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ABSTRACT

Automated Enrichment of SDL Specifications with MSCs

Muhammad Umer Wagqar

Formal merhods and Formal Description Techniques (FDT) are hecoming
more and more important for developing complex real-time and distributed systems.
Message Sequence Charts (MSC) and Specification and Description Language (SDL)
are standurdized FDTs for specification of telecommunication protocols in particular
and distributed svstems in general. \We present an automated approach for enrich-
g an SDL specification with MSC. This approach can be used for incremental
de velopment with SDL and MSC or for maintenance of a system in SDL.

Enrichiment of SDU with MSC involves enrichment of SDL architecture and
behavior. Our automated approach consists of three interconnected steps i.e. pre-
phase. MSC2SDL phuse and post-phase. In the pre-phase SDL architecture is en-
riched using new MSC. We give algorithms for enriching SDL architecture using
MSC. MSC2SDL phase generates new SDL behavior using new NMSC and enriched
architecture. This phase uses MSC2SDL tool. Finally. the post-phase merges old
and new SDL behavior to get enriched SDL. We have developed 14 rules of behav-
ioral merger based upon a formal ertension relation which guarantees to preserve all
the old behavior and prevents introduction of new non-determinism in the enriched
specifications. Furthermore. we have developed tools for pre-phase and post-phase

and theyv have been connected with MSC2SDL tool to get a tool set for automated

enrichinent.
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Chapter 1

Introduction

1.1 Real World vs Machine World

Computers do not think. Thev follow. They follow what thev are told to do. They
do not like abstracrions. When giving instructions to them. we have to be very
precise in what we want from these ingenuous. jargon-following slaves of ours. We
are still living in an era where computers are primarily being operated by humans.
Human beings act. behave, communicate. socialize and command abstractly. They
like to be vague. Theyv communicate ambiguously. Their languages are ambiguous.
They follow different dialecrs of the same language. When it comes to getting ser-
vices from the man-made machines. they have to be precise. Some smart people
develop skills to communicate with machines. They can tell the machine what theyv
want the machine to do. Such people are called developers. programmers or lately
software enginecrs. At the dawn of computer age. programmers used to program
in assembly languages. As we know. assembly languages are very precise and con-
text sensitive depending upon the microprocessor and its architecture. This precise
and concrete nature of these languages made them too hard to learn and master.
Programmers started looking toward making their lives easier by shifting to what

was later called high-level lunguuges. They developed compilers. assemblers and



interpreters to translate these high level languages into machine languages. This

was a big relief on the programmner’s life and it triggered a software boom antici-

pating what could be done by computers. It created further areas of research and

development. more jobs and a life revolving around high-tech devices. It created an

information age in which getting some information when it is required needs just a

click of a button. All this was due to the fact that humans found a way to communi-

cate with machines more abstractly as compared to machine languages or assembly

languages. This search for ubstruction continues. Researchers are still striving hard

to attain a higher level of abstraction to command the computers. This resulted

in the development of graphical languages and notations like UML{1l. SDL[2! and

MSCsI3'. This is picrorially depicted in figure 1.1.

French,
English

UML, SDL
MSCs ...

C++,Java. ..

Human Languages
Real World

(abstraction)

Modeling Languages

High Level Languages

Assembly Languages

Computer World
(precision)

| Computer Hardware

Figure 1.1: Real World and the Machine World.
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Hence. as we go away from the hardware and into the real world. we achieve
more and more abstraction. High-level languages like C++[4] and Java[5. 6. 7. 8]
abstract the hardware and give a lot of programming liberty to the engineer. He
or she does not have to care about the memory addresses of variables being re-
calculated in a loop. Further search for abstraction led to the development of
graphical notations{l. 9. 3. 2]. To cope with complexity, achieve modularity and
re-use. the orientation of software development changed from structured approaches
to the Object Oriented paradigm{10]. Currently. software is being developed us-
ing different development processes models[11]. We will have a brief look at these

Prucesses.

1.2 Software Development Process Models

These include the classical waterfall model. iterative waterfall model[12]. evolution-
ary model 137 spiral model 147 and the transtormarional model. Classical warterfall
model is based upon traditional engineering principals like civil engineering. [t goes
hack to 1960°s. The clussical waterfall model does not expect any feedback from the
later stages to the earlier stages of the model. But this is not always applicable to
the engineering of software. hence it lead to the development of the iterative water-
fall model. Ecolutionary model is used when the requirements have a changing and
evolving nature. Each cvele results in a prototype which is then ertended with new
requirements until the svstem is completed. Evolutionary model has influenced the
Unified process;15]. which uses UML[1] for system development. The Spiral model
combines all the approaches in other models. Waterfall and evolutionary models can
be viewed as a special instance of the spiral model. The Transformational model is
the one most relevant to our work. It is based upon deriving formal specifications
which can be executed. The model is actually an extension of the waterfall model

with prototvping. Based upon the formal requirements specification. an executable



prototype is derived which is then verified and validated against the environment.
The Final product is derived by transforming the formal specifications into an im-
plementation using CASE tovols. Major advantages of this model are automated
code generation. which might be optimized. and formal verification and validation.
However. the complete automation is not always possible. Development of the trans-
formational model. its supporting methodologies and CASE tools is still an area of

intensive research.

1.3 Motivation for the thesis

We have alreadv mentioned the benefits of achieving abstraction in systems and
software engineering. We hinted that a higher level of abstraction can be artained
using formal and semi-formal languages such as SDL . MSC and UML. The trans-
formational model suggests usage of formal. executable prototype specifications and
then automated code-generation. This can be extended to the maintenance phase
where the svstem exists bur needs extension or enrichment. We can call this as the
crtended transformational model which also encompasses the maintenance phase.
Classical. traditional approaches suggest maintaining the code directly. Not only
the maintenance of code is expensive and resource hungry but also bug prone espe-
ciallv when the engineers intend to preserve all the old architecture and behavior
of an existing svstem while trving to enrich it. With the availability of formal lan-
guages and their supporting CASE tools. maintenance of the system can be shifted
up to the specification level. Our extended transformational model. shown in the
figure 1.2. proposes maintaining the specifications instead of code. Thus. we com-
bine incremental development using prototypes and maintaining the code. which
is quite different from the existing ones in literature{11l. 16]. When we talk about
incremental development in the context of formal specification languages. we have

to define enrichment or ertension of an existing svstem or prototvpe. Extension



relations. in the context of SDL. have been defined in [17]. Also. it has been sug-
gested to use MSC to capture new requirements and then enrich the existing SDL
specifications using the MSC. An SDL specification consists of architecture (struc-
ture) and behavior. Enriching SDL specification should enrich both the architecture
and the behavior. Enrichment of SDL architecture means adding new processes into
existing or new blocks. adding new signalroutes or channels and adding new sig-
nals specification into existing or new links. Enrichment of architecture cannot be
fully automated because addition of new entities into existing structure might be
a design decision. which involves rationalization. problem domain. or engineer’s ex-
perience. Hence. architectural enrichment of SDL specifications with MSC cannot
be fullv automated. In our work we develop algorithms and tool for architectural
enrichment of SDL specifications with MSC. For the behavioral enrichment of SDL
specifications with MSCs. we follow the merger approach i.e. new SDL behavior is
merged with old SDL behavior to get enriched SDL behavior. New SDL behavior
is generated from the MSC specification using the MSC25DL tool and the enriched
architecture. NMerger of the old and new SDL specifications is done on a transition
by transition basis. We develop 14 rules for merging SDL behaviors in this wav. Re-
sulting enriched specification can be verified. validated and can be used to generate
code. Furthermore. since the enrichment is done on the basis of formally defined

ertenston relations. it guarantees that:

o All the old behavior in the old system will be preserved in the enriched system.

e There will be no new non-determinism in the enriched svstem. in addition to

the one already present in the old specification.

The aim of this thesis is to develop an approach for the extension /enrichment
of existing SDL syvstems with MSC. It may be used for automated incremental de-

velopment of specifications at design level or for maintaining the specifications to



get the enriched code using CASE tools. The kev point here is that the methodology

is automated. as compared to others[18. 19. 20]

i

Abstractions

autcmated transfermation

tormal, executakle
Jes.gn specifications

autcmated code generaticn

Imrlementaticn
Testing

Maintenance .

new functicnality

required

Figure 1.2: The extended transformational model.

This work is a continuation to related work done by our group for devel-
opments of formal specifications using SDL. MSCs and UML. The group started
its main work on attempts to produce algorithms to automate the translation from
MSC to SDL and developed MSC2SDL tool[21. 22. 23, 24,. Based upon this tool.
further research has been done on step wise refinement of message sequence charts

23] and an automated methodology from UNL + NSC to SDL[26..



1.4 Organization of the thesis

The thesis is organized into seven chapters. As mentioned in the previous section.
the main focus of this thesis is to produce an approach for enrichment of SDL
specifications with MSC. The resulting work consists of algorithms. rules and tools
which support the ertension of SDL with MSC. Below we give a rvad-map to the

organization of the thesis.

e Chapter 2: In the second chapter we discuss the formal languages in gen-
eral and SDL and MSC in particular. We give all the background knowledge

required to understand rthe remaining of the thesis.

e Chapter 3: Weu introduce an automated methodology for autvmated enrich-
ment of SDL with MSCs. Then we explain this methodology in detail. As
we will see. the methodology consists of two major steps i.e. architectural
enrichment and behavioral enrichment. We do the behavioral enrichment by

behavioral merger of the old and new SDL specifications.

e Chapter 4: We develop and discuss algorithms for architectural enrichment

of SDL specifications with MSC. elaborating with simple examples.

e Chapter 5: In this chapter we develop and discuss algorithms for behavioral
enrichment of SDL specifications with MSCs. As mentioned before. we sug-
gest doing the behavioral enrichment using behavioral merger of the old and
new specifications.  Formal relations are defined for this behavioral merger.
These relations are then used to develop rules to assist rmanual or automated
behavioral merger of SDL specifications. The rules developed in this chapter

are the guidelines for implementation of such a behavior merger tool.

e Chapter 6: In this chapter we introduce and elaborate the tool suite devel-
oped based upon the theoretical work. We also demonstrate the usage of the

tools with examples.



e Chapter 7: [u the last chapter we conclude upon the work done in general

and show possible future directions of research.



Chapter 2

Formal Description Techniques

2.1 Introduction

To understand formal description techniques. one should know formal specification
lunguages. formal methods and formal systems. A formal specification language is
a mathematically based language which has a well defined syntar and semantics.
Formal methods refer to techniques founded on discrete mathematics and logic in
representation of the information necessary for the construction of software svs-
tems. These techniques include svnractic and semantic analvsis. formal verification
and tormal validation. Modern dayv formal methods are generally accompanied by
powerful CASE rools. A svstem having a formal language and using formal method
is called a formal system. Since a formal system is based upon discrete mathematical
foundation and logic. it constitutes a well defined syntar. semantics and a deductive
mechanism. The svntax of a formal language is described by its grammar. which
actually defines a set of sentences. These sentences are given meaning through defi-
nition of the semantics of the language. Well defined and non-ambiguous semantics
of the formal languages make them outshine non-formal languages. The deductive
or the inference mechanism allows the derivarion of new well-formed formulae from

those already present in the language.



The techniques used in the development with formal methods are called
formal description techniques (FDTs). Several FDTs exist. They were originally
developed to cope with the complexity of concurrent. real time and distributed sys-
tems. Thev are more and more being used for safety-critical syvstems. Their strength
lies in their standardization through international bodies. A standardized FDT
ensures harmonyv in the development and also global comprehension. Estelle[27].
LOTOSI28:. SDL'2) and MSC 3] are the standardized FDTs. SDL and MSC. stan-
dardized by ITU-T. are the most used ones and they are more and more being used
in conjunction with each other. We will give brief introductions to SDL and MSCs
later in this chapter.

FDTs promise early detection of errors. An error detected after the system
has been developed is about 1000 times more expensive!16] as compared to one
discovered during the specification stages. FDTs support early detection of errors
through sunulation. verification and validation of the model.

As shown in figure 2.1. Development with FDTs start with an English lan-
guage description followed by a formal description. It is called the model of the
svstem. The medel is then simulated to see if the svstem works. Some functional
bugs may be caught at this stage. The simulation is iterative in nature L.e. as a
bug is caught. it is corrected in the specification model. Simulation is followed by

formal veritication and validation.

2.1.1 Simulation

Simulation is done at any stage of development with FDTs. It is a partial proof
that the system does what it is supposed to do. It does not guarantee detection of
all the errors. Simulation. however can serve as a good tool by the developer to gain
confidence and also communicate with the client. Simulation results are normally

shown in a graphical trace language.

10



English Language
cdescripTion

| FTormal Description

CASE tooils

v

Imp.ementation

Figure 2.1: Usual approach of formal development with simulation, verification and validation.

2.1.2 Verification

Verification is a formal proof that the svstem works properly. During the verification
general properties of the svstem are checked. This includes verifving that the system
has the safety and lLieeness properties. Safety property means that something bad
will not happen in the syvstem. Examples of safety property are absence of deadlocks
and unspecified receptions etc. Deadlock is a situation in which all the entities
(processes) are blocked and waiting for an input while the communication {channel)
queues are empty. A svstem in a deadlock cannot move on. Unspecified reception
is a situation when an entity has an unexpected signal in its input queue. readyv
for consumption. What the entity will do with such a signal depends upon the
semantics of the FDT being used. For example. SDL has a non-blocking semantics.
such that an unexpected input signal in the input queue of a process will not block
the process. It will be discarded. Hence SDL does not have unspecified receptions.

Liveness means eventually something good will happen in the system. A system

11



having the liveness propertyv is free from livelocks. Livelock is a situation when a
svstem is running but without any progress. It is like a continuous loop without
doing any work. Even small svstems are difficult to verifv by hand. \erification
of protocols etc.. is impossible without tools. Verification ensures that the formal

model has safety and liveness properties.

2.1.3 Validation

Each svstem that is designed has some unique properties which differentiate that
svstem from others. The properties checked during verification (safety. liveness. etc.)
are common to all the svstems. but validation checks for validity of some specific
properties inside the svstem. Validation might prove to be resource hungry and
require powerful computers but it is worth knowing that the system being built has

the property for which it is being built.

2.2 SDL

SDL 29. 3U. 2 ix a standardized specification language supported by many CASE
toolsi31. 32, It has well defined semantics and is one of the most popular FDTs
currently being used;30. 16, It has a graphical form called SDL/GR (graphical rep-
resentation) and a textual form called SDL/PR (phrase representation). SDL bas a
structural part also called architecture. It has a behavioral part based upon extended
finite state machines as well as a data part. It not only serves as a specification lan-
guage but also serves as a notation to derive the implementation automatically. It
has been designed to support the specification and development of reactive. concur-
rent. real-time and distributed svstems. However major application domain of SDL
is telecommunications and protocol specifications.

SDL evolved and developed in Europe and enjoyvs a lot of support of telecom-

munication communities. A major revision of the SDL standard in 1992 resulted

12



in Object Oriented extension of SDL. SDL96{30] is a fully Object Oriented specifi-
cation and description language. Current release of SDL is SDL2000[2] and it has
further modeling constructs especially for Object Orientation and is quite close to
UML from OMG 33", In the following subsections. we discuss the structural (archi-

tectural). behavioral and dutu concepts of SDL.

2.2.1 Structural Modeling in SDL

SDL has very strong support for modeling the structure or architecture of the system
with hierarchy starting from top level specification to detailed specifications. It also
supports hierarchical object oriented modeling. thus providing it more strength for
modular modeling. The structure of the svstem. however. may or may not directly
represent the wav a svstem is implemented. Nevertheless. high level structuring and
modeling can be used to derive models which closely represent the implementation
details. We will mention the architecrural concepts of SDL starting from the top
level of hierarchy. that is system. block. process. services and procedures. SDL allows
communication between the entities either through channels or signalroutes. Since
process. services and procedures are major components of SDL behavior. we will
elaborate them in detail later. In Object Oriented Terminology. an object is defined
by its type and then it is instantiated into instances which are actually used at the
run time. In Object Oriented SDL. a construct name without a type suffix represents
an instance. So when we sayv a system we actually mean a system instance. Thus.
as we note. a class in SDL is called a type and an object is called a reference. Also
in conventional OO world. an object encapsulates both the structure and behavior
but this might not be the case in SDL.

SDL tvpes can be instantiated and/or specialized where ever required in the
specification. These type specifications can be placed into packages. which can be
imported into other specifications. This promotes re-use of specifications. Further.

in SDL the tvpes can be parameterized using formal contert parameters. For the

13



consideration of the specification re-use it is preferable to use typed specifications

instead of a structured approach.

System and System Type

A System is the highest level of hierarchy in SDL modeling. It contains all the
other constructs at the lower level of hierarchy such blocks and processes. The
interpretation of an SDL svstem is the interpretation of the contained SDL processes
running in parallel. A syvstem type defines the blue print of a svstem instance.
Svstem tyvpes can he specified and kept in packages while these packages may be
imported in other packages and the svstem types may be instantiated into references.
A svstem type specification is shown in figure 2.2, The text area at the upper right
corner of the figure specities the tvpe of signals transmitted in the system. The
block instances are connected through channels and the signals transmitted through
these channels are specified within brackets right next to the arrows which indicate
the direction in which the respective signals are sent. The syvstem type can be
parameterized using formal contert parameters and can evea be specialized from
other svstem tvpes using specwlization. The svstem tvpe in figure 2.2 is shown to

be instantiated as sysinst in the box at the right of the figure.

Block and Block Types

The second level of structural modeling constructed after a system is a block. A
block may contain processes or other blocks. However. it mayv not contain a mixture
of processes and blocks. A block may be specified as a block type and can be
instantiated any where required. The system instance sysinst in figure 2.2 is an
instance of system tvpe sys. [t consists of two block instances bl and b2 which are of
block tvpe bt. The identifiers g1 and ¢2 inside the block symbols are gate identifiers
used for connecting the channels to process instances inside the block instances. In

the example the block tvpe bt as well as the block instances are defined in the svstem
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Figure 2.2: A System type containing a remote reference to a block type and two instances
of that block type

tvpe sys. but the properties of the block type are not specified in this diagram. This
is because it would require actual nesting of the diagram which. in general. is not
convenient with respect to readability and handling by tools. The block tvpe symbol
in figure 2.2 is just a reference indicating that the block tvpe is conceptually defined
here. but rhat the block tvpe physically is defined in a separate diagram. Figure
2.3 shows the example of a block tvpe diagram. A block tvpe may be remotely
specified in o re-usable package which may be imported wherever needed. [t may
also be parameterized using formal context parameters. Also. since the block type
specification specifies without a particular context. it specifies the channels as gates.
Hence when the block type is instantiated. the channels in the actual context are

connected to the block gates.

Process and Process types

A process represents an independent entity. which encapsulates the behavior of the
svstem. A process may be specified as a process instance or as a process tvpe. In
the block tvpe of figure 2.3. two process instances are defined. pl of process tvpe

ptl and p2 of process tvpe pt2. Process instances are connected by signal routes
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Figure 2.3: A block type

which convey signal instances to/from other process instances in the same block (as
the case is for signal route ~rl) or conveys signals to/from the channels connected
to the block ras the case is for the ~sr2). A process type may also be parameterized
with formal context parameters. or specialized into other process types. A process
tvpe specification may contain service tvpe specifications or instantiations. Since a
process tvpe is specified with no actual context. so the signal routes are specified as
gates associated with signal routes. The actual signal routes are connected to the
sates when the process tvpe is instantiated. The process type specification for ptl

is given in figure 2.4.

Service and Service Types

A process may have service or service types as elements to give further structure to
the behavioral modeling. Normally the behavior of a process is defined as a state
machine. but indeed. it may also be defined in term of number of service instances.
Each such service instance is a separate state machine. but only one is executing its
graph at a time. When the executing service reaches its state. the service capable of
consuming the next signal in the input port of the process instance instance takes

over interpretation. i.e. service instances share the input port of the process instance
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Figure 2.4: A process type specification

as well as the variable and the value. A service instance is capable of consuming a
signal if the signal is not saved in the given state and if the signal can be received by
the service instance. Two different service instances must not be capable of receiving
the same signal. Services are useful when the behavior of a process can be described
as a number of independent activities (only sharing data). e.g. the two directions of
a protocol. or if some activities are common for process instances of different process
tvpes. In figure 2.5. the process tvpe pt2 is defined in terms of two service instances
sl and s2 (of the service type stl and st2 respectivelv). The service tvpe stl is shown
in figure 2.6. Note that. graphically. all type specifications have the similar symbol

as the nstanee specification except that the boundary is doubled.

Channels

Communication between blocks and between blocks and the environment is only
possible along the defined channels. Channels can be unidirectional or bidirectional
commmunication devices. The communication structure between blocks is static.
Channels mayv be specified as delaying or non delayving communication devices.

Communication on the channels is free of errors and preserves the order of the
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Figure 2.5: A process type specification with service types

transmitred signals. In order to refine the properties of channels. i.e. to model error

or reordering of the of signals. channels may be refined by channel substructures.

Signal Routes

Communication between different processes and between processes and the block
interface is done via signal routes. Signal Routes are non-delaving and may or may
not be explicitly given in the block diagram. The most important difference between
a channel and a signal route is their usage. Signal routes are used within blocks to
connect processes. while channels connect blocks. In case a signal is sent 1o a process
within a different block. the signal travels along tle signal route in the same block.
the channels connecting to the blocks. and finally the signal route defined in the
block where the receiving process is located. Another difference is that the signal

routes are alwayvs non-delaving. while channels may delay the signals.

Signals and Signal Lists

A signal is a primitive tvpe in SDL. [t abstracts the notion of message in communi-

cating entities. Signal Lists group the signals together at the desired end of the link
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(channels and signalroutes.

2.2.2 Behavioral Modeling Concepts in SDL

Behavioral modeling in SDL is based upon the concept of Finite State Machines
(FSM. A finite state machine is basically an input output automaton. Finite state

machines are defined below,

Finite State Machines

Formally. a finite state machine is a 3-tuple (S§. [. T. s¢. F) where:

S is a finite nonempty set of states.

I is a finite nonempty set of inputs.

T is a function from (S — F) x [ to S. called the transition function.
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s € S is an initial state. and
F is the set of final states.

A state is an abstraction of the static condition symbolizing the event se-
quences leading to it. In general when an object assumes a particular state. it can
be receptive to only a selective set of events {(messages). The object changes its
state onlv if one of these events occurs. The event that causes a state transition 1s
called a trigger or a triggering event. An action is associated with each transition.
The behavior of the object at anv point is characterized by the history. sequence of
alternating states. and actions. The state transition diagram gives all the possible

behaviors of the object modeled by ir.

SDL processes as Finite State Machines

The finite state machines are the active entities in an SDL system and are called
processes in SDL. Processes are the main concept in SDL to define the dynamic
behavior of the svstem. The most important graphical symbols used within an SDL
process are given in figure 2.7

In addition to these basic svmbols. many other constructs for behavioral
modeling are supported in SDL. An example of a simple SDL process specification
for a simple Volume Switeh is shown in figure 2.8,

When the process Volume Switch is in the idle state. it waits for a signal
stinuli. Upon getting a stimuli. it tells the actuating device that it is on the on state
by sending a signal to it. Thus the volume switch enters an active state. In the active
state if it receives a vol.up signal. it sends an inc_current signal to the amplifier to
increase the volume. Similarly. in the active state. if it receives a vol_.down signal.
it sends a dec_current signal to the amplifier. While being in the active state. if the
volume switch receives an off signal. it goes back to idle state. Now. to compare the

SDL process behavior with a FSM diagram. we show a corresponding FSM diagram
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Figure 2.7: Most commonly used symbols in SDL

of the volume switch in figure 2.9.

Extended FS)I

SDL extends the basic FSNM concept by associating data with the state machines.
These are tvpically called ertended finite state machines. This denotes the fact that
the state of SDL process is defined not only by the explicit states but also by the
state of the dara objects. i.e. the value of its variables. Data cannot be declared
directly in the SDL block or system diagrams. Data is declared as SDL process.
service or procedure level. Oue process can only access data in the other process
through a remote procedural call or through import/export concept. We will discuss
the data part of SDL later on.

Each SDL process maintains a set of intrinsic variables which are of pre-
defined data type PId (process identity). The following variables of this tvpe are

defined for each process instance.
Self: defines the PId of the process instance itself
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Figure 2.8: SDL specification of a volume switch
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Figure 2.9: An FSM specification of the volume switch

Sender: denotes the PId of the process instance from which the most

has been consumed.

recent signal

Parent: denotes the PId of the process instance that has created the instance.

Offspring: denotes the PId of the most recent process instance created by this

process instance.

[
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Communicating Extended Finite State Machines (CEFSM)

An SDL specification tvpically comprises of more than one communicating process.
Communication between the processes is based upon the concept of communicating
extended finite state machines (CEFSMN). SDL processes communicate with each
other and with the environment by exchange of signals. A signal is identified by a
signal tvpe identifier. In addition a signal may carry data by means of parameters.
The data carried as parameters to signals may be of any size. All the signals used in
SDL have to be well defined as signal tvpes. In addition. the channels or signal routes

supposed to carry these signals have to be well attributed and properly defined.

Input Queue

Each SDL process has an input queue of unlimited capacity. So SDL processes have
non-blocking semantics. The input queue is organized according to FIFO (first in
first out) principle. However there exist priorities for inputs also possibility of saving
signals for later consumption. So the FIFO principle is not always preserved. We

will discuss saving of the signals later.

Concurrency and Latency

Each process in SDL is an independent. asyvnchronous CEFSM. Conceptually there
is no interdependence between one process and another except the explicitiyv defined
interprocess communication and exported/shared variable.

The time delayv involved in between the triggering and actual happening
of different events is undefined. A process instance might get executed as soon as
one of its trigger conditions hold. However the execution might as well be delayed.
Similarly the execution of a transition may or may not consume time. However
the transitions of the process instances are executed sequentially. that is to say. the

next transition of a process instance may not execute until the previous one has



executed. Also the transition is SDL are not atomic. Thus there might be arbitrary

inter-leaving of different actions concurrently executed by different process instances.

Triggering of Transitions

An SDL process in a certain state may be triggered into a transition in any of three
ways. Consuming an expected implicit signal in the input queue. receiving a timeout
signal from an expired timer (a timeout signal is also considered like any other SDL
signal) or due to a changing condition of its variables. As a result of any of the
triggers. a set of actions may be performed. tvpically including the (asyvnchronous)

sending of signals to other SDL processes.

Timers

SDL supports two wavs to deal with time. i.e.. directly access the time and use
of timers. To access the time. two predefined data types are used in SDL. namely
data tvpe time and duration. The now construct allows one to access the current
time e.g. 9:45am which can be stored in a variable of tvpe time. The data type
duration specifies the time span in the defined units of time. Timers can be set
or reset. A kevword active can be used to inspect if a timer has expired or not.
When a timer expires. a special timeout signal is generated. The timeout signal is
considered as an input to the process instance that owns the timer and is handled
in a similar way as anv other input signal. A timer is local to the process instance.
A reset of the timer before it expires simply deletes the timer. A reset when the
timer has expired but the timeout signal has not vet been consumed vet also results
in deletion of the timer. In the case when the timer has expired. and the timeout
signal has been consumed. a reset has no effect. In the case when the timer is set
again before it expires. it is set to a new value. An example of a simple machine
which after accepting money. gives a choice to select coffee or tea is given in figure

2.10. If nothing is selected within 10 units of time. the money is returned to the

24



user.

wait
zzifee tea T
mIney -
3ive_czifee give_trea return_mcney
- - .
ile iéle La.e
ot - TIMER ©
nc S oCL ! Inczeger
return_miney Ni=NIEell

check_mcney

Figure 2.10: A simple machine which uses timers

Priority Inputs

All systems mav have inputs which have to be prioritized for proper modeling.
In SDL behavioral modeling this is supported by a priority input signal. A signal
specified in a priority input for a particular state will be the first one to be consumed.

Actually when a state has priority input in addition to other inputs. all the other
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signals are implicitly saved. An example of a priority input concerning the simple
vendor machine will be when the process is in the wait state. a cancel signal should

be given higher priority. as shown in figure 2.11.

wait

. l

t
'
i
1]

tea cancel

8]
O

ot

Figure 2.11: A priority input

Modeling non-determinism through NONE and ANY constructs

SDL strongly supports the modeling of non-determinism through two very important
constructs which are NONE and ANY. A none signal is like a null signal which
can trigger a transition from a state. The kevword none within an input svmbol
specifies that the transition may be triggered non-deterministically. i.e.. at anyv time
when the process is in the specified state. A transition using a none signal is called a
Spontaneous Transition. Nost important usage of the none signal is the modeling of
the failure of the system. Other important construct supporting non-determinism
is any. It is specified inside a choice symbol between two branches (transitions).
Any branch mayv be chosen non-deterministically. An example of extreme non-
determinism modeling is shown in figure 2.12. A process P in state sl can either
chose to follow a branch bl or b2. without even waiting for an input signal. This is

an example of mixing a spontaneous transition with a non-deterministic choice.
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Figure 2.12: Non determinism in SDL

SAVE Construct

In case a signal or timeout is encountered in the input queue. while it is not specified
in the current state of the process. the signal (or timeout) is simply discarded. To
prevent this. i.e. to prevent the signal from being discarded. the SAVE construct
of SDL can be used. In such a case the respective signal is saved and is reconsidered

in the next state.

Continuous Signal

So far we have discussed three kinds of triggers. i.e.. an explicit input signal. a
timeout signal from a timer or a spontaneous transition. There is a fourth kind of
triggering event called the continuous signal. It implicitly depends upon the state of
the process. A continuous signal is specified in angle brackets. for example when the
vendor machine is in the wait state. an internal error may happen. This is modeled
using a continuous signal. as shown in the figure 2.13. Continuous signals have
lower priority as compared to other triggering events. If however. several continuous

signals are specified. one of them is chosen non-deterministically.
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Figure 2.13: Continuous Signal in SDL

Addressing mechanism in SDL

Addressing is a very important issue in telecommunications. In SDL. there are two

basic mechanisms for addressing.

¢ Explicit Addressing:

Explicit addressing directly specifies the address of the receiver or the called
process instance. In SDL this is supported by a TO clause in the output
constructs followed by the identifier of the receiving process instance lLe. its
PId. If only one instance of the called process exists. then the name of the

process followed by TO serves the same purpose.

e Implicit Addressing

Implicit addressing doesn’t explicitly specifv the receiving process instance.
Implicit addressing is supported by the TO clause followed by the name of
the process (instead of the process instance) or by VIA clause followed by

the name of the signal route or channel. Depending upon the architecture.
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both TO and the VIA clauses may or may not uniquely specify the receiving
process. Or. the receiver may not be mentioned at all and it may be implic-
itly defined by the signal sent. If the receiving process cannot be identified
uniquely. several process instances become potential receivers. If. however. no

receiver is identified. the signal is discarded.

2.2.3 Data part in SDL

The data concept in SDL is based on abstract data tvpes. An abstract data type
defines a type of data object by its functional properties, i.e.. by a set of operators
applied to it. Abstract data types focus on functional properties of data objects.
Thus an abstract data tvpe defines the result of the operations applied to a data
object. rather than defining how the result is actually obtained. Also. we can use
C kind of data tvpes in SDL. Another approach to specifv data in SDL is Abstract
Syntax Notation One ASN.1[34l. In many ways. the use of data in SDL resembles

the use of data in programming languages:
e Expressions evaluare to values.
e A value belongs to a certain data tvpe.

e \ariables are used for storing values for later use. A variable can only hold

values of a certain data tvpe.
e Predefined data types are available (e.g Integer) and new tyvpes can be defined.

e EFach data type defines the name of specific values. e.g. the number 7 is a
name defined in the Integer data tvpe. The names for the values in SDL are
called literals. Each data tvpe also defines operator performing operations on

values. e.g. "+ is an operator for addition of Integers values.



A data type in SDL thus has a strict interface which is the literals and
operators for that data type. Data tvpes are defined in the tert svmbols. The

predefined data types are listed in table 2.1.

| Name I Literals | Operators 1
Boolean ! True.False not.and. or. ror.=> |
Char . character enclosed || <. <=.>.>=. Num.Chr

P by
Integer b 0.1 —+.mx [ < <=2 >=,

| i Float. Fir

| Real 0. 1.0 102.33 -+ =% [ <. <=.>.>=
Pld i Null | none
Duration || as Real +.=. >k

| Time | as Real +. - — < L<=>.>= |

~ Charstring . characters enclosed © MAhString. Length. First.

| Cby H Last.//. (inder). |

L Substring(string.start.position.length)

Table 2.1: Predefined data types in SDL

The way the data tvpes are defined in SDL and especially the wav the
properties of literals and operators are defined. differs considerably from the pro-
gramming language approach. Consider. for example the definition of the predefined

Integer data type:

NEWTYPE Integer
LITERALS 0,1,2,3,4,5,6,7,8,9;
OPERATORS

(3K ¢

-’’: Integer, Integer -> Integer;
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fle22 : Integer, Integer -> Integer;

Integer -> Integer,

A R : Integer, Integer -> Integer;
ceye : Integer, Integer -> Integer;
Cegr : Integer, Integer -> Boolean;
‘<=7 : Integer, Integer -> Boolean,;
Ce>r : Integer, Integer -> Boolean;
“f>=’’ : Integer, Integer -> Boolean;
Float : Integer -> Real;

Fix : Real -> Integer;

/* here the behavior of the operators is defined =*/

ENDNEWTYPE;

First. literals of the data tvpes are defined. Then follows the definition of
operators and finallv the behavior of of the operators are defined. Each operaror
has a signature. e, an argument data tvpe and a result data tvpe. For example.
the "=" operator takes two values of Integer data tvpes as arguments and returns
an Integer value as a result. The operators for a data type need not to be distinct.
but operators with the same name must have different signatures

An operator is used by specifving the operator name followed by the argu-
ments enclosed in parenthesis (e.g. ~="(2.3) and Fix(1.3)). However. SDL allows
common names for arithmetic and relational operations to be applied in infix form
(e.g "+=7(2.3) can be written as 2+3). Often. operators or literals with the same
name are defined for several data tvpes. For example the “+" operator is defined for
both Integer and Real data tvpes. In addition each data tvpe has the equali"=")
and not equal({~/=") operators defined implicitly. In general there are four ways to

specify the behavior of operators:
e As informal text

31



e As arioms specifving the equivalence of expressions
e As actions and

e As externally defined data

Axioms are equivalent expressions which are always true. For more infor-

mation on specifving the behavior of operators see [33].

2.3 MSC

The second FDT we will discuss here. as relevant to this work. is called Message
Sequence Charts (MSCs). MSCs have evolved from a rudimentary trace language
on scratch paper or white boards of telecommunication engineers to a well defined.
rich and formal specification language. As we will see in the detail larer. MSC is
a trace language with vertical lines representing the life lines of processes. process
instances or objects. Rescarch on MSCs resulted in the first draft of the language
(MSC92) in 1992 in Geneva 36:. Later ITU released method guidelines and the
usage of MSCs to caprure high level requirements and specifications was suggested
in it [37]. Message sequence charts have their semantics based upon process algebra
(38}, A draft. suggested methodology and well defined formal semantics resulted
in a standard. formal Object Oriented trace language in 1996 39 . Current release
of MSC is MSC2000 3. People have started talking about using MSCs in all the

phases of the software engineering process {40].

2.3.1 Basic MSC (bMSC)

In the most simple form the message sequence charts are called basic MSCs (bMSC).
An MSC is essentially composed of a set of parallel processes communicating with

each other asvnchronously. A bMSC is shown in the figure 2.14. It specifies two



processes P1 and P2. exchanging messages between each other and between environ-
ment. Exchanging messages between the environment allows MSC to be modeled
as open syvstems. In basic MSCs. the system environment is represented by a frame
svmbol that forms the boundary of the bMSC diagram. There is no specific ordering
between messages to and from the environment. However. no specific assumptions

are made about the behavior of the environment.

. instance name

Figure 2.14: A basic MSC (bMSC)

Instances

bMSCs model message exchanges between the instances of processes. Instances are
like communicating actors in the environment. They communicate asvnchronously
with each other. They are shown by vertical lines. also called life lines. On these
life lines. time travels from top to bottom and from left to right. The start of the

instance is modeled by an empty rectangle with the name of the entity or process
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inside it. The name of the instance is specified at the top of the rectangle. The

instance ends with a solid rectangle at the bottom.

Messages

Instances communicate with each other by exchange of messages. Mlessages are
represented by horizontal or sloping arrows associated with message names. The
message may also carry date in terms of parameters. In terms of ordering. each

sending event precedes the receiving event.

Actions

Actions represent internal activity of the process or instance. Thev are modeled by
a rectangle on the life-line of the process and may contain assignments. expressions
or text. Actions correspond to tasks in SDL. For example. a bMSC with a task is
shown in figure 2.15. The action increment a by 2 and assigns it to . Then the

message b is passed to the environment,

Figure 2.15: A bMSC with task
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Conditions

Conditions in MSCs correspond to states in SDL. Conditions may be global. non-
global or local. To understand consider the example shown in the figure 2.16. A
global condition describes the state of the whole system. A non-global condition is
used to describe the state of a subset of instances within bMSCs. A local condition

describes the private condition of an instance.
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Figure 2.16: A bMSC with global, non-global and local conditions

Inline Expressions

Inline expressions define composition inside the bMSCs. The operators refer to
parallel. alternative. iteration. exception and optional regions. A parallel online ex-
pression defines the parallel execution of bMSC. No ordering is preserved between
events in different sections. In figure 2.17a message ¢ happens in parallel to messages
b and d. An alternative online expression defines alternative executions of the bNSC

sections. i.e. only one section will be executed in each execution trace. In figure
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2.17b after consuming message . instance /1 will send either message B or message
C to instance [2. An iteration inline expression defines iterative execution of bMSC
section. Events in the iteration area will be executed many times (0-infinite). In
figure 2.17c instance /1 and [2 will exchange message a and b at least once. An
exception inline expression defines exceptional cases in bMSC. Either the specifi-
cation in the exception area will be executed or the rest of MSC specification will
be executed. In figure 2.17d. instance I1 will send a message b or message c. after
consuming message «. An optional inline expression defines an optional execution
of bMSC section. Events in the optional area may or may not be executed. In figure
2.17e. after consuming message a. instance /1 may send message b before sending

message .

MSC parallel MSC alternative MSC lccp
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Figure 2.17: Inline expressions in MSC
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Timers in MSCs

There is no global time for axis for MSCs. Along each instance axis. the time runs
from top to bottom but a proper time scale is not assumed. Timers in MSCs can be
used to express timing constraints. i.e.. timeout and supervision. Figure 2.18 show
the MSC with timers. A timer set event is represented by an hourglass connected
with the instance axis by a bent line svmbol. A sent event denotes the setting of the
timer. A timer reset event is represented by a cross connected with the instance axis
by a bent line svmbol. A reset timer event denotes resetting the timer. A timeout
event is represented by an arrow. which is connected to the hourglass symbol. and
the arrowhead points to the instance axis. A timeout event denotes the expiration
of the timer. For each timer setting event. a corresponding time-out and/or timer
reset has to be specified and has to follow it in order. However. corresponding
tiner events mav be split among HbNSCs in case the whole scenario comprises of a

combination of several bMSCs.

Figure 2.18: An MSC with timer events



Coregions

Events in MSCs are strictly ordered. A sending event always proceeds a receiving
event. Coregions are introduced to relax the order in some parts of the instance
axis. Within a coregion. the specified communication events are not ordered. This
feature is useful because the order of some of the events may not have been decided
vet. but will be finalized later. A coregion is indicated by drawing a portion of the
process axis as a dotted line. as shown in figure 2.19. The message a occurs before

b and c. but there is no order between the occurrence of b and c.

L) -
- - - -

PROCESS PL PRQCESS P2 PROCESS =2

Figure 2.19: A bMSC with coregion

2.3.2 HMSCs

High-level Message Sequence Charts (HMSCs) provide higher level of abstraction
than MSCs. HMSCs actually give a system overview through a composition of
bMSCs. They provide four operators to connect bMSCs which are sequential. al-
ternative. iterating and parallel operators. Furthermore. HMSCs allow combining
HMSCs within HMSCs in hierarchical specification. For more details on IIMSCs.

refer to [3.
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Chapter 3

A Methodology for Automated
Enrichment of SDL with MSCs

3.1 Introduction

In this chaprer we give an overview of our approach of enriching SDL specifications
with MSCs. First of all. informally. what is enrichment or extension of a system?
Users interact with the System in accordance with the overall defined behavior of the
svstent. This mayv be called the interface to the external world for the system or it
may also be called the erternal behavior of the system. In addition te this. internal
components inside the system. e.g. packages. blocks and processes interact with
other component through their own well defined interfaces. For the external user.
this functionality might be transparent but it is inevitably important for the internal
functionality of the system. This may be called internal behavior of the system. The
external behavior of a svstem might need to be enriched by adding more functionality
to accommodate new requirements. This necessitates the enrichment of the behavior
of the internal components of the syvstem as well. In general. the complete system
has to be extended. Now. one way of dealing with this could be to build a new

svstem from scratch. which not only has the old behavior but the new one too. But
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this means flushing all the previous resources and efforts down the drain. Other
way is to take the old svstem and add the new requirements to the existing system.
Technically it is called the maintenance phase of software engineering process. But
enriching or extending the existing svstem is not straight forward and has lot of
complexities involved. A general concern is whether the new functionality added into
the svstem disturbs or corrupts the old functionalities. What if the new enrichment
invalidates some of the properties of the existing system?

We cannot underestimate the importance of enrichment or extension in the
maintenance phase. New requirements are usually specified in an informal dialect of
MSCs. As shown in the figure 3.1. the ad-hoc approaches take the old system’s code
and the new requirements in informal NSCs and enrich the code manually. Thisis a
verv time and resource consuming process. In addition to that the enriched svstem
cannot be verified and validated. There is no guarantee that the old behavior will be
preserved in the new syvstem. The new system may introduce a new non-determinism

which mayv invalidate the old behavior.

new reguirements

- - . — care A€ eim
[mancal enricnment of the CCDE]- “cés cL Limeé
andé rescurce

enriched system

Figure 3.1: Adhoc approaches of System Enrichment

We focus on the idea of maintaining the specifications 17i. and develop
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an autornated approach which not only supports enrichment of the existing SDL
specifications with MSCs. but also promotes incremental development of SDL with
MSCs.  Powerful tools exist 731, 321 which support automated code generation.

Hence. contrary to the ad hoc approaches (figure 3.1). our approach is shown in

figure 3.2.

new reguirements
specified in MSCs

-existing system specification in SDL

Our automated enrichment frameworkl

enrichel system specifiication in SCL

Automated Code Generaticn (ObjectGECDE, TAU

Figure 3.2: Our automated approach for enrichment

Our approach consists of three phases. as shown in figure 3.3. i.e. a pre-

phase. a MSC2SDL phase and a post-phase.

3.2 Pre-Phase

This is the first phase of our automated enrichment approach. It handles the enrich-

ment of SDL architecture using MSC as a new use-case. The pre-phase tool can add
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Figure 3.3: Getting enriched SDL using our automated enrichment approach

new processes in existing blocks or new blocks. new signals between existing pro-
cesses through existing links or through newly added links and it also enriches the
declarations and signal lists accordingly. Algorithms and further details about the
architectural enrichment of SDL specifications with MSCs is discussed in Chapter
1. As shown in the figure 3.3. there are two inputs to the pre-phase tool i.e. the new
MSC and the old SDL specification. The tool does not disturb the original input

specifications and produces a resulting SDL specification with enriched architecture.

3.3 MSC2SDL-Phase

This is the central phase of our approach. The MSC2SDL tool {23! is used to generate

new SDL specifications from the new MSC and the enriched architecture. generated



in the pre-phase. NMSC2SDL tool is a robust tool covering not only most of the
constructs of the MSC language but also the HMSCs. It handles actions. timers.
coregions and most of the other constructs of the MSC language. The MSC2SDL
tool also detects unspecified receptions. deadlocks and distributed choice etc. For a

detail on MSC2SDL algorithms and tools see [24].

3.4 Post-Phase

The MSC2SDL phase generates new SDL behavior. which is actually the SDL spec-
ification corresponding to the new functionality to be added to the old specification.
In the post-phase. our framework uses the approach of merging the old and new
behavior to get the resulting. enriched behavior. The detailed rules and algorithms
of merging the SDL behaviors are discussed in Chapter 5.

Thus. vur approach consists of three sequential and connected phases to get
an enriched SDL svstem from an existing svstem. The pre-phase is discussed in
Chapter 4 and the post-phase is discussed in 3. The MSC2SDL phase is discussed

in 24
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Chapter 4

Enrichment of SDL Architecture
with MSCs

The architecture in SDL talso called the structural part of SDL serves to allow mod-
ularity in the design specifications. Modularity not only promotes clarity. simplicity
but also allows re-usabiliry of specifications. Main entities of the SDL architecture.
as discussed in Chaprer 2 are Svstem. Block. Process. Channels/Signalroutes and

]

ignals.

o
The focus of this chapter is to consider the automation of enrichment of
SDL architecture with MSCs. As mentioned in Chapter 3. there are three keyv issues

in this respect. as following.
e Addition of new Processes into existing or new blocks

e Addition of new Links (Channels/Signal Routes) or enrichment of existing

links

e Addition of new Signals

44



4.1 Mapping MSCs on SDL architecture

In this section we investigate the relationship between MSC and the SDL architec-
ture. Consider a simple MSC in Figure 4.1. It shows two process entities client
and sercer. The MSC shows the connection establishment primitives and PDU
exchanges of a generic protocol of transport layer. The client entity receives a con-
nection request (CONreq) message from a higher layer. The client sends a request
PDU (REQ_PDU) tou the server entity. The server sends a connection indication
message to its higher laver entity. Let us assume the higher layer entity is willing
to accept the connection. So it sends a connection response (CONresp) message to
the server entitv. The server then sends a response PDU (COXNresp) back to the
client and the client sends a connection confirmation (CONcnf) message to its user
entity. Specifving this in MSC is quite straightforward. But when we want to build
detailed and concrete design specifications in SDL. we have to map MSC to SDL.
Existing research work on MSC to SDL [21. 22] and [23] considers the architecture
to be already present before the translation. However. when we are considering
the enrichment. we must do the architectural enrichment before the behavioral en-
richment idiscussed in the methodology in Chapter 3). This means creating new

architecture or enriching the existing architecture based upon the new MSC.

-C. .5

chl;e:: ] [ server J

Cotireg

REQ_POU

CONzndé

CQiresp

Figure 4.1: A simple MSC showing a connection scenario.
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A process instance maps to a process or a process type in SDL. Whenever
there is a message exchange between two process instances in the MSC. there must
exist a corresponding link between those processes in the SDL architecture. The
stgnals passed through that link must be specified at the proper and correct end
of the link in the SDL architecture. The simple MSC of Figure 4.1 is shown to be

mapped upon an SDL architecture in Figure 4.2.

Figure 4.2: MSC to SDL architecture mapping.

Before actually proceeding to the details. we define a few terms for the sake
of architectural enrichment and its automation. Two processes in SDL Architecture
are said to be friends of each other if thev are connected through one or more
channels or signalroutes. Each process maintains a collection of its friends. So for
each process P. we mayv find out whether another process Q is its friend or not

by searching the friends collection of P or that of Q. Furthermore. each process
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maintains a collection of links ( channels or signalroutes ) between itself and its
friends. Each link in the list is qualified with two additional attributes. which are
myEnd and the peerEnd. Fur a channel Ch connected to the process P. myEnd is
the end of channel connected to itself. while peerEnd is the end of the link connected
to its friend process. For each process connected to each link, the signals specified
to be received are stored in the collection myEndSignals. and the signals specified
to be sent are stored in the collection peerEndSignals. For an elaboration see

Figure 4.3. We use these terms to build algorithms for automated enrichment of

SDL architecture with MSCs.

Figure 4.3: Definition of the terms for Architectural Enrichment.



4.2 Adding new Processes into existing or new

Blocks

As discussed in Chapter 2 MSCs specifv the message exchanges between processes
( and process instances ). Messages are also handled to and from the environment.
MSC do not have structural ( architectural ) constructs as supported by SDL [39].
thus giving them more abstractional power. SDL specifications on the other hand
are more detailed as compared to MSCs. Considering the SDL architecture. it
represents which processes are located in which blocks and how thev communicate
with each other. An MSC may specify message exchange between old process(es)
and new processies). The automarion algorithm should be able to add these new
processes into the architecture. When an engineer is drawing MSCs. he probably
has not decided vet abour the structural modularity of the process instances in these
use cases. This structural decomposition is mostly done in the detailed design of the
project. There are many design decisions and rationales involved from requirements
and analvsis stage to design stage. Most of this is an Engineer's experience and
expertise. so it cannot be automated. We, however. can consider the automated
enrichment of SDL architecture with MSCs if our tools proceed with the user’s
interaction. This is exactly how we develop our algorithms and tools. The first step
in our algorithm is to build a SDL Structure table corresponding to the old SDL
specification. The second step is to build a MSC Structure Tuble corresponding to
the new MSC specification. These structure tables are the direct representations of
data structures inside the code. To elaborate these structure tables. we consider a
small. vague. example.

Figure 1.4 shows a simple SDL architecture. It has two blocks. Bl and B2.
Block B1 contains processes P1. P2 and P3. Block B2 contains process P4. There
inter-connection is evident from the figure. We build the SDL Structure Table for

each block in the SDL architecture. While constructing the table. the environment
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Figure 4.4: A Simple Architecture to construct SDL Structure Table.

of the block is treated like a process entity. The SDL Structure Table for block Bl
in Figure 4.4 is shown in Table 4.1. And the SDL Structure Tuble for block B2
is shown in Table 4.2. As can be seen that if the friends are connected through
multiple channels. a boolean mecEurist is set accordingly.  As already mentioned,

these structure tables map directly to data structures in our pre-phase (sce Chapter

3 tools.

. Process . Friend " mcExist © Link myvEndSignals | peerEndSignals -

PL . P2 F . chl c.d i a.b ‘

. P3 T . ch2 ! t.u '| VoW 1

;1 a3 x v

P2 4 P1 L F i chl a.b cd '

P3 P11 T ch2 i. VoW t.u ;
L 3 |y <

| Env ! F p3toenv || q p i

Env || P3 ! F p3toenv [ p I q i

Table 4.1: SDL Structure Table for Block B1
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| Process || Friend mcExist | Link | myEndSignals | peerEndSignals |
P4 Env F ! pitoenv p q i
Env | P4 F i pitoenv q p i

Table 4.2: SDL Structure Table for Block B2

Figure 4.5: New MSC.

Now. consider a new NMSC specification shown in Figure 4.5. Note that it
has processes P1. P2. P3 and P35 in it. Processes P1. P2 and P3 are present on
the old SDL architecture. shown in Figure 4.4. Process P35 is not present. so during
the automated enrichment of the SDL architecture. it must be added. But it is not
that straightforward as there are many issues involved here. Before discussing these
issues. let us construct the MSC Structure table for this MSC in Figure 4.5. It is
shown in Table 4.3.

Now. let us discuss adding process P5 to the SDL architecture. It is possible
that the user intended to add P35 in block B1 or block B2. or into a new block. But

for automated translation. concrete decisions are required. Hence our algorithms
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| Process || Friend || Message || Sent/Received |
. P1L ! P2 b sent
‘ " P3 f received
. Env a received
i g sent
P2 H P1 b received
| P3 c sent
- P3 “ P2 c received
’ | P35 d sent
P5 | P3 d received
: I P1 f sent
‘ i Env ; e sent

Table 4.3: MSC Structure Table for the new MSC

prompt to request the desired block from the user. The user is given a list of
existing blocks to choose from or he may also choose to add the process in a new
block. In the later case. he is asked for the name of the new block and then it is
connected with the existing blocks in the architecture. As we will see later on. user
interaction playvs a kev role in the automated enrichment of the architecture. We

are now able to summarize the algorithm to add a new process in the architecture.

Algorithm 1: description

For every nrocess in the MSC Structure Table. except environment {(Env). find a
corresponding process in the SDL Structure Table. for each existing block. in the
old architecture. If the process is found in any SDL Structure Table of any SDL
block of the old architecture. no new process is to be added. If not. prompt the
user by giving him the list of SDL blocks present in the old architecture. and ask
for the block where the new process is to be added. also giving him a possibility to

add into a new block. Finally add the new process from the MSC Structure Table



into the SDL Architecture. in the desired block or a new block and then update the
SDL Structure Table of that block accordingly. Based upon this statement. we can

state the algorithm as following:

Algorithm 1:
for each process p in MSC structure table
search p in SDL structure table of each block
if (p found)
noNewProcessAdded() ;
else if (p not found)
blockList = getListOfExistingBlocks();
/xx
* show the list of existing blocks to user
* plus the option to chose a new block
x/
showList(blockList);
VAT
* get the choice of user
x/
selectedBlock = getChoice();
if (blockList contains selectedBlock)
addProcess(selectedBlock) ;
else if (blockList does not contain selectedBlock)

[ xx*
= ask name of new block
x/

name = getName();

[/ *x
* create a new block
*/

addBlock (name) ;

[ **
* add the new process in this block
x/

addProcess (name) ;

/xx
* connect block to existing blocks
x/

connectBlocks () ;

endif;

endif;
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/**
* update SDL structure tables
*/
updateSdlTable();
endsearch;
endfor;

Sav the uscr selects to add the new process P53 in the block B2. Figure 4.6
shows the new process added. [t is important to note that whenever a new process
is added. it always has to follow the addition of new links (channels or signal routes)
to other processes or environment. We discuss the addition of new Links in the next

section.
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Figure 4.6: SDL Architecture with the new process added.



4.3 Addition of new Links (Channels/Signal Routes)

As we have already discussed in Chapter 2. communicating entities {processes) and
container entities (blocks) are interconnected through links. A link may be a chan-
nel or a signalroute. The former models a communication link with some non-
deterministic delay while the later models the communication link with no delay.
Addition of new process(es) always follow addition of new links to other processes
or environment. However. the addition of new links might also be required even
when no new processes are added to the architecture. This is the case in which
the new MSC specifies message exchanges between two eristing processes. Since
the processes are already existing in the specification. so they must have already
been registered as friends in the SDL Structure Table. But the user may want to
exchange the new messages using a new link between them. Also. the new MSC may
specify message exchanges between new processes and environment or new messages
between existing processes and environment. In all these situations new links are
required ro be formed. Considering MSC in Figure 4.5. after addition of new process
P5. in block B2. it has to be made friend with the existing processes. The JSC
Structure Table 4.3 shows P3. P1 and Enc in the friend’s list of P5. Since P5 is a
newlv-added process. a link has to be made to each of the P3. Pl and Env. Qur
algorithm prompts the user for each link and makes the link accordingly. Further.
the algorithm also checks for the new message exchanges between between erist-
ing processes as specified by the MSC. For each new message. the algorithm asks
the user whether he wants to exchange the new messages through existing links or
through new links and then acts accordingly. The updated architecture after the
addition of P35 is shown on the Figure 1.7.

We give a choice to the user that he may add the new processes anvwhere
in any block or even in new blocks. This liberty makes the algorithms a little bit

more complicated. In fact. the more choices we give to the user. the harder the



Figure 4.7: SDL Architecture, after addition of new process and links.
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Figure 4.8: An MSC with two new processes to be added.

algorithms become. To elaborate we consider another simple example. Figure 4.8
shows an MSC with two new processes to be added. namely. P5 and P6. Adding P35
and P6 to the uld architecture of Figure 4.4 gives rise to three different scenarios.
Sav the user selects to add P35 in block Bl and P6 in block B2. This is
similar to the example already discussed. When P35 is added into block B1. it has
to be made friend with already existing process P2 through an explicitly specified
channel. And after adding P6 to block B2 it has to be made friend with the

previously added process P5. Since P35 is another block. two things must be done.
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Firstly. our algorithin adds an explicit channel from P6 to the Env of the block.
Secondly. it asks the user whether he wants to propagate the new signals through
an existing link between Bl and B2 (if one exists) or through a new link. In the
later case. the algorithm adds an explicit link between B1 and B2.

The second scenario is slightly more complicated. Say the user adds P35
in block B2 and P6 in the block Bl. P35 has to be made friend with P2 in the
block B1. To establish this friendship. an explicit link is made between P35 and the
environment of the block B2. The user explicitly selects the link between Bl and
B2. And then an explicit link is made from P2 to the environment of the block B1.
Then. when PG is added in the block B1. it has to be made friend with the process
P5 in block B2. As before. the algorithm adds an explicit link between PG and the
environment of the block Bl. lets the user select an explicit link between the blocks
Bl and B2 and then adds an explicit link between P35 and the environment of the
block B2.

The third scenario involves the possibilities when the user selects to add
both P35 and PG in either block Bl or block B2. This case is relatively simple
because no inter-block connecting is involved here. All the links are to be formed
inside the block where the two processes are added. Considering that the user has
selected to add the two processes in Bl. P35 is added first and connected to P2
through an explicit link. Then PG is connected to P35 through an explicit link. It
is important to note that as soon as an enrichment is made in the architecture. the
corresponding SDL Structure Table is updated accordingly to reflect the change in

data structures in the memory. Next we tryv to summarize the algorithm for adding
the new Links into the architecture.
Algorithm 2: description

For every new process added in the SDL architecture. in the Algorithm 1. find its

friend(s) in the SDL Structure Table. For each friend. if it lies in the same block
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as to which the new process is added. connect the new process to its friend with an
explicitly specified link. If the friend lies in a different block. then first connect the
newly added process to the environment of the block through an explicitly specified

link and then connect the two blocks through an explicitly specified link.

Algorithm 2:
for each newly added process p in a block b
[/ *%

* get a list of process p’s friends in
* the existing SDL Structure Table
*x/
existingFriends = getFriends(SDL Structure Tables);
for each friend in existingFriends
/xx*
= get the block where the existing friend
* 1s present
*/
blockOfFriend = getBlock(friend);
/*

*

check if the process is added
* in the same block as where its
* existing friend is present
*/
if ( b == blockOfFriend )
/xx
* connect the friends together through
= an explicitly specified link
*/
connectPtoFriend();
VAL
* process p may have been added in a
* block different from blockOfFriend.
* This also includes a new block
*/
else if ( b !'= blockOfFriend )
/xx
* connect p the the env of block b through
an explicitly specified limk.
if p is already connected to the env
then give a choice to use the existing link
or new link

* % X



*/

completeConnectionToEnv( p );

VAL
* 1f block b is not connected to blockOfFriend
* then complete connections to the blockOfFriend. If
* 1t 1s already connected, then enrich the existing
* link, or add a new explicitly specified link
x/

completelnterBlockConnections(b,blockOfFriends);

endif;
endfor;
endfor;

4.4 Adding new Signals

Signals are specified at the ends of the links. So each time a new link is formed byv
applyving Algorithm 2. signals have to be added to it to complete the architecture.
MSCs specify the exchange of messages between processes. but they don't specify
which link to follow. NSCs may specifv exchange of new messages between processes
which are already connected through one or more links in the existing architecture.
Bur the intentions of the designer might be to pass the new signals through a new
link between the processes. In such a case a new link mayv be formed according to
Algorithm 2. Otherwise an existing link is used to add the new signals. In either
case new signals are added with the help of myEndSignals and peerEndSignuls of
the SDL Structure Table and the sent/received column of the MSC Structure Table.
relevant to the processes under enumeration. A sent signal from P1 to P2 is added
to the peer End of the link between them in the peer EndSignals collection. A
received signal on the other hand is added at the myEnd in the myEndSignals

collection. Thus we are able to phrase the algorithm for AddingnewSignals.



Algorithm 3: description

For each message m between friend f of a process p. in the MSC Structure Table.
if it is a sent message from process p to a friend f. find out if a corresponding
signal exists in the peerEndSignals collection of the corresponding friend f of the
corresponding process p. in the SDL Structure Table. If it does. we don’t do any
addition of signals. [f it does not. find out the collection of channels between friend
f and the corresponding process p. Ask the designer explicitly. whether he wants
to carry the new signal m through one of those existing channels or through a new
one. In case he selects one of the channels from the list, add the signal m to its
peerEndSignals and update the SDL Structure Table. This process is repeated for
cach signal between each process and its friends in the MSC Structure Table. In
case the message is qualified to be received in the MSC Structure Table. just replace

the peerEndSignals to myEndSignals in the above definition.

Algorithm 3:
for each message m between friend f of process p in MSC Structure Table
if ( messageType( m ) == sent )

peerEndSiglist = getPeerEndSigList(p,f);
if ( peerEndSigList contains m )
/*x
* no signal enrichment required
*/
else if ( not peerEndSiglList contains m )
channelCollection = getChannelCollection(p,f);
/**
* give a choice to the user to either
* select one of the links from the
* list or a new link
*/
choice = selectChannel(channelCollection);
if ( choice is existing link )
enrichPeerEndSignals(choice,m);
else if ( choice is new link )
addNewLink(chice,p,f);
enrichPeerEndSignals(choice,m);
endif;
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endif;
else if ( messageType( m ) == received )
myEndSiglist = getMyEndSigList(p,f);
if ( myEndSiglist contains m )
[ *xx
* no signal enrichment required
*/
else if ( not myEndSigList contains m )
channelCollection = getChannelCollection(p,f);
J/xx
* give a choice to the user to either
* select one of the links from the
* 1ist or a new link
*/
choice = selectChannel(channelCollection);
if ( choice is existing link )
enrichMyEndSignals(choice,m);
else if ( choice is new link )
addNewLink(chice,p,f);
enrichMyEndSignals(choice,m);
endif;
endif;
endif;
endfor;

The SDL architecture enrichment algorithms run sequentially. from Algo-
rithm 1 followed by Algorithm 2 to Algorithm 3. Our architectural enrichment tool

implements them completely. We will show some examples in Chapter 6.
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Chapter 5

Merging SDL Specifications

5.1 Introduction

Old and new specifications can be merged to get an enriched specificationi41l . En-
richnient or extension of an existing svstemn has always been an area of prime interest
of researchers [42. 41. 43", With the availability of CASE tools {31. 32]. which can
even generate code automatically. the need and significance of automated specifica-
tion merging algorithms and rools. to get automated enrichment. have increased.

To discuss the behavioral merger. consider a FSM specification of a simple
vending machine. vendorl. which accepts a coin and delivers a coke after the user
presses the coke_button. This machine is shown in figure 5.1. =1 is the initial state
of vendorl.

The machine in figure 5.1 allows the user to get a coke after entering a coin.
Now. consider that we want to have a machine which accepts a coinand then the
user can choose to get a coke or a pepsi. Figure 3.2 models a machine which after
accepting a coin gives a pepsi when user presses the pepsi_button. Figure 3.2 can
be either be viewed as a separate machine or as a new functionality to the existing
machine in figure 5.1. Considering figure 3.2 as a new functional requirement to the

existing machine. an enriched machine can be obtained by merging the machines in
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Figure 5.1: A simple vending machine

figure 5.1 and tigure 5.2. The enriched machine should preserve all the behavior in
the old machine(s). That is to sav. it should deliver a coke when the user inserts a
coin and presses the coke_button. Also. the enriched machine should not have any
new non-determinisin introduced in addition to the one already present in the old
machine. Thix is because a new non-determinism might invalidate the old behavior.
For this example. the enriched machine. after merging figure 5.1 and figure 5.2 is
shown in figure 3.3.

The aim of this chapter is to formally define behavior preservation in SDL
and introduce extension relations. which define extension of SDL specifications en-
suring behavioral preservation and forbidding an introduction of new non-determinism
in an enriched SDL specification. Using these. we would define rules for merging
SDL specifications on transition by transition basis. Informally. we define a transi-
tion from a current state to a nert state upon accepting an input signal (trigger).
and delivering a sequence of output signals. So according to this definition. if in
two specifications S1 and S2. two transitions have the same current state. same in-
put trigger. the same sequence of output signals and the same nert state. then we

say that the transitions are equivalent. Merging equivalent transitions result in a
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Figure 5.2: Another simple vending machine with different functionality

similar transition. But there are many other scenarios as we will see later. The
rules established in this chaprer are guidelines for our poust-phase tool and for SDL

behavioral merger in general.

5.2 Behavior preservation in SDL

Behavior preservation in SDL has been defined in 17:. Informally. an SDL specifi-
cation S2 preserves or ertends the behavior of another SDL specification S1. if and
only if S2 exhibits all the behaviors of S1 without any new non-determinism. In
other words. S2 shows all the traces (sequence of interactions with the environment)
of S1 without anv new “surprise” to the environment relativelyv to these traces. S2
can be used where S1 can be used. S2 may exhibit more behaviors than S1. For
instance. S2 mayv take into account new input signals and define the behavior of
these signals. S2 mayv also react with more output signals for already defined input
signals.

The conformance and equivalence relations defined in [44. 43, are defined
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Figure 5.3: Enriched vending machine

upon blocking semantics. In other words. thev are based on a system where a svs-
tem or a process blocks for a non-defined interaction with its environment. These
relations cannot be applied tor SDL. which has non-blocking semantics. An SDL
process communicates with its environment in an asynchronous manner. The en-
vironment sends signals through channels and these signals are queued in an input
gueue of the process. At a given state. an unexpected input signal. i.e.. a signal not
explicitly specified as input. is just removed from the input queue of the process.
Furthermore. SDL processes mayv save signals for future consumption.

In order to define behavior preservation. or the ertension relation. in the
context of SDL. a few notions are introduced in {17]. without referring to any under-
lving semantic model for SDL. These definitions can be applied under any extended
input/output communicating finite state machine model for SDL. For the sake of

convenience. we repeat these definitions here.

e For each process P. a state s. Input(s) is defined as a set of input signals for
which an explicit transition is defined from s. In this definition we view the

SDL kevword none as an input signal.
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e For a process P. a state 5. Save(s) is defined as the set of input signals saved

in the state 5.

e For a process P. a state =, an input i, Qutput(s.i) is defined as the set of
sequence of output signals in the transitions initiated by the input signal :

from the state S. The =" is used for concatenating sequences.

e For a process P. a state S. an input . and a sequence seq in Qutput(s.1).
NertState(s.1.scq) represents the set of states that can be reached from s
with input / and output sequence seq. Notice that in SDL. with a given input
signal and a sequence of output signals we can reach different states. This

kind of non-determinisim can be modeled easily with SDL kevword any.

e A sequence seql of (output) signals ertends another sequence seq! of (output)
stgnals. if and only if seg! is a prefix of seq2. For instance. sequence 0.1.1.0

crtends sequence (). 1

Informally. state ~, extends state s;. when s, has all the explicit inputs of
~; {and more) and for each of them. for each state s;/ we can reach from s, and
an output sequence segl. there is a state s,/ we can reach from s, and an output
sequence seq2 with sof ertends s,/ and seq2 extends seql. and for each state s./ we
can reach from ~, and an output sequence seq?2. there is a state s/ we can reach
from ~. and an ourput sequence seql with s.f ertends sy/ and seq2 esrtends seql. and
a signal saved in s; is also saved in »,. The extension between processes is defined

as the extension between their initial states{17].

Definition 1(State Extension)
State s, extends state s;. if and only if
e Input{sy) C Input(sa).

e Save(s;) C Save(ss).



o Vi € Input(sy).¥seql € Output(s,.i).3seq2 € Output(s,.1). such that
o seq2 ertends seql. and
o Vsat € NextState(ss.i.seq2).3s,) € NertState(s).!.seql) such that s,/

extends s;/. and

e Vi€ Inputi=).¥seq2 € Output(ss.i). Iseql € Qutput(s,.!). such that
o seq2 ertends seql. and
o Vsyl € NextState(ss. i seq2).3sy) € NertSate(s).!i.seql). such that s/

ertends s/.

Definition 2(Process Extension)

A process P, ertends a process Py, if and only if
Initial(Py) ertends Initial(Py). where as
[natial (P represents the initial state of P. with : = 1.2, ...

To illustrate the extension relation hetween processes. consider the example
given in Hgure 5.4. Both processes Py and P, are non-deterministic. As we can see.
state ~; in P, extends state s; in Py ostate s5 in P extends s,. Now. if we compare
state s, and s~y we see that Tnput{sg) = a and Input{sy) = a. Qutput{sy.a) =
Output(sy.ay = 0.1.1. NertState(sy.a.0.1) = s;. NertState(s;.a.0.1) = 5. 0.1
extends itself and ~; extends s;. NertState(sg.a.1) = so. NertState(s3.a.1) = ss.
1 extends itself and s extends s,. In state sq. process Py does not save any signals.
while process P, saves signal b. We can conclude that s; extends sq. Therefore. P,
extends P;.

Now. if we consider the second example given in figure 3.5. we can see that
the process P; is not an extension of P;. The reason is that P, introduces a new
non-determinism in state s3. Indeed. after consuming signal a. the output can non-
deterministically be 0.1 or 1 for P;. Process P; always produces 0.1 after consuming
a. Of course process P, has more behaviors than process P;. but because of this

new non-determinism. Py is not an extension of Pj.
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Process P2

Figure 5.4: P2 is an extension of P1

We are interested in extending the SDL system specifications. Let us con-
sider a SDL specification S and denote by Input(S) the set of signals that can be
sent from the environment to S and by Qutput(S) the set of signals that S can
send to the environment. From the environment point of view. i.e.. hiding all the
internal interactions between the processes in the system. the behavior of the SDL
svstem specification S can be seen. similarly to the processes. as an input/output
finite state machine. A state of the svstem is defined by the state of the processes
in the svstem. The svstem interacts with the environment through signals from
Input(S) and Output(S). The transactions are triggered by signals from Input(S)
or by none. during a transaction a sequence of output signals from Qutput(S) is
sent to the environment and the svstem S moves from one state to the next state in

a very similar manner to a process. The set of signals to be saved in a global state
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Figure 5.5: P4 is not an extension of P3

s. Savei~). is defined as the union of the saves of the states of the processes that
define this global state. With this abstract view of a svstem in mind. we define the
extension relation between global states in a very similar way to Definition | and
the extension relation between SDL svstems in a very similar manner to Definition
2.

In order to extend a SDL system specification. our approach consists of
extending the processes in the svstem. We claim that extending the processes in the
svstem is a sufficient condition to extend the whole system. provided that the set of
input signals for the processes in the svstem are disjoint.

The methodology discussed in Chapter 3 follows the extension relations

discussed here. The post-phase of the enrichment process consists of merging two

SDL behavioral specifications. In the next section. we discuss the heuristics involved



in the behavioral merger. which ensure the preservation of old behavior and prevent

the introduction of new non-determinism in the resulting specifications.

5.3 Rules for merging SDL Specifications

The merger algorithin proceeds transition by transition. A transition in SDL is
between one state to another upon reception of an input (trigger) and and a sequence
of output signals. In SDL. a transition may contain other constructs like tasks.

decisions and procedure calls. but for the sake of establishment of rules. we will only

consider tnput and sequence of output signals.

5.3.1 Assumptions and Notations

e Consider processes with four states i.e. sy, s2. s and sy. If Sgia represents

the set of states in the old specification then Sy = {s1. 52, 53,5, }.
e A transition in the new specification is shown in bold and called T hew-
e A transition in the old specification is called Tog.
e A transition in the resulting specification is called Tpes.
e s; is the nutial state tor all the transitions.

e T, Input represents the input signal in the initial state. where as rrr is old.

new or res.

o T.xxOutput represents the sequence of output signals from initial state to

nert state. where as rzrr is old. new or res.

o T,.xNextState(T xxInput. T,Output) represents the nert state from the

inetial state with input T, Input and output T,,.,Output. where as rrr is old.

ney’ o res.
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o T,os = Toig = Thew. where as = represents a behavior merger svmbol.

o T,Save is a set of save signals in the initial state of a transition. where as

rrr is old. neuw or res.

5.3.2 Rule 1 (similar transitions)

Two sumilar transitions. when merged. result in a sirnilar transition. without any
new behavior. Considering figure 3.6. T, Input = Toylnput = {a} . T,,.,.Output =
ToqOutput = {0} . T, NextState( Ty Input. The Output) =

TaaNertState(Talnput. TyOutputy = {sa} and sy € Sy 50 Trey = Tya = Thpw 15

pussible and hence allowed.

Figure 5.6: Rule 1: merging similar transitions

5.3.3 Rule 2 (same output signal sequence, different next

state)

This is perhaps the most important case. as shown in figure 5.7. The new transition

differs from the old transition only by the nezt state

0



Toew NerxtState(Ty., Input. TyeOutput) = r. r might be the same state as that in
the old transition. in which case it becomes Rule 1. If r is any of the other states
in the S,y. then it is not allowed as it produces new non-determinism. In all the
other cases merge r and T,y NertState(Tqlnput. TouqOutput) and name it similar
to Ty NertState(T gl nput. TyeOutput). In the figure 5.7 r is merged with s, and

named s».

st
a a g a
c o] > G
sesuming % = 32, sZ, s3 cr sd

s,

“nis is becomes Rulel
si or s4 it preduces new non-determinism

nence not allowed

o0

Figure 5.7: Rule 2: same output signal sequence, different next state

5.3.4 Rule 3 (different output signal sequence, same next

state)

This is the case in which the new transition extends the output sequence of the cor-
responding old transition. as shown in figure 5.8. Tpew/nput = Tyqlnput = {a} and
Toew NertState(Thew Input. TneQutput) = Ty NexrtState(Tuqal nput. ToqOutput) but
TrewOutput # ToqOutput hence T,.;Qutput is an extension of TyqQutput. as shown

in figure 5.8.
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Figure 5.8: Rule 3: different output signal sequence, same next state

5.3.5 Rule 4 (different output signal sequence, different next

state)

This is a scenario in which not only the T,.,Output is different from T,40utput.
but also Ty, NertState(T, .. Input. T, Output) is not the same as

T,y NertState (T Input. T,40utput). Considering figure 5.9 if y = s.. this becomes
Rule 3. For all the other scenarios including

Toew NertState (T, Input. T, Output) € {Sopu — Tug-NertState} it is not allowed
because it produces new non-determinism. So. considering figure 5.9. if y is s,. it
becomes Rule 4 and for all other scenarios including y equals s,. 53 and s, it is not

allowed to merge because it produces new non-determinism.

5.3.6 Rule 5 (different input signal)

This is a general rule for all the cases in which the T,., has a different T,,,.Input as
compared to Tyglnput. So ThewInput # Tyqlnput. For such a situation the Ty is

appended with a new transition triggered by T, I nput. followed by T, Output and

-'l
[



a a g if x=0 and y=s2, this becomes rulel
- - B ¢ x%x=0 and y!=s2, this becomes rulel
. if x!'=0 and y=s2, this becomes rule3l
e % > 1f x'=C and y'=s2 produces new non-determinism
this is ruled and it is not allowed.

Figure 5.9: Rule 4: different output signal sequence, different next state

going to Ty NVertState (T, Input. T, .Output). Figure 5.10 shows a new transi-
tion appended to the resulting specification. triggered by input signal . As far as the
algorithms are concerned. T, Output and Tpe NertState(T eI nput. T Output)

become non care conditions.

s: @ sf

S I GEC R
: “ _> 0

sz GD) s2

Figure 5.10: Rule 5: different input signal



5.3.7 Rule 6 (merger involving NONE)

When a new transition containing a NONE input signal is merged with an existing
SDL transition. it produces new non-determinism. This is shown in figure 5.11 Since
our intention is to prevent any new non-determinism in an enriched specification.

our algorithm detects and prohibits such a case.

W
>
b
O
-
3

NOT allcwed because it

D croduces new non-determinism

Figure 5.11: Rule 6: merger involving NONE

5.3.8 Rule 7 (merger involving SAVE)

Merger of two transitions with at least one of them having a SAVE signal results in a
transition containing all the saved signals contained in the merging transitions. For
all the scenarios discussed so far T Save = ThopSave = ®. But if TyySave # ¢
or TyepSave # & then T, ,Save = TygSave|l) Ty Save. This rule may also be
combined with anyv other rules. For example figure 5.12 shows a scenario where

Rule 7 is combined with Rule 3.
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Figure 5.12: Rule 7: merger involving SAVE

5.3.9 Rule 8 (merger resulting in unreachable code)

If the starting state in the new transition is not present in the old specification.
there is no wav to know where to plug in this new behavior. The new behavior
is thus unreachable code and is not allowed in our algorithm. This rule shows
that the state names tequivalent o conditions in MSCs) are very significant in the
automated extension and enrichment of SDL specification with MSCs. This is rather
a limitation of the of the algorithms. hence implyving that the user should be rather

careful with the nomenclature of conditions in NSCs.

5.3.10 Rule 9 (involving ANY -+ output signal sequence ex-

ists + old transitions go to different states)

SDL kevword ANY is very useful in modeling non-determinism. An old SDL speci-
fication may have non-determinism in it modeled using ANY kevword. As we have
alreadv mentioned. the enrichment or extension of the SDL specification should
preserve the old behavior. This include preserving the existing non-determinism
in the old SDL specification. But still new transitions resulting due to the new

MSC may be such that some or all the non-deterministic transitions in the old SDL



specification need to be extended,/enriched. We have designed six rules concern-
ing transitions involving ANY. Rule 9 to 14. below. deal with transitions involving
NOXNE.

Say the neuw SDL transition has the same input signal as the old non-
deterministic transition. Qutput signal sequence erists in the old transition but not
going to the same state. This will enrich the output sequence. using Rule 3 of the
old transition. which goes to the same state. This is shown in figure 3.13. Note
that the new transition is merged with the left branch using rule 3. No merger is

done with the right branch. Had it been done. it would use rule 2 and disallow the

nmerger.

«D a

a
| Z . any

B si
- . GO :

[

Figure 5.13: Rule 9



5.3.11 Rule 10 (involving ANY + output signal sequence

does not exist + old transition go to different states)

This is the case when the output signal sequence of the new transition is not present
in the output signal sequence of the old non-deterministic transitions. Again. the
next state is the deciding factor for enriching/extending old non-deterministic tran-
sitions. This rule like Rule 9. uses Rule 3 for enriching/extending the output signal

sequence. as shown in figure 5.14.(b).
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Figure 5.14: Rule 10

5.3.12 Rule 11 (involving ANY 4 output signal sequence

exists + old transitions go to same states)

This is the case when the old non-deterministic transitions go to the same state. The
output signal sequence of the new transition is present in the old non-deterministic
transitions. So care must be taken for merger. As shown in the figure 5.15. the new

transition merges with the old left non-deterministic branch according to Rule 3.



but it merges with the old right non-deterministic branch according to Rule 1.

fu .

Figure 5.15: Rule 11

5.3.13 Rule 12 (involving ANY + output signal sequence

does not exist + old transition go to same states)

In this case. the outpur signal sequence does not exist in the old SDL non-deterministic
transitions.  Hence it should enrich/extend both left and right non-deterministic

transitions in the old SDL. This is shown in figure 5.16.

5.3.14 Rule 13 (involving ANY + different input signal)

This rule is in fact an extension to Rule 5. It is the case when the new transition
has a new input signal but starting from the same state as the old non-deterministic
transitions. This. in accordance to Rule 5. will add a new branch for the same state.

See figure 5.17 for an elaboration.



Figure 5.16: Rule 12

5.3.15 Rule 14 (involving ANY 4 same input signal + dif-

ferent output signal sequence + different next state)

This is the case when the new transition produces a new non-determinism in the
enriched specification. This happens when the input signal of the new transition
is the same as thar of the old non-deterministic transition but the output signal
sequence and the next state of the new transition is different. This is an extension
to Rule /. See figure 5.18 for an elaboration.

All of the 14 rules of merger discussed above have been implemented and

tested in our post phase merger tool. We will some examples in Chapter 6.
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Chapter 6

Tools and Examples

6.1 Introduction to Tools

SDL Enrichment Tool i~ part of a tuol suite consisting of UML-=NSC~SDL tools.
The tool suite contains tools for automated translation from UML to SDL and MSC
to SDL. Further. it contains a tool ser for MSC Refinement. All of these tools are

accessible through a simple interface. as shown in figure 6.1.

6.1.1 View menu

Related sub-tools are packaged rogether in a single view. The view can be changed
through the View menu bar. As shown in figure 6.2. there are three views available

i.e. UML to SDL. MSC Refinement and SDL Enrichment.

6.1.2 File menu

File menu. shown in figure 6.3. allows creating. opening. saving and closing projects.
A project may include ®.xmi files (class diagrams). *.pr files (SDL specifications)
and/or *.msc files (MSC specifications). A new project is created by New Project

menu of the File menu. It must be saved with a *.tpr extension.

0
—
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SDL Output T T ‘_ 3]
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Figure 6.1: Tool Interface

6.1.3 Select active Project

Several projects may be loaded at the same time into the tool. but only one is allowed

to be active. The functionality of all the tools is linked to the active project. To

change the active project. click on the drop down list as shown in figure 6.1.

6.1.4 Installating and running the tool

The tool is written in Java and packaged into a JAR file. Hence. it requires no

installation as long as the platform has the Java Run-time Environment installed

on it. To run the tool on UNIX use the following command:

java -jar tool.jar




Aulumaled Software Engineenng Tool Suite
File fyiene] Help
7., O UMLto SDL Tool N 1

: 7 MSC Refinement Tool ——
{9 C & spL Enrichment Tool

I TTITITe S

I saifiles
A umifiles

Figure 6.2: View menu of the tool

6.2 Architecture of the SDL Enrichment tool

Figure 6.4 shows high level architecture of the SDL Architectural Enrichment tool.
MSCParser parses the new MSC file and builds the MSCStructure Table. as men-
tioned in Chapter 4. Similarlvy SDLParser parses the old SDL file and builds the
SDLStructure Tuble. The Architecture Enricher runs the algorithms (discussed in
Chapter 4} on MSCStructure Table and the SDLStructre Table and uses ProcessEn-
richer, ChannelEnricher and the SignalEnricher to produce an enriched SDL archi-
tecture. The FielWriter writes this to a =.pr file.

For the SDL Merger Tool. as shown in figure 6.5. A single SDLParser is
used to build OldSDLDataStructure and NewSDL DataStructure from old and new
SDL specifications respectively. The Merger merges old and new SDL. using their
respective data structures and the Rulelmplementer. The FileWriter writes the

resulting. enriched specification to an explicitly specified =.pr file.

6.3 Automated Teller Machine (ATM)

We illustrate our approach by enriching an ATM svstem (in SDL) with a new func-

tion (in MSC). An initial ATM system specification is shown in figure 6.6. It consists
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Figure 6.3: File menu

of a block called ATM_BLOCK. The ATM_BLOCK exchanges signals with the en-
vironment through a channel to_enu.

The ATM_BLOCK is shown in figure 6.7. It has two processes. ATM and
Bank. Their behaviors are shown in figures 6.8 and 6.9 respectively. The user starts
the transaction by entering a card into the machine. The ATV then waits for 10
units of time for the user to enter a valid pin number. If he does not do so. the ATV
returns the card to the user and goes back to the idle state. If the user is able to
enter a valid pin number within 10 units of time. the AT\ goes to options state.
The user has two options in this specification. He can either withdraw monev or
cancel a transaction. However. the user’s card is rejected if he supplies an invalid
pin number. The process Bank is internal to the svstem. It does not interact with
the environment. The process ATAM interacts with the users in the environment.
Our specification assumes one user at a time since we only have one AT\M process.

Now. assume that we want to enrich the existing function with a new func-

tionality. i.e.. when the card has been accepted. the user should also be able to
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Figure 6.4: Architecture of the SDL Architecture Enrichment tool

getBalunee in addition to weithdraw and caneel. This new function (behavior)y. is de-
scribed in the NSC given in figure 6.10. In NSC getBalance. we have used a global
condition. options. to indicate where the new behavior is to be added in the existing
SDL processes. Notice that the style of the given MSC is very important. The
conditions are important for merging the new behaviors with the old ones. The user
should know where the new behaviors have to be added. However. the conditions do
not have to be global. they can even be local. While adding this new functionality
into the system. we want to preserve the old behavior of the system (getBalance and
cancel). Our automated approach guarantees this.

As discussed in Chapter 3. the first step in our approach is enrichment of

eristing architecture. SDL Architectural enrichment tool does this while getting
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Figure 6.5: Architecture of the SDL Merger tool

Rulelmplementer

feedback from the user. whenever required. For this new MSC. no new processes are
to be added into the existing architecture. As shown in the figure 6.10. get_balance.
req-balance. balance and print_balance are new signals to be added into the archi-
tecrure. The tool allows them to be added either through existing links or through
new links between ATV and Bank processes. The enriched ATM syvstem and block
are shown in figures 6.11 and 6.12. respectively.

The next step in our approach is to generate the new behavior for the ATA/
and Bunk processes. This is done in the MSC2SDL phase of our approach (refer to
Chapter 3). Newly generated behaviors for ATV and Bank are shown in the figures
6.13 and 6.14 respectively.

The final step in our approach is the merger of old and new behaviors to

get the enriched system (refer to Chapter 3). This is done by the SDL merger
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Figure 6.6: The ATM System

tool. It merges the behaviors of old and new ATAM processes of figure 6.8 and 6.13.
respectively. using the rules of merger discussed in Chapter 5. Similarly. it merges
the behaviors of old and new Bank processes of figures 6.9 and 6.14. respectively.
Finally. the enriched ATM svstem and block ATM_BLOCK are shown in figures
6.15 and 6.16. respectively. The processes ATV and Bank with enriched behavior
are shown in figures 6.17 and 6,13, respectively. Notice that in the behaviors of the
enriched processes. all the old behavior is preserved and and no new non-determinism

is added.

Further Enrichment (second iteration)

Now. we illustrate further enrichment of the ATM specification. Currently. we have
an ATM specification having options to withdraw money. cancel a transaction and
get_balance of a user. as shown in figures 6.15. 6.16. 6.17 and 6.18. Sayv we want the
ATN system to have the functionality for depositing money. This new function is
specified in an MSC deposit. shown in figure 6.19. The SDL architecture enrichment
tool is used to enrich the existing architecture (figures 6.15 and 6.16) in the pre-
phase. Resulting. enriched architecture is shown in figures 6.20 and 6.21. Note that

new signals deposit. option_deposit. ok. amount_insg. amount and deposit.amount
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Figure 6.7: The ATM Block

are added in rhe enriched architecture. MSC2SDL tool. in the MSC25DL-phase.
generates new behaviors for ATV and Bank processes using new MSC (figure 6.19)
and the enriched architecture. The new behaviors of AT)M and Bank processes
is shown in figures 6.22 and 6.23 respectively. Finally. the SDL merger tool. in
post-phase. merges both the old and new specifications to produce enriched ATM
specifications.  The enriched behaviors of AT)M and Bank processes is shown in
figures 6.24 and 6.25 respectivelv. Thus. in this second iteration of incremental
development of the ATN specification. we have added another functionality into
ATM system. This iterative process can be continued until all the requirements are

met. Intermediate or final prototvpes can be simulated. verified and validated.
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Figure 6.11: Signals get_balance and print_balance added to the ATM System
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Figure 6.14: New bank behavior generated by the MSC2SDL tool
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Figure 6.22: New ATM behavior generated by MSC2SDL tool
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Chapter 7

Conclusions

7.1 Contributions of this thesis

Our approach can be used for enrichment of SDL specifications with MSC during
the maintenance phase or it can be used for incremental design of SDL specification
using MSC. The approach consists of three steps. named as pre phase. MSC2SDL
phase and post phase. The pre phase deals with enrichment of SDL architecture
(onlv) using MSC. This includes addition of new processes into existing or new
blocks. and hence addition of new links followed by addition of new signals. Or. it
includes enrichment of existing links and signal specifications. We have presented
algorithms for pre phase in Chapter 4. MSC2SDL phase relies on existing MSC25DL
tool’21. 22, 23. 24,. Post phuse merges the old and new SDL specifications to get
enriched SDL. We have given 14 rules for merging SDL specifications (Chapter 3).
based upon ertension relations defined in [17]. These extension relations. and hence
the formed rules. ensure that the old behavior will be preserved in the enriched
svstem and there will be no new non-determinism in the enriched system. In our
approach the style of the new MSC is very important. By style we mean that the
user should be aware of the old SDL specifications while writing a new MSC. If

he wants to specify new message exchanges between existing process(es) and new
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process(es) or new messages between existing processes. then he must be very careful
to name the MSC processes instances eractly as in the old SDL for eristing processes.
Further. message exchanges in MSC should be specified bounded by local or global
conditions. The name of conditions on the MSC instance of an existing process is
very significant. It is important because the SDL behavior generated by MSC2SDL
tool transforms conditions into syntactical states in SDL. The merger algorithms

proceed comparing and processing based upon these state names.

7.2 Future Work

7.2.1 Covering further SDL constructs

Presently. our algorithms and tools are applicable to enriching and working with
flut SDL architecture. Our work can be extended to cover hierarchical SDL speci-
fications. i.e. blocks within blocks. SDL behavior mayv also be specified as services
within processes. Further work can cover the enrichment or ertension of services
too. based upon MSC. The merger tool can be extended to cover further SDL con-

structs such as procedure calls. formal contert parameters etc.

7.2.2 Nlore relations for enrichment

We have developed algorithms. rules and tools based upon an enrichment relation
defined in [17]. As we have already mentioned. the characteristic of this relation-
ship is that it guarantees to preserve old behavior and prevents inclusion of new
non-determinism in the enriched SDL. A user mayv want another kind of enrich-
ment. which. for example. allows new non-determinism to be added in the enriched
specifications. This requires more formal relations of extension depending upon
what type of enrichment is required. As far as the enrichment of SDL architecture

1s concerned. its algorithms will remain the same as discussed in Chapter 4. But
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for each new enrichment relation. a new set of rules of SDL merger have to be
developed. Say we have a set of formal relations for enrichment Rel,. Rels. Rels.

. Rel,. For each relation. we will have a set of rules to guide the algorithms i.e
RuleSet,. RuleSet,. RuleSety. ... . RuleSet, respectively. Further work can include

development of such rules and relations.

7.2.3 Extended Specialization

SDL2000[2; is a rich specification language supporting object oriented concepts.
It allows enrichment of existing types using specialization. i.e.. a super-type can be
specialized into a sub-type using the specialization constructs of SDL. Specialization
supports addition of new structure and behavior. This specialization is different
from our approach in two wayvs. Firstly. it does not consider specialization based
upon MSC. Secondly. it does not guarantee that there will not be any new non-
determinism in the specialized specification. in addition to the already existing one
in the old specification. To consider this. the specialization construct can be defined
into an ertended specialization which is based upon formally defined relations. Tools
may allow specialization depending upon formally defined enrichment relations. The
user may select the type of relation and use that specialization to enrich existing

tvpes. Further work may include development of such an extended specialization.
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