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Abstract

Efficient Enumeration of Extensions of Local Fields

with Bounded Discriminant

Sebastian Pauli, Ph.D.
Concordia University, 2001

Let k be a p-adic field. It is well-known that k has only finitely many extensions of a
given finite degree. Krasner [1966] gives formulae for the number of extensions of a
given degree and discriminant. Following his work, we present an algorithm for the
computation of generating polynomials for all extensions K/k of a given degree and
discriminant. We also present canonical sets of generating polynomials of extensions
of degree p™. Some methods from the proof of the number of extensions of a given
degree and discriminant can also be used for the determination of a bound that gives
a considerably improved estimate of the complexity of polynomial factorization over
local fields. We use this bound in an efficient new algorithm for factoring a polynomial
® over a local field k. For every irreducible factor ¢(z) of &(z) our algorithm return

an integral basis for k{z]/¢(z)k(z] over k.
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Introduction

Let k be a local field, i.e., a field complete with respect to a discrete prime divisor

p, and fix an algebraic closure kof k.

Most results in chapter 2 hold for a local field in general; this includes local fields

with infinite residue class field.

In chapter 3 the field k will be a finite extension of the p-adic numbers @, for some

prime number p.

For K a finite extension of k the description of the lattice of extensions of K in k is

an important problem in the theory of p-adic fields.

If we restrict our attention to Abelian extensions then this description is complete
and is given by Local Class Field Theory (see e.g. [Serre, 1963] or [Fesenko and
Vostokov, 1993]). In the general case, such a description is not yet known. But if we
restrict ourselves to local fields with finite residue class field the number of extensions
of a given degree and discriminant is finite. It is even possible to ask for a formula
that gives the number of extensions of a given degree, and for methods to compute
them. Krasner [1966] gives such a formula, using his famous lemma as a main tool.
Indeed, his proof is constructive. It is possible to adapt his methods to get a set of

polynomials defining all of these extensions.



Note that Serre [1978] computes the number of extensions using a different method
in the proof of his famous “mass formula” (which can also be proved by Krasner’s
method [Krasner, 1979]).

In chapter 3 we give a new proof of Krasner’s formula for the number of extensions of
a p-adic field of a given degree and discriminant. We use the formulae for the number
of extensions to compute a minimal set of polynomials that generate all extensions of
a p-adic field of degree p and give an algorithm for the computation of all extensions

of a given degree.

Some methods from the proof of the number of extensions of a given degree and
discriminant can also be used for the determination of a bound that gives a con-

siderably improved estimate of the complexity of polynomial factorization over local

fields.

The factorization of polynomials over local fields is closely related to the computa-
tion of integral bases of local and global fields and can be applied to the factorization
of ideals in global fields. Several polynomial factorization algorithms have been pub-
lished:

e The Round Four algorithm of Zassenhaus [Ford, 1978, 1987, Ford and Letard,
1994] was originally conceived as an algorithm for the computation of integral
bases of algebraic number fields and is fast in most cases. In some cases however

a branch of the algorithm with exponential complexity is needed.

o Chistov [1991] proved the existence of a polynomial-time algorithm for factoring

polynomials over local fields.



o The algorithm for factoring ideals of Buchmann and Lenstra described by Co-
hen {1993, section 6.2] can be used for factoring polynomials over a local field in

polynomial time. (However, it needs an integral basis as an input.)

o The algorithm by Montes [1999] is formulated as an algorithm for the decomposi-
tion of ideals over number fields and is based on ideas of Ore [1926]. He does not

provide a complexity analysis.

o The improved Round Four algorithm by Ford et al. [2000] is considerably faster
than the original Round Four algorithm. Formulated as an algorithm for factoring
a polynomial &(z) over @Q,, it returns a local integral basis (in fact, a power
basis) for Q,[z]/¢(z)Qy, (2] for each irreducible factor ¢(z) of $(z). The algorithm

terminates in polynomial time.

o Cantor and Gordon {2000] have developed an algorithm for deriving an irreducible
factor of a polynomial &(z) € k(z] of degree N over an extension k of degree
k over Q,. In their talk at the fourth Algorithmic Number Theory Symposium
in July 2000 they announced that they had reduced the expected number of bit
operations to

O(N'H'E‘Up (diSC ¢)2+e IogH-e Pk)-

The algorithm presented chapter 2 has its origins in the Round Four algorithm. It
returns all irreducible factors ¢(z) of a polynomial #(z) over the valuation ring of a
local field k together with an integral basis for k{z]/¢(z)k(z]. If k is a finite extension
of Q, of degree k, our algorithm derives a complete factorization of a polynomial &(z)

of degree N with the expected number of bit operations being

O(N*+ey,(disc &)+ log!** p* + N2*ey,(disc B)*+¢ log!** ).

Parts of this thesis have been published in [Pauli and Roblot, 2001] and [Pauli, 2001].
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Chapter 1

Preliminaries

1.1 Local Fields

We recall definitions and fundamental results in the theory of local fields. More
detailed exposition can be found in [Fesenko and Vostokov, 1993], [Hasse, 1963], and
[Serre, 1963].

Definition 1.1.1. A function |- | from a field k into the nonnegative reals such that
(i) |el=0 < a=0,

(ii) |eB| = |al-|8],

(iii) |ee + 8] < max{|al, |8]}.

is called a non-archimedean or ultrametric absolute value on k.

Definition 1.1.2. A function v from a field k into QU {oc} such that

(i) v(a) =00 &= a=0,

(ii) v(aB) = v(a) +v(B),

(iii) v(a + B) > min{v(a),v(B)}.

is said to be a (an ezponential) valuation on k.
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Note that if v is a exponential valuation on a field k and if r € R with 0 < r < 1

then

la] := 0 ifa=0
1 r*@  otherwise

is a non-archimedian absolute value on k.

Example 1.1.3. Let p be a prime number. Every a € Q can be uniquely represented
by a =p™(r/s) with m,r € Z, s € N and p, r, s pairwise relatively prime. The map
Up : @ = m is a exponential valuation on Q. The map | - l|p : @+ p™ is a non-
archimedian absolute value on Q. We call v,(-) the p-adic exponential valuation and

| - |, the p-adic absolute value.
Remark 1.1.4. The absolute value | - |, defined by

lale := a ifa20
7] —a fa<0

fulfills the weaker triangle inequality
(iii)’ |a + 8] < || + 8]

instead of the ultrametric inequality (iii). Absolute values which fulfill (iii)’ but not
(iii) are called archimedean absolute values.

Theorem 1.1.5 (Ostrowski). An absolute value on Q either coincides with (I"lec)”

for some r € R, or with (|- |,)" for some prime p and somer € [0, 1].

Example 1.1.6. Let k(t) be the rational function field over k.

() For A(t), (t) € k[t] with B(t) # O set deg(8/v) = deg(8) - deg(7). Then

) = 0o if a(t) =0
V(@) = dega otherwise

defines a valuation on k(t).



(ii) Let () be a monic, irreducible polynomial in k[t|. Every a(t) € k(t) has

a unique representation a(t) = ¢(t)m% with m € Z, B(t),v(t) € k[t] and

ged(¥(t), B(t)) = 1, ged(¥(t), 7(t)) = 1, 7(t) monic and ged(B(t), ¥(t)) = 1. The

map vy() : @~ m is a valuation on k(t).

Definition 1.1.7. We call a field a local field if it is complete with respect to a

discrete (non-archimedean) absolute value.

Example 1.1.8. Let |- |, be the p-adic absolute value defined in example 1.1.3. The
completion of Q with respect to | - |, is denoted by Q,.

Let k be a field with an exponential valuation v. Denote the completion of k by
k. The field k is a discrete valued field with exponential valuation U(lim;_,o ay) =

lim;_o v(a@n) where (an)nen is a Cauchy sequence. We usually denote 7 by v as well.

Definition 1.1.9. Let k be a local field, with absolute value | - |. We call
Ok :={ack||a| <0}

the valuation ring of k. O is a local ring with maximal ideal
p:={ack]|lal <0},

which is principal. We denote by 7 a generator of p. The element 7 is called a prime

element of k.

We write v, or v, for the exponential valuation on k which is normalized such that

%(T) = v(r) = 1.

We call k := Oy/p the residue class field of k. For v € k we denote by 7 the class
Yy+pink.



1.2 Extensions of local fields

Definition 1.2.1. Let k be a field. We call a polynomial ¢(z) € k(z] separable if
every irreducible factor of ¢(z) has simple roots over its splitting field. Otherwise

¢(z) is called inseparable.

Let k be a local field and let p(z) € k[z] be a separable, monic, and irreducible
polynomial of degree n. We obtain an algebraic extension K of k by adjoining a root
a of y(z) to k:

K =k(a) = kz]/p(z)k[z].

We say K/k is an extension of degree [K : k] = n. Denote the roots of ¢(z) in an
algebraic closure k of k by a = a(,...,a™. We call o the I-th conjugate of a.
The field K is a vector space of dimension n over k, and the n-tuple (1, ¢, ...,a™!)
is 2 basis of K over k. Thus every element 8 € K has a unique representation 3 =
Yoo wia' with ¥; € k for 0 < i < n—1. The conjugates of A are 8% = S %i(e®)!

forl<ign.

We define the norm N(B) of 8 by N(8) =[], 8Y.

Definition 1.2.2. Let K be an algebraic extension of k. We denote the group of
automorphisms of K by Aut(K). We call

Gal(K/k) := {o € Aut(K) | o(a) = a for all a € k}
the Galois group of K/k.

If o(z) is a non-constant polynomial in k{z] and K is the splitting field of x(z) then
we call Gal(yp) := Gal(K/k) the Galois group of ¢(z).

If K = k[z]/p(z)k(z] is the splitting field of p(z) € kfz] we say that the extension
K/k is Galois.



Theorem 1.2.3. Let K be a finite algebraic eztension of degree n of a local field k
with ezponential valuation vy(-). Then there ezists one and only one prolongation Up
of the ezponential valuation v, to an ezponential valuation v, : K = QU {oo} with
Uplk = vy. This prolongation ¥, is defined by v,(e) = v,(N())/n for & € K. The
field K is complete with respect to T,.

Let k be an algebraic closure of k. The prolongations of | - | and v, to k or any

intermediate field k will also be denoted by | - | and vy, respectively.

Definition 1.2.4. Let ¢(z) € k[:z:] be monic with ¢(z) = [T_,(z ~ &) where § € k.
We define disc (¥) := [T, (& — &)? = [T~ 1)""-"72(g — &).

If y(z) is irreducible and £ is any root of ¥(z) then disc () = N(/(€)).

Let K/k be an algebraic extension of degree n. Then Ok is a free Oy-module of

degree n. We call a basis of Ok over Oy an integral basis of K/k.

Definition 1.2.5. Let (d, . .., dn—;) be an integral basis of K /k. We call disc ( (K/k) :=

det((ék Jogkgn-1,1<1<n)? the discriminant of K/k.

Definition 1.2.6. Let K be a finite algebraic extension of k. We say K/k is unram-
ified if (K : k] = [K : k].

For every positive integer [ there exists a unique unramified extension of k of degree [.
To find a polynomial generating this extension, we look at random monic polynomials
of degree [ over the residue field of k until we find an irreducible one, say @i(z). Then
any (monic) lift of this polynomial to k{z] will define K over k. Since easy estimates
give that the ratio of the number of monic irreducible polynomials over k to the
number of all monic polynomials of degree ! is about 1/I, this method is adequate
for the values of [ we will deal with in this thesis.



If K/k is an unramified extension given by a root of such a polynomial ¢, (z) then
vp(disc (1)) = vy(disc (K/k)) = 0.

Definition 1.2.7. Let K be an algebraic extension of k. We say K/k is totally
ramified if [K : k] = 1.

A polynomial ¢(z) = =™ + @12 ! + - -+ + ¢ with coefficients in the valuation
ring O of k is called an Fisenstein polynomial if vy(p;) > 1for1 < j < n -1 and
vp(p0) = 1. It is well known that such polynomials are irreducible and define totally
ramified extensions. Furthermore, the exponential valuation of the discriminant of the
field generated by such a polynomial is exactly the exponential valuation discriminant
of the polynomial. Conversely, if K/k is a totally ramified extension of degree n, then
every prime element of K is a generating element over k and is a root of an Eisenstein

polynomial (see [Serre, 1963, Chap. I, §6]).

Let K be an extension of k. We can split this extension uniquely into a tower of
extensions K/Kr/k where K/Kr is totally ramified and Kr/k is unramified. In
section 2.4 we show how we can obtain an integral basis of Kr/k and K/Kr from a

defining polynomial of K/k.

Definition 1.2.8. Let K be a finite algebraic extension of degree 7 of a local field k.
We denote the maximal unramified subfield of K/k by K. We call Ky the inertia
field of K/k, fK/k = [KT : k] the inertia degree of K/k, and eK/k ‘= [K/KT] the

ramification indez of K/k.

10



- K=k([, 1)

totally ramified extension of degree
€K/x = eK/K, generated by a root IJ
of an Eisenstein polynomial A, (z)
extension of degree _
n = ex/xfKk/k KT - k(F)

unramified extension of degree fx/x = fi; /i
generated by a root I of a monic polynomial ¢(z) with
@(z) € k[z] irreducible

- k

Let p be the characteristic of the residue class field of k. We say K/k is tamely
ramified if p { ex/x. Extensions K/k with p | ek are called wildly ramified. Every
totally ramified extension K/k can be split into a tower K/Ky/k where K/Kj is

wildly ramified and Ko/k is tamely ramified. See section 3.5 for a proof.

If p(z) € k{z] is insepararable then disc (¢) = 0. If p(z) € k[z] is irreducible and
disc (¢) = 0 then ¢(z) is inseparable.

Ifk is a finite extension of Q), we call k a p-adic field. Setting e = ex/q, and f = fy/q,,

we have the following situation.

- k= QP(C7 71’)

totally ramified extension of degree e
generated by a root 7

of an Eisenstein polynomial
extension of degree ef

with inertia degree f, kT = Qp (C)

ramification index e unramified extension of degree f
generated by a root  of a
monic polynomial ¢(z) with
¢(z) € Fy[z] irreducible

— Qp

11



1.3 Krasner’s Lemma

Proposition 1.3.1 (Krasner’s Lemma). Let k be a field complete with respect to

@ non-archimedian absolute value | - | and let o, 8 € k with a separable over k. If
|8 -al <o - q
for all conjugates o’ # a of @ then a € k().

Proof. Let K/k(f) be the normal closure of k(a, 8)/k(B). Let T € Gal(K/k(8)).
Then

IB-1(@)]=|rla-B)=|f-al<|d -aq]
Therefore
o = (@] = la = B+ B - (a))| < max{|a - B],18 - r(a)|} < |&’ - a|

for all conjugates o’ of . This implies that 7 is the identity; thus k(e, B)=k(8). O

1.4 Complexity Analysis

In analyzing the complexity of algorithms, it is convenient and usually sufficiently
informative to specify computing times only up to order of magnitude, i.e., up to a

constant factor. The “big-O” notation lets us do this.

Definition 1.4.1. Let f : N> R and g: N = R We write f(n) = O(g(n)) ¢f there
is a constant C such that |f(n)|e < Cg(n) for alln € N.

As the algorithms we present are formulated over a general local field k, their com-
plexities are given in terms of arithmetic operations in k. We fix the following nota-

tion.

12



o We write P(n, f) for the number of steps required to factorize a polynomial of

degree n over an extension of the residue class field k of k of degree f.

o We denote by M(n) the number of ring operations needed for multiplying two
polynomials of degree at most n in kz]. Schonhage and Strassen [1971] have
shown that M(n) = O(nlognloglogn).

o Let B, v be in the algebraic closure k of k with [k(8) : k] < n and k(y) : kKl <=
for some n € N. We denote by C(n) the number of arithmetic operations in k
needed to compute an element § € k such that § is a primitive element of the

compositum k(B, 7).

e We denote by T(m,n) the number of ring operations required for triangularizing

a m X n matrix over the valuation ring Oy of k.

e We denote by R(m,n) the number of ring operations needed for computing the
resultant in z of two polynomials in k{t}[z] of degree in z at most n and of degree in

t at most m. There exists an algorithm such that R(m, n) = O(nM(nm) log(nm)).

The extended euclidian algorithm for two polynomials of degree at most n is of
complexity O(M(n) logn).

See von zur Gathen and Gerhard [1999] and the references cited therein for the

relevant algorithms.

13



Chapter 2

Polynomial Factorization

We first present a root-finding algorithm, which we will use in an algorithm for the
computation of all totally ramified extensions of a p-adic field in section 3.8. We will
also use it in the construction of a minimal set of generating polynomials of degree p
in section 3.6 and in the construction of a set of independent generating polynomials

of degree p™ in section 3.7. This algorithm can also be found in Panayi [1995].

Secondly, we describe the polynomial factoring algorithm mentioned in the introduc-

tion.

Throughout this chapter we assume that the polynomial #(z) which is to be factored
is squarefree and separable. If #(z) is not squarefree this can be easily remedied by
dividing ¢ by gcd(®, #’), where &'(z) is the formal derivative of $(z). In some cases
it is also possible to use the following much faster criterion to check whether &(z) is

squarefree.

Lemma 2.0.2. Let 8(z) = cnz™ + cnz™ ' + -+ + o1z + o € k{z] with vy(cy) <

vp(ci) and vy(co) < vp(c) fori € {0,...,N — 1}. Then &(z) is squarefree.

Proof. Without loss of generality we can assume v,(cy) = 0. Now v,(€) = v,(co)/N
for all roots & € k of #(z). The roots of the formal derivative & (z) of &(z) have

14



valuation at least v,(ic;)/(N — t) for some i € {1,...,N — 1}. But v,(co) < vp(ci)
and N> N —iforallie{l,...,N —1}. Thus (£ < vy(€) for all roots £ of &(z)
and all roots £’ of ¢'(z). Therefore ¥(z) is squarefree. a

Unless restricted otherwise in this chapter k will be a local field as specified in
definition 1.1.7.

2.1 Root-Finding Algorithm

Lemma 2.1.1 (Hensel). Letk be a field complete with respect to a non-archimedian
absolute value | -|, with Oy its valuation ring and p its prime ideal. Let d(z) € Oy[z]
and assume there erists a € O satisfying |#(a)| < |#'(a)|*>. Then & has a root in

Ok congruent to a modulo p.

A constructive proof of this lemma can be found in [Cassels, 1986]. Panayi’s root-

finding algorithm relies on the following result.

Lemma 2.1.2. Let #(z) = cpz™ + --- + co € Ok[z]. Denote the minimum of the
valuations of the coefficients of #(z) by vy(®) := min {wy(co), ..., vp(cn) } and define
¢#(z) := &(z) /x™®). For a € O, denote its representative in the residue class field
k = Ox/p by , and for 8 € Oy/p, denote a lift of B to Oy by B

a) If a is a zero of &(z) then a s a zero of H(z).

b) « is a zero of H(zm + E) if and only if aw + B is a zero of b(z).

¢) a is a zero of ¥(z) if and only if a is a zero of D¥#(z).

d) Let f be a zero of &(z) and let y(z) := $(zr + E) Then deg(¥*) < deg(d#).

e) If deg(¥*#) = 0 then &(z) has no zero in Oy.

f) If deg(9#) =1 then &(z) has a zero in Ok.
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g) If #*(z) = (z — B)™h(z) where ged((z — ), h(z)) = 1 and if ¥(z) := H(z7 + B)
then deg(y#) < m

Proof. The statements a) to c) are obvious.

d) Let d = deg(@*). Then vy(cs) < vy(c,) for all » < d and vp(ca) < vp(c,) for all

v > d. Now ¢ = bz +-- -+ with b; = °7__ () ¢;mBi~%. Because (!) = 1 we have

g=i

Up(ba) = vy(ca)+d and vy(b,) > vp(cq)+v for all v > d. Hence, deg(y*) < deg(8#).

e) Clear from a), b), and c).

f) We denote the coefficients of #(z) by c¥. Let 8 be a root of &#(z). Since
deg(®#) = 1, vp(cf) = 0 and vy(c#) > 1 for » > 1. So &*'(B) # 0 mod p and
&#(8) = 0 mod p. Thus ¢#(z) has a root by lemma 2.1.1, and by c) &(z) has a

root as well.

g) Without loss of generality, we may assume that &(z) = 9#(z). Consider the

Taylor expansion

~ L OT
P(rz+8) = Z gi'(—ﬂ)vr‘x‘.

=0

As 8(z) = (z — B)™h(z), we have v,(#™(B)/m!) = 0. Also v,(6D(B)x*/it) > i >
v,(8™ (8)/m!)r™ = m for i > m. Hence deg(y*) < m.

a

Assume $(z) has a root 8 modulo p and define two sequences (9.(z)), and (4,), in

the following way:

o $o(z) := ¥¥(z),

®dg := B,

o &,,1(z) := &¥(z7 + B,) where f is a root of o#(z),

0, = E,,n"’“ + &, where 3, is a zero of ﬁ(z) if there are any.
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At each step, one can find such a root if indeed #(z) has a root (in Oy) congruent to
B modulo p and 4, is congruent to this root modulo increasing powers of p. At some

point, one of the following cases must happen:

e deg(®,) < 1 and one uses 2.1.2 e) or f) to conclude;
. g has no roots and thus d,_, is not an approximation of a root of &(z);

o v > vy(disc (#)) and then lemma 2.1.3 below tells us that lemma 2.1.2 €) or f)

applies.

While constructing this sequence it may happen that $,(z) has more than one root.
In this case we split the sequence and consider one sequence for each root. Lemma
2.1.2 g) tells that there are never more than deg(®) candidate roots. Notice that if
the conditions of lemma 2.1.2 f) or lemma 2.1.3 are satisfied, the construction used in
the proof of lemma 2.1.1 can be used to compute an arbitrarily close approximation

of the root faster than with the root-finding algorithm.
Lemma 2.1.3. If v 2> vy(disc (P)), then deg($,) < 1.

Proof. Assume deg(®,) > 2. Since &,(z) = $#(z) by construction, it follows by

considering the Taylor expansion

$,.1(z) = @(ﬂ.yq»lz +6,) = g %w(uﬁ)izi
that #(4,) and &'(4,)7“*! must have a vy-valuation greater than or equal to the
valuation of #2*+1). So v,($(4,)) > 2(v + 1) and v,(#(4,)) > v + 1. In particular,
&(z) has (at least) a double root modulo p***. But, the discriminant of #(z) modulo

p“*! is nonzero by hypothesis, thus this is impossible. So deg(f,) < 2. O

The following algorithm returns the number of zeroes of a polynomial f over a local

field k. We use the notation from lemma 2.1.2.
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Algorithm 2.1.4 (Root Finding).
Input: A local field k with prime element 7, a polynomial #(z) € k(z], and a
desired precision N

Output: A set G of approximations of the roots of &(z) over k

o Set C + {(9#(z),0,0)}.
oeSet G+ {}.
e While C is not empty:
e For all (y(z),4,s) in C:
o C = C\{(¥(z).4,5)}.
®R«+ {B|Bisaroot of Y(z) ink }.
e For all 8in R:
o Set Y(z) « ¢¥(rz + 3).
o Replace y(z) « v#(z).
e If degy =1 then
e derive an approximation 4 of a root of &(z) using lemma 2.1.1.
o G+ Gu{d}.
o [fdegy > 1 then
e C+—CU{(¥(z),d+nm'B,s+1)}.

e Return G.

Corollary 2.1.5. Let k be a local field and let $(z) € kz] be a polynomial of degree
N. Algorithm 2.1.4 returns approzimations to all roots of a polynomial &(z) € k{z]

in at most

O (N, (disc () - (P(N) + NM(N)))

operations in k.
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Proof. At any time there are no more than N = deg® candidate roots. By lemma
2.1.3 the algorithm terminates after at most v,(disc #) iterations. In each iteration
of the inner loop a polynomial of degree at most N is factored over the residue class

field of k and ¥(nz+f) is evaluated. This can be done in P(N), respectively NM(N),

operations in k. O

2.2 Polynomial Factorization

Let &(z) be a monic, separable, squarefree polynomial of degree N in Ok[z]. In order
to find a proper factorization of #(z) or to prove its irreducibility, we construct a
polynomial ¢(z) € k(r] with deg  less than or equal to the degree of every irreducible
factor of #(z). The polynomial (z) is iteratively modified such a way that |,(£)]

decreases strictly for all roots £ € k of &(z).

In section 2.3 we describe how a proper factorization of ¢(z) can be derived if
lp(&:)l # lw(&;)] for some roots & and &; of #(z). In section 2.4 we describe how
an integral basis of k[z]/®(z)k(z] over k can be obtained from the data computed in
the algorithm. In section 2.5 we show that $(z) is irreducible if |¢(€)|" < |disc 9|2
for some root £ of $(z). In section 2.6 we present an algorithm that returns a proper
factorization of #(z) over O if one exists or an integral basis of k|z]/®(z)k[z] over

k otherwise. In section 2.8 we analyse the complexity of the algorithm.

2.3 Reducibility

Hensel lifting gives a very efficient method for approximating factors of a polynomial
over a local field if the polynomial has at least two relatively prime factors over the

residue class field.
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Proposition 2.3.1 (Quadratic Hensel Lifting). Let R be a commutative ring
with 1, let b be an ideal of R, and let ¥(z), ¥ o(z), Wa0(z) be monic, non-constant

polynomials in R[z] such that
¥(z) = W 0(z)¥0(z) mod b.
Assume there ezist 1,0(z), 120(z) € R[z] and y0(z) € b[z] with
N.0(2),0(z) + 120(z)¥20(z) = 1 +70,0(2)-
Then for every m € N there ezist ¥, n(z), Yo,m(z) satisfying
¥(z) = ¥ m(z)W ;m(z) mod 6"

and
¢1'm($) = W]_.o(l’) mod b,

%'m(:r) = !pgp(l‘) mod b.

Also there ezist v, m(z), Y2.m(z) € R[z] and Yo m(z) € b{z] with
Tm(2)¥1,m(Z) + T2,m(2)¥2m(z) = 1 + Yom(z).

For a proof see Pohst and Zassenhaus [1989).

We present two criteria which, if they are fulfilled, allow us to apply Hensel lifting

to the problem of factoring #(z).

Definition 2.3.2. Let &(z) = [[',(z - §;) € Oklz]. For 9(z) € k{z| we define

J

N
xo(@) = [[(v - 9(&)) = res.(8(), y - 9(x)).

i=1

Definition 2.3.3. Let J(z) € k(z] with xa(y) =y¥ + iy +--- + cn € Okly].

We say 9(z) passes the Hensel test if x,(y) = v4(y)* for some s > 1, where vy(y) is

monic and irreducible in kfy].
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We define further u;(¥) '= min ﬂc_,_)

ISiSN 2

We say the polynomial ¥(z) passes the Newton test if i}\c;v—) = vy ().
Note that v,(9(£,)) = - -- = v,(9(En)) = vy(cn)/N if 9(z) passes the Newton test.

Proposition 2.3.4. Let y(z) € k{z] with x,(y) € Ox[y]. If y(z) fails the Hensel test
then &(z) is reducible in Oy[z].

Proof. As v(z) fails the Hensel test, L(y) has at least two irreducible factors. Hensel's
lemma gives relatively prime monic polynomials x;(y) and x2(y) in Ofy] with

x1(¥)x2(y) = x+(y). Reordering the roots of #(z) if necessary, we may write

x1(y) = (y = (&) - (v = (&) and xa(y) = (y = V(&+1)) - (v — ¥(EW)),
where 1 < < N. It follows that
b(z) = ged($(z), x1(7(2))) - ged(P(z), x2(7(2)))
is a proper factorization of ¢(z). ui

Corollary 2.3.5. Let 9(z) € kiz] with xa(y) =y" +ciy" ' +--- +cn € Okfy]. If
U(z) fails the Newton test then $(z) is reducible in Oi[z].

Proof. If (z) fails the Newton test we have v(J) =r/s < vy(cy)/N. Setting v(z) :=

¥(z)* /7" we get

min{vy(7(£1)),- - -, %(Y(€N))} = 0 < max{uwp(v(€1)), - - -, vp(¥(En)) }-

Consequently «(z) fails the Hensel test and it follows from proposition 2.3.4 that

&(z) is reducible. a

In general it is not possible to compute exactly the greatest common divisor of two

polynomials over a local field. The following result from Ford and Letard [1994] (also
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see Ford et al. [2000]) provides a method for approximating the greatest common

divisor to any desired precision.

The Sylvester matriz Sgy of the polynomials #(z) = cyz™¥ +--- + ¢y and ¥(z) =
boz™ + - -- + by is the (M + N) x (M + N) matrix
[bo e by 0 \
0 bo - bu
C ‘** CN 0
\ 0 c - sz)

Proposition 2.3.6 (Ford). Let #(z) € Oklz] be monic. Let relatively prime poly-

nomials ¥,(z) and ¥,(z) in Ok[z] and ry € N be given, such that
&(z) | ti(z)¥(z) and p" = (¥i(z)Ok[z] + ¥a(z)Ok[z]) N O

Choose m € N, m > ry. For j = 1, 2 let Sp g, be the Sylvester matriz of 9(z) and
U;(z). Let 7"id;(z) with D;(z) monic, r; € N, be the polynomial given by the last

non-zero row of the matriz obtained by row reduction of Spy, modulo p™. Then
®;(z) = ged(¥(z), ¥;(z)) mod p™".
Proof. Define
Gi(z) = ged(#(z), &1 (z)), Hi(z) := ¥(z) /G (),
Ga(z) := ged((z), %a(z)), Ha(z) := ¥y(2)/Ga(z),
so that
$(z) = G:1(z)Ga(z),

and let
O = (GQ(I)Ok[.‘B] + Hl(z)Ok[a:]) N Ok,

20 = (G1(z)Oulz] + Ha(z)Ofz]) N Oy
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Because ¥, (z) = G(z)Hi(z) and ¥;(z) = G2(z)Hy(z) we have s, < ry and $2 < 1.

For j = 1,2 let Spy, be the Sylvester matrix of & and %. It is clear that row-
reduction of Ss ¢, over k gives the coefficients of G;(z) in its last non-zero row. It
follows (because the rank is invariant) that row-reduction of Se., over Oy gives the

coefficients of p"7G;(z) in its last non-zero row, for some r; 2 0. Since
p"G;(z) € ¥(z)Ok[z] + () O [z]

it follows that r; < s;, and since

d(z)
Gi(z)

!P(J:
Gj(z)

& Oklz] + Ok[ ]

it follows that s; < r;; hence r; = s;.

If m > ry then row-reduction of Se.w; over Oy performed modulo p™ gives in its last

non-zero row the coefficients of p%&;(z), with ®;(z) in Ok[z], J;(z) monic, and
®;(z) =Gj(z) (mod p™ % Oyz]).

It foliows that
$,(z) = ged #(z), ¥ (z) mod 7™ O[],

P,(z) = ged P(z), ¥o(z) mod 7™ 0Oy [z].
O

Remark 2.3.7. In the construction of &,(z) and &,(z) it is sufficient to have ap-

proximations to &(z), ¥;(z), and ¥,(z) that are correct modulo p™.

Remark 2.3.8. Let 7(z) be a polynomial in kfz] such that x;(y)x2(y) = x+(y) €
Oxfy] where ged(x, (y), x,(¥)) = 1. There exist o1 (y), as(y) € Oyfy] with

@ (y)x, (¥) + 2(¥)x,(v) = L.

Because the index of k{z]/®(z)k(z] in its maximal order is at most p?, where d =
[vp(disc8)/2], and
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101 (7(2)) 11 (v(z)) + e (1(z))n%x2(7(2)) = 7 mod p?*,

it follows that o < 2d < vp(discP).

Both criteria for finding a proper factorization of #(z) need a factorization of the
polynomial over the residue class field before Hensel lifting can be applied. If the
residue class field k is finite we can use the algorithms of Berlekamp [1970], Cantor
and Zassenhaus [1981], or one of their many improvements. In appendix A we give

an overview of these algorithms.

If k is the completion of a function field over a number field then polynomials over
k can be factored using the algorithms for factoring polynomials over number fields
by Trager [1976], Pohst [1999], Roblot [2000], or Fieker and Friedrichs [2000].

We will see that it is convenient to factor the polynomial #(z) over an unramified
extension k of k. Then the norms of the factors of &(z) over k can be used to derive
a factorization of @(z) over k. For more on the norm of a polynomial see Pohst and

Zassenhaus [1989, section 5.4].

Definition 2.3.9. Let k be an algebraic extension of k of degree n. Let d(z) €
k[z] and 99)(z) € k9[z] (1 < j < n) be the corresponding polynomials over the
conjugate fields obtained by applying conjugation to the coefficients of 9(z) only.
Then the norm of #(z) is defined by Ni, (9) := [T}, 99)(z).

Remark 2.3.10. Note that Ng, (9(z)) € k[z] and that

Nien(91(2)9:2(2)) = N (91(2) )N (92(2))

for all 9,(z), Ja(z) € k[z].

Remark 2.3.11. Let v(y) € Ogly] be irreducible and let k := Ok[y]/v(y) Okly]-
Let o(z) = Y% ci(y)z" be a polynomial in kfz]. Denote by C; a lift of ¢; from
Ok[yl/v(y)Oxly] to Okly]. Then Ng, (p(z)) = res, (v(y), Yiy Cily)z™).
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2.4 Two-Element Certificates and Integral Bases

For a polynomial 9(z) € k{z] the values Ey and Fy defined below give lower bounds
for the ramification indices and the inertia degrees respectively of the extensions k(¢)
for all roots £ of &(z).

Definition 2.4.1. Let 9(z) € k(z], with x4(y) € Oy[y], such that 9(z) passes the
Hensel and Newton tests. We define v3(y) to be an arbitrary monic polynomial in
Okly], with v4(y) irreducible in kfy], such that X;(y) = v4(y)* for some s > 1. We set

Fy := degyy. We define E; to be the (positive) denominator of the rational number

5(9) in lowest terms.

v,

Definition 2.4.2. Let #(z) be a monic polynomial in O[z]. Let £ be a root of (z)
Let I'(z) € klz] with xr(y) € Okly] and [I(z) € k(I'(€)){z] with xz(y) € Oxrienly]
such that I'(z) passes the Hensel test and IT(z) passes the Newton test. We call the
pair (I'(z), [I(z)) a two-element certificate for &(z) if vy(IT) = 1/Eg and FrEp =
deg &.

Proposition 2.4.3. Let &(z) be a monic polynomial in Oy[z]. If a two-element cer-
tificate (I'(z), II(z)) ezists for &(z) then &(z) is irreducible over k. Moreover an
integral basis of the extension K/k generated by a root £ of &(z) is given by the
elements F(E) () with0<i< Fr—1and0<j< Ep-1.

Proof. The polynomial ¥(z) is irreducible because every root of ¢ generates an ex-
tension of degree FrEp = deg® over k. Denote the inertia field of K/k by Kr. Let
7 be a root of vr(z) such that v = I'(€). Then K7 = K(y) and Ok, = Oi[7]. As
v, (IT) = 1/Ep we have Ok /x = Ok l[lI(€)] = Oxly, IT(€)]. The elements v IT(£)?

withosigFp—landOsngg-lformanintegralbasisofK/k.Because
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I'(€) = vy mod II(£) the elements I'(€)* IT(£)’ with0 < i < Fr—1and 0 < j € Ep-1
are an integral basis of K/k as well. a

Let &(z) € Ok|z] be irreducible and let E be the ramification index and F the inertia
degree of kz]/®(z)kz]. Set ko := k. Assume we are given a tower of unramified

extensions

Er = E1--1[111’]/ V‘rr-zg—l[yr]

ke = kify]/vn(m)ki[v)]
Eo[yx]/ Vm(yl)io[!h]
ko =k

Ly
]

with 7(z) € ki[z], such that k, is isomorphic to the inertia field of k[z]/d(z)k{z].
Denote by %;(z) a lift of v;(z) to k{y1,...,u][z] and by £ a root of $(z). Define a
sequence 6;(z) € k[z] by do(z) := Fo(z) and &i(z) := F(do(z),...,di-1(z))(z) for
1 < i < r. Then the inertia field of k(dg(£), ..., 8(€)) is isomorphic to k;.

Let I'(z) € k{z] be such that I'(€) is a primitive element of k. over k. Then F = F.

Assume that a polynomial ¥(z) € k,[z] with xu(y) € Og. [yl and 5 (v) = 1/E is
known. Denote by ¥(z) a lift of ¢(z) to k[y1,-..,¥][z] and set

(z) = $((2), -, 6:(x)) (3)-
Then (I'(z), II(z)) is a two-element certificate for &(z).

If the residue class field k of k is finite the following lemma can be used to find a

primitive element of E,

Lemma 2.4.4. Let F, be the field with q elements. Let § and vy be elements of an al-
gebraic closure of K. Let Fj := [F;(B) : K], F, := [Fy(7) : K] and F :=lem(Fp, F,).
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Let § € F;(B,7) be randomly chosen. Then the probability that F, () = F, (8,7) is at
least 1/2.

Proof. The number of elements of F;r generating a proper subfield of F,r is at most

3 ¢ < (log F)e™".

{ prime
IKF,l|F

Therefore the probability that a randomly chosen element of F,r belongs to a proper
subfield of F,r is at most

72
(logy F)g*? _ log, F clog F <l

¢F T g T 2 T Y C

For the case that k is the completion of a function field over a number field, the
residue class field k is a number field. Cohen [1999, section 2.1] presents an algorithm

for computing a primitive element of the compositum of two number fields.

2.5 Irreducibility

The following proposition gives an upper bound for the number of steps needed in our
algorithm either to derive a proper factorization of #(z) or to produce a two-element

certificate of the irreducibility of é(z).

Proposition 2.5.1. Let §,,...,&y, ay,. .., a, be elements of an algebraic closure of

k and assume the following hypotheses hold.

o b(z) := H;.v:l(:z: —&;) is a squarefree polynomial in Oy|[z].

¢ o(z) == [l (z — ) is a polynomial in klz].

o |p(§;)|" < [discP? for L<j < N.

o The degree of any irreducible factor of ¥(z) is greater than or equal to n.
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Then N =n and ¥(z) is irreducible over k.
To prove of this proposition we need a few lemmas.

Lemma 2.5.2. Let &(z) = ;-vzl(z—fj) € kfz]. Let a be an element of the algebraic
closure of k and assume € is chosen among the roots of &(z) such that |a — E[ is

minimal. Then

N
|8(c)| = [[ max{le - &}, € - &}.
=1

Proof. We have |®(a)| = Hil la-&land jo—&| =|la—E+& - &) € max{|a -
€, 1€~ &} If la~ €] < 1€ - &] then |a— &] = |- &, and if |or— ] > |§ — & then
le—g&l=1€-al O

Lemma 2.5.3. Assume the hypotheses of proposition 2.5.1 hold. Then ¢(z) belongs
to Ox(z] and @(z) is irreducible over k. Furthermore there ezist a root £ of $(z) and
a root a of p(z) such that k(€) = k(a), so that the minimal polynomial of £ over k

1s an irreducible factor of P(z) of degree n.

Proof. Let &;(z) = ;vz"l(x —&ij), 1 €1 < m, denote the m irreducible factors of

9(z). Let G; be the Galois group of the extension k[, ..., & v]/k. Let A®; be the
minimal distance between two distinct zeroes of @;(z). Let &; j denote a root of ¢;(z)
such that |a; — £ ;| is minimal. Assume that loj — &5 > A®;. Then for 1 < i < m
and 1 < j < n, using lemma 2.5.2, we get

hi3 N; -
Pi(a;)| = H |aj — &kl = Hmax{laj = &gl 1&g — &ixl}
k=1

k=1

N;
> Hmax{Adi,-, €5 — &ixl}
k=1
Ad; [ max{ag;, [&; - &} = AS; IT 16— &xl-
&ix# iy EikFliy
Without loss of generality, we may assume that AP; = |€;; — &2|- Choose a; 4, ...

Y

Oin € G; so that &',...,& " are distinct and choose 7;3,...,7in € G; so that
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51 19 Et‘nn are distinct. Then A¢ l i,ild a.,,l for1 < .7 n and |Ei'j - §i,kl =
lf"" — &7 for 1< j<nand1<k< N, Hence

n

[Tie) > II(A@ 11 . —e,-,k|)
=t 7=l in#tbij

= (H - )(H H €% - :") > |disc®;|2.

=1 J_l El k#{l,}
Now

N

13}‘%@ &)Y Hlﬂo (&)l = Hl‘p (a5)| = HHW (o)

=1 J=1 =1 j=1

> H |disc &;[? > |disc 8[>.

i=1
Thus if max(, |(&)|V < |disc ®|? then there exist i, j with 1 < i < mand 1 < j < n
such that |a; ~& 4l < 4%;. It follows from Krasner’s lemma (proposition 1.3.1) that

(5,\,) C k(aj). As degyp = n < degd; = N; we get k(z,-d) = k(a;). Therefore
N; = n, and ¥;(z), which is the minimal polynomial of & 4 over k, is an irreducible
factor of #(z) of degree n. Because #(z) € Ox[z] and |a; —E,- 4l < A9; it follows that
o(z) € Ok[z]. a

Lemma 2.5.4. Assume the hypotheses of proposition 2.5.1 hold. Then k(¢) = k(a)
for every root £ of #(z) and every root a of ¢(z).

Proof. The result is an immediate consequence of lemma 2.5.3 if n = N, so we
assume n < N. Let &,(z) := [[L,(z — &) denote the irreducible factor of &(z)
given by lemma 2.5.3 and write &,(z) := Hf;l"(z - &) = ¥(z)/D1(z). Let B =

ax)_; |¢(&;)]- By lemma 2.5.3 y(z) is an irreducible polynomial in Oy[z]; because

n n N-n
[T1#:(c)l = [ lo(€1)l < B* and Hl%(a.)l = [I le(€s)l < BY="
=1 =1 j=1

it follows that |, (a)| < B and |$»(a)| < BN —")/" for each root a of ¢(z). We have
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n N-n
|disc &, | res(®;, B;)| = H(H €1 — &1l H €1 — fza‘l)-

=1 “j#i Jj=1
Let G be the Galois group of the extension k(€ 1, ..., & .]/k = k[ay, . . ., &) /k. For
1< i< nlet a; be a root of p(z) that is closest to & ;, and for 1 < j < n let ;i be

a member of G such that £ = £;. Then
6 — &4l < 167 = &4l = &7 - 7% | = |a - &4

for 1 <7 < n. Thus

N-n
lfl i — &4 ) (H 1 — §2J|)

i=l

Ai =

N-n
( lElt_at+a‘l El,jl) (H lEl.i-&'i+ai_£2J|>
J#i Jj=1
N-n
(T et - 3 = 1) T e (s = -
i=1

N-n

la; ful) (H max {|§1; — &, & — fz.jl}) .

i=1

If l&l.i—&il 2 I&,»—fgd-l forsomej then Ai < |¢1(5‘)| < B, and iflfu—&,-l < I&,-—fg'jl
for all j then 4; < I'[N;[" |&; — &25] = |P2(as)] < BN/ < B. Hence

BY < |discd|* = |disc®;|*|res(®,B,)|*|discD,|? < B"|disc P,

It follows that B¥N~" < |disc®,|?, and also that N — n > n (otherwise #(z) would
have an irreducible factor of degree less than n). Repeatedly applying lemma 2.5.3
in this manner we decompose &(z) as a product of irreducible polynomials each of

degree n, and the result follows. a

Proof of propoesition 2.5.1. By lemma 2.5.4 N must be a multiple of n. If n = N we
are done. But if n < N then &(z) is the product of N/n irreducible polynomials, say
®1(z), ..., Pwyn(z), each of degree n. For 1 < r < N/n let &.(z) = [[1,(z - &),
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and for 1 <1 < n let a,; denote a root of p(z) that is closest to &i- Arguing as in

the proof of lemma 2.5.4 we have

A = (H Ifri "frgl) (HHIfn fsal)
s#£r =1
< (1'[ max {|&; — Grl, |Grs — Eml}) (Hl'[ |6 = fml)
s#r j=1
< (H lar — Eml) (HHma.x {16 — vl @, - fs,jl})
s#r j=1
< B,
hence
N/ﬂ n
|disc®| = HHA,., < BY < [discd)?,
r=l1i=1
which since disc® € Oy is impossible. a

2.6 Polynomial Factorization Algorithm

The following algorithm constructs a polynomial ¢(z) as described in section 2.2.
We will use proposition 2.5.1 to show that the algorithm terminates; to do this we
need to ensure that deg ¢ is less than or equal to the degree of any irreducible factor
of #(z). As the algorithm progresses we accumulate polynomials wi(z) with E,, > 1
and use these for altering (z) so that the valuation of ¢(z) evaluated at the roots
of &(z) increases (see remarks 2.6.7 and 2.6.3). When we find an element v with
F, > 1 we ensure the condition on the degree of ¢(z) by determining an unramified
extension k of k with k C k(§) for e:very root £ of &(z), finding a factor 5(:) of &(z)
with deg(@) = deg(®)/F, over k, then factoring 5(2:) itself over k. As we collect
more information about the fields generated by the roots of &(z), we enlarge the

unramified extension k.
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Algorithm 2.6.1 (Polynomial Factorization).
Input:  a monic, separable, squarefree polynomial &(z) over a local field k
Output: a proper factorization of &(z) if one exists,

a two-element certificate for #(z) otherwise

o Initialize ¢(z) « z, &(z) « &(z), k « k, E+ 1, P { }.

¢ Repeat:

a) If o(z) fails the Newton test then: [ remark 2.6.2 |
e Return a proper factorization of 9(z).

b) If E, t E then [increase E]: [ remark 2.6.3 |
e P— PU{y}, S «Ilecm(E,E,)/E, E + SE, ¢(z) + ¢(z)5.
o If E = deg® then: [ remark 2.6.4 |

e Return a two-element certificate for é(z).

c) Find ¥(z) = 7%¢; () pa(z) - - - o (z)* with: [ remark 2.6.7 |
v (¥) = v5(9), wi(z) EP, 0 €Z,c; €N (i >0), degy < E.

d) Set v(z) « p(z)yv~'(z). [ remark 2.6.5 |

e) If v(z) fails the Hensel test then: [ remark 2.6.2 |

e Return a proper factorization of 9(z).

f) If EF, = deg ® then: [ remark 2.6.4 |
¢ Return a two-element certificate for #(z).

g) If F, > 1 then [extend the ground field]: [ remark 2.6.6 |
o Replace k « k[y]/v,(y)kly].
¢ Derive a proper factorization 5(1:) = 61(:1:) .. -5,.(1:) of ;5(::) over k.
e Replace &(z) « &;(z), with degP; = (deg @) /F,.

h) Find 6 € O; with § = v(£§) mod xO; for all roots £ of &(z).

i) Replace ¢(z) + ¢(z) — d0y(z). [ remark 2.6.3 |
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Remark 2.6.2. A proper factorization of 5(1:) over k can be derived by applying
proposition 2.3.4 to 5(1:) and o(z) or corollary 2.3.5 to 3(1:) and 7¥(z). From this
factorization of #(z) over k a factorization of &(z) over k can be obtained using

remark 2.3.10.

Remark 2.6.3. Replacing ¢(z) by ¢(z)S ensures that deg p = E when E is replaced
by SE, and as degdy < E the degree of p(z) remains equal to E when ¢(z) is
replaced by ¢(z) — §¢(z). As ¢(z) = z initially, p(z) remains monic.

Remark 2.6.4.If E = dega then every root £ of 5(:1:) generates an extension
of degree deg®, and hence 5(::) is irreducible. It follows from proposition 2.5.1
that degp = E = deg$ if degtf - Uy () > 2up(discP). As v;(p) increases strictly
algorithm 2.6.1 terminates. There exist ¢¢ € Z and ¢;,...,c, € N such that
II(z) = p1(z)® - - - ps(z)™ with i(z) € P and v;(/T) = 1/E. Following section

2.4 we construct a two-element certificate of &(z).

Remark 2.6.5. In practice we find %(z) € k[z] such that $(z)¥(z) = 1 mod &(z)
and set v(z) « tp(z){/;(z). Note that v;(y) = 0. As only the values of the polynomials

v(z) and $(z) at the roots of &(z) are of concern, these polynomials can be reduced

modulo 5(.7,).

Remark 2.6.6. As F,, > 1, and as 5(1') and therefore v,(y) are separable, v,(y)
must have at least two distinct factors over ﬁ[y] / u.,(y)ﬁ[y], at least one of which is

linear. Proposition 2.3.4 gives a factorization of &(z) over ky]/ vy(v)kly]-

Remark 2.6.7. Let the elements in P be numbered so that the increase of E by
the factor S; due to y;(z) is followed by the increase of E by the factor S;.; due to
©j+1(z). As E, | E there is an element y(z) = 7%p;(z)® - - - e (z)* with v}(y) =

v, (). By construction of the @;(z) we have the relations
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S . bs biio
'U; (‘Fj’) = v; ("b’ ‘P},"l . “Pj’-dx B

with b; € Z and b;; € N; hence we can reduce the exponents cy,...,c; so that

0<c<Sjforl<j<k. Weget

degd) < (51—1)-1'-(52—1)81+(Ss-1)3152+"'+(sk—1)51"'5/;_1
= (-148---§) = E-1.

The integers co, cy,...,ck can be computed using the following algorithm.

Algorithm 2.6.8.
Input: A list of pairs (a;/b;, S;), 1 <4 <k, with a;, b;, S; € N, ged(a;, b;) = 1
and lem(by,...,b0;—1)-S; = lem(dy,...,b) forall 1 < i < k, and a rational
number w = t/u where ged(t, v) = 1 and u < [[5, S
Output: Positive integers cy,...,ce withcy € Z,0< ¢; < S; for 1 < i €< k. and

CO'*‘Zf:lci‘ai/bi =w.
eSet T « [I*, S..

e For i from 1 to &:
o Replace T « T/S; and set d « b;/ ged(b;, T).
oSetr ¢ T-d-a;/bjand s —w-e-d.
eFindc;sothat ¢;-r =smodd with 0 < z < d.
¢ Replace w « w — ¢; - a;/b;.

e Set ¢g — w.

e Return ¢, ..., ck.

2.7 Examples

In the first example we show the irreducibility of a polynomial &(z) whose roots

generate totally ramified extensions of Q. We need to increase the ramification index
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bound E twice to show the irreducibility of #(z). From the polynomials collected in

the set P we compile a certificate for the irreducibility of &(z).

In the second example a polynomial ¥(z) is factored over @;. In the first iteration
of the algorithm we discover that all extensions of Q; generated by roots of ¥(z)
contain an unramified extension ﬁ/Q;. We derive a factorization of ¥(z) over k from

which we obtain a factorization of ¥(z) over @;.

In the third example we factor a polynomial over the field F((t)).

Example 2.7.1. Let k = @, and
&(z) = 1% + 3-22* + 252° + 3.2%2% — 3-257 + 33-23.

Initially we set P := { } and ¢(z) := z, hence x,(y) = ®(y). It follows that ¢(z)
passes the Hensel and Newton tests. We find v3(p) = 1/2, thus E, = 2, and we set
E :=2, p\(z) := p(z) and replace P by {¢:(z)}.

We replace ¢(z) by z?; thus ¢(z) = 2 and v(z) = ¢(z)v "' (z) = 222 with x,(v) =
¥® —y* +y* - 1. Hence v, (y) =y + L.

We replace o(z) by ¢(z) — (=1)¢(z) =22 + 2. As
ti(y) — yﬁ _ 29y3 + 9.2lly2 - 3.215y + 3.216

the polynomial y(z) passes the Hensel and Newton tests. We have v3() = 8/3 and
E, = 3. We replace E by lem(E, E,)) = 6, we set p3(z) := ¢(z), and we replace P
by {¢1(z), va(z)}-

The ramification index of an extensions of @, generated by a root of #(z) must be at
least E = 6. As the degree of &(z) is six, &(z) is irreducible. The irreducibility of b(z)
is certified by the two-element certificate (1, II(z)) with II(z) := 273y, (z)pq(z) =
27323 + 272z Note that v3(IT) = 1/6.
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Example 2.7.2. Let k =@; and
U(z) = z° +42° + 2-32* + 722 + 3%z + 13.

We derive a factorization of ¥(z) over Qs to a precision of twelve 3-adic digits.

Initially we set (z) := z. Then x,(y) = ¥(y) and v,(y) = y* + 1. Thus we continue
our computation over the extended ground field k := k[y]/v,(y)k[y]. Let a be a

primitive element of k. Hensel lifting gives the factors
F(z) = z* + 4357400z + (—33734-3%a — 59774.3)22

+ (—89882c + 8443-32)z + (—5132-3%a + 520585)

and its conjugate
z* — 4357400z + (33743-3%a — 59774-3)z?

+ (89882a + 8443-3)z + (5132-3% + 520585)

of ¥ over k. We now factorize & (z) over k.

Over k the polynomial ¢(z) = z has characteristic polynomial x,(y) = @(y). Hence

¢(z) passes the Hensel and Newton tests and v,(y) = y + 2a.

Thus ¥(z) = 1, v(z) = p1(z), and § = —2a. Replacing p(z) by ¢(z)-6¥(z) = z+2a.
we get
Xeo(y) = y* + (145244-3a)y® + (—33734-3% — 24679-3%)y2
+ (—~116638-3x + 50654 -3%)y + (53869-3%a — 33559-32);
thus ¢(z) fails the Newton test. Note that the valuations of the roots of x,(y) are
1/3 and 1. The polynomial ¥(z) := ¢(z)3/3 with
xs(y) = y* + (—155281-3a + 16838-3%)y® + (—3793-3%a + 60782-3)y>

+ (277066 + 9565-3%)y + (8165-3%a — 8350)
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fails the Hensel test. Hensel lifting gives the factors
Xo1(y) =y — (4151-3%a + 57679-32),

xs2(y) = y* + (—142828-3a + 5156-3%)y? + (-30373-3%a + 150737-3)y
+ (—520028a — 17123-3%)

of x4(y). We obtain the factors

@y (z) = ged(F, xg,1(9(z)) = T + 391409 — 26500-3,

Fy(z) = ged(¥, X9,2(9(z)) = 23 + (14777-3a — 150647-3) 2

+ (158332-3a — 117802-3)z + 188791a — 185620

of @(z). As X,(y) has a root of valuation 1/3 at least one of the extensions given
by roots of @(z) must have ramification index greater than or equal to three. Thus

@(z) is irreducible. Computing the norm of &, (z) and @(x) we get the irreducible

factors of ¥(z) modulo 3'2 over k:

¥(z) := Ngp (#1) = 22 — 53000-3z + 204634

Uy(z) := Ng, (§2) = 28 — 124147-32° — 128147-3z* + 12086832

+ 28201-3z2 + 107405-3z + 312880.

The two-element certificate (I1(z), II(z)) = (z, 3) certifies &, (z); the two-element
certificate (I5(z), II(z)) = (z, N (z + 2)) = (z, 2% + 4) certifies B,(z).
Example 2.7.3. Let k = F;((t)) be the completion of F3(t) with respect to ve(+),
normalized such that v,(t) = 1. Let

B(z) = 2° + 2z + (£ + 2t)2® + 222 + (£ + 260z + £ € F3((t))[z].

We derive a factorization of ¥(z) € k = F3((t))[z] to a precision of 32 digits. Initially
we set o(z) := z. Then x,(y) = 9(y). Thus ¢(z) = z passes the Hensel and Newton
tests and we obtain v{(y) = 1/3. Replacing ¢(z) by z° we get

37



Xo(y) = 9% + 283" + (2 +26%)93 + 592 + (£ + 2t5)y + 5.
and therefore v;(p) = 1. Thus we set y(z) := ¢(z)/t = z3/t. Now
X)) =yt +2yt + (B + 2P + P+ (B0 + 2y + 1

with x,(y) = 4° +2y* + 1 and v,(y) =y + 1. Hence we replace (z) by z3 +¢. The
characteristic polynomial
Xo(y) = ¥° +28%  + (B + 699 + 592 + (2 + )y + 2625 + 2424 + ¢

of ¢ passes the Hensel and Newton tests. As vuf(p) = 8/6 = 4/3 we set ¥(z) = tz.
The characteristic polynomial of v(z) = ¢(z)y~!(z) is
X7(y) = 3% + 1595 + t6y* + (2411 + 2)3® + (2417 + 11 4 6)y2
+ (817 + 281 4 8)y + 2817 + 2416 1]
with v,(y) = y + 1. Replacing ¢(z) with ¢(z) — (~1)¢(z) = 2° + tz + t we get
Xo(y) = 9% + 1% + 2%,
Thus ¢(z) passes the Hensel and Newton tests.

As v;(p) = 4 we set y(z) := p(z)/t* = (z +tz +t)/t* and get x,(y) = y° + £39° + 2.
We have

X2(y) = (y+ 1) +2)°

Hensel Lifting gives the factors
Xv1(y) =y* +2t18 +2° + 1 and

Xn2(y) =y* +15+26° +2

of x,(y) modulo £32. As the sum of the degrees of the polynomials
Xr1(7(2)) = (8 +1)/¢4-2° + (85 + 1) /£2-z + (26% + 2t'2 + £ + 1)/13 mod &(z),

Xv2(¥(z)) = (8 + 1)/t*-2% + (85 + 1) /3-z + (£2* + 2t'% + 26 + 1)/£2 mod &(z)
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is equal to the degree of ¢ we only need to divide by the leading coefficients in order
to derive a factorization of ¢. Thus the polynomials

Pi(z) =2 +tz + UB + 2 4116 £ 0 4 2T 444 4 g

Bo(z) = 2° +tz + %8 + 22 4+ 216 + 410 + 247 4 2t 14

are the irreducible factors of &(z) to a precision of 32 digits. The two-element certifi-

cates (I1(z), IIi(z)) = (1,7) and (Ip(z), Mao(z)) = (1,7) certify their irreducibility.
2.8 Complexity Analysis

Theorem 2.8.1. Let k be a local field and let &(z) € Oy[z] be monic, separable, and

squarefree of degree N.

There ezists an algorithm that derives a factorization of &(z) into irreducible factors
and returns an integral basis of kiz]/p(z)k(z] for every irreducible factor o(z) of

®(z) with the number of arithmetic operations in k being
O(log N(P(N,N) + T(N, N) + C(N)) + vy(disc ®)(R(1, N) + P(N, N))).

Lemma 2.8.2. Let k be a local field and let #(z) € k(z] be monic, separable, and
squarefree of degree N. Let Eg be the minimum of the ramification indices and Fy be

the minimum of the inertia degrees of all extensions of k generated by roots of ¥(z).

Algorithm 2.6.1 derives a proper factorization of &(z) or a two-element certificate

for &(z) with the number of arithmetic operations in k being

vp(disc @)

0 (1og Fo(P(N, Fa) + C(Fs) + TN, N)) + Es 2

(R(1, N) +P(N, F.,))).

Proof. Let k be an unramified extension of k contained in k(£) for all roots £ of
&(z) and let F = [iE : k]. Then vy(disc®) > Fu,(disc 5), where :5(2:) is a factor of
degree N/F of &(z) over k. Therefore extending the ground field does not increase
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the number of repetitions of the main loop, i.e., steps a), c) to f) and i) are repeated
at most 2(Eg/N)v,(disc®) times by proposition 2.5.1. Note that two polynomials
of degree (deg®)/F over an extension k of degree F of k can be multiplied in
M(F - N/F) = M(N) operations in k.

a) The resultant in the Hensel test needs R(1, N) arithmetic operations in k.

b) [increase E] An increase of E can occur at most log, E times. Computing ¢(z)°

is of complexity M(V) log E.

¢) The extended euclidian algorithm needed for the computation of ¥~"! is of com-
plexity O(M(N) log N).

e) The resultant in the Newton test needs R(1, V) arithmetic operations in k.

g) [extend the ground field| The ground field can be extended at most log, Fg
times. Factoring x.,(y) over the residue class field is of complexity P(NV/F, F).
The construction of a primitive element of a compositum of two residue class field
is of complexity C(Fg). Deriving a proper factorization requires approximating
the greatest common divisor (see proposition 2.3.6) and computing the norm of
5(::) over k (see remark 2.3.11). This can be achieved in T(N, N), respectively
R(F, N/F), operations in k.

h) The factorization of x,(y) over the residue class field is of complexity P(N/F, F).

Thus a proper factorization of ¢(z) or a two-element certificate for #(z) can be

derived with the number of arithmetic operations in k being
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o(log Fs(R(1, N) +P(N, Fp) +C(Fp) + T(N, N)) + log Es(M(N) log(N))

vp(disc $) (dlsc P)

+ B 22D oy Ny 4R, Fy)))

vp (d.lSC )

=o(1ogF¢,. (P(N, Fs,) + C(Fe) + T(N, N) + Eq, (R(l N)+P(N, Fy, )))

a

Proof of theorem 2.8.1. Denote by ®,(z),...,Pn,(z) the irreducible factors of &(z).
Let Fy, be the inertia degree of the field given by @;(z). Let Eg, be the ramification
index of the field given by &;(z). It follows from 2.8.2 that the number of arithmetic
operations required for deriving a factorization of #(z) into irreducible factors is

vy (disc P)
N

= O(log N(P(N, N) + C(N) + T(N, N)) + uy(disc8)(R(1, N) + P(N, N))).

io (log Fo, (PN, Fa,) + C(Fs) + T(N, N)) + Es,

=1

(R(L,N) +P(N. F3,))

a

Note that there are algorithms for factoring a polynomial of degree N over F, with

the expected number of bit operations being O(N?logq) (see Kaltofen and Shoup
[1998]).

If the residue class field of k is finite then lemma 2.4.4 implies that the expected
number of resuitants needed to find an element & such that 4 is a primitive element
of the compositum k(, 7) is O(1). Therefore, in this case, the expected value of
C(N) is O(NM(N) log(N)) operations in k.

It follows from proposition 2.5.1 and remark 2.3.8 that throughout the algorithm a
precision of 2v;(disc®) digits in the ground field is sufficient. Thus p2»(disc®) cqp
be used as a modulus for the triangulization of the matrices occuring in the com-

putation of the approximations of the greatest common divisor. Noting that the
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triangularization is done over a local ring and to a fixed precision, it is easily seen
that T(N, N) = O(N3).

Corollary 2.8.3. Let k be a finite extension of Q, of degree k. Let $(z) € Oklz] be

a monic, separable, and squarefree polynomial. There ezists an algorithm that

e derives a factorization of $(z) into irreducible factors and
o returns an integral basis of k[z]/p(z)k[z] for every irreducible factor o(z) of ¥(z)

with the ezpected number of bit operations being

0 (Ns""v,(disc @) l+¢ logl+e pk + N2+‘v,(disc Q)Z-&-s logl-{»e pk) .
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Chapter 3

Totally Ramified Extensions

Let k be a p-adic field. Let n > 1, d > 0 be integers, and let p be the prime ideal of
k. In this chapter, we give an algorithm to compute all extensions of degree n and

discriminant p?.

In section 3.1 we state Ore’s conditions, which give all possible discriminants p* of
totally ramified extensions of degree n. In section 3.2 we introduce an ultrametric
distance on the set of Eisenstein polynomials of degree n. This distance is used in
section 3.3 in the construction of a set of polynomials defining all totally ramified
extensions of degree n. In section 3.4 we give explicit formulae for the number of
totally ramified extensions. In section 3.8 we describe the construction of totally
and tamely ramified extensions since this construction is easier than in the general
case. [t is also possible to construct a set of generating polynomials for all extensions
of degree p in general (see section 3.6) and of extensions of degree p™ with some

restrictions. (see section 3.7). Section 3.10 contains two examples.

Note that similar formulas can also be given for local fields of characteristic p # 0.

The following result shows us that these are not particularly interesting.

Theorem 3.0.4. Assume that chark = chark = p # 0 and that k is perfect.
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Then k is isomorphic to k = k((r)), the field of all power series in one indeterminate
m over k with the ezponential valuation given by the ezponent of the lowest power of

T.

Thus for the rest of our discussion we focus on the totally ramified extension K
of degree n of a p-adic field k. Let p and e be the prime ideal and the absolute
ramification index of k/Q, respectively. We denote the uniformizer of p by .

Let v, denote the unique prolongation of Up to k such that vp(7) = 1. Let q denote

the cardinality of the residue class field of k.

3.1 Discriminants

The possible discriminants for totally ramified extensions of k are given by the fol-

lowing criterion from Ore [1926].

Proposition 3.1.1 (Ore’s Conditions). Let k be a finite eztension of Q, with
mazimal ideal p. Given j € Z let a,b € Z be such that j =an+b and0 < b< n~1.
Then there exist totally ramified extensions K/k of degree n and discriminant p™+i-!
if and only if

min{u,(b)n, vp(n)n} < 5 < vy(n)n.

Proof. Every totally ramified extension K of k can be generated by a root £ of an
Eisenstein polynomial () = £ +pn_1z"!+. . .+yo. We have disc (K/k) = disc (¢)
and wp(disc (¢))/n = vy(¢'(€)). Because vy(€) = 1/n the valuations of ip;&*! for

1 < i< n and n€"! are all different, we get



5(¢'(€) = B +(n—-Dpaaf" 2 +.. .+ )

. n—1 ) i-1
- 1<Ii12r111-1 {v,,(n) + Up(2) + vp(eps) + T}
n ) ) —1)+1 -
= min { v’(n) , n'(vl’(l) + vP(‘pt) ) + 'l} + n 1
1<ign-1 n n n

Setting j := yp(disc (¢)) — n+ 1 = nyp(¢'(€)) —n + 1 gives

j= 1&21?-1 {nvp(n), n(vp(3) +vp(s) — 1) +14}.

Thus either j = nvy(n) or j = n(vp(b)+vy(ws)—1)+bforsomel < b< n-1.Fixbe Z
with 1 <b < n—1. Set a:=vy(b) +vy(s) — 1. As vp(ips) — 1 > 0 we get nuy(b) +b <
J = an +b. Because n { b we can simplify this condition to nu,(b) < j = an +b.

Combining this case with j = nvy(n) we get min{nv,(b),nv,(n)} < j < nyy(n).

It is clear from the discussion above that for every j = an + b with
min{nwp(b), nvy(n)} < j < nup(n)
we can construct an Eisenstein polynomial ¢(z) such that disc (¢) = p»*+7-L. a

Let 7 be an integer satisfying Ore’s conditions with respect to n (in particular 0 <
J < vp(n)n), and let j = an + b be the Euclidean division of j by n. The following is

trivial but crucial
n|j <= b=0 < j=y(n)n & a=y(n).

Proposition 3.1.2. Let k be a finite eztension of Q, with mazimal ideal p. Let K/k
be a totally ramified field eztension of degree n and discriminant p™*ti—1. Let ng, n,
be two positive integers such that n = ngn;. Suppose K/k has an intermediate field
K of degree ng and discriminant p™t%-1_ Then there ezist integers jo, j such that

J = Jonu1 + J1 and such that ng, jo and n,, j; satisfy Ore’s conditions.
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Proof. Assume that K/k admits a sub-extension K,/k of degree ny. Let P, be the
prime ideal of K and let p"e+5~! (resp. P31~} be the discriminant of Ko /k (resp.
K/Ko). Then nyg, jo and n;, j; must satisfy Ore’s conditions. Furthermore, by the
formula for discriminants in a tower of extensions, we have

disc (K/k) = (disc (Ko/k))™ - Nio/i(disc (K/Ko)).
Now, since Kq/k is totally ramified, it follows that

n+j—1 _ n(no+jo—1)ny n1+j1-1
p ] _p( ) P 1+) ,

which proves the result. a

3.2 Eisenstein Polynomials

We now fix an integer j fulfilling Ore’s conditions (proposition 3.1.1) and turn to the
more specific problem of the construction of all totally ramified extensions K/k of

degree n and discriminant p"+i-!.

Definition 3.2.1. Let k be a local field with maximal ideal p. We denote by K.,

the set of all extensions of k of degree n and discriminant p™*+7~!.

Let E,; denote the set of all Eisenstein polynomials over k of degree n and dis-
criminant p™*7-!. The roots of the polynomials in E, s generate all the extensions

KeK,,.

For two elements ¢(z) and ¥(z) of Ey,;, we set d(p,¥) := |¢(8)| where 8 is a root
of ¥(z). Let B be any root of ¥(z) and let o € Gal(¥) over k such that o(8) = 3'.
Since o is an isometry, we have [¢(B)| = |o(p(8))| = lo(a(B))| = |¢(8")], hence
d(yp, %) does not depend on the choice of 5. Observe that

@) = [Tl =] 16: - o
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where f3; (respectively a;) denote the roots of 1(z) (respectively ¢(z)). The last
formula is symmetric with respect to (z) and 1(z). Thus for any root a of y(z) we
obtain the equality |¢(B)| = [¢(a)|. Hence, d(p, ¥) = d(¥, ).

The distance d(y, ) is easily calculated using the following lemma.

Lemma 3.2.2. Write o(z) = 2" + gn_12" ' +---+ g and ¥(z) = 2 + o1z +
-+ 1Yy and set

w:i= min {”p('l’i - o) + i’} .

0<ig

Then d(p, ¥) = |x|".

Proof. Observe that

n—-1

¥(e) = ¥(a) - pla) = Y (% - i),

1=0
and since a is a prime element, vy(a) = 1/n. Thus in the sum above all the terms
have different valuations. It follows that the valuation of ¥(a) is the minimum of

these. O
Let o(z) = 2" + Pn12"' + - + 90, ¥(z) = 2" + Yp_12" L + - + 1)g, and I(z) =

2" +9p-12""! + -+ + ¥y be polynomials in E, ;. We have

0<ig<n—1

min {v,(cp,- - )+ %}
> min {min {up(ips = 80), 0y (05 — )} + -:;}
= osrznsif—l {mm {v,(cp,- -9%)+ %,v,(ﬂi -%) + %}}
= min {o&i,{‘.l {v,(go,— —9)+ :7} .y {v,(ﬂ,- — %)+ %}} .
Thus d(y, ¥) < max{d(p,9),d(d, %)}, i.e., d satisfies the ultrametric inequality. It

is clear that d(¢p,¥) = 0 if and only if ¢(z) = 9(z). The following result summarizes
the properties of d.
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Proposition 3.2.3. Let ¢(z) and y(z) be two polynomials from the set E,; of
Eisenstein polynomials of degree n and discriminant p**7=! over k. Then d(y,9) :=
le(B)] = |¥(a)| where a (respectively B) is any root of p(z) (respectively W(z)) de-
fines an ultrametric distance over E, ;. Furthermore, let (z), ¥ be two elements of
Enj, a =ay,...,ay, the roots of p(z), and B one of the roots of ¥(x) which is closest
to a. Then

d(p,¥) = [[ max{|8 - al, la - ail}.
=1

3.3 Generating Polynomials

In this section, we construct a set of polynomials that generate all the extensions in

Kn‘j.

Let m > [ > 1 be two integers, and R, a fixed system of representatives of the

quotient
p'/p™.
We denote by R, the subset of those elements of R, , whose v,-valuation is exactly

[
For 1 <i < n-1, define

1) = max{2 +a — vp(2),1} ifi<b,
7| max{l+a-uvy(i),1} ifi>b.

Let c be any integer such that

c>1+2a+§=n+2j.
n n

The reason for choosing these values of {(i) and ¢ will become clear presently.

Let 12 be the set of n-tuples (wg, .. .,wn-1) € k™ satisfying
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e ifi=0, (1)
w; € Rl(i),c fl<i<n—1landi#b, (2)
Rl.(b),c ifi=b+#0. (3)

To each element w := (wy, . . .,wn—1) € £2, we assaciate the polynomial Au(z) € O[]
given by
Ay(z) ="+ wp 2" 4 - bz + wp.

Lemma 3.3.1. The polynomials A,(z) are Eisenstein polynomials of discriminant

pn+j-—l

Proof. Since {(i) > 1 for all ¢, we have vp(w;) > 1 and (1) gives vp(wqg) = 1. Thus.

A,(z) is an Eisenstein polynomial.
Let 5 be a root of A, (z). Since the discriminant of A, = N/ (AL, (), the second

assertion is equivalent to

n+j)—1 b-1
(A ()) = = =l+a+ .

But A, () = ns"! + (n = L)wn_15* 2+ - - +w; and v,(A! (5)) is the minimum of

these valuations since they are all different.
It is straightforward to see by (2) that for i # b

v,(iwi;ti'l)>1+a+b;1,

and fori=56#0
vp(bwssd ) =1+a+b;1.

If b # 0 then by Ore’s conditions
Up(na 1) > vy (bupsdt).
Hence v(A}(3)) =1+a+ (b-1)/n.
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If b =0, then for 1 < i< n -1 we have @ = vy(n), thus
up(ns" 1) = vy(n) + (n — 1)/n < yp(iwsd™t)
and therefore v,(A;,(5)) =1+ vp(n) — 1/n as required. |

Theorem 3.3.2 (Krasner). Let c be an integer such that ¢ > 142a+2b/n. The set
E,; is the disjoint union of the closed discs Dg, ;(Au,7) with center A, and radius

r:= |p°| as w runs through .

Proof. Lemma 3.3.1 proves that the polynomials 4, are indeed elements of E,, g

Let w and w' be two distinct elements of £2 and let i be such that w; # w/. Then
vp(w; — '~)+£<c-1+i<c
P\ i n = n

and thus by lemma 3.2.2, d(A,, As) > 7 and by the ultrametric property of d the
discs D,, and D,, are disjoint.

Now, let ¢ be an element of E, ; and write ¢(z) = z" + gp_;2"~! + - - - + q. Since

f is an Eisenstein polynomial, v,(¢g) = 1 and there exists wy € Rj . such that
Yo = wo mod p°.

By reasoning as in lemma 3.3.1, we find that vy(g;) > (i) for all i > 0 and there

exists w; satisfying (2) or (3) such that
@i = w; mod p°.

Let w := (wo,...,wn~1). We claim that f € D,. We have v,(y; — w;) > c for

1=0,...,n— 1. Thus, for all
]
Up(ps — wi) + - 2c
which by lemma 3.2.2 proves the claim. a
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Corollary 3.3.3. Let w be an element of 2 and let » be a root of A,(z). Then the
eztension k() /k is a totally ramified eztension of degree n and discriminant p™+i—L.
Conversely, if K/k is a totally ramified extension of degree n and discriminant p"+i-!

then there ezist w € 2 and a root » of A,(z) such that K = k().

Proof. The first claim is clear since the polynomials A,(z) belong to E, ;. For the
second, let a be a prime element in K and denote its irreducible polynomial over k
by o(z). We denote by a,...,a, the roots of ¢(z). Let a € {ay,...,an} and let

Ay be the minimal distance between a and any other root of ¢(z). Then

n
le'(a)l =[] lo - el < Ag|p™-2/m|

=2

since the a; are prime elements. But
[¢/(a)] = [pw+=0/
and thus

A(P > lp(j-fl)/nl.

Now let w € 2 be such that d(p, A,) < r = |p¢| where ¢ > 1+2a+2b/n = (n+25)/n
and let 5 denote a root of A, such that |» — a| is minimal. Then we claim that

|5 — ai < Ay, since otherwise

dp,A) = []max{lo - |a-ail}
=1

A\

Hmax{Asa, lo - ]}

n
> Ap[]le-ail = A¢l¢(a)l

=2

> Ip(ﬂ+2.1')/ﬂ l R

This contradicts [p™+%)/"| > r by the particular choice of c. Hence |3 — a| < Ay

and it follows by Krasner’s lemma (proposition 1.3.1) that K = k(). a
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3.4 Number of Extensions in K, ;

We have constructed a finite set of polynomials that generate all the extensions in
K, ;, namely the set {4, | w € 2}. Nevertheless, for each extension, there are in
general several polynomials A, that generate the same extension. Hence the number

of extensions is in fact smaller than the number of elements in 2.

The aim of this section is to prove exact formulae for the number of extensions in
Ko ;- These formulae are interesting by themselves, but will also be useful to get a
more efficient algorithm for the computation of all totally ramified extensions of a
given degree and discriminant (see section 3.8 for details). We also use them as a
tool in the computation of canonical generating polynomials of degree p in section

3.6.

We will need the following lemma.

Lemma 3.4.1. Let t > j+1 be an integer and let s := [p™+3=1+0/"|_ Let Dy L(s)
denote the number of disjoint closed discs of radius s in E, J- Then the number of

elements in K, ; is

#Kn,; =#Dg,; (S)W-

Proof. Let II,, ; denote the set of all prime elements of members of K, 4- Alternatively,
II, j can be defined as the union of the sets ¥\ B2 where P is the prime ideal of some
member of K ;. Let 4 be the map from II,; to E,; that sends a prime element to

its minimal polynomial over k.

Let u = [p*/*| and let @ and B be two elements of [T, ; such that |a — | < u. Then
@ and § generate the same field K € K, ; by Krasner’s lemma (proposition 1.3.1).
Observe that we have d(u(a), u(8)) < u |[p™+—U/%| = 5 by the same reasoning as

in the proof of corollary 3.3.3. Hence u(Dpy(a,u)) C Dg,,(u(a),s), where Dp(a, u)
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is the closed disc of center c and radius z in II,, ;. Conversely, let f € E,, ; and let o
denote any root of f,so f = p(c). Then it is straightforward to prove, using the same
methods, that Dg,_;(u(a),s) C p(Dn(a,u)). Thus, Dg, , (u(a), s) = u(Dn(a, u)) for
all a € I1,, ;.

Now, the map p is clearly surjective and n-to-one. Furthermore, the inverse image
of u(a) is the set of conjugates of a over k, and, since t > j + 1, the closed discs of
radius u centered at the conjugates of a are all disjoint. It follows that the inverse
image of any closed disc of radius s in E, ; is the disjoint union of n closed discs of
radius v in IT,, ;. But, again by the remark above, any such disc is in fact contained
in P\ P? for some K € K, j- Thus, the number of disjoint closed discs of radius u
in Il ; is equal to #K, ; times the number of disjoint closed discs in P \ P2, which
does not depend on K € K, ;. This number is easily seen to be equal to ¢*~! — ¢*~2,

and so
#K, ;42 (¢ — 1) =n#Dg(s),

and the result is proved. a

Theorem 3.4.2. Let k be a finite eztension of @, let p be the prime ideal of k with
e its ramification indez, and let q be the number of elements in the residue field of
k. Let j = an + b, where 0 < b < n, be an integer satisfying Ore’s conditions. Then

the number of totally ramified eztensions of k of degree n and discriminant p*ti-!

1S
u:fl en/p*
nq=t ifb=0,
s = 5 enfp+| Lo/ elen-1y/plere+t
n(g—1)g+= ifb>0

We compute the number of elements in the closed disc Dg, (r) of radius |p°| and

then apply lemma 3.4.1 to obtain #K, ;.
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Lemma 3.4.3. The number of polynomials A, where w € 2, or equivalently by

theorem 3.3.2 the number of disjoint closed discs of radius r := |p°| in E,, is given

by
) nc—n-J—H-L‘é:j en/p* ifb=0
#DE..J (T) = (q - ) q ' - i . - 1f =Y,
(q _ 1)2 qnc—n-J—H» -‘gx en/p +[(1-[a/ejm-l)/p J ifb>0.

Proof. The number of elements in R}, is (g — 1)¢°™2. For i # b, the number of

elements in Ry;).. is ¢*) and the number of elements in Ripye is (@-1) geio-1,

So we have
n~1
e=2+(n-lje= T U(i) oy
#DE.;‘, (T) = (q - 1) ! 2+(n-1) ‘:1 nil i(0) e 0’
c—et{n-ljc—-1- '

It remains to compute the sum ) - ll (?). For b > 0, we get

-1

Zl —n-1+Zmax{1+a—v, ,0}+nimax{a—v,,(i),0}.

i=1 i=b
Let 7 2> ¢ be two positive integers and let p > 0 be a real number. Then

T

Zmax{p—v,(i),O} = Z Z max{p — ei, 0}

v=c
20 vp(v)=i

lofe] =

=Y Y (r-e)

=0 V=0
vp(v)=i

So-a (3] - [ -[52]+15)

Thus, using this formula, we find

n-1 l%l

gl[(i) = n-1+ §(1+a-ei) (lb;lj - lbp‘:‘lj)
la/e] - n-— — —
a2 )
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Note that, in the first summation, we can replace [(a +1)/e] by |a/e| since these
are the same if e { a + 1, and otherwise the term i = (a + 1)/e does not contribute
to the sum since in this case 1 + a — ei = 0. Rearranging and simplifying the sums,

we obtain

n-1

_ b-1 n-1
;[(1) = n+b+ a(n - 1) -2- lpla/ej+1j —a lp[a/ej+1J

et k] -3 |25

=1

Since b > 0 by Ore’s conditions we find that v,(n) > |a/e] + 1. It follows, that for

all 1 <i< |afe] +1, one has [(n —1)/p*] = n/p’ - 1. Thus,

n-1 la/e}
N an b—-1 elafe|n en
Zl(l) = an+b+n-2- plafel+i ~ [pla/ej+lJ + pla/el+T Z I’

=1 =1

J - la/e]en - lj el en

n +] -2- [ 1 —_—
p[a/cj-(- p P

The formula for b = 0 can be derived in a similar way. O

Theorem 3.4.2 is proven by choosing ¢ such that n + j — 1 + ¢ = nc and applying

lemma 3.4.3 and lemma 3.4.1.

3.5 Tamely Ramified Extensions

In this section let K/k be totally and tamely ramified, i.e., p does not divide n = K:
k}. The description of totally and tamely ramified extensions of p-adic fields is well-
known (see [Hasse, 1963, Chapter 16] or theorem 3.5.2 below). The aim of this section
is to recover this description using the methods developed in the previous sections.
Note first the following result the proof of which follows directly from proposition
3.1.1.
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Proposition 3.5.1. Let K/k be a totally and tamely ramified eztension of degree
n. Then j = 0 and thus the discriminant of this estension is p"~!, a = b = 0, and

c=2.

The totally tamely ramified extensions of degree n of k are described by the following

theorem.

Theorem 3.5.2. Let ( be a primitive (g — 1)-th root of unity contained in k,letg
be the ged of n and ¢ — 1, and let m := n/g. Then there are ezactly n totally and
tamely ramified extensions K/k of degree n. Furthermore, these eztensions can be
split into g classes of m k-isomorphic extensions, the extensions in a given class

being generated over k by the roots of the polynomial
"+ (r
withr=0,...,g-1.

Proof. We look at the set of generating polynomials defined in section 3.3. Proposition
3.5.1 tells us that j =a = b =0, and that the smallest value for ¢ is 2. We choose

12:={¢7|0<i<q-2}and Ry, := R},U{0}. Then the roots of the polynomials
" + Wy 2" '+ - +wo where w; ERjp for l<i<n~1and wy € R}, generate

all these extensions K.

We now turn to the extensions K generated by the roots of the polynomials z" + (*n
(ie., we take w; = O for1 € i < n— 1). Let a be such a root. Then it is clear
that for any integer h, (*a generates the same extension. Furthermore, the minimal
polynomial of (*a is z"+(™*ir and one can choose A such that nh+i = r (mod ¢-1)
with 0 < r < g. So in fact it is enough to consider only the polynomials z" + ("r

~
with0<rg<g-1.
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Now let z" + ("t and z" + ("7 be two such polynomials, with 0 < r, 7 < g —1and
r # 1/, and let « (respectively o) be a root of z" + (" (respectively z" +(” ). Then
if a and o' generate the same field, it follows that this field contains an n-th root
of ("~"'. But this is not possible, since this field contains only the (g — 1)-th roots
of unity and r — r’ is not a multiple of n modulo ¢ — 1. So & and o' generate two
distinct extensions of k. Furthermore, the conjugates of « over k are ¢, pa, . . ., p" "l
where p is a primitive n-th root of unity in Q, such that p™ = ¢©@-1/9 (recall
that m = n/g). It is clear that a, p™a = (0~Vq, ..., pls-mg = (ls-1a-1)/94 4]]
generate the same field, whereas a, pa, .. ., g™ 'a all generate different extensions.
Thus, the roots of the polynomial z" + ("7 generate m isomorphic but distinct
extensions, and the roots of all of these polynomials generate mg = n extensions.
Since we know that this is exactly the number of totally ramified extensions of degree
n of k by theorem 3.4.2, this proves that all the totally ramified extensions of degree n
of k are obtained considering only these polynomials, and that any other polynomials

are redundant. O

Proposition 3.5.3. Let K be a totally ramified extension of k of degree n and dis-
criminant pP*""!, with n = ngp® and ged(ng, p) = 1. Then K has a tamely ramified

subfield K of degree ny over k with discriminant pmo—1.

Proof. By proposition 3.1.2, all the subfields of degree ny of K, provided they ex-
ist, have discriminant p™~!. Assume such a subfield Ko exists. Then disck/x, =
P5+171 where j; = j = a(nop®) + b and Py is the prime ideal of K. Using theorem
3.4.2 we obtain

#Kn,j = #Kno,o #(Ko)m.j'

Hence either all extensions K have such a subfield of degree ny or some of the

extensions K have two or more non-isomorphic subfields of degree n,.
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Let m be a uniformizer of k. Assume K, and K, are non-isomorphic subfields of
degree ng over k, generated by the polynomials

wo(z) =™+ (™1 and @(z)=z"+("'n

respectively (see theorem 3.5.2). Let s be a root of g, then

¥(a) = -2 _ oo oy

nno
has a root in K. If % has a root in k then Ky = K; which contradicts the assumption
that Ko 2 K, and if % has no root on k then the extension K/k has inertia degree

greater than 1, which contradicts the assumption that K/k is totally ramified. O

3.6 Extensions of Degree p

Let k be an extension of Q, of degree ef with ramification index e, prime ideal p, and
inertia degree f. Set ¢ := p/. In this section we present a canonical set of polynomials
that generate all extensions of k of degree p. Note that similar polynomials have been

given by Amano [1971], although our results are somewhat more explicit.

Let j = ap + b. By theorem 3.4.2 the number of extensions of k of degree p and

discriminant p*+i-! is

_J ne® ifb=0
#K”‘{p(q—l)q“ if b # 0.

We will give a set of canonical polynomials for every possible value of j = ap +b. Let
 be a (g — 1)-th root of unity, and set R = (py, .., pg-1) = (0,1,{, (7., (%),

then R is a multiplicative system of representatives of k in k.

First we will compute a set of canonical generating polynomials for pure extensions
of degree p of a p-adic field that is, for the case b = 0. Secondly we give a set of
canonical generating polynomials for extensions of degree p of discriminant pP+er+5-1

where b # 0 of a p-adic field. We use the notation from section 2.1.
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Extensions of p-adic fields of discriminant p?+re-1

Theorem 3.6.1. Let L(0) := {r € Z | 1 < r < pe/(p—1), ptr}. Then each
eztension of degree p of k of discriminant pP*P~! is generated by a root of ezactly
one of the polynomials of the form

p i+1 pelp-+1 ;¢ (P—1)|e and
p(z) = & FTF Lies b + ko F 2o\ 4 (o) is reducible,
2P+ 7+ Y ier) P otherwise,

where & is chosen such that z° — z + § is irreducible over k and 0 < k < p. These
extensions are Galois if and only if (p— 1) | e and zP~! + p/n® is reducible, i.e., if k

contains the p-th roots of unity.

Lemma 3.6.2. Let

p(z) =2 +71+ Z P! + Ry
i€L(0)

and

v(z) =2 +7 + Z pa ! + RS
i€L(0)

where p;, ps, €R, R 2> pe/(p—1), and v, § € Oy. Let a be a zero of fand 3 be a
zero of g in an algebraic closure of k. If ¢; # d; for somei € L(0) then k(a) 2 k(B).

Proof. We will use Panayi’s root-finding algorithm (algorithm 2.1.4) to show that
¥(z) does not have any roots over k(e). As ¥(z) = z° mod () we set v, () =

¥(az). Then

Yi(z) = PP +r+ ) partl RS

i€L(0)

= (~7- z Pt —wBy)2P + 1+ Z pa,m + 7R
i€L(0) i€L(0)

= n(-zf+1)

Hence ¥¥(z) = v, (z) /T = —2P + 1 and we set Yo(z) := g¥ (az + 1).
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Let f; be a root of g;#_“ Let 2 < 7 < pe/(p — 1). Assume that the root-finding
algorithm does not terminate with deg g = 0 for some 2 < j < r and that there
ist <1 < pef/(p—~1) with 5, # 0 mod (a). After r iterations of the root-finding
algorithm we have

Yria(z) = (—1 - Y b pc,+,1r“"‘) (@z+fr1a ™+ + Brat + 1)

i€L(0)
+1+ Z Pd; 4y r + pd¢+x7ra+l + WR-IJ
i€L(0)
= -z’ -pa'z - pﬁtat + Z (pde-u - pci+l)1ri'

i€L(0),i2t
The minimal valuation of the coefficients of %,.i(z) is either v,(a®") = pr or
va(pBiat) = pe + t. As ged(p,t) = 1 and ¢ < pe/(p — 1) there exists r € N such
that the polynomial gf_“ (z) is constant. Thus the root-finding algorithm terminates

with the conclusion that ¥(z) is irreducible over k(). a

It is obvious that a pure extension can be Galois only if k contains the p-th roots of

unity.

Lemma 3.6.3. Assume that ¢(z) := 27! + ¢ € F,[z] has p ~ 1 roots in F,. Then
there ezists d € Fy such that Y(z) := 2P + cx — kd € F,[z] is irreducible for all

1<k<p.

Proof. Let h(z) = zP + cx € Fy[z]. As o(z) splits completely over F,, there exists
d € F, \ h(F;). Now 9;(z) = 2P + cz — d is irreducible. It follows that

kyn(z) = k2P + ckz — kd = (kz)? + c(kz) — kd

is irreducible. Replacing kz by y we find that ¥;(y) = y? +cy — kd is irreducible over
F,. ]
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Lemma 3.6.4. Assume k contains the p-th roots of unity and let t = pe/(p — 1).
Then there ezists 6 € Oy such that
o(z) =2 +71+ Z e + kbt € O[]
i€L(0)

and

W(z) =2 + T+ Z e + 167 € Oy [z]
i€L(0)
generate non-isomorphic extensions over k if | # k.
Proof. Let a be a root of p(z). We set ¢1(z) := p(az) and ¢,(z) = o¥(az +1).
After ¢ + 1 iterations of the root-finding algorithm we obtain @q.(z) = —a'Pz? —
patz+(l—k)ént. By lemma 3.6.3 there exists § € O such that o¥..(z) is irreducible

forall1 <k <pandall 1< < pwith k # [. Therefore 1(z) has no root in k(a).

Thus ¢(z) and 9(z) generate non-isomorphic extensions over k. O

Proof of theorem 3.6.1. We will show that the number of extensions given by the

polynomials ¢(z) is greater or equal tc the number of extensions given by theorem

3.4.2. The number of elements in L(0) is

#L{0) = |.pp—elJ - L?(ppi l)J —eT [pilJ - [pilj -

By lemma 3.6.2 the roots of two polynomials generate non-isomorphic extensions if

the coefficients p,, differ for at least one i € L(0). For every i we have the choice
among p/ values for p,. This gives ¢° polynomials generating non-isomorphic exten-

sions.

If k does not contain the p-th roots of unity then an extension generated by a root
@ of a polynomial ¢(z) does not contain any of the other roots of ¢(z). Hence the
roots of each polynomial give p distinct extensions of k. Thus our set of polynomials

generates all pg® extensions.
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If k contains the p-th roots of unity then lemma 3.6.4 gives us p — 1 additional
extensions for each of the polynomials from lemma 3.6.2. Thus our set of polynomials

generates all pg® extensions. a

Extensions of p-adic fields of discriminant pPter+b—1 p £ @

Theorem 3.6.5. Let L(0) ;== {r € Z |1 < < (ap+b)/(p—1),pt (b+r)} and
if(p~1) | (a+0b) sett :=a+ (a+b)/(p—1). Each extension of degree p of k
of discriminant pP*P**=1 with b # 0 is generated by a root of ezactly one of the
polynomials of the form

s ratl b i+1 t+1 ;¢ (P—1)|(a+0b) and

o(z) = P + T T+ Y ) P + kO if e — (b is reducible,
P+ O T+ T ) P! otherwise,

where p € R and § is chosen such that zP —(*bz +4 is irreducible ink and 0 < k < p.

These estensions are Galois if and only if (p— 1) | (a + b) and 27! — (*b € k(1] is

reducible.
Lemma 3.6.6. Let
o(z) =28 + ¢l 4 1+ yn? € Ot

and

¥(z) = 2 + (' lzd + 7+ 6n% € Okt

with 7,6 € Ok. If s # t then the roots of p(z) and (z) generate non-isomorphic
eztensions of k.

Proof. Let & be a root of ¢(z). Then o/ = —(*7%a" — 1 — yr. We use Panayi’s
root-finding algorithm to show that %(z) has no root over k(a). As before we get

¥1(z) == ¥(az) = 1(—2zP + 1). Therefore we set
¥a(z) = ¥¥(az +1) = (=¢*n%a® — 1 — y7)(az + 1)F + (*n%b(az + 1) +1+6n.
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Let 2 < r < e Let §; € R be a root of ﬂ(x), Assume that the root-finding
algorithm does not terminate with degﬂ = 0 for some 2 < j < r and assume that
there exists r such that t < r < pe/(p — 1) with £, # 0 mod (a). After r iterations
of the root-finding algorithm we have

Yrr1(z) = (1% —1-m)(@z+ B0 4+ + B0 +0+---+0+ 1)y

+ (%@ T+ B0+ + Bya® + 04+ +0+1)° + 1 + 6.

Because 7 < e, va(p) = pe, and a < e, the minimal valuation of the coefficients
of Yr41(z) is either va(—aP") = pr or ve(n°ab) = pa + b. Hence the root-finding
algorithm terminates with ,.,(z) = (¢* — (*)n%a® for some r in the range 2 < r <

e. 0

Lemma 3.6.7. Let
o(z) =2z + b+ + Z Pt + 1Ry € Ot
i€L(0)
and

V() =2 + i+ + Z pa,m ! + RS € Oylt]
i€L(0)

with pe;, po; €ER, R2a+a+b/(p—1) and v, 6§ € Ok. Let a be a zero of o(z)
and § be a zero of Y¥(z) in a fized algebraic closure of k. If ¢; # d; for some i € L(0)
then k(a) 2 k(B).

Proof. We use Panayi’s root-finding algorithm to show that ¥(z) does not have any
roots over k(a). As ¥(z) = z” mod (), we get ¢ (z) := ¥(az). Now ¥ (z) = -z +1

and we set ¥p(z) := ¢ (az + 1).

Let f; be a root of wﬁl(z). Assume that the root-finding algorithm does not termi-

nate earlier with deg wf = () for some j < r. After r iterations we have
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Yre1 (I) = ("C”raab -1~ 2 pci+17ri - pca+27ra+1)
i€L(0)
(@z+ B+ + Bt +1)P
+¢r%t(@ T+ o+ ot + 1)+ 1

+ Z Pdis r + pdc+x7ra+l

i€L(0)
= -7’ —paz—phia' - Y pe, T (Bia) ~ (Bt
i€L(0)
+ C‘w“a”ba’z + C‘ﬂ'aabbﬂtat + Z (pdﬁ-x - pci+l)7ri
1€L(0)

with B, # 0 mod (). The minimal valuation of the terms of ¥,.,(z) is
va(C*7%abBat) = pa + b+t

or ve(a’") = pr. By the choice of L(0) we have p { (pa + b + t). Therefore the

root-finding algorithm terminates with v, (z) = (*r%a’bB,a! for some r € N. a
Lemma 3.6.8. Let
w(z) =zP + Csn,a-{-lzb + Z pc‘.7l’i+1 +T€E Ok[l']
i€L(0)

with p(a) = 0 for some a € k. Then k(a)/k is Galois if and only ifa + b =
0 mod (p — 1) and zP~! — (b is reducible over k.

Proof. We will show that ¢(z) splits completely over k(a) if and only if the conditions
above are fulfilled. Using the root-finding algorithm (algorithm 2.1.4) we set ¢, (z) ==
p(az) and po(z) = ¥ (az + 1), ie.

palz) = (—(’w“a" -1- Z pqw‘) (az+ 1P +(*1°%®(az +1)P + 1 + Z P,

i€L(0) i€L(0)
= z(—afz"! + (*r%*h).

After r + 1 iterations we get



z(—aPzPt + (*nab*'h) ifrp=pa+b+r,

—a'PzP frp<pa+b+r,
ﬂar-H(z) =
¢*roabtlbz ifrp>pa+b+rand (p—1)1(a+b).

In the third case p¥, ,(z) is linear and therefore ¢(z) has only one root. In the second
case qa,ﬁl(z) = —zP~! + (*b mod (a). If cp,ﬁl(z) has p roots over k for every root B

of ¥, ,(z) we get
¢r+2(2) = prer(az + B) = —a+P + 0™BC 1% + o 0B P %0

But rp+p > r + 1+ pa + b; thus goﬁz(z) is linear and ¢(z) has as many distinct

roots as ¢f+1(z). 0

Lemma 3.6.9. Assume that a + b =0mod (p — 1) and zP~! — (*b is reducible over

k. Then there ezists & € Oy such that

o(z) = 2 + Cr**izd + Z pe,m ! + kot € Oy [z]
i€L(0)

and

Y(z) =2 + iz + Y pertth + 16nt € O fa]
i€L(0)

(where t = a + (a + b)/(p — 1)) generate non-isomorphic extensions over k ifl #k.

Proof. Let a be a root of ¢(z). Using the root finding algorithm we set ¢, (z) := o(az)
and gy(z) := ¢f (az +1). We get @i (z) = 2P + ¢*m%a®*tbz + (k — [)é7* hence
¥, (z) = 2% - (*bz + (k- 1)6. By lemma 3.6.3 there exists § € Ok such that o, | (z)

is irreducible. a
Proof of theorem 3.6.5. If (p — 1) { (a + b) then
a+l_:+bJ_la+b+ a+b J_l_%j

-1 p pp-1)

-

#L(0)
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If (p—1) | (a +b) then

a+b [a+b a+b J VJ
L(0) = a+ -1- + -1} -|-
#L(0) p-1 p plp-1) p
e+b~-1 a+b-1
= a+ - =a.
p-1 p—-1

Using lemma 3.6.6 we get p/ — 1 sets of generating polynomials. By lemma 3.6.7 each
of these sets contains p/® polynomials that generate non-isomorphic fields. Now either
the roots of one of the polynomials generate p distinct extensions or else the extension
generated by any root is cyclic. In the latter case we have p—1 additional polynomials
generating one extension each by lemma 3.6.9. Thus we obtain (p/ — 1)p*/+! distinct

extensions. m|

Corollary 3.6.10. Let k be an extension of Q, of degree n. The number of Galois

eztensions of k of degree p and discriminnant pPter+i-1 45

Proof. Let ¢(z) as in theorem 3.6.5. We denote the inertia degree and the ramification
index of k by f and e respectively. The number of values of s s for which zP~! — ¢*
is reducible is (p/ — 1)/(p — 1). By Ore’s Conditions 0 < a < e. For every a there is
exactly one b with 1 < b < p such that (p — 1) | (a + b). For every a the set L(0)
contains a elements. This gives p/* combinations of values of ¢;, i € L(0). We have p

choices for k. Thus the number of polynomials ¢(z) generating Galois extensions is

I il PSR 0 WY ot WY
p-1 & p-1 p/-1 p-1’
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3.7 Extensions of Degree p™

Let 7 = ap +b. By theorem 3.4.2 the number of extensions of k of degree n = p™
and discriminant pP™ *emP" -1 jg
i
Fkpm rempm -1 = pmqe%
In the case of extensions of degree p™ with m > 1 we only give a set of polynomials
generating independent extensions (but not - as before for extensions of degree p -

a set of polynomials that give all extensions).

Lemma 3.7.1. Let p be a prime number, let m € N, and let a < p™ withpt a. If

(7)) -movo

ap™ —- s
s

% «a,;m) ') - ('((p+m1')")) o ((r = 1)!?5:"* - r)!))
3, (ap"‘(ap’" ~1)---(ap™ -1+ 1))

1<r<p™ -1 then

Proof. For any 1 < s < p™ — 1 we have v, ( ) = (). Hence

(r=1)(r-2)---1
_ ap" —(r-1) ap™-1 _
= m+uy, ( — T =m
a
Extensions of discriminant pP™tempr™-1
Proposition 3.7.2. Let k be a p-adic field. Set
m
L) = {zezl 1<1< ”el or ep™! <z<:”—1, andpu},
{ em — ev,(i) <[ < em and p™h+1 4 if
L) = {leZ| e i A eptt .
—eh) < <hS<m-
=) <pm_h+p { eh)\p__1 withl1<h<m-1
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for1<i<p™ - 1. Let

m-l -1
p(z) =" + Z ch;x w4 Z Peo, ™+
i=1 leL(i) leL(0)

and

m-t_l

b ="+ 3 &Y+ Y gt

i=1 leL(s) leL(0)

Assume c;; # d; for some0 < i <p™'—1andsomel € L(i). Letack and B k
be roots of p(x) respectively y(z). Then k(a) 2 k(B).

Note that L(i) =D if pti.

Proof. We use Panayi's root-finding algorithm (algorithm 2.1.4) to prove that ¥(z)

does not have any roots over k(a). As in the proofs of lemmas 3.6.2 and 3.6.7, we

get
Pm-l_l
W) = (- PO INEDY pq,.,vr‘+1)z"'"
i=1 teL(i) 1EL(0)
m-l -1
+ z a®z'? Z pa, T + z Pa, ™ + 1.

lEL(s) 1eL(0)
We denote by 5, a lift of a root of ¥ +[(:z:) to k(). Let ¢ be the smallest integer such
that £, # 0 mod (a) and let r < ep™/(p — 1). Then

m—l -1
Yralz) = ( Z a” Z Pe,T Z Pco.x”l“l)

i=1 teL(i) leL(0)
-(@z+a B e+ B+ 0+ + 0+ 1)
pm-1
+) daz+a B+ B+ 0+ 0+ 1) Y gy
i=1 teL(i)
+ z pdo',w‘ + 1L
1EL(0)

Again we assume that the root-finding algorithm does not terminate earlier with

deg(q_bz(z)) = 0 for s < r. It will become clear presently why the root-finding
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algorithm cannot terminate with deg(y#(z)) = 1 under the condition r < ep™/(p —
1).

Consider the term (a"z + 1)P". For every r the non-constant term with coefficient of

lowest exponential valuation is one of
o ", L P T T L P T
The exponential valuations of the coefficients of these terms are
va(@™") =™, ..., Ua(p"a ") = ehp™ + 1p™ R L, va(p™a") = emp™ + 1.
We find that if r > ep*!/(p — 1) then
hep™ +rp™ " > (h + 1)ep™ + rp™ L.

Thus for ep®/(p — 1) < r < ep®*!/(p — 1) the valuation of the coefficient of the term
p*a™™ ™" is lower than the valuations of the coefficients of any other non-constant

term of (a"z + 1)*™. Therefore the degree of ((a"z + 1)*")* is 1 if r > ep™/(p — 1).

Consider the term o'(a"z+1)'r*™~*(). By lemma 3.7.1 for every r the non-constant

term with coefficient of lowest exponential valuation is of the form
a'p o P9 PO em e (i)
with 1 < g < vp(?). The valuations of these terms are
va( aipqa,.,,u,(s)-g zpvp(i)‘sxan“e"p(i)) =i+ p™(em — evp (i) +eg) + rpvp(i)—g.
If r > ep™ (4941 /(p — 1) then
i +p™(em — ey (i) + eg) +rp™7? > i+ p™(em — e, (i) + €(g + 1)) + rp*I-le+D),

Thus for ep™ %(+9/(p — 1) < r < ep™ *»W+9+1 /(p ~ 1) the valuation of the coef-
ficient of the term afp9a™"" ™ zp" ")~ pem—eu(®) js Jower than the valuations of the

coefficients of any other non-constant term of a’(a’z + 1)ixem (i),

69



We compare the non-constant terms with minimal valuation from (@"z + 1)P™ and
a'(a"z + 1)) for a given ep/(p — 1) < r < ep™/(p — 1). Setting h := m —
Up(3) + g, we obtain
va(P*a®"") = ehp™ +rp™h
= e(m ~ vy(i) + g)p™ + rp™ el
< i+e(m—up(i) + g)p™ + rpi)-9
= va(a‘p’a""(i)-'z""‘i)—’w""”‘"’(‘)).
Hence the non-constant term relevant in the root-finding algorithm is always of the
form p"(a”z)pm-h.
In step r where ep"/(p— 1) < r < ep**'/(p— 1) for some 1 < h < m — 1 we get
B: # 0 only if va(p*a™" ") = ya(a’ + ') for some 1 i < p™ ~1and | € L(?). It
follows that
V(PP ") = ehp™ + 1P h =i + Ip™ = v, (a + 7);
hence
ep”

12_:f<r—pm h+p"(l

It is obvious that p | r if and only if p™A*! | ;.

eplx+1
p—1°

Assume that vy(i) = m — h; then pfr. Set s := ip~® and d := | + v, () — m. We

obtain

and asi<p™wehave 1 <i<ph p{i,and 0 < d < evy(1). Therefore
s+p*d < pt - 1+ pPewy(i) - 1) = pPev,(4)

If u,(i) > 1 we have peuy(i) — 1 > ep**!/(p ~ 1). Thus for every r with ep®/(p —
1) <r<ep*'/(p—1)and pfrthereexist 1 < i< p™—1and! € L(4) with
r=1/p™ " +p*(l - eh).
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Ifvp(d) = 1 then h = m — 1 and ep™ ' — 1 < ep™/(p - 1). For every r with
ep™ ' /(p—1)<r<ep™'—landpfrthereexist 1 <i<p™—1and! € L(i)
with 7 =i/p+p™ ' (Il —em —e). For ep™ — 1 < r < ep™/(p—1) such elements i and

{ do not exist.

We have seen that for r < ep™/(p — 1) all the valuations of all coefficients of non-
constant terms with minimal valuation are divisible by p. The valuations of all con-

stant terms of the form o* + 7'p are divisible by p as L(i) = J if p | i.

The valuations of the constant terms of the form p™B,at are not divisible by p. If
T > ep™/(p—1) then deg(ﬁ) < 1. The coefficient of the linear term of ¥, (z) has
valuation v, (p™a") = emp™ +r > emp™ep™/(p ~ 1). As t < ep™/(p — 1) the root-
finding algorithm terminates with deg(ﬁl) =0forsomel <r<ep™/(p-1). O

Remark 3.7.3. Proposition 3.7.2 gives us aset S C E,; of polynomials whose roots

define non-isomorphic fields extensions of k.

® The number of integers | with 1 <! < ep/(p—1) or ep™ ' <1< ep™/(p — 1) is

o o5

® The number of integers [ with em — v,(i) <[ < em for i from 1 to p™ — 1 is

pm-1

8= Zv,,(z —eZv,(z)—e

¢ The number of integers r with 0 < r < ep™/(p—1) with p | r is

»= |l = [55]

¢ But there exist r with p | r such that there isno i with 1 <i < p™—1 and [ € L(3)

such that
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or respectively

We have v,(i) < m — 1. Therefore v,(ip" ™) < A~ 1.

If h <m — 1 then the number of integers r with ep*/(p — 1) < r < ep*!/(p - 1)

and vp(r) 2 his

. [Lep"“/(p SURCILRY ]

The number of integers r with ep™'(p— 1) <r < ep™'and v,(r) 2m - 1is

e

We get

§

= S +82—S3+(m—2)sg +s5

« [ e 5]

p-1 p—1 p—-1 p—1 p—1
m—
A 1.
p—1
Thus the number of polynomials in S is
#S =g = FF

Note that if the roots of every polynomial in S generate p™ distinct extensions, then

all extensions of degree p™ and discriminant p?™+*™*™ -1 are given by the elements

of S.

3.8 Computing Totally Ramified Extensions

Let k be a finite extension of @, with maximal ideal p. Let n and j be such that

they satisfy the conditions of section 3.1.
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The following algorithm finds a minimal set of polynomials generating all totally
ramified extensions of degree n and discriminant p™+~! using the polynomials A,
defined in section 3.3.

Algorithm 3.8.1 (Totally Ramified Extensions).
Input: k,n,J
Output: A minimal set of polynomials generating all totally ramified extensions
of k of degree n and discriminant p™*7-!
e Compute #K,, ; using theorem 3.4.2.
oL (.
ol 0.
o Forw e 2:
o Let ¢ be a root of A,(z).
eIfno h € L has a root in k() then:
oL« LU{A,}.
o Let r be the number of roots of A4, in k().
olIl+n/r.
o If | = #K,; then return L.

Notice that we could test all the polynomials A, for isomorphism and keep only
the ones defining non-isomorphic extensions. However, since the number of these
polynomials is far greater than the number of extensions, it is better to proceed
as above, that is, to compute the number of extensions at the beginning and to
stop when enough polynomials have been found to generate all these extensions.
This explains why it is useful to know the number of such extensions before the

construction.

There are several improvements that can be made to this algorithm.
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o If p does not divide n, one can use theorem 3.5.2 to get directly a minimal set of

polynomials generating all extensions.

e If n = p one can use the complete description of extensions of degree p as given in

section 3.6.

e If n = p™ one can start with a set of polynomials defining distinct extensions (see
section 3.7).

e Also, the computation becomes faster if one enumerates the elements of {2 in such

a way that the distance between polynomials in L and the next A, is maximal.

e We can improve the computation time considerably by using propositions 3.1.2
and 3.5.3, which enable us to compute the subfield lattice at the same time. We
first compute all suitable sub-extensions Kq/k and then construct the absolute
extensions K /k which are relative extensions of K. Since the number of polyno-
mials to be considered is much smaller in the relative case and one has to look
for roots of polynomials with smaller degree and discriminant, this reduces the
computation time considerably, especially in the case treated in proposition 3.5.3.
Splitting up the construction of extensions this way enables us to apply theorem

3.5.2 and the results of sections 3.6 and 3.7.

The proof of lemma 3.4.1 can also be used to compute a minimal set of polynomials
in a different way. We use the notation from the proof of lemma 3.4.1. In addition
to the map u that sends a prime element a in II,; to its irreducible polynomial
p(a) over k, we define a map f from IT, ; to 2 that sends this prime element to the
unique element w € 2 such that d(u(a), A,) < r. Also, for such a prime element a.
we define the set A(a) to be a (fixed) set of representatives of the prime elements of

k(a) modulo B, where B,, is the prime ideal of k(a). For example, one can choose

4



A(a) to be the set of elements a(( + Gia + - - - + (;—20*~2) where the ;s range

through a set of representatives of Ox/p and ¢y #0 (mod p).

Proposition 3.8.2. Let a be an element of II,, ;. Then the set {(8): B € Ala)}
is ezactly the set of w € 2 such that a and any root of A, define k-isomorphic
extensions. Moreover, for any such w the number m of § € A(a) such that i(B) = w
is independent of w and is the number of k-automorphisms of k(a); so, in particular,

the number of conjugate fields over k of k(a) is n/m.
Proof. This is a direct application of the proofs of corollary 3.3.3 and lemma 3.4.1. O
This gives us the following algorithm.

Algorithm 3.8.3 (Totally Ramified Extensions).
Input: k,n,j
Output: A minimal set of polynomials generating all totally ramified extensions
of K of degree n and discriminant p*+i-!
o Let {wi,...,w;} be the elements of £2.
eFor1 i< set B; « 0.
oL« O.
ec« 1.
e Whileec < Ik
oif B.=0:
oL+~ Lu{A,}.
o Let 5 be a root of A4,,_.
e For all d such that wy € E~!(A(3)):
o By 1.
ecec+1

e Return L.
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Since the basic operation in algorithm 3.8.3 is the computation of characteristic poly-
nomials whereas the basic operation in algorithm 3.8.1 is the root finding algorithm,
this algorithm seems faster than the latter. But this is not the case in general. The
reason is that the number of elements in A(a) is (¢ — 1)¢*~2 and so the number of
such basic operations quickly becomes large. Furthermore, if in algorithm 3.8.1 the
polynomials from A, are chosen cleverly, the algorithm can rapidly find polynomials
defining all non-isomorphic extensions and thus can terminate after using the root

finding algorithm only a few times.

3.9 Generating Polynomials of Galois Extensions
Shafarevich [1947] also gives a formula for the number of extensions of a p-adic field.
Instead of Krasner’s topological approach he chose a group-theoretic approach.

Theorem 3.9.1 (Shafarevich). Let k be a finite eztension of Q, with [k : Q,] = n.
Let G be a group of order p™ with d < n+ 1 generators and Aut(G) the group of its

automorphisms. The number eztensions of k with Galois group G is

1 #G n+l d-1 . ,‘
o) (%) [lo™" - 7).

Yamagishi [1995] generalized Shafarevich’s results to include the case when k includes

the p-th roots of unity. The following proposition is a consequence of his work.

Denote by u, and g2 the set of the p-th, respectively p?-th, roots of unity.

Proposition 3.9.2 (Yamagishi). The number of Galois eztensions of degree p? of

k with ramification indez E and inertia degree F is given below.
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Galois ElF number of extensions of k, if
group pp ¢ k p,.Ckandp,,z¢k| pg2 Ck
p"-l pn+1_1
p|p p—1 p—1
C,XCP p2 ! pgp"—lp"'l—l pzpn+1_1pn_1
p—-1 p?-1 p—-1 p?-1
__——__r_—a————iﬁ——
1|77 1
Cp plp -1 p"tl-1
- | pn__l pn+l_1
1 n+1p n+4-2 n+2
P il ) ST

Denote by e and f the ramification index and inertia degree of k. Let 7 be a prime

element of k and let ¢ € k be a (p/ — 1)-th root of unity.

Lemma 3.9.3. Let 9(z) € k(z]| be monic with deg(¥) = p and p(z) trreducible over
k(z]. Let j = ap+b such that they fulfill Ore’s Conditions and such that p-1 divides
a+b. Let

o(z) =z + b+ + Z pe, ! € K[z
i€L(0)

with 2P~! — (b in k(z] reducible. Denote by I' and IT roots of 9(z) and o(z) respec-

tively. Then k(I, IT)/k is Galois with Galois group isomorphic to C, x C,.

Proof. By theorem 3.6.5 k(IT) is Galois over k. In the proof of corollary 3.6.10 we
have seen that the number of polynomials of the form ¢(z) is (p* — 1)(p — 1). By
theorem 3.6.5 these generate non-isomorphic extensions. As the coefficients of o(z)

are fixed by all elements in Gal(k(I")/k) the extension k(I, IT) is Galois over k. O

Remark 3.9.4. We use the notation from theorem 3.6.5. Fix a, b, s, and ¢, t € L(0).
For k € {1,...,p} set
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ok(z) =2 + C*rtigb 4 1 + Z e, + (k — 1)+ € Kz].
i€L(0)

Denote by IT; a root of ¢ in an algebraic closure of k. Let 9(z) € k[z] be monic
with deg(J) = p and y(z) irreducible over k[z]. The lattice of subfields of k(I’, IT;) =
---=k(I, II,) is:

k(I IT;)

p
k(I') k(In) --- k(I1,)

g

k

For o € Gal(K/k) and %(z) = caz™ + -+ + c12 + ¢ € K[z] denote by o(v)(z) the
polynomial a(cp)z” + - - - + o(c; )z + o (co).

Lemma 3.9.5. Let 9(z) € k[z] be monic with deg(9) = p and 9(z) irreducible over
k[z]. Denote by I' a root of 9(z). Let j = ap+b such that they fulfill Ore’s Conditions
and such that (p — 1) | (a +b). Let
o(z) =2° + &zt 4 1 + z pe, 't + kb7t € k(I)[z]
i€L(0)

with P! — (*b reducible in k{z] and § € k(') such that z° — ¢bz + 4 € k(I)[z]
is irreducible. Let IT be a root of p(z). Then k(I IT)/k is Galois with Galois group
isomorphic to Cpa.

Proof. All Galois extensions of degree p of k(I') are generated by the roots of poly-
nomials of the form
Pz) =2 + ¢+ rd Y pemtt + kot
i€L(0)

where (p—1) | (a +b) and z°~! — (*b is reducible in k[z].
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Let IT be a root of ¢(z). The extension k(I',IT)/k is Galois if for every o in
Gal(k(I')/k) the polynomial o(p)(z) is reducible over k(I', IT). By lemma 3.6.6 the
extension k(I',IT)/k is not Galois if (* € k(I') \ k. It follows from the proof of
lemma 3.6.7 that k(I", IT) /k is not Galois if p., € k(I') \ k. By Lemma 3.9.3 we have
Gal(k(I', T)/k) = C, x G, if k = 0. This leaves

Galois extensions of k of degree p? with ramification index p and inertia degree p

and Galois group not isomorphic to C, x C,,. O

Proposition 3.9.6. Let J(z) € Q,[z] be monic with deg(9) = p and J(z) irreducible
over Fp[z]. Let I be a root of (z). Let p(z) :=z"+ (p—1)pzP +p € Q(I). Let 7
be a root of p(z). Let ¢(z) := 2° + (p—1)wzP~' + x. Then Q,(I',m, IT) is the unique

Galois extension of Q, with Galois group isomorphic to

Ei:=(o,ri0? =1 =[0,7 =1, [0,[0,7]] = [r, [0, 7]] = 1).

The lattice of subgroups of E, is shown below. The subgroups with dotted lines are

not normal in E,.

//{“}-\\
C, C A c, --- G, C, - G,
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Proof. It follows from theorem 3.9.1 that there is only one Galois extension of Q

with Galois group isomorphic to E;.

First we show that Q,(I', m, IT) is Galois over Q. As the coefficients of () and ¥(z)
are fixed under the automorphisms of @, (I") the extension Q, (I, r, IT) /Q(T) is Ga-
lois. It follows from the proof of lemma 3.6.8 that there exists o € Gal(Q, (I, 7) /Q, (')
generating Gal(Qy (I', ) /Qp(I'), such that o(7) = 7+ mod 3. This gives o(1)(z) =
2% + (p - 1)(7 + 7%)zP~' + 7 + 7. We use the root-finding algorithm to show that
o(¥)(z) has a root over Q,(I',m, IT). We get

o(¥)a(z) =7(z” - (p— 1)z +1)

(c.f. proof of lemma 3.6.7) which has p roots over Q (I, IT). It follows that o(%)(z)
has p roots over Q,(I', m, IT). Thus Q, (I, x, IT) is Galois over Q,.

The extension of degree p3 with Galois group isomorphic to E, is the only Galois
extension of degree p® which has p? totally ramified subfields of degree p? that are
not Galois over Q,.

Forie{0,....p—1} let gi(z) ;== 2P+ (p— V)pz® ' +p+ip? € Q,(z] and denote
by m; a root of y;(z). Fori € {0,...,p - 1} and k € {0,...,p — 1} let vy(z) :=
28 + (p — 1)mzP~! + m; + kn? € Qy(m;) and denote by [T a root of yi(z).

We show that Q,(m;, ITy) is not Galois over Q,(m;). It follows from the proof of
lemma 3.6.8 that there exists o € Gal(Q, (7;)/Q, such that o(7) = =, + 72 mod 3.
This gives o(tix)(z) = 2° + (p — 1)(m + 7%)zP~ + 7 + 7%, We use the root-finding
algorithm to show that o(yy)(z) has a root over Q, (I, 7, II). As in the proof of

lemma 3.6.8 we get
a(¥)a(z) = mi(z” — (p - 1)z +1),

which is irreducible over Q, (n;, IT;;). Thus Q; (m;, ITi) is not Galois over Q,(m;). O
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For p # 2 the lattice of subfields of the unique extensions of Q, of degree p* with Ga-
lois group E; is depicted below. The elements I', m;, and IT;; with i,k,l € {1, ..., p}
are as in the proof of proposition 3.9.6. The elements a, ..., a are generators of the

remaining degree-p extensions of Q,(I").

Q, (I, Iy 0)

QL) Qo) Q(Im) QM) ‘Qp(IToy) - - - Q,(1Ip,1) - - - Qp (M)

NPy

&) QM) - - - Q)

Ne/p

@

&
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3.10 Examples

Example 3.10.1 (Extensions of degree 9 and discriminant 3'2 over Q).
There are 54 extensions of degree 9 and discriminant 3%+4~! over Q. We compute all
these as absolute extensions over ;. We find the following generating polynomials,

each of them defining 9 isomorphic extensions.

) (z)=22+2-32*+3 Dy(z)=2%+2-32* +2-323 +3
By(z) =2%+324+2-32+3  &5(z) =1 +3z4+3
by(z) =2+ 324 + 323 + 3 Ds(z) =2°+2-3z* +° + 3

Following proposition 3.1.2, we compute the subfields of degree 3 and discriminant
33+7-1 where j, = 1. Notice that these are the only possible subfields. We find
out that there are six such subfields generated by the roots of the two polynomials
¢1(z) =23 + 6z + 3 and po(z) = 23 + 3z + 3. Let m, and m, be zeroes of ¢, and ¢,
respectively. Each of the fields Q5 (7;) admits six totally ramified extensions of degree
n; = 3 and discriminant (;)3*"~! where j; = 1. These extensions are generated by

¥ (z) = 22 + mz + m; and Yp(z) = 28 + 2mz + 7; over Qs(m;).

Let a;; denote a root of ;.. Using algorithm 2.1.4 we get that Q;(m)(ai2) =
Qs (m2)(a21) and that the other fields are distinct. So we have found 27 extensions of
degree 9 that have subfields of degree 3. Let II; be a root of &;. We have Q;(IT;) =
Qs (m1)(aar) = Qs (m2)(c12), Qs (MT6) = Qs(m1)(aze) and Qs(I14) = Qu(ms)(aur). The
lattice of subfields (up to isomorphism) is depicted below.

Q (1) Q) Qs(IT) Qs(IL) Q(1T5) Qs(1T)

n=1
=4 n1=3
- (m) Qi(m2)

Jo=1

n0=3
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Example 3.10.2 (All extensions of degree 10 of Q). There is one unramified

extension of degree 10; it is generated over Qs by the roots of ¢(z) = z1° + 228 + 3.

There are two extensions with residue degree 5 and ramification index 2. The un-
ramified part k/Qs is defined by (z) = z° + 3z° + 3 and the tamely ramified part
K/k by ¢i(z) = 22 + 5i where i = 1, 2.

There are 605 extensions with residue degree 2 and ramification index 5. These
extensions K are generated over the unramified field k := Qs (p), o> +2 =0, by the
polynomials in the following table. The roots of each polynomial generate N distinct
isomorphic extensions. Together, the polynomials in each line generate a total of #K

extensions of absolute discriminant 5%+7-!.

J l generating polynomials N | #K
1[5 45+ hap)+5 By, b€ (0,1,2,3,4), (heoha) £(0.0) | 5 | 120
2| z°+5(hy +hop)z® +5 hy, by € {0&2_,:1, 4}, (h1, h2) #(0,0) | 5 | 120
3|2° +5(hi+hap)s® +5 by, hy €{0,1,2,3,4}, (hu ko) £(0,0) | 5 | 120
4 | 25+ 5(hy + hop)zt + 5 hi, h€{0,1,2,3,4} | 5| 90
(h1, ha) € {(0,0), (1,0), (2, 1), (2,4),(3,1), (3,4), (4,0)}
4 | 2° + 5(hy + hop)z* + 5 + 25hgp ho€{0,1,2,3,4} | 1 | 25
(h1, ha) € {(1,0),(2,1),(2,4), (3,1),(3,4)}
4| z°+4-51% + 5+ 25k, ho,€ {0,1,2,3,4} | 1 | 5
5| 2% +5+25(h; + hop) hy, ha € {0,1,2,3,4} | 5 | 125

83



There are 1210 totally ramified extensions of degree 10 of Q5. Using proposition
3.5.3, we find that they are relative extensions over one of the two tamely ramified
extensions of degree 2 defined by ¢;(z) = 2 + 5i where i = 1,2. Let 7; be a root of
®;. The wildly ramified part is generated by the polynomials in the following table
over Q5 (m;). The roots of each polynomial generate N distinct isomorphic exten-
sions. Together, the polynomials in each line generate #K extensions of absolute

discriminant 5!%+7-1.

j generating polynomials N | #K
1 |2 +hmz+m; hy€{1,2,3,4} | 5 | 20
2 |28+ homz? +m; ho € {1,2,3,4} | 5 | 20
—3—— % + hgmzd + m; hs € {1,2,3,4} | 5 | 20
4 | +hemzt +m; hy€{1,2,3} | 5| 15
4 | 2° +4mzt + (m; + hom?) ho € {0,1,2,3,4} | 1 | 5
6 |2°+hmiz+ (m+hon?) Ry €{1,2,3,4}, ho € {0,1,2,3,4} | 5 | 100
7 |8+ hnie? + (mi+hon?)  hy € {1,2,3,4}, ho € {0,1,2,3,4} | 5 | 100
8 | 2° + hym2z® + (m; + hon?) hy € {1,2,4}, ho € {0,1,2,3,4} | 5 | 75
8 | z° +3m2z3 + (m; + hom? + hy73) ho, by € {0,1,2,3,4} | 1 | 25
9 |z°+ hnr,?z‘_+ (mi+hom?)  hy€{1,2,3,4}, ho € {0,1,2,3,4} | 5 | 100
10 | 25 + (m; + hon? + hgr?) ha, hs € {0,1,2,3,4} | 5 | 125

This gives 605 extensions of degree 5 over Q(m;) (resp. Q(w3)). Hence there are 1818

extensions of degree 10 of Q5. Note that there are only 293 non-isomorphic extensions

of degree 10 of Qs.
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3.11 Future Developments

This thesis can be regarded as a step towards a generalized, constructive class field
theory for p-adic fields. The methods described above work well for small examples,
i.e., when the number #Dg,_; of polynomials A, with w € {2 is small.

A complete description of extensions of degree p™ would speed up the computation
considerably. Here the methods of Lbekkouri [1997] could be applied. He gives con-
ditions on the coefficients of Eisenstein polynomials over Q, of degree p?, to decide

whether the extensions defined by these are normal.

The number of polynomials can be easily reduced by using additional invariants of

the extensions to be computed in addition to the degree and discriminant.

The indices of inseparability, introduced by Arf [1939] and refined by Heiermann
[1996], could be easily used, as they can be translated directly into conditions on the

coefficients of the defining polynomials of extensions.

It is ultimately desirable to refine the algorithm so that it returns all extensions of
a p-adic field of a given degree, discriminant and Galois group. Once the description
of extensions of degree p? has been completed (see section 3.9) it should be possible
to construct totally ramified Galois extensions of @, using methods similar to those

in the proof of proposition 3.9.6.

These approaches are subjects of ongoing research.
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Appendix A

Factoring Polynomials over Finite
Fields

Let p be prime, let ¢ = p/ and let F, be the finite field with ¢ elements. There are

two main approaches for factoring a polynomial ¢ € F,[z].

The algorithm of Cantor and Zassenhaus [1981] factors a polynomial ¢ € F,[z] into
irreducible factors in three steps. First a list of pairs (a;, ;) with a; € F,[z] squarefree
and ¢ = []; of is computed. Then for each a; a list is constructed of polynomials
Bij € Fy[z] such that §;; is the product of all irreducible polynomials of degree j of
a;. This step is called distinct degree factorization. In the last step, the equal-degree

factorization, the polynomials f3; ; are decomposed into irreducible factors.

We also present a probabilistic version of the algorithm of Berlekamp [1970], which

derives a factorization of a squarefree polynomial a using linear algebra over finite

fields.

Kaltofen [1992] gives an overview of polynomial factoring algorithms and the historic
development of such algorithms.

It is not our aim to present the most efficient algorithms known, but to describe

some basic ideas of polynomial factorization algorithms over finite fields. Most of the
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algorithms used are based on the ideas of Cantor and Zassenhaus, and Berlekamp.
Kaltofen and Shoup [1998] give an efficient probabilistic algorithm which is a highly
refined version of the methods used by Cantor and Zassenhaus. Their algorithm

factors a polynomial ¢ € F,[z] of degree n in O(n'#!%logq) operations in F,.

A more detailed description of most of the algorithms presented here can be found

in the book by von zur Gathen and Gerhard [1999].

A.1 Squarefree factorization

Definition A.1.1. Let p(z) = ¢, ;X" € F,[z]. The polynomial
d .
¢(z) = Zin"l € F,[z]

=1

is called the formal derivative of ¢(z).

The formal derivative ¢/(z) of ¢(z) is zero only if either x(z) is constant or if the
exponent of every power of z occurring in ¢(z) with a nonzero coefficient is a multiple

of p. In the latter case we can easily factor y(z) using the identity

o +ciz? + -+ gzt = (o + Pz + - - + ¢fPz%)".

If p(z) has a factor y(z)* with p { s then ¢/(z) # 0 and ged(¢/, @) is a nontrivial
factor of o(x).

Algorithm A.1.2 (Squarefree factorization).
Input: ¢ € F[z]\ F,.
Output: A list of pairs (d;,t;) with ¥; € F,[z] squarefree and ¢ = [, 5.
o If ¢/ =0 then:
o Find 9 with % = .
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e Derive a squarefree factorization ((9y,t,),...) of 9 using algorithm A.1.2.
e Return ((41,pt1),...)-
e Else if ged(yp, ¢') =1 then:
Return (yp, 1).
o Else:
o Set v + ged(p, ¢').
e Derive a squarefree factorization ((1,41),...) of v using algorithm A.1.2.
o Derive a squarefree factorization ((9,,t,),...) of /v using algorithm A.1.2.

o Return ((11,41), .., (01, t1),...).

Theorem A.1.3. Let M(n) denote the number of operations in F, needed for mul-
tiplying two polynomials of degree at most n in F,[z]. Then algorithm A.1.2 derives
@ squarefree factorization of a polynomial ¢ € F,[z] of degree n in O(M(n) log? n)

arithmetic operations in F,.

A.2 Distinct-degree factorization

Theorem A.2.1. Let g =p/ and m € N. Then 29" -z € F,[z] is the product of all

monic irreducible polynomials in F,(z] the degree of which divides m.

If 2" | ¢ for some r € N then r can be found easily. Hence we exclude the case

©(0) # 0 from the algorithm below.

Algorithm A.2.2 (Distinct-degree factorization).
Input: ¢ € F,[z] monic, separable, non-constant with ¢(0) # 0.
Output: A list of polynomials ¥; € F,[z] such that ¥; is the product of all irre-
ducible polynomials of degree i over F, dividing ¢.

oSeti 1,9« ¢, 3J; « 1for1 << deg(p).
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e While 9 # 1 and 2i < deg(9):
Replace 9; « ged(d,29 " —1), 9 « 9/0;, i i+ 1.
o If 9 #1 then set Jgegs) « U

e Return (191, sy ’9deg(¢))'

Theorem A.2.3. The distinct-degree algorithm can be implemented in such a way
that it takes O(sM(n)log(nq)) operations in F,, where s is the largest degree of an

trreducible factor of .

A.3 Equal-degree factorization

We now present the core part of the polynomial factorization algorithm by Cantor
and Zassenhaus [1981].

Denote by ¢, ..., ¢, € Fy[z] the irreducible factors of ¢ € F,[z]. Then the algebra
F, [z]/ [, [z] is isomorphic to Fy [z]/p\F, (z] X - - - X F, 2]/, F, [z]. For 1 < i < r denote
by 7: the map 7; : Fy[z]/0F,[z] — Fy[z]/¢iF,[z], with a + ¢F,[z] = o + ¢;F,[z]. Let
B € F, [z] with 7;(8) = ;F;[z] and 7;(8) # ¢;F,[z] forsome 1 <i<rand1<j .
Then ged(83, ) is a proper factor of ¢. Such a polynomial g is called a splitting
polynomial of ¢.

Proposition A.3.1 (p odd). Let p be an odd prime, let q be a power of p, and let
@ € Fy[z] be squarefree. Assume that y is the product of irreducible polynomials of
degree d for some d | deg(p). Let 9 € F,[z] be a random monic polynomial of degree
less than d. Then

gcd(% Jt=1/2 _ 1)

is a nontrivial factor of ¢ with probability 1 — 2" > 1/2, wherer =n/d > 2.
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Proof. Denote by ¢,...,¢, € Fy[z] the irreducible factors of ¢ € F,[z]. For any
9 € F,[z] and any irreducible factor ; of ¢ the congruence 9~! = 1 mod ¢; holds.
Hence for any irreducible factor ¢; of ¢ we have 9@*~V/2 4 o,F, [z] € {~1+¢;F,[z], 1+
@iF,[z]}. If 9 is chosen uniformly at random then 7;(9),...,7(9) are independent
uniformly distributed elements and 7(#¢“~1/2) is —1 or 1 with probability 1/2.
" Hence 9(¢“~1)/2 _ 1 is a splitting polynomial with probability 1 — 2(1/2)" = 2!~" >
1/2. O

Algorithm A.3.2 (Equal-degree factorization, p odd).
Input: A squarefree monic polynomial ¢ € F,[z] of degree n, where q is a power
of the odd prime p, and d a divisor of n, such that every irreducible factor
of ¢ is of degree d.
Output: A proper factor of ¢ or ‘failure’.

e Choose ¥ € Fy[z] \ F, with deg¥ < d at random.
o Set 3 — 9@-1/2 mod .
o If gcd(B, ¢) # 1 then:
Return ged(8, ¢).
e Otherwise:
Return ‘failure’.

Obviously the method above cannot be applied if the characteristic of F, is 2. In this

2!‘-1

case we use the map a — o?’*" + 02" +... + a* + a® + « instead of the map

a~ o’

Definition A.3.3. For m € N we define the m-th trace polynomial over F, by
Tn=2"" +2 4.zt + 22 + 1.

We have T, (T + 1) = T2 + T = 22" + 2, thus T (§)(Tn(6) +1) = 6% +6 =0 for
all § € Fom. As either T,,(8) = 0 or T5(8) + 1 = 0 it follows that T,,,(¢) € F, for all
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0 € E;m. Furthermore it follows that the cases T;,(6) = 0 and T}, (6) = 1 each occur
with probability 1/2.

Arguing as in the proof of proposition A.3.1 we find a splitting polynomial of a
polynomial ¢ € Fys{z] with probability greater than or equal to 1/2.

Proposition A.3.4 (p = 2). Let ¢ = 2/ and let ¢ € F,[z] be squarefree. Assume
that o is the product of irreducible polynomials of degree d for some d dividing deg(y)

and let 9 € Fy[z] be a random monic polynomial. Then

ng(Cp, de o] 19)
is a nontrivial factor of ¢ with probability 1 — 2!~ > 1/2, where r =n/d > 2.

Algorithm A.3.5 (Equal-degree factorization, p = 2).
Input: A squarefree monic polynomial ¢ € F,[z] of degree n with ¢ = 2/ and a
divisor d of n, such that every irreducible factor of ¢ is of degree d.
Output: A proper factor of ¢ or ‘failure’.

o Choose 9 € F,[z] \ F, with deg¥ < d at random.
o Set 3 « Ty4(F) mod o.
o If ged(B, p) # 1 then:
Return ged(B, p).
o Else:

Return ‘failure’.

Proposition A.3.6. Algorithms A.3.2 and A.3.5 return ‘failure’ with probability at
most 2177 < 1/2, where r = n/d > 2. Moreover these algorithms take an ezpected

number of O((dloggq + logn)M(n)) operations in F,.
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A.4 Linear algebra methods

The algorithm described in this section is due to Berlekamp [1970]. It derives a
factorization of a squarefree monic polynomial, i.e., we do not need to compute a

distinct-degree factorization before we apply his methods.

Definition A.4.1. Let ¢ € F;[z] be a squarefree monic polynomial of degree n.

Denote by o : a — a? the Frobenius map on the algebra F,[z]/¢F,[z].

The matrix Q € F*" representing the Frobenius map o with respect to the poly-
nomial basis 1 + ¢F,[z], z + ¢F,[z],...,z9"! + ¢F,[z] is called the Petr-Berlekamp

matrix of ¢.

Let I be the n x n identity matrix. The kernel ker(o — id) = ker(Q — I) is called the
Berlekamp algebra of F,[z]/¢F,[z].

Let ¢, ..., ¢, € Fy[z] be the irreducible factors of ¢ € F,[z]. The algebra F, [z]/F, [z]
is isomorphic to F,[z]/p1F,[z] x - - - x F, [z]/,F, [z]. Therefore the Berlekamp algebra
contains exactly r copies of F, and therefore has rank(Q — I) = n — r. Hence ¢ is

irreducible if and only if rank(Q — I) =n - 1.

In order to find a proper factorization of ¢ we proceed in a way similar to the
method used in the equal-degree factorization algorithm. Let 4y,...,d; be a basis of
the Berlekamp algebra ker(Q — I) with degd; < n for each i. Let ¢,...,c, € F, be
chosen independently and assume that no factor ¢; of  divides a := ¢;0, +- - - +c¢,0,.
Then o9~2 = +1 mod y; with probability 1/2 for all 1 < ¢ < . Hence al9-1/2 — 1
is a splitting polynomial of ¢ with probability 1 — 2-(1/2)" =2!-" > 1/2.
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Algorithm A.4.2 (Berlekamp, p odd).
Input: A monic squarefree polynomial ¢ € F,[z] of degree n.
Output: A proper factor of ¢, or ‘failure’.

e Compute the matrix Q € F;"*" representing the Frobenius map o — of.
e Compute a basis dy, . . ., d, of the Berlekamp algebra ker(Q —I) with deg d; < n.
e Choose independent uniformly random elements c,, ...,c, € F,.
o Set ¢ — ¢10; +--- + ¢4l
o If ged(a, ) # 1 then:
Return ged(a, ¢).
o Set B « a9-1/2 mod .
oIf ged(f —1,9) # 1 and ged(B — 1,9) # 1 then:
Return ged(8 - 1, ¢).
o Otherwise:

Return ‘failure’.

Theorem A.4.3. Let w be any feasible matriz multiplication ezponent; ie., w is a
positive real number such that any two n x n matrices can be multiplied with O(n*)
operations. Then Algorithm A.4.2 works correctly as specified and returns ‘failure”
with probability at most 1/2. If w > 2 then algorithm A.4.2 uses O(n* + M(n)logq)

operations in [.

The case p = 2 can be handled in the same way as in the equal-degree factorization
algorithm. We replace the map a — (=12 in algorithm A.4.2 the map T} : a —

2f-2

@'+ +..-+0* +a? +  and obtain an algorithm that returns a proper

factorization of a polynomial ¢ € Fys[z] with probability at least 1/2.
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