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SMOOTHNESS OF INVARIANT DENSITIES
FOR CERTAIN CLASSES OF
DYNAMICAL SYSTEMS

by

Abdusslam Osman

ABSTRACT

Under certain conditions a many-to-one transformation of the unit in-
terval into itself possesses a finite invariant ergodic measure equivalent
to the Lebesque measure. The purpose of this thesis is to investigate
these conditions and to show how differentiable properties of the invari-

ant density are inherited from the original transformation.
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INTRODUCTION

In recent years there has been a surge of interest in research related to
ergodic theory and dynamical systems. If a dynamical system 7 has
an invariant measure p absolutely continuous with respect to Lebesgue
measure 4 (acim) corresponding to which it is mixing, then 7 is chaotic.
The field of dynamical systems and especially the study of chaotic sys-
tems has been hailed as one of the important breakthroughs in science
in this century. While the field is still relatively young, there is no
question that the field is becoming more and more important in a vari-
ety of scientific disciplines. The existence and properties of acim for a

transformation of an interval have been studied by many authors, under

different conditions, here we mention a few:

(1) Rényi’s [Ren] in 1957 was first to define a class of transforma-

tions of the unit interval that satisfies a distortion condition

(see Remark 2.1) and proved it has an acim.

(2) In 1973 Lasota and Yorke [L-Y] proved an important gener-
alization of Renyi’s result using the “bounded variation tech-
niques”. There, the authors proved a general sufficient condi-

tion for acim for expanding, piecewise C? transformations on

the interval. _
(3) In 1993 Géra [Gér] proved the existence of acim for C! ex-

panding transformations of an interval, satisfying the Schmitt’s

[Sch] condition.

In 1972, Bowen [Bow] and Adler [Adle| defined the Markov map in
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a way that did not imply Rényi’s distortion condition. Thus instead

they introduced the so called second derivative condition, and proved

existence of acim.

In chapter 1, we recall some basic results from real analysis and measure

theory needed in this thesis.

In chapter 2, we will study the admissible transformations and their
properties, and prove some results needed in the next chapter.

In chapter 3, which is the main focus of this thesis is to study the
smoothness of invariant density of admissible transformations satisfy a
distortion condition. Rényi [Ren] proved that the invariant density is
bounded by the bounds of a distortion condition, if 7 is an onto map
of the unit interval onto itself and distortion condition is satisfied. For
a transformation 7 considered by Rényi with 7= € C", Halfant [Hal|
proved that the invariant density h € C"~2. The inductive proof of the
main result of [Hal] is proved only for r = 2, and r = 3. Although,
[Hal] conjecture was correct, his final solution was unattainable due to
certain obstacles. In this thesis, on the other hand, we give a details

proof and the necessary calculations (see Theorem 3.2).
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CHAPTER 1

PRELIMINARIES

In this chapter we include some basic definitions and results from real

analysis and measure theory needed in the sequel (see [Roy],[L-M],[Man)]).

Definition 1.1. A family B of subsets of I = [0, 1] is called a o-algebra,
if and only if :

(1) I€*B;

(2) forany B €8, I\B € B;

(3) if B, € B,forn=1,2,---, then UX,B, € B.

Elements of B are usually referred to as measurable sets.

Definition 1.2. A function p : 8 — Rt is called a measure on B, if

and only if :
(1) w(0)=0;
(2) for any sequence {B,} of disjoint measurable sets, B,, € B,
n=12,...,
m(UnZyBn) = Z p#(Bn).
n=1

The triplet (X, B, 1) is called a measure space. If u(X) = 1, we say it

is a normalized measure space or probability space.

3
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Definition 1.3. The function x g defined by

1 z€FE

XE("’)z{o z¢ E

is called the characteristic function of E. A linear combination
n
s(z) =) aixz,(z),
=0
is called a simple function if the sets E; are measurable.

Throughout the thesis we denote by A the Lebesgue measure on I.
Let 7:[0,1] — [0,1] be a measurable, nonsingular transformation (i.e.,

A(7(A)) = 0 implies A(A) = 0, for any measurable A).

Definition 1.4. We define the n-th iterated distribution A, ([0,t]) by

A([0,2])) = A({z € I: "z < t}).

We note that:
0< 7"z <t=>7""0)<z<77™t)=>z € (r7™(0),77™(t))
=z €7 "[0,t].
Therefore, we have:
A([0,2]) = A(r7"0,4]), tel.
In general, for every Borel set A € B, we have:
An(4) = A(r7"(4)).

4
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Definition 1.5. We say that a measure p is 7-invariant if and only if

p(A) = p(rtA), forany A€B.

Definition 1.6. We define the invariant density h by
p(A) = / hd),  for any A € B,
A

and so h(t) = ﬂ‘—(-dgu]), tel.

Definition 1.7. We denote by A, the length of the largest interval of
rank n:

A = mfx{"'i—n(l) -7 *(0)}.

A, = max A(F;)

piepn

where P,, := partition I under 77 ™.

Definition 1.8.
Suppose (I,B;,]) , (I, By, 1) are probability spaces.

(1) A transformation 7 :I — I is measurable if 771(B;) C B, (i.e.
By € B, = T—le € 32);
(2) A transformation 7 : I — I is measure-preserving if 7 is mea-

surable and A(771(Bz)) = u(B:), VB; € Bs.

5
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Definition 1.9. Let 7 be a measure-preserving transformation of a

probability space (I, B, n) then, 7 is (strongly) mizing if VA, B € B

lim p(r7™"AN B) = u(A)u(B).

n—00

Remark 1.1. We note that

/ xB,dp = p(t""AN B;).
T mA

Since
( ) { 1 z€B;
(z) =
XB: 0 z ¢ B;
and
T "A=(t""ANB;)U(r""AN B;),
we have

/ XBdp = / XB:dp + f X B, dp
T—-mA T-"ANB; - ANB§

T-mA T-"ANB{

=u(t""AN B;).

Definition 1.10. If f is a bounded measurable function defined on a

measurable set E with u(E) finite, we have

dp = inf [ sdpu,
/Efu stfE ©
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where every s is a simple function.

Definition 1.11. The conditional probability of a set A with respect
to another set B, is defined by

#(AN B)

p(A|B) = ()

Proposition 1.12. Let f be defined and bounded on a measurable set

with finite measure. Then f can be approximated uniformly by simple

functions.

Proposition 1.13. Let {f,} be a non-negative, sequence of monotone

continuous functions such that f, — f asn — oo. Then the convergence

is uniform.

Definition 1.14. A family F of function continuous on [0, 1] is said to

be equicontinuous if for every € > 0 3 6 such that

lz—yl<é=]f(z) - fly)I< e

Vz,y € [0,1] and Vf € F.

— I
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CHAPTER 2

ADMISSIBLE TRANSFORMATION

The main goal of this thesis is to study the smoothness of the invariant
density of an admaissible transformation which satisfy distortion con-
dition. This transformation was defined for the first time in [Renl].

There the author establishes the existence of an acim for such transfor-
mations and proves that the invariant density is bounded by the bounds

of a distortion condition.
Definition 2.1. The transformation 7 : [0,1] — [0,1] is called admis-
stble if there exists a partition 0 = ag < a1 < -+ < ag =1, of [0,1] such
that:

(1) 7(0) =0, 7(1) =1, for 0 < a; < 1, 7(a;) = either 0 or 1;

(2) 7 € C%a;—1,as), i =1,---,q, where 7; = T,

—1,24] )

(3) 7/ >0on [a;-1,a;], i=1,---,q.

We denote that i € I, and I, = {i : p; € Pn}, where P, := partition I

under 7™, then

-—n _ -1 -1 __ -1 -1
T M =T, oT  oT; "o oT; ".

Remark 2.1 (Rényi’s condition). Set

supye (77 ")'(t) =.C' < oo
infier(r; ™) (t) S

and

maxCp; = Ch.
7

8
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We say T satisfies Rényi’s condition if and only if

supC, = C < o0.
n

Remark 2.2. The above condition states that, for z,y restricted to

the same interval in the Markov partition for 7™, the quantity |£%E§%|
should be uniformly bounded, independent of n and the interval chosen.
Remark 2.3. The invariant density A which is defined in Definition

1.6 is shown by Rényi’s [Ren)] to satisfy everywhere on I the inequality

1
— < h<C.
C_h_C’

We denote by R the subset of admissible transformations which fulfill
Rényi’s condition.
Definition 2.2. Let (X, B, p) be a normalized measure space and let

7 : X — X be measure-preserving, such that 7(A) € B for each A € B.
If

lim p(r™A) =1,

n—00

for every A € B, u(A) > 0, then 7 is called ezact.

Lemma 2.1. Let 7 : (X,B,u) — (X,B,u) be a measure-preserving

transformation of a normalized measure space. Then, T is exact, if and

only if
BT = ﬂ T~ ™(B),
n=0

the tail o-algebra consists of sets of y-measure 0 or 1 (see [L-M]).
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Lemma 2.2. If an admissible transformation T satisfies the distortion
condition, then it is exact.

Proof. Let 7=™(B) be the o-algebra consisting of sets of the form 7™ A4, A

i being a Borel set in B. Then 7~"(B) form a nested decreasing sequence

of o-algebras, let

We want to show that BT consists only of sets of u- measure 0 or 1. Let

[a,b] be a subinterval of I, and let

AL =[r7(0), (W] =77 "[0,1],

denote the interval of rank n. Using the customary notation for condi-
tional probability, we have
7,7 "[a, b N AL = 77 ™[a,b] N7, "[0,1]
=171, "[a,b], since [a,b] C [0,1]
i "(b) — 7 "(a)
7 (1) —77(0)

_ (5Y(6)(b—a)
(i ™Y/(62)

Mr~"[a,b)|A}) =

where 0; € (a,b) and, 6, € (0,1). By Rényi’s condition,

1 (n")(61)
C = ) =

10

RIS P A




e 4t n AN TSI et b nn s n Hombmara

b-a  (iT"Y(@)(b=a) _

b—a)C
RN T
b—a _ -
& < A(1;7"[a,b]|AY) < C(b—a).
It is clear that we may replace [a, b] by an arbitrary Borel set A C B to
obtain
’\—(042 < MT7™A|AY) < CA(4)
Let
B=1""A,
then, we have
; A(BNA? n) _ A(B)
MBI =TED T T M)
(1) NAXR2) < x(B) < ox(AA(AY)

and by Definition 1.6 and Remark 2.3, it follows that

(2) SMA) < p(4) < O X(A).

This is true for any A € B, thus it is true for B € B, thus by (1)

@) AN < Ly < u(B) < 0A(B) < 2MA(AL)

Then from (2) we have the following equations

@) u(a) < ox(4) = B < xa),

11
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and

(5) BA) > ZM(4) = N(4) < Cu(4),
By (3), we have

AANAL)

©) N

< u(B) < CPMA)X(AL).
- Therefore by (4), (5) and (6) we get:

%ﬁ—@ < K(B) < C*u(AX(AL).

Similarly by Definition 1.6 and Remark 2.3, it follows that

SMAY) < u(AL) < OA(AY)

and
M=) < xad) < oual)
" therefore
p(A)u(AL)

=0 < W(B) < CHu(A)(AL).

Suppose now that A is a set in the tail o-algebra BT. Then, for any n,
there is a Borel set B such that A = 7="B. Thus from(4), we obtain

M) e 7B) _ BB) ¢ rnlal) = w(alai)

12
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If u(A) > 0, then we may write

p(ADp(ANAL) o s(AL N p(A)
Jany o HA T

u(AL)(A|AL) = p(A)p(A%]A)
_ p(A)p(AL]A)

(7) pA,) = AN < C*p(A})A).

The fundamental interval may be used to generate Borel sets. Therefore

from (7), we deduce
W(4°) < CHu(4°)4),
for an arbitrary Borel set A° (the complement of A). We then have

c 4 el AN — 4 l‘(Aan)_
H(A%) < CHu(AcA) = 0 = =

and with p(A€) = 0 follows p(A) = 1. This shows that BT contains only

0

sets of u-measure 0 or 1. This completes the proof of exactness of 7. U

Lemma 2.3. A transformationT admissi ble and satisfies the distortion

condition, if for any n > 1, we have
An < B,
where 8 = max; supy¢; (’rj"l)’(t) and A, as in Definition 1.7.

Proof. We observe that P;: 8 = max;sup;¢ I(Tj—l)' (t), the length of an

interval of rank 1 is given by
Ay =77H(1) = 77(0)-

13

T e s

G,



By the Mean Value Theorem 7;*(1) — 7, 1(0) = (r;*)'(6)(1 — 0), for
some 6 € (0,1)
A1 S ﬂa

so P, is true. We now proceed to prove the result by induction.
Assume P, 1.e.,

An < A"
To prove Py.1, we note that
(8)  Appr=1""(1) - mTHO) = 7 (1) — (g (0)):
Once again, by the Mean Value Theorem, we have
9) T ™(1) = (™ (0) = (777 ) (@) (ry (1) = 7™ (0)),

for some « € (14, "(0), 7, ™(1)) C [0,1].
Now note that

(10) T (1) -7 " (0)=An <"

(by Pr) implies

(11) (7 (@) £

Using (10) and (11) in (9) and then replacing it in (8), we get
Ant1 < 8™,

which completes the proof. O

14
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Definition 2.3. We define the quantities M and o as follows:

M = maxsup | (7;7)"(t) |< o0
) tel

and

TP YIS R
a= mjm%rELiI'(Tj ) (t) > 0.

Lemma 2.4. A transformation T admissible and satisfies the distortion

condition, if

Cn+1 S Cn(]- + %’An)7

where A,, as in Definition 1.7, & and M as in Definition 2.3.

Proof. We use the functional relationship
7"t = 17 (M ()
Differentiating both side, by the chain rule, we get

(r™ Y (@) = (7) () (™) (-

Taking the supremum on both sides, leads to

sup(r; ”1)()—sup((f N (m O™ ()

tel

and

(12) sup(r; ™)' (¢) < sup(my ™)' (¢) sup(r;1) (75 ™ (£))-
tel tel tel

15
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Similarly taking the infimum over the reciprocal of both sides, yields

1 1
infoer(r7™ () infuer(rg™)(8) (1) (™))
and
1 1

(13)

T infer(my ™)' (t) infeer (1) (7 ™(8))
Therefore we use (12) and (13), and arrive at

supser(ri ™ )'(t) _ suPser(mi ") (8) | supse;(771) (g " (t))

(7
infrer(r7 ™) (8) T infeer(ry ™) (t) infrer () (e (E))

J

which by use of

super (T (8)
i = her( (D)

can be written as

super(7) (70" (1))
1nftEI(TJ ) ('rk_n(t))

C'n.+1,i S C"n.,k: :

Thus, we have

su T ) (T7™(¢t
maxCpy1,; < maxCh, - Max - PtEI( j ) ( _n( )
3 k i in teI(T ) (1% (t))

16
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Therefore, by Rényi’s distortion condition, we get

~1\// _—n
; t
Cwisarmwjmmﬂqu% &)
7 infyer () (" ()

To complete the proof, we need to show

SuPteI( 1) (e "(8)) M
ax Sl —
i infyer (7] ) Tk (t)) o

e

Now,

supeer (171) (™€) _ . swges (7)) (1 "(€)) — infer (7772) (™ (m)

1+

1nf,7€1(7'j ) (5 ™ (m)) mfﬂEI(Tj_l)’(T;n("))

SuPeeI("'j_) (7 " (0)) (e ™(€) = 7 ™(m))
infper (7; Y ()

supger(751)" (7 "(6))
infper (r;Y) (i "(m)) "

supge; | (7 _1)"(0)|
mfﬂEI( T; ) ()

<1+

Taking the supremum on both sides completes the proof. [

Lemma 2.5. A transformation 7 admissible and satisfies the distortion

condition, if for all k, we have:

. M
Crin <O [+ _a—An)’
n=1

17
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where A, as in Definition 1.7, oo and M as in Definition 2.3.

Proof. We shall prove the Lemma by induction. For k = 1, by Lemma

2.4, we have

M - M

n=1

We assume the inductional hypothesis for k =i —1 and 7 > 3, i.e.,

c;<c [Ja+ %An).
n=1

Now we perform the induction step. Let k = ¢. By Lemma 2.4, we have

Cit1 < Ci(l + %Ai)

-1
M M
<c [Ja+ —An) - (1+ =4
n=1

: M
=G [[a+—=A.). O
n=1

Remark 2.4. Taking the supremum over k on both sides in Lemma
2.5, leads to

supC < G [J (1 + %An);
n=1

thus
had M
C<C };[1(1 + —An).

18
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Theorem 2.1. IfY > | A, < oo, then the transformation 7 is admis-

sible and satisfying the distortion condition, i.e., T € fR.

Proof. We have "2, A, < oo if and only if [Tor, (1 + £ A,) < oo.

from Lemma 2.3 and Remark 2.4 we obtain

ad M
C. <C H(1+-;ﬁ"’)<oo forall n. O

n=1

Lemma 2.6. If transformation T is admissible and satisfying the dis-

tortion condition, i.e., T € R, then A, —» 0 asn — oo

Proof. Since the sequence A, is monotonically decreasing, we can sup-
pose there exists ¢ > 0 such that A, — c. Hence, there exists an
interval [a, ] C I such that b — a = ¢ with no fundamental end point in
(a,b). We now examine the following 3 cases:

Casel: a is an endpoint, and b is not.

Case2: b is an endpoint, and a is not.

Case3: a and b are not fundamental end points.

We consider the most general case3. There are fundamental end points
arbitrary close on either side of [a,b]. Now given € > 0, there exists an

n such that

la,b] € [7(0), 7" (1)]

where | a — 7,7 "(0) |[< eand | 7, "(1) - b |< e
Now 7, ™(a) € (77 ™(0),7; (1)) C [a—¢, b+¢]; however, we cannot have

7. ™(a) € (a,b), since that would imply the existence of m and j such

19
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that 7; ™(0) is arbitrary close to a. Thus we would have 7, (r;™(0)) €

(a,b) for some m,j. But 77 ™(7;™(0)) = 7, ""™(0) is a fundamental

endpoint, contradicting the construction of [a,b]. Thus, we must have

either
(3i) . ™(a) € [a — €,a] or
(3ii) 7, ™(a) € [b,b + €.

If (3i) takes place, we then have

7 ™a) =7, ™(0) = (77" (€)a < €
and
M) -7 "(e) = () (M1 —a) 2 ¢

Consequently,

(7™)(n) , ac 1
(@) Z1-a

and since € is arbitrary, Rényi’s condition is violates. Likewise, if (3ii)

holda, we have

7 Ma) - M0 = (") (a2 c

and
771) =77 (a) = (77™) (M1 - e) <,

() - d1-a)
Y S e

again contradicting Rényi’s condition. In cases (1) or (2), the same kind

1
¢’

of argument applies. [l

20
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Lemma 2.7. If Ayy < C(Ay)?, then

= (AN)?"
Agny < C? (—%)—

for every integer N.

Proof. We prove the result by induction. Forn =1

(14) Aoy < C(AN)?
ie.,
1 (An)?
v < C2 (Ax
Ay <C 8

Assume the result is true for n =k , 1.e,,

(An)*"

Agey < C G

For n = k + 1, by (14), we have

Agrsiy = Az(zh N) <C- (A2'=N)2-

Therefore we have

2k
Ageray < C- (C'Zk(A_NC’)_)2

k+1 (AN 2+
=C-(C? _____( C?z )
k+1
=02"“———(AN(12 " o

21
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Theorem 2.2. If a transformation 7 is admissible and satisfying the

distortion condition, i.e., T € R, then ), A, < oo.

Proof. For every n by the Mean Value Theorem there exists a 8;, such
that

(15) 77™(1) =7 ™(0) = (™)' (61)(1 = 0) = (7")'(61) = A < A
Rényi’s condition, implies

sup(ry™)'(¢) < imf(r ") (4G,

tel
and so
sup(7; ™) (¢) < (7,77)'(6:1)C
nel
and
(16) sup(r; ™)' (t) < CA,.
tel

Next, we note that, by the Mean Value Theorem, there exists an 0 €
(r;7(0),7;™(1)) such that

(17)
77 (™)) — 77 ™0)) = (157 (82) (i (1) — 77™(0))

= (1;7)(62)An
< C(AL)%

22
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where the last two inequalities are in consequence of (15) and (16). Now

note that for some k
77 (r7™(1) =7 2"(1) and 7;"(r7™(0)) = 7 *"(0)
and thus
(18) 7 ™(r (L)) — 7™ ™(0) = 7 M(1) — 7 7M(0) = Az,
From (17) and (18), we get
A, < C(An)%.
Taking the supremum over k, we get
Agn < C(AR)%.

By Lemma 2.6, we have A, — 0 and thus we may choose N so large

that Ay < -i=. We then have CAy = p < %, which yields
2C 2

Ay < C(AN)?.

By Lemma 2.7, we have

n AN)21|. p2'n
1 Agny < C? ( =
and since Ag > Agyi,
2" tIN-1
(20) Z Ay < (Fof terms) - Agn y
k=2"N

=(2""'N —1—-2"N +1)Agny
= 2"’N(2 - 1)A2nN
= 2nNA2nN.

23
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From (19) and (20) we have the following

2ntIN_1

-
(21) 2, MTN-Tm
k=2"N
. oN— 22N-1 28N-1
Y A ZAk+ZAk+ > A+
k=1 k=1 k=2N 22N
o0 aN—1 oo 2i+1N-1
(22) doAk=Y At D A
k=1 k=1 j=1 k=2iN

Let Zil__\_rl—l Ay = 6§ < co. Then from (21) and (22) we get

(23) S A<

k=1 =

j

Jﬁ{ LA

|‘M8

QIZ

Furthermore, since p < % and p? < p, it follows that

oo _ 00
Z:Wp2J < Z 27 o7
j=1 j=1
x© .
= Z(Zp)J,
j=1

e e oy e e e e e T
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which is a convergent geometric series with ratio equal to 2p < 1, ans
sum
o0
2p) = ——.
.Z( Y =15

i=1 P

Therefore, finally we obtain

ZAk<6+£V—- 20 ¢ oo, O
k=1 C 1—2p

Theorem 2.3.

%1611}(1'"(5))' >1, for some n ifand only if T € R.

Proof. = It is sufficient to prove 3 A, < oo. Recall that

A =1"(1) = 7;7™(0) = (") (6)(1 - 0)

we note
L
(7 ™)(6)

Let N be the smallest integer for which

=72(r(0))"

inf(rV(¢)) =6 > 1

¢el
and fix n such that n > N and therefore

n=q-N+r, where 0<r<N.

25
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Now
Tn=TTOLNOTNOTNO---OTNJ
q-ti‘xrnes
and
(™) = (Tr)’(TqN) . (TN)’(T(q—l)N) . (TN)’ _
Thus

Kl; = (™)' = (=) (V€) - (V) TIN ) -- (7V) ()

and
A 2 () (€0) - jnf () (€9 - nf, () (60)
Sincer < N
0< jaf (") (&) =< 1
and thus
Ain > a-

where ¢ = [¥] for n > N. We therefore have

N-1

iAk = Z An+§: Ay < N—1+iN‘AkN < N—1+-Jy-i,b_k.
k=1 k=N k=1 @ k=1

k=1

Since Y po, B~k is a geometric series with ratio 3~! < 1, it converges.

Therefore, 3 7., Ag < 00.

26
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( The ‘only if’ part) By Theorem 2.1 we have

TE%(ﬁZAn<oo,

so that A,, — 0 implies that there exists N and ¢ > 0 such that A, < e.

Then,
(™) (@) <e, V 6€I
ie.,
1
=) (0) >—-, V fel.
Therefore

VN 1
érelg('r )Y (&) > -> 1L O

Theorem 2.3 shows that there are certain transformations which do

not belong to R. We present here two such transformations and using

Theorem 2.3 we will show that one of these transformations is in fR and
the other is not.

Example 2.1. Let
3 .
T:x — 2T+ m sin(27z) (mod 1)

T(z) =2z + % sin(27z)

'(z) =2+ 13—0 cos(27z) - 27
=2+ ?—g cos(27z)

27
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3
min(r) =2 - —5-71 ~ 0.115.

We find by numerical methods that infgcr(7°(€))' > 1 hence T € fR.

Figure 1 illustrates the graph of (7°)’.

Graph of (7°)’.

o 0:2 0.4 0.6 o.:e 1
Figure 1.

In Figure 2 we take a closer look at infeer(7°(£))'.

Example 2.2. Let
Tiz—z+z? (modl).

We shall show that T is not in ‘R.

It is enough to show any iterate of 7 will have derivative equal to 1 at

z = 0.

28
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Graph of (7°)".

3
R
!

41
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1o 02 o i 0.6 0.9
Figure 2.

Remark 2.5: We first show that for

T(z)= z + 22

we have
2n .
(24) ™(z)=z+» aict for o; € NU{0}.
: =2
Forn=1

2
rr)=c+c=z+ ) 1,

1=2
where v; = 1.

29
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- Hence sssume (24) is true for n =k, i.e,,

2k
™*(z) =z + Z,@izi,

=2
thenforn=k+1

¥ (2) = 7 (r(a))

2k
=7(2)+)_ Filr(z))’

=2

2k
= m+z2+z,3,-(a:+:z:2)i

1=2

Remark 2.6: Let f(z) = [P(z)], where P(z) is a real polynomial.
Then,

f(z+ Ac) - f(z)

fi(z) = Alir-l-»lo . Az
_ o [Pt 80)] - [Pe)]
Az—0 Az

Suppose k < P(z) < k+ 1, ([P(z)] = k) the continuity of P(x) implies
that given € > 0, P(z + Az) < P(z) + € < k+ 1 for Az sufficentley
small (| P(z + Az) — P(z) |< € , provided | z + Az — z |=| Az |< § for
same suitable § = §(a)). Hence

k<Plz+Az)<k+1= [Plz+Az)] =k

30
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and thus it follows that
f'(z) =0.
Now let us consider,
7(z) =z + 2% (mod 1).
By Remark 2.5 we have

2n ' 2n .
™(z) =z + Zaim’ - [a: + Z aiw‘]
1=2

1=2

by Remark 2.6 we have

2n
(t™(z))' =1+ Ziai .z -0,
1=2

Therefore, (7(z))] =1 and by Theorem 2.3 we conclude that

1
iz:O

T¢R O

31
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CHAPTER 3

SMOOTHNESS OF INVARIANT DENSITIES
FOR RENYI’S MAPS

In this chapter we prove the main results of this thesis. We will study the
smoothness of invariant density of admissible transformations satisfying

the distortion condition,. For a transformation 7 considered by Rényi
with 77! € C7, Halfant [Hal] proved that the invariant density h €
C7 2. The inductive proof of the main result of [Hal] is proved only

for r = 2, and r = 3. Although the conjunction is correct , we believe

the proof was not completed due to messy calculation.

Lemma 3.1. If 7 is mixing with respect to measure u, then for any

simple function s: I — I

lim sdp = p(A) / sdp.
I

n—=00 Jr-n4g
Proof. Let s = ELI b;x B, Remark 1.1 implies

k
lim sdp = lim / > bixs.du
no0 Jr-ng o Jr-r AT

k
=) _b; lim XB.dp
=1 no®Jrona

k
= b; lim p(r"™ANB).

i=1

32
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Since 7 is mixing the following is valid:

k
lim sdp =) biu(A)u(B;)
A i=1

k
= u(4) > biu(B;)
=1

= u(A) /I sdp. O

Theorem 3.1. If 7 € R, then the sequence of iterated distributions
{2n([0,t])} converges uniformly to the invariant distribution p([0,t]) as
n — 0o.

Proof. We have

M77"A) = / dA
T—mA

and Definition 1.6 lat us write

Ar~"4) = / Lau

pnah

after noting that % is measurable and bounded, Definition 1.11 leads to

n—00 Jo_npg h n—o0 s> f

lim ld;1,= lim inf/ sdu,
T A

33
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where s is simple function. Thus by Lemma 3.1

1

e f BT )L
= inf u(A) [ sd
inf u(4) [I sdp
= u(4) inf /I sdp.

Using Definition 1.11 once more, gives

. 1
lim -
n—oo J _np h

1
dp = p(A) / -
I
Since [, ¥dp =1 we may write

(25) lim 2

nN—=00 Jr-mg h

dp = p(A).

Note that, from Definition 1.6, we have

(26)
lim A,(A) = lim A(77"A) = lim d)\ = lim

Thus (25) in (26) imply

lim An(A) = u(4A).

n— 00

after letting A = [0,t] in the previous equation

34
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lim A,[0,t] = pf0,t].

n—00
Since A, [0,t] and w0, t] are both continuous and monotone, the conver-
gence is uniform (see Proposition 1.12). O

Definition 3.1. If 7 is admissible then the Perron-Frobenius operator

P.: L1 — L!is defined as

P'rf(m Z f(T l(w) for f € c.

—1
7-611 (w )I

It is well-known [L-M)] that h € £?! is a density of 7-invariant measure

if and only if P-h = h and we denote

Prf = Pe(Pe( - (Polf)) ).

n-times

Definition 3.2. We define the iterated densities as follows:

Sn(z) = Pri(z) = ) (") (z)

" €L,

where 7, = {i : p; € P,}, and P, := partition I under 77™.

Lemma 3.2. IfT is an admissible transformation satisfying the distor-
tion condition, then the sequence {Sn(t)} of the iterated densities are
bounded by the bounds of the invariant density (distortion constant C)

-1.e.

% S.(t)<C Vtel0,1] andany neN.

35
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Proof. We consider

=) (@)

i€Tn
We have

supyer Sn(t) _ SUPier Yier, (™) (t

)
inficr Sn(t) " infier Eiezn (™)' (t)

Yiet, sup,e(r; ™)' (t)

= Yier, infier(r; )'(t)

_ [Zalsupses (i)' (t)
| Znlinfeer(r™)'(2)
)

_ SuPteI(Ti_n)l(t

= < C.
infser(m ™)' (t) ~

Thus we obtain

sup S,(t) < C 1nf Sn(t).
tel

Since fol Sn(t)dt = 1, we must have inf Sx(t) < 1. Therefore,

sup Sa(t) < C
tel

and

S.(t) <C  for tel

36
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Furthermore,

1
/ Sn(t)dt =1 = sup Sp(t) > 1
0 tel

= 1 < Cinf Sy(t)
tel

= inf Su(t) > =

trelI =0

= Sp(t) 2 fort e l.

257
Thus

Sn(t)> =, on I. O

6

Lemma 3.3. If7 is an admissible transformation satisfying the distor-

tion condition, then there exists an N such that

sup Z “N ) (2))?

tel eIy

Proof. For every N we have

D (ETY®)* < (sup sup(r;” MY@) Y () @),

1€EIN 1€In

By equation (14) and Definition 3.1 arrive at

S (Y () < CANSN(D).

i€In

37
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Thus Lemma 3.2 yields

3 (7YY (8))? < CANSN(t) < C*An.

€N

By Lemma 2.6 we can choose N large enough so that Anx < % This
completes the proof. [

Before proceeding with our next result, we derive an “ iterative”

expression for the iterated densities S, in the following Remark.

Remark 3.1.

SK+N :l:) Z SK(T N)'(:c).

1€k
Proof. By Definition 3.2 we have

Sk(r7N (@)= D (77 *) (77" ()

1€k

and thus

Z SK(Ti—N(‘”))(Ti_N(“’))’ = Z Z (Ti—K(m))'(Ti—N(w))(Ti_N(m))l°

i€InN i€Iy €Tk

Note that
(7 FH M (@) = (7 ¥ (77 (@)
= (r7%(2)) (7 Y (@) (7Y (=)

38



in consequence of the chain rule and therefore

Y Sk @) E) = Y Y G

i€ly i€y €Tk

S (i BN gy,

1€EIN4K

Now, i € Iy4x if and only if there exists j € Iy and k € Tx such that
P, = PN P. Thus 3 ;.7 = Dicry 2iczy 20d this completes the
proof. O

Lemma 3.4. Let {Bk,in}2, be a sequence of real numbers. If

Bxin < Bg0+ M, where0 <6 <1 and M >0, then {Bg+in}24

is bounded uniformly.

Proof. First we prove by induction that
Biijn <Bg6 + M(1+0+6%+---+67),
which is true for j = 2 we have
Bgian = Bg4+nN+N < Bryn0+ M

< (Bx0+M)6+M

= Bg6® + M(1 +90),
assume it is true for j = ¢ where ¢ > 2 i.e.,

Biyin < B0 + M(1+0+6%+---+677).

39
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Now, we will prove the hypothesis for j = ¢ + 1 manely

Bxi(i+1)vy = Brtin+n < Bryin0+ M
< (Bk0i+M(1+9+92+---+9’3‘1))0+M
=Bt + M(14+0+6%+---+6).

This gives the following two facts
(1) Bx4jn < Bg6i + M(1+0+6%+---+6771);
(2) Br+in < Bgb7 + 1—1‘-_45 as j — 0o.

The above two facts imply that

M .
B.K+jN_<_BK+I—_—0'7 for all 5. O

Lemma 3.5. Given

Skan(®)= Y Sk((r ™)) (@),

i€Tn

where Iy = {i : p; € Py}, and Py := partition I under 7%

Then, the r-th derivative of Sk is given by

Sern@ = {S(IE)(T,-‘N(.»C))( VY (@)

1€In

J

r—1 (i) Uz)
+ 306 @ e @)™

40
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where each c, is an integer, a(t) < r and b(t) < r. For illustration see

Appendix: A.

Proof. We prove this Lemma by induction. For r =1

Skn(@) = 3 (Y @N VY @R+ Sk @)Y @)

1€IN

Thus with z(j) =1,¢, = 1,(2) = 1,a(t) = 2, and b(t) = 1 the Lemma

is ture for » = 1. Now suppose the lemma is ture for r =m , i.e.,

S5 w(z) = Z{s&;’"(fr;N(z)((T;N)'(m))m“

1€ln

-1 z(j)  t(z)

+ Z (S(J)(T N(z) )Z H N)(a,(t))( ))b(t))}

where a(t) < m + 1 and b(t) < m. Next, we will prove the lemma for
r=m+1 '

Sty (z) = —-—{S&"QN( )}
{Z ™ (77N (@) (7MY (&)™

1i€In

z(3) (=)

+mz(5<a>(,r N(w)z H ~N(a()) () "(t))}

J=

41
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differentiating over each summation we get:

SEe) = £l 3 s @) (@ @)™

1€IN

2(7)  t(2)
_;_{ZSJ)(T N(m Z H N)(a(t))( ))5(‘)}

z=1

Differentiating prior to summation, we have:

SEe) = 3 {0 @) (@ @)™

1€In
- 4 ( ) A = N (a(t)) b(t)
J - a.t
+3§ dm{s 2;1 I_I () }

thus we get

ngi—’*';)( ) = Z {%{S(Izn)(’ri_lv_)(w)}((Ti—N)'(m))m+1

i€In

+ S @) { N)()}"‘“}

y (4)(.—N W =N (a(t) b(t)
+Z{ SO>I | (CRIARIO)

J=

(.7) N QP —Ny(a(t)) b(1)
+ (Sk )z)) {ZCzH ) A ()™ }

42
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which gives

S(Ig‘b:;)( )= Z {Sgnﬂ)(Ti—N)(m) ((’l',-_N)'(:c))m+2
i€ln

+ (m+1)S2(r Y () (7 MY (@)™ (7 )" ()
2(j)  #(2)

4 Z {(S(zﬁ“)(TEN)(m))(T{N)'(w) > es [L (™) (2))*)

z=1 t=1
(7) ()

+ (P ) (@) Zdz{czH Ny(a() (g )b(t)}}}

t.—

then

(27)
S = TS e (@)™

i€IN

+ (m+1)5 (n-*N(m))((r-N>'(m>>"‘(r;”>"(w)}

s . 2(3)  t(2) ,
+ Z { (S%H)(T;N(m N) (z) Zcz H ——N)(a.(t))( ) (t)
z(j)  n=t(2) ..
+ (SR e Zcz{ Z {b(n) (=7 V)(em+ 1) (z)) (n)-

#( 2)
H((TIN)“‘“”(w))"“)}}}'
i
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Next, note that:

m-—1 z(g) t(z

Z{(s(m) (M @)Y (@) ) e H((T N(a(8))( ))b(t))
2(4)

(J)(,’_ )Zcz

n=1(z) (z)
{ T (b (7 MY (@)) K0 ] (M) e ))"“)}}}

=1 =1

i#£n
m—1 . z(j) (=) "
= z (S(Ig'l'l)(q-i_N(w N) (m)z H —-N a(t)) )) (t)
j=0 o

2(3)  n=Uz)
+ Z (S(J) (T N(m))Zcz{ Z {b ——N a(‘fl)+1)( ))b('n)—l o

()

H((Tf”><““>><w>)”“)}}-

i=1
t#n

Changing the index of j for the second term on the right hand side we

44
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obtain:

(28)
m—1 _ 2(3)  t(2)
Z{(S(Ig-ﬂ)( 7] :t:))(’r (w)zcz H( N)(a,(t))(x b(t))
() z(J) n=%(z) b(m)—1

+ (S er]  O( @)

t(z)

L Y

t#n
m z(3) (=)

=Z<S(J)(T N(:I:) N) (:B Z H N)(a(t))( ) b(t))
m-1 2(3)

+ 3 (SR M@)o ex

n=1(2) t(2)
{ Z {b(ﬂ —N (a.(n)+1)( ))b(n)—l ]:[((Ti—N)(a(t))(w))b(t)}}}.

=1
t#7

Now, using equation (27)in (28) we obtain:
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S (z) = 3 {s&?“)(f;’v(m»((T;Nr(:c))"‘“

i€In

+ (m + 1S (¥ (@) (7YY (@) " ()" ()

2(3) (=)
+Z(S(J)(T"N(a:) N) (z) Zczn( -N)(a t))( )b(t)
m~1 z(j)
+ (SR @)

n=t(z) #(z)
{ Z {b(m) () m+1) ()07 T (7)) ()}

=1
i#£n
Next, note that in

z(3)  #=2)

f: S(J)(,r N(m Z H —N)(a(t)))b(t))
J=1 2=1 t=1

the term where j =m is

z(m)  t(z)
(29) S(m)(T N(m) Z CzH -N (a(t)) b(t)
z=1

on the other hand,

(m+ 1)S (77 ¥ (2)) (7 ) ()" (77 V)" (=)

46
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this term can be placed in (29) without changing its general format.

Furthermore, every term in

n=1(z) )1
Y b(n)((r M) (),
=1
is of the form

((r7 M) (2)) ",

times a constant where a(t) < m + 2, and b(t) < m + 1. Thus

fj)cz{"'f)bn) e )0 T (S L,

z=1 =1
t#n

can be written as

2(3) (=)

Zcz H ~-N (a(t)) )b(t),

where a(t) < m + 1 and b(t) < m, with possibly new constants c, and
updating 2(j) and t(z). Thus, we have:

SE@) = T e @) (@Y @)™

1€ln

() #(2)

#3520 @) Yo [LE @)},

this complets the inductive proof. [
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Theorem 3.2. If 7 € R and 7'{'1 € CT[0,1], for all i and r > 2, then
the invariant density h € C™~%[0,1].

Proof. We prove the theorem by induction. Let r = 2. By Remark 3.1

we have

Sk+n(t) =Y Sk((m M) N)'(®).

1€In

after differentiating the above, we obtain

Sk+n(t) = Z{S' (YN MY @) + Sk (77 (W) ‘N)"(t)}

€IN
Taking the supremum on both sides yieds

sup Sl n(®) =sup 3 { Sk MO OF

1€In

+sx(r;N(t))<r;N>"<t>}

<sup B Skl V@)Y (1)

tel i€y

+sup Z Sk(r7 () 1 ()" ()|

Put
= sup Z | (77 M)"(t) |< o0
tel o7

B, =sup | S.(t) |[< oo (forn=0,1,2,---);
tel

48
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or otherwise, the distortion condition will not hold. Further,

(30)

sup Bxin(t) <sup » Br((7V)(8)?+C sup SN 1EN" ).

tel el jeTy icTn
Let (r;¥)'(t) = 0 < 1 (see Lemma 3.3). From (30) we get
Bgi+n < Bg0+Cd.

By Lemma 3.4 are sequence

By,Bk+N,Bk+2n, -

is uniformly bounded by some number Bg. To find the bound for the
entire sequence {B,}, welet K =0,1,---,N—1and B = max{Bo,Bl, .

.,By_1}. Then the sequence {Bn} = {sup,c; | S,(t) |} is uniformly

bounded by B.

Therefore, the sequence {Sy,} of iterated densities is uniformly bounded

and equicontinuous. By the Arzela-Ascoli Theorem {S.} possesses a

uniformly convergent subsequence {{,} such that

im (n(t) = £(2)-

n— 00
Since the convergence is uniform on I

lim : (n(T)dT = F(t) for t € [0,1]
0

n— 00

49
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and because { fot C('r)d'r} is a subsequence of A\,([0,¢]) and F(t) =
1([0,1]), F'(t) = f(t) must be equal to the invariant density h. Thus
h € C°.

Next, we assume that the result is true for ! € C™ 1, i.e., the sequence

{S7=2)} of iterated densities is uniformly bounded and if 7~ € C™7
then h € C™~3. We next prove the Theorem for 7~! € C". By Lemma

3.5 we have

SS’Q%—N( ) = Z {Sg)(Ti—N(m))((Ti—N)I(m))r+1

i€In
+z( SP eV (@) ‘([j ﬁ Y @) )

where each c, is an integer, a(t) < r and b(t) < r.
Now, we note that by induction we have for j = 0,1,2,...,7 — 1 con-

stants B{7) which are bounds for the sequences {sup,¢; SY )(:z:)} respec-

tively; furthermore,
e b(t
sup | (r M) (@)l < o0

Hence, for each z

4(2)
—N\(a b
supes I (1) @) X)) < o
z t=1
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and thus for each j there exists a constant ﬂg-z) such that

2(3)  ¥(2)
o0 =aup e [T (I @) )) < e0
z =1 t=1

after setting

B{) = sup||S{"|(=),
z€l
we get

r—-1
BY) v < BPe B 1+ BN,
§=0

For N large enough, we have " B(®) < 1. Thus by Lemma 3.4
BY, B, y Bihan:

is uniformly bounded by some number B(I;) Therefore, the entire se-

quence {B{"} is bounded by B(") = max{B{", B{",.. B .}, Conse-

quently, the sequence
{Bﬁf)} = {sup7te rl st |} is uniformly bounded by B(™).

Therefore, the sequence {Sg_l)} is uniformly bounded and equicon-
tinuous. By the Arzela-Ascoli Theorem {SSLT_I)} possesses a uniformly

convergent subsequence {df—l)} such that

Jim ¢0() = £ (@),
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Integrating r times leads to

lim t ¢o(T)dT = F(t), telo,1].
0

n—00

Since {fot Cn('r)d'r} is a subsequence of A(t~™[0,t]), F(t) = u([0,¢]),

where

and moreover f(7)(t) = h{9)(t) for 0 < j < r — 2, which completes the
proof of the theorem . 0O
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CONCLUSION

Our result has been generalized on the unit interval by [Sze] in the

following two directions:

(1) He considered a class of transformation (Lasota - Yorke)which
is a super class of transformation considered in this thesis.

(2) He also improved the degree of smoothness of invariant density.

Another generalization of our result has been done in [Adl1] and [AdI3].

There the author generalizes our result in two direction.

(1) He considers Markov maps which is a super class of our maps.

(2) It has been done in n-dimensions.

Next, we mention how these results can be improved. One problem
of interest would be to establish the smoothness of invariant density
for Lasota - Yorke maps in higher dimensions. For the Lasota-Yorke
maps under general conditions [Adl2], it can be shown that 7 has an
acim. The result in [Adl2] is a generalization of results proved in
[Jab],[Can],[Kel| and [G-B].

The dynamics of many physical systems are governed by a randomly
changing environment and can thus described by a random map R whose
evolution is represented by choosing a transformation from a given set
of transformation and applying it with a given probability.

As an application of our result, we would like to mention that, the
existence of an acim for random map composed of Lasota-Yorke maps

on an interval has been establish in [Pel].
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APPENDIX: A

In this appendix we present illustration of Lemma 3.5 using Maple pack-
age. We define a function f which represents the iterated density defined

in Lemma 3.5. The function f will produce its subsequent derivatives
frforr=1,2,---,8.
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L > Teex->T(x);

T=T
s T);
‘ T(x)
- > S=x->8(x);
| S:=8
- > S(x);
S(x)
| > St=x>STN));
| S1:=x— S(T(x))
' > S1(x);

S(T(x))

> f:=x->81(x)*diff(T(x),x);

fi=x—S1(x) diff(T(x), x)
> 1(x);

%)
S(T(x))( T(X))

> Hi=xe>dift(f(x),x);

- fl=x—> diff(£f(x), x)
> H(x);

P |
D(S)(T(x)) ( 0 T(x)]z + S(T(x)) ( T(x)]

> f2:=x->diff(f1(x),x);

12 := x — diff(f1(x), x)
: > f2(x);
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LTSI NS

D(z’(S)(T(’C))[a T(X)J)

+ 3D(S)T(x)) -a"T(x) ‘?';T(x)
0x ox*

a3
+ S(T(x))( T(x)]

. > 13:=x->ditf(f2(x),x);

‘> 13(x);

b ETee o eGSR et

|
J

> f4(x);

13 = x — diff(£2(x), x)

DP(S)(T(x)) ( T(x)T + 6 DA(S)(T(x)) ( ° T(x)]2 %1

+3D(S)(T(x)) %12
+4 D(S)T 0 T i —T
X (x)) (x) 00 (x)
a4
+ S(T(x)) [g T(x))
2
%1 =5 T()

| > f4:=x->diff(f3(X),X);

f4 = x — diff(f3(x), x)

D(S)(T(x)) ( 0 T(x)T + 10 DG S)(T(x)) ( 9 T(x)]j %1 )
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p
+ 15 DO(SY(T(x)) —E)—T(x)j%lz
\ Ox

(a “ BE
+ 10 DO(S)(T(x)) | = T(x) | | 33 T(x)
\ Ox ox

:
+ 10 D(S)(T(x)) %1 (anB T(x))

) 0*
+ 5D(S)T(x)) T(x) 3 T(x)
aS

+ S(T(x)) (‘a; T(x)]

aZ
%1 = a—a T(x)

> 15:=x->diff(f4(x),x);

f5 = x — diff(f4(x), x)
- > 15(x); |

d i 0
DB S)(T(x)) T(x) + 15 D(S)(T(x)) T(x)

/ 2
+45 D3 S)(T(x)) —a—T(x) %1*
\ 0x

| (3 \3 9’
+ 20 DB3)(S)(T(x)) [a_; T(x) La 3 T(x)

+15 DAY(S)(T(x)) %1
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. /a pE
+ 60 DA(S)(T(x)) S;T(x)) [a 3T(x))

_ EFRIE
+ 15 D)(S)(T(x)) —T(x)jia T(’C)}

ox x*

3
+ 10 D(S)(T(x)) ( d T(x))z

4
+ 15 D(S)(T(x)) %1 (:—;T(x))

d o’
+6D(S)(T(x))[ T(x))( T(x)}

o
+S(T(x)) T(X))

aZ
0/1——
- Pl=a5 T(x)

> £6:=x->diff(f5(x),X);

; 16 = x — diff(f3(x), x)
- > 6(x);

57
S(T(x)) L T(x))+ 21 DY S)(T(x)) (8 T(x)j %1

a Y
4+ DO(S)(T(x)) ( T(x))
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(a 4/83 \
+ 35 D*)(S)(T(x)) —T(V)J = S T(x)
\a‘{ \C J

(3) — —T
+ 35 D3 S)T(x)) \axT(x) ax (x))

a3
+ 105 DD(8)(T(x)) %12 (a 3 T(x))

+21 D)(S)T(x)) (8 T(x)]z %02

ok d*
+ 35 D(S)(T(x)) L— T(x))(_ T(x)

+21 D(S)(T(x)) %1 %2

) d°
+ 7 D(S)(T(x)) ( T(x))(— T(x))

(3
+ 105 D(S)(T(x)) -é;T(x)T %12
(9
+ 105 D3 S)T(x)) —T(x))%13

d°
+ 210 DB S)T(x)) kax T(x)]z %1 ( 0 T(x))

a3
+ 70 D)(S)(T(x)) ( T(x))L—g T(x)]z

X
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+ 105 D(")(S)(T(x))(a T(’C)W o
c* Ch
7c 1 :=§T(x)
5
%2 : —a—xsT(x)

| > f7:=x->diff(f6(x),X);

f7 .= x — diff(f6(x), x)
| > f7(x);

8

0
S(T(x)) [— T(x))+ 8 D(S)(T(x)) (

3

+56 D®)(S)(T(x)) ( : T(x)j (aﬁ

3 8
D(”(S)(T(X))( (x))

(3 \4 4

+70 DMY(SYT(x))| — T(x) (
\ Ox
(a \3
+56 DX S)T(x)) | = T(x) | %2
\ OX )
a4
+ 210 D@(S)(T(x)) %1? [—— T(x)

ox*

60

Ry
1 (5:1 T(x)j

T(x)

\
T(x)

9 T(x))

|

a7

gT(x)



LAY
+ 28 DP)(S)T(x)) ( 9 T(r)T (-88—6 T(x)}

- (o]
+ 35 D(S)(T(x)) -——T(’C)I
| | ox*

(93
+ 56 D(S)(T(x)) @;— T(x))%Z

b
+ 105 DX S)(T(x)) %1*

6
+ 28 D(S)(T(x)) %1 (2— T(x)J

+210 DS(S)(T(x)) [a T(x)]1 %12
a 6
+28 DO)(S)(T(x)) ( T(x))

Y/(
+ 560 D(S)(T(x)) [ 0 T(x) ;3- T(x))
J \ x

; a \2 ( a4
+420 DO(S)(T(x)) | 5-T(¥) T(x)j
) \ox*

a3
+280 D)(S)(T(x)) %1 (—a—; T(x))z

0 0’
+ 840 D(3)(S)(T(x))( T(x))%lz (a 3T(x))
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)

+ 168 D(”(S)(T(,x))(a T(x) |%2 %1

J\0x® ox*

d \( & >
+ 280 DA(S)(T(x)) T(r) o5 T(x) || =5 T(x)

(3

+ 420 DM(S)T(x)) kB*c

T(x)} %13

(a 93 2
+ 280 DBA)(S)(T(x)) @;T(x)]z (ax,, T(x)I

a2
Pl :=—
) 2 T(x)

%2 .= 8_x5 T(x)

> 18:=x->diff(f7(x),x);

/ 18 :=x — diff(f7(x), x)
> 18(x); ’

° (3 3¢
S(T(x))( T(x)]+9D(S)(T(x)) \a— T(X)]("a—g T(x)
7 )

+ 36 D(S)(T(x)) %1 (58—7 T(x)

0 o*
+ 126 D(S)(S)(T(x))[ T(x)]S(a 4T(x))
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+ 36 D'(S)(T(x)) ( 0 T(x))
d
+ D(S)(S)(T(x)) [ T(\f)]9

4
+ 126 D@(S)(T(x)) ( 0 T(x)) %2

0 o
+ 84 D(3)(S)(T(x))( T(x)j (a - T(x))

+ 378 D(S)(T(x)) %12 %2
4

+126 D(S)(T(x))( T(x)]%z

0 o*
+ 315 DA(S)(T(x)) ( T(x)](_T(x)T
9> d°
+ 84 D(S)(T(x))( T(x))[— T(x)
a3
+ 1260 DB S)(T(x)) %13 (a—g T(X)}

+ 945 D@(S)(T(x)) ( 0 T(x)j%l“

0 J’
+36 D(S)(T(x)) ( T(JC)J2 [5—7 T(x)}
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a3

4
+ 1260 D(5>(S)(T(x))(a T(r)] (a 3

T(x))%l

d P93
+ 84 D(6>(S)(T(x))( T(x)) (a 3T(x)J

+ 1260 D)(S)(T(x)) ( 9 T(x)T (—88—4; T(x)}%l

+756 DA(S)(T(x)) ( 0 T(x)]2 %2 %1

o (83 3\
+ 1260 D)(S)(T(x)) %1 (—— T(x)) —T(x)

ox* ox3
(
+ 1890 DG} S)(T(x)) [ 9 T(x))%l2 \%4 T(x)\

(3 \( o )
+ 252 D)($)(T(x)) {a—’; T(x) \-8—6 T(x) ) %1
(9 \fas \
+ 504 DD(S)(T(x)) @;T(x) 55T %2

( o
+ 280 D(Z)(S)(T(x)) ~ T(-")T

+ 1260 D)(S)(T(x)) ("— T(x) T

+ 378 D(G)(S)(T(x)) ( T(x)

o ey e ey S YT




e T T M BRIt s e T 2T

) a3
+ 3780 D'*)(S)(T(x)) ( 9 T(’c)\J (5? T(x)}%ll’

g i
+ 840 D(")(S)(T(x)) ( 9 T(x)T (ax3 T(x)j

2 d* 0’
+ 1260 D(3)(S)(T(x))( T(x))z [5;4 T(x))[a 3

» 1
+252OD(3)(S)(T(x))La T(x)]% ( T(x)T

ox®
%1 : —ﬁT(x)
5
%2 : —a—ij(x)
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