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Abstract
Border-based Anonymization Method for Sharing Private Spatial-Temporal Data

Hani AbuSharkh

Many location-based software applications have been developed for mobile devices. Conse-

quently, location-based service providers often have a detailed trajectory history of their service

recipients. The collected spatial-temporal information of their service recipients can be invalu-

able for other organizations and companies in many ways; for example, it can be used for direct

marking, market analysis, and consumer behavior analysis. Yet, releasing the spatial-temporal

data together with other user-specific data in its raw format often leads to privacy threats to the

service recipients. In this thesis, we study the problem of spatial-temporal data publishing with

the consideration of preserving both privacy protection and information utility for data mining.

The contributions are in twofold. First, we propose a service-oriented architecture to determine

an appropriate location-based service provider for a given data request. Second, we present a

border-based data anonymization method to transform a raw spatial-temporal data table into an

anonymous version that preserves both privacy and information utility. Empirical results suggest

that our proposed method can efficiently and effectively preserve the information required for data

mining.
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Chapter 1

Introduction

Turn on any smartphone and it is not too difficult to identify some location-based applications, such

as a navigation system and social-networks applications. These location-based applications not

only provide convenient, customized location-based services to the recipients but they also collect

a large volume invaluable user-specific spatial-temporal information for the location-based service

providers and their partners. Yet, simply sharing the raw data with their partners will compromise

the privacy of the service recipients. The objective of this study is to propose a service-oriented

architecture together with a privacy-preserving spatial-temporal data anonymization algorithm to

preserve both the privacy of the service recipients and the information utility for data mining.

Figure 1 provides an overview of the research problem. The location-based service providers

collect and store a large volume of user-specific spatial-temporal data in their private databases.

Some third parties (data miners) would like to obtain an appropriate set of spatial-temporal data to

perform data mining tasks such as traffic flow analysis and consumer behavior analysis. The first
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Figure 1: Overview of Spatial-Temporal Data Sharing

challenge is to develop a service-oriented architecture so data miners can identify the location-

based service provider(s) who own the data through a service broker. The second challenge is to

efficiently anonymize the spatial-temporal data in order to fulfill the data requests. In our model, we

do not require the service broker to be a trustworthy entity. Therefore, the data must be anonymized

when released by the location-based service providers.

A user-specific spatial-temporal data table contains a collection of spatial-temporal records.

Each record consists of a sensitive attribute of a user and a spatial-temporal path that represents

the sequence of visited locations with timestamps.

A spatial-temporal data table T is a collection of records in the form ⟨(loc1t1) → . . . →

(locntn)⟩ : s1, . . . , sp : d1, . . . , dm, where ⟨(loc1t1) → . . . → (locntn)⟩ is the spatial-temporal
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path, si ∈ Si are the sensitive attributes, and di ∈ Di are the quasi-identifying attributes (QID) of

an object. The sensitive and the QID attributes are object-specific data in the form of relational

data. Publishing a table T , which might be for reference or analytical purposes, raises the problem

of privacy.

Motivating Example

We use an example to demonstrate the potential privacy risks of releasing the spatial-temporal

data in its raw format.

Suppose a location-based service provider wants to share Table 1 with a data miner. Record

2, for example, shows that a user with sensitive value s3 visited locations f , h, and e at times 6,

7, and 8, respectively. Without loss of generality, we assume that each record contains only one

sensitive attribute in this example.

We identify and address two types of privacy linkage attacks [20]:

Record linkage: a privacy attack in which the adversary exploits the uniqueness of a path

in the released data table. If a path is so specific that it only matches a small number of other

paths, linking the victim’s record from the released spatial-temporal data table and the sensitive

value may become possible. The assumption is that the adversary possesses some knowledge

about the locations and timestamps (doublets) existing in a victim’s path. Suppose one of the data

miners is an adversary who knows that the data record of a target victim, Daphne, is in Table 1.

This adversary also knows that Daphne has visited g2 and b3. Daphne’s record, together with her

sensitive value s1, can be uniquely identified because Record 1 is the only record that contains g2

and b3. The adversary can also determine Daphne’s other visited locations, such as d4, f6, and h7.

3



Table 1: Raw Spatial-Temporal Data Table
Rec# Path Sensitive ...
1 ⟨g2→ b3→ d4→ f6→ h7⟩ s1 ...
2 ⟨f6→ h7→ e8⟩ s3 ...
3 ⟨b3→ d4→ f6→ e8⟩ s4 ...
4 ⟨g2→ c5→ h7→ e8⟩ s3 ...
5 ⟨b3→ h7→ e8⟩ s4 ...
6 ⟨c5→ f6→ e8⟩ s2 ...
7 ⟨g2→ f6→ h7→ e8⟩ s2 ...
8 ⟨g2→ c5→ f6→ h7⟩ s1 ...

Attribute linkage: a privacy attack that occurs when a group of records that share some com-

bination of doublets contains a frequently appearing sensitive value. Even though a target victim’s

record might not be identified, inferring the victim’s sensitive value from such a group becomes

possible. Suppose the adversary knows that Keith has visited g2 and f6. Since two of the three

records (Records 1, 7, 8) containing g2 and f6 have sensitive value s1, the adversary can infer that

Keith has s1 with 2/3 = 67% confidence.

We do not require the service broker to be a trustworthy entity in our model, which means that

the data publisher is not trusted and may attempt to identify sensitive information from record own-

ers. We also assume that the data miner could be an attacker. Thus, the data must be anonymized

when released by the location-based service providers.

Spatial-temporal data are very different from traditional relational data due to their special

properties:

• High dimensionality: This is an intrinsic characteristic of spatial-temporal data due to the

huge number of possible combinations of locations and timestamps. Consider a subway

system having 50 stations that operate 20 hours a day. The total number of dimensions of

the data table could be 50 x 20 = 1000 dimensions. Each dimension (doublet) could be a

4



potential piece of knowledge used by an adversary to perform record or attribute linkages;

therefore, every dimension is considered a potential quasi-identifying (QID) attribute. If we

apply a traditional privacy model, such as K-anonymity, all dimensions would be included

in a single QID and every path would have to be indistinguishable from at least K-1 other

paths. In order to achieve K-anonymity, the highly dimensional nature of spatial-temporal

data would likely cause most of the data to be suppressed. Consequently, the utility of the

resultant anonymous data would be insufficient for further data analysis.

• Sparseness: Each path in spatial-temporal data is relatively short. Anonymizing these short,

little-overlapping paths in a high-dimensional space poses a significant challenge for tra-

ditional anonymization techniques because it is difficult to identify and group the paths

together. Enforcing traditional K-anonymity on high-dimensional and sparse data would

render the data useless.

• Sequentiality: The order of items in each sequence should be kept and considered; for exam-

ple, a1 → b2 is different from b2 → a1. As a result, the number of possible combinations

in sequential data is much higher than the number of possible combinations in set-valued

data. In addition, in any path, timestamps are always increasing; therefore, sequences such

as a2→ a1 are not valid, as an object cannot go from time 2 to time 1.

In the research area of privacy-preserving data publishing [20], many anonymization algo-

rithms have been proposed to thwart record linkages and attribute linkages in relational data. Yet,

the privacy models they employed, such as K-anonymity [38] [41] and its extensions [22] [32]

[33] [50] [51], are not applicable to high-dimensional spatial-temporal data [4].
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We adopt a novel privacy model, LKC-privacy, that addresses the challenges of spatial-

temporal data. LKC-privacy provides a practical solution to compensate for an adversary’s back-

ground knowledge.

1.1 Contribution

Our contributions can be summarized as follows: First, based on the practical assumption that

an adversary has limited knowledge, we adopt the LKC-privacy model [36] to address the special

challenges of anonymizing high-dimensional, sparse, and sequential spatial-temporal data. Sec-

ond, we propose a service-oriented architecture to determine an appropriate location-based service

provider for a given data request. Third, we present an efficient border-based anonymization algo-

rithm to achieve LKC-privacy while preserving frequent sequences in the anonymous data. Finally,

extensive experimental results suggest that our anonymization method is effective for information

preservation and is scalable.

1.2 Outline of Thesis

In Chapter 2, we explain the concept of LBS and demonstrate the potential threats to privacy that

stem from publishing raw data. Next we present different models proposed to protect the relational

data. Then we discuss different techniques developed to anonymize high-dimensional data, and

finally we present anonymization methods to protect location privacy.

Chapter 3 formally defines the problem. We define information utility, followed by a descrip-

tion of the LKC-privacy model and problem statement.

6



Chapter 4 presents a service-oriented architecture for privacy-preserving spatial-temporal data

sharing.

Chapter 5 presents our proposed anonymizing algorithm, the concept and the construction of

the borders, the counting function, and a detailed explanation of the steps in the border-based

algorithm.

Chapter 6 presents an empirical study of the algorithm with a focus on information-utility loss

and scalability.

And finally, we point out some possible future research directions, and conclude the work in

Chapter 7.

7



Chapter 2

Literature Review

The use of Location-Based Services (LBS) has increased in the last few years. Publishing the col-

lected data in raw format may violate the privacy of service recipients, and many privacy protection

studies have been published. In this chapter we explain the concept of LBS and demonstrate the

potential threats to privacy that stem from publishing raw data. Next we present different models

proposed to protect the relational data. Then we discuss different techniques used to anonymize

high-dimensional data, and finally we present anonymization methods to protect location privacy.

2.1 Location-Based Services

Location-Based Service is defined as an information service accessible through the mobile network

by mobile devices, and it utilizes the location of the mobile device [44]. OpenGeospatial Consor-

tium defines LBS as a wireless-IP service that uses geographic information to serve a mobile user.

8



Figure 2: LBS as an Intersection of Technologies [10]

Location and time of an object are usually sent through the Internet to some spatial (or spatial-

temporal) database. LBS can be considered as an intersection of three following technologies: a

spatial-temporal database, the Internet, and New Information and Communication Technologies

(NICTs) [39]. Figure 2 demonstrates the LBS dimensions.

A typical LBS system consists of the following five components [40], as shown in Figure 3:

• Mobile device: a pocket-size computing device that can request services from providers. It

can be a mobile phone, PDA, or other mobile device. This device sends and receives location

and time information about the object.

• Communication network: the means through which a mobile device transfers the data back

and forth. It can be a Wireless Local Network (WLAN), the Internet, or another network.

• Positioning components: a service used to determine the position of user service recipients.

Examples include GPS, WLAN, and other communication networks.

• Service and application provider: a company or agency that offers a specific service on the

network. For example, some mobile applications provide the recipient with the location of

9



Figure 3: The Basic Components of an LBS [40]

the nearest cinema.

• Data and Content Provider: a party who collects the data or information, who may not be

the service provider. Service providers may acquire the data from other data and content

providers.

The use of LBS has significantly increased in the last few years. LBS applications include

tracking, navigation, emergency services, billing, LBS-alerts, social networking, network operator

applications, and many end-user applications [47]. However, collecting information about recipi-

ents raises many concerns if people are tracked by their positions or by analyzing their preferences

and action history. On one hand the analysis helps business applications get a perfect customer

model, but on the other raises users’ fears about privacy invasion.

In our model, the data collected through different LBSs is passed to a data broker, an indepen-

dent third party who researches information and data for clients, including different organizations.

To address the problem of privacy, the collected data is anonymized before the service provider

10



transmits it to a data broker.

Next we present an overview of the data anonymization approach and the different privacy

models that were used to achieve the same purpose.

2.2 Privacy Protection on Relational Data

Many privacy-preserving data publishing techniques have been proposed for anonymizing rela-

tional data. We provide a high-level summary of the literature in this section. Relational data are

typically stored in tables of the form:

D(Explicit Identifier, Quasi Identifier, Sensitive Attributes,Non-Sensitive Attributes).

Sweeney showed in [41] that even with the removal of explicit identifiers, privacy can still be

violated through the linking attacks explained in Chapter 1. She indicated a real-life threat to a

former governor of the state of Massachusetts. She linked the governor’s name in a public voter

list with his record in a published medical database by combining the zip code, date of birth, and

sex, as shown in Figure 4.

A combination of personal attributes, called a quasi-identifier, can be used to identify an indi-

vidual’s record. In the above example, the victim was re-identified by linking his quasi-identifier

and the victim’s record in released data. It was not difficult for the attacker to obtain her boss’s

zip code, date of birth, and sex, gender which served as the quasi-identifier. She also noticed that

her boss was hospitalized, and therefore knew that her victim’s medical record would appear in the

released patient database.

11



Figure 4: Linking to Re-identify Record Owner [41]

2.2.1 Preserving Threats

Privacy threat occurs when an attacker is able to link a record owner to a record in a published

data table, or to a sensitive attribute in a published data table. We call these events record linkage

and attribute linkage. In the two types of linkages, we assume that the attacker knows the QID

of the victim, we further assume that the attacker knows that the victim’s record is in the released

table, and seeks to identify the victim’s record or sensitive information from the table. A data

table is considered to preserve privacy if it can effectively prevent the attacker from successfully

performing these linkages.

2.2.2 Privacy Models

Privacy-preserving techniques on spatial-temporal data can be broadly grouped into two categories:

data collection and data sharing. While the work on data collection focuses on the privacy and

security issues of the sensors and readers at the communication level [30], the work in the data

sharing phase focuses on privacy and utility at the data level [25].

In traditional K-anonymity [38] [41], if one record in the table has some value qid, at least

12



k-1 other records also have the value qid. In other words, the minimum group size on QID is at

least k. A table satisfying this requirement is called k-anonymous. In a k-anonymous table, each

record is indistinguishable from at least k- 1 other records with respect to QID. Consequently, the

probability of linking a victim to a specific record through QID is at most 1/k.

Machanavajjhala et al [33] propose a diversity model called ℓ-diversity. The purpose is to pre-

vent attribute linkage. The ℓ-diversity requires every qid group to contain at least ℓ well-represented

sensitive values. However, this model cannot prevent probabilistic inference attacks because some

sensitive values are naturally more frequent than others in a group, enabling an attacker to conclude

that a record in the group is very likely to have those values.

Confidence bounding [46] attempts to prevent attribute linkage. It bounds the confidence of

inferring a sensitive value from a qid group by specifying one or more privacy templates of the

form ⟨QID → s, h⟩; s is a sensitive value, QID is a quasi-identifier, and h is a threshold. Let

Conf(QID → s) be max{conf(qid → s)} over all qid groups on QID, where Conf(QID →

s) denotes the percentage of records containing s in the qid group. A table satisfies ⟨QID → s, h⟩

if Conf(QID → s) ≤ h. In other words, ⟨QID → s, h⟩ bounds the attacker’s confidence of

inferring the sensitive value s in any group on QID to the maximum h.

The (α, k)-anonymity [50] privacy model requires every qid in a Table T to be shared by at least

k records and Conf(qid → s) ≤ α for any sensitive value s, where k and α are data publisher-

specified thresholds. However, it does not limit an adversary’s knowledge, which results in high

utility loss of data; additionally, it may result in high distortion if the sensitive values are skewed.

[51] proposes the notion of personalized privacy to allow each record owner to specify her own

privacy level. This model assumes that each sensitive attribute has a taxonomy tree and that each

13



record owner specifies a guarding node in this tree. However, record owner privacy is violated if

an attacker is able to infer any domain-sensitive value within the subtree of her guarding node with

a probability, called breach probability, greater than a certain threshold.

Various cryptographic solutions [55], anonymous communications [11] [29], and statistical

methods [48] have been proposed in which only authorized and trustworthy recipients are given

the private key to access the data. However, it is difficult to guarantee that all staff in a given

company are trustworthy. Our assumption defines the problem and solutions differently from the

encryption and cryptographic approaches: Data miners and recipients are not trustworthy; thus,

the data must be anonymized when released by the location-based service providers.

2.2.3 Anonymization Operations

Typically, a raw data table does not satisfy a specified privacy requirement and the table must be

modified before being published.

The modification is composed of a sequence of anonymization operations that can be broadly

divided into three categories as follows:

• Generalization and Suppression: Generalization and suppression aims at hiding some details

in QID. Generalization replaces some values with a parent value in the taxonomy of an

attribute.

In a full-domain generalization scheme [31] [38] [41], all values in an attribute are general-

ized to the same level of the taxonomy tree. In a Subtree generalization scheme [7] [22] [28] [31] [21],

at a non-leaf node either all child values or none are generalized. The sibling generalization

14



scheme [31] is similar to the subtree generalization except that some siblings may remain

ungeneralized. A parent value is then interpreted as representing all missing child values. In

the cell generalization scheme [31] [49] [52], also known as local recoding, some instances

of a value may remain ungeneralized while other instances are generalized.

Suppression on the other hand removes or deletes any value that can be used to launch

the attack. There are also several different suppression schemes: Record suppression [7]

[28] [31] [38] refers to suppressing an entire record. Value suppression [45] [46] refers to

suppressing every instance of a given value in a table. Cell suppression (or local suppression)

[13] [34] refers to suppressing some instances of a given value in a table.

• Anatomization and Permutation: Anatomization [51], unlike generalization and suppression,

does not modify the quasi-identifier or the sensitive attribute, but instead deassociates the

relationship between the two. Precisely, the method releases the data on QID and the data

on the sensitive attribute in two separate tables: a quasi-identifier table QIT contains the

QID attributes, a sensitive table ST contains the sensitive attributes, and both QIT and

ST have one common attribute, GroupID. All records in the same group will have the

same value of GroupID in both tables, and are therefore linked to the sensitive values in the

group in exactly the same way. If a group has ℓ distinct sensitive values and each distinct

value occurs exactly once in the group, then the probability of linking a record to a sensitive

value by GroupID is 1/ℓ. The attribute linkage attack can be distorted by increasing ℓ.

Permutation shares the same spirit of anatomization. In [57], Zhang et al. proposed an

15



approach called permutation. The idea is to deassociate the relationship between a quasi-

identifier and a numerical sensitive attribute by partitioning a set of data records into groups

and shuffling their sensitive values within each group.

• Perturbation: The general idea is to replace the original data values with synthetic data

values so that the statistical information computed from the perturbed data does not signifi-

cantly differ from the statistical information computed from the original data. The perturbed

data records do not correspond to real-world record owners, so the attacker cannot perform

sensitive linkages or recover sensitive information from the published data.

2.3 Anonymizing High-Dimensional Data

As discussed in Chapter 1, temporal-spatial data is high-dimensional. K-anonymity and the other

privacy-preserving models mentioned so far suffer from the curse of high dimensionality [4] and

render the high-dimensional data useless for data mining.

In this thesis, we solve the problem of high dimensionality by assuming that the adversary

knows at most L doublets of a victim’s locations and the corresponding times. Mohammed [36]

proposed a LKC-privacy model that addresses the privacy issues on high-dimensional relational

data. In contrast, this thesis proposes an anonymization algorithm to achieve the LKC-privacy

model on spatial-temporal data. Furthermore, none of the tested traditional QID-based anonymiza-

tion methods mentioned above, namely [22] [31] [33], are scalable to handle the high-dimensional

data in our experiments. K-anonymity [38] [41], confidence bounding [46], and (α, k)-anonymity [50]

are special cases of the LKC-privacy model; our anonymization algorithm can also be viewed as
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a scalable solution for achieving these traditional privacy models. Dwork [16] proposed a privacy

model called differential privacy that ensures that the removal or addition of a single data record

does not significantly affect the overall privacy of the database. Most of the works in differential

privacy are based on the interactive privacy model, where the result of a query is in the form of

aggregation [14] [17]. Yet, differential privacy may not prevent linkage attacks.

Other recent work has focused on anonymizing high-dimensional transaction data [3] [24] [43]

[53] [54]. In [3] Aggarwal and Yu formalized an anonymity model for the sketch-based approach,

and utilized it to construct sketch-based privacy-preserving representations of the original data.

The sketch-based approach [6] reduces the dimensionality of the data by generating a new repre-

sentation with a much smaller number of features, where each one uses a different set of random

weights to produce a weighted sum of the original feature values. This technique is quite effective

for high-dimensional data sets, as long as the data is sparse. The sketch-based method provides

privacy protection while allowing effective reconstruction of many aggregate distance measures.

Therefore, it can be used for a variety of data mining algorithms such as clustering and classifica-

tion.

The models suggested in [53] and [54] limit the adversary’s power by a maximum number of

known items as background knowledge in order to solve the problem of high dimensionality. This

assumption is similar to ours, but our problem has two major differences. First, a transaction is a set

of items, but a spatial-temporal path is a sequence of visited location-time doublets. Sequential data

drastically increases the computational complexity for counting the support counts as compared to

transaction data. Hence, their proposed models are not applicable to spatial-temporal data. Second,

17



we have different privacy and utility measures. The privacy model of [43] is based on only K-

anonymity and does not consider attribute linkages. [53] [54] measure their data utility in terms of

preserved item instances and frequent itemsets, while we measure the utility based on the number

of preserved frequent sequences. Xu et al. [53] use a border-based method, but it was not used for

sequential or spatial-temporal data.

2.4 Location Privacy

Location anonymity is achieved by mixing the user’s identity and request with those of other

users. Examples of such techniques are Mix Zones [9], cloaking [26], and location-based k-

anonymity [23]. The objectives of these techniques are very different from the solution presented

in this thesis. First, their goal was to anonymize an individual user’s identity resulting from a set of

LBS requests, but our goal is to anonymize high-dimensional data. Second, they dealt with small

dynamic groups of users, but we anonymize a large static data set. Hence, their problem is very

different from that of spatial-temporal data publishing.

In [2], Papadimitriou et al studied the privacy issue in publishing time-series data and exam-

ined the trade-offs between time-series compressibility and partial information hiding and their

fundamental implications for how one should introduce uncertainty about individual values by

perturbing them. The study found that by making the perturbation similar to the original data,

we can both preserve the structure of the data better, and simultaneously make breaches harder.

However, as data becomes more compressible, a fraction of the uncertainty can be removed if true

values are leaked, revealing how they were perturbed.
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2.5 Anonymizing Moving Objects

Moving-object data poses new challenges to traditional database, data mining, and privacy-preserving

technologies due to its unique characteristics: time-dependency, location-dependency, and high di-

mensionality. Some recent works [19] [27] [37] [42] [56] address the anonymity of moving objects.

Abul et al. [1] proposed a new privacy model called (k, δ)-anonymity that is an extension of

traditional K-anonymity. It exploits the inherent uncertainty of moving objects’ locations. Their

method relies on a basic assumption that every path is continuous. In the 3-dimensional repre-

sentation, a path is a polyline (x, y, t) where the coordinates (x, y, t) of each point in the polyline

represent the moving object’s location(x, y) at a specific time t. A minimum of k objects should

appear within the radius of δ of the path of every moving object in the same period of time. To

achieve the previous privacy requirement for a target data set, [2] uses space translation to change

the location coordinates of some points on certain polylines. Figure 5 depicts the model. Although

this assumption is valid for some spatial-temporal devices where the object can be traced all the

time, it does not hold for others. Another major difference is that this model achieves anonymity by

space translation that changes the actual location of an object. In contrast, our approach employs

suppression for anonymity and thus preserves the data truthfulness and frequent sequences with

true support counts.

In [27] an uncertainly-aware privacy algorithm for GPS traces is presented. The researchers

selectively removed doublets to increase uncertainly between paths to hinder identification. The

works target GPS-only traces and cannot be employed for anonymizing other spatial-temporal data,

so the mechanism cannot be generalized for all spatial-temporal data.
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Figure 5: A Graphical Representation of an Uncertainty Trajectory Volume [1]

The privacy model proposed in [42] assumes that different adversaries have different back-

ground knowledge about the spatial-temporal paths, and thus their objective is to prevent adver-

saries from gaining any further information from the published data. They consider the locations

in a path as sensitive information and assume that the data holder has the background knowledge

of all the adversaries. In reality, such complete information is difficult to obtain.

Pensa et al. [37] proposed a k-anonymity notion for sequence datasets. The proposed algo-

rithm also aims to preserve frequent sequential patterns. However to achieve anonymity, they

transformed a sequence into the other by insertion, deletion, or substitution of a single item. Thus,

their approach also spoils data truthfulness.

Yarovoy et al. [56] consider time as a QID attribute. However, there is no fixed set of times

for all moving objects. Each spatial-temporal path has its own set of times as its QID. It is unclear

how the data holder could determine the QID attributes for each trajectory.

Fung et al. [18] [19] and Chen et al. [12] propose a method for anonymizing spatial-temporal

data without preserving frequent sequences. Mohammed et al. [35] present a tree-based anonymiza-

tion method to preserve both privacy and maximal frequent sequences. In contrast, this thesis
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presents a border-based method and aims at preserving all frequent sequences.

21



Chapter 3

Problem Definition

A data miner wants to perform a data mining task on a user-specific spatial-temporal dataset, and

wants to obtain the dataset from some location-based data service providers. The data miner speci-

fies a data request to a spatial-temporal data broker who is responsible for identifying the location-

based service providers who own the requested data. The research problem is how to transform the

raw spatial-temporal data (e.g., Table 1) into an anonymous version that simultaneously preserves

both the privacy of the underlying users and utility of the information for data mining.

In this chapter, we first define the format of user-specific spatial-temporal data, followed by

the LKC-privacy model [36], and the information utility measure in the context of spatial-temporal

data. Finally, we provide the problem statement.
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3.1 User-Specific Spatial-Temporal Data

We formally define the format of a user-specific spatial-temporal data table as follows: A user-

specific spatial-temporal dataset is a collection of spatial-temporal records in which each user’s

record consists of four types of information:

• Explicit identifiers are attributes that can uniquely identify a user, e.g., name, SSN, and phone

number.

• Quasi-identifiers (QID) are some combinations of QID values may identify a user, e.g., job,

age, and gender. They are not explicit identifiers.

• Sensitive attributes contain some sensitive information that a user may not want other people

to know, e.g., disease and financial status.

• Spatial-temporal information is a sequence of locations visited by a user within a period of

time, e.g., ⟨a1→ c4→ b7⟩.

Explicit identifiers, e.g., name, SSN, and ID, are removed. Note, we keep the ID in our exam-

ples for discussion purposes only. The spatial-temporal data, the user-specific QID, and sensitive

attributes are assumed to be important for the data mining task; otherwise, they should be removed.

Definition 3.1.1 (Doublet) A doublet, denoted by ℓitimei, is a combination of location ℓi and

timestamp ti.

Definition 3.1.2 (Spatial-temporal path) A spatial-temporal path, denoted by ⟨ℓ1t1, . . . , ℓntn⟩,

is a sequence of doublets sorted by the timestamps in ascending order, representing a sequence of

locations visited by a user between timestamps t1 and tn, inclusively.
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A timestamp is the entry time to a location. A user is assumed to be staying in the same

location until detected again in another location. A user may revisit the same location at different

times but consecutive doublets having the same location are considered redundant and, therefore,

are removed. For example, in ⟨c1 → c2 → c3 → d4 → c5⟩, c2 and c3 are removed but c1, d4,

and c5 are kept. At any time, a user can appear in at most one location, so ⟨a1→ b1⟩ is not a valid

spatial-temporal path. In other words, the timestamps increase monotonically in a spatial-temporal

path.

Definition 3.1.3 (User-specific spatial-temporal table) A user-specific spatial-temporal table (or

simply a spatial-temporal table) T consists of a collection of records in the form [⟨ℓ1t1, . . . , ℓntn⟩,

a1, . . . , ay, s1, . . . , sm], where ⟨ℓ1t1, . . . , ℓntn⟩ is a spatial-temporal path, a1, . . . , ay are quasi-

identifying values, and s1, . . . , sm are sensitive values of a user.

3.2 Information Utility

The measure of information utility varies depending on the data mining task to be performed

on the published data. In this thesis, we aim at preserving the frequent sequences. A sequence

q = ⟨ℓ1t1 → . . .→ ℓntn⟩ is an ordered set of doublets.

Definition 3.2.1 (Frequent sequence) A sequence q is frequent in a spatial-temporal table T if

|T (q)| ≥ K ′, where T (q) is the set of records in T containing q and K ′ is a minimum support

threshold.

F (T ) denotes the set of frequent sequences in T with respect to K ′. Frequent sequences capture

the major traffic flows [8] and often form the information basis for different primitive data mining
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tasks on sequential data, e.g., association-rules mining [5]. In the context of spatial-temporal data,

association rules can be used to determine the subsequent locations of a moving object given the

previously visited locations. This knowledge is important for workflow mining [25].

If q is a frequent sequence, every subsequence p with p ⪯ q is also a frequent sequence.

3.3 Privacy Model

One data miner, who is an adversary, seeks to identify the record or sensitive values of some target

victim in T . As explained earlier, we assume that the adversary knows at most L doublets that the

victim has previously visited. We use ρ to denote such a prior known sequence of doublets, where

|ρ| ≤ L. Based on the prior knowledge ρ, the adversary could identify a group of records, denoted

by T (ρ), that “contains" ρ. A record in T contains ρ if ρ is a subsequence of the spatial-temporal

path in the record. For example in Table 1, Records #1,2,7,8 contain ρ = ⟨f6 → h7⟩, written as

T (ρ) = {Records#1, 2, 7, 8}. Based on T (ρ), the adversary could launch two types of privacy

attacks.

The first type of privacy attack is record linkage. Given prior knowledge ρ, T (ρ) is a set of

candidate records that contains the victim’s record. If the group size of T (ρ), denoted by |T (ρ)|, is

small, then the adversary may identify the victim’s record from T (ρ) and, therefore, the victim’s

sensitive value. For example, if ρ = ⟨g2 → b3⟩ in Table 1, T (ρ) = {Record#1}. Thus, the

adversary can easily infer that the victim’s sensitive value is s1.

The second type of privacy attack is attribute linkage. Given prior knowledge ρ, the adversary

can identify T (ρ) and infer that the victim has sensitive value s with confidence P (s|ρ) = |T (ρ∧s)|
|T (ρ)| ,
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where T (ρ ∧ s) denotes the set of records containing both ρ and s. P (s|ρ) is the percentage of

records in T (ρ) containing s. The privacy of a victim is at risk if P (s|ρ) is high. For example,

given ρ = ⟨g2 → f6⟩ in Table 1, T (ρ ∧ s1) = {Records#1, 8} and T (ρ) = {Records#1, 7, 8};

therefore, P (s1|ρ) = 2/3 = 67%.

To thwart the record and attribute linkages, we adopt the LKC-privacy model [36], which was

originally proposed for relational data, and we apply the model in the context of spatial-temporal

data. Intuitively, LKC-privacy requires that every sequence with a maximum length L in the

spatial-temporal table has to be shared by at least a certain number of records, and the ratio of

sensitive value(s) in every group cannot be too high.

Definition 3.3.1 (LKC-privacy) Let L be the maximum length of the prior knowledge. Let S be

a set of sensitive values. A spatial-temporal data table T satisfies LKC-privacy if and only if for

any non-empty sequence q with |q| ≤ L of any spatial-temporal path in T ,

1. |T (q)| ≥ K, where K > 0 is an integer anonymity threshold, and

2. P (s|q) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real number confidence threshold.

A location-based service provider specifies the thresholds L, K, and C. The maximum length

L reflects the assumption of the adversary’s power. LKC-privacy guarantees the probability of a

successful identity linkage to be ≤ 1/K and the probability of a successful attribute linkage to be

≤ C.

Intuitively, a sequence q with |q| ≤ L is a violation in T with respect to a given LKC-privacy

requirement if T (q) violates at least one of the conditions in Definition 3.3.1.
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Definition 3.3.2 (Violating sequence) Let q be a sequence of a spatial-temporal path in T with

0 ≤ |q| ≤ L. q is a violating sequence with respect to a LKC-privacy requirement if |T (q)| < K

or P (s|q) > C for any sensitive value s ∈ S. V (T ) denotes the set of violating sequences in T

with respect to a LKC-privacy requirement.

Observation 3.3.1 If q is a violating sequence, every supersequence p with q ⪯ p and |q| ≤ L is

also a violating sequence.

Example 3.3.1 Let L = 2, K = 2, C = 50%, and S = {s1}. In Table 1, a sequence q1 = ⟨g2→

d4⟩ is a violating sequence because |T (q1)| = 1 < K. A sequence q2 = ⟨g2 → f6⟩ is a violating

sequence because P (s1|q2) = 67% > C. However, a sequence q3 = ⟨g2 → c5 → f6 → h7⟩ is

not a violating sequence even if |T (q3)| = 1 < K and P (s1|q3) = 100% > C because |q3| > L.

In order to achieve LKC-privacy, it is not correct to ignore sequences of size less that L. In

other words, if a table T satisfies LKC-privacy it does not mean it satisfies LḰC-privacy, where

L′ < L.

Lemma 1 LKC-privacy is not monotonic with respect to adversary’s knowledge L.

Proof. To prove that LKC-privacy is not monotonic with respect to L, it is sufficient to prove

that one of the conditions of LKC-privacy in Definition 1 is not monotonic. In the following we

provide a counterexample for both conditions:

Condition 1: K is not monotonic with respect to L. In other words, If all of the size-L se-

quences are nonviolating, it does not guarantee that a sequence with size L′ ≤ L is also nonviolat-

ing. For example, in Table 2, though the size-3 sequences satisfy privacy requirement for K = 2,

the size-2 sequence, q = ⟨a1→ d2⟩ does not satisfy the requirement.
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Table 2: Counterexample for Monotonic Property
ID Path Sensitive ...
1 ⟨a1→ d2⟩ s1 ...
2 ⟨a1→ b2⟩ s3 ...
3 ⟨a1→ b2→ c3⟩ s3 ...
4 ⟨a1→ b2→ c3⟩ s4 ...

Condition 2: C is not monotonic with respect to L. If q is a nonviolating sequence with

P (s|q) ≤ C and |T (q)| ≥ K, its subsequence q′ may or may not be a nonviolating sequence. For

example in Table 2, the sequence q = ⟨a1 → b2 → c3⟩ satisfies P (s3|q) = 50 ≤ C. However, its

subsequence q′ = ⟨a1→ b2⟩ does not satisfy P (s3|q′) = 100% > C.

Therefore, in LKC-privacy, it is not sufficient to assure that every sequence q satisfies both

conditions given length L in T . Instead, we have to ensure that every sequence q with length

not greater than L satisfies the conditions. To overcome this bottleneck, we suppress the minimal

violating sequences that exist within the violating sequences which sufficient to satisfy the LKC-

privacy model.

In our model, we use global suppression [20] to remove the violating sequences. Global sup-

pression means deleting the item from all transactions that contain the item. Such item suppression

has the following properties:

1. Suppressing an item eliminates all sequences that contain the item.

2. Suppressing an item does not alter any sequence and its support that does not contain the

item.

3. Suppressing an item does not introduce a new sequence.

We adopt the LKC-privacy model because it has the following desirable properties that are
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important for anonymizing high-dimensional data:

The data holder has the capability to determine the values of L, K, and C. This gives the data

holder the flexibility to determine the level of privacy based on the holder’s needs.

LKC-privacy guarantees the probability of a successful identity linkage to be ≤ 1/K, and the

probability of a successful attribute linkage to be ≤ C.

The LKC privacy model is flexible to adjust the trade-off between data privacy and data utility,

and between an adversary’s power and data utility. Increasing L and K, or decreasing C, would

improve the privacy at the expense of data utility.

LKC-privacy generalizes several traditional privacy models. K-anonymity [38] [41] is a spe-

cial case of LKC-privacy with C = 100% and L = |d|, where |d| is the number of dimensions,

i.e., number of distinct doublets, in the table. Confidence bounding [46] is a special case of LKC-

privacy with K = 1 and L = |d|. (a, k)-anonymity [49] is also a special case of LKC-privacy

with L = |d|, K = k, and C = a. Thus, the data holder can still achieve the traditional models, if

needed.

LKC-privacy is a general privacy model that thwarts both identity linkage and attribute link-

age. It is also a privacy model that is applicable to anonymize spatial-temporal data with or without

sensitive attributes.

3.4 Problem Statement

The research problem studied in this thesis can be summarized in two subproblems:

29



1. Given a data mining request, the problem is to develop an effective service-oriented archi-

tecture to determine the appropriate location-based service providers who own the data that

satisfies the data mining request, and to establish a connection session between each service

provider and the data miner.

2. Given a spatial-temporal table T , a LKC-privacy requirement, a minimum support threshold

K ′, and a set of sensitive values S, the problem is to identify a transformed version of T that

satisfies the LKC-privacy requirement while preserving the maximum number of frequent

sequences |F (T )|.

The information sharing process can be divided into two phases. In the first phase (Chap-

ter 4), the data broker receives requests from data miners and establishes connections with the

location-based service providers who contribute their data in a privacy-preserving manner. In the

second phase (Chapter 5), the location-based service providers anonymize their spatial-temporal

data based on their own privacy requirement and the data miner’s information utility requirement,

and then they submit the anonymous data to the data broker, who will then pass it to the data miner.
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Chapter 4

Service-Oriented Architecture (SOA) for

Sharing Private Spatial-Temporal Data

In this chapter we present a service-oriented architecture for sharing private spatial-temporal data.

Figure 6 depicts an overview of the communication channels of the participants. Given a data

request, the data broker plays the central role in identifying the contributing location-based service

providers and presenting the final anonymous data to the data miner. The architecture does not

require the data broker to be a trusted entity. This makes our architecture practical because a

trusted party is often not available in real-life scenarios.

The objective of this phase is to establish a common session context among the contributing

location-based service providers and the data miner in four steps: data miner authentication, con-

tributing data providers identification, session initialization, and requirements negotiation.

Data miner authentication: The data broker first authenticates a data miner to the requested

service, generates a session token for the current interaction, and then identifies the location-based
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Figure 6: Service-Oriented Architecture for Privacy-Preserving Spatial-Temporal Data Sharing

service providers accessible by the data miner.

Contributing service providers identification: Next, the data broker queries the data schema

of the accessible location-based service providers to identify which can contribute data for the

requested service. To facilitate more efficient queries, the broker could periodically pre-fetch data

schema from the service providers, or the providers could update their data with the broker.

Session initialization: Next, the data broker notifies all contributing location-based service

providers with the session identifier. All prospective service providers share a common session

context that represents a stateful presentation of information related to a specific execution of a

spatial-temporal data anonymization algorithm called ST-Anonymizer, which will be discussed in

Chapter 5. Due to the fact that multiple parties are involved and the flow of multiple protocol mes-

sages is needed in order to fulfill the data integration, we use Web Service Resource Framework
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(WSRF) to keep the stateful information along an initial data request. An established session con-

text stored as a single web service resource contains several attributes to identify a ST-Anonymizer

process with end-point reference (EPR), the client address, the data providers’ addresses and their

certificates, and an authentication token that contains the data miner’s certificate.

Requirements negotiation: The data broker is responsible for communicating the negotiation

of privacy and information requirements among the data providers and the data miner. Specifi-

cally, this step involves negotiating the price, the privacy requirement in Definition 3.3.1, and the

minimum support threshold K ′.
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Chapter 5

Spatial-Temporal Data Anonymization

A spatial-temporal data table satisfies a given LKC-privacy requirement if all violating sequences

with respect to a given LKC-privacy requirement are removed. The objective of this phase is

to anonymize a spatial-temporal table by eliminating all violating sequences while preserving as

many frequent sequences as possible. We first present the algorithm used to compute the violat-

ing sequences; followed by the suppression algorithm; then, a border-based representation of the

violating sequences, frequent sequences, and the counting function; finally, we brief the steps of a

border-based suppression algorithm.

5.1 Computing Violating Sequences

Lemma 2 A spatial-temporal data table T satisfies LKC-privacy if and only if T contains no

MVS.
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Proof. Suppose a data table T does not satisfy LKC-privacy even if it contains no MVS. Then,

by Definition, table T contains a violating sequence. But, a violating sequence must be a MVS,

or its subset is MVS, which contradicts the initial assumption. Therefore, the data table T must

satisfy LKC-privacy.

Algorithm 1 presents a method to efficiently generate all the minimal violating sequences based

on a LKC-Privacy model. Line 1 puts all the size-1 sequences, i.e., all distinct doublets, as can-

didates X1 of MVS. Line 4 scans T once to compute |T (q)| and BPr(s|q) for each sequence

q ∈ Xi and for each sensitive value s ∈ S. If the sequence q violates the LKC-privacy require-

ment in Line 6, then we add q to the minimal violating sequences set Vi (Line 7); otherwise, we

add q to the non-violating sequence set Wi (Line 9) for generating the next candidate set Xi+1,

which is a self-join of Wi (Line 12). Two sequences qx = ⟨(locx1tx1) → . . . → (locxi t
x
i )⟩ and

qy = ⟨(locy1t
y
1) → . . . → (locyi t

y
i )⟩ in Wi can be joined only if the first i − 1 doublets of qx and qy

are identical and txi < tyi . The joined sequence is ⟨(locx1tx1) → . . . → (locxi t
x
i ) → (locyi t

y
i )⟩. Lines

13-17 remove a candidate q from Xi+1 if q is a supersequence of any sequence in Vi because any

proper subsequence of a MVS cannot be a violating sequence. The set of VS, denoted by V (T ), is

the union of all Vi.

Example 5.1.1 Consider Table 1 with L = 2, K = 2, and C = 50%. Suppose X1 = {g2, b3, h7, e8}.

After scanning T , we divide X1 into V1 = ∅ and W1 = {g2, b3, h7, e8}. Next, from W1 we gener-

ate the candidate set X2 = {g2b3, g2h7, g2e8, b3h7, b3e8, h7e8}. We scan T again to determine

V2 = {g2b3, b3e8}. We do not further generate X3 because L = 2.

Definition 5.1.1 (Violating doublet) A doublet p is a violating doublet if it is part of a violating

sequence.
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Algorithm 1 Generate minimal violating sequences
Input: Raw spatial-temporal data table T
Input: Thresholds L, K, and C
Input: Sensitive values S
Output: minimal violating sequence V (T )

1: X1 ← set of all distinct doublets in T ;
2: i = 1;
3: while i ≤ L and Xi ≠ ∅ do
4: Scan T to compute |T (q)| and BPr(s|q), for ∀q ∈ Xi, ∀s ∈ S;
5: for ∀q ∈ Xi where |T (q)| > 0 do
6: if |T (q)| < K or BPr(s|q) > C then
7: Add q to Vi;
8: else
9: Add q to Wi;

10: end if
11: end for
12: Xi+1 ←Wi ⋊⋉ Wi;
13: for ∀q ∈ Xi+1 do
14: if q is a super sequence of any v ∈ Vi then
15: Remove q from Xi+1;
16: end if
17: end for
18: i++;
19: end while
20: return V (T ) = V1 ∪ . . . ∪ Vi−1;

Example 5.1.2 Given the set of minimal violating sequence, V (T ) = {g2b3, b3e8}, the violating

doublets are {g2, b3, e8}.

We have to remove all the violating sequences to satisfy the LKC-privacy requirement. We can

remove all the minimal violating sequences by suppressing a subset of violating doublets. Given,

V (T ) = {g2b3, b3e8}, we can either suppress {b3}, or {g2, e8}, and so on.
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Algorithm 2 ST-Anonymizer

1: Supp = ∅;
2: while |V (T )| > 0 do
3: Select a doublet d with the maximum Score(d);
4: Suppress d;
5: Update Score(d′) if any sequence in V (T ) or F (T ) containing both d and d′;
6: end while
7: return Table T after suppressing doublets in Supp;

5.2 Spatial-Temporal Anonymizer

The elimination of violating sequences is achieved by suppressing a subset of doublets from the

table. Specifically, we employ the global suppression scheme [20] that was explained in chapter

3. Algorithm 2 provides an overview of the Spatial-Temporal (ST)-Anonymizer. The algorithm

iteratively selects a doublet d for suppression based on goodness function Score(d), updates the

Score(d) of remaining doublets, and terminates when all violating sequences have been elimi-

nated.

Intuitively, we prefer suppressing a doublet d that maximizes the number of eliminated violat-

ing sequences and minimizes the number of eliminated frequent sequences for suppression. Thus,

we define a greedy function Score(d) that quantifies the goodness of suppression of a doublet d

with respect to the number of eliminated violating sequences |V (d)| and the number of eliminated

frequent sequences |F (d)|.

Score(d) =
|V (d)|
|F (d)|

. (1)

Score(d) =∞ in case F (d) = 0.
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5.3 Border Representation

The remaining challenge is to efficiently compute |V (d)| and |F (d)|. A naive approach is to first

enumerate all possible violating and frequent sequences and then count the number of sequences

containing d. Yet, Definitions 3.3.1 and 3.2 imply that the numbers of violating sequences and fre-

quent sequences grow exponentially with respect to the number of distinct doublets. Therefore, this

naive approach is not a feasible solution for a large dataset. We present a border-based approach

to have the compressed representations of the notions. The compression is lossless. A similar

approach was employed by [53] to represent itemsets, but we use borders to represent sequences

in this paper.

Definition 5.3.1 (Anti-chain) A set of sequences S is an anti-chain if ∀x, y ∈ S, x ⪯̸ y and

y ⪯̸ x.

Definition 5.3.2 (Border) An upper bound UB and a lower bound LB form a border, denoted by

[UB,LB], if (i) both UB and LB are anti-chains, (ii) each element of UB is a subsequence of

some element in LB, and (iii) each element of LB is a supersequence of some element in U . A

border [UB,LB] represents the set of sequences {z | ∃x ∈ U, ∃y ∈ L s.t. x ⪯ z ⪯ y}.

To show that the set of violating sequences V (T ) and the set of frequent sequences F (T ) are

representable by borders, we need to show that the borders are interval-closed.

Definition 5.3.3 (Interval-closed) A collection of sequences S is interval-closed if S contains all

sequences {z | ∀x, y ∈ S, ∀z, x ⪯ z ⪯ y}.

Observation 5.3.1 V (T ) and F (T ) are interval-closed.
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A violating sequence q is a minimal violating sequence (MVS) if every proper subsequence of

q is not a violating sequence. The violating sequence and frequent sequence borders are defined as

follows:

Definition 5.3.4 (Violating sequence (VS) border) The violating sequence (VS) border consists

of an upper bound UB and a lower bound LB, where UB contains all minimal violating sequences

and LB contains all maximal sequences y with support |T (y)| ≥ 1.

Definition 5.3.5 (Frequent sequence (FS) border) The frequent sequence (FS) border consists

of an upper bound UB and a lower bound LB, where UB contains all singleton doublets d with

support |T (d)| ≥ max(K,K ′), and LB contains all maximal sequences y with support |T (y)| ≥

K ′.

The process of identifying a border [UB,LB] for an interval-closed collection has been studied

in [15]. The process of identifying minimal violating sequences has been studied in [35] and is

explained in Section 5.1. A border [UB,LB] can be represented by a set of edges {⟨x, y⟩ | x ∈

UB, y ∈ LB, x ⪯ y}.

5.4 Counting Function

Suppose a doublet d has been suppressed in Line 4 in Algorithm 2. We need to efficiently compute

the Score(d′) of the remaining doublets d′ that share the same violating or frequent sequences with

d. Specifically, |V (d′)| and |F (d′)| are decreased by the number of violating/frequent sequences

containing both d and d′ because such sequences have been eliminated. The question is how to
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compute such numbers from the borders without materializing the actual sequences. Equation 2

returns the number of sequences with maximum length L that are supersequences of a given se-

quence q and are covered by a border [UB,LB] [53].

NL
q ([UB,LB]) = {z | z ∈ [UB,LB], q ⪯ z, |z| ≤ L}. (2)

Consider a single edge ⟨x, y⟩ in a border. Equation 3 returns the number of sequences with maxi-

mum length L that are covered by ⟨x, y⟩ and are supersequences of a given sequence q.

NL
q (⟨x, y⟩) = |{z | x ⪯ z ⪯ y, q ⪯ z, |z| ≤ L}|

=
m∑
i=0

P (|y − (x ⋓ q)|, i),
(3)

where ⋓ unions two sequences and sorts the doublets by their timestamps, P (n, i) = n!
(n−i)!

, and

m = min(|y − (x ⋓ q)|, L− |x ⋓ q|). (4)

In the special case of x = ∅ and L = ∞, N(⟨x, y⟩) = 2|y−x| returns the number of sequences

covered by ⟨x, y⟩.

Example 5.4.1 Refer to the edge ⟨b4→ f5, g2→ a3→ b4→ f5⟩ in Figure 7. Suppose we want

to suppress the sequence q = ⟨b4→ f5⟩ with L = 3. Thus, we have |x| = 2, |y| = 4, |q| = 2, and

m = min(|g2→ a3→ b4→ f5|−|(b4→ f5⋓b4→ f5)|, 3−|(b4→ f5⋓b4→ f5)|) = 1. The

number of sequences removed due to the suppression is NL
q (⟨x, y⟩) =

1∑
i=0

P (|y− (x⋓ q)|, i) = 3,

namely ⟨b4→ f5⟩, ⟨a3→ b4→ f5⟩, and ⟨g2→ b4→ f5⟩.
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Figure 7: Violating Sequence Border

However, computing NL
q ([UB,LB]) by simply summing up NL

q (⟨x, y⟩) over all edges ⟨x, y⟩ in

[UB,LB] is incorrect because a sequence may be covered by multiple edges, and we cannot count

the same sequence more than once. Xu et al. [53] introduced two operations, edge intersection and

edge difference, to remove duplicate counting.

5.5 Border-based Suppression Algorithm

We now present our border-based suppression algorithm. Initially, E is the set of all edges ⟨x, y⟩

in the border. d is the doublet to be suppressed with d ∈ y. d′ denotes any other doublet in the

suppressed sequence. E∗ is the set of unexamined edges (initially E). E∧ is the set of examined

edges (initially empty). Supp denotes the set of doublets to be suppressed. The algorithm itera-

tively suppresses sequences in E∗ until all violating sequences are eliminated. It makes one pass

of the edges in E∗. At each step, we consider the next edge ⟨x, y⟩ in E∗. Count the number of sup-

pressed sequences, called losers, containing dd′ that are covered by ⟨x, y⟩ but not covered by any

(examined) edge in E∧, and increment δ(d′) by the count. Then move ⟨x, y⟩ from E∗ to E∧. This

process is repeated until E∗ becomes empty. The final δ(d′) gives the number of losers containing

dd’.

We summarize the main steps of Algorthim 2 as follows:
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1. Select the doublet to be suppressed: Select doublet d not contained in Supp with maximum

Score. Add d to Supp.

2. Get affected edges: Retrieve E(d) = {⟨x, y⟩, d ∈ y}. Set E∗ = E(d), E∧ = ⊘

3. Compute number of affected sequences: The counting function returns the number of af-

fected sequences (losers) by the current suppression to update the score. Consider Algorithm

3. Before it increases the score, it identifies the set of all edges in E∧ that overlap with cur-

rent edge ⟨x, y⟩, denoted by ovset = {e∧|e∧ ∈ E∧ such that ⟨x, y⟩ ⋒ e∧ ≠ ∅}. To exclude

the losers covered by ovset, consider in three cases:

Case 1: |ovset| = 0. The losers covered by ⟨x, y⟩ are not covered by E∧, so NL
q (⟨x, y⟩)

gives the number of new losers containing dd′, where q = dd′ and len = L, the maximum

length of the sequence. We update δ(d′) to δ(d′) +NL
q (⟨x, y⟩).

Case 2: |ovset| = 1. In this case, only one edge in E∧, say e∧, has overlap with ⟨x, y⟩. The

number of losers covered by both ⟨x, y⟩ and e∧ is given by NL
q (⟨x, y⟩ ⋒ e∧), where q = dd′,

len = L. We increment δ(d′) by NL
q (⟨x, y⟩ − NL

q (⟨x, y⟩ ⋒ e∧), where ⋒ is the intersection

of two edges.

Case 3: |ovset| > 1. In this case, more than one edge in E∧ has overlap with ⟨x, y⟩.

Simply excluding the intersections ⟨x, y⟩ ⋒ e∧ for every e∧ in ovset does not work because

intersections themselves might have intersection(s). Therefore, we pick any e∧ in ovset and

compute ⟨x, y⟩ ⋒ e∧. This edge difference can be replaced with a set of new edges denoted

by newset. Then we recursively count the losers covered by the unexamined E∗ = newset

but not by the examined E∧ = ovset−e∧. The recursion terminates in either Case 1 or Case
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Algorithm 3 Suppressing a Sequence
1: Procedure Compute δ(newset, ovset− {e∧}, v, len, δ);
2: while E* is not empty do
3: Pick any edge e∗ = ⟨x, y⟩ from E∗;
4: let ovset = edges in E∧∩ e∗;
5: if |ovset| = 0 then /*case 1*/ then
6: δ(d‘) = δ(d′) +NL

q (e
∗), for d′ ∈ y − d;

7: else if |ovset| = 1 then /*case 2*/ then
8: let e∧ be the edge in ovset
9: δ(d′) = NL

q (∗)−NL
q (e

∗ ∩ e∧) , for d′ ∈ y − d;
10: else if |ovset| > 1 then /*case 3*/ then
11: pick any edge e∧ from ovset;
12: set newest = e∗ − e∧ ;
13: Computeδ(newset, ovset− {e∧}, v, len, δ);
14: end if
15: move E* from E* to E∧;
16: end while

2.

4. Update Score: For every doublet in d′, decrease |V S(d′)| by δ(d′).

5. Update the border: This step removes all violating sequences containing d from V S border.

For each ⟨x, y⟩ in E(d), if d ∈ x, delete x from the upper bound of the border and delete all

attached edges; if d /∈ x, replace y by y′=y-d, delete y′ if y′⊆ y′′ for some y′′ on the lower

bound.

6. Repeat Steps 2-5 for the border of frequent sequences.
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Chapter 6

Empirical Study

The main objective of our empirical study is to evaluate the performance of our proposed archi-

tecture and ST-Anonymizer in terms of utility loss caused by anonymization and scalability for

handling large datasets. The utility loss is defined as |F (T )|−|F (T )′|
|F (T )| , where |F (T )| and |F (T )′|

are the numbers of frequent sequences before and after the anonymization of the dataset T . We

converted the data into relational data and attempted to apply the state-of-the-art anonymization

algorithms, such as [22] [31] [46]. Unfortunately, all of these methods were not scalable to high

dimensionality and failed to finish the anonymization.

We conducted the experiments on the Metro100K dataset, which simulates the travel routes of

100,000 passengers in the Montreal subway transit system with 65 stations in 60 minutes, forming

3,900 dimensions. Each record in the dataset corresponds to the route of one passenger. The

passengers’ traffic patterns are simulated based on information obtained from the Montreal metro

information website1. Based on the published annual report, all of the passengers have an average

1http://www.metrodemontreal.com
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spatial-temporal path length of 8 stations. The data generator also simulates the paths according to

the current metro map and passengers’ flow in each station. Each record contains an attribute with

five possible values, one of which is considered to be sensitive.

6.1 Utility Loss

Following the convention for extracting frequent sequences, we specify the minimum support

threshold at K ′ = 0.5%, K ′ = 1.0%, and 1.5% and vary the thresholds of minimum anonymity

K, maximum confidence C, and maximum adversary’s knowledge L to evaluate the performance

of the algorithm.

Figure 8 depicts the utility loss for K from 10 to 50 while fixing L = 3 and C = 60%. The

utility loss stays flat with respect to the increase of K. As the K ′ increases from 0.5% to 1.5%,

the number of frequent sequences decreases and the utility loss increases from 3% to 31% because

a global suppression on a doublet generates a larger impact. Figure 9 depicts the utility loss for

C from 20% to 100% while fixing L = 3 and K = 30. Approximately one-fifth of the records

contain a sensitive value, so the utility loss is high at C = 20%. As C increases, the effect of

attribute linkages becomes insignificant. As K ′ increases, the utility loss drops quickly due to less

overlapping between F (T ) and V (T ). Figure 10 depicts the utility loss for L from 1 to 9 while

fixing K = 30 and C = 60%. As L increases, the LKC-privacy requirement becomes harder to

achieve and, therefore, requires more suppressions, resulting in higher utility loss.
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(c) Utility Loss vs. K (with L = 3, C = 60%, k′ = 1.5%)

Figure 8: Utility Loss vs. K
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(c) Utility Loss vs. C (with L = 3, K = 30, k′ = 1.5%)

Figure 9: Utility Loss vs. C
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(b) Utility Loss vs. L (with K = 30, C = 60%, k′ = 1.0%)
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(c) Utility Loss vs. L (with K = 30, C = 60%, k′ = 1.5%)

Figure 10: Utility Loss vs. L
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Figure 11: Runtime vs. number of records

6.2 Scalability

Every previous test case can finish the entire anonymization process within 15 seconds. We further

evaluate scalability with respect to data volume and dimensionality. We fix L = 3, K = 30,

C = 60%, and K ′ = 1%. Figure 11 depicts the runtime in seconds of from 200,000 to 1 million

records. The total runtime for anonymizing 1 million records is 125 seconds, of which 46 seconds

are spent identifying minimal violating sequences (MVS) and 79 seconds are spent reading the raw

dataset and writing the anonymous dataset. It takes less than 1 second to suppress all the violating

sequences V (T ). As the number of records increases from 200,000 towards 1 million, the runtime

for read/write and identifying MVS also increases linearly, suggesting that our algorithm is scalable

to anonymize large datasets. This high performance is due to the efficiency of computing the

number of covered sequences by edges instead of enumerating such sequences. This eliminates

the need to store all frequent sequences and violating sequences in memory, which is the real

bottleneck due to the exponential blowup of |F (T )| and V (T )|. All experiments are conducted on

a PC with Intel Core2 Duo 1.6GHz CPU with 2GB of RAM.
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Chapter 7

Conclusion and Future Work

We have studied the problem of privacy-preserving spatial-temporal data sharing and have pro-

posed a service-oriented architecture together with an anonymization algorithm to simultaneously

preserve both privacy and information utility for data mining. Applying K-anonymity on high-

dimensional data, such as the spatial-temporal data in our experiments, would result in a high

utility loss. To overcome the problem, we adopt a LKC-privacy model based on a practical as-

sumption that an adversary has limited background knowledge about the victim. Furthermore,

we propose a border-based anonymization method to compress the large number of violating and

frequent sequences into a compact format to ensure the scalability of the system.

For our future work, we would like to develop a secure protocol to integrate distributed spatial-

temporal data owned by different location-based service providers, such that the integrated data

satisfies a privacy model such as LKC-privacy.
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