INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality iliustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

WEB BASED CINDI SYSTEM:
DATABASE DESIGN AND IMPLEMENTATION

WEN TIAN

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2001

© WEN TIAN, 2001

i+l

National Library
of Canada du Canada
Acquisitions and
Bibliographic Services
395 Wallington Straeet

Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68517-9

Canada

Bibliothéque nationale

services bibliographiques

395, rue Wallington
Oftawa ON K1A ON4

Your fle Votre réiérence

Our fle Notre rétdrence

L’auteur a accordé¢ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése n1 des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

WEB BASED CINDI SYSTEM:
Database Design and Implementation

Wen TIAN

This report presents the database design and implementation of the CINDI System
(Concordia INdexing and Dlscovery) based on the World Wide Web. It is part of the
work to develop a Web-based CINDI system. The information resource is described

using a metadata called a Semantic Header, which is stored in MySQL database

management system.

The Web based CINDI system is a 3-tier application that includes a Browser, an Apache
Server and a MySQL Server. In the application, E-R (Entity-Relationship) modeling has
been employed for the analysis and design of the MySQL Database Management System.
The hierarchy searching of subjects was implemented. The Apache Web Server is used
to communicate between the Browser and the Databases subsystems using the HTTP

protocol. The interface was developed using PHP script language.

iii

Acknowledgements

To begin with, I want to express my sincere gratitude to Dr. Bipin C. Desai, my
supervisor, for his invaluable discussions and suggestions. Without his enthusiastic

support and consistent guidance, this work would not have been possible.

I am sincerely grateful to Xiaomei Yang and Zhan Zhang who, as part of the CINDI

project, suggested many ideas to me during our valuable discussions. Their amicable

personalities also made the project more enjoyable.

Finally, I would like to dedicate this work to my wife, Liping Li and to my son, Daniel,

for their continuous support and encouragement.

iv

Contents

1 Introduction 1
1.1 Overview of the Virtual LIbraryccccccccvevmvcevcinnnnneeninninienseensennnnnessesensenssssensenns 1

1.1.1 The World-Wide Web (WWW ... eecetcncntcninnanisssinssssessessnsanessessnssnissons 1

1.1.2 Web Servers and Databases.........cocceveerrerinicnrnninsicnnensnissensensiessscsssssnsssssnssessans 2

1.2 CINDI SYSIEIML...uiiiiieeieereeerenrtestaesirecsarseeesssnssssssssssasssssnsosssstessssanssssnonssnssssessssassnnes 3

1.2.1 InoduCtioncceeeinienmeneenrennenieisessnesssesnns e 3

1.2.2 CINDI: The Project......cvinveveerinenennreernenninns .4

1.3 Organization of the REPOIt.........covviiniiiiirniceecectenteetese ettt enens 6

2 Background 7
2.1 Information Retrieval.......ccccvereenirniinenenirrecreereeseeeeeetcaseanssaessasssesseesssessessssanes 7

20 U0 R % (3 7B B 1 - OO 7

2.1.2 Semantic Header..........ouiiiineeirceiiieiiitecnecnatcnseeineetrssnse s sesessessneranesenne 7

2.2 MYSQL Databaseccccecveeerererrensuerreesserereecsuesesesesssssassssssssssesssesssssassessssssssassesssssssonas 8

221 WRHALIS MYSQL? ceoonreeeeeeeeceneeeseeosssne e sessssssssssssssssssssssssnsssnsesssessassssonsssamnsssssanes 8

2.22 Why uSe MYSQLY ...ertieretreeerenrenest et seesstesessmtesteanst s sasessssntssssssesstantossossesstens 9

2.2.3 The Main Features of MySQL.......ccccoiiivinninnnniniinneinessinesesemseeessmes 11

2.3 PHP ettt se e ssass s e ssss s e ss e s e s st s s s sa s s bt e s b s e s st e e bt sa e e s as b e esb e ns 12

2.3.1 Whatis PHP?...... eereseesasesrreerereranresaesressnasnserine 12

2.3.2 What can PHP do? ...ttt e ssstscssnsssassosssssnssssssseonsssene 13

2.4 APACHE SEIVET....coieerrirecitinrtcitenteeretenstes st sne e ssssessasessassossesebnssbsssessesbsessonsanen 14

R S N) 5 (€ SO POTN 15

3 Architecture of the CINDI System 17
3.1 3-tier ATCHITECIUTE ...veeeeeeeeceieiicietiesot e s sen st sssass s sses s sasessestsessbssssesnsonensnneass 17

3.1.1 Introduction.............. ereeteeanesereseteae et et oaane e 17

3.1.2 The Advantages of 3-tier ArChiteCturecoccorirrsinrninencnienniisi s .19

3.2 SYSEmM DESIGN....cciireeeienreietineisretesnessenssesrecsssassssssessesssssssssssnsesssssssasssnsnsonsosasonse 20

4 Semantic Header Database System Design and Implementation..........ccccceeeeeees 24

4.1 Data Modeling and E-R MOdelooiiiniiiiniiniiiitininninintinnienciesessssssseses 24
42 Logical Model......... et rtssts et ettt e e 25
42.1 Identifying Entities and their AMTIDULESccoievmuiniiiciiniiniiinieniiticrcn e ceenanenes 25

4.2.1.1 ReSOUICE ENHlY .ccereiiieearenrcieccorrectenccesnessantsescsnesssesasanasenassenaesnsssnasas 26

42.12 Subject Entity eemretestete ettt st Rt b s eSS bbb e nb e e aeenraes 29

42.1.3 Resource_subject Entity......ccoieviemenmiininmiiinercenentccsnccsessnsasssssesanes 29

42.14 Resource_author Entity

4.2.1.5 Author Entity reeerereesreereeesataeratesaneeestet e et ae nate st sa s be st saensesabenes 30
42,16 ROIE EDULY oot ree e sercrseesssssassssnssss s asassnssonsosssnons 30
4.2.1.7 ContribUtOr ENtLYcoceeremreeeeeeeeereeiriicsressrsrtenessssesssessnsssnssassnsesssennnen 31
4.2.1.8 Language Entity.....coirinmininiciecictceceie et er e 31
4.2.1.9 ANNOtation EDHLY....ccoieeeeerreenceerenccntimucssetieissiesssesssssssessssssessnsssnssnsen 32
4.2.1.10 USEIS ENHLY cocevreeeeeeeenceerecreecisetoseeisecsseessscsseessssssssessasssessserseenssonsons 32
4.2.1.11 Coverage Entity ... cresessneiresereasnsesnaesrasasanaeransnssrsenns 32
4.2.1.12 System_req Entity...ooeovmieineeeeeece e 33
4.2.1.13 Identifier ENULY ...cccovcececencenrcernerccecnnensrissessssessissisnssssssansnssessesssnsseas 33
4.2.1.14 Classification ENtity.....ccccvririceenrcierercerircrnriantesseeeescsessrersssnesassessssssnes 34
422 Identifying Primary KeYS......coourrinvniriiriritinnnenictresesseseessssnsssssssssssesesssssnsnsasass 34
4.3 Physical Implementation........cocceciivimiiriiinireninenereniintestensresessresssessseseessssnnessennes 35
4.3.1 Implementation of the Semantic Header Database.........cccocerveereenrrevenecncrrnnennnnne 35
43.2 Implementation of Intermediate Tables between ASHG Subsystem and Resource
RegiStration SUDSYSIEINccveieiiiiiiiiiinieeniiisres s neessstessessesstenneasiessassssssnnenssnsnsserans 39
4.4 Performance Considerationsccccoceeveireerverneeiiessiissinssresiseesnnesssnsssesesnesssensansaseans 42
44.1 Add Column Indices for Resource Searching........ccccceeeeieverinivresreecreniiverenneeruereenns 42
442 Optimizing Concurrent Select and Insert Operationsceeeereererresnesneresnsicscnsrnnrees 43
4.4.3 Using Persistent CONNECHONcovevuvirimmiririsinmrinreerensresninessessessssssesssessssnssessersnrenss 43
4.5 Implementation of Web Application With PHP ..., 44
4.5.1 Connecting to MySQL Databaseccccoceeveurrreereererenrrssessessenesssessessnsssesenssessmssesenne 44
4,52 Executing SQL QUELY....cooriviierimtiieireeieetenecssesesssesessssssssssssnnsssessesssssssasens 45
4.4.2 Closing Persistent CONNECHONc.eveeeieirrviniiiiisnesteserssrsnssseseectsssensesessesanssseneseene 45
User Interactions with the CINDI System 46
5.1 REGISIALOM .cueeveircrerecnerneretesensiestesuesssesrestessestessnessessassnsessesssessesnsssnssssssnessssseansnns 46
5.1.1 Contributor REISTAtiONc.cevvmiruiriirnriiiieireesicstsneeresenesse st et ssssnsts s sressesnesaes 46
5.1.2 User Registration eeeeteestesieesaeeine e et st s et s e s bbb e e R b b e r e s e s ne s b asraenene 49
E 70 5 T 7 -1+ SO O 49
5.1.4 Resources REGISIAtIONcccivieeiiiiiiinciinininteceeeisessr e ssoesserecoasssssessn e snesesesssnes 51
5.1.4.1 Manual RegiSatioN......ccccvieeiiiiiniiniimiisieniinnisissteseestnissistesssesesssess 51
5.1.42 Automatic RegiStrationcocevvevimiieinivreniiiccncni et 55
5.2 Semantic Header SEArCh ...cccvevvveeceriieniiiieeeirtretenctenresnteseessreesssesresseesesssssssstense 57
5.2.1 Search QUErY SIUCIUIE.........ccocvereiicninirtnsensteenirosert b sesssses e e ae s s s ass s essananns 57
5.2.2 Performance Considerations for Search........c.ccooouiiniies 59
5.2.3 User Interactions with CINDI Search Sub-System.........coccoevveeinvinrriccvencunccrenennns 60
5.3 ADNNOALION...cciveerreereerrcrirsaessieseissesseessstesanssecssacesrasssssssasssessssesssessssassssessnessssssasssesans 62
Conclusion and Future Work 65
6.1 CONCIUSION ...eeeeeeieeeereeeeeceeeeeeceeneesueesstsestaasesssesssessanessnessesssesssrsessesssssnassseessenssssnses 65
6.2 Contribution of this REPOITcoevirinriiriiiiiiiittt st sassssaossas 65
6.3 FULUIE WOTK ..uveiveioerrieeieietinieeinecnitneeresectcsssistessansseesssesssssssssssnsessssnsesssssasessassses 66
Bibliography 67

List of Figures

Figure 1: PHP Script EXampleccouiveiiiiniiniiiiiiniiicicrretesneseetse e 13
Figure 2: 2-tier ATCRIECIUTE........coviiriniicreeiirntiititiree et csaesne e ste e sa s s e e e s eas 18
Figure 3: 3-tier ATCRItECIUTE.....c.ecvtiriiiiiiieticrctt et st 18
Figure 4: The architecture of the CINDI SYStem.......cccceeeerirrirvmririnnneriesinneneteseesnsenesesennes 23
Figure S: The E-R diagram of the Semantic Header Databaseccceeiniinnennnninc. 26
Figure 6: Semantic Header database implementation..........c.ccoeceeevemeeneesrecensvenieeennneens 39
Figure 7: Implementation of intermediate tables between the ASHG subsystem and the
Resource Registration SUDSYStEM......c..coovivviiiiiiineiiiniiinte et 42
Figure 8: Indices of the Semantic Header databaseccooeevemieemniecinnnnineis 43
Figure 9: PHP scripts and MySQL example........ccccoviiivmrmiiiieeneniereeneeieceeieeieeeee 44
Figure 10: Contributor re@iStrationccocceveveeuirviniiiinreniieniesrenseesseesenssessesssesssesseenns 47
Figure 11: PHP/MySQL Code for contributorID existing checking.........ccceeveenenennnn.e. 48
Figure 12: Inserting contributor’s personal information in Semantic Header database.... 48
Figure 13: The user login interfacecccocovveeiiiiiiiiiniiniineccecectetencrcee e 50
Figure 14: The processing for USer loginccocvvivveiniiniinieniinieeneecteeiestcenr s 51
Figure 15: Resource Manual Uploadingcccovevvuiirnuiiniiiiiicienecieenecneeniecneeneene 52
Figure 16: Generate pull down menu for language..........cocevveviiecieeienicneeniicecieeeenes 54
Figure 17: The PHP/MySQL code to insert data in Semantic Header database................ 55
Figure 18: Part of PHP/MySQL code for automatic upload............cevueevenumnecnnnnennnnnns 57
Figure 19: The Current BNF Query StTUCHUTEcovceviuieriiintiniiiiceecieeneiectereeneeneennes 59
Figure 20: Semantic Header Searching........c..ccocvuieeerniiniiniininiiecteniceccecenrceeees 61
Figure 21: HTML Query translated into SQL QUETrY.......coccevieiiruirimeneneeniecientreecnnee 61
Figure 22: Search Resultccccvueuineniriiinniniiiiinircciitctetcte et 62
Figure 23: ANNOLALON ..coviiuvireiiniiiictntieite et etene et sn e e s s assssessseentsssansnsnanasnnas 63
Figure 24: The processing for annotationcccceeveveeireeereeereeeesnsneseesinsnessesssessaessnnnns 64

List of Tables

Table 1: Comparison: Reading 2,000,000 rows by indeXccoceeevevveimueenscneernrueciecnnne
Table 2: Comparison: Inserting (350,768) TOWScevverromrieieircicticnreiceteecsrcsseereseaesaneeene

Table 3: Primary key for entities

..

Chapter 1

Introduction

1.1 Overview of the Virtual Library

A virtual library [BCD97] can be defined as the aggregation of remote access to the
contents and services of libraries and other information resources, combining an on-site
collection of current and heavily used materials in electronic form, with an electronic
network which provides access to, and delivery from, external worldwide library and
commercial information and knowledge sources. In essence, the user is provided the

effect of a library through a synergy created by bringing technologically together the

resources of many libraries and information services.

1.1.1 The World-Wide Web (WWW)

The Web makes it possible to access a virtual library anywhere on the Internet using a
URL (Uniform Resource Locator). The URL is the address of a resource, or file,
available on the Internet. A browser such as Netscape Navigator or Microsoft Internet
Explorer (IE) interprets these resources or files and displays them on a screen. It also
allows the user to navigate to other related documents by choosing links in the HTML
(HyperText Markup Language) file. A related collection of such resources or files is
called a Web site. The computer that holds these resources or files is called a Web Server.

Currently most organizations maintain a Web site.

1.1.2 Web Servers and Databases

The Web is the cornerstone of E-commerce. Many organizations already offer E-
commerce application through the Internet. Customers can place orders and pay bills by
visiting a Web site. For such applications, a URL must identify more than just a file,
however rich the contents of the file; a URL must also provide an entry point to services
based on information in a database. URL requests at a given site are processed by Web
servers. According to the request, the server takes different actions. If the requested URL
is a file name, the server returns a copy of the file. If the requested URL identifies a
program to be executed at the server’s site, the Web server creates a process to execute
the program, and communicates with this process using the CGI (Common Gateway
Interface) protocol. If an HTML document is a form, the form is returned to the browser.
After the requester fills in the form, the data filled in the form by the user is returned to
the Web server, and these information can be used as parameters to a program executed

on the server. The results of the program can be used to create a customized HTML

document that is returned to the browser.

The database connection can be made by invoking a program on the server. The program
invoked by the Web server can generate a request to a database system. This capability
allows users to make services that rely upon database access available over the Web. It is

very common to access a database through the Web, especially in E-commerce

applications.

1.2 CINDI System

1.2.1 Introduction

In order to make effective use of the wealth of information on the Internet, users need

ways to locate pertinent information. Today, many search engines are available on the

Internet, including AltaVista, Yahoo, Google, Northernlight, Lycos, Harvest, EINet, and

Galaxy, etc. However, none of these systems is always successful in retrieving the

documents sought [YZO01]. The reason is that many of these systems attempt to match the

specified search terms without regard for the context in which the words appear in the

target information resource. The existing search systems have several drawbacks:

1.

They do not take into account the heterogeneous nature of the virtual libraries. The
same document may be described in different ways in different virtual libraries.

They are not easy to use for new users. If new users do not know how to express their
query criteria correctly, they may spend a long time getting their result.

Users are required to reference documents by words or phrases instead of by title,
author, subject, date, etc.

The content of a document or file is not precisely described by many systems.
Normally, before a user knows whether a specific file is pertinent, he often has to
retrieve the pertinent source document / file and browse it.

To find relevant information is not easy. To address this problem, many systems use
indexing systems, but most of these systems place a significant, unnecessary load on
information servers and network links, because they use expensive object retrieval

protocols to gather indexing information, and they do not coordinate information

gathering amongst each other. Each indexer gathers all of the information it needs,
without trying to share overlapping information with other indexers [YZ01].
6. Most systems offer little support for customizing how they handle different

information formats and index/search schemes.

1.2.2 CINDI: The Project

The CINDI project is a system proposed by Dr. Desai [BS94]. The objective of the
project is to build a system that enables any resource contributor to catalog his own
resource and any user to search for hypermedia documents using a typical search item
such as Author, Title, Subject, etc. The system will offer a bibliographic database that
provides information about documents available on the Internet. A standardized index
scheme will be used to ensure homogeneity of the syntax and semantics of such an index.
These index entries are stored in a database system called the Semantic Header Database
System. In addition the catalog for subjects will provide help when the user catalogs his
index. The proposed system is characterized by the following:

1. A standardized metadata to describe each information resource — the Semantic

Header [BCD95].
2. A Semantic Header Database that stores the Semantic Headers.

3. A Semantic Header registering system to register the Semantic Header into the

Semantic Header Database System.

4. A search system that allows query entry for information discovery.

5. An annotation system.

6.

A subject table that stores information about subjects classified using a standard
cataloging scheme.
A set of graphical user interfaces to let a user register an index entry, make

annotations to any index entry, and execute a search. The user can also browse the

source resource using a Browser.

There are many advantages of this proposed system over existing systems:

1.

2.

The Semantic Header allows the indexation of documents accessible by any protocol.
The Semantic Header includes annotations of reviewers and other users, thus offering
the possibility of a more informed decision as to the pertinence of the source resource
[YZOo1].

The Semantic Header syntax offers a way to register standardized keywords chosen
by the contributor of the resource. These make searching uniform. Since the
contributor of the resource performs the registration of the Semantic Header in the
database, it has the following advantages: low cost, accuracy, and efficiency [YZ01].
The Semantic Header is designed to describe each resource exactly. This abstract
information provides a better idea of the resource than an excerpt prepared by
systems such as Lycos, Google, etc.

The distributed nature of the Semantic Header database provides for scalability.

1.3 Organization of the Report

This report describes the architecture of the CINDI system, the design and

implementation of the database system and the interface between the CINDI database

system and the Web Browser.

Chapter 2 presents the background of the Web-based CINDI system. The first section
gives an overview of information retrieval. The MySQL database is presented in section
2.2 and PHP is presented in section 2.3. Section 2.4 gives a brief view of the Apache

server and section 2.5 presents the Semantic Header package ASHG (Automatic

Semantic Header Generator).

Chapter 3 introduces the general idea of the CINDI system, including the 3-tier structure,
the system design. Chapter 4 presents database system design, including logical model,
physical implementation, performance considerations and the connection from PHP code.
Section 4.1 gives an overview of data modeling; section 4.2 gives the design of the
logical model. Section 4.3 gives the physical implementation of the database system.
Section 4.4 gives the consideration of performance and section 4.5 presents ine

implementation of Web application with PHP.

The user interaction for registration, resource search and annotation are present in
Chapter 5. Also the searching strategy is introduced in Chapter 5. Finally in Chapter 6 we

draw our conclusions and provide suggestions for future work.

Chapter 2

Background

2.1 Information Retrieval

2.1.1 Meta-Data

Meta-Data is the information that records the characteristics and relationships of the
source data. It helps provide succinct information about the source data that may not be
recorded in the source itself due to its nature or an oversight [BCD90]. The first Meta-
Data Invitational Workshop was held in March 1995 in Dublin [BCD95]. The main
objective was to address the problem of cataloging network resources with adoption,

extension or modification of current standards and protocols to facilitate their discovery

and access.

2.1.2 Semantic Header

The heart of any bibliography or indexing system is the record that is kept for each item
being indexed. Standardization of a bibliographic entry better allows people to exchange
information through a virtual library. The index structure for the indexing system was
proposed by Desai and is called the Semantic Header [BCD95]. It was originally

presented at the First International World Wide Web Conference in Geneva for WWW

resources. Since then, it has been extended to other resources accessible directly on the

Internet [BCD95].

The Semantic Header may be considered as an application of the Standard Generalized
Markup Language (SGML) [MAMO1]. The objective of the Semantic Header is to
include those elements that are most often used in the search for an information resource.
Since the majority of searches begin with a title, the name of the author(s), subject and
sub-subject [MAMO1], the entry of these elements have been made mandatory in the
Semantic Header. The abstract and annotations are, also, relevant in deciding whether or

not the resource would be useful. These items are therefore also included.

2.2 MYSQL Database

2.2.1 What is MySQL?

MySQL, the most popular Open Source SQL database, is provided by MySQL AB
[MSQL+]. MySQL AB is a commercial company that builds its business providing
services around the MySQL database. The SQL part of MySQL stands for "Structured

Query Language" - the most common standardized language used to access databases.

MySQL: A database management system.

A database is a structured collection of data. It may be anything from a simple shopping
list to a picture gallery or the vast amounts of information in a corporate network. To add,
access, and process data stored in a computer database, a database management system

such as MySQL is necessary. Since computers are very efficient at handling large

amounts of data, database management plays a central role in computing, as stand-alone
utilities, or as parts of other applications [PDMW99].

MySQL: A relational database management system

A relational database stores data in separate tables rather than putting all the data in one
big storeroom. This adds speed and flexibility. The tables are linked by defined relations
making it possible to combine data from several tables on request.

MySQL: Open source software

Open Source means that it is possible for anyone to use and modify the same code.
MySQL is freely available on the Internet !, Anybody so inclined can study the source
code and change it to fit their needs. MySQL uses the GPL (GNU General Public

License), to define what may or may not be done with tne software in different situations.

MySQL: A client/server system
MySQL is a client/server system that consists of a multi-threaded SQL server that
supports different backbends, several different client programs and libraries,

administrative tools, and several programming interfaces.

2.2.2 Why use MySQL?

MySQL is very fast, reliable, and easy to use. MySQL also has a very practical set of

features developed in very close cooperation with users. MySQL was originally

' URL: http://www.mysgl.com/downloads

developed to handle very large databases, much faster than existing solutions and has
been successfully used in highly demanding production environments for several years
[MSQL+]. Though under constant development, today MySQL offers a rich and very
useful set of functions. The connectivity, speed, and security make MySQL highly suited

for accessing databases on the Internet.

Table 1 and 2 shows the results of a performance comparison of MySQL to other
database managers. Note that all experiments have been performed on the same NT 4.0
machine [MSQL+]. Both experiments clearly show that MySQL is much faster. For
example, table 1 shows that informix_odbc takes about 260 times longer than
mysql_odbc to read 2,000,000 rows. Table 2 shows oracle_odbc takes about 18 times

longer than mysql_odbc to insert 350,768 rows.

Database Seconds
mysql 367
mysql_odbc 464
db2_odbc 1206
informix_odbc 121126
ms-sql_odbc 1634
oracle_odbc 20800
solid_odbc 877
sybase_odbc 17614

Table 1: Comparison: Reading 2,000,000 rows by index

10

Database Seconds
mysql 381
mysql_odbc 619
db2_odbc 3460
informix_odbc 2692
ms_sql_odbc 4012
oracle_odbc 11291
solid_odbc 1801
sybase_odbc 4802

Table 2: Comparison: Inserting (350,768) rows

2.2.3 The Main Features of MySQL

The following list describes some of the important characteristics of MySQL.:

1.

Fully multi-threaded using kernel threads. This means it can easily use multiple CPUs
if available.

Multiple APIs support: C, C++, Eiffel, Java, Perl, PHP, Python and Tcl.

Multiple platforms support.

Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT,
DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, and ENUM types [MSQL+].

Very fast join operations using an optimized one-sweep multi-join.

Full operator and function support in the SELECT and WHERE parts of queries.

SQL functions are implemented through a highly optimized class library and should
be as fast as possible! Usually there is no memory allocation at all after query

initialization.

11

8. A privilege and password system that is very flexible and secure, and allows host-
based verification. Passwords are secure because all password traffic is encrypted

when connected to a server.
9. Open Database Connectivity (ODBC) support.
10. Very fast B-tree disk tables with index compression.

11. Up to 32 indices per table are allowed. Each index may consist of 1 to 16 columns or
parts of columns.

12. In-memory hash tables, which are used as temporary tables.

13. All columns have default values. INSERT can be used to insert a subset of a table's
columns; those columns that are not explicitly given values are set to their default
values.

14. No memory leaks. MySQL has been tested with Purify, a commercial memory
leakage detector [MSQL+].

15. Aliases on tables and columns are allowed as in the SQL92 standard [MSQL+].

23 PHP

2.3.1 What is PHP?

PHP (Hypertext PreProcessor) is a server-side HTML-embedded scripting language. The
PHP code is enclosed in special start tag (<? php) and end tag (?>) that allow user to
jump into and out of PHP mode. For example, the following short code (Figure 1) will

display “Welcome to CINDI System!” on the screen.

12

<html>
<head>
<title>Example</title>
</head>
<body>
<?php

echo “Welcome to CINDI System!";
2>

</body>
</html>

Figure 1: PHP Script Example

What distinguishes PHP from other scripting languages like client-side JavaScript is that
the code is executed on the server. If there were a script similar to the above on the
server, the client would receive the results of running that script, and the underlying code
can’t be determined by the users. The web server can even be configured to process all
the HTML files with PHP, and then there's really no way that users can determine what

the underlying code may be.

2.3.2 What can PHP do?

At the most basic level, PHP can do anything any other CGI program can do, such as

collect form data, generate dynamic page content, or send and receive cookies.

The strongest and most significant feature in PHP is its support for a wide range of
databases. Writing a database-enabled web page is incredibly simple. The following

databases are mainly supported: MySQL, Oracle, dBase, PostgreSQL, Sybase, [BM DB2,

Informix etc [PHP+].

13

PHP also has support for talking to other services using protocols such as IMAP, SNMP,

NNTP, POP3, HTTP and countless others.

2.4 Apache Server

Apache server means "A PAtCHy server”. It is based on some existing code and a series
of "patch files". The Apache server is a powerful, flexible, HTTP/1.1 compliant web
server. It can be run on Windows NT/9x, Netware 5.x, OS/2, and most versions of Unix,

as well as several other operating systems. It is an open source and it is freely available

on the Internet >.

According to the Netcraft survey, the Apache server has managed to capture over 58% of
the server market and has been the most popular web server on the Internet since April
1996 [NTCR+]. Apache server has many advantages over other web servers, such as
providing full source code and an unrestrictive license. It is also full of features. For
example, it is compliant with HTTP/1.1 and extensible with third-party modules, and it
provides its own APIs to allow module writing. Other useful features that have made it a
popular web server include the capability to tailor specific responses to different errors,
its support for virtual hosts, URL rewriting and aliasing, content negotiation and its

support for configurable, reliable piped logs that allows users to generate logs in a format

they want.

2 URL: http://httpd.apache.org/dist/

14

2.5 ASHG

Automatic Semantic Header Generator (ASHG) is a program package that automatically
generates Semantic Header for HTML, Latex, Text and RTF documents [SSD98]. It is
part of the CINDI system and was developed specifically for the CINDI system. By using
ASHG, it provides the document’s contributor with

an initial set of subject classifications and a number of components of the Semantic

Header for the document.

ASHG extracts some meta-information from a document and stores it in a Semantic
Header. For instance, when a contributor uploads a new document to the CINDI system,
fields such as document’s title, abstract, keywords, subjects, dates, author’s information
are extracted. Using frequency occurrence and positional schemes, ASHG measures the
significance of the words found in the previously mentioned list. The major steps used

by ASHG are:

1. Recognizing Document Type: Currently, ASHG understands HTML, Latex, Text
and RTF documents.

2. Applying ASHG’s Extractor: A summarizer corresponding to the type of
document applies the input document.

3. Classifying ASHG’s Document: The document is assigned subject headings.

4. Output Semantic Header: The generated meta-information is stored in a Semantic

Header.

15

. Presenting Semantic Header: The generated Semantic Header is queried from
database, sent to a HTML form and presented on the contributor’s screen.
. Validating Semantic Header: The contributor validates the Semantic Header

generated by ASHG.

16

Chapter 3

Architecture of the CINDI System

3.1 3-tier Architecture
3.1.1 Introduction

In the traditional 2-tier model (figure 2), the client application contains the GUI (Graphic
User Interface) code, business logic, security code, data access logic, etc. And the server
side contains the database management system, some server side security code, etc. This
type of architecture is suitable for deployment to a small group of users, but there are
many problems in a large-scale application system:

1. Deployment and maintenance problem: Each time a change is made to a component

or a database structure, every client has to be updated.
2. Scalability problem: All clients are hitting the same back-end data source and

services, competing for resources.

17

User Interface/
Business Logic/ Data

Data Access Code -

Client Application €

Figure 2: 2-tier Architecture

Compared with 2-tier architecture, 3- and n-tier architectures endeavor to overcome these
problems. This goal is achieved primarily by moving the business logic from the client

back to the server. Figure 3 shows a simplified form of 3-tier architecture.

Client Tier (Browser) Web Server Tier Data Server Tier
(Business Logic Tier) (DBMYS)

Client < > Business
Application Objects

Figure 3: 3-tier Architecture

18

Client Tier (Browser)

The Client Tier is responsible for the presenting of data, the receiving of user events and

the controlling of user interfaces. The actual business logic has been moved to Web

Server Tier.

Web Server Tier (Business Logic Tier)

The Web Server Tier is new, i.e. it is not present in 2-tier architecture in this explicit
form. Business-objects that implement the business rules "live" here, and are available to
the client-tier. This level now forms the central key to solving 2-tier problems. This tier

protects the data from direct access by the clients.

Data Server Tier

The Data Server Tier is responsible for data storage. Besides the widespread relational

database systems, existing legacy systems databases are often reused here.

It is important to note that boundaries between tiers are logical. It is quite easily possible
to run all three tiers on one and the same (physical) machine. The main importance is that

the system is neatly structured, and that there is a well-planned definition of the software

boundaries between the different tiers.

3.1.2 The Advantages of 3-tier Architecture

The advantages for 3-tier include:

1. Clear separation of user-interface-control and data presentation from application-

logic.

19

2. Re-definition of the storage strategy would not influence the clients.

3. Business-objects and data storage should be brought as close together as possible,
ideally they should be together physically on the same server.

4. In contrast to the 2-tier model, where only data is accessible to the public, business-
objects can place applications-logic or "services" on the network.

5. As a rule, servers are "trusted" systems. Their authorization is simpler than that of
thousands of "untrusted” client-PCs. Data protection and security is simpler to obtain.

6. Dynamic load balancing: if bottlenecks in terms of performance occur, the server
process can be moved to other servers at runtime.

7. Change management: it’s easy - and faster - to exchange a component on the server

than to furnish numerous PCs with new program versions.

For all these reasons, the CINDI system has been made adaptable to 3-tier architecture,

including Browser, Apache Web server and MySQL Database server.

3.2 System Design

System design is the high-level strategy for solving the target problem and building a
solution. It includes decisions about the organization of the system into subsystems. It

produces the system architecture.

The CINDI System is a web-based, 3-tier application. Users access the web site by
entering the web address in a web browser and the web browser communicates with the

web server through the HTTP protocol. The Web server runs PHP scripts and returns a

20

dynamic web page to the web browser based on the user requirements. If the request
accesses data from the database, the web base middleware accesses the database. If not,

the web base middleware responds with a corresponding web page to the web browser.

The CINDI system has six subsystems:

Resource Registration sub-system (RR): This subsystem is responsible for resource

registration. The resource contributors use this subsystem to register their resources into

the CINDI system.

Security Control sub-system (SC): This subsystem is used to register contributors’ and
users’ information and to perform access authorization checking. Only registered

contributors/users can use the CINDI system.

ASHG sub-system (ASHG): ASHG subsystem generates Semantic Header for HTML,
Latex, Text and RTF documents. It provides the document’s contributor an initial set of

subject classifications and a number of components of the Semantic Header for the

document.

Semantic Header Database sub-system (DB): All information including Semantic
Headers, contributors/users personal information and user’s annotation, etc. is stored in

the Semantic Header database sub-system.

21

Search sub-system (SR): This subsystem is responsible for resource searching and for

returning results to users.

Annotation sub-system (AT): Registered users can use this subsystem to read other

users’ annotations and/or make their own annotations.

As shown in figure 4, all new resource contributors as well as users must register their
personal information using the Security Control sub-system (SC). After registering, each
registrant will get a unique account and password by the e-mail provided during
registration. Only after successfully registering in the CINDI system, contributors and
users can use the system. For resource contributors, the Resource Registration sub-system
(RR) is used to register resources into the CINDI system. Alternatively, the ASHG sub-
system (ASHG) may be used to automatically generate a draft Semantic Header for
HTML, Latex, Text and RTF documents and presents it to the resource contributor for
validation. All the information that includes Semantic Headers, user information,
resource contributor information, user’s annotation, etc. are stored in Semantic Header
database sub-system (DB). Registered users can use the Search sub-system (SR) to search
information in the Semantic Header database, to get the resources and make annotations

through the Annotation sub-system (AT).

22

+password

<<Sub-system>>
ASHG

+semantic header

no
<<import>> o
b
]]
Lo
<<Sub-system>> P
<<Sub-system>> EYRS b
SC LV
+contributor/user name +resources
+personal information
\\
" <<import>>
<<import>>
<<Sub-system>>
DB
+resource table
+contributor table
+author table
+users table
<<access>> 1
e <<import>>
r’,, N,
‘I \\
<<Sub-system>> <<Sub-system>>
SR AT
+search keywords +annotation

Figure 4: The architecture of the CINDI system.

23

Chapter 4

Semantic Header Database System Design and

Implementation

4.1 Data Modeling and E-R Model

Data Modeling is the bridge between the real world and an information processing
system, and helps to determine what data is required for a successful project. In database,
a data model represents data structures and their characteristics, relations, constraints, and
transformations. A well-abstracted data model will be economical and flexible to

maintain and enhance.

The E-R (Entity Relationship) Model is a detailed, logical representation of the data
modeling. An entity is a thing that can be distinctly identified. A relationship is an
association between two or more entities. The E-R Model shows the entities within the
database, the associations (or relationships) among the entities, and the attributes or

properties of the entities and their relationships.

In the CINDI system, the E-R Model is used to present the data model of the Semantic

Header.

24

4.2 Logical Model

It is the essence of the data model for identifying the correct entities and relationship

between entities.

4.2.1 Identifying Entities and their Attributes

For cataloging and searching, a Meta-data description called a Semantic Header is used to
describe an information resource [BS94]. As mentioned in section 2.1.2, the Semantic
Header includes title, name of the authors, subjects, keywords, abstract and annotation,
etc. Figure 5 shows E-R diagram of the Semantic Header Database. In the E-R diagram,
each box is an entity and each entity is represented by a set of attributes. The entities and

their attributes for the Semantic Header database are briefly described in the following

sections.

coverage identifier system_req classification language

Y / Y Y

resource

N\ VAN N

resource_subject annotation resource_author contributor

Y / \4

subject users author role

N

Figure 5: The E-R diagram of the Semantic Header Database

4.2.1.1 Resource Entity

The resource entity is the main entity for CINDI system. It includes the major Semantic

Header information described by the following fields:

26

Title, Alt_title:
The title is a name given to the resource by its creator or a short description of the

resource. It is a required field. The alt_title field is used to indicate an secondary title or a

alternate short description of the resource.

Keyword:
This field is used for keeping keyword information for the resources. Each keyword is

separated by a comma. It is used for keyword searching.

Language:

Identifies the language of the resource.

Create_date, Expiry_date, Upload_date, Update_date:
The date of creation, the date of expiration, the date of uploading and the date of updating
for the resource. The create_date and the upload_date are required fields. The expiry_date

is a optional field. The upload_date and the update_date are identified by a system-

generated date.

Version:

The version number, if any, is given in this field.

27

Resource_format, Size:
The resource_format is used to describe the physical or electronic format of the resource,

like ASCII, PDF, Postscript, GIF, etc. And the size field is used to give the corresponding

value or size of the resource. Both of them are optional fields.

Annotation:

Text field for annotation when the resource is uploaded. Resource contributor or the

author(s) makes this annotation.

Abstract:

Text field for abstract when the resource is uploaded. This is a required field. It is used

for keyword searching.
Filename:
The file name of the resource. This is a required element. This is the link to the real

resource.

Contributor_id:

The contributor ID for the resource. This is a required element.

28

4.2.12 Subject Entity

The details about each subject are indicated here. A subject of the resource is composed

of three sublevels: subject, sub-subject, sub_sub-subject. Each subject includes a subject

ID and a subject name.

4.2.1.3 Resource_subject Entity

One resource may belong to many different subjects. For instance, one resource may
belong to Computer Science, Information storage and retrieval, Web_based online
information services. It may also belong to Computer Science, Information storage and
retrieval, Online information services. Meanwhile, one subject may belong to many
resources. Therefore, there is a many—many relationship between the entity resource and
the entity subject. In order to eliminate the many—many relationship, one intermediate
entity should be added. This is the resource_subject entity that changes the many--many
relationship between the resource entity and the subject entity to two one--many
relationships: one—many relationship between resource entity and resource_subject

entity, and one—many relationship between subject entity and resource_subject entity.

It includes the primary keys of the resource entity and the subject entity.

4.2.14 Resource_author Entity

One resource may have more than one author, and one author may register many
resources in the CINDI system, so there is a many—many relationship between the entity

resource and the entity author. In order to eliminate the many—many relationship, one

29

intermediate entity should be added here. This is the resource_author entity that changes
the many--many relationship between the resource entity and the author entity to two
one--many relationships: one—many relationship between resource entity and

resource_author entity, and one—many relationship between author entity and

resource_author entity.

It includes the primary keys of the resource entity and the author entity.

4.2.1.5 Author Entity

The details about the author(s) and/or other agent(s) responsible for the resource. It

includes these fields: name, organization, address, phone number, e-mail address and role

of the author or other agent, etc.

4.2.1.6 Role Entity

The details about the role of the author or other agent. Typical values for the role of the
author or other agent could be author, co-author, designer, editor, programmer, creator,
artist, publisher, etc. It includes the fields: role_id and the role name. Instead of keeping
the particular role in the author entity, the role ID is stored in the author entity. In this

way, it will be more flexible for role processing in the future, like query by role, sort by

role or add/delete role, etc.

30

One author or other agent only has one role in the same resource, but one role may
belong to many different authors or other agents. Therefore, there is one—many

relationship between the role entity and the author entity.

4.2.1.7 Contributor Entity

The detailed information about the registered contributors. Contributors who want to
upload resources must supply pertinent information, such as login account, last name,

first name, organization name, detailed address information, e-mail, etc.

Obviously, there is one—many relationship between the contributor entity and the

resource entity.

4.2.1.8 Language Entity

Detailed information about language is indicated here. Instead of keeping the particular
language, like English, French, etc., in the resource entity, the language ID is stored in
the resource entity. In this way, it will be more flexible for language processing in the

future, like query by language, sort by language or add/delete language, etc.
Currently, if one resource has multiple language versions, there will be multiple Semantic

Headers in the CINDI system. Therefore, there is one—many relationship between the

language entity and the resource entity.

31

4.2.1.9 Annotation Entity

The annotations are made by users for a particular resource. Fields include: resource ID,

user account and text field for annotation.

One resource may have many annotations made by many users. Therefore, there is one—

many relationship between the resource entity and the annotation entity.

4.2.1.10 Users Entity

Users who registered for searching resources are indicated by user account, last name,

first name, detailed address information, e-mail address etc.

Obviously, there is one—many relationship between the users entity and the resource

entity.

4.2.1.11 Coverage Entity

It consists of a domain (target audience, coverage in a spatial and/or temporal sense, etc)

and the corresponding value.

One resource may have more than one coverage information. For example, one resource
may have both coverage in a spatial and also a temporal sense. But one coverage
information can only be mapped to one particular resource. Therefore, there is a one—

many relationship between the resource entity and the coverage entity.

32

4.2.1.12 System_req Entity

The system requirement such as hardware and software required to access, use, display or
operate the resource is included in the Semantic Header. It consists of a domain of the
system requirements (possible value are: hardware, software, network, protocol, etc.) and

the corresponding value.

One resource may have more than one system requirements. For instance, one resource
may have hardware and software requirements as well as network requirements. But one
system requirement can only be mapped to one particular resource. Therefore, there is a

one—many relationship between the resource entity and the system_req entity.

4.2.1.13 Identifier Entity

It includes two fields: the domain and the corresponding value. The possible domain

values are: ISBN, URL, ISSN, etc.

One resource may have more than one identifier information. For example, one resource
may be identified by a URL and a ISBN. But one identifier information can only be
mapped to one particular resource. Therefore, there is a one—many relationship between

the resource entity and the identifier entity.

33

4.2.1.14 Classification Entity

It includes two fields: the domain and the corresponding value. The possible domain

values are: legal, security level, etc.

One resource may have more than one classification information. For example, one
resource may have security restriction and copyright status. But one classification
information can only be mapped to one particular resource. Therefore, there is a one—

many relationship between resource entity and classification entity.

4.2.2 Identifying Primary Keys

A primary key is the combination of the values of one or more attributes that collectively

and uniquely identify an entity.

For the resource entity, a number field resource_id is added to identify each resource and
it is chosen as the primary key for the resource. In this way, it is convenient to
implement. Each contributor has his own personal information. The contributor ID is
used to uniquely identify each contributor. For the contributor’s convenience, he can
choose his own ID. In case of a duplicate, the contributor needs to choose another ID
until he meets the unique requirement. The same process applies for the users entity. The
user_id is the primary key. For the author entity, obviously, author’s name can not be
used as the primary key because two different authors may have the same name. So, a
number field author_id is added to identify each author and it is chosen as the primary

key of author. If two authors have the exact same information, like name, organization,

34

address, phone number and e-mail address, etc., they will be treated as one author and
there is no need for new author_id. Otherwise, they will be treated as two different
authors. For the subject entity, a number field is added as the primary key to uniquely

identify each subject. Table 3 shows the primary key for entities.

Entity Name Primary Key
resource resource_id
contributor contributor_id
author author_id
users user_id

resource_author

resource_id, author_id

role role_id
annotation resource_id, user_id
subject subject_id,

resource_subject resource_id, subject_id

language language_id

Table 3: Primary key for entities

4.3 Physical Implementation

4.3.1 Implementation of the Semantic Header Database

In MySQL, entities and their attributes evolve into tables and columns. Figure 6 shows
the MySQL implementation for the Semantic Header database. MySQL function
AUTO_INCREMENT is used to get a sequence number as the primary key for

resource_id, author_id and language_id, etc. As mentioned in section 4.2.2, each author

35

has a unique author_id. The author_ids that are relative to the resource are stored in table
resource_author. Each author has one entry that includes resource_id and author_id. If
there are three authors in one resource, then there are three tuples in this table. Through
table resource_author, all authors’ information of the resource can be obtained. For
subjects in the resource, through table resource_subject, all subjects of the resource can
be obtained. For the annotation table, there are three attributes: resource_id, user_id and
annotation. Each annotation identified by the resource_id and the user_id. Therefore, all
the annotations of the resource can be easily obtained. For the table identifier, table
coverage, table system_req and table classification, they have one—many relationship
with the table resource. By putting the resource_id in these tables, all these information

about the resource can be obtained.

create table resource (

resource_id int (10) unsigned NOT NULL AUTO_INCREMENT,
title varchar (100) NOT NULL,
alt_title varchar (100),
language_id int(10) unsigned,
keyword varchar(200),
created_date date NOT NULL,
upload_date date NOT NULL,
expiry_date date,

last_update date NOT NULL,

version varchar (50),

source varchar(200),
annotation text,

size int(10) unsigned,

resource_format varchar (20),

abstract text NOT NULL,
filename varchar (100) NOT NULL,
contributor_id varchar(20) NOT NULL,

primary key(resource_id));

36

create table author (

author_id
name
organization
address
apt_no
city
province
country
p_code
e_mail
phone

role

int (10) unsigned NOT NULL AUTO_INCREMENT,
varchar (50) NOT NULL,
varchar (100),
varchar (50),
varchar (20),
varchar (30},
varchar (30),
varchar (30),
varchar (20),
varchar (50),
varchar (20),

varchar (20) NOT NULL,

primary key(author_id)):

create table role (

role_id

int (10) unsigned NOT NULL AUTO_INCREMENT,

role_name varchar(30),

primary key(role_id));

create table subject

subject_id

subject_name

int{(10) unsigned NOT NULL,
varchar (80) NOT NULL,

primary key(subject_id));

resource_id
subject
sub_subject

create table resource_subject (

int(10) NOT NUILL,
varchar (50) NOT NULL,

varchar (50),

sub_sub_subject varchar(50));

resource_id

author_id

primary key(resource_id,

create table resource_author (

int (10) unsigned NOT NULL,
int(10) unsigned NOT NULL,

author_id));

create table langquage (

language_id int (10) unsigned NOT NULL AUTO__INCREMENT,

37

language_name varchar(20),

primary key(language_id));

create table users (
user_id
passwd
fname

lname

varchar (20) NOT NULL,
varchar (20) NOT NULL,
varchar (50) NOT NULL,
varchar (50) NOT NULL,

organization
address
apt_no

city
province
country
p_code
e_mail

phone

varchar (100)
varchar (50),
varchar (20),
varchar (30),
varchar (30),
varchar (30),
varchar (20),
varchar (50),

varchar (20),

primary key(user_id));

create table contributor (

contributor_id
passwd

fname

lname
organization
department
address
apt_no

city
province
country
p_code
e_mail

phone

.

varchar (20) NOT NULL,
varchar (20) NOT NULL,
varchar (50) NOT NULL,
varchar (50) NOT NULL,

varchar (100),
varchar (100),
varchar (50),
varchar (20),
varchar (30) ,
varchar (30},
varchar (30),
varchar (20),
varchar (50),

varchar(20),

primary key(contributor_id)):;

create table annotation (

resource_id int(10) unsigned NOT NULL,

38

user_id varchar (20) unsigned NOT NULL,

annotation text);

create table coverage (

resource_id int (10) unsigned NOT NULL,
coverage_domain varchar (50),

coverage_value varchar (200)) ;

create table system_req (

resource_id int (10) unsigned NOT NULL,
system req domain varchar(50),

system_req_value varchar(200));

create table identifier (

resource_id int (10) unsigned NOT NULL,
identifier_domain varchar (50),

identifier_value varchar(200});

create table classfication ¢

resource_id int (10) unsigned NOT NULL,
clasf_domain varchar (50),

clasf_value varchar (200)) ;

Figure 6: Semantic Header database implementation

4.3.2 Implementation of Intermediate Tables between ASHG
Subsystem and Resource Registration Subsystem

In order to get a general interface with the ASHG (Automatic Semantic Header
Generator) package, several tables are used to temporarily store Semantic Header
information that are automatically generated by ASHG. After the contributor loaded a
resource, the CINDI system will generate a unique ID for it. This ID is used to identify

the resource in the tables. Once ASHG has stored the Semantic Header into the

39

intermediate tables, this ID is used to query the corresponding information. A C program
is used to automatically clean these tables after the Semantic Header has shown on the
contributor’s screen for 30 minutes. The main information, such as title, keyword,
subject, created_date and abstract, etc., is stored in the sh table. The author’s information
of the resource is stored in the sh_author table. Information about coverage, identifier,
system requirements and classification is stored in the sh_covearage table, the
sh_indentifier table, the sh_system_req table and the sh_classification table
correspondingly. Figure 7 shows the MySQL implementation of intermediate tables
between the ASHG subsystem and the Resource Registration subsystem. Actually, the
structures of these tables are very similar to the tables: resource, author, coverage,
system_req, identifier and classification. In the sh table, there are no update_date and
last_update fields. Why are these tables needed? The reason is that, the Semantic Header
information generated by the ASHG is only a draft. The contributor needs to check it and
confirm it. This information can’t be directly stored in the Semantic Header database,

because this will give the database false information and render the Semantic Header

database useless.

create table sh (

sh_id int (10) unsigned NOT NULL AUTO_INCREMENT,
title varchar (100) NOT NULL,

alt_title varchar (100),

subject_1 varchar (50) NOT NULL,

sub_subjectl_1 varchar (50),
sub_subject2_1 varchar (50) ,
subject_2 varchar (50),
sub_subjectl_2 varchar (50),
sub_subject2_2 varchar (50),

40

subject_3 varchar (50),
sub_subjectl_3 varchar (50),
sub_subject2_3 varchar (50),

language_id int (10) unsigned,
keyword varchar (200),
created_date date NOT NULL,
expiry date date NOT NULL,
version varchar (50),
source varchar (200),
annotation text,

size int (10) unsigned,

resource_format varchar (20),

abstract text NOT NULL,
contributor_id varchar (20) NOT NULL,
primary key(sh_id));

create table sh_author (
sh_id int (10) unsigned NOT NULL,
name varchar(50) NOT NULL,

organization varchar(100),

address varchar (50},
apt_no varchar (20),
city varchar (30),
province varchar(30),
country varchar(30),
p_code varchar (20),
e_mail varchar (50),
phone varchar (20),
role varchar(20) NOT NULL) ;

create table sh_coverage (

sh_id int{(10) unsigned NOT NULL,
coverage_domain varchar (50),

coverage_value varchar (200)) ;
create table sh_system_req (

sh_id int(10) unsigned NOT NULL,

system_req domain varchar(50),

41

system_req value varchar(200));

create table sh_identifier (
sh_id int (10) unsigned NOT NULL,
identifier_domain varchar(50),

identifier_value varchar(200));

create table sh_classfication (

sh_id int (10) unsigned NOT NULL,
clasf_domain varchar (50),
clasf_value varchar (200)) ;

Figure 7: Implementation of intermediate tables between the ASHG subsystem and the
Resource Registration subsystem

4.4 Performance Considerations

In order to get good performance on resource registration and resource searching, the

following features are added:

4.4.1 Add Column Indices for Resource Searching

Indices are used to quickly find rows with a specific value. Without an index MySQL has
to start with the first record and then read through the whole table until it finds the
relevant rows. The bigger the table, the more this costs. If the table has an index for the
columns in the query, MySQL can quickly seek a position in the middle of the data file
without having to look at all the data. For resource searching, the user may use author
name, subject, etc. to find resources. It is better to have an index on these fields. As
shown in figure 8, the name field in the author table is defined as an index. When the user

uses author as his criteria to perform resource searching, there will be better performance

42

than without an index. For the same reason, an index on the resource_id and one on the
subject field of the resource_subejct table are created. And indices on resource_id of

identifier table, system_req table, classification table and coverage table are created.

Create index i_author_name on author (name(15)}));

create index i_reource_subject_rid on resource_subject(resource_id);
create index i_reource_subject_sid on resource_subject (subject);
create index i_identifier id on identifier(resource_id);

create index i_system_req id on system_req(resource_id);

create index i_classification_id on classification(resource_id);

create index i_coverage_id on coverage (coverage_id) ;

Figure 8: Indices of the Semantic Header database

4.4.2 Optimizing Concurrent Select and Insert Operations

In CINDI system, many users/contributors would concurrently search and insert data
from/into the Semantic Header database. The INSERT DELAYED function is used to
optimize these operations. By using this function, the row will be inserted when the table
is not in use by any other thread, and insertions from many clients are bundled together

and written in one block. This is much faster than by doing many separate inserts

[MSQL+].

4.4.3 Using Persistent Connection

From PHP scripts, if there is a need to access data from MySQL database, a connection to
MySQL database must be established. Instead of each connection for each database
access, a persistent connection is used to connect to the database to avoid the connection

overhead. When a persistent connection is requested, PHP checks if there's already an

43

identical persistent connection (that remained open from earlier). If the connection exists,
PHP uses it. If the connection does not exist, PHP creates a new connection. An
'identical' connection is a connection that was opened to the same host, with the same
username and the same password. This is more efficient than non-persistent connection.

In this way, better performance is achieved.

4.5 Implementation of Web Application with PHP

4.5.1 Connecting to MySQL Database

In the CINDI system, the database name is cindi that includes all tables. The PHP scripts
is used to develop the web-based CINDI system. From PHP scripts, there is a need to
access database to store/retrieve data. The function mysql_pconnect () is used to open a

link to the MySQL server. For example, the PHP scripts in figure 9 will get all the

contributors’ names.

<html>

<body>

<?php
$db=mysql_pconnect ("localhost", "username", "password") ;
mysql_select_db("cindi", $db) ;
$result = mysql_query("SELECT * FROM contributor®, $db) ;
printf ("First Name:%s
\n", mysgl_result($result, 0, "fname"));
printf ("Last Name: %s
\n", mysql_result($result,0,"lname"));
mysql_close($db) ;

2>

</body>

</html>

Figure 9: PHP scripts and MySQL example

In this example, the result of the connection is stored in the variable $db. Function

mysql_select_db() then tells PHP that any queries are against the database that is

named cindi.

4.5.2 Executing SQL Query

In figure 9, function mysql_query() is used to perform SQL querying. Using the
database connection identifier, it sends a line of SQL to the MySQL server to be
processed. The results that are returned are stored in the variable $result. Function
mysql_result () is used to display the values of fields from the query. Using s$result,

starting from the first row, which is numbered 0, the value of the specified fields are

displayed.

4.4.2 Closing Persistent Connection

The function mysql_close($db) is used to close links established by

mysql_pconnect () .

45

Chapter 5

User Interactions with the CINDI System

5.1 Registration

The CINDI system supplies a registration interface for contributors and users. For
resources registration, there are two choices: automatic generated Semantic Header and
manual input Semantic Header. Currently, the Semantic Header for HTML, Latex, RTF

and Text documents can be automatically generated, others need to use manual

uploading.

5.1.1 Contributor Registration

The contributor registering graphical interface lets the resource contributors provide their
personal information, and register as contributors of the CINDI system. The CINDI
system will send an e-mail to the contributors to notify them of their contributor ID and
password after they input the required information and choose a contributor ID. Figure 10

shows the user interface of the contributor registering.

46

Figure 10: Contributor registration

After the contributors have filled in the required information on their browser, this
information is passed to Appache Server by HTML form. Using the database connection,
in MySQL database, first the contributorID is checked. In case the contributorID is
already in the database, then the database server returns a positive integer to the Web
server, and the Web server returns an error message to the browser. Second, if all the

required information is not null, then the contributor’s personal information is inserted in

the Semantic Header database.

47

Figure 11 shows the existing check for contributorID. Firstly, a connection to MySQL
and to the cindi database must be established. Secondly, a query is performed from the

contributor table. If there is any duplicate ID, then the return value will be greater than

Z€ro.

//connect to MySQL

$db=mysql_pconnect ("localhost", "username®, "password") ;
//select database
mysql_select_db("cindi", $db);

if ($submit) {
//check existing for the contributor ID
$resultl0 = mysql_query("select count(*) exist from contributor
where contributor__id='$contributor_id'");
if (mysql_result($result0,0,"exist") >0) {
print "<tr><td>ERROR: Contributor ID

already existed. Please choose another one.
</td></tr>";

Figure 11: PHP/MySQL Code for contributorID existing checking

Figure 12 shows how to insert the contributor’s personal information in the Semantic

Header database. The insert statement is used to insert data into the contributor table.
// insert data into contributor table

$result = mysql_query("insert into contributor values
(*$contributor_id', '$passwd', '$fname’', '$1lname’, '$organization?’,

‘$address', '$apt_no', *$city’, '$province!, ‘$country’', '$p_code’,
't$e_mail', '$department')");

Figure 12: Inserting contributor’s personal information in Semantic Header database

48

5.1.2 User Registration

The user registering graphical interface lets a user provide his personal information, and
register as a user of the CINDI system. The CINDI system will send an e-mail to user to
notify him of his user name and password after he has entered the required information
and chosen a user name. The user interface is very similar to the contributor registration
interface (Figure 10). Besides the different tables, the underlying process is similar to the

contributor registration process (Figure 11 and 12).

5.1.3 Login

Registered contributors and users can use the graphical user interface (figure 13 shows
the interface for user login) to log into the CINDI system. After contributors/users enter
in their ID and password, this information is passed to Apache Server by HTML form.
Using the database connection, in MySQL database, a valid checking is performed and a
number is returned to the Web server. Based on the value of the return number, the Web
server returns a error message to the browser if the ID does not exist or there is a

password error, otherwise it redirects the contributors/users to corresponding page.

Figure 14 shows the processing for user login. After the user clicks the submit button, a
query to check the user_id and the password is performed on the table users in MySQL
database. If the user_id exists and the password is correct, then the search page is shown.

Otherwise, an error message is given.

49

UINDLS NI S et hte

Figure 13: The user login interface

if ($submit)

// valid checking
$result = mysqgl_query{("select count(*) exist from users where
user_id='$userid' and passwd='$passwd'");

//if it is valid, redirect to search function page
if (mysqgl_result($result,0, "exist") >0) {

include ("search.php");
} else {

//if it is invalid, give error message

print “<table width=80% align=center>
<tr><td colspan=2> </td></tr>

50

<tr><td colspan=2> </td></tr>
<tr><td width=50%>Invalid Login. Please
check your user name and password. And";

print " Try again";

print "or
Contact us</td>
<td width=70%> </td></tr></table>";

Figure 14: The processing for user login

5.1.4 Resources Registration

As mentioned in section 5.1, the CINDI system supports two kinds of Semantic Header

registration: Manual Registration and Automatic Registration.

5.14.1 Manual Registration

After a registered contributor logs in to the CINDI system, there is a choice of manual
uploading or automatic uploading. If the contributor clicks on the manual upload link, he
will use the manual upload method to register Semantic Header. Figure 15 shows the
graphical interface. The required fields include: the title, the author(s), the subject, the
abstract and the filename (see the asterisk). The required fields checking is performed by

the PHP code.

51

ecry of dependence valuss

i\ nev aodel to evaiuate dependancies in data mining problems is
and a1 The vell-Xnoen concept Of The associacion

Mijrule 13 repleced Dy the nev dafinition of dependance value, shich 1s

& 3ingle ceml number uniQuely associated sith & given itemset.
fXncwiedge o2 dapendence velues is sufficient to describe ell che
[dependencies cheracterizing & given date mining problzm. The
dzpendence value 02 an Ltewset 15 the difference betvesn tia

ENcccucrence probebility of the L and & g

independence estimate.” This Can De determined as & function of joint
focobabilities of the subsecs Of the itemsec belng considered By

jmax 1m1210g & suitable entropy function. 30 it 15 possidle to separate

10 an itemsst of cardinaitiy kK the dapendance inhecited from its
fsubsets of cardinality (X i) end the »pecific inherent dependance of
that ttemnet. The absolute velue of the differsnce hetween the
probebility pil) of the event i that indicates the prescence of the 2]

Figure 15: Resource Manual Uploading

52

After the contributor logs into the system and chooses the manual upload link, the
browser sends a request to the Web server. The Web server executes the PHP scripts and
connects to the Semantic Header database to get the data, such as language, subject,
identifier, coverage, classification, system requirement, etc (figure 16 shows an example
for this processing). The Web server sends back this information to the browser. After the
contributor fills in all required information, the form data is sent to the Web server and
the Web server connects to database and inserts data in the corresponding tables. In order
to implement the relationship between the resource table and the relative tables,
information such as title, alternate title, keywords, created date, abstract, filename, size
and format of the resource, etc. is inserted in the table resource first. By using AUTO_
INCREMENT for the resource ID, a new resource ID for the resource is thereby
generated. Then, function LAST_INSERT_ID() is used to get the resource_id for using in

other tables, such as resource_subject, identifier, coverage, system_req, classification and

resource_subject.

For author’s information, first a check is performed based on author name, organization,
address, phone number and e-mail address, etc. If the author already exists in the author
table, then no record is inserted into the author table and the corresponding author ID and
the resource ID is inserted into the resource_author table. Otherwise, the author’s
information is inserted in the author table and the new author ID and the resource ID is

inserted in the table resource_author. Figure 17 shows the detailed PHP/MySQL code for

inserting Semantic Header in the database.

53

echo "<select align=left name='language'>";

// connect to MySQL
$db=mysql_pconnect {*localhost", "username", "password") ;

// select database
mysql_select_db("cindi", $db);

// query data from language table
$result_subject=mysql_query("select * from language", $db);

while ($myrow=mysql_fetch_row($result_subject)) {
print ("<OPTION value=$myrow([0]");
if ($cplanguage==$myrow(0]}) {
print (" selected");
}
printf (">%s", $myrow(1]);
echo "</OPTION>";
}
echo "</select></td></tr>";

Figure 16: Generate pull down menu for language

//insert record into table resource

$result = mysql_query("insert delayed into resource values
(null, '$title', '$alt_title', '$language_id', 's$keyword’,
'$created_date', '$upload_date', '$expiry_date', '$last_update’,
t$version', '$source', ‘'$annotation', $size, ‘'$resource_format’,
'$abstract', '$filename’', 'S$userid')");

// insert record into table identifier

if ($identifier_type != "0")

$resultl = mysqgl_query('"insert into identifier values
(LAST_INSERT_ID(), '$identifier_type', '$identifier')");

// insert record into table converage

if ($coverage_type != "0")

$result?2 = mysql_query("insert into coverage values
(LAST_INSERT_ID(), '$coverage_type', '$coverage')");

// insert record into table system_req
if ($sysrequirement_type != "0")
$result3 = mysql_query("insert into system_req values
(LAST _INSERT_ID(), '$sysrequirement_type', '$sysrequirement')");

// insert record into table classification

if ($classification_type = "0")

$resultd4 = mysql_query("insert into classification values
(LAST_INSERT_ID(), '$classification_type', '$classification')");

// insert record into table resource_subject

54

if ($subjectl != "QO")
$result5 = mysql_query("insert into resource_subject values
(LAST_INSERT_ID(), '*$subjectl’', '$sub_subjectl’®,
'$sub_sub_subjectl')"®);

if ($subject2 != "Q")
$result6 = mysql_query("insert into resource_subject values
(LAST_INSERT _ID{(), '$subject2', '$sub_subject2"',
*$sub_sub_subject2')®);

if ($subject3d != uQ")
$result? = mysql_query("insert into resource_subject values
(LAST_INSERT_ID(), '$subject3', '$sub_subject3',

'$sub_sub_subject3')");

//check existing for author

$result=mysql_query("select count(*) exist from author where
name='$authorarray($loopl' and organization='$organization' and
address='$address' and phone='$phone' and e-mail='$e-mail' ");

if (mysql_result ($result,0, "exist") >0) {
// for existing author, get the author ID and insert
// record into table resource_author. No new record
insert into table author.
$result=mysql_query("select author_id from author where
name="'$authorarray($loop]' and
organization='$organization' and address='3$address'
and phone='$phone' and e-mail='g$e-mail' ");
smyrow=mysql_fetch_row($result);
mysql_query(®insert into resource_author values
('$resource_id', '$myrow(0]') ");
} else {
// For new author, insert record into table author and
// record into table resource_author.
$resultl = mysql_query("insert into author values
(NULL, '$authorarray($loop] ', '$organization’,
'$address', '$phone’', ‘*$e-mail’') ") ;
mysql_query("insert into resource_author values
(*$resource_id', LAST_INSERT_ID()");

Figure 17: The PHP/MySQL code to insert data in Semantic Header database

5.14.2 Automatic Registration

The ASHG subsystem of the CINDI system can generate a draft Semantic Header for
HTML, LATEX, TEXT and RTF documents. After a registered contributor logs into the

CINDI system and chooses automatic upload, the CINDI system will invoke the ASHG

55

subsystem to generate the semantic header, and store this information in the intermediate
tables (see section 4.3.2). After the Semantic Header is abstracted, the ASHG subsystem
will show a window asking the contributor to continue further processing, and
subsequently shows the Semantic Header that has been generated to let the contributor

verify and possibly modify this information.

The underlying process is very similar to manual uploading. However, the Semantic
Header information is obtained from table sh, sh_author, sh_identifier, sh_coverage,
sh_classification and sh_system_req according to the unique file ID at first. Then, items
in pull down menus is highlighted such as language, subject, identifier, etc. Figure 18

shows part of the PHP/MySQL code for getting data from intermediate tables.

//query data from table sh

$result = mysql_query('"select * from sh where sh_id=$sh_id*", $db);
$myrow=mysql_fetch_row($result);

// display title and alt_title
echo"<tr><td width=11% align=left valign=‘'top'>

<form name=form ENCTYPE=multipart/form-data method='post!'
action=‘'auto_submit.php?ID=$myrow (0] '>";

echo "Title:*<td width=79%><input type='text' name='title’
value='$myrow(l] ' size=50 maxlength=100></tr>";

echo"<tr><td width=11% align=left>
Alt_title:</td><td width=79%><input
type='Text' name='alt_title' value='$myrow(2]' size=50
maxlength=100></td>
</tr>";

//query data from table author_table, separated by comma
$result_author = mysql_query("select * from sh_author where
sh _id=$sh_id", $db);
while ($myrow_author=mysql_fetch_ row($result_author)) {
$author_array.=$myrow_author(1] . ", 6"

’

}
// display author

echo" <tr><td width=11% align=left >Author/ Other
Agents:*</td><td width=79%><input

56

type='Text' name='author' wvalue='$author_array' size=50
maxlength=100> (use comma to seperate)</td>
</tr>";

Figure 18: Part of PHP/MySQL code for automatic upload

5.2 Semantic Header Search

The user in the client site makes a request by filling in some of the fields in the Internet
browser. The client connects, through the Internet, to the server and sends the user’s
request in an HTML form. According to the request, the CINDI system performs

Semantic Header query. Once the query is processed, the result is sent back to the client.

5.2.1 Search Query Structure

The content of the search query contains the title and/or author and/or keyword and/or
subject and/or period of created date. By filling in the HTML form and then submitting it
to the server, what a user does, in essence, is create and transmit a string to the Web
server, and passes it to the Semantic Header database as an SQL query string to perform a
query. The set of all possible strings that the user can create and submit currently, is
described by the grammar written in BNF [GM86] as presented in figure 19. The
grammar determines the set of strings that can have optional parts connected by the
logical AND, OR. The optional parts are: title, author, keywords, subject, and period of
created date. Their exact orders and combinations are given again by following the BNF
rules of the grammar. We assume the semantics of the first rule regarding the operator
precedence is the same as the default followed by SQL processors for the Boolean

expressions in the Where Clause. In MySQL database, AND has the higher priority than

57

OR. The user can search for Semantic Headers for a given title, which could be an exact
or a substring title. For given authors that are separated by commas, it can be combined
by AND or OR. To perform a search, the separated authors are treated as substrings
name. Also keywords can be separated by comma, combined by AND or OR, and
separated keyword(s) are treated as substring in search. The user also can choose a
subject at a general level, and/or corresponding sub_subject level and/or corresponding
sub_sub_subject level to perform a search. Lastly, the user can perform a search by

giving the period of the created date of the resource.

<search> := <operand> [<op> <operand> [<op> <operand>
[<op> <operand> [<op> <operand>]]] |

<operand> := <title> | <subject> | <author_unit> |
<keyword_unit> | <date>

<op> := <AND> | <OR>

<title> ::= <exacttitle> | <substringtitle>

<exacttitle> ::= <string>

<substringtitle> ::= <string>

<subject> := <general> | <general> <AND> <sub_subject> |
<general> <AND> <sub_subject>
<AND> <sub_sub_subject>

<general> ::= <string>

<sub_subject> ::= <gtring>

<sub_sub_subject> = <string>

<author_unit> <author> | <AND | OR> <author_unit>

<author> ::= <string>

<keyword_unit>

<keyword> | <AND | OR> <keyword_unit>

<keyword>

<string>

<date>

<from_date> | <to_date> |
<from_date> AND <to_date>

<from_date> :

<day> - <month> - <year>

58

<to_date> ::= <day> - <month> - <year>

<string> ::= <character> | <character> <string>
<character> ::= alAlbiBlc|C| ~ [x|X|yiYlz|Z|0O|1|2] . {7]8]9
<day> ::= 1|2|314| - {28]29|30]|31

<month> ::= 01]102}03} ~ |10]11}12

<year> ::= 1990]1991|1992| .. {2008]2009|2010

Figure 19: The Current BNF Query Structure

5.2.2 Performance Considerations for Search

In order to get a better performance for Semantic Header search, besides the performance

considerations mentioned in section 4.4, there are the following additional considerations

for the search.

Query relative tables only

To perform a Semantic Header search, first the resource ID that uniquely identifies the
resource is needed. To get the resource ID, it must be queried from the resource table
and/or the relative tables depending on the query criteria. For instance, if the user only
gives query criteria for title, keyword and date, then a query is needed only from the
resource table. On the other hand, if the user gives all criteria, including subject, author, a
join query is needed from these tables: resource, subject, subject_resource, author, and
resource_author. For different cases, query SQL statements are generated based on

different table(s). In this way, a better performance is achieved.

59

Using case-insensitive search in string matching
By default, MySQL searches are case-insensitive. This default is used when a resource
search is performed, because to get case-sensitive matching there is a need to perform

additional search that is more costly, such as INDEX or STRCMP.

Eliminating merge join
Merge join normally has a bad performance. By using primary keys and column indices,

merge joins are eliminated in the Semantic Header search.

Arrange the order of the join tables

There are five tables (resource, subject, resource_subject, author, resource_author) joined
together to perform a resource search in the worse case scenario. In this case, MySQL
performs four separated joins: a join of two tables to generate a set of records, then a join
between that set of records and the third table, and the fourth table and the last table. If
the large tables are joined in the first join, the size of the tables will impact on each
successive join and will negatively impact on the overall performance of the search. For

this point, the join order is arranged as author, resource_author, subject, resource_subject

and resource.

5.2.3 User Interactions with CINDI Search Sub-System

Figure 20 shows the graphical user interface of the Semantic Header search sub-system.

Users can enter search criteria, such as title, author(s), keyword(s), subject(s) and period

60

of created date. In this particular example, the user is searching for Semantic Headers
using “Minimizing” as exact title and ‘Naveen Garg” as author name and
“approximation” as keywords and the created date in “Jan. 1, 1998 to “Jan. 1, 2000”.

The corresponding SQL query is given in figure 21.

Figure 20: Semantic Header Searching

select DISTINCT c.resource_id

from author a, resource_author b , resource c,

where b.resource_id=c.resource_id and a.author_id=b.author_id
and c.title like *“Minimizing” and a.name like “Naveen Garg” and
(abstract like “approximation” or keyword like “approximation”)
and created_date>~01-01-1998” and created-date<”01-01-2000" LIMIT
$start, $rows_per_page;

Figure 21: HTML Query translated into SQL Query

61

In order to separate the result in a page order, the LIMIT function is used in the SELECT
statement. The current setting is 3 resources per page. After the resource ID is obtained,
then the details of resource, such as title, author(s), subject, abstract, and keyword, etc.

are queried. Figure 22 gives the result of the previous search example.

Figure 22: Search Result

5.3 Annotation
The CINDI system allows users to view annotations made by other users and allows them

make their own annotations. From the search result, there is an annotation link. When the

62

user clicks the link, an annotation window is presented to the user. Figure 23 shows the

graphical interface for annotation.

Figure 23: Annotation

First, the corresponding annotation made by other users is presented. Then, the
annotation that made by the current user is inserted in annotation table. Figure 24 shows

this processing.

63

// query annotations relative to the resource
$result_subject=mysql_query("select annotation from annotation
where resource_id=$resource_id", $db);

// output annotations
echo"<tr><td width=11% align=left
valign='top'>Annotation of other
people:</td><td width=79%><textarea
name='annotation' cols='70' rows='1l5' wrap='on'
maxlength=1000> $annotation </textarea></td>
</tr>";

// insert annotation to database

$result = mysql_query("insert into annotation
values({'$resource_id',null, '$annotation*')"});

Figure 24: The processing for annotation

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The web-based CINDI system meets the challenges of finding hypermedia document on
the Internet by defining a Meta-Data structure, which allows automatic and manual
extracting of Meta-Data from resources. It provides a group of graphical user interfaces

to interact in the registering and discovery process.

6.2 Contribution of this Report

The contributions made by this major report to the CINDI system are listed below:

1. The design and implementation of the database subsystem for Semantic Headers. This
is the fundamental contribution made by this major report to the CINDI system.

2. The design and implementation of subject hierarchy. This is one of the major issues
in the design and implementation the CINDI system. This problem is solved by using
primary key structure, PHP/Java Scripts.

3. The design and implementation of the searching strategy. By optimizing the query, a

better search performance is achieved.

65

6.3 Future Work

We believe that the current prototype of the CINDI system satisfies the needs of Internet

users for effective retrieval of electronic information resources. However, in the near

future, some new functions could be built and some existing functions could be

improved.

L.

A major extension to the system would be to build a distributed system accessible in
different locations.

Because the current MySQL version doesn’t support Foreign key, application codes
are used to control the data constraint. If the new version of MySQL supports Foreign

Key, it can be use to improve the data constraint.

. The subject hierarchy function could be extended. Currently, the CINDI system

supports 3 level subject hierarchies that were implemented by a primary key structure
and PHP/Java Scripts. In the future, if MySQL supports the hierarchy query (like
Oracle CONNECT BY), it can be use to support dynamic multiple subject levels.

We should extend the search function. The current CINDI system supports search
criteria such as title, keywords, author, subject and period of created date. In the
future, we can extend it to support more search criteria, such as language, identifier,
classification and system requirements, etc.

For the convenience of both contributors and users, an automated ID/password
lookup facility could be built. If the contributors/users have already registered in the
CINDI system and have forgotten their login ID/password, then they can use this

function to get their login ID/Password by the e-mail provided during registration.

66

Bibliography

[APCH+]

[BCDY0]

[BCD+]

[BS94]

[BCDYS5]

[BCDY6]

[BCD97)

Apache Online Document, http://www.apache.org

Bipin C. Desai, An Introduction to Database Systems, West St Paul,
1990.

Bipin C. Desai, The Semantic Header and Indexing and Searching on the

Internet, http://www.cs.concordia.ca/~faculty/bcdesai/cindi-system-
1.0.html

Bipin C. Desai, Shinghal Rajjan, A System for Seamless Search of
Distributed Information Sources, May 1994.

http://www.cs.concordia.ca/~faculty/bcdesai

Bipin C. Desai, Report of the Metadata Workshop, Dublin. March 1995.

http://www.cs.concordia.ca/~faculty/bcdesai/metadata/metadata-
workshop-report.html

Bipin C. Desai and Shinghal Rajjan, Resource Discovery: Modeling,
cataloguing and searching. In Proceedings of the Seventh International
Conference and Workshop on Database and Expert System Applications
(DEXA'96), pages 70-75. IEEE Press, Zurich, Switzerland, 1996.

Bipin C. Desai, Supporting Discovery in Virtual Libraries,

Journal of the American Society of Information Science (JASIS), 48-3, pp.
190-204, 1997.

67

[GMS6]

[JE99]

[MAMOI]

[MSQL+]

[NTCR+]

[PDMW99]

[PHP+]

[RGR98]

[SSD98]

[YZ01]

Gehani Narrain, McGettrick Andrew Software Specification techniques.
Addision-Wesley, 1986.

Jeri Edwards, 3-Tier Server/Client at Work, John Wiley & Sons, 1999.

Mohamed Amokrane Mechouet, Web Based CINDI System, Department

of Computer Science, Concordia University, 2001

MySQL Documents, http://www.mysql.com/documentation/

The Netcraft Web Server Survey, http://www.netcraft.com/survey/
Paul DuBois and Michael Widenius, MySQL, Addison Wesley, 2000.
PHP Documents, http://www.php.net/docs.php

Raghu Ramakrishman, Database Management Systems, McGraw Hill,
1998.

Sami Samir Haddad, Automatic Semantic Header Generator, Department

of Computer Science, Concordia University, 1998.

Youquan Zhou, CINDI: The Virtual Library Graphical User Interface,
Department of Computer Science, Concordia University, 2001.

68

