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Abstract 

Benefits of Distributional Analyses in Visual Search: 
Bounded Exponential Distributions Falsify Dichotomous Architectures of Search 

 
Bruno Richard 

 

Visual search is one of the most common paradigms used to study attention, for it 

allows the effective mimicking of tasks we perform naturally in our environment while 

maintain a larger amount of control over possible confounding variables. Although the 

paradigm in of itself has been quite beneficial to the field of attention research, the 

analyses that accompany it, focused predominantly on mean response times, and their 

positive slopes through increasing set sizes, have been demonstrated to be severely 

limited when describing the underlying architecture of search (parallel versus serial). In 

addition, the omnipresent skew of response times distributions nullify the possible 

interpretations typically associated with central tendency measures such as means. 

We investigated how distributional analyses, which assess the entire response 

time distribution could accurately describe changes in response times through typical 

manipulations of visual search paradigms (set size, target presence and difficulty). We 

used the Weibull distribution, a left-bounded distribution to fit the response time data. 

Results demonstrated that search in of itself is not a dual architecture that changes under 

search difficulty, but a single mechanism that simply increases the duration of search 

when the difficulty conditions increased. The Weibull is therefore strongly recommended 

when analyzing response time data collected in visual search paradigms.   
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Benefits of Distributional Analyses in Visual Search: 
Bounded Exponential Distributions Falsify Dichotomous Architectures of Search 

 

Visual search is one of the most common paradigms in assessing visual attention. 

The paradigm allows for the mimicking and replication of tasks that we perform regularly 

in our natural world. Additionally, it allows for an increased control over the 

manipulation of variables such as display duration, properties of the stimulus, and the 

possible responses from participants (Cousineau & Shiffrin, 2004; Wolfe, Palmer, & 

Horowitz, 2010). The use of visual search paradigms in perception research have lead us 

to an overwhelming amount of data about search, including how one might perform a 

search task by integrating the information subjects are presented with, the ability to 

recognize the target and select the appropriate response, and how visual search might be 

terminated (Logan, 2004; Wolfe, Cave & Franzel, 1989; Wolfe, 1994; Wolfe, 1998; 

Wolfe et al., 2010). Most of these effects have been based on changes observed in 

measures of central tendency - such as means and medians - when conditions in the 

visual search paradigm are changed to become more difficult (Logan, 2004; Townsend & 

Ashby, 1983;Wolfe, 1998; Wolfe et al., 2010). Usually search is made more difficult by 

increasing the number of stimuli present (Treisman & Gelade, 1980), or by decreasing 

the difference between the target and the other stimuli present (Baldassi & Burr, 2000; 

Treisman & Sato, 1990). Research that has dwelled in the analysis of response times have 

demonstrated that means and medians might not be an appropriate method to represent 

results this being largely due to the omnipresent skew seen in most response time 

distributions (Bricolo, Gianesini, Fanini, Bundesen, & Chelazzi, 2002; Hockley, 1984; 
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Ratcliff & Murdock, 1967; Sung, 2008; Townsend & Ashby, 1983; Townsend & 

Wenger, 2004; Wolfe et al., 2010).  

Previous experiments have demonstrated that increases in averaged response 

times collected from various cognitive paradigms were actually due to changes in the 

skew of distributions, and not their mean (Ratcliff & Murdock, 1976; Hockley, 1984). 

Therefore, there is a need to assess response times accurately by incorporating the skew 

of their distributions in visual search analysis (Heathcote, Popiel, & Mewhort, 1991; 

Townsend & Wenger, 2004; Wolfe et al., 2010). As such, measures describing the shape 

of response time distributions, and how they can affect the mean response times usually 

observed should be investigated (Rouder & Speckman, 2004; Rouder, Lu, Speckman, 

Sun, & Jiang, 2005; Townsend & Wenger, 2004; Wolfe et al., 2010). Distributional 

analysis could answer how search difficulty or conditions affect response times better 

than the typical mean or median (Compton & Logan, 1991; Ratcliff & Murdock, 1976). 

Consequently, the aim of the current research is to assess the advantages of parameter 

fitting over traditional mean analyses, and to investigate how the parameters vary with 

changes of search difficulty.  

Visual Search 

In its most basic form, the visual search paradigm requires an individual to scan 

through an array of stimuli, in which one element (henceforth termed the target) may 

differ from all other elements (henceforth termed distractors) within the array (Wolfe, 

1998). A typical experiment will separate half of the trials as target present, and the other 

half as target absent (i.e. all elements are distractors). After each trial, the observer must 

indicate which condition was presented (i.e. target present versus target absent). This 
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permits a measure of accuracy from the observer (percent correct), and a measure of the 

time taken to make that judgement. Response times are typically assessed as a function of 

set size (i.e., the number of distractor present) and separated by target presence (Treisman 

& Gelade, 1980). A slope that depicts the increase of response times as a function of the 

number of distractors can be calculated; giving an estimation of the amount time spent 

investigating a single item within the search array (Treisman & Gelade, 1980; Wolfe et 

al., 1989).  

The ability to measure the amount of time exploring a single item is greatly 

beneficial to visual search, since different types of stimuli will lead to different latencies 

of response from participants (Palmer, 1993; Wolfe, 1998; Wolfe et al., 2010). Stimuli, 

which differentiate the target from distractors on a single feature, (e.g., colour, contrast, 

luminance, shape) will typically elicit very rapid responses, and be independent of the 

number of distractors presented with the target (Treisman & Gelade, 1980; Treisman & 

Sato, 1990; Wolfe Wolfe, 1998). The rapidity of response is attributed to a search being 

performed in parallel (i.e., encompassing the entire search array at once), and the target 

“popping-out” from the distractors, making its identification simple and rapid (Klein & 

Farrell, 1989; Treisman & Gelade, 1980, Treisman & Sato, 1990; Wolfe et al., 1989).  

Stimuli that differentiate the target from the distractors on a conjunction of two or 

more features will require more time as a function of set size (Treisman & Gelade, 1980; 

Wolfe et al., 1989). The task cannot be performed in parallel, for the “pop-out” effect of a 

single feature has been greatly diminished, and each stimulus must be explored 

individually to assess whether it is the target or a distractor. This process is arguably 

performed in a serial manner since each object is explored individually, moving from one 
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to the next until all stimuli are explored. Individually exploring each stimulus permits the 

integration of multiple features into a cohesive whole (Treisman & Gelade, 1980). This 

individual exploration of stimuli results in a larger amount of time spent on each item 

(usually 10 ms/item: Tresiman & Gelade, 1980; Wolfe, 1991; Wolfe et al., 2010), 

resulting in longer reaction times that increase as a function of the number of distractors 

(Treisman & Gelade, 1980; Wolfe et al., 2010). The golden rule of 10ms/item to describe 

a conjunction search is only an average of the findings from multiple conjunctions of 

features, as it has been demonstrated that these various combinations can lead to 

relatively large changes to the slope of response times (Cavanaugh, Arguin & Treisman, 

1990; Duncan & Humphreys, 1989; Palmer, 1995; Treisman & Sato, 1990; Sung, 2008; 

Ward & McClelland, 1989). Target presence will also affect response times in a 

conjunction search. When exploring each item, search can be terminated early if the 

target is found prior to the entire display being searched, while if a target is absent, the 

entire array must be explore prior to termination of search, making “target absent” 

responses longer than “target present” responses (Wolfe et al., 2010). A ratio between the 

slope values for both types of responses can be calculated, and for conjunction search it 

will typically lie around 2:1 for target absent to target present search slopes (Treisman & 

Gelade, 1980). 

Feature searches (i.e., single features) and conjunction searches (i.e., two or more 

features) are the most common types of search paradigms, and are the basis of most 

visual search models (Logan, 2004; McElree & Carrasco, Treisman & Gelade, 1980; 

Townsend & Ashby, 1983; Treisman & Sato, 1990; Wolfe et al., 1989; Wolfe, 1994; 

Wolfe, 2007; Wolfe et al., 2010). Other search paradigms can also have differential 
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effects on response times. Spatial configuration tasks, where the physical properties of 

the stimulus do not change but their configuration does (e.g., 2 VS 5), can typically illicit 

large set size effects (i.e. larger than a conjunction search). It yields the largest amount of 

time spent on each item (around 30 ms/item), and therefore the longest response times in 

comparison with other types of search (Wolf et al., 2010). Spatial-configuration search is 

an ideal paradigm when assessing large set size effects search, and have recently been 

taken into consideration when modelling visual search (Wolfe et al., 2007).  

Models of Visual Search 

From the three search conditions mentioned above, feature searches and 

conjunction searches have been the most extensively modelled (Bundensen, 1990; 

Townsend & Ashby, 1983; Townsend & Wenger, 2004; Treisman & Gelade, 1980; 

Treisman & Sato, 1990; Wolfe et al., 1989). Models of visual search have tried to depict 

how the temporal process of search may be reflected in slopes obtained from response 

times. Two families of architecture (i.e., serial and parallel) seem to dominate the 

literature (Townsend & Wenger, 2004). Some models of search incorporate both 

architectures, while others tend to focus on a single one. However, none have yet 

proposed a definitive explanation to how response times change according to various 

visual search paradigms. As such, the question of architecture in visual search remains 

popular today (Townsend & Wenger, 2004). Following is a brief review of some of the 

popular models of visual search, and how they include one or both families of 

architecture.  
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Serial models.  

Serial models of visual search all have the same underlying assumptions; they all 

assume an independent processing of each stimulus element (Townsend, 1990; Townsend 

& Colonius, 1997; Townsend & Wenger, 2004). Capacity in serial search is limited to a 

single object at a time, and search cannot go on to the next element until the current 

object has been processed (Townsend & Wenger, 2004). In addition to independence, 

processing speed during the search is assumed to be constant for each individual item, 

and therefore attention is moved at the same speed from one trial to the next. 

Popular models of visual search that include a serial architecture, such as Feature 

Integration Theory (Triesman & Gelade, 1980; Treisman & Sato, 1990) and Guided 

Search (Wolfe et al., 1989; Wolfe, 1994; Wolfe, 2007) propose a dual architecture of 

search, beginning with a pre-attentive unlimited capacity parallel stage, and if need be, 

and additional serial search stage. In the Feature Integration Theory (Treisman & Gelade, 

1980), the unlimited capacity parallel stage can process single feature stimuli without the 

deployment of attention, making response times rapid and unaffected by set size. 

Conjunction search paradigms, where two or more features describe the stimuli cannot be 

processed in parallel, and therefore require a serial search to identify the target (Treisman 

& Gelade, 1980). The serial search is putatively required to bind the multiple features 

into a uniform representation of the stimuli permitting their classification as a target or a 

distractor. 

Similarly to the Feature Integration Theory, the Guided Search Theory proposes 

the same dual architecture, but adds that the parallel process of identifying a single 

feature can aid in guiding the serial search process towards only the relevant features 
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(Wolfe et al., 1989). The parallel process can only assess individual features, as it is 

assumed to do in the Feature Integration Theory, and therefore when initially presented 

with the search array, individuals can focus search on objects that contained the desired 

feature by creating a saliency map, which is reflective of how salient the desired feature 

is amongst the distractors. In a single feature search, this filtering of the search array 

would guide attention to the target directly, while in conjunction search, it could facilitate 

the search, minimizing the cost of having to search each item individually (Wolfe et al., 

1989). Guidance, in the Guided Search models, which can also be thought of as attention 

serves to more than simply bind specific features, as proposed by the Feature Integration 

Theory, but in addition, can adjust the strength of the signal received from the array of 

stimuli presented to the participant. As such, the information gained from the parallel 

stage is not lost once a serial search is used to complete the task (Wolfe et al., 1989).  

Both models acknowledge the asymmetries found in conjunction searches. As 

previously mentioned, the steepness of the search slope in conjunction search, or the 

increase of response times as a function of set size, can vary as a function of the features 

that compose the stimuli for some features, such as color have been demonstrated to be 

simpler to identify than others, such as orientation (Baldassi & Burr, 2000; Cavanaugh et 

al. 1990; Duncan & Humpreys, 1989; Treisman & Sato, 1990). The Guided Search 

Theory (Wolfe et al., 1989) stipulated that guidance is not identical across all types of 

features, and that the range of slopes found in conjunction search paradigms would 

mostly be based on the ability of the pre-attention parallel mechanism to guide attention 

effectively (Wolfe et al., 1989; Wolfe, 2007). A similar revision of the Feature 

Integration Theory has been brought on by the growing evidence of parallel processing in 
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conjunction searches (Duncan & Humphreys, 1989; Palmer, 1995; Townsend, 1990). 

Treisman and Sato (1990) found that conjunction search with highly discriminable 

features such as colour and contrast (Wolfe, 2007) can be performed in parallel, while 

others, such as shape, or colour and orientation cannot. The findings indicate that the 

target / distractor similarity can greatly affect performance (Duncan & Humphreys, 1989; 

Sung, 2008; Treisman, 1991; Treisman & Sato, 1990; Wolfe, 2000).  

In addition to the processing of a single or multiple features, serial models of 

visual search also describe the rules that depict the termination of a search. In single 

feature trials, target presence seems to affect response time very little. A target is quickly 

identified, or diagnosed as absent, and a response made (Treisman & Gelade, 1980; 

Wolfe et al., 1989; Wolfe, 1992). Conjunction searches, on the other hand, where a serial 

search is required to find the target will terminate differently on target present and target 

absent trials (Treisman & Gelade, 1980; Wolfe, 1992). This is because target present 

searches are evidently terminated once the target is found and correctly identified (termed 

Self-Terminating; Shriffin & Schneider, 1977; Treisman & Gelade, 1980; Wolfe et al, 

1989). However, target absent searches can only be terminated once the entire search 

array has been investigated, either serially or in parallel and all objects have been 

classified as distractors (termed exhaustive). Treisman & Gelade (1980) proposed to look 

at the variability of target present and absent response times in order to assess whether or 

not search was self-terminating. Since exhaustive termination suggests that responses of 

“target absence” will only occur at the end of the complete exploration of the search 

array, and that the rate (or speed) of search is constant, then the variance terms between 

trials of identical set sizes should be similar (if not identical). Conversely, “target 
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present” responses can occur at any moment during the search leading to greater 

variance. They found that such was the case; variability of target absent responses was 

much smaller than target present trials. Similar effects have also been found in search 

conditions that create large set size effects (Bricolo, Gianesini, Fanini, Bundesen & 

Chelazzi, 2002), but have not been replicated in other visual search paradigms (Wolfe et 

al., 2010).  

Termination in the Guided Search Theory (Wolfe, 1994) varies slightly from the 

Feature Integration Theory (Treisman & Gelade, 1980). Since it focuses largely on 

guidance from the parallel stage to the serial stage, termination in the Guided Search 

Theory (Wolfe, 1994) functions by setting a termination threshold as a part of saliency 

map created by the parallel stage. If the output from the map is strong, meaning that the 

target is highly discriminable from the distractors, then the threshold will be low 

maximizing rapid responses for “target present”, while lower thresholds (target absent) 

would reinforce an exhaustive search, verifying that all stimuli are distractors prior to the 

“target absent” response (Wolfe, 1997; Wolfe, 2007).  

Parallel models.  

Unlike serial models, parallel models assume that the entire array can be 

processed simultaneously, without serial shifts of attention, regardless of stimulus 

composition or set size (Townsend, 1990; Townsend & Wenger, 2004). Parallel models 

(Palmer, 1995; Ratcliff, 1976), just as in serial models, are subject to issues of capacity, 

and can be limited, where groups of stimuli can be processes simultaneously. However, 

adding more groups will slow down processing or unlimited, in which the number of 

distractors, will not affect response latencies (McElree & Carrasco, 1999; Palmer, 1995; 
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Townsend, 1990; Townsend & Wenger, 2004; Wang, Kristjansson & Nakayama, 2005; 

Ward & McClelland, 1989). Importantly, the unlimited capacity in visual searches refers 

to the speed of the search, and how it is unaffected by increases in the demands of the 

task. Yet it does not assume that the mechanism in and of itself is of infinite capacity, 

infinitely demanding tasks will overwhelm the mechanism. Limited capacity models, 

which are capable of processing chunks of stimuli simultaneously are affected by set size, 

can produce positive slopes found in conjunction search paradigms (Townsend & Ashby, 

1983; Townsend & Wenger, 2004).  

Popular classes of parallel processing models of visual search are race and random 

walk models (Cousineau et al., 2002; Ratcliff, 1978; Townsend & Ashby, 1983). Both 

models predict that there is an accumulation of information over time until a certain 

threshold (i.e. criterion) is reached and a response (either a target present or target absent) 

is made (McElree & Carrasco, 1999; Ratcliff, 1978; Townsend & Ashby, 1983). 

Although both models describe visual search as information accumulation over time, they 

differ in how this information is accumulated. Race models assume that the accumulation 

process is independent for all stimuli (Townsend & Ashby, 1983). Therefore, multiple 

counters, which gather information, are activated when an array is presented, and the first 

counter to accumulate enough information (as in a race) will elicit a response. The counts 

can be interpreted at many different levels, but Townsend and Ashby (1983) favoured the 

possibility of counts resembling action potentials that travel down some neural pathway. 

When asked to identify a line of a specific orientation, horizontal for example, there 

would be a feature detector that would respond most strongly to such a horizontal stimuli. 

The recognition of the horizontal line would therefore become a matter of counting the 
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action potentials, and according to the strength of the action potentials, generating a 

response. The rate of accumulation is dependent on the capacity of the counters, but they 

are typically believed to accumulate information over chunks of stimuli, which vary in 

size according to the feature composition of the stimuli (Bundesen, 1990; Townsend & 

Ashby, 1983).  

Unlike counting models, random walk models assume there is only a single 

counter that accumulates information from the entire array over time, eventually leading 

to a response, which must be dichotomous (i.e. target present versus target absent). Since 

the response is dichotomous, and therefore a response is contingent on the other not been 

true, the accumulation of evidence towards a specific response is evidence against the 

other (Ratcliff, 1978; Townsend & Ashby, 1983). The diffusion model (from the random-

walk family) proposes that criterions are set as to identifying either target absent or 

present. Search will begin at a specific position and will at a certain point during search 

exceed a specific boundary, eliciting a response (Ratcliff, 1978). 

Bundesen (1990) suggested that termination in parallel models would function as 

a race of alternatives in target present searches, where speed would be affected by the 

amount of interference or distraction, brought forth by the distractors. As such, feature 

searches, where distractors interfere little with the target will end rapidly, the opposite is 

true when the distractors interfere greatly with the distractor (i.e., conjunction search). 

The self-terminating rules for target present searches that were proposed in serial models 

also apply to the parallel models of search (Townsend & Colonius, 1997). Once enough 

information is accumulated to identify a target, search is terminated. Target absent 
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searches, one the other hand, would follow a “time-out” procedure, since the absence of a 

target could elicit a self-termination (Bundesen, 1990).  

Model mimicking.  

Both parallel and serial models can elicit similar response times even though the 

underlying architectures are fundamentally different, leading to difficulties in 

distinguishing between serial and parallel architectures. The propensity for different 

models to generate similar results is called model mimicking (Cousineau & Shiffrin, 

2004; Townsend & Wenger, 2004). When modelled, parallel architectures can elicit steep 

search slopes when the rate of accumulation is varied between trials, or when set size is 

increased (Townsend & Ashby, 1983; Townsend & Colonius, 1997; Townsend & 

Wenger, 2004). In addition, specific types of conjunction search that are believed to 

enforce a serial search architecture (Treisman & Gelade, 1980) can produce shallow 

search slopes, indicating that search is as efficient, or as rapid as single feature conditions 

(Treisman & Sato, 1990; Wolfe, 1983). This can be due to the efficiency of the saliency 

map at distinguishing the target from the distractors, or simply to the high stimulus 

discriminability (Bundensen, 1990; Wolfe et al., 1983). Combinations of colour and 

motion, or colour and orientation, have been found to elicit efficient search slopes even if 

the target is a combination of two features (Cavanaugh et al., 1990; Treisman & Sato, 

1990; Wang, Kristjansson, & Nakayama, 2005; Wolfe et al., 1989). Feature search 

conditions can also elicit more serial-like search slopes when the difference between the 

target and distractor is reduced, for example, from a red / green search to a red / orange 

colour feature search (Wolfe, 1998), or with varying orientation criteria for the target and 

distractors (Cavanaugh et al., 1990; Wolfe, 1998). Careful modification of single features 
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can easily produce the 2:1 slope ratio typically used to assess a serial architecture, 

making its validity in the process questionable.  

Model mimicking typically occurs when scanning rates vary with the set size 

(Logan, 2004; Ratcliff & Murdock, 1976), or if target rejection is not an independent 

process (Townsend & Colonius, 1997). In parallel models, independence refers to the 

processing of n items within a specific time interval, while serial models describe 

independence as the processing time of each succeeding item as independent from one 

another (Townsend & Wenger, 2004). Violations of independence in either parallel or 

serial models lead both to produce similar results for the regulations of how many items 

can be assessed simultaneously will no longer be constant, and prevent a clear-cut 

understanding of the type of architecture at play within visuals search when simple mean 

analyses are used. 

Analyses of Reaction Time Search Data 

Search slopes.  

Models of search have predominantly focused on response times and how they 

translate to search efficiency, or the overall slope of response times (flat slopes are 

considered efficient while steep slopes are not). Such differences can be measured by 

calculating the ratios between positive (target present) and negative (target absent) 

response times slopes across all levels of set sizes (see Figure 1). Search slopes, and their 

ratios have been used in assessing results of visual search paradigms, though they have 

long been considered as insufficient evidence when describing effects of visual search 

paradigms (Bricolo et al., 2002; Cousineau & Shiffrin, 2004; Hockley, 1984; Ratcliff & 

Murdock, 1976; Wolfe et al., 2010). Although a slope of response time means can fit the 
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data well (R2 are typically above .90: Wolfe, 1991), it cannot differentiate between 

different models of visual search architecture (Townsend, 1990; Townsend & Wenger, 

2004; Wolfe, 1991; Wolfe et al., 2010). The association between response times to set 

size has been demonstrated to occur in both parallel and serial models of search, making 

the distinction unclear (Duncan & Humphreys, 1989; Townsend & Ashby, 1983; 

Townsend & Wenger, 2004; Wolfe, 1998; Wolfe et al., 2010). Search slopes, therefore, 

do not distinguish between architecture but at best simply demonstrate that search can be 

of limited capacity when they increase as function of set size (Townsend, 1991). Search 

slopes are not necessarily detrimental to describing visual search in details, and allow a 

rapid overview of the effects of the search paradigm on response latencies, but are not 

stringent enough to thoroughly argue an architecture of search over another, or properly 

assess the changes of the response time distribution, for they only represent the arithmetic 

mean (Bricolo et al., 2002; Heathcote, Popiel & Mewhort, 1991; Townsend & Ashby, 

1983; Townsend, 1990; Townsend & Wenger, 2004; Wolfe et al. 2010).  

In addition to the visual interpretation of search slopes, ANOVAs or Regressions 

are typically used in the analysis of response times to measure the effects of target 

presence and set sizes. Null hypothesis significance tests (NHST) such as ANOVAs are 

convenient methodologies to either support of reject the null hypothesis, but have a few 

assumptions that cannot be violated in order to interpret their results (Klein, 2004). More 

importantly, NHST assume that the underlying distribution(s), which is being tested, is 

normally distributed. However, response time distributions are notoriously skewed, 

violating an assumption of NHST and rendering the interpretation of central tendency 

measures as means and medians to be unclear as opposed to when the underlying 
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Figure 1. Typical representation of search slopes when analysing response time data from 

a visual search paradigm. The red line is considered efficient for it is shallower than the 

blue line, indicating that set size has less of an effect on the search latencies represented 

in red than it does on the search latencies represented in blue. The markers on the figure 

represent the data points while the lines show the fit of a slope onto the three points.  
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distribution is normal (Heathcote et al., 1991; Wolfe, 1991; Wolfe et al., 2010). 

Skew.  

Describing the shape of distributions can be particularly beneficial when 

analysing response time distributions since it can describe the skew (deviation from the 

normal distribution), a property of response time distributions unexplained by response 

times means or their slopes (Heathcote et al., 1991). The skew can stem from the extreme 

scores, which occur in a few trials, and the minimum possible response time bounding the 

lower tail of the distribution. Skewness has either been viewed as an effect of the 

paradigm and should therefore be analysed, or noise within a paradigm that typically 

yields normal distributions, in which case it should be removed (Heathcote et al., 1991; 

Wolfe et al., 2010). Removing the skew of distributions can be accomplished in various 

ways, such as recursive outlier analyses, simple trimming of the dataset or transformation 

of the distributions such as Vincentizing, or normalization techniques (z- transform: 

Heathcote et al., 1991; Hockley, 1984; Ratcliff & Murdock, 1976; Wolfe et al., 2010). 

Evidently, changing a distribution to better fit the assumptions of NHST assumes that the 

skew of such a distribution is produced by noise within the task, and not an actual effect. 

Yet, distributional analyses use in the past on other paradigms than visual search, have 

demonstrated that mean changes typically observed a task is not brought on by the mean 

of the response time distribution but a change in its skew, reinforcing the importance of 

considering the skew when analysing response time data, and finding alternatives to the 

significance testing of search slopes based off of central tendency statistics (Ratcliff & 

Murdock, 1976; Hockley, 1984).  
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Distributional Analyses of Reaction Time Data 

Ex-Gaussian.  

The importance of investigating how skew may change in response time 

distributions as a function of experimental condition and insufficient evidence for 

architecture brought forth by search slopes have stimulated the use of distributional 

analyses in cognitive paradigms that use response times as a dependent variable. Ratcliff 

and Murdock, (1976) used a memory search paradigm, which investigated the ability to 

differentiate a novel word from an old one after a serial presentation of words. Unlike 

previous experiments, the authors chose to parameterize their dataset with a mixture 

distribution (Ex-Gaussian) in an effort to get a complete understanding of the effects of 

recognition memory paradigms on response time distributions. The Ex-Gaussian 

distribution is a convolution (the integral of the product of the two functions) of a normal 

and exponential distribution (see Figure 2) with a location (the mean or µ) parameter, a 

variance parameter (the standard deviation, or σ) and a shape parameter (the exponential 

drop off, τ; Ratcliff & Murdock, 1976; Lacouture & Cousineau, 2008). The Ex-Gaussian 

probability density function is described as: 

 

Where ϕ is the cumulative density function of the standard Gaussian distribution.  

Typical mean analysis of response times demonstrated that the correct 

identifications (i.e. hits) were faster than correct rejections, and that increasing the output 

position, or the delay until it would be shown again, of the old word in the testing phase 

increased response times. In addition, the mean response times for both the hits and 
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correct rejection increased as the number of words to be memorized increased, 

demonstrating an effect of list length (Ratcliff & Murdock, 1976). In contrast, the 

distributional analysis revealed that changes in the mean values of responses between hits 

and correct rejections for output position were not mediated by changes in the mean of 

the distribution, but in its exponential parameter (τ). Changes in the list length, on the 

other hand, produced changes in both the mean parameter (µ) and the exponential 

parameter (τ). Therefore, increases in response times did not necessarily reflect an 

increase in actual time, but the normalization (loss of skew) of the response time 

distributions (Ratcliff & Murdock, 1976). Ratcliff and Murdock (1976) demonstrated that 

response time distributions in a memory paradigm could change differently based on the 

manipulations of the paradigm. Therefore, different cognitive tasks could elicit very 

different changes in the mean component of the distribution and its skew. In an effort to 

assess how the parameters of the Ex-Gaussian may change under different cognitive 

demands, Hockley (1984) replicated the analysis methodology proposed by Ratcliff & 

Murdock (1976) and used different cognitive paradigms; a visual search, and judgement 

of recency and a force-choice recognition paradigm. 

The visual search paradigm used by Hockley (1984) was composed of a series of 

non-words presented to observers (either two or six letters long) that either contained a 

target letter (e.g. Z or Q) or did not (Neisser, 1963). Both conditions could be targets 

depending on the trial. Previous results based on the mean response time of participants 

demonstrated that such searches were serial for both target conditions (the target word 

either contained a target letter or did not), self-terminating in target present search and 

exhaustive in target absent searches. Secondly, Hockley (1984) used a memory search  
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Figure 2. A. The Ex-Gaussian distribution as its exponential parameter (τ) changes but all 

other parameters are kept constant (µ = 50; σ = 10). B. The Ex-Gaussian distribution as 

its variance parameter changes but all other parameters are kept constant (µ = 50, τ = 10). 

The location parameter, µ was not changed here for it only shifts the distribution without 

affecting its shape. 
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designed by Sternberg (1966), which presented an array of one to six single digits to 

observers for 1.2 seconds and, after a two second delay, were probed with a digit. 

Participants had to respond whether or not the probe had been part of the array. The 

results demonstrated positive slopes of response times as a function of set size, while 

target present and absent slopes were relatively similar (Sternberg, 1966). In addition, the 

same observers performed both types of search task permitting a within subject analysis 

of the changes in the response time distribution. When applying a convolution 

distribution (Ex-Gaussian) analysis to both visual search paradigms, Hockley (1984) 

demonstrated that in the response times of Neisser’s (1963) paradigm were mostly 

modulated by µ, although τ did increase slightly in target present searches, consistent 

with a serial processing search architecture, for they supported the assumptions that the 

process was not very variable (i.e. small changes in σ) or skewed (small to no changes in 

τ; Hockley, 1984).  

Increases in response times of the memory paradigms were brought on by τ and 

not µ, suggesting a loss of skewness actually created the positive slopes, and not 

increases in response latencies. Both response time slopes for target present and absent 

conditions greatly resembled the increase in the values of the Ex-Gaussian parameters 

across set size. Consequently, for results of the memory search to be consistent with a 

serial model, its comparison process would have to be variable (Hockley, 1984), 

suggesting that another process may be at play.  

The Ex-Gaussian has been used more recently to assess changes in response time 

datasets for various paradigms such as Stroop Tasks and Problem-Size effects. Heathcote 

and colleagues (1991) proposed using the Ex-Gaussian distribution to characterise a 
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response time distribution from a Stroop task. When analysing a Stroop task, researchers 

typically look for either a facilitation effect or an interference effect (Heathcote et al., 

1991). This is accomplished by having three different stimulus conditions: A neutral 

condition, where the words presented to participants are a series of Xs of a certain colour 

they must name, and word stimuli where the word and the color may match (facilitation) 

or be incongruent (interference).  

In the mean analysis, Heathcote and colleagues (1991) found interference in the 

incongruent condition, but no facilitation effect in the congruent condition (i.e. same as 

baseline). Therefore, participant response was significantly longer when the word and the 

colour did not match, but did not benefit (as compared to baseline) when they did. When 

performing their distributional analysis, they found that µ (i.e. the mean of the Ex-

Gaussian) was greater than baseline in the incongruent condition, but was also shorter in 

the congruent condition. They also found that τ (i.e. the exponential component of the 

Ex-Gaussian) showed interference in both the congruent and incongruent conditions, 

indication that the shape of the distribution in both conditions were increased as 

compared to base line. The increase in τ, which may not normally be seen when simply 

calculating the mean of the response times by Stroop condition demonstrated that 

although the mean response time in congruent conditions may remain relatively short 

(lying between the baseline and incongruent condition) the shape of the distribution did 

increase, indicating a larger proportion of scores lying above the mean as compared to the 

base line condition. Therefore facilitation effects, typically demonstrated by the lack of a 

mean change between baseline and congruent conditions were not as well defined as 
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previously believed for the distribution did change between both tasks (Dunbar & 

MacLeod, 1984; Heathcote et al., 1991).  

Other cognitive paradigms have also benefited from distributional analyses to 

clarify theories behind the problem-size effect, which describes how larger mathematical 

problems take longer to complete than simpler ones (Penner-Wilger, Leth-Steensen & 

LeFevre, 2002). The response time difference between simple and complex problems has 

mostly been attributed to the process undertaken by the individual to solve the 

mathematical dilemma. Longer responses are typically attributed to the individual 

decomposing the equation they were asked to solve versus simply extracting it from 

memory, which would be much faster, although such an assumption seems to still be 

debated within the problem-size effect literature (Penner-Wilger et al., 2002). This occurs 

mainly because slopes of response times in problem size effects can only demonstrate 

that the decomposition slope is higher than the memory slope, but can not identify the 

subtle changes occurring within the distribution.  

Penner-Wilger and colleagues (2002) explored how these differences could come 

about using an Ex-Gaussian distributional fitting of their response time data. They 

theorized that if participants were decomposing the formulas to answer the questions, 

there should be an increase in the longer response times, or in the tail of the distribution, 

which would affect its skew, while if they used memory there should be changes in the 

mean. Participants that could complete the problem from memory had no change in τ 

from a simple mathematical problem to a more complex one, but did have a small 

increase in µ from simple to complex equations. Participants who had to decompose had 

large increases in both the µ and τ parameters suggesting that as the problem became 
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harder, the amount of longer response times increased as well (i.e. larger probability of 

falling above µ). Parameters can change differently depending on the cognitive demand 

making it possible to test the assumptions of underlying processes via their changes 

(Penner-Wilger et al., 2002).  

Non-parameterized distribution analyses. 

 Assessing how the parameters of the Ex-Gaussian may change across conditions 

has been quite beneficial on describing the actual changes in the response time 

distributions and how they could possibly reflect certain processes over others. These 

parameters could therefore be very informative on testing the architecture beliefs of 

visual search. Although individual distributions may properly characterize the response 

time data, some can argue that this is a problematic approach. The appropriate 

distribution to use to fit response time data is still unclear for many different types of 

distributions can fit response time data equally as well (Bricolo et al., 2002; Cousineau, 

Goodman & Shiffrin, 2002; Cousineau & Shiffrin, 2004; Logan, 2002; Palmer, Horowitz, 

Torralba, & Wolfe, 2011; Ratcliff & Murdock, 1976; Rouder, Lu, Speckman, Sun & 

Jiang, 2005; Wolfe et al., 2010). In addition, parameterizing a distribution of response 

times could lead to a desire to infer that they represent cognitive processes, and although 

the changes in parameters could aid in ultimately identifying such processes, they should 

not be interpreted as direct reflection of cognitive process (Wolfe et al. 2010). 

Consequently, others, investigating visual search directly, have opted to approach 

distributional analyses without defining parameters, such as location, mean or standard 

deviations, for their distributions (Bricolo et al., 2002; Sung, 2008). 



 

 24 

Models of visual search predict that as search difficulty increases, serial search 

mechanisms must be used to identify the target (Baldassi & Burr, 2000; Treisman, 1991; 

Treisman & Gelade, 1980; Treisman & Sato, 1990; Wolfe et al., 1989; Wolfe, 2007). 

Yet, as mentioned, the distinction within the literature on when a serial search is required 

is unclear. In an effort to demonstrate that set size effects are due to a serial search 

mechanism, Bricolo and colleagues (2002) manipulated difficulty in search by increasing 

stimulus-distractor similarity (Treisman, 1991), leading to inefficient search. They used 

an orientated T paradigm with orientations 0° (upright), +90°, 180°, -90°). All 

orientations, except for the upright condition, could define the target throughout the entire 

experiment. Slope analyses revealed that the effect of set size in their task was quite 

large. Target absent slopes average over 250 ms per items while target present slopes 

averaged at about 126 ms per items. From the large set size effects found, a serial 

architecture was believed to be underlying the response times from participants. 

Following the large set size effects, Bricolo and colleagues (2002) measured the 

cumulative distribution of their data in an effort to assess the termination rules followed 

by the participants. As expected from the Feature Integration Theory (Treisman & 

Gelade, 1980), they found that in target present conditions, the minima did not vary 

across set size, indicating a self-terminating search. However, it did change in the target 

absent condition, suggesting an exhaustive termination of search. Although the 

cumulative distribution described the termination rule of participants when completing 

the search task, it could not reveal on the actual architecture of participants. Therefore, 

Bricolo and colleagues (2002) developed two models, a parallel and a serial model, and 

fitted both to their data. They found that both models could fit the data relatively well, but 
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that a serial approach using the convolution of multiple exponential distributions (about 1 

per item in the display) better represented the investigation of individual items (cycles) of 

a serial search.  

Since both the parallel model and serial model could explain the data well, 

Bricolo and colleagues (2002) developed a second experiment, where they manipulated 

the serial position of the same target that was previously used, they found that the same 

serial model could still explains the results while a new, limited capacity parallel model, 

was required to explain the results of the serial position experiment. Since only one serial 

model of search was required to explain both experiments, while two parallel models 

were required, Bricolo and colleagues (2002) suggested that a serial self-terminating 

model of search was best suited to explain their results. Although a serial search model 

accounted for the results found by Bricolo and colleagues, such results seemed to only 

stem from large set size effects when search is inefficient and slopes are quite steep (> 

250 ms/item). In addition, they did not compare how their participants performed in 

simpler tasks, which would normally elicit shallower search slopes.  

Although Bricolo and colleagues (2002) demonstrated that serial search could 

occur in difficult search conditions that elicit large set size effects, both experiments that 

supported their theory could of also stem from different parallel mechanisms that would 

respond differently under various demands, preventing a clear distinction of architecture 

in search (Logan, 2004). As such, an investigation of search paradigms that would 

directly elicit the second stage (serial) of processing in search placed in context with 

simpler search paradigms could clarify whether inefficient search necessarily reflects a 

serial mechanism (Sung, 2008). In addition to using stimuli that should elicit serial 
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mechanisms of search, Sung (2008) used a modified distributional analysis of response 

time data termed interaction contrast. Interaction contrasts use pairs of processes that are 

related to each other in one of two ways: either they must follow each other or neither 

does (i.e. they are simultaneous). The visual experiments consisted of factors (stimulus 

type) and two difficulty levels (easy and hard), and could be presented in four possible 

combinations, where both factors are presented at either both their easy level, one easy 

and one difficult (interchangeable between the two) and when both are difficult. They 

then measured the interaction contrast across the entire cumulative distribution of 

response times for all conditions. If both processes were sequential, the interaction 

contrast would be positive at the beginning, but then change its sign to negative 

afterwards, and the total area under the distribution if interaction contrasts would be equal 

to 0 or a negative value. If they were simultaneous, the mean interaction contrast would 

remain positive across time, indicating parallel processing (Sung, 2008).  

In two of the three experiments, Sung (2008) found that parallel processing was 

responsible, even though some search slopes reached 20 ms/item. Experiment 1 used a 

conjunction task of shape a colour while experiment 2 manipulated stimulus similarity 

with orientated T’s and adding circles, which greatly differed from the T’s, to make 

search easier (Bundesen, 1990). The third experiment replicated the visual search 

paradigm developed by Bricolo et al. (2002) to generate large set size effects, and showed 

that serial processing was required for participants to complete the task. Sung (2008) 

concluded that although parallel processes seemed to be mostly responsible for visual 

search, some serial processing could can occur, but only when the set size effects were 

quite large (search slopes of about 100 ms/item), following the proposition that attention 
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requires at least 80 ms per scan, and then shift from one object to another (Hoffman, 

1972). In addition, the changes in search slopes found within the dataset suggested that 

although parallel processing seems responsible for search, this process is limited in 

capacity. Search in parallel could therefore be completed when it is possible to search 

through a certain number of targets simultaneously (i.e., limited capacity), with that 

number changing depending of the difficulty of search, while serial search would only 

occur when only one object can be examined at a time (Fisher, 1982; 1984; Sung, 2008).  

Current Project 

Previous studies have demonstrated via search slopes and distributional fitting 

that search architecture is not as clearly defined as once believed (McElree & Carrasco, 

1999; Sung, 2008; Logan, 2004; Logan, 2002; Hockley, 1984; Townsend & Ashby, 

1983; Townsend & Wenger, 2004). Although analyses of response time distributions 

have been used in the past, most experiments that precisely focused on visual search 

paradigms approach the analysis without a specified distribution, making the possible 

interpretations more qualitative than quantitative (Bricolo et al, 2002; Sung, 2008). 

Specified distributions that have been used previously consisted mostly of the Ex-

Gaussian, a distribution that seems to fit data well, but is not necessarily representative of 

the cognitive processes modelled in visual search (Cousineau et al., 2002; Logan, 1992, 

1995; Rouder et al., 2005). Consequently, the current research will assess how the 

parameters of the Weibull distribution change across conditions of visual search, and 

assess how these changes can clarify the architecture issue behind the various visual 

search paradigms. Such an approach to visual analyses, to our knowledge, has not been 

conducted prior to the work completed by Palmer and colleagues (2011), who focused 
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predominantly on assessing which distribution functions may best fit response time data. 

In addition to testing common stimulus sets of visual search (i.e. feature, conjunction, 

spatial configuration), and in an effort to replicate the results of Bricolo and colleagues 

(2002) and Sung (2008), we designed an orientation feature search that would elicit large 

set size effects and as expected, a seemingly serial mechanism.  

As demonstrated in Bricolo and colleagues (2002), orientation feature searches 

can also elicit large differences in results, contrary to what would initially be predicted in 

searches for individual features. Previous studies have demonstrated that performance in 

orientation feature search is largely dependent on the ability to easily classify the target as 

categorically different from the distractors (Wolfe, Friedman-Hill, Stewart & O’Connell, 

1992; Wolfe, 1998). If the angular difference is small (< 90°) and participants cannot 

classify the object with ease (such as vertical or horizontal) search slopes will be steep, 

indicating a serial architecture is responsible for the search (Wolfe et al., 1992). In 

addition, tilt, orientation from vertical, in concordance with the target, in the same 

direction (i.e. leftwards or rightwards) seem to aid in identifying the presence of a target, 

while impeding its detectability, the opposite is also true when distractors tilt in the 

opposite direction to the target (Baldassi & Burr, 2000). Other search asymmetries in 

orientation feature search can also be elicited when the tilt between the target and the 

distractors is changed. When a target is tilted while distractors are kept vertical, search 

will typically elicit flat parallel slopes, just as is normally found in single feature 

searches, while title the distractors and making the target vertical will elicit serial search 

slopes (Cavanaugh, Arguin, & Treisman, 1990). Orientation feature search can therefore 

elicit either very rapid responses, such as feature searches, or large set size effects, such 
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as the ones found in spatial-configuration tasks depending on the orientation difference, 

and therefore, similarity between the target and distractors. Orientation feature searches 

therefore provide a large array of modifications that can facilitate search or complicate it. 

In the current project, we opted to reduce the distractor-target similarity to increase the 

difficulty of the task. In addition, we tilted distractors in two directions and kept the 

target vertical to prevent rapid identification, and ensure slopes would be steep.  

The ex-Gaussian has previously been shown to fit response time data well, its 

parameters are also simple and easy to understand, since they greatly resemble the 

parameters of the Normal distribution (Ratcliff & Murdock, 1976; Hockley, 1984; 

Heathcote et al., 1991; Lacouture & Cousineau, 2008; Palmer et al., 2011; Penner-Wilger 

et al., 2002). Yet, distributions of time for any cognitive component must certainly be 

restricted to positive values and be greater than zero (Cousineau, Goodman & Shiffrin, 

2002; Logan, 2002; Logan, 2005; Rouder et al., 2005). A lower bounded distribution, 

such as the Weibull, would therefore reflect the response time data more accurately than 

a distribution that is not bounded (Cousineau et al., 2002; Logan, 1992). The Weibull has 

also been found to fit response time data quite well (Cousineau et al., 2002; Cousineau, 

2009a; Logan, 2002; Logan, 2005; Rouder et al., 2005) although it may not always fit as 

well as the Ex-Gaussian distribution, as suggested by the results of Palmer and colleagues 

(2011) were the Weibull had slightly higher chi-square statistics than the other 

distributions.  

Depending on the desired analysis, the Weibull can be characterized by either two or 

three parameters (Cousineau, 2009a; Cousineau, 2009b; Logan, 1995; Thoman, Bain, &   
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Figure 3. Each parameter of the Weibull distribution will change a specific aspect 

of the distribution. The shift modulates where the Weibull will cross zero, the scale 

changes the spread and the shape will change how exponential or normal like the 

distribution is.    
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Antle, 1969). The two-parameter Weibull distribution, which comprises a scale (λ) and 

shape (γ) parameter is non-shifted, and therefore is bounded at zero on the x-axis (see 

Figure 3). λ describes the spread of the Weibull distribution, and is in the same units as 

the dependent variable (here milliseconds). γ describes the overall shape of the 

distribution. Changes in γ can greatly change the appearance of the Weibull; at low 

values (0 < γ < 1), the Weibull resembles an exponential distribution, while at larger 

values (γ ~= 3) it is normal like (see Figure 4). γ is also considered the slope for it is 

equal to the slope of a regression line in a probability (QQ) plot of the Weibull 

distribution. 

 

The two-parameter Weibull is a survival function, since it reflects the probability of 

survival, or not failing at time x (Townsend & Ashby, 1983). Such functions are very 

useful in survival analyses and reliability studies (Carroll, 2003), but for response time 

data, a shifted version of the Weibull distribution better reflects the actual data. The 

additional parameter of the shifted Weibull distribution is the shift (θ) that describes the 

spatial location of the minimum value of the Weibull (see Figure 3; Cousineau, 2009a; 

Cousineau, 2009b; Heathcote, Brown, & Cousineau, 2004; Rouder, Lu, Speckman, Sun, 

& Jiang, 2005). The probability density function therefore becomes as follows when the 

shift is included: 
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Figure 4. Changes in the scale of the Weibull distribution with other parameters kept 

constant, θ = 20, γ = 1.5, λ = 100, 250, 400, 550. Changes in the shape of the Weibull 

distribution with other parameters kept constant; θ = 20, γ = 1, 1.5, 2.0, 2.5, 3.0, λ = 250. 

One can see that changing the shape parameter of the Weibull leads to the distribution 

taking a variety of forms from purely exponential to a normal like distribution (when the 

shape is about 3).  
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We believe that the Weibull distribution is best suited in the analysis of response 

time distributions for as recommended by Townsend and Wenger (2004), when 

investigating search architecture, an analysis that focuses on the theoretical components 

of the architecture, and not simply on common statistical analyses, such as ANOVAs, 

would be better suited to answer the research question. The Weibull has been shown to fit 

data well, and strongly recommended when assessing the likelihood of race models in 

visual search (Cousineau et al., 2002) and random-walk models of numerical distance 

effects (Rouder et al., 2005). In addition, its parameters are interpretable descriptively 

(i.e., without further calculations), and can reflect properties of search, such as the 

minimum capacity of search directly measured by θ, that are not demonstrated with 

search slopes, or the overall variability of response times via the scale (λ) parameter 

(Logan, 1992; Cousineau et al., 2002; Cousineau 2009a).  

Consequently, increases or decreases of the Weibull parameters according to 

search difficulty, set size and target presence may be indicative of separable process in 

visual search such that specific parameters may change in certain conditions such as 

increases in set size, but not in others, such as the target presence, as previously found 

when assessing the changes of the Ex-Gaussian distribution (Heathcote, 1991; Hockley, 

1984; Penner-Wilger, 2002; Ratcliff & Murdock, 1976). According to Feature Integration 

Theory (1980) the capacity of the parallel (unlimited) and the following serial (single 

item) architectures should reflect changes in the shift parameter (θ), which should 

increase when requirement changes from one search condition, in which the parallel 

architecture is sufficient to a more complex search (i.e. conjunction). In addition, the 
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shape (γ) of the Weibull distribution should also increase as search difficulty increases. If 

search is performed serially with a reduced capacity, then there should be increases in the 

proportion of longer response times, which would be reflected in the Weibull shape 

parameter. Consequently, the Weibull distribution and its parameters could aid in 

verifying if architectures in visual search change from one search type to the next, as 

suggested by the Feature Integration Theory (Treisman & Gelade, 1980; Treisman & 

Sato, 1990) and the Guided Search Theory (Wolfe, et al., 1989; Wolfe, 1991; Wolfe, 

2007), or if they remain constant as suggested by Random-Walk class models (Bundense, 

1990; Cousineau et al., 2002; Ratcliff, 1978). Consequently, the predominant goal of this 

study in to endeavour in the preliminary explorations of the usefulness of the Weibull 

distribution in disassociating the different architectures of search and do so without 

violating assumptions of null hypothesis testing, or in the ill-described manner of search 

slopes. 
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Method 

In order to assess if the parameters (θ, λ, γ) of the Weibull distribution could 

reflect changes in response time distributions of response times across set size, target 

presence and search difficulty, we used to datasets, the first created by the Jeremy Wolfe 

lab, and available online (http://www.wolfelab.com), and the second created within our 

lab called the Orientation Feature Search. 

Wolfe Datasets 

The online datasets provided by Jeremy Wolfe contain three types of visual 

search, feature conjunction and spatial configuration (Figure 5). The sum number of trials 

of this dataset, including errors, is of about 80 000, making it an ideal candidate for 

distributional fitting. These datasets, and the following description of their methodology 

can be found on Jeremy Wolfe’s website (http://www.wolfelab.com). 

Participants.  

Participants (N = 9 for feature, N = 10 for conjunction, N = 9 for spatial 

configuration) sat 57.4 cm away from the screen. Each participant performed about 4000 

trials across all search types.  

Stimuli.  

The stimuli for all search types were created in Mathworks MATLAB (version 

7.1, Natick, MA) and the psychophysics toolbox extensions (Brainard, 1997; Kleiner, 

Brainard, Pelli, 2007; Pelli, 1997), and presented on a Macintosh computer in a 22.5° 

region of the computer monitor. In the feature search, the target was a red vertical 

rectangle while distractors were green vertical rectangles. Both target and distractors   
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Figure 5. This figure is a representation of the three visual search conditions that 

comprise the Wolfe dataset (http://www.wolfelab.com). The target of each condition is in 

the bottom left corner of each condition. 
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subtended 3.5 by 1 degrees of visual angle. As for the conjunction search the target was a 

red vertical rectangle amongst red horizontal rectangles and green vertical rectangles. 

Stimuli in the conjunction search were kept as the same size as in the feature search. 

Finally, the spatial configuration search contained white 2 (targets) and white 5’s 

(distractors) that subtended 1.5 by 2.7 degrees of visual angle (see Figure 5). 

Procedure. 

Procedures for all three visual search paradigms were identical. Participants were 

asked to input, via keyboard press, whether or not a target was present in the search array. 

Targets were present in 50% of the trials and presentation was randomized across trials. 

Participants underwent 12 blocks of 30 practice trials and 300 experimental trials and 1 

block of 30 practice trials and 400 experimental trials totalling 4000 experimental trials 

and 390 practice trials per search condition. Trials contained 3, 6, 12 or 18 distractors. 

Orientation Feature Search 

Participants.  

Participants consisted of ten (5 females) Concordia University undergraduate 

Psychology students. All students were between the ages of 22-45 (M = 28, SD = 10.12) 

and had normal or corrected to normal vision (cut off = 25/20), which was assessed with 

the Early Treatment Diabetic Retinopathy Study chart (Bailey & Lovie, 1976). All 

students received compensation via the participant pool credit system of Concordia 

University. 

Materials and apparatus.  

Participants rested their head on a chin-rest 60 cm from a linearized video monitor 

(Viewsonic 19" CRT Graphic series G90fb, 1024 x 768 pixel resolution, 100Hz refresh 
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rate) controlled by a Dell Precision T3400, with a core2 quad processor. A custom code 

was used to generate Gabor patches with Mathworks MATLAB (version 7.1; Natick, 

MA) and psychophysics toolbox (version 3; Brainard, 1997; Kleiner, Brainard, Pelli, 

2007; Pelli, 1997). These Gabors were used as the target and distracters stimuli in this 

experiment. Orientation of the Gabor defined the target and the distracters. The target 

was oriented at 90° while the distractors oriented at both plus or minus 30°, 20° or 10° 

from 90° (Figure 6). Gabor patches were 0.5° of visual angle when viewed at 60 cm from 

the screen (16 pixels). The Gabor patches consisted of a sinusoidal grating windowed by 

a two-dimensional Gaussian function. The sinusoidal grating in our Gabor patches had a 

period of 0.25 degrees (8 pixels), which corresponds to a spatial frequency of 4 cycles per 

degree. The positive zero-crossing of the sinusoid was always at the center of each patch, 

(so the “dark bar” of the sinusoid was to the left of the center for vertical patches and on 

top for horizontal patches). The Gaussian function had a full-width-at-half-height of 0.25 

deg (8 pixels). The contrast of our Gabor patch was computed by taking the difference 

between the luminance at the peak of the Gaussian and the mean luminance of the 

pattern, and then dividing that difference by the mean luminance. Gabor’s patches were 

presented on a 6 by 6 grid pattern, subtending 20 degrees at a 60cm viewing distance. 

Position of the target and the distracters was randomized over trials and counterbalanced 

within each condition. 

Procedure.  

Instructions for the experiment were displayed on the screen, and read by the 

experimenter. Participants were instructed to find the vertical Gabor within the array of   
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Figure 6. Gabor stimuli used within the orientation feature search. The left panels contain 

the target. The number in the top left of each panel is the set size.  
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distractors, to try and be as accurate as possible (via feedback on accuracy at the end of 

the trial) while trying to complete the task quickly. Once the participants received the 

instructions, they began the visual search task by pressing the spacebar on the keyboard. 

Participants were at all times in control of when they started a trial, since they could only 

begin when the spacebar was pressed on the keyboard. Participants began the experiment 

with 44 practice trials at the beginning of the experiment and then went on to complete 

10blocks of 102 trials totalling 1020 trials per participants for each distractor angle 

condition (3060 trials in total). Target present and absent trials were intermixed within 

blocks, therefore participants completed 51 target absent trials, and 51 target present trials 

per block. Set size was also manipulated within each block. Set size randomly varied 

from 4 to 8 to 16 distractors. Participants had to indicate by pressing on the keyboard if 

the target (vertical Gabor) was present or absent within the array of Gabor patches. 

Participants were provided feedback on their accuracy at the end of each trial.  

Data analysis. 

Data analysis was conducted in the same way for both the Wolfe data set and the 

orientation feature search. Prior to the data analysis, a data screening procedure identified 

all incorrect trials and removed them from the distributional analysis. The proportion of 

incorrect trials that can be attributed to misses or false alarms can be found in figure 8 

and 10 in the results section.  

The Kolmogorov-Smirnov statistic (KS; Anderson, 1961; Best, 1994; Darling, 

1957; Massey Jr., 1951; Wilcox, 1997) was used to assess if distributions of response 

times across set sizes were different from each other prior to distributional fitting.  
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The KS test quantifies the distance (maximum vertical deviation) between the two 

empirical cumulative distributions, Fn(x) and Fn'(x), and calculates significance by 

comparing Kn,n’ (the statistic of the difference) to its alpha level, KSα (in this experiment 

α= 0.05; for a table of critical values for different sample sizes see Massey Jr, 1951). The 

KS assesses whether differences are statistically significant from two datasets by 

comparing the maximum difference (supx) of two cumulative distributions, weighted by 

their sample size, against a critical value (resulting in Knn’; Best, 1994; Darling, 1957; 

Massey Jr, 1951; Wilcox, 1997).  

Distributional fitting.  

Secondly, we fitted our response time data with a three-parameter Weibull 

distribution using maximum likelihood estimation procedures (MLE). The distributions 

were fitted to the individual participant response time data by minimizing the negative 

log likelihood using the Optimization Toolbox for MATLAB 7.0.4, in particular, the 

fminsearchbnd function within it, based on the Nelder-Mead simplex search algorithm, 

which permits the fitting of bounded parameters, such as in the Weibull distribution (as 

described in Palmer et al., 2011; Lagarias, Reeds, Wright & Wright, 1998). There are 

assumptions that must be met when fitting distributions using MLE procedures. The first, 

and one of the most important is that data are sampled from independently and identically 

distributed (IID) random variables from the underlying distribution that is being 

estimated (Logan, 1992; Cousineau et al., 2002; Palmer et al., 2011). Although there is no 

clear method of assessing whether or not our data were IID, we ensured that participants 

had sufficient training and rested often as to not falsify IID assumptions. In addition, the 

parameters of the Weibull were allowed to vary independently, and have continuous 



 

 42 

densities, meeting requirements of the MLE procedure (Azzalini, 1996). Both datasets 

also collected multiple observations per participants, which has been shown to increase 

the reliability of the MLE procedure, and as demonstrated by Cousineau (2009a), greatly 

minimizes the variability of the fits.  

In addition to fitting the three individual parameters of the Weibull distribution to 

the response time data, we repeated the procedure to calculate confidence intervals 

around the fits. Using a bootstrap sampling methodology, we fitted the parameters to the 

data 500 times, and subsampled 10% of the dataset with replacement. The lowest 2.5% 

and highest 2.5% of the distribution of parameters values were used as the limits for our 

95% confidence interval of the fit (see Figure 7 for an example of an individual fit). 

Finally, in order to assess the overall quality of the fits, we performed χ2 statistics on our 

entire set of fits from each individual participant. For the χ2 statistics of all individual fits, 

see Tables 3, 4, 5, and 6. Once the χ2 statistics were calculated, we averaged the 

parameters for the individual participant fits to simplify the comparison between search 

slope analyses and our current approach. 
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  Figure  7.  Exam
ple  of  an  individual  fits  for  a  single  participant  in  the  10  degree  search  condition.  The  solid  lines  represent  the  actual  fit  

of  the  distribution  w
hile  the  dotted  lines  are  the  95%

  confidence  interval  of  the  distributional  fitting.  
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Results of Response Time Data 

In an effort to properly compare the distributional fitting results to the current 

norm in the visual search literature, we calculated the slopes and assessed statistical 

significance across both datasets. As a consequence, we could compare how the slopes of 

response time, created from mean data compared to the distributional analyses.  

Wolfe Dataset 

Error analysis. 

The miss rate in the Wolfe dataset was quite low throughout all search conditions 

(type and set sizes), but did peek in the spatial configuration search at the largest set size 

(18 distractors). False alarm rates on the other hand were consistent across search 

condition and seemed to decrease slightly as the set size increased (see Figure 8). 

Slope analysis. 

 Slopes for all three visual search conditions follow the stereotypical findings of 

feature, conjunction and spatial configuration searches (see Figure 9). Feature search 

yielded search slope very close to 0 (Present: 0.55, Absent: =-0.51), conjunction search 

had a slope ratio of 2.7:1 (Present: 9.24, Absent: 25.70) and finally the spatial 

configuration search also had a slope ratio of 2.2:1 (Present: 42.71, Absent: 95.29).  

Feature search.  

A main effect of target presence of the feature search task, F(1, 8) = 15.18, p = 

.005 , η  = .65, was found to be statistically significant, indicating that reaction times for 

target present searches (M = 409.83, SD = 71.91) were significantly faster than target 

absent searches (M = 431.07, SD = 68.87) irrespective of set size. No interaction of set 

size by target presence, F(3, 24) = 1.61, p = .212, η  = .17 nor a main effect of set size, F   
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Figure 8. The error analysis of the Wolfe dataset for all three-search conditions. The error 

values are comparable to previous results of feature, conjunction and spatial 

configuration searches. 
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Figure 9. Response time slopes for the three search types from the Wolfe dataset. The 

error bars, although quite small (due to the large number of trials) represent the 95% 

confidence interval of the mean response time.   
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(3, 24) = 0.52, p = .67, η  = .06, were found. Therefore, the mean response time 

across set sizes were not significantly different from each other at 3 distractors (M = 

418.64 ms, SD = 69.54), 6 distractors (M = 423.43 ms, SD = 77.29), 12 distractors (M = 

417.13 ms, SD = 65.55) or 18 distractors (M = 421.58 ms, SD = 69.44). 

Conjunction search.  

The repeated measures ANOVA found a significant interaction effect of set size 

by target presence for the conjunction search, F(3, 27) = 9.54, p < .0001, η  = .52. Mean 

response time for target present searches were shorter at all set sizes (3: M = 519.11 ms, 

SD = 76.97; 6: M = 538.02 ms, SD = 81.90; 12: M = 599.46 ms, SD = 99.01; 18: M = 

658.94 ms, SD = 117.10) than for the target absent searches (3: M = 568.76 ms, SD = 

98.22; 6: M = 636.23 ms, SD = 120.51; 12: M = 791.16 ms, SD = 195.84; 18: M = 954.81 

ms, SD = 339.44). In addition, a main effect of target presence, F(1, 9) = 25.71, p = .001, 

η  = .74 and a main effect of set size, F(3, 27) = 22.23, p < 0.0001, η  = .71, were found 

to be statistically significant.  

Spatial-configuration search. 

The repeated measures ANOVA found a statistically significant interaction effect 

between set size and target presence, F(3, 24) = 53.97, p < .0001, η  = .87. Response 

times for target present searches were shorter across all set sizes (3: M = 688.64 ms, SD = 

123.09; 6: M = 838.75 ms, SD = 153.21; 12: M = 1119.23 ms, SD = 212.31; 18: M = 

1331.72 ms, SD = 259.29) then target absent searches (3: M = 813.92 ms, SD = 174.54; 6: 

M = 1193.22 ms, SD = 288.03; 12: M = 1825.96 ms, SD = 443.97; 18: M = 2246.72 ms, 

SD = 539.67). In addition, a main effect of set size, F(3, 24) = 107.08, p < .0001, η  = 

.93, and a main effect of target presence were found, F(1, 8) = 72.09, p <.0001, η  = .90. 
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Orientation Feature Search 

Error analysis. 

The miss rate (Figure 10) in the orientation search task was quite high for all three 

orientation conditions (10, 20 and 30-degrees), but seemed to decline slightly as the 

orientation difference between the target and distractors increased. Evidently, miss rate 

was greatest when the set size was large, and was much lower at smaller set sizes (4). 

False alarm rates (mistakenly identifying a distractor as a target) were high when the 

difference between the target and distractors was small (10 degrees) but decreased to 

“normal” levels (Wolfe, 2010) as the orientation difference increased. False alarm rates 

did not decrease, as the set size increased as found in the Wolfe dataset, but seemed to 

increase instead. 

Slope analyses. 

The set size effects, according to slope values, were quite large (see Figure 11). At 

an orientation difference of 30-degrees, the slope ratio between target present and target 

absent searches was 2.7:1 (Present: 44.18, Absent: 121.30), at a difference of 20-degrees, 

the slope ratio was 2:1 (Present: 78.76, Absent: 161.86) and at a difference of 10-degrees, 

the ratio was 2.3:1 (Present: 59.60, Absent: 135.46).  

The ANOVA found an interaction effect of set size by target presence, F(2, 10) = 

32.88, p = 0.0001, η  = 0.79. The slope for target absent response times was much 

steeper when the set size increased from 4 (present: M = 1036.83 ms, SD = 195.93; 

absent: M = 1519.14 ms, SD = 357.61) to a set size of 8 (present: M = 1385.76, SD = 

291.15; absent: M = 2247.50, SD = 627.24) to a set size of 16 distractors (present: M =  
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Figure 10. Error analysis for the orientation feature search. The false alarm rates for the 

30 degree and 20 degree conditions are quite low, but the 10 degree condition is 

abnormally high, indicating that participants had a very low threshold at answering 

“target present” when it was absent (mostly due to the small difference in angles).  
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Figure 11. Search slopes for the orientation feature search conditions. Error bars represent 

the 95% confidence interval of the mean response time.   
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1795.81 ms, SD = 444.33; absent: M = 3188.64 ms, SD = 1058.90; see Figure 11). 

No interaction between distractor orientations, set sizes and target presence were found in 

this ANOVA. In addition to the interaction effect of set size by target presence, we found 

a main effect for the angle of the distractors, F(2, 18) = 7.32, p = 0.005, η  = 0.45. 

Response times were shortest when the angular difference between target and distractors 

differed by 30-degrees (M = 1520.85 ms, SD = 481.07), and increased at a difference of 

20-degrees (M = 1974.84 ms, SD = 880.43) and at a difference of 10-degrees (M = 

2091.15 ms, SD = 952.03). A main effect of set size was also found, F(1.09, 9.68) = 

60.36, p = 0.0001, η  = 0.87, with a Greenhouse-Geisser correct for the degrees of 

freedom. Response times increased when the set size increased from 4 distractors (M = 

1277.99 ms, SD = 386.66) to 8 distractors (M = 1816.63 ms, SD = 640.45) and 16 

distractors (M = 2492.23 ms, SD = 1050.00). Finally, a main effect of target presence was 

also found, F(2, 18) = 52.62, p = 0.0001,  η  = 0.85. Target present response times (M = 

1406.14 ms, SD = 432.99) were quicker than target absent response times (M = 2318.43 

ms, SD = 956.68) across all distractor orientations and set sizes. 
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Results of the Distributional Fitting 

Wolfe Dataset 

Feature search 

KS. 

The average KS statistic demonstrated that the target present and target absent 

response time distributions were significantly different from each other at a set size of 3 

(KS = 0.23, p = 0.002) but not at set sizes of 6 (KS = 0.19, p = 0.11), 12 (KS = 0.17, p = 

0.06) or 18 (KS = 0.15, p = 0.05). Figure 12 demonstrate the probability function of the 

response time distributions for the feature search task.  

Scale. 

The scale of the Weibull distribution remained relatively flat throughout all set 

sizes, with fits for both target present response times and target absent response times 

overlapping largely. Scale parameter values for the target absent response time 

distribution varied from 174.47ms (CI: 148.12 - 199.56) at 3 distractors, to 177.98 ms 

(CI: 151.67 - 196.83) at 6 distractors, 164.16 ms (CI: 143.34-185.36) when 12 distractors 

were present and 176.11 ms (CI: 148.08-194.70) at 18 distractors. Target present 

parameter values for scale varied from 158.63 ms (CI: 133.12 - 175.62) at 3 distractors, 

to 165.02 ms (CI: 140.77 - 182.75) at 6 distractors, 171.79 ms (CI: 144.25 -190.13) at 12 

distractors and finally, 171.14ms (CI: 143.08 - 193.14) at 18 (Figure 15). 

Shift. 

The shift parameter fitting in the feature search revealed that the shift (minima) of 

the Weibull distribution remained relatively flat just as the scale parameter. Shift values   
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Figure 12. Probability density function from the parameters obtained in the feature search 

condition. The figure demonstrates how similar all the distributions for each set size and 

target presence are to each other.  
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for target absent response time distributions, 276.99 ms (CI: 266.31 - 293.84) at 3 

distractors, 267.93 ms(CI: 259.77 - 285.65) at 6 distractors, 273.25 ms (CI: 263.04 - 

286.43) at 12 distractors and 264.23 ms (CI: 256.93 - 281.13) at 18 distractors, and the 

present response time distributions at 3 distractors, 251.02 ms (CI: 242.33 - 269.93), 6 

distractors, 254.08 ms (CI: 246.31 - 272.32) at 12 distractors, 251.76 ms (CI: 242.72 - 

272.95) and 18 distractors 257.24 ms (CI: 245.25 - 278.17) did not vary across distractor 

set sizes and although target absent shift values remain greater than target present values, 

confidence intervals overlapped with each other at all set sizes (Figure 15).  

Shape. 

Similar to the scale and shift parameters of the feature search, the shape parameter 

did not vary between set sizes, nor did target presence affect the shape of the Weibull 

distribution. The values for the shape parameter throughout set sizes for the target absent 

response time distribution varied from 1.48 (CI: 1.21 – 1.80) at 3 distractors, to 1.61 (CI: 

1.32 – 1.90) at 6 distractors, 1.56 (CI: 1.29 – 1.85) at 12 distractors and 1.57  

 (CI: 1.28 – 1.84) at 18 distractors. Target present shape values ranged from 1.71 (CI: 

1.31 - 2.03) at 3 distractors, 1.57 (CI: 1.29 - 1.86) at 6 distractors 1.68 (CI: 1.36 - 2.10) at 

12 distractors and 1.64 (CI: 1.30 - 2.00) at 18 distractors. The response time distribution 

remained relatively exponential throughout the various conditions with shape values 

never reaching more than 2.10 (Figure 15). 

Conjunction search. 

KS. 

According to the KS statistic, target present and target absent response time 

distributions were not statistically different from each other at a set size of 3 distractors 
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(KS = 0.29, p = 0.05), but were at a set size of 6 (KS = 0.35, p = 0.001), of 12 (KS = 0.43, 

p =0.001) and 18 (KS = 0.46, p = 0.001). Figure 13 shows the probability density 

functions of the conjunction search response times.  

Scale.  

The scale parameter for the conjunction search demonstrated no large differences 

between target present, at 3 distractors, 189.67 ms (CI: 163.10 - 212.33) and 6 distractors, 

218.41 ms (CI: 189.62 - 239.94) and target absent fits, at 3 distractors 243.57 ms (CI: 

187.57 - 281.62) and at 6 distractors, 262.82 ms (CI: 224.26 - 291.33). However, results 

showed a larger increase of the target absent parameter fits at a set size of 12 distractors, 

394.42 ms (CI: 347.23 - 433.96) and a set size of 18 distractors, 542.78 ms (CI: 488.65 - 

590.51) compared to target present fits at 12 distractors 266.33 ms (CI: 236.23 - 291.53) 

and 18 distractors, 314.46 ms (CI: 283.23 - 343.47).  

Shift.  

Fitting for the shift parameter demonstrated that the minimum value of the 

Weibull distribution had a much larger increase according to set sizes than the target 

present distribution. Shift values for the target absent response time distribution increased 

from 345.48 ms (CI: 325.55 - 385.62) at 3 distractors to 390.21 ms (CI: 381.46 - 412.15) 

at 6 distractors, to 428.70 ms (CI: 413.68 - 456.28) at 12 and 466.37 ms (CI: 448.52 - 

497.48) at 18 distractors. Target present shift values also seemed to increase slightly over 

set size condition, but the overlap of error bars would suggest that such is no the case, 

and that minimum value of the Weibull remained constant throughout target present 

conditions, 336.50 ms (CI: 328.34 - 350.13) at 3, 334.87 ms (CI: 327.71 - 353.45) at 6, 

349.80 ms (CI:   
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Figure 13. Probability density function from the parameters obtained in the conjunction 

search condition. The figure demonstrates how similar all the distributions for each set 

size and target presence are to each other, will small deviations in absent 12 and 18 

distractors.
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343.14 - 368.10) at 12, and 362.64 ms (CI: 354.44 - 378.93) at 18 distractors (see Figure 

15).  

Shape. 

The shape of the response time distributions remained constant, similarly as found 

in the feature search response time distributions, for all set sizes in the conjunction 

search. In addition, the shapes for the target present distributions at all set sizes, 1.37 (CI: 

1.19 - 1.57), 1.50 (CI: 1.28 - 1.70), 1.46 (CI: 1.26 - 1.65) and 1.39 (CI: 1.22 - 1.56) and 

absent distributions at all set sizes, 1.53 (CI: 1.27 - 1.82), 1.45 (CI: 1.24 - 1.66), 1.43 (CI: 

1.24 - 1.60) and 1.52 (CI: 1.35 - 1.70) were quasi-identical with significant amounts of 

overlap between them (see Figure 15).  

Spatial-configuration search. 

KS. 

Similarly to the conjunction search, the target present and absent distribution were 

statistically different from each other at set sizes of 6 (KS = 0.45, p = 0.001), 12 (KS = 

0.55, p = 0.001) and at 18 (KS = 0.56, p =0.001) but not at a set size of 3 distractors (KS 

= 0.16, p = 0.30). Figure 14 shows the probability density functions of the spatial-

configuration search response times.  

Scale. 

The spread of the Weibull distribution increased greatly as the number of 

distractors increased. This increase was also much more prominent in the target absent 

response time distribution than for the target present response time distribution. Values 

for target absent increased from 419.90 ms (CI: 349.60 – 469.20) at 3 distractors to 

703.00 ms (CI: 625.40 – 760.10) at 6 distractors, 1264.00 ms (CI: 1085.90 – 1386.40) at   
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Figure 14. Probability density function from the parameters obtained in the conjunction 

search condition.  
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12 distractors and 1635.00 ms (CI: 1453.00 – 174.93) at 16. Target present values on the 

other hand increased from 310.84 ms (CI: 281.11 – 337.50) at 3 distractors to 459.46 ms 

(CI: 412.74 – 498.40) at 6, 749.09 ms (CI: 682.91 – 807.00) at 12 and 955.83 ms (CI: 

875.01 – 1030.80) at 18 distractors (see Figure 15). 

Shift. 

The shift parameter for the target absent response time distributions increased 

greatly across set sizes, going from 436.48 (CI: 410.02 - 488.69) at 3 distractors, to 

564.64 (CI: 534.58 - 626.54) at 6 distractors, 702.10 (CI: 607.04 - 852.23) at 12 

distractors and 793.49 (CI: 713.41 - 949.31) at 18 distractors. Instead of increasing like 

the target absent shift, the shift for the target present response time distribution remained 

constant throughout all set sizes, from 403.43 (CI: 395.89 - 420.81) at 3 distractors to 

421.41 (CI: 410.45 - 448.08) at 6, 436.42 (CI: 423.84 - 468.00) at 12 and 459.86 (CI: 

443.13 - 490.58) at 18 distractors.  

Shape.  

Similarly to the shift of the response time distribution for the spatial configuration 

search, the shape of the distribution changed in the target absent condition but not in the 

target present condition. Shape parameter values varied from 1.56 (CI: 1.34 - 1.82) at 3 

distractors to 1.73 (CI: 1.48 - 1.97) at 6 distractors, to 2.17 (CI: 1.82 - 2.52) at 12 

distractors and 2.12 (CI: 1.83 - 2.38) at 18 distractors, while target present shape values 

remain stable from 3 distractors, 1.48 (CI: 1.26 - 1.69) to 6 distractors, 1.42 (CI: 1.26 - 

1.57), to 12 distractors, 1.41 (CI: 1.28 - 1.54) and 18 distractors, 1.42 (CI: 1.28 - 1.56).  
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Figure 15. The parameter changes of the Weibull distribution in the three search 

conditions of the Wolfe dataset. Error bars represent the 95% confidence interval built via 

bootstrapping procedure around the fit of the Weibull to the response time distribution.   
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Orientation Feature Search 

30-degrees. 

KS. 

The Kolmogorov-Smirnov statistic demonstrated that both the response time 

present and absent distributions were significantly different from each other at a set size 

of 4 (KS = 0.51, p = 0.001) at a set size of 8 (KS = 0.56, p = 0.001) and at a set size of 16 

(KS = 0.62, p = 0.002). Figure 16 show the changes in the probability density function of 

the 30-degree search.  

Scale.  

The scale parameter fitting on the 30° orientation search demonstrated a linear 

increase in the spread of the distribution across set sizes (see Figure 19) The parameter 

values for the target absent distribution were consistently greater than the parameter 

values for the target present distribution, increasing from 708.90 ms (CI: 580.00 – 

828.00) at a set size of 4, to 1243.00 ms (CI: 1058.00 - 1401.10) at 8 distractors and 

2106.20 ms (CI: 1741.30 – 2415.40). In addition, the scale fits for the target present 

response time distribution increased slightly across set size condition, 374.42 ms (CI: 

304.29 –458.40) at four distractors, 573.04 ms (CI: 460.02 – 680.10) at 8 distractors and 

830.68 ms (CI: 641.67 – 1006.10).   

Shift. 

Unlike the scale values for the response time distributions, the shift values for the 

orientation search remained relatively flat across distractor set sizes. Although it seems 

that set size did not increase the minimum values of the response distributions, the shift 

for the target absent distribution, at 4 distractors, 604.18 ms (CI: 579.32 – 657.20), at 8   
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Figure 16. Changes in the response time distributions as a function of set size and target 

presence in the 30-degree condition of the orientation feature search.  
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distractors, 726.62 ms (CI: 667.96 – 827.40) and 16 distractors, 842.01 ms (CI: 639.50 – 

1102.9), was consistently greater than for the target present distribution at 4 distractors, 

475.58 ms (CI: 455.63 – 507.50), at 8 distractors, 505.58 ms (CI: 488.82 – 553.24) and at 

16 distractors, 550.76 ms (CI: 526.15 – 603.59).  

Shape.  

The shape parameter fitting revealed two different patterns for the target absent 

and present response time. Although the confidence intervals were quite large, the shape 

of the target absent response time distribution seemed to increase from 4 distractors, 1.25 

(CI: 1.02 – 1.51) to 8 distractors, 1.51 (CI: 1.26 – 1.79) and 16 distractors, 1.86 (CI: 1.48 

– 2.27), while the target present distribution slowly decreased (more exponential-like) 

from 4 distractors, 1.21 (CI: 0.97 – 1.47) to 8 distractors, 1.16 (CI: 0.91 – 1.40) and 16 

distractors, 1.15 (CI: 0.85 – 1.40). The target present and absent distribution had different 

shaped, as marked by the non-overlap of the confidence interval at 16 distractors and 

were completely overlapping at a set size of 4 (see Figure 17).  

20-degrees. 

KS.  

The KS test showed that the target present and target absent response time 

distributions were significantly different from each other across all set sizes, (4: KS = 

0.56, p = 0.0001; 8: KS = 0.55, p = 0.0002; 16: KS = 0.58, p = 0.0008) in the 20° visual 

search condition. Figure 17 show the changes in the probability density function of the 

20-degree search.  

Scale. 

The scale parameter fitting in the 20° visual search revealed a similar pattern as in   
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 Figure 17. Changes in the probability density function in the 20-degree orientation 

feature search.   
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the 30° condition. Scale values were consistently greater in the target absent condition 

than in the target present condition, and started a little higher than in the 30° condition. 

Target absent values increased from 941.20 ms (CI: 782.60 – 1068.60) at four distractors 

to 1568.70 ms (CI: 1296.90 – 1788.00) at 8 distractors and 2318.20 ms (CI: 1870.90 – 

2710.00) at sixteen distractors. Unlike in the 30° condition, scale values for the target 

present condition did increase without overlap in their confidence intervals across set 

size, from 4 distractors, 505.60 ms (CI: 424.00 – 589.10) to 8 distractors, 904.40 ms (CI: 

745.20 – 1069.70) and 16 distractors 1425.90 ms (CI: 1086.40 – 1752.80). See figure 19 

for individual parameter changes.  

Shift. 

The parameter fitting revealed that the response time distributions in the target 

absent conditions shifted greatly from zero as the number of distractors increased from 4; 

693.60 ms (CI: 624.20 – 795.6), to 8; 989.2 ms (CI: 869.6 – 1210.30) and 16; 1447.60 ms 

(CI: 1159.30 – 1809.90) distractors. Yet, unlike the target absent shift values, the target 

present shift values did not change across conditions. At 4 distractors, 524.57 ms (CI: 

510.59 – 558.25) 8 distractors, 574.91 ms (CI: 548.08 – 617.89) and 16 distractors 621.74 

ms (CI: 543.48 – 737.09).  

Shape. 

The shape for both the target present and target absent distributions remained 

constant across all distractor set sizes in the 20° visual search, with a slight overlap of 

confidence intervals at the 4 and 16 distractors set sizes. Shape values for the target 

absent distribution ranged from 1.75 (CI: 1.42 – 2.13) at 4 distractors, 1.83 (CI: 1.50 – 

2.21) at 8 distractors and 1.93 (CI: 1.52 – 2.45) at 16 distractors. Target present shape 
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values ranged from 1.26 (CI: 1.04 – 1.49) at 4 distractors to 1.21 (CI: 0.96 – 1.47) at 8 

distractors and 1.25 (CI: 0.91 – 1.62) at 16 distractors. 

10-degrees. 

KS. 

According to the Kolmogorov-Smirnov statistic, the target absent distributions 

and the target present distributions were significantly different from each other at all set 

sizes (4: KS = 0.44, p = 0.0001; 8: KS = 0.44, p = 0.002; 16: KS = 0.47, p = 0.0001). 

Figure 18 show the changes in the probability density function of the 10-degree search.  

Scale.  

Similarly to both the 30° and 20° conditions, the scale parameter for the target 

absent and present response time distributions increased as a function of set size. The 

target absent scale parameters were greater than for the target present scale parameters 

throughout all of the set sizes, with a little overlap of confidence intervals at the 4 and 8 

distractor set sizes. Scale values ranged from 1059.60 ms (CI: 875.40 – 1205.30) at 4 

distractors, to 1681.80 ms (CI: 1341.00 – 1958.90) at 8 distractors and 2600.40 ms (CI: 

2516.60 – 2956.00) at 16 distractors. Target present scale value ranged from 858.90 ms 

(CI: 678.90 – 1021.30) at 4 distractors, to 1224.30 ms (CI: 999.90 – 1443.30) at 8 

distractors and 1584.10 ms (CI: 1187.90 – 1964.60) at 16 distractors.  

Shift. 

Shift values for the target present and absent response time distributions remained 

relatively stable across set size. A small increase can be seen from 4 to eight distractors 

for both the target present and absent shift values, but confidence intervals overlapped 

greatly, making this increase likely due to error.  The shift values for the target absent 
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distribution varied from 770.31 ms (CI: 712.08 – 905.00) at 4 distractors to 970.84 ms 

(CI: 823.64 – 1206.10) at 8 distractors and 970.74 ms (CI: 828.49 – 1292.40) at 16 

distractors. Target present values ranged from 478.95 ms (CI: 413.42 – 584.96) at 4 

distractors to 553.41 ms (CI: 466.48 – 653.08) at 8 distractors and 575.41 ms (CI: 463.87 

– 721.02) at 16 distractors. 

Shape. 

Shape values for both the response time present and response time absent 

distribution overlapped greatly with each other and remained flat through all set sizes. 

Shape parameters for the target absent response time distributions ranged from 1.76 (CI: 

1.34 – 2.20) at a set size of 4, to 1.80 (CI: 1.35 – 2.27) at a set size of 8, and 2.01 (CI: 

1.53 - 2.47) at a set size of 16 while the shape parameters for the target present 

distributions ranged from 1.45 (CI: 1.15 – 1.80) at set size 4, to 1.49 (CI: 1.15 – 1.89) at 

set size 8, and 1.36 (CI:  0.85 – 1.76).   
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Figure 18. Changes in the probability density function in the 10-degree orientation 

feature search.   
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Figure 19. Parameter values of the Weibull distribution across all three orientation feature 

search conditions and set sizes. Error bars represent the bootstrapped 95 % confidence 

interval of the fit.  
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Discussion 

Visual search is one of the most exhaustively studied attentional paradigms since 

the cognitive revolution in the 1950s (Logan, 2004). The effects of search condition on 

the response times collected in visual search paradigms have made possible the 

identification of mechanisms responsible for visual search. As such, when response times 

increase linearly as a function of set size, a serial mechanism is believed to be modulating 

search, however, when response times remain flat across set size, then a parallel 

mechanism is believed to be used in order to complete search (Treisman & Gelade, 

1980). Although the distinction of parallel and serial search mechanisms has remained 

relatively popular within the literature, no true consensus has been reached on how they 

may interact, or which is mostly responsible for search (Carrasco, 2011; Logan, 2004; 

Townsend & Wenger, 2004; Wolfe, 1991). This has mostly been attributed to model 

mimicking, or the propensity for two fundamentally different mechanisms to generate the 

same patterns of results, preventing the clear identification of one versus the other 

(Townsend & Ashby, 1983; Townsend & Wenger, 2004). Model mimicking is the 

process in that parallel models can generate positive search slopes while serial models 

can generate flat slopes, leading to confusion on the architecture at hand. Positive search 

slopes from parallel models will mostly occur when the model is limited in capacity and 

large set sizes are presented (Townsend & Wenger, 2004), or if target rejection is not an 

independent process (Townsend & Colonius, 1997). In parallel models, independence 

refers to the processing of n items being processed within a specific time interval while 

serial models describe independence as the processing time of each succeeding item as 

independent from one another (Townsend & Wenger, 2004). Consequently, if target 
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rejection (classifying an object as distractor) is not independent, serial architectures can 

migrate to following stimuli without having clearly rejected the target and do so at a later 

point, decreasing the overall search time and generating shallower slopes than expected. 

In addition, if the individual item processing time at larger set sizes is faster than at 

smaller ones, a serial search will once most generate shallow slopes. Therefore, the use of 

slope analysis that is traditionally used to analyze visual search data provides insufficient 

evidence to distinguish the type of architecture in visual search, and a more 

comprehensive approach to the analysis of response times is required (Cousineau, 2009b; 

Townsend & Wenger, 2004; Wolfe et al., 2010) 

Distributional analyses seem to be better suited to the analysis of datasets from 

different search types, without limiting the methodology to the extent of signal detection 

measures. In the current research, we analysed two datasets, one provided by the Wolfe 

lab (comprising feature, conjunction, and spatial-configuration search), and the other 

containing an orientation feature search collected within our laboratory, and used the 

Weibull distribution to characterize response time distributions. Prior to the discussion of 

the Weibull parameter fitting to the response time data, which fitted the data quite well, a 

discussion on the typical analyses of response time data in visual search is presented as 

an appropriate comparison to our own results.  

Slope Analyses of Reaction Time Data 

Wolfe dataset. 

In an effort to better compare the normative search slope analyses to the currently 

proposed distribution fitting approach, an interpretation of the current findings following 

the Feature Integration Theory and the Guided Search Theory is beneficiary. Yet, it is 
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important to maintain model mimicking in mind, as it is very likely that the positive 

slopes of response time data could be due to a parallel model, and not a serial model, or 

vice versa.  

The feature, conjunction and spatial configuration search tasks all demonstrated 

typical effects of search type and set size from similar experiments such as Treisman and 

Gelade (1980), and Wolfe and colleagues (1989). The feature search slopes were flat 

across set size, and did not differ between the target present and target absent conditions, 

in congruence with a parallel search architecture, as demonstrated by the Feature 

Integration Theory (Treisman & Gelade, 1980). Since feature searches contain stimuli 

that comprised a single feature, a “pop-out” effect of the target can occur, and permits a 

search of the entire array simultaneously, regardless of set size. Consequently, response 

times in the feature search condition did not vary from one set size to the next. These 

results are identical to single feature search performed by Treisman and Gelade (1980) 

and other single feature visual search paradigms (McElree & Carrasco, 1999; Townsend, 

1990; Treisman & Sato, 1990; Wolfe, 1991; Wolfe et al., 2010).  

Statistical significance tests demonstrated that interaction effects were found for 

both conjunction and spatial-configuration search paradigms. Response times increased 

more as a function of set sizes when the target was absent than when it was present, a 

typical finding for both paradigms (Bricolo et al., 2002; Treisman & Gelade, 1980; Wolfe 

et al., 2010). The conjunction and spatial configuration searches had slope ratios that 

surpassed the 2:1 ratio typically expected in serial search (Treisman & Gelade, 1980; 

Treisman & Sato, 1990; Wolfe et al., 1989; Wolfe, 1991). In addition, the set size effect 

of the spatial configuration search task was much greater than the conjunction search 
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task, reflecting the increased difficulty for this type of search. Slopes for the conjunction 

search were similar to other conjunction search previously reported, albeit greater than 

typical slopes for conjunctions of orientation and colour (Cavanagh et al., 1990; Treisman 

& Gelade, 1980; Treisman & Sato, 1990; Wolfe et al., 1989). Target present response 

times were only slightly affected by set size, while target present responses demonstrated 

a larger effect. The slopes of the conjunction search would therefore reflect a serial 

architecture of search (equal to or greater than 10 ms per item: Treisman & Gelade, 

1980), where attention needs to be serially shifted from one stimulus to the next in order 

to collect the required amount of information to identify it as a target or distractor 

(Treisman & Gelade, 1980; Tresiman & Sato, 1990). Yet, following evidence brought 

forth by Hoffman (1972), these search slopes are well below the temporal limit of 

attentional shifts, which typically lie between 100 ms and 250 ms. The response time 

slopes from the spatial configuration task followed the same, although more pronounced, 

relationship as the conjunction search slopes, demonstrating an increase in difficulty in 

the task, leading to larger response times.  

Following the Feature Integration Theory (Treisman & Gelade, 1980), the slope 

results of the Wolfe dataset suggest that two mechanisms of search are responsible, a 

parallel architecture was sufficient to complete the feature search, reflected by the slopes 

of response times, while a serial architecture of search was responsible for both the 

conjunction and spatial-configuration conditions, as demonstrated by the linear increase 

in the slopes and their 2:1 ratio between target absent and present conditions. Guided 

Search (Wolfe et al., 1989; Wolfe, 1994; 2007) would also offer two architectures of 

search for all three conditions, and explains the difference in search slopes between the 
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conjunction and spatial-configuration paradigms as an efficacy of guidance, meaning that 

the parallel stage could guide the observer towards the target with reasonable ease while 

it could not do so in the spatial-configuration search task. Since the parallel system is 

strongly feature based, and in conjunction search paradigms, the target shares a feature 

with half of the distractors and the other with the other half, filtering of features, or 

increasing the saliency of a feature over another could be easily performed by the parallel 

mechanism and therefore increase performance of the search. Spatially configured 

stimuli, which contain the exact same features, would not permit the filtering of a single 

feature for both target and all distractors share are form of the same features, therefore 

reducing the effectiveness of guidance offered by the parallel system.  

Orientation feature search. 

Our observers found the orientation feature search was found to be quite difficult, 

and demonstrated a larger number of misses (in which the target was present, but 

classified as absent) and false alarms (in which a target was absent, but classified as 

present), more so than found in the Wolfe dataset. The error analyses for miss rates and 

false alarms demonstrated that misses were high, especially in the 10-degree difference 

condition, and decreased as search became simpler, although they did remain consistently 

higher than in the spatial-configuration task. False alarm rates were also high in the 10-

degree condition, and increased slightly as the set size increased. The difference in miss 

and false alarm patterns in the orientation feature search as compared to the spatial-

configuration task (the most difficult) within the Wolfe dataset suggest either our 

experimental paradigm was more difficult, or that our participants were less conservative 

when responding, indicating that they may have biased speed over accuracy. Since the 
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discrepancy in false alarm rates is only really found in the 10-degree condition, it most 

likely that it is search difficulty that is responsible for the difference, and not the overall 

criterion set by our participants. If our participants were more liberal in their responses 

than Wolfe’s participants, we should have seen this reflected in the other conditions as 

well as in the 10-degree condition. Furthermore, previous study of orientation visual 

search demonstrated that error rates increased as orientation difference between the target 

and distractors decreased (Wolfe et al., 1992). Using tilted lines as stimuli for a visual 

search paradigm Wolfe and colleagues (2002) found that errors almost doubled when the 

orientation difference between the vertical target  (90 degrees) and tilted distractors was 

reduced. Consequently, error rates increased from 5 percent when the distractors were 

tilted at plus or minus 40 degrees from vertical to 10 percent when the distractors were 

tilted plus or minus 20 degrees from the vertical target (Wolfe et al., 1992). It is 

consequently feasible to believe that increasing the complexity of the stimulus, as we did 

here using Gabor stimuli, and further reducing the orientation difference between targets 

and distractors would largely increase the difficulty of the task and therefore the error 

rates as well.  

Overall, all three search difficulty levels demonstrated patterns of response times 

typical of a serial architecture, as previously found in other orientation feature search 

experiments, which had similar conditions to our own (Baldassi & Burr, 2000; Bricolo et 

al., 2002; Cavanagh et al., 1990). There was an overall effect of orientation difference in 

the search task. Larger differences in orientation between the target and the distractors 

made it simple to identify the target, leading to faster response times and less misses and 

false alarms, but search slopes that were still suggestive of a serial mechanism. As the 
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angular difference between the target and distractors increased, response times slowed, 

search slopes became steeper and errors increased. Search slopes ratios were a little larger 

than the typical 2:1 ratio expected, indicating that attention travelled through the array 

serially (Cavanaugh et al., 1990). Although search was expected to become more difficult 

as orientation between the target and distractors was decreased, we found that this only 

occurred from the 30- to 20-degree condition, as slopes from the 10-degree condition 

were similar to those of the 20-degree condition. Consequently, although the decrease 

from 30- to 20-degrees in angular difference between target and distractors seemed to 

slow the speed of the serial search, decreasing the difference further did not seem to have 

any noticeable impact on speed. It is also possible that the large amount of error rates, 

and therefore the reduced dataset, in comparison to the other search tasks may have 

affected the slopes of the 10-degree search condition, masking the further increase in 

response times that would be expected. Never the less, previous work on visual search 

with orientation as a defining feature for the target and distractors has also demonstrated 

that using a tilted distractor and a vertical target elicits steep search slopes, and inferred 

that a serial architecture was therefore responsible for the search process (Bricolo et al., 

2002; Cavanaugh et al., 1990). 

Distributional Analyses 

Wolfe dataset. 

Although the Kolmogorov-Smirnov (KS) statistics indicated that the feature 

search response times were different, all three parameters (i.e., shape, shift, & scale) of 

the Weibull distribution fitting of the reaction time data from the feature search remained 

flat across set sizes. Observe in figure 15 that the actual fit values did show small 
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differences from one condition to the next, and the large sample size inflated the 

significance of the KS test. Compared to the changes found in the other search 

conditions, it would seem that the large sample size was the only reason for the statistical 

difference found. Further, the distributions for all search conditions overlapped almost 

completely, demonstrating that although there were small changes from one set size to 

the next, and between target present and absent distributions, most of the distributions 

were identical to each other. These two findings reinforce the belief that a parallel 

process is involved in feature search, were the response time distributions are not affected 

by target presence or set size, indicative of unlimited capacity parallel search models 

(Townsend & Ashby, 1983; Townsend & Wenger, 2004). Consequently, the results of the 

search slope for a single feature is identical to the interpretation of the Weibull 

parameters: single features can be processed in parallel, and the capacity to do so is 

unlimited for the minima of the Weibull distribution did not change across the increases 

in set size (Bricolo et al., 2002; Ratcliff & Murdock, 1976).  

The findings from the conjunction search showed a small increase in the shift 

parameter across set sizes (i.e. target absent only), and an increase in the scale parameter 

for both target present and absent conditions. Similarly, the spatial-configuration 

condition displayed the same pattern of results, albeit more extreme than the conjunction 

search, demonstrating the increased in response latency from the conjunction task. The 

shape parameter for the conjunction search did not change across either set size or target 

presence and remained similar to the shape parameter of the feature search. However, the 

spatial configuration search task did demonstrate an increase in the shape parameter, 

meaning there was a reduction in the skew of the distribution as the set size increased 
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from twelve distractors to eighteen in the target absent condition. The increase in the 

shape parameter suggests that the distribution becomes more normal-like as the set size 

increases, although it is by no means a normal distribution, since the Weibull is only 

really normal-like when the shape is a little over three and a half, while the shape 

parameter it only reached two in the search condition. In addition, the shape seemed to 

plateau at a set size of twelve and did not increase further at eighteen distractors. 

Although this change does reflect a reduction in the skew of response time distributions 

(i.e. they are more symmetrical), it is by no means normally distributed. The Weibull is 

considered normal when its shape parameter reaches about 3.4, while the shape of 

response times in the spatial-configuration tasks remained well below such a cut-off.  

Previous research conducted on the response time distributions has demonstrated 

that within visual search paradigms, changes in the mean response time were modulated 

by mean parameter of the Ex-Gaussian distribution (Hockley, 1984). Conversely, the 

variance and skew of the distribution remained constant across set sizes, with no 

significant difference between target present or absent conditions (Hockley, 1984). The 

results from the Ex-Gaussian distribution resemble greatly the results from the current 

Weibull distributional fitting for the conjunction search. The response time distributions 

for the feature search and conjunction searches resemble each other greatly, and only 

varied slightly in their minima and scale. The mean difference found by the search slopes 

for each set size was therefore not due to an increase in skew, but a small change in the 

location and overall spread of the response times.  

The lack of a change in the shape of the distributions for the feature and 

conjunction search reflects how similarly distributed the response times were for both 
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conditions in that the proportion of larger response time data as compared to the shorter 

scores remained the same. This is of main interest for that previous work on conjunctions 

of colour and orientation found that they typically elicited the largest slopes amongst 

other conjunction conditions (Treisman & Sato, 1990). Although these slope values, 

which are similar to our own, would of typically lead to infer a serial architecture of 

search for conjunction stimuli, the large amount of overlap between the feature search 

and conjunction search response times, in addition to the lack of change in the actual 

shape of the distributions would seem to suggest that they are only slightly shifted 

version of each other. Dual architecture models, which argue the involvement of two 

different mechanisms in search were based off effects measured from mean response 

times slopes, which as can be seen in figure 9, seem very distinctive from one another as 

set size increases and as a function of target presence. Yet, assessing the entire 

distributions has demonstrated that although the mean differences seemed far apart, the 

distributions overlapped greatly, suggesting more similarity between search conditions 

than previously demonstrated by only analysing the mean values. Subsequently, it would 

seem unlikely that two completely different mechanisms would elicit such similarities in 

response times.  

Scarcity of changes in the shape parameter of the Weibull distribution seemed to 

support a single architecture of search for both feature and conjunction stimuli. 

Therefore, the increase in the shape parameter in the spatial configuration search could 

indicate another architecture is being used to complete the task. Although one may 

implicitly assume this architecture would be serial, it is difficult to actually support such 

a claim. Convolving multiple exponential distributions to mimic the cycles of a serial 
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search, as done by Bricolo and colleagues (2002) can only increase the shape of the 

distribution (Cousineau et al., 2002). Therefore, convolving three exponential 

distributions produces an asymptotic distribution of type III, such as the Weibull 

distribution, which will have a shape value of three. However, it should be noted that the 

measured shape values within our current datasets (both Wolfe’s and our own) and in 

Logan’s (2002) memory search data never surpass two (Cousineau et al., 2002). 

Consequently, although a convolution of multiple exponential functions can replicate the 

individual cycles of serial search as demonstrated by Bricolo and colleagues (2002), these 

cycles do not seem to occur within our datasets. The shape parameter of a distribution 

will inflate a function of the number of convolutions involved in best fitting the data. 

Bricolo and colleagues (2002) found that the number of exponential functions required to 

fit her data followed the number of distractors minus one. Therefore, in a set size of eight, 

seven exponentials function would have been convolved with a Gaussian distribution in 

order to represent the data and demonstrate that each cycle of serial search is responsible 

for an individual amount of time in response time datasets. Yet, such convolutions would 

have largely increased the shape of the distribution, an effect that was not reflected within 

our own analyses, suggesting that such an interpretation of serial search may not be valid 

with the datasets used here. It is possible that a serial mechanism may still be used by the 

observers when completing the visual search task, yet if so, then the serial mechanism 

would have to be dependent in that each cycle of serial search would not be contingent on 

the termination of the previous, or that each would not necessarily reflect an individual 

exponential function (Townsend & Wenger, 2004). 
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In addition to the architecture of search used by participants, the Weibull 

distribution can also aid in identifying the termination rules followed by the participants 

during search. If search is self-terminating, there are some trials that would end quickly if 

participants ended search as soon as they identified the target, and this irrespective of set 

size. This should therefore be reflected in the minimum value of the Weibull distribution 

(Ratcliff & Murdock, 1976; Townsend & Ashby, 1983). We found that for all search 

types, the shift value for target present conditions did not vary as a function of set size. 

There was a small increase of target present shift from features searches to conjunction 

searches, but they remained the same from conjunction to spatial-configuration. As such, 

the shift values would seem to indicate that participants in the target present condition 

followed a self-terminating rule of search. Although the target absent shift values did 

increase as a function of set size, suggestions made by Townsend and Colonius (1997) 

would suggest that it is insufficient evidence towards an exhaustive termination rule. The 

shift value can indicate that the minimum capacity is changing when set size increases, 

but can not describe how the proportion of longer score, which would be indicative of an 

exhaustive termination rule may change as a function of target presence. Including the 

shape parameter, which does describe the proportion of rapid and slower scores within 

the distribution (by describing its skew) demonstrated that the proportions of rapid 

responses and slower responses did not change between target present and absent trials, 

even though the minima of the Weibull was slightly shifted as set size increased in target 

absent conditions (Townsend & Colonius, 1997). As such, it would indicate that an 

exhaustive search termination, in which longer response times should become more 

prominent, would be an unlikely option followed by our participants. Self-termination or 
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target absent trials, guided by a certain factor, which is currently unknown, may have 

guided observers to end their search when a target was absent.  

Orientation feature search. 

Fitting of the Weibull distribution to response times collected in the orientation 

feature search demonstrated similarities to the Wolfe dataset distributional fitting, 

although the shift values did behave differently. In the 30-degree, 20-degree and 10-

degree conditions, the shift of target present response time distributions remained flat, 

which just as previously mentioned would suggest that participants followed a self-

terminating rule, where search ended as soon as they found the target. Target absent 

distributions had shift values that increased with set size, and once more, indicated that 

search termination was exhaustive when the target was absent. Interestingly, the shift 

values for the target absent distributions in the 10-degree condition increased from a set 

size of four to eight, but plateaued when the set size was increased further from eight to 

sixteen. The most likely explanation for the lack of increase in the 10-degree condition is 

due to the large miss and false alarm rates that participants made in this condition. The 

response speed is most likely due to participants guessing on whether or not the target 

was present, rather than them actually being as quick as identifying a target which differs 

by 30-degrees from the distractors, which would seem improbable.  

The scale parameter of the Weibull, which reflects the spread, or the width of the 

distribution increased as a function of set size and search difficulty, demonstrating that 

reducing the difference in orientation between distractors and target increased the overall 

variability of response times. The scale parameter was the only parameter that seemed to 

change systematically as a function of set size and target presence. As such, it would 
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seem that the mean differences from the slope analyses were mostly attributed to 

increases in the spread of the Weibull distribution, and to slight variations in the location 

of the Weibull (shift), and once more, not fully due to a change in the shape of the 

distribution.  

The shape parameter remained constant over the increases in set size for both the 

20 and 10-degree conditions. Similarly to the Wolfe dataset, the shape parameter of the 

orientation feature search did not vary as a function of set size, suggesting that the 

skewness of the response time distribution remained the same. In addition, the shape 

parameter never surpassed values of 2.5. Unlike the Wolfe dataset distributional fitting 

results for the shape parameter, values for target present and absent conditions were 

clearly distinct from one another. Target absent response time distributions seemed to be, 

in general, less skewed than target present distributions. Just as previously mentioned 

when discussing the Wolfe dataset, having such a small shape value is contradicts the 

predictions made from serial architectures (Bricolo et al., 2002; Cousineau et al., 2002; 

Logan, 2002; Treisman & Sato, 1990). Since the shape values for target present and 

target absent searches seemed relatively distinct from each other, but not affected by set 

size, it would seem that the distributions of response times across the three set sizes were 

simply shifted versions of each other, within the target presence conditions. Target absent 

distributions did seem to have a larger proportion of longer response latencies than the 

target present conditions, yet this would not speak of the underlying architecture per se, 

but the actual termination rule, for the mechanism that modulate search is unaware of 

target presence prior to completing the task. The distinction between the proportion of 

scores lying in the upper end of the distribution between target present and absent 
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searches would suggest that participants followed an exhaustive termination rule in target 

absent conditions (Townsend & Colonius, 1997).  

Previous distributional analyses of response time data found that, depending on 

the type of memory search (Ratcliff & Murdock, 1976; Hockley, 1984), or other 

cognitive paradigms (Heathcote, 1991; Penner-Wilger et al., 2002) changes in mean 

response times could be either fully attributed to the decreases in the skew of the 

distribution, or to its actual location (µ in the Ex-Gaussian, or θ with the Weibull). Mean 

response times used to generate search slopes reflect not a change in the location of the 

response time distribution but a tendency for the distribution to be more normally 

distributed in memory search experiments (Ratcliff & Murdock, 1976; Hockley, 1984). 

Visual search experiments, as demonstrated by Hockley (1984), can attribute changes in 

the mean response time to a change in the location parameter of the distribution. The 

asymmetry in the results of different tasks illustrates the ability for distributional fitting to 

distinguish the mechanisms that are used in different visual paradigms which would 

normally elicit similar mean response time slopes (Hockley, 1984). Assessing parameter 

changes in distributional fitting can therefore indicate how the response times are changes 

as a function of the independent variables used in a more useful and informative way than 

a slope analysis.  

Over the four different search types investigated here, from the Wolfe dataset and 

our own, we consistently found that the shape parameter did not change in most 

conditions (or had overlapping confidence intervals). Target absent distributions had a 

shape parameter of about two in the most difficult conditions. The stability of the shape 

parameter of the Weibull distribution was even greater in target present conditions, where 



 

 85 

it remained flat across all set sizes, for all the search conditions presented here. If visual 

search mechanisms would shift from an unlimited capacity parallel mechanism at one 

condition to a drastically reduced in capacity serial search should be reflected in the 

proportions of longer response times within the response time distribution. In a parallel 

mechanism, longer response times should occur rarely, while in a serial search, it should 

be much more common to have much slower response times, something that should be 

reflected in the shape parameter of the Weibull distribution. Thus, we believe that the 

lack of change in the shape of a distribution, maintaining the skew, over varying set sizes 

is evidence for a continuum of search and not for a dichotomous architecture as 

previously suggested (Treisman & Gelade, 1980; Wolfe, 1998). The cyclical nature of 

serial search would have a much larger impact on the shape of the distribution, for as 

described by Bricolo and colleagues (2002) it can be best represented as an additive 

convolution process of exponential distributions. Yet these multiple convolutions (most 

likely one cycle per item in the array) would increase the shape of the Weibull 

distribution (Cousineau et al., 2002), making it more normal like as the set size increases, 

which was not observed in our data (Townsend & Ashby, 1983; Townsend, 1991; 

Townsend & Wenger, 2004). Since the shape parameter did not change as a function of 

task, target presence (Wolfe dataset) or set size, it is unlikely that a serial mechanism is 

involved in the response times collected here. Keeping model mimicking in mind, if 

search was somewhat serial within our datasets, then each cycle would have to be 

dependent, and contribute much less than what would be expected from the research 

conducted by Bricolo and colleagues (2002; Cousineau et al., 2002).  
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Conclusions 

The independent cycles of serial search therefore does not seem to be supported 

by the Weibull distributional analysis. Henceforth, it may be more plausible to assume a 

parallel architecture of search when looking at the results of the Weibull parameters for 

the orientation feature search task, a result supporting previous findings of parallel search 

for orientated targets, even though response times were set size dependent (Baldassi & 

Burr, 2000).  

Whether or not the capacity of the model is unlimited or limited can be inferred 

from the shift parameter of the Weibull distribution. Since the shift parameter is an 

estimation of the shortest possible time to perform the search, it can speak towards the 

minimum capacity of the architecture at hand (Townsend & Colonius, 1997). This would 

mostly be from the target absent shift values for target present trials typically don’t reflect 

how long it would take to search an entire array (due to the high probability of finding a 

target at the beginning of a trial). Since we found increases across set sizes in the target 

absent shift values, and that the shape parameters does not support the involvement of a 

serial architecture, we believe that a limited-capacity model of visual search would be 

best suited at explaining the results found from our distributional analysis. Limited-

capacity models describe a simultaneous accumulation of information over time until a 

specific threshold is reached, and a target present or an absent answer is given (either 

with a single, or multiple accumulators; Ratcliff & Rouder, 1998; Ratcliff, 1973; 

Townsend & Ashby, 1983). If enough evidence were accumulated for a target presence 

or lack there of early on, then participants following a self-terminating rule would end the 

search and answer, making the target present and absent distributions overlap greatly, as 
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it was found here. In addition, limited-capacity parallel models account for set size 

effects through the limited amount of resources and how they affect the speed at which 

the accumulator collects information when set size increases (Ratcliff, 1973; Ratcliff & 

Rouder, 1998; Townsend & Ashby, 1983; Townsend & Wenger, 2004).  

A limited-capacity parallel approach to visual search does seem to conflict with 

previous results which demonstrated a serial mechanism involved in visual search when 

the task is quite complex (Bricolo et al., 2002; Sung, 2008). The differences found 

between the current results and the previous findings of serial search in Bricolo and 

colleagues (2002) may most likely be due to the stimulus and therefore the overall 

difficulty of the task. The slope values reported by Bricolo and colleagues (2002) were 

quite variable and reached values as high as 604 ms per item, while the slopes values 

measures here never surpasses 160 milliseconds per item in the orientation search task or 

95 milliseconds per item in the Wolfe dataset. When dealing with the extreme slope 

values presented by Bricolo and colleagues (2002), it is evident that an incredibly slow 

process, typically described as a serial mechanism, would be responsible for the visual 

search task, while tasks which demonstrate faster responses could easily be explained by 

a parallel mechanism (Sung, 2008).  

Limitations and Future Research 

Although the shape parameter of the Weibull distribution supported the use of a 

single architecture to complete both the visual search paradigms (our own orientation 

feature search and Wolfe’s dataset), the shape parameter may be subject to model 

mimicking, and consequently indicative of either a serial or parallel architecture. For a 

serial search to generate the values for the shape parameter as we found here, it would 
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have to be a dependent process in which investigation of a future target is not dependent 

of the termination of the previous investigation (Townsend & Ashby, 1983; Townsend & 

Wenger, 2004). As a consequence, the results would greatly resemble the expected 

results of a parallel architecture. However, in all theory and measurements, assumptions 

must be made when characterizing the patterns of results, and associating them with a 

specific architecture (Townsend, 1990). Using a distributional analysis, which better 

segregates data into individual components may aid in reducing the number of 

assumptions required to associate a pattern of results with architecture. In addition, there 

are techniques that can aid further to disassociate which of the two architectures, serial or 

parallel, may be involved in visual search (for review, see Townsend, 1990). Of main 

interest when using a distributional analysis is the possibility of cognitive reflectance 

within the parameters of the distribution, as suggested by Rouder et al., (2005). Although 

a direct association of cognitive properties to parameters at the moment would be an 

unwise approach to differentiating between architectures responsible for search, 

developing paradigms that would directly target a specific process, and assessing how 

parameters may change, could lead to a better understanding of how a distribution 

changes based on the cognitive demands or mechanisms involved (Rouder et al., 2005; 

Townsend, 1990). 

The analysis applied here focused on a limited subset of the currently existing 

search paradigms. Colour feature searches, such as the one tested within the Wolfe 

dataset, are known to be more complex. Conjunction searches of various combinations 

can also elicit various search slopes, and therefore lead to different, or perhaps similar 

changes to the parameters of the Weibull distributions as the ones found here. Expanding 



 

 89 

the use of the Weibull distribution to other search paradigms, such as conjunction 

searches of various difficulty, could greatly aid in gaining a larger understanding of how 

the parameters of the Weibull distribution vary under such circumstances. 

Distributional fitting requires a large number of trials for the fitting procedure to 

be reliable and indicative of any possible effect. Consequently, collecting the required 

amount of data can be tedious for the researchers and participants, leading to longer hours 

of participation and possibly fatigue. Such demands are most likely responsible for the 

limited number of datasets currently existing with enough trials to allow distributional 

fitting. Although long experiments may be more complicated to manage, we strongly 

believe that such an investment may be beneficial to future investigations visual search. 

As demonstrated earlier, simpler investigations of response times, predominantly search 

slopes, are not an accurate depiction of the effects being measured, and as such, the 

methodological convenience of small datasets do not out way the accuracy of 

distributional analyses. 

The error rates in the orientation feature task were quite high when compared with 

the previous visual search literature (Wolfe et al., 2010). The 10-degree orientation task 

elicited nearly a 50% miss rate, indicating that participants missed the target in almost 

half to the trials in which it was present. Such high error rates could be due to the cortical 

organization of simple cells in the primary visual cortex. As demonstrated by Hubel and 

Wiesel (1959), simple cells in the visual cortex are selective to specific orientations, with 

receptive field size varying from 4 to 10 degrees of visual angle. Consequently, although 

we do have an intrinsic ability to detect vertical orientations (Baldassi & Burr, 2000), 

detecting small deviations for vertical, such as the 10-degree condition presented here 
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would most likely generate the same strength of responses between cells sensitive to 

vertical and slightly tilted orientations, leading to a large miss rate on behalf of the 

participants. Evidently, future research with the orientation feature search paradigm 

should ensure that such high error rates are avoided, either by affording appropriates 

amount of training or by actively monitoring the error rates from the participants as they 

are completing the task.  

In addition, the fitting procedure used here was a modification of a Maximum 

Likelihood Estimation procedure, using the Nelder-Mead simplex algorithm found in the 

optimization toolbox in MATLAB. Yet, it has been shown that when sample sizes for the 

fitting procedure are small, MLE can underestimate or overestimate the true population 

parameters of the Weibull distribution (Cousineau, 2009a). Other fitting procedures, such 

as those offered by Cousineau (2009a) can reduce this bias in estimating population 

parameters, such as a weighted-MLE procedure. The weights are used to nullify biases, 

and two of the weights used in the fitting procedure depend solely on sample size. 

Although the weighted-MLE is an advantageous alternative, properties, which are 

described for all sample sizes, are not for asymptotic cases, such as the Weibull 

distribution, making its implementation complex. 

Estimating the parameters of the response time distributions can be an informative 

tool when trying to properly describe the underlying architecture of the search by 

assessing how the skew or the location of the distribution may change as a function of 

target presence and set size. Evidently, the usefulness of characterizing the shape of 

response time distributions is not limited to visual search paradigms. As previously 

demonstrated, they have been used in other cognitive paradigms in order to clarify or 
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falsify effects typically supported by slopes of response time, or NHST analyses. 

Previous literature has predominantly focused on analyses using the Ex-Gaussian 

distribution, and therefore our use of the Weibull may be questioned. There are other 

asymptotic distributions that follow the exponential component of response times that 

could fit the data as well, and as such, choosing a single distribution to fit and describe 

the data may seem limited in scope. It is true that many other distributions can 

characterize the skew of response time distributions (for review, see Palmer et al., 2011), 

and the Weibull is only one of possibilities. Of primary importance when testing response 

times, as suggested by Townsend and Wenger (2004) is to approach the analysis in a 

statistically sound and theoretically sound approach. We chose the Weibull distribution, 

as its properties can properly describe limited capacity race models in visual search, the 

architecture of visual search we believe to be strongly involved in target identification 

(Cousineau et al., 2002). Other distributions may better characterize the theoretical 

implications of other domains of cognition, and should therefore be explored. 

In addition to using distributional fitting within other fields of cognitive sciences, 

using the Weibull distribution in future modelling of visual search would also be of great 

interest. Distributional fitting can demonstrate that the parameters of the Weibull 

distribution vary according to search difficulty and could possibly reflect underlying 

cognitive processes that are of prime interest when modelling visual search. Further 

investigations into the possible applications of the Weibull are required prior to such 

objectives; of primary interest would be the shape parameter of the distribution. As 

previously mentioned by Cousineau and colleagues (2002) and Logan (1992) and observe 

here, it seems that the shape of the Weibull distribution when fitting response time data 
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from visual search never really exceeds values of about two, even in very complex 

searches were skew is expected to be greatly reduced since the distribution should 

contain larger scores. Cousineau and colleagues (2002) thus considered the shape 

parameter as more of a constant than a free-parameter, making the modelling of visual 

search from the Weibull distribution a two-free and one-constrained parameter response 

model.  

Distributional fitting of response time distributions is not a new concept in the 

analysis of response time data, and has been used multiple times before, and in many 

different types of cognitive paradigms (Ratcliff & Murdock, 1976; Heathcote et al., 1991; 

Hockley, 1984; Logan, 1992; Penner-Wilger et al., 2002; Rouder & Speckman, 2004; 

Townsend, 1990; Van Zandt, 2002). Endeavours in the use of distributional analyses 

have typically been brought on by the limited information gained from typical analyses of 

response times, such as slopes and their ratios between target present and target absent 

conditions. Here, we proposed the use of the Weibull distribution when fitting response 

time data, a distribution, which to our knowledge, has not been used in such analyses 

before. Although fitting a distribution to data can seem problematic, for it can enforce a 

belief of direct cognitive interpretations, the use of characterized distribution remains 

more informative when approached correctly. Future research in the parameters of the 

Weibull distribution, including models of visual search possibly based on the Weibull 

might lead to gaining a better understanding of how the parameters may reflect certain 

properties of cognition (Rouder et al., 2005).  

The parameters of the Weibull distribution approached as a descriptive analysis of 

response time data in an effort to one, assess how these parameters changed under the 
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varying conditions of search, and how the parameters could better inform us on the 

architecture of search as opposed to the mean response time analyses has been sufficient 

and informative, without attributing direct cognitive implications to the parameters. 

Distributional analyses can greatly aid in analysing results of search, and do so by 

encompassing the skew of response time distributions, permitting an in depth analysis of 

searched effects. As such, it is strongly recommended that others consider the use the 

Weibull distribution when analysing their results from visual search paradigms. Although 

over-interpreting parameters of response time distributions may be ill advise, a 

descriptive statistics approach can be quite informative in understanding the typical 

effects of visual search. The shift, scale and shape parameter are meaningful 

characteristics, and could be, ultimately, used as an ANOVA commonly would, with the 

added bonus of a more realistic and meaningful result than a mean response time.  
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Tables 

Table 1 

Individual Kolmogorov-Smirnov Statistics of the Wolfe Dataset 
 

Feature Search 
 

Conjunction Search 
 Spatial 

Configuration 
Search 

 

Ss 3 6 12 18 
 

3 6 12 18 
 

3 6 12 18 

1 0.13 0.16 0.12 0.13  0.34 0.30 0.31 0.31  0.34 0.49 0.55 0.62 

2 0.27 0.28 0.26 0.20  .05* 0.18 0.30 0.36  0.21 0.44 0.66 0.69 

3 0.53 0.49 0.43 0.34  0.16 0.29 0.39 0.50  0.45 0.64 0.66 0.63 

4 0.15 0.10 0.08 .07*  0.31 0.46 0.52 0.49  0.25 0.45 0.53 0.48 

5 0.10 .03* 0.11 0.12  0.39 0.54 0.52 0.47  0.28 0.38 0.38 0.44 

6 0.35 0.26 0.21 0.17  0.38 0.37 0.43 0.55  0.33 0.28 0.38 0.35 

7 0.11 0.10 .08* 0.14  0.30 0.34 0.43 0.43  0.25 0.58 0.66 0.63 

8 0.34 0.21 0.16 0.11  0.43 0.48 0.53 0.54  0.30 0.33 0.49 0.46 

9 0.17 0.12 .06* .06*  0.20 0.21 0.26 0.25  0.26 0.51 0.65 0.69 

10 - - - -  0.29 0.34 0.55 0.72  - - - - 

Note. All values not marked by an asterix were statistically significant at an α level = 
0.05. The second row represents the set size for each search condition. Ss = Subjects. 
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Table 2 

Individual Kolmogorov-Smirnov Statistics of the Orientation Feature Search 
 30-Degree  20-Degree  10-Degree 
S
s 4 8 16 

 
4 8 16 

 
4 8 16 

1 0.54 0.54 0.58  0.61 0.55 0.51  0.46 0.51 0.54 

2 0.55 0.71 0.60  0.69 0.64 0.62  0.52 0.51 0.53 

3 0.51 0.60 0.81  0.62 0.63 0.76  0.54 0.57 0.50 

4 0.52 0.54 0.61  0.52 0.49 0.45  0.40 0.42 0.35 

5 0.34 0.40 0.62  0.49 0.54 0.54  0.33 0.22 0.34 

6 0.31 0.31 0.24  0.45 0.34 0.31  0.52 0.39 0.48 

7 0.49 0.63 0.59  0.67 0.63 0.76  0.41 0.57 0.57 

8 0.62 0.71 0.78  0.39 0.53 0.58  0.39 0.55 0.53 

9 0.61 0.56 0.71  0.55 0.56 0.61  0.41 0.37 0.37 
1
0 0.59 0.62 0.68  0.56 0.60 0.62  0.43 0.35 0.47 

Note. All values were statistically significant at an α level = 0.05. The second row 
represents the set size for each search condition. Ss = Subjects. 
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Table 3 

Individual Χ2 Statistics for the Fits of the Wolfe Data Set (Target Absent) 
 Feature Search  Conjunction Search  Spatial Configuration 

Search 

Ss 3 6 12 18 
 

3 6 12 18 
 

3 6 12 18 
1 1.17 0.95 1.04 1.05  0.91 1.06 0.92 .75  0.71 0.34 0.17 0.12 

2 0.94 1.03 1.42 1.01  1.13 1.33 0.76 0.62  0.71 0.42 0.30 0.20 

3 2.75 3.05 3.04 2.49  0.75 0.45 0.24 0.12  0.32 0.20 0.12 0.10 

4 0.86 0.92 0.94 0.84  2.43 1.76 1.59 1.19  0.35 0.25 0.18 0.15 

5 1.86 1.37 1.36 1.49  0.97 0.80 0.95 0.50  0.46 0.36 0.23 0.13 

6 2.22 2.26 2.10 2.16  1.07 0.71 0.27 0.17  0.80 0.45 0.24 0.18 

7 1.18 1.36 1.43 1.38  1.08 0.78 0.60 0.49  0.53 0.26 0.14 0.12 

8 1.08 1.03 1.04 1.8  0.87 0.67 0.50 0.28  0.67 0.24 0.10 0.07 

9 1.18 1.30 1.23 1.14  1.13 0.85 0.58 0.60  0.59 0.32 0.18 0.12 

10 - - - -  1.25 0.95 0.36 0.17  - - - - 
Note. Ss = Subjects. 
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Table 4 

Individual Χ2 Statistics for the Fits of the Wolfe Data Set (Target Present) 
 Feature Search  Conjunction Search  Spatial Configuration 

Search 

Ss 3 6 12 18 
 

3 6 12 18 
 

3 6 12 18 
1 1.08 1.07 1.28 1.14  1.44 1.07 1.04 0.94  1.08 0.60 0.23 0.18 

2 1.28 1.17 1.25 1.31  1.41 1.21 0.81 0.79  0.90 0.64 0.31 0.26 

3 2.76 1.74 1.95 1.62  0.87 0.81 0.63 0.46  0.65 0.30 0.15 0.13 

4 1.16 0.96 0.87 1.02  2.51 1.95 1.34 1.20  0.44 0.38 0.24 0.20 

5 1.69 1.65 1.32 1.70  1.29 1.09 1.15 0.67  0.51 0.35 0.16 0.12 

6 2.50 1.88 1.83 1.88  0.97 0.75 0.52 0.37  0.88 0.53 0.44 0.29 

7 1.19 1.11 1.04 1.11  1.11 0.99 0.77 0.62  0.60 0.39 0.24 0.13 

8 1.68 1.67 1.44 1.21  1.19 0.76 0.66 0.58  0.66 0.40 0.23 0.17 

9 1.47 1.38 1.30 1.42  1.03 1.02 0.93 0.68  0.81 0.47 0.26 0.24 

10 - - - -  1.11 1.22 0.72 0.71  - - - - 
Note. Ss = Subjects. 
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Table 5 

Individual Χ2 Statistics for the Fits of the Orientation Feature Search (Target Absent) 
 30-Degree  20-Degree  10-Degree 

Ss 4 8 16 
 

4 8 16 
 

4 8 16 
1 0.01 0.03 0.03  0.01 0.04 0.06  0.05 0.06 0.08 

2 0.01 0.03 0.02  0.01 0.05 0.03  0.02 0.08 0.10 

3 0.01 0.02 0.04  0.02 0.03 0.05  0.04 0.06 0.14 

4 0.03 0.04 0.04  0.05 0.05 0.04  0.07 0.08 0.08 

5 0.02 0.03 0.02  0.03 0.05 0.03  0.05 0.08 0.10 

6 0.01 0.02 0.02  0.02 0.03 0.03  0.04 0.06 0.05 

7 0.06 0.12 0.07  0.08 0.02 0.14  0.10 0.27 0.22 

8 0.02 0.03 0.02  0.04 0.04 0.02  0.08 0.08 0.06 

9 0.01 0.02 0.03  0.03 0.02 0.05  0.08 0.04 0.09 

10 0.04 0.03 0.02  0.05 0.03 0.04  0.08 0.07 0.09 
Note. Ss = Subjects. 
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Table 6 

Individual Χ2 Statistics for the Fits of the Orientation Feature Search (Target Present) 
 30-Degree  20-Degree  10-Degree 

Ss 4 8 16 
 

4 8 16 
 

4 8 16 
1 0.02 0.02 0.04  0.03 0.05 0.09  0.04 0.10 0.17 

2 0.06 0.05 0.02  0.04 0.08 0.10  0.04 0.20 0.14 

3 0.02 0.02 0.08  0.04 0.04 0.13  0.06 0.11 0.25 

4 0.02 0.03 0.03  0.03 0.05 0.06  0.09 0.13 0.14 

5 0.05 0.02 0.03  0.05 0.05 0.08  0.08 0.09 0.12 

6 0.01 0.02 0.03  0.02 0.04 0.07  0.04 0.07 0.09 

7 0.03 0.07 0.09  0.04 0.10 0.15  0.09 0.22 0.31 

8 0.02 .02 0.06  0.03 0.08 0.11  0.08 0.13 0.15 

9 0.01 0.02 0.05  0.03 0.04 0.07  0.06 0.08 0.15 
1
0 0.01 0.02 0.04  0.04 0.07 0.08  0.13 0.12 0.19 

Note. Ss = Subjects. 


