
ap; 9B; v

Hence, the score functions reduce to

o€ "Ny — s dp;

= Zij; J=1,...,p.

;& a(B)V (ws) dn;

In a vector form, the score equations are given by
(y —n)D(p)X =0,
where

D(u) = diag(dy;), du=1/V()g' ().

27

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

The maximum likelihood estimator of 3 is obtained by solving (2.19) using the lin-
earity found in g(y) = X3, where g(u) = (g(p11).--. ,g9(m))’- Numerical methods
to solve (2.19) are essentially iterative. Common to all these methods is the starting
value of the estimate. With the ultimate aim of obtaining a “good” starting value of
the estimate, the following technique is employed using the approximate linearized
form of g(y) = g(u) + (v — u)¢’(1). The adjusted dependent variate, z which depends

on both y and p is introduced.
d
z=fl+(y—ﬂ);£

= g(u) + (v — n)g'(p).

(2.20)
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Given that the variance of z is a(¢)[¢’(u)]*V(u), an initial estimate of § may be
obtained by Weighted Least Squares of z (with x4 = y) on X, with variance-covariance
matrix given by a diagonal matrix whose components are specified by

1
- V(I;a)[y'(m)]2

:V;Tz‘.)‘.

wy
(2.21)

Known as the working weights matriz, this matrix is denoted by W. In cases where
repeated observations occur at a given design point, y; is replaced by the average of the
sample observations. Since the average also belongs to the same exponential family,
with the variance replaced by a($)V (u;)/ni, n; being the number of observations on
which the sample mean is based upon, the working weights matrix contains diagonal
elements given by

n;

T V(m)lg @)l
1

= Var(z)

u';

Clearly, the score equations can be expressed as
D (i — p)g (i) 25 = 0, (2.22)
i=1

which, when transformed to the adjusted variates yield the following

D (=~ 9(m)wizi; = 0, (2.23)

i=1

or equivalently, solving for the weighted least squares estimator from the model

E(z) = Xp. Var(z) = a(¢)diag(1/w,,... ,1/w,).
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Both z and W are used for maximum likelihood estimation through a weighted least
squares regression. This process is iterative, since both z and W depend on the
fitted values of current estimates available. Some scoring methods are needed to
measure the iteration variations for a weighted least squares regression of a GLM,

until convergence is reached.

2.4.1 The Newton-Raphson Method

The Newton-Raphson method presents a numerical approach to calculating the maxi-
mum likelihood estimate 3. This iterative process begins with a weighted least squares
estimator obtained from the initial solution of (2.23). A Taylor-series expansion of
€(B3) about. £(39) is used:

at (?
-1
B [(_ﬁf_) . ﬂ]
aB0p3 a0 0
= §®). (2.25)
An updated estimate of 3 is then obtained:
A6 = GO 4 56, (2.26)

This is iteratively repeated until convergence is obtained [10].

2.4.2 Fisher’s Scoring Method

If the negative second-derivative matrix, or the Hessian matrix, is not positive definite

at every iteration (i.e. if it is not invertible), then the Newton-Raphson’s algorithm
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is no longer valid. In this case, the Hessian matrix is replaced by its expectation,
obtaining Fisher’s scoring algorithm. This method is simple since the expected matrix
is more likely to be positive definite as

o%¢ ot Ot
& 3507 = & (35357 @20

which is the expectation of a positive definite matrix. Thus, the iterative process for
Fisher’s scoring algorithm is given by:

36D = §® E T ae (2.28)
* ( [aﬁag']) ap° '

-1
where §() = — (E [ 0&,”,]) £ is evaluated at the previous iteration. For evaluating
the derivatives in (2.28), the linear predictor 1; is used where 7; = z3:

ot 0¢; db; 6(.— . ﬂ %_
Or,, 00 dfl. ~ 96; dp; do;

o = (b x ()8}, (2.30)

)~ (2.29)

ai(¢

and

B[] = = (e )0
= g’(m) x {apg'(pu:)b"(6:)} "
= {a(¢)g’ (1:)?0"(6:)} .
Note that —E | *32"'5"]-,' = [a(#)] 'y for i = j, and it is = O for i # j.
Consider z(® to be the initial n-vector with

20 = (yi — i) g ().

Then it follows that

'Z—s = sz(o) (2.31)
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from (2.30). Furthermore,

—E ( = o ¢)W (2.32)

Since 7 = X', then by the chain rule

o _,oe
a8~ X oy o
s (0)
= al ¢)XWz (2.33)
and
_ T
E (g07) =X [~ Elm)| X (234

The Fisher’s scoring algorithm yields the following sequence of updated estimates:
B =B + (X'WX) 1X'Wz. (2.35)
The dispersion parameter ¢ is eliminated because a(¢) gets canceled in the multipli-

cation, hence it is called a nuisance parameter (McCullagh and Nelder [17]).

2.4.3 Iteratively Weighted Least Squares (IWLS)

As indicated in Section 2.4, the introduction of the adjusted dependent variate z
results in the following equation for the MLE 3 [see (2.23)};

= (x'WX)— IX'Wz.

However, the z and W depend on the unknown f, hence this equation gives rise to
the iterative process

5G+1) _ 36)
g Bs.






































































































































































































