INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

FUNCTION CROSS-REFERENCE BROWSER

ZHONGDE YU

A THESIS
IN
'l DEPARIMEN
OF
COMPUTER SCIFNCE

PRESENTED IN PARTIAL FULFILLAMENT OF 1111 REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPU TR SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC. CANADA

APRIE. 2002
¢ ZHONGDE YU, 2002

i+l

National Library
of Canada du Canada
Acquisitions and
Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68491-1

Canadi

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre rétdrence

Our & Notre rétérencs

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Function Cross-Reference Browser

Zhongde Yu

In this thesis. we describe the construction of a Function Cross-Reference Brow Ser. a
ool of software visualization. The Browser is able 1o parse all the source files of a
software application written in ANSI C++. to extract the information on the function
cross reference hierarchy. and to provide 3D display of the call hierarchy. The
Browser can handle a proper subset of the standard C++ features (including dynamic
binding). and it provides a convenient way to traverse the tunction call tree in a
graphic window. as well as other features for clear displaying. This thesis
demonstrates the design and implementation of the Browser. provides detailed
analysis of its execution behavior. discusses the limitations of it and outlines some
possible enhancements in the future. In summary. the work done by this thesis adds a
new member to the area of software visualization. The Browser is a useful tool for
software engineers. It can help them better understand a large. complicated sofiware

application written in C++ language.

Acknowledgments

First of all. 1 would like to take this opportunity to thank Dr. Peter Grogono. my
academic advisor. for his continuous encouragement and guidance during the whole
process of my study as a Master student in the Computer Science Department.

Concordia University. Without his help and support. this thesis would have been

impossible.

Scecondly. | also would like to thank other persons from the Computer Science
Department. such as Ms. Halina Monkiewicz, for their course teaching and

administration help.

Finally. I must thank my brothers and sisters for their spiritual support and great love

during my study.

Contents

LISTOF TABLES... ..ot e, viii
LISTOF FIGURES ...ttt e, ix
I INTRODUCTEON .uuciiiteceeeecteeereeseeeeseeesseeesecesseseseeseassssasesssssessssssssssnsens 1
1.1 OVERVIEW OF SOFTWARE VISUALIZATION oot |
1.1.1 General Visualization ..o /
1.1.2 Software Visualization and its Categories ... /
1.1.3 Why Software Visualization is Chosen for this Thesis......................... 3

1.2 CONTRIBUTION OF THESIS ©oitiititiieee ettt 3
1.2.1 PUFPOSC.. i e 3

1.2.2 DCSCPIPITON e 4

1.2.3 CIASSTfICAIION ..o -

1.2.4 Anticipated Enhancement. ... -

1.3 ORGANIZATION OF THESIS 1ottt 10

2 RELATED WORK...cteteieeeeeeeecteeeecseeseesteesessssssessasessessssssssssmssssssssses 12
3 DESIGN ettt e e sesssssssssesseses s e s ae s ae e ee s s s e 15
3.1 ANALYZER === SCANNER AND PARSER oottt 15
3.1.1 Retrieval of Primitive Tokens e 13
3.1.2 Retrieval of Function Name......................cccooveeeeoe 16
3.1.3 Construction of Function Call Hierarchy: ..., 1N

3.2 MANIPULATOR === DEISPLAYER teetteitiettettee e e 19

3.2.1 Displaving of Function Call Hierarchy ... 19

3.2.2 Displaving of Virtual Functions 21
IMPLEMENTATION cccoiiieectreeeecteeceetee e eeee e e e e e 22
4.1 INTRODUCTION TO STANDARD TEMPLATE LIBRARY (STL) woveoeeee o0
4.1.1 COMUINCTS ..o 30
4.1.2 ATZOFIIMS (o 23
4.1.3 TECPAIOPS (oo 23
414 Examples of Container Classes ... 23
4.1.3 General Theory of Operdtion ... 24
4.2 ANALYZFRI SCANNER AND PARSEFR cciiiicicccceeeeeeeeeeeeeeee 00
421 The Token CHlasses. ... o025
42,11 The Base Class: CTOKECN c.ouiiieieee e 26
4.2.1.2 Subclasses OF CTOKEN oo 27
422 The Scanner Class: CSCanner ..o 30
4.2.3 The Parser Class, CCodePaser ... 33
4230 CCOUCPAMSEE oo 33
4.2.4 Retrieval of Function Names......................................._____ 33
4.2.4.1 Retrieval of Class Names and Member Function Names............... 33
4.2.4.2 Raetrieval of Independent Function Namesoooooveoooonooooo 35
4243 Retrieval of Object Nameso..oooooiiioieeeeeeeeeeeeeee 37
42,44 Retrieval of Called Function Nameso.ooooooeeoeoooo oo 38

i

h

+.2.4.5 Retrieval of Calling Function Names........coo.oooooooo 43

+.2.4.6 Retrieval of Virtual Function Names ..o 44
425 Construction of Function Call Hierarchv........................... . 46
4.2.5.1 Template of Binary Search Tree (BST) wouvvieoeooeoooeooo 146

4.2.5.2 Construction of the Binary Search Tree for Function Call Hierarchy

48

4.2.5.3 Construction of the Binary Secarch Tree for Virtual Functions........ 48

4.3 MANIPULATOR: DISPEAYER coctteiteicceeeeeeee e 49
4.3.1 Introduction to OpenGlL............................... 49
4.3.2 Displaying of Function Call Hierarchy ... 30
4.3.3 Displaying of Virtual Functions ... 33
4.4 THE MAIN FLOW OF BROWSER -- MAINC FUNCEEON e 33
4.4.1 User Input Prompr ... 33
442 Dircectory Scanning to Collect C - - Source File Names ... 33
4.4.3 Source File Parsing ... 34
444 Graphical Display........................cccooocoi 36
RESULT AND DISCUSSION........ocnun...... rerreseaenns corseeneeanas ceesessssssnennenes58
5.1 ACCOMPLISHMENT OF DESIGN GOAL wvieaieeeeeeeeee e 38
311 Function Call Hierarchy Extraction...............................__ 38
5.1.2 Three Dimensional Display.. 39
5.2 RESULT OF OPERATION ON TESTING C++ APPLICA TION oo 62
53 DISCUSSION oo 63

6

7

8

9

FURTHER DEVELOPMENT AND CONCLUSION......vomeeeeeeeeeon 66
6.1 POSSIBLE FURTHER DEVELOPMENT .o 66
6.2 CONCLUSION L.t 67

REFERENCES ...ttt teseese e s ene e e e e 69

APPENDIX A TEST CASE ..o eeeee e 70
3.1 AT MAMMAL e 70
8.2 AL MAMMALLCPP Lt 71
8.3 A3 THE TEXTUAL OUTPUT OF FESTING APPLICATION oeveoeeeoooo o 74

APPENDIX B THE TEXTUAL OUTPUT OF THE BROWSER............ 77

viid

List of Tables

Table 4.1 Examples of some Container Classes............coooo i 24

Table 4.2 Other Token Classes Derived from CToken........ooooe 28

List of Figures

Figure 1.1
Figure 1.2
Figure 4.1
Figure 4.2

.

Figure 4.3

Figure 4.4

th

Figure 4.

Figure 4.6

e =
j o =
= =
(¢ (2]
o] tJ
to —_—

-
=
-
(1
tJ
G

Figure 5.4

A Screen Shot after Executing the Browser Program................... 4

th

The Three Layers Shown in the Browser Program.......................

The Hierarchical Relationship ot All the Token Classes...............26

The CToken Class...coo.vuiiii i 27
The Subclasses Derived from Base Class CToken....ovveononoeoii .. 30
The CScanner Class. ..o 33
The CCodeParser Class......oiiiiie e 34
The Binary Node Class BinNode ... 48
The Binary Search Tree Class BST ..o 48

The Browser Window after Executing the Browser Program..........60
The Browser Window after Selecting Another Central Function.....61

The Virtual Function Window (a) after Executing the Browser Program:

(b) after Selecting Another Central Function........................... 62
The DOS Window Showing Tree Traversal Events..................... 63

I Introduction

[.1 Overview of Software Visualization

I.1.1 General Visualization

ization is a methodology of using images to convey meaningtul information. Its
advocates point to the following important aspects. The imagery plays an important
role in human being’s communication in general. The human visual system has an
extraordinarily high bandwidth. hence human beings can track and detect visual
patterns with very high speed. Human beings have the power of abstraction. which is
inhcrent in pictorial representation.

Visualization can be applied in a number of fields such as science. information.
geography. business. statistics. process. and software. All types of visualization share
a common goal: to transforming information into a meaningtul. usetul representation
from which a human observer can gain understanding. And all types of visualization
share common foundations: all have a need to combine the graphic clements (a
grammar) into meaningful visualizations (sentences. paragraphs). Software

visualization is a new member of the general visualization tamily.

I.1.2 Software Visualization and its Categories

Software visualization (SV) refers to the visualization of computer programs and
algorithms. Contrany to visual programming which is concerned with graphical
specification of computer programs. SV deals with graphical presentation. monitoring

and exploration of programs expressed in textual form. It can help people to better

understand algorithms. to identify bugs. to generally enhance learning and speed up

development. The software visualization is believed as the art of mapping programs

into pictures [1. 2].

There are six distinct. top-level categories of software visualization. together with

many sub-categories under each one {1. 2]:

(1) Scope: What range of programs that the SV system may take as input for
visualization?

The issues are Generality (Hardware. Operating System. Language. Application)
and Scalability (Program. Data Set).

(2) Content: What subset of information about the software is visualized by the SV
system”?

The issues are Program (Code. Data). Algorithm (Instruction. Data). Fidelity and
Completeness (Invasiveness). and Data Gathering Time (Temporal Control
Mapping. Visualization Generation Time).

(3) Form: What are the characteristics of the output of the system (the visualization)?
The issues are Medium. Presentation Style (Graphical Vocabulary. Animation.
Sound). Granularity (Elision). Multiple Views. and Program Sy nchronization.

(4) Method: How is the visualization specified?

The issues are Visualization Specification Style (Intelligence. Tailorability) and
Connection Technique (Code Ignorance Allowance. Sy stem-Code Coupling).

(3) Interaction: How does the user of the SV system interact with and control it?

The issues are Style. Navigation (Elision Control. Temporal Control — Direction

(9}

and Speed). and Scripting Facilities.

(6) Effectiveness: How well does the system communicate information to the user?

The issues are Purpose. Appropriatencss & Clarity. Empirical Evaluation. and
Production Use.
Note that the above taxonomy of software visualization covers a pretty wide range.

and in practice a SV system has only part of the features mentioned above.

I.1.3 Why Software Visualization is Chosen for this Thesis

The management of source code is one of the greatest challenges facing programmers
today. As programs become longer and more complex. the need to organize and
manage source code increases. So we need a better way to manage the source code.

Software Visualization (SV) is one of the choices.

1.2 Contribution of Thesis
1.2.1 Purposc

This thesis describes the design and implementation of a Function Cross-Reference
Browser: specifically. it will build a tree of function calls in a software application
which is written in C++. and to visualize its function cross-reference hierarchy. in
order to help understanding the software program architecture and the working

principles.

.2.2 Description
Here are some details of this Function Cross-Reterence Brow ser:
(A) Execution of the Browser and Graphical User Interface
After executing the Browser program. there are three windows appearing on the
monitor screen (see Figure 1.1):
a) The Display Window 1: the larger graphical window in Figure 1. for
showing function cross-reference relationship (i.e. the function call tree):
b) The Display Window 2: the smalller graphical window in Figure 1.
showing virtual functions:

¢) The DOS Window: showing Help info.

:Cal tDog

Bl 8 57g | UMK ... | ®Tinesi . | eacomb. | MBeow . |[@Funce mVirtu . | GMicra . | THRP{ SO 10 51

Figure 1.1 A screen shot after executing the Browser program

(B) The function call tree window (Display Window 1)
Generally speaking. there are three layers in this window to display the function
cross-reference relationship. Each function is represented by a sphere node. and all
the function names are displayed besides the function nodes (see Figure 1.2).
Layer 1: the central function, i.c. function selected by the user:
Layer 0: the calling functions (if available). i.c. functions that call the central
function:
Layer 2: the called functions (if available), i.c. functions that are called by the
central function,

All the function names are displayed besides the function nodes.

TN . ’ SN
Paser o Calling Functions !

Laver 1 Central Function

Laver2 Called Functions

Figure 1.2 The three layers shown in the Brow ser program

The default status (just atter system initialization) is shown in Figure 1.1:
Layer | contains the main() function:
Layer 0 contains nothing:

Layer 2 contains functions (if available) being called by main().

(C) Display of a list of function names
By clicking the right-hand side mouse key inside Display Window No.l. a menu is
popped up showing a list of all the function names. Here assume all the source files
are in the same directory).
(D) Selection of a new central function
From (B). if clicking any one of the function names. that function will be at layer |in
the next display. so it is possible to traverse the whole function call tree (although
generally the whole tree may not be displayed on the screen.)
(E) Rotation of the function call tree
The tunction call tree can be rotated by using the mouse in order to show those nodes
which are overlapped by the nodes close to the user. when more nodes exist on a
layer and some of them are overlapped by others,
(F) The Virtual function window (Display Window 2)
Similarly. this window has the same features as the function call tree window (the
Display Window 1). except that there are only Layer | and Layer 2. The Layer |
(central function) is always for a virtual function in base class and the Laver 2 is
always for the virual functions in derived classes. This window shows the
information of possibility of dynamic binding.
In addition. by using the six special keys on the keyboard (c.g. the four arrow Kkeys
(lefi. right. up. down). Home and End). we can move the light source along six

directions in a 3D space in order to better view the function call trees.

6

1.2.3 Classification

According to the taxonomy of software visualization [1] [2]. this ol can be

categorized as the followings:

1)

4)

N
v

0)

Scope: it is a general tool to show the tunction call hicrarchy in an application:

however. it is not restricted to any particular application:

Content: it belongs to code visualization under program visualization:

Form: the medium is a PC with graphic display. and the presentation sty le s of
color and of three dimensions (3D):

Method: not applicable. since no run-time. dynamic behavior will be concerned:
Interaction: the sty le is to use mouse and drop-down menus (as those in windows
programming). and the navigation uses elision control to hide unnecessan
information. i.e. only 3 layers are displaved on screen at a time:

Effectiveness: the purpose is well specified above. as helping people to better

understand an application written in C++.

1.2.4 Anticipated Enhancement

This thesis can be thought (in the following aspects) as an enhancement to the System

Visualizer developed by Kim Thang Vu [3]. Vu's thesis describes the development of

a software visualization tool that is called System Visualizer. This System Visualizer

can extract the module structure (i.e. the “module include™ relationship) of software

application written in C or C++. and then display the module structure as a three

dimensional cone tree on the user interface (GUD. In the GUI window. up to three

levels of tree structure can be displayed by selecting a number from the menu
“Levels™. and ditferent views can be displayed by selecting a choice from the menu
“Views™. In addition. the traversal to the whole cone tree is possible by selecting a
module name from the scrolled list.

Vu's System Visualizer was developed by using PEXIib. a 3D extension to the X
Window system in Unix operating system. A complicated algorithm is required for the
3D display. and the switching among different views is in a discrete (stepwise) pattern
instead of a continuous one. Vu's thesis contains two main parts. the Parser and the
Displayer. The Parser is relativels simple. while the Displayer is pretty complicated in
algorithm during implementation.

Vu’s thesis is an attempt to build a tool for 3D visualization of software: there are
different possibilities to enhance his tool. and this thesis is one of the enhancements,

In this thesis. the visualization is changed from displaying “module include”
relationship to displaying “function cross-reference™ relationship. According to my
personal working experience in software industry. this ty pe of visualization tool could
be useful to the real work of software development. as the developers always need 1o
know the function call relationships when they want to understand a large.
complicated software application. which contains many modules and complex
function cross-reference hierarchies.

Besides the goal of visualization has been different. there are other aspects that are

different trom Vu's Syvstem Visualizer. The platform is Microsoft Windows system

(i.e. Windows 95/98/2000/NT) instead of Unix system. The Displayer is relatively

simple. since it was implemented by using the powertul OpenGL librann. However.
the Parser is rather complicated due to the intrinsic complexity of the function
cross-reference hierarchy.

For the 3D display. the view of the function call tree can be continuously changed by
dragging the mouse in the display window. in order 1o view the tree from different
angles. to see the hidden nodes: this rotation is continuous. instead of the step-mode
rotation. providing a finer tuning to the display. The light source can be moved by
using the keyboard. since fine-tuning is not necessary.

The traversal to the call tree can be achieved by selecting a function name from a
pop-up menu (by clicking mouse right Key inside the Display window). For any
selected function. the Display window only shows three levels. which are part of the
call tree. In the Display window. there are also function names as well as a help menu.
and all of them can be hidden by using designated toggle Kevs. There is also another
Display window for showing virtual functions. so that the issue of dynamic binding
can be addressed by this Browser. Note that the colors of tunction nodes are ditterent.
making it casy to identity different types of functions. such as called/calling functions.
base/derived virtual functions.

The Browser is implemented as a Win32 console application. Both the Parser and
Displayer parts are written in C++ (especially Standard Template Library. STL).
Win32 API. and OpenGL 2D graphics. This makes the Browser to be used in the more

popular world of PC Windows.

1.3 Organization of Thesis

This thesis has the following parts. and (from the second part) will be developed in

detail in the rest of the thesis:

Chapter 1. Introduction: This chapter first provides an overview of Software
Visualization (SV). then lists the contribution of this thesis. and finally gives an
outline of the thesis structure.

Chapter 2. Related Work: This chapter introduces the research work which are
related to this thesis.

Chapter 3. Design: This chapter discusses the design for the Function
Cross-Reference Browser. Basically the Brow ser consists of two main parts. onc is
the Analyzer (including Scanner and Parser. and other service functions). which is
used to parse C++ source files and to construct function call hierarchy : another is
the Manipulator (i.e. Displayer). which is used to display the function call
hierarchy in 3D graphics.

Chapter 4. Implementation: This chapter discusses the implementation details of
the Browser. It covers the two main parts of the Browser. respectively. First. it
gives briet introductions to Standard Template Library (STL) and OpenGL. Then
it provides the details of various classes (such as tokens. scanner. and parser) to get
primitive tokens. as well as service functions 1o retrieve function names and to
construct tunction call hierarchy. Finally. this chapter provides the method of how
to display the function call hierarchy in 3D graphics.

Chapter 3. Result and Discussion: This chapter presents the accomplishment of the

10

design goal. the result of operation. and discusses the C++ features w hich the
Browser can handle as well as others it cannot.

Chapter 6. Further Development and Conclusion: This chapter proposes some
possibilities to further enhance this Browser. and gives the conclusion of this
thesis.

Chapter 7. References: This chapter lists some important literatures referenced by
this thesis.

Appendix A: This Appendix lists the source code of the testing C++ application
used by this thesis.

Appendix B: This Appendix lists the textual output of the Browser atter running

on the testing code listed in Appendix A.

2 Related Work

The importance of visual representations in understanding computer programs is not
new. Software visualization is an approach to enhance software program
representation. presentation and appearance. The SV history can be sketched in terms
of several major threads of activities. (All the following research on SV are from
reference [2].)

1)} Presentation of source code

An carly attempt to improve program appearance was the development of a
“presentation”. or “reference” form of the programming language ALGOL60. Another
idea was pretty printing. which used spacing. indentation. and layout to make source
code casier to read in a structured language such as LIST or Pascal. More recent
developments have used computerized ty pesetting and laser printing to improve the
presentation of source code. An ambitious recent attempt to enhance the presentation
of source code is the work of Baecker and Marcus. Their SEE Program Visualizer
automatically typesets a C program according to an elaborate style guide based on
graphic design principles. Knuth’s WEB system also seeks to enhance program
publishing. combining program source text and documentation in a single publication
using a sophisticated markup language. Today. almost all the software development
tools (e.g. Microsoft Visual C++) can present formatted textual styles for reserved
words. strings and comments in different colors. making it easier for developers to
write and recognize the contents of source code. and enhance development efficiency.

2) Representations of control flow and data structures

The role of visual representations in understanding computer programs has a fong
history. beginning with flowcharts demonstrated by Goldstein and von Neumann. Hait
developed a system that could draw them automatically from Fortran or assembly
language programs: Knuth produced a similar system which integrated documentation
with the source code and could automatically generate flowcharts. Baecker's
prototype interactive debugger for the TX-2 computer produced static images of
high-level language data structures and of the computer graphics display file. Myers's
Incense system was a more ambitious system for the display ot data structures. More
recently. there has been an explosion of interest in visual programming. the use of
visual representations of programs as both an input and an output modality.

3) Animation of program behavior

Licklider did carly experiments on the use of computer graphics to view how the
contents ol the memory of a computer were changing as the computer was executing.

A ditferent approach was taken with Knowlton's influential files. which demonstrated

ge. This work was the tirst to use

=

L[6]. Bell Lab’s low-level list processing langua
animation techniques to portray program behavior and the first to address the
visualization of dynamically changing data structures. Other people continued this
work in a pedagogical directions. Baecker outlined the potential of program animation
and sketched many of the key rescarch issues. Hopgood produced a series of short
tilms illustrating hash coding and syntax analysis techniques. Yarwood explored the
concepts ot program illustration. and methods of embedding graphical representations

of program state within program source text. Booth produced a short tilm animating

(Y]

PQ-tree data structure algorithms. Baecker also reported on work in which he and his
students were investigating the portrayal of data structure abstractions and algorithms.
eventually leading to the important tilm Sorting Our Sorting.

4) Systems for software visualization

The availability in the 1980°s of personal workstations with bit-mapped displays and
graphical user interfaces allowed researchers to go beyond the prototy pes and specific
animations of the 70s and develop software visualization systems. One of the earliest

attempts to a debugging system to aid visualization was the work done in Lisp by
Lieberman. The most important and well-known system of software visualization was
BALSA. followed by BALSA-IL which allowed students to interact with high level
dynamic visualizations of Pascal programs. It was used as a tool in algorithm design
and analysis. Literature [1. 2] gives more examples of software visualization.

A directly related work on code visualization has been done by Kim Thang Vu [3]. Vu
developed a software visualization tool. which is called System Visualizer. It can
extract the module structure (i.e. the “module include™ relationship) of software
application written in C or C++. and then display the module structure as a three

dimensional cone tree on the user interface. Vu's System Visualizer is an attempt to

build a tool of code visualization tor 3D visualization of software.

3 Design

The principal topic of this thesis is source code management. It describes a tool that
has two components: the Analyzer and the Manipulator (i.e. the Displayer). In general.
source code management involves two operations: analysis and manipulation. The
former is parsing the source code and building up tunction call tree. and the latter is
displaying the call tree in graphic windows.

The analysis of the source code can vield useful information about the program that

aram. it

-
<

may not be readily apparent or easily obtained. For example. in a large pro
may not be casy 1o see. tor a specific function. which tunctions are being called by it
and which functions call it. A source-code analvsis wtility (Analvzer. swhich contains
Scanner and Parser) can examine the tiles of source code and extract the function call
hierarchy information.

The manipulation of the source code is to manipulate the code to conform to some
standardized style. or to display the information in a graphic format. A source-code
manipulation program — (Manipulator, here s Displaver) can display the

above-mentioned function calling hierarchy information.

3.1 Analyzer --- Scanner and Parser

3.1.1 Retrieval of Primitive Tokens

(2]

The Parser shares many common tasks with compiler front-ends: both receive code as
input. break the code down into tokens. and then output these tokens in a new format.

The compiler’s output is machine code. while here the Parser’s output is just the type

]

of each token. The Parser is like a simplified version of compilers in some ways.

The most basic element of any programming language is called a token. Tokens are
the smallest recognizable elements of a program: they comprise the building blocks
for creating meaningful statements. Compilers generally do not work with anything
smaller than tokens. Comments. constants. identifiers. numbers. punctuation. and
string literals are all examples of tokens. It is the job of the Scanner to read the code.
break it down into these elements. and return them back to the Parser. The Scanner
also identifies the type of token to return. The Parser requests successive tokens from
the Scanner and takes appropriate action betore requesting the next token.

After the type of cach token can be identitied. there are still several tasks to be done:

to retrieve function names and to build up function call hierarchy .

3.1.2 Retrieval of Function Name

First of all. we need to tind the names of elasses and their member functions. based
on the primitive tokens. This is the foundation of building up tunction cross-reference
hierarchy. Two global lists are maintained for the class names and member function
names respectively. In the meanw hile, we also need to tind the names of' independent
functions. which are not members of any class. Again. a global list is maintained for
the independent tunction names. Here we can call these two types of tunctions
together as the central functions.

Then. we need to tind the names of all the objects which are declared in the source

files. Here we need the knowledge of class names. which have been found above.

Similarly. a global list is maintained for the object names.

Next. we need to find the names of functions which are called by each of the central
functions (both the class member functions and independent tunctions). These
functions are the called functions. This is the crucial step in building up function call
hierarchy. During the construction of this call hierarchy. for cach central function. a
temporary global list is maintained tor the called functions. The function call
hierarchy is constructed as a binan scarch tree (BST). in which cach node
corresponds to a central tunction and the node has an attribute to store its called
function list.

The next step is to tind the names of tunctions which call each of the central functions.
These tunctions are the ealling functions. However. we do not need to scan the source
files again. because we already have the information of the calling functions for cach
central function in the BST. after the called functions of this central function are tound
and inserted into BST. What we need to do here is to traverse the BST. extract calling
function information. and maintain a temporal global list of calling function names tor
cach central function.

In addition. there is an important issue we need to resolve. namely virtual functions.
This is a special but difficult issue when dynamic binding appears. Dynamic binding
is a runtime behavior. Generally speaking. when virtual function is not called directly.
it is impossible to know exactly which version of a virtual function will be called at
compile time. either the version in base class or the version in derived classes. The

solution provided by this thesis is to find all the possible versions of a virtual function.

and maintain another BST for the hicrarchy relationship between base virtual
functions and derived virtual functions. In summary. the followings are the steps to
retrieve function names:

® Retrieval of Class Names and Member Function Names

* Retrieval of Independent Function Names

e Retrieval of Object Names

e Retrieval of Called Function Names

e Retrieval of Calling Function Names

e Retrieval of Virtual Function Names

3.1.3 Construction of Function Call Hicrarchy:

Here a Binary Search Tree (BST) is declared and used to store the function
cross-reference hierarchy . Each node in this BST corresponds to a central function. i.c.
the node contains a key clement to store the name of a central function: in the
meanw hile. the node also contains two sets of functions names. one for the called
functions of. the other for the calling functions of. the central function. In addition. the
node has a flag shos.ing the type of this central function. i.c. non-virtual. base virtual
(for virtual function in base classes) or derived virtual (tfor virtual function in derived
classes). as well as two pointers pointing to the left and right nodes ot the central
function.

As described above. two BSTs are maintained. one for the Function Call Hierarchy.

another for Virtual Functions. The construction of these two BSTs are carried out

during the processes of function name retrievals.

(%)
19

Manipulator --- Displayer

(o)
19

-1 Displaying of Function Cail Hierarchy

After the tunction call trees (including the one for virtual functions). an OpenGl.
program is called to display two graphic windows. and one of them is for function call
hierarchy.

I) Function nodes. names, and colors

As mentioned in the Introduction. generally there are three layers in the function call
hierarchy window (although not alwayvs true). i.c. a central node at Layer | tor a
central function. some nodes at Layer 2 for the called function (if° they exist). and
some other nodes at Layer 0 for the calling functions (it they exist). Note that the
nodes at Layer 2 are evenly positioned. regardless ot the number of nodes: and so are
the nodes at Layer 0.

The function names for all the nodes can be toggled to be displayed or to be hidden in
the display window by a specitic kevboard stroke: also. a help menu can be toggled to
be shown or to be removed. In addition. a more detailed help menu can be shown in
the DOS window.

There are also connection lines which connect cach nodes at Layer 2 and Layer 0 to
the central node. in order to show the function call relationships between Laser | and

Layer 2 as well as between Laver 0 and Layer 1.

It there is no node at any layer (except Layer I at which there is always one and only

19

one node at all time). no connection line will be shown. and a dummy name such as
“No Calling Func™ or “No Called Func™ will be shown at the Layer O or at Laver 2.
For clarity of visual displaying. the nodes at the three layers are in different colors. i.c.
red for central node at layer I. green for called functions at layer 2. and cyan for
calling functions at layer 0. However. base virtual functions are always in vellow. and
derived virtual functions are always in pink. no matter at which level they are
currently displayed.

[T'any node is hidden by others. we can use the left mouse Key to rotate the tree so that
the hidden node can be moved to a position where it can be seen clearly.

Also displayed in this window is a light source. which can help to create a real 3D
illusion of the function nodes. The position of the light source can be adjusted by
using six special kess on the kevboard: the Left/Right:Up/Down arrow keys for
moving the light source along the lett/right/up/down direction. and the Home End
Keys for moving the light source towards/backwards the user.

2) Tree traversal

By clicking the right mouse key. a list of all the function names can be shown. and any
one of them can be selected as a new central function: if a new central function is
selected. the display on the function call graphic window is updated. so the selected
function as the central node at Laver 1. and its called and calling tunctions are
displayed at Layer 2 and Laver 0 (if they exist). respectively. This is the way of

traversing the whole function call tree. in order to view the complete call hicrarchy.

3.2.2 Displaying of Virtual Functions

Another graphic window is for virtual functions. It has almost all the features of the
call tree window. such as function nodes. their positions and rotation. their names and
colors. the light source and moving. and way of tree traversal. However. there are
some differences between the two graphic windows.

The first difference is the number of layers displayed. In this window. there are only
two layers. Layer | for a base virtual function (in a base class). and LLayer 2 tor the
derived virtual functions in derived classes of that base class. There is no Laver O at
all in this window.

The second difference is the color of nodes. Here all the base virtual functions are in
yellow and all the derived virtual functions in pink. the same as those in the call tree
window. regardless of layer on which they are currently displayed. This allows a
direct recognition of virtual functions when comparing the two display windows.

The third difterence is the names of the default central nodes. In the call tree w indow.
the name of the default central node is “main™ and this is a natural choice. as eveny
Win32 console application must have a main() function. However. there might be no
virtual function in some C++ applications. so there might be no node at all in the
virtual function window. However. if nothing is displayed in this window. the user
may wonder whether the Browser works normally or not. One of the possible
solutions is to display a default node with a name of “Dummy VirtualRoot™. In fact.
this name is the root name of the virtual function BST during the construction of this

BST: after all. this BST has to start from an initial root node.

4 Implementation
4.1 Introduction to Standard Template Library (STL.)

The implementation of the Analyzer utilizes the Standard Template Library (STL)
intensively. from the classes of various tokens. scanner. parser. to the service
functions of retrieving function call hicrarchy .

STL is considered by many to be the most important new features added to C++ in
recent years. The inclusion of the STL was one of the major efforts that took place
during the standardization of C++. It provides general-purpose classes and functions
that implement many popular and commonly used algorithms and data structures.
including. for example. support for vectors. lists. queues and stacks. It also defines
various routines that access them. Because STI. is constructed from template classes.
the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++°s most
sophisticated features. The core of the STL are three foundational items: containers.
algorithms, and iterators. These items works in conjunction with one another to

provide off-the-shelf solutions to a variety of programming problems.

4.1.1 Containers

Containers are objects that hold other objects. and there are several different 1y pes.
One type is called sequence containers, because in STL terminology. a sequence is a
lincar list: an example of such containers is the vector class. which defines a dvnamic
array. Another type is called associative containers. which allow efficient retrieval of

il

values based on keys: an example of such containers is the map class. which provides
access to values with unique Keys. since a map stores a Key/value pair and allows a

value to be retrieved given its key.

+.1.2 Algorithms

Algorithms act on containers. They provide the means by which you will manipulate
the contents of containers. Their capabilities include initialization. sorting. scarching.
and transforming the contents of containers. Many algorithms operate on a range of

clements within a container.

+.1.3 Iterators

lterators are objects that are. more or less. pointers. They give you the ability o cyvele
through the contents of a container in much the same w ay that you would use a pointer
to cycle through an array. There are five types of iterators: Random Access.
Bidirectional. Forward. Input. and Output.

lterators are handled just like pointers. You can increment and decrement them. You
can apply the * operator to them. lterators are declared by using the iterator type

defined by various containers.

4.1.4 Examples of Container Classes
Containers are the STL objects that actually store data. Here are some examples of

container classes used in this thesis (see Table 4.1):

Table 4.1 Examples of some container classes

- Container | Description Required

| : Header
string * String class which manages character strings. <string>

L set A set in which each element is unique. <set>
map - Stores key/value pairs in which cach key is | <map>

: : :

* rassociated with only one value.

i vector - A dynamic array <vector>

4.1.5 General Theory of Operation

Although the internal operation of the STI. is highly sophisticated. the usage of the
STL is actually quite easy. First of all. you must decide on the type of container that
you wish to use. since each type offers benefits and trade-ofls.

Then you will use the container’s member functions to add elements o the container.
access or modify those elements. and delete elements. Elements can be added to and
removed from a container in a number of difterent ways. for example. to use the
member functions called insert() and erase().

One of the most common ways to access the elements within a container is through an
iterator. Both the sequence and associative containers provide the member tunctions
begin() and end(). which return iterators to the start and end of the container.
respectively. These iterators are very useful when accessing the contents of a container:

for example. to cycle through a container. vou can obtain an iterator to its beginning

=

by using begin() and then increment that iterator until its value is equal to end().

The associative containers provide the function find(). which is used to locate an
element in an associative container given its Key. Since associative containers link a
key with its value. the function find() is how most elements in such a container are
located.

Once you have a container that holds information. it can be manipulated by using one
or more algorithms. The algorithms not only allow you to alter the contents of a
container in some prescribed fashion. but they also let you transform one type of

sequence into another.

4.2 Analyzer: Scanner and Parser

The Analyzer developed in this thesis is based on three class groups: tokens. scanners.
and parsers. Also. some service functions are needed to pick up the required
information used to construct tunction cross-reference hierarchy.

The design and implementation of primitive tokens retrieval are inspired with an
off-the shelt’ C/C+ archives [5]: however. some modifications are necessary. The
design and implementation of function name retrieval as well as function call tree

construction are all completely and independentls developed by this thesis.

+.2.1 The Token Classes
Figure 4.1 shows the hierarchical relationship of all the token classes. The base token

class is CToken. and the other token classes are derived from CToken.

rJ
th

vartual std::viring

CToken

CEOQFToken CWhiteSpaceTohen CNstringFoken (NumenicTohen CCommentTohen CWordToken

CPucivation Fohen
CopeatarTohen

CCharactes Foken CEOLCommentTahen

Figure 4.1 Hierarchical relationship of all the token classes

4.2.1.1 The Base Class: CToken
The CToken class is the generic version of a token. CToken is a subclass of std:string:
this altows it to behave in the same manner as a std::string. inheriting all the operators

and functions of class std::string. The details of class member functions can be found

in reference [3].

CToken

m _nType

CToken()

virteal ~CToken()
virtual GetTypeq)
virtual SetT ype()
virtual GetTokenTeviq)
virtual SetTokenTevi()
IsSpecifiedString ()
GetSpecifiedString ()
IsOnlIyW hiteSpacel.eft ()
IsOnlyW hiteSpaceO rCommentsl eft ()
isalpha ()

isalanum ()

IsE O F ()

IsNotE OF ()

ClearE OF ()

Figure 4.2 CToken class

4.2.1.2 Subclasses of CToken
There are some subclasses of CToken (see Table 4.2).

Table 4.2 Other token classes derived tfrom CToken

Class Name Class Description
CEOFToken — [Endoffile
CWhiteSpaceToken | White space (a space. a tab. end of line. ete.)
CStringToken _ | String literal (e.g. “this isﬁa_slring"_)h_i*___ﬁ
CCharacterToken 1) ~ Character literal (e.g.) B
CNumericToken Any numeric value
CCommentToken Inline comment (e.g. /* Inline comment */)
CEOLCommentToken 2) | End of line comment (e.g. /7 EOL comment)
CPunctuationToken Punctuation (e.g. *!-and *.")
COperatorToken The same as CPuctuationToken
CWordToken Any string of characters that does not fit any
of the other categories detined in this table.
Variable and function names are of this tvpe
tokens.

1): CCharacterToken is a subcluss of CStringToken
2): CEOLCommentToken is a subclass of CCommentToken

Note that each method within CToken is virtual: this allows any of the subclasses

(B
-}

derived from CToken to override any of these methods. In addition. CToken is not a

pure virtual class. so it can be used without ever having to implement one of the

derived classes. It can be used to create custom tokens without necessarily creating an
entirely new class.

Each token implements two groups of tunctions:

1) The IsA() static function identifies the next token to be of the type specified. All
tokens that are derived from CToken implement an IsA() static tunction. This
enables the Scanner to call each token class to aid in identitying what type of
token to create and return to the Parser. For example. when the Scanner checks
whether the next token is end-of-file token. it simply calls CEOFToken::IsA().
This allows specific token tunctionality to remain local to the token.

2) The second set of functions are the constructor functions for each token type class.
With the exception of CToken. no token class can be constructed without an
istream parameter.

The followings are the Subclasses which are derived from base class CToken:

CStringToken

- - — ——
e f . L . m_cEscapeCharacter :
: CEOFToken CW hiteSpaceToken T . . '
3 . N __ ___m_cNtringldentifier .
; CStringToken() :

. “ree T s == ——— — GetStringldentifier()

CEOFTohen () CW hiteSpaceTohken()

- IsA)

CEOFToken CWhiteSpaceToken

CCharacterTohen CNumericlToken

i

T T e e e

{

i
i

"
———— —e—

CCharacterTohen()
GetCharacterldentifier ()

CNumericToken()
Isv ()

CCharacterToken CNumericToken

CEOLCommentToken CPunctuation loken

CEOLCommentTohen()
InA ()

CPunctuation Foken()
InA)

CEOLCommentToken CPuctuationToken

(also COperatorToken)

COtherToken

COtherTokeny)
IsA ()

COtherToken

Figure 4.3 Subclasses derived trom

29

j Isn ()

GetEscapeCharacter()

CStringToken

CCommentToken

m_sBeginCommentldentifier:

o m_stadCommentldentifier:

CCommentToken()
GetBeginCommentidentifier ()
GetEndCommentldentifier ()
IsA ()

CCommentToken
CWordToken
CWordTohken()

IsA ()

CWordToken

base class CToken

4.2.2 The Scanner Class: CScanner

The CScanner class is used to identifs which token is next on the istream. and then to
instantiate this token and pass it back to the Parser. The class is implemented as a
subclass of ifstream.

The idea behind the CScanner class is to implement the same functionality as in
istream. but with individual tokens rather than individual characters. Since the main
purpose of the Scanner class is to retrieve the next token. the most important function
of CScanner class is GetToken(). The Parser repeatedly calls CScanner::GetToken() in
order to move through the entire tile.

What the Scanner essentially does is to allow the Parser to work with individual
tokens rather than individual characters. This enables the Parser to work with larger
blocks of data. Spoken languages work the same w ay. Although it would be possible
to speak in letters. this would be very impractical and extremely inefticient. Instead.
the letters are combined to form words. which are then interpreted as a whole.
Similarly. the Scanner combines characters 10 form “words™. which the Parser can
then interpret.

There are two tasks for the scanner to do:

I) The main task of the scanner is to break the input file down into individual tokens.
The scanner identifies what the next token is going to be. instantiates a token of that
type. and returns it back to the parser.

With the abundance of static IsA() functions found on each of the token classes. the

Scanner simply has to ask each token class if the next token is of its 1y pe.

‘e
=7

Complications arise. however. because of the order in which the tokens need to be
checked. Ideally. they should be checked in order of frequency. to avoid needless IsA()
function calls when they usually returns false. This approach presents a problem
because some of the IsA() functions do not check for certain that the next token is of a
particular type. so there is a chance that a token could be misidentitied. It for example.,
the CPunctuationToken::ISA() function were called before calling
CStringToken::IsA(). the string might never get identified. The CPunctuationToken
constructor would identify the next token as eTokenTypePunctuation. when instead
CStringToken should be used. The Scanner therefore needs to be sure to identify the
various tokens in the correct order.
The following order tor identifving tokens is used by function
CScanner::PeckToken Ty pe():

a) IsWhiteSpaceToken.

b) IsWordToken.

¢) IsCommentToken.

d) IsEOLCommentToken.

¢) IsStringToken.

H IsCharacterToken.

g) IsNumericToken.

h) IsPunctuationToken.

i) IsEOFToken

2) The second task of the scanner is to keep a list of the language characteristics

[
—

needed to identify a token (e.g. reserved words). Although some defaults are set for
these values. it is necessary to explicitly assign the values for each type of language
file that is to be scanned. There is a long list of member-variable access functions.
which allows the language identifiers to be defined. Each of the methods is prefixed
with =Set™,

[n theory. the above definitions of Parser and Scanner classes can be used to handle
any language. so it is necessary to set them up so that they recognize the
characteristics of C++. such as C++ language definitions (comment identifiers /* */

and /7. ete.). The work is done by function LoadCPPScanner().

o
4.2.2.1 CScanner
C Scanner
m_l’nken('uuntlrl’okenr&pe(uunl-ll
m _cNStringldentifier
m _cCharacterlidentifier
m _ckEscapeC haracrter

I3
m sBeginC ommentldentificer

sEndCommentldentificr
m _sEOLCommentlidentifier
m b A llow Underscore

CScanner()

victual ~C Scanner()

GetT ohenC ountq)

R evet()

G etStringldentifier()
SetStringldentificer()
GetCharacterlidentifier()
SetC haracteridentifier()

G etE scapeC haracter()

SetE scapeC haracteri()
GetBeginC om mentlidentifier()
GetEndCommentldentifier()
SetC ommentlidentifiers ()
GetEOLCommentidentifiery)
SetE O L Commentldentifier()
G etVNllow Underscore()

Set\ llow U nderscore()

ISO nls W hiteSpacel. eft()

IsO nly W hiteSpaceO rC ommentsl eft()
Peeh T ohen T ype()

G etl ohen ()

Figure 4.4 The CScanner class

17
9

4.2.3 The Parser Class. CCodePaser
The Parse class is used to parse programming source code.

4.2.3.1 CCodeParser

CCodeParser

m _pScanner

CCodeParser()

virtual ~CCodeParser()
Reset()

virtual GetNextToken()

Figure 4.5 The CCodeParser class

+.2.4 Retrieval of Function Names
Similar to the implementation of the classes mentioned above. the implementation of

retrieving function call hicrarchy also utilizes the Standard Template Librarny (STL.).

+.2.4.1 Retrieval of Class Names and Member Function Names
The first job when retrieving information on tunction call hierarchy is to tind the
names of all the classes and their member functions. The corresponding service
function. GerClassMemFuncNameLists (). is used for this purpose. [ts prototype is as
tollows:
hool GetClass MemFuncNameLists (CScaner & input.
ClassNumeList & classNamelList,
MemFuncNamelList &memFunceNameList):

where inpur corresponds to a scanner object which represent the source file being

-
=

tad
e

opened. classNumeList and memFuncNamelList correspond to global variables to store
class names and member function names respectively. The types of the two name lists.
ClassNameList and MemFuncNameList. are defined as container set<string>. a type
of STL with element type of string. another 1y pcol STL:

npedef set-string - ClussNamelList:

tpedef set string - MemFuneNameList:
The process of retrieving class and member function names is a repeated iteration. By
calling the scanner’s member function inpur.GetToken(). we can obtain a token (let’s
call it token) from the source file. The type and content of the token are obtained by
calling functions roken.GetType() and token.GetTokenText() respectively. I this
token is not an EOF (End-Ot-File) token. continue the follow ing parsing process. until
the EOF token is reached.
For every token retrieved from source tile. we need to check if this token's content is
the Key word “class™. [f not. continue to get next token. [t yes. ignore any white space
token and find the first token of word type eTokenType Word: this should be a class
name. so record it in a local variable sClassToken. and also call
classNameList.insert(sClussToken) 10 insert the class name into classNameList, a
container to hold all the class names.
Next. search for brace token "{". so that we know that the scanning is inside the class
declaration. Keep the information on the number of braces by incrementing
NumOfOpenBraces. Now we can get and check two successive tokens in order to find

any pattern of "word + (". in which the “word™ is a member function name. Record it

in another local variable sFuncToken.

Note that there is an issue which has to be resolved. Any of class member functions is
expressed in the form of “ClassName::FuncName™. so we need to concatenate the
class name sClussToken found above with both string ;" and member function name
sFuncToken. 1o have a full function name as sClassToken :sFuncToken. and insert it
into MemFuneName List by calling function
memFuncNameListinsert(sClassFunc Token).

Also. this full function name is inserted into a BST Browser BST. which stores
function cross-reference hierarchy information. The function call to do this is
Browser BST.insert(sClussFuncToken). and the details will be described in later
sections.

A special case also needs to be treated. i.e. we should not pick up any initialization list
as a function name. so we need to ignore any token before "1™ if we tind ") and "
after a class name.

It we find a token "}". decrement NumOfOpenBraces. 1t it is zero. we know the

scanning is getting out of a class declaration. so continue to scan the source file in

=

order to find the next class name. if it exjsts.

4.2.4.2 Retrieval of Independent Function Names
In addition to class member functions. in any C++ application there are possibly some
other functions which are not class member functions at all. The main function main()

is a good example. We call this type of function as independent functions. So a

(7]
]

companion job when retrieving information on function call hierarchy is to find the
names of all the independent functions. The corresponding service function.
Getlndep FuncNamelLists (). is used for this purpose. lts prototype is as follows:
hool GetlndepFuncNameLists (CScanner &input,
MemFuncNameList &memFuncNameList,
IndepFuncNumelList &indepFuncNamelist):
where input corresponds to a scanner object which represent the source file being
opened. memFuncNameList is still the global variable to store class member
function names. and indepFuncNamelList is a global variable to store independent
function names. The type of the later list. IndepFuncNamelist. is also defined as
container set<string>. a type of STL with element type of string. another type of STI:
tvpedef set string - IndepFuncNamelist:
The process of retrieving independent function names is as tollows. We need to find
any pattern of "word + (". under the constraint of NumOfOpenBraces = 0: this
constraint will ensure that the function name found is not a class member at all. Then
record this independent function name in local variable sFuncToken. and insert it into
indepFuncNameList. memFuncNameList. and Browser BST. by calling the following
tunctions:
indepFunc NumelList.insert(s Func Token):
memFuncNameList.insert(sFuncToken):

Browser _BST.insert(sClussFunc Token):

I’
=)}

4.2.4.3 Retrieval of Object Names
After we find class names. we are ready to retrieve object names in a source file. The
corresponding service function. GerObjectNamelList (). is used for this purpose. lts
prototype is as follows:
hool GetObjectName List (CScanner — &input.,
ClassNamelList &classNameList,
ObjectNameList &objectNamelList):
where inpur corresponds to a scanner object which represent the source file being
opened. clussNumelist is still the global variable to store class names. and
objectNamelList is a global variable to store object names. The type of the later list.
objectNameList. is defined as a container map<string.string>. a type of STL with
clement of ty pe string. another type of STL:
tpedef map- string, string - ObjectNamelList:
For every pair in the map. we will use the key (the first element) to store an object
name. and the value (the second element) to store the class name of the object. so that
we will have a correct mapping relationship between an object name and its class
name.
The process of retrieving object names is as tollows. For every token of word type
eTokenTypeHWord. we need to check if it is a class name. If ves. we know the parser is
scanning a statement of object declaration. Then. after ignoring white spaces.

comment. and pointer symbol ~*”. the next word token should be an object name.

Record this object name by calling objectNumeList.insert (make_pair(sOhbjeciToken.

sClussToken)). This search for object names should not terminate before finding a
token ;. We need to ignore any token except "." or ":".in case there are more objects
being declared after the same class name: it a token "." is found. that means there are
more object names on the current line.

The above algorithm has one drawback. i.c. it may pick up a wrong word token as an
object name. For example. consider the follow ing object declaration

Bus bslnwhite. 12, ves:

Our algorithm will pick up “ves™ as an object name. which is not correct. The solution
is simple: after finding an object name. it the next token is = (after ignoring possible
white space and comment). we continue to ignore all the token until reaching token

)

4.2.4.4 Retrieval of Called Function Names

This is the most crucial and complicated step during the construction of function cross
reference hierarchy.

There are three cases we need to treat respectively: for every function found before.
we need to get its called functions 1) from outside class declaration but in class
member functions. 2) from inside class declaration. and 3) from outside class

declaration but in independent functions.

+.2.4.4.1 Retrieve Called Functions from outside class declaration but in
class member functions
This case corresponding to any called functions outside class declaration but inside
class member functions in the form of “ClassName :: FuncName ()". The service
function has the following prototy pe:
hool GerCalledFuncNameList (Cscanner &input,
ClussNameList &classNumeList,
ObjectNamelList &objectNamelList,
IndepFuncNumelList - & indepFuneNameList,
CalledFuncName List &calledFuneNameList):
where input corresponds to a scanner object which represent the source file being
opened. classNumelList. objectNumelList. indepFuncNameList are still the global
variables to store class names. object names. and independent function names:
calledFuncNameList is a global variable to store the called function names. The type
of the later list. calledFuncNamelList. is defined as container set<string>. a type of
STL with element types of string. another type of STL:
npedef set-string -~ CalledFuncNameList:
The process of retrieving called function names is as follows:
First of all. we need to find class name by comparing any word token with even
element in the container c/uss.NumeList. If we find a class name. we need to search the
token ", and get the word token atterwards. which is a function name. Then we

construct a sParent FuncToken having a pattern of “ClassName :: FuncName™.

Next. find the first token “{™ after sParentFuncToken. indicating the parser enters the
function definition body. Then we can search for called function names by checking
every word token inside function body. Here we need to treat two different case.

One case is for the independent function names. This case is simple. For evenn word
token inside function body. we just neced to check if it is in the container
indepFuncNameList by traversing this container (using its iterator) and calling
indepFuncNameList.find(token): if tind an independent function name. we insert it
into container calledFuncNameList. and then insert this container into Browser BST.
Another case is for class member function names. This case is a little bit complicated.
For every word token inside tunction body. we need to check if it is in the container
objectNameList by traversing this container (using its iterator) and calling
objectNumeList find(1token): if find an object name. we need to retrieve its class name
from the map (i.c. the ohjectNamelListy and temporally record its class name in a local
variable sClassToken. Then search for token =" or ->". and the word token after
them should be a called function name and it is also ot class member function! Record
this tunction name in a local variable sFuncToken and a full name of called function.
sCalledFuncToken. can be obtained as “sClussToken :-sFuncToken™. Finally this full

name is inserted into the container cafledFuncNameList and into Browser BST.

+.2.4.4.2 Retrieve Called Functions from inside class declaration
This case corresponding to any called functions inside class. i.e. the inline functions

inside class declaration body. The service function has the follow ing prototy pe:

40

hool GerCalledFuncNamelList2? (Cscanner &input,
ClassNamelList &classNamelList,
ObjectNameList &objectNumelList,
MemFuncNameList &memFuneNamelList,
IndepFuncNamelList &indepFuncNamelList,
CalledFuncNamelList &calledFuneNamel.ist):

where inpur corresponds to a scanner object which represent the source file bein

s

opened. classNameList. objectNameList. memFuncNamelList, indepFuncNamelList are
still the global variables to store class names. object names. class member function
names. and independent function names: calledFuncNamelist is still the global
variable to store the called function names.

The process of retrieving called function names is as tollows:

First of all. we need to find class name: this is the same as mentioned above. Then
enter class declaration body. and for every word token check to see if it is a class
member function: if yves and the function has a body (i.c. it is an inline function). we
enter its body and search for both the independent function names and the class
member function names. and record into the calledFune NamelList and Browser BST.

in the same way as described in the previous case.

+4.2.4.4.3 Retrieve Called Functions from outside class declaration but in
independent functions

This case corresponds to any called functions outside class declaration but inside

41

independent functions. The service tunction has the following prototype:
hool GerCualledFuncNameList3 (Cscanner & input,
ClassNamelList &clussNamelList.
ObjectNaumeList &objectNameList,
MemFuncNamelist — &memFuncNameList.
IndepFuncNamelList &indepFuncNamelList,
CalledFuncNameList &calledFuneNamelList):
where input corresponds to a scanner object which represent the source file being
opened. classNameList. objectNamelList, memFuneNamelist, indepFuncNamelist are
still the global variables to store class names. object names. class member tunction
names. and independent function names: calledFuncNamelist is still the alobal
variable to store the called function names.
The process of retrieving called tunction names is as tollows:
First of all. we need to tind an independent function name. Then enter its body and
search for both the independent function names and the class member function names.
and record into the culledFuncNamelList and Browser BST. in the same w ay as
described in the previous case.
Here a special issue need to be treated. It happens more often in independent functions
and it is more or less related with dynamic binding when virtual functions are invoked.

We need to pick up the correct object names but not miss member function names. For
example. in the following statement

ObjName[i]->MemFunc():

we need to ignore all the tokens from "[" to "]". otherwise MemFunc will never be
picked up as a member function name. The details of how to handie virtual functions

are provided in later sections (see Section 4.2.4.6).

4.2.4.5 Retrieval of Calling Function Names
The service function has the tollowing prototy pe:

hool GerCallingFune Name List (BinNode- string = * rootptr,

CallingFuncNumelList &callingFuncNamelList):

where rooipir is the pointer to root node of Browser BST. and callingFuneNamelList
is a global variable to store the calling function names. The type of
calledFuncNameList is defined as container set<string >, a type of STL. with clement
1y pes of string. another type of STL:

tvpedef set- string - CallingFune Name List :
The process of retrieving calling function names is tairly casier. We do not need to
scan and parse the C++ source file again. because all the information on calling
function names does exist in the Browser BST structure. What we need to do is to
traverse this BST recursively. The detailed procedure is as tollows:
Starting from the root node of Browser BST. for the function in this root node (say
RootFunc). iterate through its called function name list. For every called function
(say CalledFunc). search the Browser BST to see if such a called function name exists
in BST: it yes. the current root node function RootFunc should be a calling tunction of

that called function CalledFunc. and we update the calling function name list of the

da
tes

node which hold CalledFunc. by inserting the current RootFune into that calling

function name list.

4.2.4.6 Retrieval of Virtual Function Names
4.2.4.6.1 Handle Virtual Functions in Base Classes
The service function to retrieving base virtual tunction names has the following
prototype:
hool GetVirtual Func Name Lists (Cscanner— &input.,
Class.NamelList &className List,
Virtnal FuneNamelList - &haseVirtual Fune Neame List) :
where inpur corresponds to a scanner object which represent the source file being
opened. clussNameList. objectNameList is still the global variable 1o store class names:
baseVirtualFuncNameList is defined as container set<string>. a type of STL. with
element types of string. another type of STL.:
npedef set- swring - Virtual FuneName List:
This process to retrieving virtual function names during the construction of Function
Cross-Reterence Browser is more sophisticated.
First of fall. we need to insert a dummy name of "DummytirtualRoor” into
buse Virtual Func Name List by calling the function
haseVirtual FuncName List.insert(” DummyVirtualRoor™): this is because there might
be no virtual function at all in some C++ applications. but we need to have such a

dummy node in order to better represent such a scenario on the screen.

Next. we need to enter a class declaration body. to find the token of keyword
“virtual™. in the same way of finding kevword “class™. It tound. then the word token
after “virtual™ but before (" should be a virtual function name in this base class.
(Note that the class here is base class since it declares virtual function by using
keyword “virtual™.) So. we have a full name in the form of “ClassName::FuncName™.
and we insert it into haselVirtualFuncNamelList and Virtual Fune BST. another BST
for holding virtual functions (see the later sections for details). In the meanw hile. we
need to update the node corresponding to this base virtual function in Browser BST by
setting the Nag enlirtual Flag to VIRTUAL_FUNC_FLAG_BASE. Similarly. we do

not pick up initialization list as function names.

4.2.4.6.2 Ilandling Virtual Functions in Derived Classes
The service function to retrieve the derived virtual function names has the tollowing
prototype:

bool GetVirtualFuneName Lists2 (BinNode- string *virtualrootptr,

Virtwal FuncNameList & base Virtual Fune NameList):

where virtualrootptr is the pointer to root node of FirtualFunce BST. and
haseVirtual FuncNamelList is a global variable to store the base virtual function names.
Similar to the concept of retrieving the calling function names. we can retrieve the
derived virtual function names of a base virtual function by traversing the two BSTs.
VirtualFunc _BST and Browser BST. Here are the steps:

Iy Search lirtualFunc BST. get base virtual function name in the form of

e
h

BaseClassName:: VirtualFuncName". then remove "ClassName::" to get string of
"VirtualFuncName":
2) Search Browser BST. 1o get a function name in the form of

"ClassName::FuncName". then remove "ClassName:" to

3

[{}=1
(2]

t string of
"FuncName":

3) Compare "VirtualFuncName” with "FuncName". "BaseClassName" with
"ClassName": it "FuncName” = "VirtualFuncName" but "ClassName" =
"BaseClassName". then we found a virtual function in derived class.

The above service function is called recursively. so that we can traverse the whole

VirtualFunc BST. By the way. a helper tunction is required during the above traversal.

and its prototype is shown below:

hool FindVirtualFuncNameListinBrowser BST (

BinNode: string - * browserrooiptr,
string baseVirtualClass Name.
string baselirtual Func Name.

VirtualFuncNamelList — derivedVirtual FuneNameList):
where the derivedVirtualFuncNamelList is a container holding all the derived virtual

function names.

+.2.5 Construction of Function Call Hierarchy
+.2.5.1 Template of Binary Search Tree (BST)

A template class for a binary search tree (BST) is defined. Each node in the BST has

46

an element to hold data. a flag showing if the node holds virtual functions or not. and
two pointers pointing to its left and right child nodes. Also defined in the node are two
containers. one for called functions. another for calling tunctions. There are also some

member tunctions to manipulate the above member data.

+.2.5.1.1 Binary Node Class

Figure 4.6 shows BinNode. the class of binary node:

BinN ode

clem ent
cailedfunc
callingfunc
lelt

right

en N irtualFlag

BinNodet)
~BinN odey
leftchild ()
righitchild ()
valuetc)

sety aluet)

setC alled Funco)
setC allingFunci)
isLeafo)

sety irtualF lagy)
ishY irtualg)

Figure 4.6 The binary node class BinNode

4.2.5.1.2 Binary Search Tree Class

Figure 4.7 shows BST. the class of binary search tree:

BST

root

BST(¢()
~BST((O)
clear()
inserty()
remose()
determine()
find()
isEmpity()
print()
clearhelp()
inserthelp()
remoyehelp()
findhelpq()
printhelp() |

Figure 4.7 The binany scarch tree class BST

4.2.5.2 Construction of the Binary Scarch Tree for Function Call
Hicrarchy

The key tunction during the construction of Browser BST is insert(). Whenever a
function name is ready to be inserted into Browser BST. this function.
Browser BST.insert(FuncNumeToken). is called and the FuneNameToken will be
inserted into this BST. Underlying operations include allocating memory for new node.

fill in element value with function name. and adjust pointers in the tree.

+.2.5.3 Construction of the Binary Search Tree for Virtual Functions

Similaly. whenever a virwal function name is tound and ready to be inserted into
VirtualFunc BST. the function. VirtualFunc _BST.insert(Virtual Func Name Token) is
called and the Virtual Func.NameToken will be inserted into this BST. In addition. the

Browser BST should be up dated at the virtual function node. to reflect the fact of

48

virtuality of the corresponding node.

The above sections describe the Analvzer part of the Function Cross-Reterence

Browser. Next the Displayver part will be introduced.

4.3 Manipulator: Displayer

+4.3.1 Introduction to OpenGL

OpenGL. is a software interface to graphics hardware. This interface consists of about
150 distinct commands. aiming at specifving the objects and operations needed to
produce interactive three-dimensional applications.

OpenGl. is designed as a streamlined. hardware-independent interface. so 1) it is not a
windowing system. i.e. no commands exists tor performing windowing tasks (such as
opening windows) or for obtaining use input (however. portable libraries does exists.
e.2. GLUT. sce below): and 2) it does not provide high-level commands for describing
models of three-dimensional objects (however. Open Inventors does): instead. the user
must build up the desired model from a small set of geometric primitives ~ points.
lines. and polygons.

OpenGL consists of three libraries: the Graphics Library (GL). the Graphics Utility
Library (GLU). and the Graphics Library Utility Toolkit (GLUT). GL is the standard
parts of OpenGL and are available on all SGI platforms. Sun workstations. Windows

95/98/ NT/2000. etc.

OpenGL provides the following operations:

19

e Construct shapes from geometric primitives. thereby creating mathematical
descriptions of objects.

® Arrange the objects in 3D space and select the desired vantage point for viewing
the composed scene.

e Convert the mathematical descriptions of objects and their associated color

information to pixels on the screen (this process is called rasterization).

Other operations: e.g. eliminating parts of objects that are hidden by other objects.
OpenGL is a state machine. It can be put into various states that then remain in effect
until being changed. Here are some examples of state variables. such as the current
color. the current viewing and projection transformations. line and polygon stipple
patterns. position and characteristics of lights. Each state variable has a default value.
and many state variables refer to modes that can be enabled or disabled.

Most OpenGL implementations have a similar order of operations. a series of
processing stages called OpenGL rendering pipeline. It consists of display lists.
evaluators. per-vertex operations and primitive assembly. pixel operations. texture
assembly. rasterization. per-fragment operations. and finally framebutter. Vertex data
and pixel data follow the above path from the display lists to the framcbutter.

In summary. OpenGL is a powertful tool which is very suitable for 3D graphics.

4.3.2 Displaying of Function Call Hierarchy
In one of the two OpenGL graphic windows (opened in the main() function. see next

later section). the function call hierarchy which is stored in Browser BST is displaved.

The OpenGL callback function to do this is display(). This call back function does the

following tasks:

 clear the color bit. and request hidden surface removal:

* position a white light source and show where it is:

» display a red. dull sphere at the center for a function: however. a vellow sphere is
displayed if it is a base virtual function. and a pink sphere for derived virtual
function:

* display cyan. polished spheres for all the upper nodes (i.c. calling tunctions) and
display lines linking the central node to the upper nodes: all the upper node are
positioned evenly in one plane: use the same treatment as above for virtual
tunctions:

e display green. polished spheres for all the lower nodes (i.c. called functions) and
display lines linking the central node to the lower nodes: all the fower node are
positioned evenly in one plane: use the same treatment as above tor virtual
functions:

¢ display function names beside cach node: if there is no calling or called function. a
special name is displaved. either “No Calling Func™ or “No Called Func¢™:

e display a help menu in this window.

There are other callback functions provided. such as keyboard(). specialkey().

mouse_movement(). and resize_window(). Their meaning is self-explained by their

names. These callback functions are all registered in the init() function by the

following GLUT library routines before they can actually do their jobs:

[(’]

glutDisplayFunctdisplay):

glutKevbourdFuncrkevboard):

ghuSpecial Funcispecialkey):

glutMotionFuncimouse _movement):

glhuReshape Funciresize window):
The init() function is used to initialize the browser window afler it is created. Here are
some helper tunctions: showstring(). showhelp(). help(). and menu(). The last one is
used to create and attach a menu to this OpenGL window (by click the right mouse

key).

4.3.3 Displaying of Virtual Functions

In another OpenGlL. graphics window. the relationship between a base virtual tunction
and its derived virtual functions. which is stored in VirtualFune BST. is displayed.
The OpenGlL callback tunction to do this is display2(). Basically this callback
function does the same thing for the virtual function window as display() does for the
browser window. except it does not show upper layer nodes (since the central node is
always a base virtual function and hence there is no upper node at all): another
exception is display2() does not show a help menu. as this menu is shown in the
browser window. The callback function display2() is registered in init2(). together
with other callback tunctions such as keyboard(). specialkey(). mouse_movement().
and resize_window().

gluDisplayFuncidisplayv2):

tn
[

glutKevboardFunctkevboard).:
gluSpecial Funcispecialkev):
glutMotionFunctmouse _movement);
ghuReshape Funciresize window):

The function init2() is used to initialize the virtual tunction window after it is created.

4.4 The Main Flow of Browser -- main() Function

+.4.1 User Input Prompt

Betore starting the browser program. we need to know the path name of a directory
which contains all the C++ source files for a particular application. (This browser does
not treat files in subdirectories). Then the user may enter the dircctory path name (a
tull-path name is required) after the browser exceutable name in the DOS window and
press the ENTER key to proceed. It the path name is invalid. or if the directory is
empty. the browser program exits. otherwise. it will start to parse all the C++ source
files and construct function cross reference hierarchy. and finally display it in graphic

windows.

4.4.2 Directory Scanning to Collect C++ Source File Names

The Win32 APIs of FindFirstFile() and FindNextFile() are used to retrieve C++
source file names under a directory. After a fine name is retrieved. it is inserted into a
container of type set<string>. This source file list will be used later by the parser for

accessing every source file.

‘n
DY)

4.4.3 Source File Parsing
There are several steps to parse the source files. and they must be done in the
tollowing order:
(1) scan the input file and get the class name list. member function name list. and
insert the member function names into Browser BST:
LoadCPPScanner (*SourceCode).
GetClassMemFuncNameLists (*SourceCode. classlist, Sunclisy;
(2) scan the input file and get the independent tunction name list. and insert the
independent function names into Browser BST:
LoadCPPScanner *SourceCode):
Getlndep FuncNamelLists (*SourceCode. funclist, indeptunclisi);
(3) scan the input file and get the object name list:
LoadCPPScanner (*SourceCode):
GerObjectNamelList (*SourceCode. classlist. objectlist):
(4) scan the input file and get the called function name list. and insert the called
tunction names into Browser BST:
LoadCPPScanner (*SourceCode);
GerCalled FuncNameList (*SourceCode. classlist. objectlist, indepfunclist,
calledfunclist):
LoadCPPScanner (*SourceCode2):

GerCalledFuncNameList2 (*SourceCode2, clusslist. objectlist, Sunclist,

'
b

(6)

(7)

indepfunclisi. calledfurclist);
LoadCPPScanner (*SourceCode3):
GetCalledFuncNameList3 1*SourceCode 3. classlist. objectlist. funclist.
indepfunclisi. calledfunclist).;
get the calling function name list and insert the calling function names into
Browser BST:
Note: here we do not need to scan source files. because all the information on the
calling functions are already available in the Browser BST.
GetCalling FuncNameListhstroomir, call ingfunclist).
scan the input file and get the base virtual function name list. and insert the base
virtual function names into FirtualFune BST: also update the virtual function flag
in Browser BST:
LoadCPPScanner *SourceCode3):
GerVirtual FuncNameLists (*SourceCodes. classlist, hasevirtualfunclist
get the derived virtual function name list. and insert the derived virtual function
names into FirtuwalFune BST: also update the virtual function flag in
Browser BST:
Note: here we do not need to scan source files. because all the information on the
derived virtual tunctions are alreads available in the Browser BST.

GetVirtual FuncNameLists2 (virtualrooprr. basevirtualfunclist):

tn
ta

4.4.4 Graphical Display
The following procedures are the steps used by OpenGL to output the 3D graphical
displays:
® system initial setup and hidden surface removal
glutlnitt&arge, argvy;
glulnitDisplayMode(GLUT DOUBLE GLUT RGBA GLUT DEPTH):
¢ sctup the first window: Function Cross-Reference Brow ser
glutlnitWindowSizerwindow widih, window heighy:
glutinitWindow Positiont 230, 20
gluCreate Windowt"Function Cross-Reference Browser":

nite);

add menu for all the function names

glutCreate Menutmen -

glurdddMenuEntryvic*my.c stro). i:

gludntachMemuGLUT RIGHT BUTTON):

e setup the second window: Virtual Function Window
glutlnitWindowSize(300. 300, -
glutinitWindow Positione30. 80):
glutCreate Window " Virtual Function Window ") -
nit2();

* add menu for virtual functions only

glhuCreate Menutmen2) :

.
>

VirtualFuncNamelList: :const_iterator n:
glutdddMenuEntrvi(*n).c_stro). g):
glutdttachMenutGLUT RIGHT BUTTON):
start OpenGL

glutMainLoop):

n
~4

5 Result and Discussion
5.1 Accomplishment of Design Goal

The goal of Function Cross-Reference Browser is to help software engineers to
understand the function call relationships in a large. complicated software application
written in C++. Specifically. the browser is able to extract the information on function
call hierarchy. to build a function call tree. and to display the call hierarchy in a 3D
window. The graphical display of function call hicrarchy can help software engineers
to better understand the architecture and the working principle of software programs.
In general. this thesis has accomplished the desired design goal. The following two
sections will provide detailed descriptions about how the design goal is accomplished.

from two aspects of both tunction call hierarchy extraction and 3D display .

5.1.1 Function Call Hierarchy Extraction

For a software application written in C++. the Function Cross-Reference Brow ser can
extract the call hierarchical refationships among the functions. Since the C++ grammar
is very complicated. this Browser will be applicable to a proper subset of C++ features.
There are some preconditions or assumptions for this Brow ser: 1) all the source files
must reside within a single directory: 2) the extension names must be either *.eppor
*.h™: 3) the entry function must be the ordinary main function “main()”": 4) there is no
function overloading (same function name. but with different parameters or return
type): however. dynamic binding is really allowed: 5) there should be no such
statements as “class Dummy:™ (forward declaration) and “void IndepFunc(void):™

58

(function prototype): etc. (This issue can be addressed in the future. since it is not hard
to resolve.)

The Browser works in a way as follows. First of all. the Browser opens the C++ files
(either .cpp or .h) and breaks down the source files into primitive tokens. Secondly.
depending on the token types. the Browser finds all the names of classes. member
functions. independent functions: in the meanwhile. the Browser also constructs a
Browser BST for all the tunctions. Next. the Browser finds the names of’ objects. and
for every function in Browser BST. finds its called functions and records it into
Browser BST. Now for every tunction in Browser BST. we have cnough intormation
to know its calling functions. and record the calling functions into Browser BST.
Finally. the Browser finds virtual functions both in base classes and in derived classes.
and constructs a FirtualFune BST. Appendix B shows the textual output during the

extraction process of the function call hierarchy.

5.1.2 Three Dimensional Display

After the Browser has extracted all the information on function call hierarchs. it
displays the call hierarchy in two 3D windows. one for all functions in Browser BST.
another for virtual functions in Firtual Func BST only.

In the first window (the Browser Window. sce Figure 5.1). there are 3 three lavers
displayed. each layer contains spheres of different colors: the middle layer (Layer 1. in
red) is for a function (called Central Function) in Browser BST. the lower laver

(Layer 2. in green) is for Called Functions of the Central Function. and the upper laver

(Layer 0. in cyan) is for Calling Functions of the Central Function. The default Central
Function is the “main™. For the virtual functions. we use different colors: the base
virtual functions are always in vellow. and the derived virtual functions are always in

pink. no matter at which layer they are.

The traversal of Browser BST can be performed by clicking right mouse key to
display a list of all the functions and then by picking up another tunction from the list

as a new Central Function: the Browser Window is updated and redisplayed for the

th

new Central Function as well as tor its Called and Calling Functions (see Figure 3.2).

60

Figure 5.2 The Browser Window after selecting another central function

In the second window (the Virtual Function Window. sce Figure 3.3). there are 2
layers displayed. the middle layer is for base virtual functions. and the lower layer is
tor derived virtual functions. There is no upper laver in this window. The default base
virtual function is “Dummy VirtualRoot™. The colors of the spheres at 2 layers are kept
consistent with those in the Browser window. i.c. base virtual function in vellow again
and derived virtual function in pink again. This will help the user to identify virtual
functions easily in the two windows.

The traversal of FirtualFune BST can be pertormed in the same way as that of

Browser BST.

6l

Figure 5.3 The Virtual Function Window (a) after executing the Browser program:

(b) after selecting another central function.

3.2 Result of Operation on Testing C++ Application

The sample C++ application for testing this Browser is shown in Appendix AL This
C++ program is specially designed for testing the working capability of the Brow ser.
The textual output after executing the Browser program is shown in Appendix B.

Figure 5.4 shows part of the event output during traversal to the call tree

ey I
Nunber of oen funcs
Nunher of cenm tone e
Jocalledr
ey vt ral wartaa] fang o
e
cocent el b
sl beade
e cent el fane o He g Sl e e
calledr
Arv cent ol b s e g Trlen g lionyg
collede
ey v et D b
vl leds
Ve centead bane o Doy
calledr

foneo centaral
o llede
et centeal Foo
clleae
e et el b
T .llut'

Figure 5.4 The DOS Window showing tree traversal events

5.3 Discussion

From the textual output and the graphical display. we know that the Browser can work

correctly.

t9

LI

¥

The Browser can identify C++ source file names correctly. i.e. it gives the whole
path for each file.

The Browser parses cach of the C++ source files and correctly tinds all the classes
declared in them.

Note: This Browser can correctly avoid picking up other tokens as class names.
and can correctly ignore the white spaces before or after class names.

The Browser correctly finds all the member functions in all the classes as well as
all the independent functions. and constructs a BST for them. It can correctly
avoid picking up the initialization list as a member function name. Also. it can
correctly handle the inline member function as well as the non-inline member
function in class declarations.

The Browser can correctly find all the object names (either objects or pointer to
object) in source files. with the correct correspondence with their class ty pes.

The Browser can correctly find the called function names of any function in the
source files. and insert the called functions into corresponding node in
Browser BST.

The the Browser can correctly find the calling function names of any function in

the source files. and insert the calling tunctions into corresponding node in

9.

Browser BST.

The the Browser can correctly find the virtual function names in the source files.
and construct FirtualFunce BST.

The Browser executes the OpenGL program and displays the function call
hicrarchy. as well as the virtual function hierarchy. in two separate windows.
respectively. Each called function is connected to the central function with a white
line. and so is each calling function. By default. the function names are displaved
besides the functions.

The central function is displayed in red. the calling function in ¢yan. and the called
function in green. However. the virtual functions are alw ays displayed with unique
colors in the two windows. the base virtual function in sellow. and the derived
virtual function in pink. so that it is very obvious to identity them.

Now the program stops execution and enters a standby mode. waiting for any
further input from the user. (Recall the OpenGL program is like a finite state
machine (FSM) and it stays in one state betore receiving turther event.)

Further operation 1: the help menu. We can use the Keyboard to display (or to hide)
the function names and a brief help menu in the OpenGL graphic window. by
pressing the key ~n™ and “m™. respectively: also. we can press Kev <h™ to show a

detailed help menu in the DOS window.

- Further operation 2: the tree traversal. By clicking the right mouse key. we can

select another function from the function name list as a new central function. and

display its called and calling functions. This is the way we traverse the tree of the

64

function call hierarchy.

I'l. Further operation 3: the tree rotation. By clicking the left mouse key. keep
pressing and move the cursor in the graphical window. we can rotate the call tree.
in order to view any hidden node and its name clearly.

12. Further operation 4: moving the light source. We can use the 6 special keys on the
keyboard to move the position of light source. in order to have a better view of the
3D display. The 6 special keys are Left. Right. Up. Down. Home and End. for
moving the light source to directions of left. right. up. down. towards the use.
backwards the user. respectively.

I3. Finally. the similar operations mentioned above can also be applied to the Virtual
Function Window. for showing the hicrarchical relationships between a base
virtual function and its derived virtual tunctions.

[n summary. this Browser can work correctly as the design indicated betore.

6 Further Development and Conclusion

6.1

Possible Further Development

There are some possible enhancements which can be further achieved to this Function

Cross-Reterence Browser:

to

(9%}

Right now the Browser requires that all the C++ source files must be put within a
single directory. and it cannot handle source files inside any sub-directory. This is
not a difficult issue. as we can further treat the attribute
FILE_ATTRIBUTE_DIRECTORY of the Win32 APl FindFirstFile() and
FindNextFile(). so that we can recursively search sub-directories to tind the whole
path names of all the C #+ source tiles in an application.

Currently the Browser can only handle such extension names of the C++ source
files as ~.cpp™ or ~.h™: This is also an easy issue. We can enhance the Browser to
handle other extension names such as “exx™.

Currently. the Browser can only handle Win32 Console application. i.c. the
entry tunction name must be “main()”: it cannot handle Win32 Window
application with entry function name of “WinMain()™. One possible solution is to
provide a menu on the command line. e.g.. if enter choice 1. the Browser will treat
Console application. and if enter choice 2. treat Window application. Perhaps we
need to write 2 different versions of the Browser in order to treat the 2 different
cases.

Although this Browser can handle function overriding (changing the
implementation of a base class function in a derived class. i.e. the case of dvnamic

66

th

6.2

binding). it cannot handle function overloading. i.c. functions with the same
name but different parameters or return type. It seems this is not an easy issue. as it
may require more strict parsing to the source files (¢.g. checking the number of
input attributes. the types of attributes. and the types of return values). As we
mentioned earlier. C++ grammar is not context-free. and usually a tool cannot
handle all the features in C++. This issue is left tor further study.

The Browser still cannot handle class forward declaration (¢c.g. the statement ot
“class Dummy:™) and function prototype (c.g. the statement of “void
IndepFuncivoid):™). This is also not a very hard issue. as it just requires a more
carcful parsing to the source file. This Browser has already set up a working
foundation of token parsing. and with a further step of tnving. it will be able to

handle such an issue. However. the solution is not provided here in the Browser

due to the time limit of this thesis: instead. it is left for further study.

Conclusion

The Function Cross-Reference Browser described in this thesis continues the research

on three dimensional software visualization. and makes some achievements in this

field. Specifically. this Function Cross-Reference Browser has the tollowing

characteristics:

The Browser is able to parse the C++ source files (in a single directory. with
extension names of “.cpp™ and “.h”) of a Win32 Console application. and to

extract the function cross reference hierarchy (i.e. function call relationships). The

Browser can handle a proper subset of the standard C++ features. including

dynamic binding.

19

Then the Browser is able to display the function cross reference hierarchy in 3D
format. and it allows a convenient traversal to the function call tree. The Browser
also has other features to allow clear display ing of the function call tree.

In summary. this Browser is a useful tool for software engineers. It can help them
better understand a large. complicated software application written in C++ language.

This thesis work adds a new member to the softw are visualization.

68

7 References

[1]. “A Principled Taxonomy of Software Visualization". by Blaine A. Price. et al..
Journal of Visuul Languages and Computing. Vol. 3. No. 3. Sep 1993, pp. 211-266.

Also see: hup: ‘kmi.open.ac.uk. ~doc, e JVLLC-Body .himl

[2]. “Software Visualization—Programming as a Multimedia Experience”. edited
by John Stasko. et al.. MIT Press. 1998.

[3]. “System Visualizer™. by Kim Thang Vu. Thesis of Master in Computer Science.
Dept. of Computer Science. Concordia University. 1997.

[4]. "C++: The Complete Reference”. 3" od.. by Herbert Schildt. MeGraw-Hill,
1998.

[5]. "C/C++ Annotated Archives™. by Art Friedman. Lars Klander. Mark Michaclis.
and Herb Schildt. McGraw-Hill. 1999,

16]. “Teach Yourself C++ in 21 Days™. 2™ od.. by Jesse Liberty. Sams Publishing.
1997.

[7]. "OpenGL Programming Guide™. 2™ ed.. by Mason Woo. Jakic Neider. and
Tom Davis. Addison-Wesley. 1997.

[8]. “The Unified Modeling Language User Guide™. by Grady Booch. Ivar Jacobson.

and James Rumbaugh. Addison Wesley Longman. 1999,

69

8 Appendix A Test Case

This appendix gives a C++ application as a test case. It contains two files. one header
file (Mammal.h) and one source file (Mammal.cpp).

8.1 A.l Mammal.h

PR . n
P Jummy, Czog ---th Y et ol TLLT rror
—elLm LI o e
The turrent ErowsSer Cannot o nandle ot oL by N
L Zuimmeys
13 -2a7
3 tammy
SN
PR
[RESPOLEE BN
- - - LX) - - - - "
- at - L (RSSO I
. s .. .
Mamm, (P Mamma I H
oM nat s "Hamm e Lot "y
- . " e e . " - . o .
P4 [N Yok tamm k] S -
- vy
L R e
. R O TR e J . N
Jiadss Doarpublic Mammal
.
cuplic
-~ ~ - wr o o ~ - - o,
Zca Tou T tnsTrunnooL .., ;
™~ -y - "o - - -~ - -
hRTeRs+ T L 3 degurnLTToor
- - = o~ -~ e " —-—— - -
ci1 HMove ZInsT ZI2T — o [FURAE =S = SN H
Ziad Zreza TInst
-at latinlos P
catinlfog.Mers :
e we .- "
Izut Ccay wezi'on

70

-

12

.

q

8.2 A.2 Mammal.cpp

by

o~

[
.

o8
X

[}

.
&l “
I Bl

‘ t
(
'
! .
1 '
i |
: [
|
%) !
N : C 1
. +
‘
¥
qr
o
. %
I I 3 22
o E i ¥
i " " "
- L) . e " R I
: (! vy N : (I I ~
1 -4 " P " 4 1)
. . B) - m R0
e o= - oo o g
H I o [S . "
1 I e . [V e
e vz i s oo P I
- - ‘ » e ol
. N > (v =] [& 3 "
I o 1l o 21 o R Th
Y . . i & oo ™
[| ~ i [§]
N . ' .- “ o 4
e th W - " 0
o { 1.] v [
o~ .) r) [38)
. L (SO B VR i
- '
I : | i N v I ! n 1" ‘e
‘e t bl i
. e . | —_ . . v '
“ " “ " by el () o I |
1 8} el z Iy T RN i s e = . 0 [l
e € " L - : 1 o . o 0 ¢
5 * . o - " o 1
LY H N [o3 : id, 1 B ' H Y] H
S " " . L i I e "
R o LI . o . sy Al Lot (94 v
-) e . ceo g . a FR—— S -
) (AR 9 - - ') w v b 7 ‘ - 1 1 ")
[O8 el i : . . N 18 £ 4 e £ t5 £ E 'y
! i o - - - OB e a > BB 3] ol
*) - o ; ot . 1 - - i) '3 3 2l (3] (3]
4 I ' {1, o r ‘ ORI ‘o s L '™ 0

Tamma o

4
-t
Yl
t

application

o
b=

“testin

The textual output of

-
.

w2l

A

a

N

o~

i
. 1 R . . . -
. Lo s . . . (. . . kY|

i . b . ty . [¥)
ry . . . oy . b [
-t qr Y . . . v
© o m SIS " . . s .
— Bl ot r . Bl b [ot noo- . .
I s . it b i (2 e
Xl el * + e . rul RN Al 0
£) - b N . %
. el N b bl o o “« ooom
- & [TR A . - - - o
N) KXl " o i I ‘ - £ K i] R &})
- . 0N PR C RS : I3} moomn
-t L S e | ‘Y [SE 4 '
3 [OVEE R - ! T ' K4 X o 1
£ T I £ t [
[iyl ISR £ . £ ! (&2 I .]
"y el - - - - | & « il 1
tn = K o 4 e I L) om0

o

9 Appendix B The Textual Output of the Browser

The following is the textual output in the DOS window after running the Browser to
the testing C++ application listed in Appendix A. The testing application is put under

the directory E:\TestSrc6\ .

Inter direciory name i Teslroe

12w searsh "ne diresceor TEStUSr e
z [- P S -~
DLl Damie - eSn3roe Mlamma jo -
Ll onams -2 Testar e Mammalln

1r S e proe Tl lesn

- - - s -~ D g ~o~
inputiiler e Snsr e Mamma ce

Niw 3 3roch L3ER names oanci Do oSt

18 o " caFallat L mp

- - .. . - - .
AL - _

N T N A R ot i e Toam
PR GIE G A 150 Tiam "] [N
. eyt ey
B inalog

3

fammal
fLsrla DN name R D U A

Ll Lnala3 SeEdlIrE ne
Zeliinglos

E21inafcg
Eerringleg::leea
Eelringlog Eeltinalos
Tanirlalllcag
Tatrrlat

Tav BERte =
lamriMoe
JaniiietAage

lar Speak

e e .
Tcoar:fcoaz

JEiels G ToRANCY

-
~4

’- 1. .
. . o
: 4)

. - ot ' .
e
‘ . .
4 . . -
- K v. —
' . e
4 N . . e [
Vi e . T o Xl
2 ol - - : LRI ™
’ s ot T N . o4 &l
s el e N] N) [H
. Al .) . Lad ‘ .
o “ ' v - (S be
£ Lot . . t et o vy t
0 | e - ‘ { . i . | [e
(1 1 g " ' ' . 1 .. ' . Ve 3]
b ! 4 1 1 hed [" ("
b ! [. t] . [i1 1 H . ¥
Bt) t .o . '] '] .) [l ‘ r v
i 1 | " - {) ' t -) 1 . ™ 0
K3 1 1 " - ' b 1 | " t] N B K3
I ' I o ' (' ' .. 1) (Y] ‘)
e ') ' o t] { ' ' . ' 1 (2, ¥
L (ti | 1 ! 1) 1 ' | . [t 1 1
3 ' t 1 f ' [v ' ' g | 1 - - 8]
£ = ' ' ' .] ' ' i ' e 1 ' - - [Q. b
[£) l ' ' .-) [) () ' ' 1 - . 4 O)
-) 83} ' | | e I 1 t 1 ! 1 {] b (1)
" poi t ' ' I ' 1 ' t) () T I
g ’ . 1 ' [s ' ' ' I 1 t ' ' ‘ IO ety o
o0 .. [1 ' () ¢ 1 ') ')) t ‘ [0
s [. i] 1 1 !] !) t] |) 1 e he ™ e] 4
K ! -t e ' | | ') ' t 1) 1 t t e M Tk u
L R {2 ')) ' 1 ' | ‘) ' t ! by " -, (.
. s [t ' ! ' t ' 1 ' ' ' (|) IEEY . 1o
8] 5 I ([t ' 1) ' ' 1) ' t b - - (73 o K3
0 T ' " | 1 t ' (' | ' « ' 1 [Bl - - Bl 4 o4 " B
) I I ' ' [) . ' ' ' . ' : | th, - - " o E o=

78

Y]

=N

peehes

t

.t

X P Y
SaTina ol

™

DAl

¥
(1.

80

.
o
[
9

.3 b,

Py

o1

I

t
t

e
ty
L1

81

th

.

e

82

-

[

1.

Pyl

Y]

-
qr

{e,

I L

1.

T

Bl

AT

1.

£
t

3!

ERetiee

oy

1

ol

tMova

Lo e T
EOSTeFURSES 4

=t

¢

o]

84

3

e

b

-

.
1

"~

noam oy

.
S i u,m
s - N
v il .
o - -
t 1 "
r i ot T
[] - e [o8
- : . oy
. e .. __,
N . e . . .
P B S - ‘ ‘ '
ca - " -t . .
. K wx.. mm 4 s se
i t £ ki e m
‘) N - - - A 0
i Y o i b i) 3 SN} Ll
8l o
EY] [‘! « . .) i . v - H b I . " rd "
[$4 - - - - - -
™) i n o1 £ " 1
1 iz t:
- [Ll - - [L
a o I : : o 0
" el 9 . . - + 4 Xl
t -+ I v n - 4 i L 4
" . -t -4 ot 54 -4
' [' e [19 I [
by . . e e i
[ad s KXl had s 4 k¥l "
.) o : : Iy : e
moomoomom] L — i L o L1 Q)
w N o Wt 3 "t Al 3 K t £ b) =
4 L € [¥ . & Y Lo B
| | t] o1 . o3 - B S o™
| | ' t SR T P TV - {1, {1, [/7 W [od
| ! ! ' e : o [1 o o < 4 ! » 3
| h h) o FRE . Ve [(b

[
’

i
I33)

po
[
"

nao

Q
33

rs

kY]

=

[3
[43)

[il o
BN - oo - o %
- - e
by s 94) i T
2. ot al " [
) v [T o N .
. I I - ‘
o . 4 el - - DU .- e~ s o - - - - - - -
e o ' < r L N . 0 1 - -
e) T - - om B o
()) ba [33 X i ! ! i L. L2
s o8 N . v [N (X} . [| ‘1
c IS Wl e . .) . .
a - " [I) (SRR A S BN . n
- r] . e [R *1 -
o ! @] [L il i (W] £ ’) i ' 47
by = . n . " IS a4 e . - Ll " ol 4
3¢ r I 9 i o i Ve e re
IS . L e % La by o . ba . . v Le
I . [. s 2 . ’ ' B . I . IR
- - o {e, e < EYEN o e PR IR "
1" [i 3 - r 1 - -
1 ., " i . R o ey . '
[il ‘ [il & . o |84
0 8} " . e o 4 e ' 1
. £ ‘ e I ‘. e “a r i
Lt ty t: % v H N - - it re . ot b e
N ST SR - R I 1 R R . 1 r 1 v . .
0 jal o W ' . 3 [N f N o . & . AR
e ey o " o PR e o O s 4s e
Y ~r (9] 1 . g - - - - . I
q [o i — Y] S ' . ' . ' ‘ ' a2 .-
(] b LU 8] -+ " [1 o il L [.
A SRV S = CUN N Bt [N S 3]
[[l % 9] [Y] [b il e [94 b b .4 ‘. [
Al (4] th ol 19 A ((-] i '] [}
[T I T K] K [A S A N o) [(R |
c - ! [! v 4T [' ' ' l) t) { | 1
- g] v o £ ') 1 ' 1 i |) ([l 1

n

rm

a

123

L.

q

89

o

LYl

1
1
]
1
)
t
'
]
!
I

I

90

ar
3

a

|

17

t

3

Ve
A0

LoT

'

91

!
1
t

e
RY
[
N . -
1
.
N .
4 e .
r
e e 4 . e .
. = . e
il ot “ ;oo
i) . o ’ o . s T
Q. . n ‘. . re 03 S
0] o - - N [
. . o i} 0]
. N . N . ot
4 [ba . + I)
i . - - e
v : € o - -
X il ¢ ! . ry 0! X +3d
. - - - b o - by s-1
% [Ll b Sl = [r tH 0D
R v - - .. . ooae
" 11 1 v { | | ‘
! . ! o8 J 1 ' 1 Y [/
- . i ve T - 1 1] kel X
- -1 bl) .y I3) 1 [EE T
el ol ' i] 1 ' n il Y]
g} N o f ca [1 (8] r)
[. . - e L O}
' . . . P " o
ol [l - : . ’ s e had . 5]
4 t s . - Lo S I o it
% b . . - . a1 - i Y]
. . R ™ .. - be v Vi ‘4 4 B
‘ i . ' ' [o sl
: 4 ' TN
Al Lo . o . - . i Lo e
N Y . . [- N e o .l b b) 1%
" e " R v . H. .y
. " i iad .. R Ve a1 . 3 K r :
+ . N N N n S o, . s I t. el
‘ ; ; . i N o - ‘ " ‘
’ . i I i K3 . N e .e . o e L i e i
' t i Xl v ” N b T ' b ' N i
! ‘ ! N . P] [CHEENS s P g ol - " ' !
4 ! ' i o 192 £ ot . ‘ i ' i
i ! b [958 SI 54 o} e { " / !
' Il R Ve i o ' o % . ' ' ' ’ ‘ ‘ ' [}
B . (™ ‘ iad . - i, . ' (' . v ' ' B

92

48]

EEREEEEEEEEE-E2-8 1

1

3psnnagsdsunas

tammas

e

-

$ar

N

P

e

"

4

i

PRI
U ¢

A

[39]

P

m

94

Joealm
ENA

EREE

13
.

. Pt
N &
o]
o o o
; n
. e .. “ o
[2 N
: : : v
" - "
1Y M 1)
N +
.
: o (- i (e
t ‘- 3 ;
i B2 1] :J ,:_
'
[by % ¥
B U ;D N
b i "
o]
L. B . s L8
S A s ! mm % !
ol] m s3] » 1 T_ 3 WL i
o e = H FEEN
- - ' | et 3 - st .
PO A O mw [B A - F. i :
. - e e i3 . " N
v i T - : ” ' -4 M I S
[O I [o D
S P V1 RN ‘s 3! [T
Loae g oo o 0 o
! " .
Q. 2 (L e . »C (X .C_, I
) J o . 0
[»u w ! t) n n i
O 3 0 B . 5 e
[V VI b b
A : iy : 5oy
noomom ' oo : b
R B 2 ,..w o R
4 n oy v . ..
N 4 . b 191 3! 1% r
¥ b 1% - - e
a4 Q Q - O 2 9] yw
(s,) -
i : i ”,, ’ i (2, " n ' 1™
! i ' ' v 1) - ')
i / l - ' i "oy e ' "oy
! ‘ B G ' : Bl o R ! " ¢
’ 2 . i ‘ — — 0 : -t a
' ' ; - ! ' N / L
i ' / o ’ ')
' ') ' - " ' "

e

Mamm,

9
'

ay

i1

-

e

96

by

(98

= ‘i

b .

[o .
H -

)

i

[re
Wl '
. ' .
“
. \H

™

e . . o
Se [[
- - o o
e Xl Yo b

97

