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Abstract. The electron states in graphene-based magnetic dot and magnetic ring
structures and combinations of both are investigated. The corresponding spectra are
studied as a function of the radii, the strengths of the inhomogeneous magnetic field
and of a uniform background field, the strength of an electrostatic barrier, and the
angular momentum quantum number. In the absence of an external magnetic field we
have only long-lived quasi-bound and scattering states and we assess their influence on
the density of states. In addition, we consider elastic electron scattering by a magnetic
dot, whose average B vanishes, and show that the Hall and longitudinal resistivities,
as function of the Fermi energy, exhibit a pronounced oscillatory structure due to
the presence of quasi-bound states. Depending on the dot parameters this oscillatory
structure differs substantially for energies below and above the first Landau level.
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1. Introduction

The study of graphene, a single layer of carbon atoms, has become a very active field

of research in nanophysics [1]. It is expected that this material will serve as a basis for

new electronic and opto-electronic devices. For that a control of the electron behaviour,

using, e.g., electric fields, in this two-dimensional (2D) layer is necessary. This task

though is made complicated by the Klein effect according to which Dirac electrons in

graphene can tunnel, upon normal incidence, through any arbitrarily high and wide

electric barrier [2]. Consequently, there are no bound states in electrically created

quantum dots but only quasi-bound states[3, 4, 5], which, however, can have a long

lifetime under certain conditions.

An alternative approach to control the motion of electrons is to use inhomogeneous

magnetic fields which can be created, e.g., by the deposition of nanostructured

ferromagnets [6, 7]. The resulting inhomogeneous magnetic structures, mainly magnetic

barriers or steps, are able to confine Dirac electrons in graphene [8, 9, 10, 11, 12, 13, 14].

In particular, the spectra of simple dots and rings were studied in Refs. [8, 15, 16]

and electron scattering by a magnetic ring in Ref. [17]. With the exception of

Ref. [10] electrostatic barriers were not included in these treatments. However, these

inhomogeneous structures are relatively simple and a detailed account of the resulting

bound or quasi-bound states for more complex profiles is, to our knowledge, missing.

Furthermore, most of the results were discussed as a function of the strength of the

inhomogeneous magnetic field which is not easy to vary experimentally. Here we

investigate the effect of an external homogenous magnetic field, which can be tuned

experimentally, on the electron states.

In more detail, we consider finite-size magnetic structures in which the magnetic

field is inhomogeneous and treat bound, quasi-bound, and scattering states with

emphasis on the latter. We do that for a magnetic dot and a ring in the presence

or absence of a tunable external homogeneous magnetic field. In addition, we study a

specific profile in which a dot-shaped magnetic field profile with field −B, is surrounded

by a ring-shaped magnetic field profile, of finite width, with field B and evaluate the

quasi-bound states. Such inhomogeneous magnetic field profiles can be realized by

having a magnetic vortex piercing the graphene layer or by covering graphene with a

type I superconductor with a circular hole or annulus placed in a perpendicular magnetic

field. Another way is by deforming the lattice locally; this results in a local strain which

in graphene can induce an effective inhomogeneous magnetic field [18, 19]. We also

include in the calculation electrostatic potential barriers.

In previous work it was shown that it is impossible to confine 2D electrons in a

magnetic dot, in contrast to semi-infinite magnetic structures, since all Landau levels

(LLs) convert themselves into unbound states. Nevertheless, long-living, quasi-bound

states can be present [20]. In view of that we carry out a similar study but for more

complex magnetic field profiles, in the presence or absence of an external magnetic

field, and show that in its presence bound states do exist. We focus on the behavior of
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the quasi-bound states and show that they affect various properties, e.g., the density

of states and the longitudinal and Hall resistivities. In particular, we consider electron

scattering by a magnetic dot with zero average B and evaluate the Hall and longitudinal

resistivities as a function of the electron energy.

The paper is organized as follows. In Sec. 2 we present the basic formalism and

discuss briefly the results for a homogeneous magnetic field profile. In Sec. 3 we apply

this formalism to the inhomogeneous magnetic field profiles of a magnetic dot and a

magnetic ring, as well as to more complex profiles in Sec. 4, and focus on the spectra and

the local density of states. We treat in some detail electron scattering by a magnetic dot,

in which the average field B vanishes, in Sec. 5 and show that the Hall and longitudinal

resistivities oscillate with the Fermi energy. Our conclusions follow in Sec. 6.

2. Basic formalism

We consider electrons in graphene in a perpendicular magnetic field B. The relevant

eigenvalue problem is

{H − E}Ψ(r) = 0. (1)

The Hamiltonian of a massless Dirac electron, with momentum p, near the K point is

given by

H = vF σ · (p + eA) =


 0 −ip+ + A−

−ip+ + A+ 0


 (2)

where p± = ∂/∂x ± i∂/∂y, σ = (σx, σy) the Pauli matrices and A± = Ax ± iAy,

A = (Ax, Ay) the vector potential and vF the Fermi velocity. We obtain the Hamiltonian

near the K′ point by replacing σ with σ∗ in Eq. (2). From now on we restrict ourselves to

electron states near the K point because they are decoupled from those of an electron

near the K′ point of the Brillouin zone. To simplify the notation we introduce the

dimensionless variables B → B0B, A → B0RA, t → tR/vF , ~r → R~r, ~v → vF~v, E →
E0E, E0 = h̄vF /R, γi = eBiR

2/2h̄. R is a typical length scale of our problem taken e.

g. equal to the radius of the dot.

In view of the circular symmetry of the magnetic and potential profiles we will

use polar coordinates. This is accomplished by the relations x ± iy = re±iϕ and

p± = e±iϕ[∂/∂r ± (i/r)∂/∂ϕ]. We look for solutions that are periodic in the angle

ϕ. We can write the two-component wave function Ψ in the form

Ψ =


 ψ1(r, ϕ)

ψ2(r, ϕ)


 = eimϕ


 a(r)

ieiϕ b(r)


 (3)

with m = · · · ,−2,−1, 0, 1, 2, · · ·. Combining Eqs. (1) and (3) we find that the

components a(r) and b(r) must satisfy the following coupled first-order differential

equations

{d/dr + g(r) + (m + 1)/r} b(r) = E a(r), (4)

−{d/dr − g(r)−m/r} a(r) = E b(r), (5)
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with g(r) = γir + si/r where the coefficients γi and si are determined by the specific

magnetic field profile. It is convenient to transform Eqs. (4) and (5) to a single, second-

order equation. We readily find that the equation for the component b(r) reads
{

1

r

d

dr
r

d

dr
+

[
− γ2

i r
2 − P 2

i /r2 + Q2
i

]}
b(r) = 0, (6)

with P 2
i = (si +m+1)2 and Q2

i = E2−2γi[si− (m+1)]. A similar equation is obtained

for the component a(r). The solution of Eq. (6) is

b(r) = r|Pi|e−|γi|r2/2{AiM (αi, βi, zi) + BiU (αi, βi, zi)}, (7)

with αi = (|Pi|+ 1)/2−Q2
i /4|γi|, βi = |Pi|+ 1, and zi = |γi|r2. Here M(...) and U(...)

are the confluent hypergeometric functions [21]. From Eq. (4) we obtain

a(r) =
1

E

[
2|γi|r d

dzi

+
(
(γi − |γi|)r + 2|Pi|/r

)]
b(r). (8)

The solution for the component a(r) in a homogenous field B, with the unit of length

R taken equal to the magnetic length `B = (h̄/eB)1/2 (i. e. γi = 1/2, si = 0 and

E0 = h̄vF /`B), can be written as

a−(r) = Ar|m|e−r2/4M
(
(|m|+ m + 2− E2)/2, |m|+ 1, r2/2

)
. (9)

The above solution is finite in all regions provided the first argument of the function

M(...) is a negative integer or zero, namely, (|m|+ m + 2−E2)/2 = −n, n = 0, 1, 2, · · ·.
This gives the energy E ≡ Enm

Enm =
√

2n + |m|+ m + 2. (10)

Thus, we have the standard expression for the LLs of a Dirac electron starting with the

level

E00 =
√

2. (11)

This is not the lowest LL. Thus, let us consider the equation for the component b(r).

Its solution reads

b(r) = Ar|m+1|e−r2/4

×M
(
(|m + 1|+ m + 1− E2)/2, |m + 1|+ 1, r2/2

)
. (12)

Setting the first argument of M equal to a negative integer −n gives

Enm =
√

2n + |m + 1|+ m + 1. (13)

This expression for the LLs coincides with that given by Eq. (10) except for the lowest

level which is

E0,−1 = 0. (14)

These chiral levels are topologically protected by the Atyah-Singer index theorem[22].

From the above derivations it follows that zero energy states reside only in one of the

two sublattices of graphene which are determined by the sign of the magnetic field. One

consequence of that is that the lowest LL for Dirac electrons has half the degeneracy
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of the other LLs whether the problem is solved in the Landau gauge [23] or in the

symmetric gauge. It also holds for the original Dirac equation, involving the real spin of

an electron and not the pseudospin as in graphene, in either gauge [24]. In particular,

the number of zero energy states is independent of the shape of the magnetic field profile

and is proportional to the total magnetic flux [22, 25, 26].

B1

B2

-|B |1

B2

Figure 1. Two configurations of a magnetic dot, created by a field B1, in an external
magnetic field B2. The corresponding magnetic field (black lines) and vector potential
(red lines) profiles are shown in the right panels.

3. Bound states

3.1. Magnetic dot

Quasi-bound states in a magnetic dot were treated before in Ref. [20]. Here we focus on

the bound states that occur when the dot is placed in a uniform magnetic field; in doing

so we generalize the results of Ref. [8] valid for zero background field. The situation is

depicted in Fig. 1 and the corresponding vector potential is given by

A(r) =





γ1r; 0 < r < 1,

γ2r + (γ1 − γ2)/r; r > 1,
, (15)

where r is the radial coordinate in units of R, the dot radius. Then the solutions for

b(r) in the two regions, inside the dot r < 1 and outside it r > 1, are

b(r) =





Ar|P1|e−|γ1|r2/2M (α1, β1, z1) ; 0 < r < 1,

Br|P2|e−|γ2|r2/2U (α2, β2, z2); r > 1.
(16)

Those for the component a(r) can be found from Eq. (4).

To investigate possible bound states we match the wave functions at r = 1 using

a−(1) = b−(1), a+(1) = b+(1). This leads to the nonlinear equation

[b+(r)a−(r)− b−(r)a+(r)]r=1 = 0, (17)

where +(−) refers to region inside (outside) the dot. The solution of this nonlinear
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Figure 2. (a) Energy spectrum versus external magnetic field Bext for the circular
magnetic field profile shown in the inset with B0 = −2T , R = 50 nm, and −1 ≤ m ≤ 1.

equation gives us the energy spectrum of the bound states. The numerical results as a

function of the background magnetic field Bext are shown in Fig. 2 for three different

values of the angular momentum m. Notice that: i) for |Bext| À |B0| the usual LLs of

electrons in graphene are recovered, and ii) for Bext → 0 there are no bound states as

discussed previously in Ref. [20]. In Fig. 3(a) the energy states are plotted as a function

of the dot radius with the magnetic field inside the dot, chosen as B1 = −B2/2, and the

ratio of the corresponding LLs inside and outside the dot being ELL
out =

√
2ELL

in . This

means that for quantum numbers nout = 2nin the LLs inside and outside the dot have

the same values. Since the magnetic fields inside and outside the dot have opposite sign,

we have bonding and anti-bonding states [29] as is clearly apparent for n = 2 in Fig.

3(a).

As is clear from Fig. 3(a), for R small the electron is mainly outside the dot with an

energy corresponding to a LL determined by the magnetic field outside the dot. When R

increases the bonding state will decrease in energy because it samples a smaller average

magnetic field. The electron state is partially inside and outside the dot. Only when

R is large enough will the electron be localized inside the dot. We show the total wave

function, corresponding to the states marked by open dots in Fig. 3(a), for m = 0,±1 in

Fig. 3(b). For these values of m the electron is on average located around the boundary

at r = R = 30 nm.

Using jx,y = vF Ψ†σx,yΨ, the total angular current is

Jϕ = vF Ψ†(σy cos ϕ− σx sin ϕ)Ψ = vF Ψ†ζϕσyΨ (18)

with ζϕ given by

ζϕ =


 e−iϕ 0

0 eiϕ


 . (19)
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Figure 3. (a) Energy spectrum versus dot radius for the magnetic field profile shown
in Fig. 1 with B1 = −2.5T , B2 = 5 T, and −1 ≤ m ≤ 1. (b) The amplitude squared
of the wave function of the eigenstates, marked by open red dots in panel (a), versus
the radial coordinate for R = 30 nm. The inset shows a classical snake trajectory.

For the special case B2 = −B1 = B we show the two split levels, for m = 0 and 1 in Fig.

4(a) and the angular current Jϕ in Fig. 4(b) for R = 40 nm. Notice that at the edge

r = R = 40 nm, Jϕ is negative (positive) for bonding (anti-bonding) states. The insets

in Fig. 4(b) show schematically the corresponding semi-classical electron trajectories.

In Fig. 5(a) we plot the energy states as a function of the radius for a dot

with positive magnetic field inside and outside the dot. In this case the classical

trajectories inside and outside the dot rotate in the same direction, see inset to Fig.

5(b); consequently, there are no anti-bonding states but only bonding states. The wave

function amplitudes, for three different states, are plotted in Fig. 5(b) for R = 30 nm

and they are rather similar with those shown in Fig. 3(b).

In Fig. 6 the energy states are plotted as a function of the quantum number m for

B1 = −B2 and R = 50 nm. As shown in Fig. 6(a), with increasing m all levels split

into bonding and anti-bonding states. This is not so when B1 = 2.5T and B2 = 5T as
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e

Figure 4. (a) Energy spectrum for the magnetic field profile shown in Fig. 1 with
B1 = −5T , B2 = 5 T, n = 1, and m = 0, 1. The − and + signs denote bonding
and anti-bonding states, respectively. (b) Angular current versus r for the eigenstates
marked by open, red dots in panel (a). The lower (upper) inset shows a schematic
semi-classical interpretation of the bonding (anti-bonding) states.

shown in Fig. 6(b).

In the presence of a constant 2D potential V (x, y) = V Θ(R − r) one has to add

this term in Eq. (2). The analytical form of the wave functions remain the same in

all regions of interest but the eigenvalues do not. Accordingly, the degeneracies shown

in Figs. 3(a) and 4(a) should be lifted. Indeed, this is the case as we show in Fig. 7

where we plot the spectrum as a function of the dot radius for antiparallel fields in (a)

(B1 = −5T , B2 = 5 T), and parallel fields in (b) (B1 = 2.5T, B2 = 5 T) in the presence

of the constant potentials V1 = 20 meV inside the dot and V2 = 0 outside the dot. The

curves shown correspond to m = 0,±1,±2.

We now investigate whether a Dirac electron can have a zero energy state inside

the dot. To find such a state we set E = 0 in Eqs. 4(a) and 4(b). Then the general

solutions are

a(r) ∼ rm+si × eγir
2/2, (20)
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Figure 5. (a) Energy spectrum for the magnetic field profile shown in Fig. 1 with
B1 = 2.5 T, B2 = 5 T, and −1 ≤ m ≤ 1. (b) The wave function for the eigenstates
marked by a dot in panel (a). The inset shows the classical trajectories inside and
outside the dot rotating in the same direction

Figure 6. (a) Dependence of the energy spectrum on the quantum number m in a
magnetic dot with R = 50 nm and for (a) B1 = −5 T and B2 = 5 T and (b) B1 = 2.5
T and B2 = 5 T.
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(a)

(b)

Figure 7. (a) Energy spectrum for the magnetic field profile shown in Fig. 1 with
B1 = −5T , B2 = 5 T, and −2 ≤ m ≤ 2, in the presence of a potential step formed by
V1 = 20 meV and V2 = 0. (b) The same as in (a) with B1 = 2.5T .

IIIIII

Figure 8. An inhomogeneous magnetic field profile involving a ring of width W . As
indicated, the field has the values B0 inside the hole of the ring, B1 in the ring area,
and B2 outside the ring.

and

b(r) ∼ r−m−1−si × e−γir
2/2. (21)
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Figure 9. (a) Energy spectrum as a function of R for the ring shown in Fig. 8 with
B0 = B2 = 3 T, B1 = −3 T for m = 0,±1, and W = 20 nm. (b) Wave function for
the eigenstates marked by dots or squares in the inset of panel (a)

In order to have a finite wave function we have to satisfy the boundary conditions.

First, at r = 0 the wave function should behave as rα (α ≥ 0) and for r → ∞ the

function should decay like r−α (α ≥ 1). These conditions for the component a entail

m ≥ −s1 if r → 0 and γ2 < 0 if r →∞. For the component b(r), these conditions lead

to m ≤ −s1 − 1 for r → 0 and to γ2 > 0 for r →∞.

For a magnetic dot in a homogeneous background magnetic field, the field inside

and outside the dot is different. For example, for γ1 < 0 and γ2 > 0 we have s1 = 0

and s2 = γ1 − γ2. In order to satisfy these conditions a(r) should be zero, otherwise a

divergency occurs at r →∞.

For the second component b the condition reads, m ≤ −1. Then the number of

degenerate, zero-energy states is of order ≈ L2, where L is the size of the sample. Note

that the number of zero-energy states relates to the total magnetic flux which here

diverges because the area of the magnetic dot, as compared to the sample area, is too

small, i. e. L À R, and the magnetic flux is proportional to ≈ L2.
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Figure 10. (a) Energy spectrum as a function of W for the ring shown in Fig. 8 with
B0 = B2 = 3 T, B1 = −3 T for −1 ≤ m ≤ 1, (a) for R = 20nm and (b) R = 50nm.
The thin dashed horizontal black lines show the position of the LLs in a homogenous
magnetic field B = 3T.

3.2. Magnetic ring

Now we look for possible bound states in the magnetic ring shown in Fig. 8. With

R1 = R−W/2 and R2 = R + W/2 the vector potential for this magnetic field profile is

A(r) =





γ1r, 0 < r < R1,

γ2r +
(γ1 − γ2)R

2
1

r
, R1 < r < R2,

γ3r +
(γ2 − γ3)R

2
2 + (γ1 − γ2)R

2
1

r
, r > R2.

(22)

The solutions for b(r) in the three different regions are

b(r) =





Ar|P1|e−|γ1|r2/2M (α1, β1, z1) , 0 < r < R1,

r|P2|e−|γ2|r2/2
[
CM (α2, β2, z2) + DU (α2, β2, z2)

]
,

R1 < r < R2,

Br|P3|e−|γ3|r2/2U (α3, β3, z3), r > R2.

(23)
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Figure 11. (a) The total wave functions for the lowest eigenstates with m = −1,
W = 20, 60, 100 nm and R = 60 nm. (b) and (c) as in (a) for m = 0 and m = 1,
respectively. The insets show the classical trajectories.

h/

Figure 12. Expectation value of the angular momentum Lz/h̄ as function of R for
the ring shown in Fig. 8 with B0 = B2 = 3 T, B1 = −3 T, −1 ≤ m ≤ 1, and W = 20
nm.
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R
W

Figure 13. (a) Energy spectrum as a function of the magnetic field B for the ring
shown in the inset. (b) Energy spectrum for a magnetic ring as a function of an
external magnetic field with B0 = 5 T (see inset). The vertical dashed line indicates
where B0 = −Bext. In both cases R = 60 nm and W = 20 nm.

with αi, βi, and zi as given just below Eq. (6).

The component a(r) is obtained from Eq. (4). We have to satisfy the boundary

conditions at R1 = R − W/2 and R2 = R + W/2 which then results in a non-linear

equation for the energy spectrum. In Fig. 9(a) we plot the bound states obtained for

a ring with B1 antiparallel to B0 and B2 and all of them equal to 3 T. The width of

the ring (W = 20 nm) is fixed and we plot the bound states as a function of R. With

increasing R all bound states approach the LL energies for a homogenous field B = 3T.

The inset shows how the order of the levels is reversed between R = 50 nm and R = 70

nm.

We plot the amplitude of the wave functions in Figs. 9(b) and 9(c) for the states

marked by circle and squares atR = 50 nm and R = 70 nm, respectively. Note that

when R = 50 nm the electron is mainly inside the hole of the ring, but there is a finite

probability to find the electron near the boundaries R = R1 and R = R2. This result

can be understood classically from the presence of snake orbits between regions I and II
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and between regions II and III. Upon increasing R to R = 70 nm the wave functions

are mainly localized inside the hole of the ring r < R −W/2 and only partially in the

ring region R −W/2 < r < R + W/2. For large R the energy levels inside the hole of

the ring are close to the LLs and E(1,1) > E(1,0) > E(−1,0). Because of that their order

shown in the inset of Fig. 9(a), will change with increasing R.

We can also fix R and plot the energy levels as a function of W with W in the range

0 < W < 2R. We show the results for R = 20 nm in Fig. 10(a) and for R = 60 nm

in Fig. 10(b). When W is small (see Fig. 10(a)) the region II in Fig. 8 is narrow and

the electron pushed out of this region. All electron states start from the LLs in region

III (see the black dashed curves in Figs. 10(b) and (c)) and they will increase with

increasing W . However, for large W electrons can be localized in region II and as shown

in 10(b) and (c) all levels converge to the LLs. The energy states for intermediate values

of W are below the LLs and are due to snake orbits localized around the boundaries.

The corresponding total wave functions for fixed R = 60 nm and three values of

W (W = 20, 60, 100 nm) are shown in Figs. 11(a)-(c). With increasing W the electron

probability to be in regions I and II will increase. The insets in Figs. 11(b)-(d) shows

the possible classical trajectories for different cases.

In order to show the non-quantization of the orbital momentum, we calculate the

expectation value of the orbital momentum Lz given by

〈Lz〉 = 〈−ih̄
∂

∂ϕ
〉 = mh̄ + h̄

∫
|b(r)|2dr. (24)

The numerical results for the magnetic ring profile shown in Fig. 8 are plotted in

Fig. 12. As shown, when R increases 〈Lz〉 tends to the quantized value mh̄ while for

intermediate values of R we have 〈Lz〉 > mh̄. For small R the difference 〈Lz〉 −mh̄ can

be very large. Notice that, although our problem is circularly symmetric, Lz is not a

conserved quantity in graphene and the quantum number m corresponds to the operator

Jz given by

Jz = Lz + Sz, (25)

where Sz = h̄σz/2 is the pseudospin. Using Eqs. (25) and (24) we obtain 〈Jz〉 =

(m + 1/2)h̄.

In Fig. 13 we plot the bound states for a ring with B1 = 0 and B0 = B2 = B, as

function of B in (a) and as function of an external magnetic field Bext in (b) with B0 = 5

T. Notice that in Fig. 13(a) we have, for fixed m, several anti-crossings between levels

with different n. These anti-crossings are a consequence of two different tendencies.

On the one hand there exist electron states that are spread out over a large area, for

which the B = 0 ring area is a small perturbation, resulting in energies just below

those of the LLs in a homogenous B field. On the other hand, there are states that

are predominantly localized in the B = 0 ring area and their quantum confinement is

strengthened with increasing B and becomes equal to the one for a hard-wall in the

limit of very large B [31, 32]. When two of such states reach the same energy value they

anti-cross.
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The situation is very different in Fig. 13(b) where the spectrum is shown as function

of a homogenous applied magnetic field. Note that the spectrum is not invariant under

the change Bext → −Bext. For |Bext| À B0 we recover the LLs for a homogenous field

equal to Bext. For intermediate values of Bext the degeneracy of the levels is lifted which

is most pronounced for Bext ≈ −B0. For intermediate Bext values the bound states are

closely related to the classical snake orbits.

R R

RR

Figure 14. (a) A magnetic dot of radius R1 in a field B1 surrounded by an annulus
of radius R2 in a field B2. (b) A magnetic ring profile.

4. Magnetic field profiles of finite extent: quasi-bound states

We now look for possible, long-living quasi-stationary states in graphene for the magnetic

field profiles shown in Fig. 14. Such profiles can be created by a perpendicularly

magnetized ferromagnetic disk placed above a 2DEG [6]. We expect that this is possible

with graphene as well. To account for quasi-bound states one normally solves the time-

dependent Schrödinger equation which is a very complicated problem when compared

to the standard eigenvalue problem. Here we follow the method presented in detail in

Refs. [4, 20] and calculate the local density of states. The idea is to confine the electron

in a large region of finite radius R∞ À R2, with its wave function vanishing at the

border (r = R∞), and treat the problem as a stationary one. The justification is that

the result of measuring, e.g., a tunneling current directed perpendicular to the dot via

a STM tip or the power absorption in near-field infrared spectroscopy, depends on the

average value of the electron wave function in the dot. Therefore, we introduce the local

density of states in a magnetic dot as

ρ(E,m) =
πk

R

∑
n

δ(E − En,m)
∫ ∞

0
rF (r) |Ψ(r)|2dr, (26)

which depends on the electron probability density and the aperture function F (r) which

characterizes the interaction of the electron with the measuring probe. From the fact

that ∆E = k∆k = kπ/R, we can convert the sum over n into an integral and write the

final expression for the local density of states as

ρ(E, m) =
1

2π

∫ ∞

0
rF (r) |Ψ(r)|2dr, (27)
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The integral in Eq. (27) is sensitive to the probability of finding an electron in the

dot and for a quasi-bound state it will exhibit a peak corresponding to the energy of

this state. The width of the peak is proportional to the inverse of the lifetime of this

quasi-bound state. For definiteness we use a Gaussian aperture function,

F (r) = bR2
2e
−br2

, b = R−2
2 ln 10. (28)

2

2

Figure 15. (a) Local density of states ρ(E) versus energy for m = 0,±1 and
B2 = −B1 = 5 T, R1 = 20 nm, and R2 = 50 nm. The wave functions corresponding
to the states marked by circles (squares) in (a) are shown in (b) and (c).

4.1. Magnetic Dot

We consider a magnetic dot in a perpendicular magnetic field B1 surrounded by a field

B2 in a finite region outside it as shown in Fig. 14. Explicitly the field B(r) is given by

B(r) =





B1, 0 < r < R1,

B2, R1 < r < R2,

0, R2 < r < ∞,

(29)
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1

2

2

R  / R
2 1

Figure 16. Quasi-bound states (red thick curves) with orbital momentum m = 0 as
a function of R2/R1 with R1 = 20 nm, B1 = −5 T (see Fig. 14(b)), and B2 = 5 T.
The light-green shaded area is a measure of the inverse lifetime of these states.

2

2

Figure 17. (a) Local density of states ρ(E) versus energy for m = −1, 0, 1, B1 = 2.5
T, B2 = 5 T, R1 = 20 nm, and R2 = 50 nm. The wave functions of the states marked
by squares and circles in (a) are shown in (b) and (c), respectively.
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R  / R
2 1

n = 3

Figure 18. As in Fig. 16 but now for B1 = 2.5 T and B2 = 5 T.

and the corresponding vector potential by

A(r) =
1

r





γ1r
2, 0 < r < R1,

γ2r
2 + (γ1 − γ2)R

2
1, R1 < r < R2,

γ2R
2
2 + (γ1 − γ2)R

2
1, R2 < r < ∞.

(30)

We proceed as in Sec. II and obtain Eq. (4) which we convert into two second-order

differential equations for the components a(r) and b(r). The one for b(r) is again given by

Eq. (7). Explicitly, the solutions for b(r) in the three different regions are, respectively,

b1(r) = Ar|m+1|e−|γ1|r2/2M(α1, β1, z1), (31)

b2(r) = r|m+1|e−|γ2|r2/2 {BM(α2, β2, z2) + CU(α2, β2, z2)} , (32)

and

b3(r) = GJν(|E|r) + HYν(|E|r), (33)

with ν = s3 + m + 1. Jν(z) and Yν(z) are the Bessel and modified Bessel functions,

respectively. The solutions for a(r) are obtained from Eq. (4). The components a(r) and

b(r) obey the following boundary conditions at r = R1 and r = R2: a1(R1) = a2(R1),

b1(R1) = b2(R1), a2(R2) = a3(R2) and b2(R2) = b3(R2). The condition that the wave

function has to vanish for r →∞ leads to G2 + H2 = 1.

In Fig. 15 we plot the local density of states for a finite dot with antiparallel

magnetic fields inside and outside it for two different dot sizes (the structure shown

in Fig. 14(a)). Now the energy states are broadened, i. e., they have a finite lifetime

and no bound states exist. The sharp peaks for m = 0 and m = 1 in Fig. 15(a) are

reminiscent of the previous bonding and anti-bonding states of the n = 1 split level. We

also plot the total wave function for three different energies indicated by squares and

circles, respectively in Figs. 15(b) and (c). We see that when the energy is close to that

of a quasi-bound state the probability of finding the electron inside the dot becomes
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large. Such states are also called resonant states. The energy of these quasi-bound

states for angular momentum m = 0, i. e., for s-wave scattering, are shown in Fig. 16

and, as expected, for R2 À R1 the quasi-bound states will be close to the energy of the

LLs (shown by the horizontal dashed lines in Fig. 16). The width of the resonances in

Fig. 15(a), proportional to the inverse lifetime of these quasi-bound states, is shown by

the shaded areas in Fig. 16.

We also show the numerical results for a magnetic dot, with parallel magnetic fields

inside and outside it, in Figs. 17 and 18. Notice that qualitatively the results are rather

similar except that in Fig. 16 the lowest energy bound state is below the LL result for

R2/R1 < 2 while in Fig. 18 this is above the LL.

4.2. Magnetic Ring

2

2

Figure 19. (a) Local density of states ρ(E) versus energy for m = −1, 0, 1 for the
magnetic ring profile shown in Fig. 14(b) with B = 5 T, R1 = 20 nm and R2 = 50
nm. The wave functions corresponding to the states marked by squares and circles in
(a) are shown in (b) and (c), respectively.

Next we consider the magnetic ring shown in Fig. 14(b); its profile can be

obtained from the previous one by setting B1 = 0. The new magnetic profile is
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B(r) = BΘ[(R2− r)(r−R1)] and the corresponding vector potential profile is given by

A(r) =
γ

r





R2
1, 0 < r < R1;

r2, R1 < r < R2,

R2
2, R2 < r < ∞.

(34)

The solutions for b(r) in the three different regions are, respectively,

b1(r) = AJν1(|E|r), (35)

with ν1 = s1 + m + 1 and s1 = γR2
1,

b2(r) = r|m+1|e−|γ|r
2/2 {BM(α, β, z) + CU(α, β, z)} , (36)

and

b3(r) = GJν2(|E|r) + HYν2(|E|r), (37)

with ν2 = s3 + m + 1 and s3 = γR2
2.

In Fig. 19(a) we plot the numerically evaluated local density of states for three

different quantum numbers m. The total wave function is plotted for two different

cases. When the energy is close to that of a quasi-bound state (b) the electron is

localized inside the ring, cf. Fig. 19(b). When it is not, cf. Fig. 19(c), the electron

does not penetrate the ring area. The results for the energy and width of the resonant

states are qualitatively very similar with those of Fig. 18 and are therefore not shown.

5. Magnetic dot with 〈B〉 = 0

A magnetic dot with zero average magnetic field 〈Bz〉 = 0 is a structure that can be

realized experimentally by depositing, e. g., Dy micromagnets on top of graphene with

an insulating layer in-between to prevent electrical contact; this was previously realized

on top of a GaAs/AlxGa1−xAs heterostructure[27, 28]. We model the magnetic field

profile by a simple step as depicted in Fig. 20. The field B(r) is

B(r) =





B1, r < R1

B2, R1 < r < R2

0, r > R2

. (38)

The condition 〈Bz〉 = 0 is satisfied for B2 = −B1/(R
2
2/R

2
1 − 1). The solutions in the

three different regions are the same as those given by Eqs. (31), (32), and (33).

Such a system can support only quasi-bound states. The numerical results for the

local density of states are shown in Fig. 21 for two different sizes of the magnetic dot

and different quantum numbers m. In contrast with the previous cases we see that for

m ≥ 0 there are pronounced peaks close to zero energy. When the ratio R2/R1 increases

these peaks become sharper indicating long-living, quasi-bound states. Later on we will

show that these states give rise to a pronounced structure in the magnetoresistance and

the Hall resistance. The wave functions corresponding to the high local density of states

are shown in Fig. 21(c) and those at the energy of the first LL in Fig. 21(b).
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Figure 20. Field profile for a magnetic dot with total zero magnetic flux (lower panel).
The upper panel shows a perpendicularly magnetized ferromagnetic disk of thickness
d held a distance h above graphene that could lead to such a profile.

5.1. Zero energy state for a finite magnetic dot

The solution presented in Sec. 3.1 should be modified in the case of a finite magnetic

dot. Here we have three regions and the solution outside the magnetic dot,where B

vanishes, is given by

a(r) ∼ rm+s3 , (39)

and

b(r) ∼ r−m−1−s3 . (40)

In order to have a zero-energy state we should have m ≤ −s3 for the component a(r)

and m ≥ −s3 for the component b(r). From the fact that a(r) is converging in the first

region for m ≥ −s1 and b(r) for m ≤ −s1 − 1, the zero-energy states for the previously

discussed structures, are as follows.

1) Magnetic dot of finite size (cf. Fig. 14(a)). In this case s1 = 0 and

s3 = γ2R
2
2 + (γ1 − γ2)R

2
1 = Φ/φ0, where Φ is the total magnetic flux with φ0 = h̄/e

the flux quantum. Then a(r) and b(r) should satisfy the conditions




a(r) → 0 ≤ m < −[Φ/φ0]

b(r) → −[Φ/φ0]− 1 < m ≤ −1,
(41)

where [Φ/φ0] = n is the largest integer smaller than Φ/φ0. These two conditions cannot

be satisfied at the same time. Then a(r) = 0 for Φ > 0 and the second condition is true.

In order to have zero-energy states we have to limit the angular momentum m for the

second component as −[Φ/φ0] ≤ m ≤ −1. For Φ/φ0 < 0 the first condition is true and

we have to choose m for the first component in the range 0 ≤ m < −[Φ/φ0]. Then we

have a n times degenerate, zero-energy level.
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2) Magnetic ring of finite size (cf. Fig. 14(b)). In this case we have s1 = γR2
1 =

Φ1/φ0 and s3 = γR2
2 = Φ2/φ0. Repeating the procedure above we find that zero-energy

states exist under the condition −[Φ2/φ0] ≤ m ≤ −[1 + Φ1/φ0].

3) Magnetic dot with 〈Bz〉 = 0, (cf. Fig. 20). Because the average magnetic field is

zero, the total flux is zero and we do not have any zero-energy states. It is also possible

to show that a zero-energy solution for a finite-size magnetic dot is not possible because

s3 = 0, and [Φ/φ0] = 0 which leads to 0 ≤ m ≤ −1 which clearly can not be satisfied.

5.2. Elastic scattering

Next we concentrate on the scattering problem of Dirac electrons by a circularly

symmetric magnetic dot with 〈B〉 = 0. The layout of the problem is shown in Fig. 20.

We assume that electrons are coming from −∞, along the x axis, and calculate the

probability for them to be scattered by the dot and deflected by an angle ϕ. The

free-electron wave function is

Ψ0(r) =
1√
2


 1

1


 eikx (42)

with k > 0. It describes a homogeneous electron flow with density ρ = 1 and current

J = (1, 0) in units of evF .

In standard scattering theory the wave function far away from the scatterer is

presented as a sum of two parts,

Ψ(r) ≈ Ψ0(r) +
f(ϕ)√

r
eikr; (43)

where the first part corresponds to the incoming electron while the second part, called

scattering amplitude, has two components as the wave function itself,

f =


 f1

f2


 . (44)

The macroscopic scattering characteristic is the differential cross section which is defined

as the number of electrons scattered into the angle element dϕ per unit time. It is given

by the electron velocity multiplied by the arc length rdϕ of a rather large-radius circle,

where this electron flow is measured. Having in mind the definition J = Ψ+σΨ we

define the differential cross section dσ(ϕ) by

dσ(ϕ) = P (ϕ)dϕ = f+(ϕ)(σ · n)f(ϕ)dϕ. (45)

Here n stands for the unit vector perpendicular to the above mentioned circle, P (ϕ) is

given by

P (ϕ) = eiϕab∗ + e−iϕa∗b, (46)

and the total cross section by

σtot =
∫ 2π

0
P (ϕ)dϕ. (47)
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(nm)

(nm)

Figure 21. (a) Local density of states for m = 0,±1,±2,±3 and the magnetic field
profile shown in Fig. 20 with B1 = −5T and (R1, R2) = (30, 80) nm. The vertical
dashed lines show the position of the LLs. (b) Total wave function for the first LL,
indicated by a circle in (a) for different values of m. The inset shows the electron
trajectory. (c) As in (b) for the peaks indicated by squares in (a).

We express the solution outside the dot as a combination of Bessel functions

a(r) = wn {cos δm · Jm(kr) + sin δm · Ym(kr)} . (48)

Then the components of the eigenfuction are related by

b(r) = − 1

E

{
d

dr
− m

r

}
a(r) = wn {cos δm · Jm+1(kr) + sin δm · Ym+1(kr)} .(49)

This leads to the expansions

ψ1(r, ϕ) =
∞∑

m=−∞
eimϕwn {cos δm · Jm(kr) + sin δm · Ym(kr)} , (50)

ψ2(r, ϕ) = i
∞∑

m=−∞
ei(m+1)ϕwn {cos δm · Jm+1(kr) + sin δm · Ym+1(kr)} . (51)

for the components of the wave function ψ(r, ϕ). The coefficients wn and δm are

determined by the boundary conditions at R1, R2 and the wave function (42).
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Figure 22. The phase shift δm as a function of the energy for m = 0,±1,±2,±3,
B1 = −5T , and (R1, R2) = (30, 80) nm.

For r → ∞ the asymptotic expressions of the Bessel functions are Jm(kr) ≈
(c/
√

r) cos ∆m and Ym(kr) ≈ (c/
√

r) sin ∆m, with ∆m = kr − πm/2 − π/4 and

c =
√

2/πk. They enable us to present Eqs. (50) and (51) in the asymptotic region

as

ψ1(r) =
c√
r

∞∑

m=−∞
wmeimϕ cos(∆m − δm), (52)

ψ2(r) = i
c√
r

∞∑

m=−∞
wmei(m+1)ϕ cos(∆m+1 − δm). (53)

These expansions must agree with the asymptotic form of Eq. (42). For this purpose

we write the exponential in Eq. (42) as

eikr cos ϕ =
∞∑

m=−∞
imeimϕJm(kr) ≈ c

2
√

r

∞∑

m=−∞
imeimϕ

(
ei∆m + e−i∆m

)
. (54)

R

R

R

R

Figure 23. Total cross section for B1 = −5T with (R1, R2) = (30, 80) nm in (a) and
(R1, R2) = (50, 80) nm in (b).
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First, we compare Eq. (52) with the first wave function component (50) by rewriting

Eq. (52) as

ψ1(r) =
c

2
√

r

∞∑

m=−∞
wmeimϕ

{
ei(∆m−δm) + e−i(∆m−δm)

}
. (55)

The coefficients of the exponents representing the incoming wave (the second term inside

the curly brackets) must be equal. This gives

wm = ime−iδm . (56)

Subtracting the asymptotic from Eq. (55) gives the first component of the scattered

wave function

ψ
(scatt)
1 (r) =

c

2
√

r

∞∑

m=−∞
imeimϕei∆m

{
e−2iδm − 1

}
. (57)

Now we have to check whether the second wave function component is correct in

the asymptotic region. The second sum representing the incoming wave has to be the

same as the first component. This second component can be written as

ψ2(r) =
c

2
√

r

∞∑

m=−∞
im+1e−iδmei(m+1)ϕ

{
ei(∆m+1−δm) + e−i(∆m+1−δm)

}
. (58)

Figure 24. The magnetoresistance (red, solid curve) and Hall resistance (blue, dashed
curve) as a function of the Fermi energy EF for B1 = −5T , (a) (R1, R2) = (30, 80) nm
and (b) (R1, R2) = (50, 80) nm.

We can rewrite the scattered part of the wave function components in the following final

form:

ψ
(scatt)
1 (r) =

c

2
√

r

∞∑

m=−∞
imeimϕei∆m

{
e−2iδm − 1

}
, (59)

ψ
(scatt)
2 (r) =

c

2
√

r

∞∑

m=−∞
imeimϕei∆m

{
e−2iδm−1 − 1

}
. (60)
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This enables us to write the components of the scattering amplitude (44) in the form

f1 = e−iπ/4 c

2
√

r

∞∑

m=−∞
eimϕ

{
e−2iδm − 1

}
, (61)

f2 = e−iπ/4 c

2
√

r

∞∑

m=−∞
eimϕ

{
e−2iδm−1 − 1

}
, (62)

the differential cross section (46) as

P (ϕ) =
4

πk

∞∑

m,m′=−∞
ei[(m−m′)ϕ−(δm−δm′ )] sin δm sin δm′ , (63)

and the total cross section as

σtot(E) =
8

k

∞∑

m=−∞
sin2 δm(E). (64)

For a random distribution of dilute, non-overlapping magnetic scatterers the zero-

temperature magnetoresistance and Hall resistance are given by [30]

ρxx/ρ0 =
∫ π

−π
dϕw(k, ϕ)(1− cos ϕ) =

∞∑

m=−∞
4 sin2 (δm − δm+1), (65)

ρxy/ρ0 =
∫ π

−π
dϕw(k, ϕ) sin ϕ =

∞∑

m=−∞
2 sin [2(δm − δm+1)], (66)

with ρ0 = (1/4π2)(n0/ne)(h̄/e2) where ne is the electron concentration, n0 the

concentration of magnetic scatterers, and w(k, ϕ) = kP (ϕ) the probability for an

electron with wave vector k to be scattered by an angle ϕ.

In Fig. 21 we show the local density of states as a function of energy for

(R1, R2) = (30, 80) nm with B1 = 5 T. The resonances are near the position of the

LLs as shown by the vertical dashed lines. For R1 small we have quasi-bound states

between the E = 0 and the first LLs for m > 0. These levels move towards E = 0 if

we increase R1. The phase shifts δm are shown in Fig. 22; resonances occur for energies

with jumps in δm.

In Figs. 23(a) and (b) we plot the total cross section as a function of E. Classically

and in two dimensions this is equal to the total diameter of the magnetic inhomogeneity

σ = 2Rb. The resonances shown up as small peaks, corresponding to the quasi-bound

states of Fig. 21(a). Notice that the peaks in Fig. 23(a) for small energies (E < 50) are

absent in Fig. 23(b). The difference comes from the fact that when we increase R1 the

structure behaves more or less like a finite size magnetic dot. As discussed in Sec. 5,

zero-energy states exists for 0 ≤ m < −[Φ/φ0]. Here all bound states in the finite-size

magnetic dot become quasi-bound states because of the zero total magnetic flux. For

R1 large these levels are close to the E = 0 level whereas for R1 small these quasi-bound

states move away from the E = 0 level.

The corresponding magnetoresistance and Hall resistance are shown in Figs. 24(a)

and (b) for the same dot structure. We found different behaviors in two energy regimes:

1) For 0 < E < E1, where E1 is the energy of the first LL, i. e. E1 ≈ 81 meV,
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all resonances result from the quasi-bound states shown in Fig. 21(a). This model is

comparable with the magnetic dot discussed in section 3. As shown in Fig. 3 in the case

of opposite sign of magnetic field in the inner and outer region the zero energy levels

split for m > 0 and now all these split levels become quasi-bound states as shown in

Fig. 21(a). These resonances are not found in a normal 2DEG [7] and are unique to

graphene. 2) For E > E1 there are two types of resonances: first those which occur at

the energy of the LLs of the inner core of the magnetic-field profile and second those

corresponding to quasi-bound snake-orbit states that are located around the interface

between the B > 0 and B < 0 regions.

6. Conclusions

We studied the bound, quasi-bound, and scattered states for electrons in graphene in the

presence of circular inhomogeneous magnetic field profiles. The corresponding spectra

were investigated as a function of the size and radii, the strength of the inhomogeneous

magnetic field and of a uniform background field, and the angular momentum quantum

number. More explicitly, we studied the following.

We considered the eigenvalue problem of a model quantum magnetic dot in the

presence of a background field B2, cf. Fig. 1, and a homogeneous magnetic field B1

restricted in a finite, circular region of radius R. Both B1 and B2 are perpendicular to

the plane of the dot. We studied the bound states for two different cases: 1) when the

inner and outer magnetic fields have different sign (B1 < 0 and B2 > 0) and 2) when

both inner and outer magnetic fields have the same sign. In case 1) we found that the

energy levels are split into bonding and anti-bonding states.

Bound states for of a magnetic ring in the presence of an external homogenous

magnetic field were also studied.

Magnetic dot profiles of finite extent behave very differently. In this case the

magnetic field fails to confine electrons. Although in such a magnetic field profile no

confined states were found, quasi-bound sates with a finite lifetime are present. We

presented a study of the local density of states and its dependence on the dot radius.

Peaks in the local density of state are broadened and the width corresponds to the

inverse lifetime of the quasi-bound state.

Special attention was paid to the zero-energy states for all different magnetic dot

and ring profiles and we showed that zero-energy bound states exist when the magnetic

flux is non-zero.

Finally, we considered a magnetic dot with 〈Bz〉 = 0 and the scattering of electrons

on it. We calculated the local density of states, the magnetoresistance and the Hall

resistance. All the zero-energy states that exist for finite size magnetic dots become

quasi-bound states. These quasi-bound states are located close to E = 0 and are

found only for Dirac electrons. This results into two different energy regions in the

magnetoresistance and the Hall resistance. They differ by the presence of sharp peaks

due to resonant scattering involving these quasi-bound states.
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