INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A DESIGN OF A BLAST SERVER WITH JINI
TECHNOLOGY

L1usoNG YaANG

A THEsIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL. QUEBEC. CANADA

APRIL 2002

© LIUSONG YANG. 2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68490-3

Canadi

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fie Votre référence

Our file Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract
A Design of a BLAST Server with Jini Technology

Liusong Yang

The explosion of biological data. particularly the nucleic acid and protein sequences.
has been proved to be both an opportunity and challenge for biologists as well as
computer experts. The burgeoning of huge-sized sequence databases necessitates
the invention and renovation of powerful computational tools to efficiently manage
and utilize these sequence data. Among the various bioinformatics tools. BLAST
(Basic Local Alignment Search Tool) is the most commonly used one for DNA se-
quence database searching. To enhance its working efficiency. in this thesis. we have
tried to design a new distributed system for BLAST service with the recently devel-
oped Jini technology. Since the service is involved in sequence databases query, the
RMI(Remote Method Invocation) proxy was chosen in its architect ure, The struetures
on both the client and the server sides were designed mainly based on Java technology

and demonstrated with class diagrams of Unified Modeling Language(UML).

Acknowledgments

[would like to express my sincere respect and gratitude to my thesis supervisor Dr
Gregory Butler for his guidance. encouragement and support throughout the course

of this research work.

I would like to thank my colleagues in my research group for their invaluable discus-

sions. suggestions. comments and help on my thesis.

[would like to give a special thanks to my parents. my lovely son and my hushand.
[t was their love and patience and continued support and encouragement that made

this thesis possible.

v

Contents

List of Figures

to

Introduction

L.l What is BLAST?

L2 What is Jini Network Technology

1.3 Problem Statement |

L.4 Contribution of the Thesis . . .

1.5 The Organization of the Thesis

BLAST

2.1 BLAST Algorithm|

2.2 The Variations of the Algorithm
2.2.1 Gapped BLAST
222 PSIBLAST
223 PHIBLAST.
224 WU-BLAST
2.2.5 Parallel Implementations
2.2.6

2.3 The Public Database for BLAST
2.3.1 GenBank
232 EMBL

DDBJ

vi

2.4 The Parser of the BLAST Result 35

241 PERLo 37
242 Python. 41
Jini 45
3.1 How Does Jini Network Technology Work? 15
3.1.1 Service Registration 16
3.1.2 Client Lookup I
3.2 Discovering a Lookup Service 19
3.2.1 Unicast Discovery 51
3.2.2 Multicast Discovery 52
3.3 Service Proxy 72
3.4 The Structure of Jini 5
341 Client Structure . .. 00 000 3!
3.4.2 Server Structure . . . e e e e e 51
BLAST Server Design 57
L1 Introduction 000000 a7
1.2 Design for the Service Architecture 57
4.3 Design for Server Side0 59
+3.1 Register a Blast Service 59
+3.2 Create a User Interface 59
44 Design for Client Side 6-1
+4.1 Retrievera BLAST Service 64
4.2 Get a User Interface 65
4.5 Common Classes on Server and Client Sides 65
Conceptual User Interface Design 68
2.1 Imput. .o 68
5.2 Outputo 68

vi

5.2.1 SummaryBR . ..o 69

522 GraphBR . ..o o0 69

523 DBEntryBR 70

5.24 AlignmemtBR00 nt

6 Summary and Future Work 72
vii

List of Figures

1 The Record Format of GenBank 23
2 An Overview of Datatlow for EMBL Database 26
3 The Record Format of EMBL 28
! An Overview of DDBJ Database 31
5) The Record Format of DDBI 32
6 An Alignment Block from BLAST 36
T A Parsed File of BLAST 37
S Function of Parse() in Boulder 38
9 New() Function in Boulder 38
10 The Tags about the Program in BLAST Stone Object 39
Il The Tags about the Run in BLAST Stone Object . 00 39
12 The Tags of the Query Sequence and Subject Database in BLAST
Stone Objeet .. oo 39
I3 The BLAST-hits Tag in BLAST Stone Object 10
I+ The HSPs Tag in BLAST Stone Object 41
I5 A Parsed Stone Object 42
16 A New Object of Report in BPlite. 12
17 The Attributes and Method of a Report Object 43
18 An Object of Subject in BPlite __ 43
19 An HSP Object in BPlite 43
20 A General View of a Jini Svstem 46
21 Service Provider Finds a Lookup Service A7

vili

o (V] [NV
=] o O

o
0]

A Registrar is Returned to Service Provider 48
A Registar Registers the Service Object 48
A Client Looking for a Lookup Service 48
A Registrar is Returned 49
Asking for a Service 19
A Service Object is Returned 30
Support Services for Mahalo 51
AThin Proxy 53
Code Structure on Client Side 35!
A Code Structure on Server Side 56
JVAM Objects for RMI Proxy 58
The Class Diagram for RMI Proxy 58
A Class Structure in Java00 59
A Code Structure on Server Side 60
A FrameFactory Object on Client and Server Sides 651
A Class Diagram for Sequence EntryFrameFactory 62
A Class Diagram for SequenceEntryFrame £52
A Class Diagram for BLASTServer 63
Code Structure on Client Side 6-1
A Class Diagram for a Client 65
A Class Diagram for BLASTResult 66
A Class Diagram for BLASTResult Hierarchy 66
The Interface of BLAST Class 67
The Input for BLAST Search 69
A Summary BLAST Result 70
The Database Entries in BLAST Result !
The Detailed Alignments i1

Chapter 1

Introduction

The last few decades have seen an explosion in the number of DNA and protein se-
quences available through public databases. The major nucleotide sequence databases
double in size approximately every 14 months. and the number of completely se-
quenced organism genomes is constantly increasing.

Sequence databases are typically searched using kevwords or a sequence. Kevword
search engines such as the Entrez system provided by the National Center for Biotech-
nology Information (NCBI) search the annotation section of the sequence database
record. The major application of these databases involves sequence similariry search-
ing. where sequences similar to a query sequence supplied by the investigator are
identified in a sequence database. In most cases. this operation identifies potential
homologues of the query sequence, that is, the database sequence sharing a common
evolutionary history with the query sequence. Homologous sequences can provide a
clue as to the function of the query sequence. its evolutionary history and its structure.
For example, if an unknown protein sequence is found to be markedly similar over its
whole length to the sequence of a protein of known structure in the database. the two
proteins are likely to have similar structures and related functions. Orthologs and
paralogs are two types of homologous sequences. Orthology describes genes in differ-
ent species that derive from a common ancestor. Orthologous genes may or may not

have the same function. Paralogy describes homologous genes within a single species

that diverged by gene duplication. Other applications include the identification of

coding regions in uncharacterized genomic DNA by looking for DN A regions that can

be translated into an amino acid sequence similar to that of a known protein [1].
BLAST is the most commonly used suite of programs for sequence database sim-

ilarity searching. [t allows rapid searching for sequences similar to a query sequence.

1.1 What is BLAST?

BLAST [2](Basic Local Alignment Search Tool) is a set of similarity search programs
designed to explore the available sequence databases. One of the main reasons we are
interested in the similarity between biomolecule sequences is that similar sequences
hold a similar function. structure. and they have a similar evalutionary history. We
assess sequence similarity with the concept of sequence alignment. An alignment is
simply a correspondence between the sequences. in which each symbot in one sequence
is assigned no more than one (maybe none) of the svmbols in the other sequence. and
in which the order of the svmbols in the sequence is maintained. Often. a global
alignment between two sequences has little biological meaning. for instance. when
aligning two genomic regions containing a gene. Insuch cases. it may be more relevant
to align those local regions in the sequence showing high similarity than to attempt

to align the whole sequences.

1.2 What is Jini Network Technology?

Jini network technology provides a simple infrastructure for delivering services in a
network and for creating spontancous interaction between programs that use these
services regardless of their hardware/software implementation.

Any kind of network made up of services (applications. databases. servers. devices.
information systems, mobile appliances. storage, printers. etc.) and clients (requesters

of services) of those services can be easily assembled. disassembled, and maintained

o

on the network using Jini Technology. Services can be added or removed from the
network. and new clients can find existing services — all without administration (3]

Jini technology uses a lookup service with which devices and services register.
When a device plugs in. it goes through an add-in protocol, called discovery and
join-in. The device first locates the lookup service (discovery) and then uploads an
object that implements all of its services’ interfaces (join). To use a service. a person
or a program locates it using the lookup service. The service's object is copied from
the lookup service to the requesting device where it will be used. The lookup service
acts as an intermediary to connect a client looking for a service with that service.
Ounce the connection is made. the lookup service is not involved in any of the resulting
interactions between that client and that service.

[t does not matter where a service is implemented -~ compatibility is ensured
because each service provides everyvthing needed to interact with it. There is no
central repository of drivers. or anything clse for that matter.

The Java programming language is the key to making Jini technology work. De-
vices in a network employing Jini technology are tied together using the Java Remote
Method Invocation (RMI). By using the Java programming language, the Jini net-
work architecture is secure. The discovery and join protocols. as well as the lookup
service, depend on the ability to move Java objects. incliding their code. between
Java virtual machines.

Jini technology not only defines a set of protocols for discovery, join. and lookup.
but also a leasing and transaction mechanism to provide resilience in a dvnamic net-
worked environment. The underlying technology and services architecture is powerful
enough to build a fully distributed system on a network of workstations. Also the Jini
network infrastructure is small enough that a community of devices enabled by Jini
network software can be built out of the simplest devices. For example. it is entirely
feasible to build such a device community out of home entertainment devices or a few

cellular telephones with no “computer” in sight [4].

1.3 Problem Statement

Currently. there are the following wayvs to use BLAST service.

1) Local installation of BLAST software The widely used solutions for BLAST
now require local installation of the analysis software. expertise in the UNIN operating
system. and. in some cases. programming skill. These are skills and infrastructure that
are frequently not present in the same groups or institutions that produce the DNA
sequences. Thus. there is still a widespread need for a bioinformatics solution that
removes the burden of providing hardware and software support that could otherwise

detract from the core mission of lab oratories that specialize in DNA sequencing.

2) Web-based BLAST tool There are several web-based BLAST tools provided
by NCBI. EBI and so on. This kind of BLAST service can be accossed by fixed URL.

[f the service changes its address. the users can not access it.

3) A distributed BLAST system with CORBA A distributed DN A sequence
analysis system with CORBA was developed by J.T. Inman et al [5. 6]. Current ver-
stons ol CORBA pass remote object references. rather than complete object instances.
Each CORBA object lives within a server. and the object can only act within this
server. This is more restricted than Jini. where an object can have instance data and

class files sent to a remote location and execute there [7].

1.4 Contribution of the Thesis

[n this thesis, we designed a BLAST server with Jini network technology. The service
architecture chosen is the RMI thin proxy type. The structures on the client side and

on the server side are shown with UML class diagrams.

1.5 The Organization of the Thesis

In the thesis, we first introduce the development of BLAST. including some different
versions of the BLAST algorithm, the current public database structures and the
parser frequently used now. Second. we introduce the Jini technology, including the
general Jini architecture, the general structures of client side and server side. Then
we introduce the design of our BLAST server with Jini technology. The last part is

a summary and the future work of the design.

Chapter 2

BLAST

Dynamic Programming Algorithms are used for finding shortest paths in graphs. and
in many other optimization problems. but in the comparison or alignment of strings
(as in Biological DNA, RNA and protein sequence analysis. speech recognition and
shape comparison). [t provides a rigorous mathematical approach toward sequence
alignment. It is guaranteed to find the best alignment between a pair of sequences
given a particular choice of scoring matrix and gap penalties [8]. There are several
variants of the dynamic programming algorithm that vield different kinds of align-
ments.

The rigorous dynamic programming algorithms for calculating the optimal global
alignment similarity score between two protein or DNA sequences began with the
heuristic homology algorithm of Needleman and Wunsch (9]. which first introduced
an iterative matrix method of calculation. Sellers [10] developed a true metric measure
of the distance between sequences. The variant known as the Smith-\Waterman algo-
rithm [11] vields a local alignment. A local alignment aligns the pair of regions within
the sequencés that are most similar given the choice of scoring matrix and gap penal-
ties. Database searches generally use local alignments as opposed to global alignment.
This allows the database search to focus on the most highly conserved regicns of the
sequences without having to overcome interference from less well-conserved regions

of the sequences. It also allows similar domains within sequences to be identified.

such as nucleotide binding domains. even though the sequences may not be related
over their entire length. Smith and Waterman developed a dynamic programming
algorithm for calculating local similarity scores.

The alignment may start and end anvwhere in the two sequences. as long as
it produces the best similarity score and allows for arbitrary length deletions and
insertions. So the algorithm finds the most similar region shared by the two sequences
in a way that reflects the minimum evolutionary distance in the similar region. This
method is very slow. FASTA [12] is a fast approximation to Smith-Waterman. FASTA
is a two step algorithm. The first step is a word search with a specific word size which
finds regions in a two dimensional table that are likely to correspond to highly similar
segments of the two sequences. These regions are a diagonal or a fow closely spaced
diagonals in rhe table that have a high number of identical word matches between the
sequences. The second step is a Smith-Waterman alignment centered on the diagonals
that correspond to the alignment of the highly similar SCCUEeNCe Segments.

The region for the Smith-Waterman alignment is bounded by the window size. The
window size limits the number of insertions or deletions one sequence can accumulate
with respect to the other sequence in the alignment. Thus. the stgnificant speedups
observed in a FASTA search relative to a full Smith-Waterman search is due to the
prior restriction in alignment space as well as skipping the Smith-\Waterman step
when no diagonals are found that correspond to alignments between highly similar
sequence segments. The FASTA algorithm is a heuristic approximation to the Smith-
Waterman algorithm. The heuristics used by FASTA allow it to run much faster than
the Smith-Waterman algorithm but at the cost of some sensitivity. Two heuristics are
employed. Both can be interpreted as restrictions on the model of sequence evolution
that is used in comparing the sequences. The first restriction is implemented by
the word size parameter. usually two for proteins and six for nucleic acids. This
means that FASTA constrains the evolution between a pair of sequerices to preserve
a number of unchanged dipeptides or hexanucleotides. The second heuristic used by

FASTA is the window size. Its effect is more variable than that of the word size. If

-

the best alignment lies entirely within the window defined by the window size and
the concentrated identities. there is no effect. However if the best alignment. as
defined by a full Smith-Waterman analysis. goes outside the window then a lower
scoring alignment will be found by FASTA. This can lead the user to conclude that
the sequences are not homologous when in fact they are and homology could have
been inferred from a full Smith-Waterman alignment.

The first BLAST program is delivered by NCBI in 1990 [13]. The BLAST algo-
rithm uses a word based heuristic similar to that of FASTA to approximate a sim-
plification of the Smith-Waterman algorithm known as the maximal segment pairs
algorithm. Maximal segment pairs alignments do not allow gaps and have the very
valuable property that their statistics are well understoocd [14]. Thus. we can readilv

compute a significance probability for a maximal segment pair alignment.

2.1 BLAST Algorithm

Like other similarity measures. the BLAST begins with a matrix of similarity scores
for all possible pairs of residues. [dentities and conservative replacements have pos-
itive scores. while unlikely replacements have negative scores. For DNA sequence
comparisons. identities are scored +5. and mismatches are scored -1. The stmilarity
score for two aligned segments of the same length is the sum of the similarity values
for each pair of aligned residues.

MSP. a maximal segment pair, is defined to be the highest scoring pair of identical
length segments chosen from the two sequences. The boundaries of an MSP are chosen
to maximize its score, so an MSP may be of any length. The MSP score. which BLAST
heuristically attempts to calculate, provides a measure of local similarity for any pair
of sequences. Because a molecular biologist may be interested in all conserved regions.
not only in the highest scoring pair. a segment pair is defined to be local maximum
if its score can not be improved either by extending or by shortening both segments.

BLAST can seek all locally maximal segment pairs with scores above some curoff.

Let a word pair be a segment pair of fixed length 11", The main strategy of
BLAST is to seek only segment pairs that contain a word pair with a score of at least
a threshold word score T. Scanning through a sequence, one can determine quickly
whether it contain a word pair of length w that can pair with the query sequence
to produce a word pair with a score greater than or equal to the threshold T. Any
such hit is extended to determine if it is contained within a segment pair whose score
is greater than or equal to S (cutoff score). The lower the threshold T, the greater
the chance that a segment pair with a score of at least S will contain a word pair
with a score of at least T. A small value for T. however. increases the number of hits
and therefore the execution time of the algorithm. Random simulation permits us to
select a threshold T that balances these considerations.

In the implementations of this approach. the following are the details of the 3

algorithmic steps.

Step 1: Neighborhood Construction: compile a list of high scoring words
This step is parameterized by the query sequence (). the score function M. the word
size 17 and the threshold word score T. This step outputs the neighborhood. V. The
query sequence Q) is scanned. Each query word may have zero or more neighbors.
The set of neighbors of all query words is the neighborhood. The neighborhood is a
set of tuples of the form (neighbor. offset) where neighbor is the word that matched

the query word at offset.

Step 2: Hit Detection: scanning the database for hits This step is param-
eterized by a subject sequence S and the neighborhood V. A word hit A is an
aligminent of a query word and subject word. The subject S is scanned for matches
to a member of the neighborhood. When a match is found. the extension step is

invoked.

Step 3: Hit Extension This step is parameterized by the word hit A. the word

size 11", a scoring function Af. the falloff score X'. the threshold alignment score R

and the query and subject sequences @ and S. This step attempts to extend a hit
into a longer, potentially higher-scoring alignment. The extension terminates if the
cumulative score falls below X. The initial score is that of the word hit. Extension
is first attempted in the left direction. Residue pairscores are accumulated in sum. If
the sum is positive. it is added to score and reset to zero. The alignment is extended
by one residue pair. If sum falls below \. extension terminates. The extension is then
attempted in the right direction. The maximal positive-scoring alignment is stored
in the HSP set if the score meets the threshold R.

The three steps may vary somewhat depending on whether the database contains
protein or DNA sequences. For proteins. the list consists of all words that score at
least T when compared to some word in query sequence. Thus. a query word may he
represented by no words in the list or by many.

The price for being able to readily compute a significance probability is that the
alignments cannot have gaps [14]. Thus, the evolutionary model requires that there
be a fairly long streteh of sequence that has evolved without insertions or deletions.
or at least with a complimentary pattern of insertions and deletions that do not
significantly disrupt the alignment.

The BLAST algorithm is less sensitive than Smith-Waterman and in appropriate
circumstances more selective. For proteins. the BLAST word based heuristic is more
sensitive than the FASTA heuristic even though BLAST uses a word size of three for

proteins while FASTA uses a word size of two.

2.2 The Variations of the Algorithm

After BLAST is created. it is modified and updated continuously. The most used

versions will be introduced in the following.

10

2.2.1 Gapped BLAST

Gapped BLAST (13] is a variation of the original BLAST for protein database search
programs, which was developed by NCBI in 1997. By using a new criterion for trigger-
ing the extension of word hits and a new heuristic for generating gapped alignments.
it vields a gapped BLAST program that runs at approximately three times the speed
of the original.

The major refinements to BLAST are the following:

For increased speed. the criterion for extending word pairs has been modified.
The central idea of the BLAST algorithm is that a statistically significant alignment
is likely to contain a high-scoring pair of aligned words. BLAST first scans the
database for words that score at least T when aligned with some word within the
query sequence. Any aligned word pair satistving this condition is called a hit. The
second step of the algorithm checks whether each hit lies within an alignment with
score sufficient to be reported. This is done by extending a hit in both directions.
until the running alignment’s score has dropped more than X below the maximnm
score yet attained. This extension step is computationally quite costly: with the T
and ' parameters necessary to attain reasonable sensitivity ro weak alignments. the
extension step typically accounts for more than 90 percent of BLAST's execution
time. It is therefore desirable to reduce the number of extensions performed.

The refined algorithm is based upon the observation that an HSP of interest is
much longer than a single word pair, and may therefore entail multiple hits on the
same diagonal and within a relatively short distance of one another. (This diagonal of
a hit involving words starting at positions (r1.r2) of the database and query sequences
may be defined as r1-r2. The distance between two hits in the same diagonal is the
difference between their frst coordinates). This signature may be used to locate
HSPs more efficiently. Specifically. they choose a window length A. and invoke an
extension only when two non-overlapping hits are found within distance 4 of one
another on the same diagonal. Any hit that overlaps the most recent one is ignored.

Efficient execution requires an array to record, for each diagonal, the first coordinate

11

of the most recent hit found. Since database sequences are scanned sequentially. this
coordinate always increases for successive hits.

Because they require two hits rather than one to invoke an extension, the threshold
parameter T must be lowered to retain comparable sensitivity. The effect is that many
more single hits are found. but only a small fraction have an associated second hit
on the same diagonal that triggers an extension. The great majority of hits may
be dismissed after the minor calculation of looking up. for the appropriate diagonal.
the coordinate of the most recent hit. checking whether it is within distance 4 of
the current hit’s coordinate, and finally replacing the old with the new coordinate.
Empirically, the computation saved by requiring fewer extensions more than offsets
the extra computation required for processing the larger number of hits.

The ability to generate gapped alignments has been added. The original BLAST
program often finds several alignments involving a single database sequence which.
when considered together. are statistically significant. Overlooking any one of these
alignments can compromise the combined result. By introducing an algorithm for
generating gapped alignments. it becomes necessary to find only one rather than
all the ungapped alignments subsumed in a significant result. This allows the T
parameter to be raised. increasing the speed of the initial database sear.

By secking a single gapped alignment. rather than a collection of ungapped ones.
only one of the constituent HSPs needs to be located for the combined result to be
generated successfully. This means that we may tolerate a much higher chance of
missing any single moderately scoring HSP.

[n summary. the new gapped BLAST algorithm requires two non-overlapping
hits of score at least T. within a distance A of one another. to invoke an ungapped
extension of the second hit. The resulting gapped alignment is reported only if it has

an E-value low enough to be of interest.

2.2.2 PSI BLAST

PSI BLAST [16]. Position-Specific Iterated BLAST. is also a variety of original
BLAST for protein database search programs. which was developed by NCBI in
1997. It introduces a method for automatically combining statistically significant
alignments produced by BLAST into a position-specific score matrix, and searching
the database using the matrix. It runs at approximately the same speed per iteration
as gapped BLAST. but in many cases is much more sensitive to weak but biologically
relevant sequence similarities.

BLAST searches may be iterated. with a position-specific score matrix generated
from significant alignments found in round i used for round ¢ +1. Motif or profile
search methods frequently are much more sensitive than pairwise comparison meth-
ods at detecting distant relationships. However, creating a set of motits or a profile
that describes a protein family. and searching a database with them. tvpically has
involved running several different programs. with substantial user intervention at var-
tous stages. The BLAST algorithm is easily generalized to use an arbitrary position-
specific score matrix in place of a query sequence and associated substitution matrix.
Accordingly. an automatic procedure is developed to generate such a matrix from the
ontput produced by a BLAST search. and adapted the BLAST algorithm is adapted
to take this matrix as input. The resulting program may not be as sensitive as the
best available motif search programs. but its speed and ease of operation can bring

the power of these methods into more common use.

2.2.3 PHI BLAST

The Pattern-Hit Initiated BLAST (PHI-BLAST) [16] is developed to address the
problem in analyzing protein family homology. For example. a researcher frequently
wishes to evaluate the significance of a specific pattern within a protein. or to exploit
knowledge of known motifs to aid the recognition of greatly diverged but homologous

family members. The PHI-BLAST program takes as input both a protein sequence

13

and a pattern of interest that it contains. It searches a protein database for other in-
stances of the input pattern, and uses those found as seeds for the construction of local
alignments to the query sequence. The random distribution of PHI-BLAST alignment
scores is studied analytically and empirically. In many instances. the program is able
to detect statistically significant similarity between homologous proteins that are not
recognizably related using traditional single-pass database search methods.

For cach instance of the input pattern in a database sequence, paired with an
instance in the query. PHI-BLAST attempts to find the optimal local alignment
containing the aligned patterns. This can be done rigorously by applyving dvnamic
programming to the parts of the two sequences proceeding and the parts following
the pattern. The alignment returned is required to begin at the corner of the path
graph. but is permitted to end anvwhere within the graph. The ditficulty with this
approach is that. to guarantee optimality. a very large portion of the path graph needs
to be searched. and this requires inordinate time in a database search. Basically, path
graph cells are considered only if the score of the best alignment leading into them
falls no more than X" below the best score vet found. For sufficiently large values of
the X' parameter. this approach almost always returns the optimal local alignment
Because PHI-BLAST performs a gapped extension whenever an instance of the imput
pattern is encountered in the database. reasonable execution times depend upon such
instances being relatively rare. Therefore. the only allowed patterns are those that are
expected to occur less frequently than once per 5000 database residues. Any pattern
that contains four completely specified residues, or three specified residues whose
average background frequency is 5.8 percent. passes this test. Of course. the more
specific the input pattern, the faster PHI-BLAST will run. The frequency with which
a pattern will occur within the database can be estimated casily from background

amino acid frequencies.

14

2.2.4 WU-BLAST

WU-BLAST [17], developed by Warren Gish at Washington University, is a powerful
software package for gene and protein identification. using sensitive, selective and
rapid similarity searches of protein and nucleotide sequence databases. \WU-BLAST
2.0 and NCBI-Gapped BLAST are distinctly different software packages. [n spite of
a common lineage for some portions of their code. in many important ways the two
packages do their work differently and, consequently, obtain different results and offer
different features.

The classical ungapped BLAST algorithm has not been changed in WU-BLAST
2.0. thus retaining the sensitivity and control characteristics of this algorithm that
users have become accustomed to with previous versions of BLAST. Due to the afore-
mentioned optimization. when assessed at the same sensitivity level. the classical
BLAST algorithm in WU-BLAST 2.0 is essentially the same speed and uses much
less memory than the 2-hit algorithm.

When run on a multiprocessor computer system. the NCBI software uses one CPU
or thread by default. whereas WU-BLAST will attempt to use all available CPUs by
default. As the use of multiple CPUs is never as efficient as using a single CPU. speed
comparisons should be made between the two programs when using the same number
of CPUs.

NCBI TBLASTX does not perform gapped alignments. whercas WU-TBLASTXN
produces gapped alignments by default with the option to turn them off.

When searching very large databases, virtual memory requirements are dramat-
ically reduced in WU-BLAST 2.0. eliminating program failures that occurred when
system resource limits were unexpectedly reached. Virtual databases are supported
in licensed BLAST 2.0. Virtual databases can be specified on the command line as a

white space-delimited list of component database names.

15

2.2.5 Parallel Implementations

2.2.5.1 Parallel Hardware

There are two basic methods of mapping sequence comparison to a parallel processor,
one with coarse-grain parallelism. and the other with fine-grain parallelism [18].
The coarse-grain approach is appropriate for large database searches. In this
case. the sequences are partitioned among the processing elements (PEs) so as to
have similarly sized subsets of the database assigned to each PE. Then, multiple
independent sequence analyses are performed. Each processing element must have
sufficient memory for its sequences (or significant segments of its sequences), as well
as for two rows of the dynamic programming matrix: the previous row. and the row
being currently formed. If only a small number of sequence comparisons are required.
coarse-grain parallelism will offer little speedup because the database sequences will

not be spread across all processing elements.

2.2.5.2 Smith-Waterman Algorithm with MMX* Technology

Since 1995, Intel Corporation’s general-purpose processor line has supported Single-
[nstruction. Multiple-Data (SIND) instructions. termed =MMN* Technology™. A
significant majority of the installed base of personal computers. and almost every
PC sold today. supports it. These instructions can be used to take advantage of
the parallelism of Smith-Waterman and get competitive performance from general-
purpose. inexpensive processors.

A form of parallel processing capability termed the single instruction. multiple
data (SIMD) technology [19] enables microprocessors to perform the same operation
(logical. arithmetic or other) in parallel on several independent data sources. [t is
possible to exploit this by dividing wide registers into smaller units in the form of
microparallelism or SIND within a register. However. modern microprocessors have
added special registers and instructions to make the SIND technology easier to use.

The technology is included in some of the most widely used modern IMICrOProcessors.

16

including the Intel Pentium MMXN. II and IIL

The ParAlign algorithm [20] has been specifically designed to take advantage of
this technology. [t is a faster and more sensitive algorithm for sequence similarity
searching in view of the rapidly increasing amounts of genomic sequence data avail-
able. The algorithm initially exploits parallelism to perform a very rapid computa-
tion of the exact optimal ungapped alignment score for all diagonals in the alignment
matrix. Then. a novel heuristic is emploved to compute an approximate score of
a gapped alignment by combining the scores of several diagonals. This approximate
score is used to select the most interesting database sequences for a subsequent Smith-
Waterman alignment. which is also parallelised. The resulting method represents a
substnnginl improvement compared to existing heuristics. The sensitivity and speci-
ficity of ParAlign was found to be as good as Smith-Waterman implementations when
the same method for computing the statistical significance of the matches was used.
[n terms of speed. only the significantly less sensitive NCBI BLAST v.2 program was

found to outperform the new approach. The algorithm of ParAlign has the following

improvenents:

1) Efficient parallel compntation of the optimal ungapped alignment score for
all diagonals. In the first phase BLAST scans for short regions of 1-3 consecutive
amino acids that are identical or very similar between the two sequiences. By defaulr.
BLAST requires 3 amino acids to be very similar. i.e.. the sum of the three score
matrix elements corresponding to the three pairs of amino acids must exceed a certain
limit. NCBI BLAST v.2 additionally requires that there are two such Zroups on
the same diagonal within a distance of 40 amino acids. Hence. if the similarity is
more distributed along one diagonal it may not be detected by the present heuristic
methods. This weakness is overcome in ParAlign by calculating the exact ungapped
alignment score for each diagonal.

2) Computation of an approximate gapped alignment score. In the second phase

of sequence alignment. sequence similarities may pass undetected if the similarity is

17

evenly distributed on several diagonals, in which case the optimal alignment con-
tains many gaps. Many heuristic algorithms select a small fraction of the database
sequences for a more rigorous examination using an optimal alignment algorithmn
within a band (FASTA) or region (NCBI BLAST v.2) surrounding the most inter-
esting initially identified regions. BLAST uses only the score of the highest scoring
initial region to determine whether a more accurate gapped alignment should be con-
structed. it is hence unable to recognize an otherwise significant alignment if none of
the high scoring segment pairs found has a score above about 40 with a typical length
query. ParAlign employs a new heuristic for computing an estimated gapped align-
ment score. which is used to select the most interesting fraction of database sequences
for further examination. When the ungapped alignment scores for all diagonals have
been found. the scores for each diagonal are combined in a new inter-diagonal scoring
function. which is also a kind of maximum partial sum of scores function. Using this
function. high scoring regions on neighbouring diagonals will receive a high score. The
chosen inter-diagonal scoring function has been found ro be very effective in filtering

the sequence database.

2.2.6 Distributed Implementation — TurboBLAST

TurboBLAST [21] is a Java-based application released by TurboGenetic in April.
2001. It can run on Macs. PCs and Linux boxes. helping researchers to maximize the
performance potential of their computer networks regardless of platform. It is also
scalable - if researchers want more speed. all they have to do is add more machines. 1t
provides a high-performance BLAST service based on the use of multiple executions
of the unmodified NCBI BLASTALL program. BLASTALL is one of the imple-
mentations of BLAST available from the NCBI that can be used to perform all five
variations of the BLAST algorithm, BLASTN. BLASTP. BLASTX. tBLASTN. and
tBLASTN. It accelerates the BLAST throughput and has greater scientific insights
and tremendous cost-savings.

TurboBLAST achieves high performance for large numbers of BLAST searches in

18

two ways: by use of batch queuing. and by splitting individual BLAST search requests
into multiple parts by dividing up both the set of input (query) sequences and the
database(s) against which the search is to be conducted. In addition. TurboBLAST
manages some of the chores related to updating genomic databases in a multi-machine
environment.

The TurboBLAST system consists of three main components arranged in a classic
3-tier system containing an end-user client. a BLAST Master. and a number of BLAST
Workers.

Client is the part of the system accessed by the bench scientist performing BLAST
queries. The Client generates BLAST requests and submits them to the BLAST
Master, waits for the results. and. after receiving them. stores them appropriately.

BLAST Master accepts a BLAST request from a Client and converts it into one
or more requests to the Piranha Backend System. a sophisticated parallel execution
environment that manages all BLAST requests and BLAST Workers. [t waits for the
results. combines them into a unified result that exactly matches ordinary BLAST
output. and delivers the unified result to the Client.

BLAST Workers are components that execute BLASTALL against all or some
portion of a genomic database, taking as input one or more of the query seqiiences.

TurboBLAST accelerates BLAST by automatically splitting BLAST requests into
multiple small tasks. executing the tasks in parallel. and then merging the task results
into a single unified result. Each BLAST request contains a number of input query
sequences to be compared against one or more nucleotide or protein databases. The
result is an ordered list of the sequences in the database(s) that have the greatest
homology to one of the query sequences.

In order to deliver high performance overall, TurboBLAST provides the following
features: 1) Fault Tolerance: anv of the BLAST Workers may fail without affecting
the correctness of the system behavior or of the BLAST results. Of course. the
overall computation will take a little longer because there are fewer BLAST Workers

available. 2) Dynamic Load Balancing: each of the BLAST Workers manages its own

19

workload. In general. if there are an ample number of tasks. the workload will be
shared fairly. and very effective load balancing will be achieved. This is true even
when the BLAST Workers are heterogencous, e.g., contain different processor types.
use different operating systems, run at different speeds, or contain different amounts
of RAM. 3) Worker Specialization: once a BLAST Worker has executed a particular
task. it will attempt to remain “focused™ on tasks that reference the same database or
database partition. in order to avoid the costs associated with reloading its memory.
Since each BLAST Worker manages its own workload, this is handled in a completely
decentralized way, with individual BLAST Workers deciding for themselves when they

should look for a different type of task.

2.3 The Public Database for BLAST

[nternational Nucleotide Sequence Database Collaboration includes GenBank (NCBI)
at Bethesda in MD of USA. EMBL Nucleotide Sequence Database (EBI) in Hinxton of
UK and DNA Data Bank of Japan (DDBJ) in Mishima of Japan. Data is exchanged

amongst the collaborating database on a daily basis.

2.3.1 GenBank

GenBank [22] is a public database of all known nucleotide and protein sequences
with supporting bibliographic and biological annotation. built and distributed by the
National Center for Biotechnology Information (NCBI). a division of the National
Library of Medicine (NLM), located on the campus of the US National Institutes of
Health (NIH).

2.3.1.1 Organization of the Database and Record Format

Each GenBank entry includes a concise description of the sequence. the scientific
name and taxonomy of the source organism. bibliographic references. and a table of

features that identifies coding regions and other sites of biological significance. such

20

as transcription units. repeat regions, sites of mutaticns or modifications and other
sequence features. Protein translations for coding regions are also in the feature table.
The files in the GenBank distribution have traditionally been divided into divi-
sions’ that roughly correspond to taxonomic divisions, e.g., bacteria, viruses, primates
and rodents. In recent vears divisions have been added as needed for specific initia-
tives in biology. such as divisions for EST sequences. genome surveyv seqiences and
high throughput genomic sequences. There are currently 16 divisions. For conve-
nience in file transfer, the larger divisions, e.g.. EST and primate, are divided into
multiple files when posting the bimonthly GenBank releases on NCBI's FTP site.
Expressed sequence tag (EST) data are the major source of new sequence records
and genes. ESTs also continue to provide the major source of new gene discoveries.
As part of its daily processing of EST data. NCBI identifies through BLAST searches
all homologies for new EST sequences and incorporates that information into the
companion dbEST database. In order to organize the EST data in a useful fashion.
NCBI maintains the UniGene collection of unique human. mouse and rat genes.
Sequence-tagged site (STS) data division of GenBank currently contains anony-
mous STSs based on genomic sequence as well gene-based STSs derived from the
3" ends of genes and ESTs. These STS records usually include primer sequences.
annotations and PCR reaction conditions. The ultimate purpose for creating high
resolution physical maps of the human genome is to create a scaffold for organizing
large scale sequencing. Physical maps based on STS landmarks are used to develop
so-called “sequence-ready’ clones consisting of overlapping cosmids or BACs. As the
HTG sequence data derived from these clones are submitted to GenBank. STSs be-
come crucial reference points for organizing, presenting and searching the data. NCBI
uses “electronic PCR’ to compare all human sequences with the contents of the STS
division of GenBank; This identifies primer-binding sites on the human sequences
that may be amplified in a PCR reaction. This tool permits the assignment of an
initial location on the map for sequence data and the association of existing GenBank

entries to the new reference sequence. The electronic PCR tool is also being made

21

publicly available on the web to enable any researcher with a new human sequence
to relate that sequence to existing maps and HTG sequence data.

Genome Survey Sequence (GSS) data division of GenBank has been the fastest
growing division. GSS records represent ‘random’ genomic sequences. but are pre-
dominantly represented by ‘BAC ends’ which are single reads from bacterial artificial
chromosomes used in a variety of genome sequencing projects.

High throughput genomic (HTG) data division of GenBank are unfinished large-
scale genomic records that are in transition to a finished state, after which theyv will be
placed in the appropriate organism division. These records are designated as Phase
0-3 depending on the quality of the data. Phase 0 records consist of survey sequences
generated to characterize clones and may or may not progress to Phase 1. Phase 1
records contain unfinished sequence, and may consist of unordered. unoriented contigs
with gaps. Phase 2 records contain unfinished sequence as ordered. oriented contigs.
with or without gaps. Phase 3 records consist of finished sequence. with no gaps and
may have annotations. When a HTG record reaches phase 3 it is moved from the
HTG division into the appropriate organismic division of GenBank. [t is now clear
that a great number of human sequences will remain in the unfinished (HTG) division
of GenBank as working draft sequence, while completed sequences will continue to
move to the corresponding organismic division (PRI). Together these two divisions
should add some 2000 Mb of new genomic sequences from US-sponsored laboratories
within the next year.

GenBank record format was shown as Figure 1.

2.3.1.2 Submission of Sequence Data

Virtually all records enter GenBank as direct electronic submissions. with the major-
ity of authors using the BanklIt or Sequin programs.

About 40 percent of individual submissions are received through a Web-based
data submission tool, Banklt. With Banklt. authors enter sequence information

directly into a form, edit as necessary and add biological annotation. Free-form

(8]
[{V]

LoTusg L2353 T66 g CNA 87
DEFINITIZN Listeria :vranivii sod ‘ione {3r tuper-aiie fiamunas
ACTESSITN X401l §73972

R

NID 344212
VERSIIN Xnddli 1 3I.330tg
KEYWCRDS 433 Jene. superoxile {iscutase
STURCE Listeria ivansvis
IRIANT S L.ateria ivanovis

Bacteria., Firmicutes, Bacilius Clastridium ITup. Alude
Listeria.
REFERENCE L tbases | ta "oy
AUTHCRS Hasa A and jowbel.W

TITLE Ciening if 8 superoax:

i@ diamu"ate jenw from Liatweria srancvi. by

tiin in Eschier;

nal Tonplement
- june ptoaduct
STURNAL Mol ien Senar . D
MEDLINE Wiyt
FEFERENTE 2 ibases 1 7z T%a)
AUTHCRS Frute, g
LE Cireer Surmansiun
SWPNAL Subm wd (21 APR-1992) I Xrefe, Inar.eur ¢ MimIcbiTilgie
Universitaet Ausziburg, Brozentt.m Am Hunland, 4700 Aueriturg. ¥8 G

FEATURES Locazion Cualit.era
LTSN 1. 7%%

ILFANLID™ "L iatar s
sLrains ATCT 1a1le
o laide

AncwLL®

L

Fene

i san "
[RN A

cetminytor

)
a

31 Sl
155034311 Ttonaagsaa
FICAT 3TN 3Tayt jraca
TITACSNAGT jaaggtasaan nIFCLTAgen
TITTIAALIC TAsAsCIFUS a%tzaces
FIITIAACIA 44TAAATITE LIACICAGS asaatanteoa
P A IR Y SN

Tactiaggng

Figure 1: The Record Format of GenBank

+oand narvccerizanioon

text boxes allow the submitter to further describe the sequence, without having to
learn formatting rules or use restricted vocabularies. BanklIt creates a draft record
in GenBank flat-file format for the user to review and revise, BanklIt is the tool of
choice for simple submissions. especially when only one or a small number of records
are submitted. Submitters to update their existing GenBank records can also use
bankIt.

NCBI has developed a stand-alone multi-platform submission program called Se-
quin which can also be linked online to NCBI. Sequin handles simple sequences, as
well as long sequences and segmented entries, for which BankIt and other web-based
submission tools are not well-suited. Sequin has convenient editing and complex
annotation capabilities and contains a number of built-in validation functions for en-
hanced quality assurance. It is also designed to facilitate the submission of sequences
from phylogenetic. population and mutation studies. and can incorporate alignment
data. Sequin can be used to edit and update sequence records. as well as to per-
form sequence analvsis. For example. Sequin can now incorporate any analysis tool
available on the web that accepts FASTA or ASN.1 formatted dara as its input. In
addition. Sequin is able to work on large records and read in all of its annotations
via simple tables. Versions for Macintosh. PC and Unix computers are available via
anonymous FTP to ‘nebinlm.nih.gov’ in the ‘sequin” directory. Once a submission is

completed. users can Email it to the address: gb-sub@nchi.nhin.nih.gov-.

2.3.1.3 Retrieving GenBank Data

The Entrez system is an integrated database retrieval system that accesses DN A and
protein sequence data. genome mapping data, population sets, the NCBI taxonomy.
protein structures from the Molecular Modeling Database (MMDB) and MEDLINE
references via PubMed. The DNA and protein sequence data are integrated from a
variety of sources and therefore include more sequence data than are available within
GenBank alone. Entrez searching is provided on NCBI's web site. via the Query

Email server. and as a network client that can be downloaded bv FTP.

24

The most frequent type of analysis performed using GenBank is the search for
sequences similar to a query sequence. NCBI offers the BLAST family of programs
to locate good alignments between a query sequence and database sequences. BLAST
searching is provided on NCBI's web site, via an Email server. and as a set of stand-
alone programs distributed by FTP,

NCBI uses the ASN.1 data format for internal maintenance of GenBank. but dis-
tributes the GenBank releases in the traditional fAat-file format. The ful! GenBank re-
lease and the daily updates are available by anonyvmous FTP from ‘nebi.nlm.nih.gov'.
The full release in fHat-file format is available as compressed files in the directory.
‘genbank’. A cumulative update file is contained in the sub-directory. *dailv’. and a
non-cumulative set of updates is contained in ‘daily-nc’. A set of sequence-only files in
FASTA format. corresponding to the GenBank database subscts searched by BLAST
and including the non-redundant nucleotide and protein databases, is available in
the "BLAST/db’ directory. Software developers creating their own interfaces or anal-
vsis tools for GenBank data are offered the NCBI ToolKit to assist in developing

specialized applications.

2.3.2 EMBL

Nucleotide sequence database in European Molecular Biology Laboratory (ENMBL) [23]
is a comprehensive collection of primary nucleotide sequences maintained at the Euro-
pean Bioinformatics Institute (EBI). New data are released daily into the ENIBLNEW
database and are immediately available. The EMBL and EMBLNEW databases are
stored and maintained in an Oracle data management system and can be searched
on the internet with the Sequence Retrieval System (SRS). the EBI search engine for
molecular biology databanks. Since interconnectivity between biomolecular databases
has become essential for utilizing the wealth of information becoming available, EMBL
database entries are cross-referenced to other databases like the cukaryvotic promoter
database TRANSFAC, FlyBase, TrEMBL and SWISS-PROT. SWISS-PROT itself is

linked to more than 30 different databases thus providing a focal point for database

N
Ut

interconnectivity.

2.3.2.1 Organization of the Database and Record Format

A complete overview of the dataflow to and from the EMBL Database is provided in

Figure 2.

Otrect Unhinianea
(::::::n Submizsiens o Geaname ""'
Oats (Wabdin) Nera Seqs
—— Quanty
- scaren Fintshed
Tt Geneme
N Seqs
S ———
- —- €aT,C33.3T3

Gene identitication
. slgesithm predictian
GENSCANICIMES
WASTRGASTY

Humen Annatstion
Functignst Analysis
T Eapesimgatal Evidence
Nemengisture
Litersture

Oata distribution

(W, £TP, co.rom) SN .
Oats Retsisval SRS) -, LLEDY . ., — -
Homology Beasches snctaset

I (FantA, Blagt) v

Speciallved Servers
{ Parasites Blase . o e
Genome Web Server DN

Figure 2: An Overview of Dataflow for EMBL Database

Divisions provide subsets of the database. which reflect the areas of interest of
users. The EMBL Database currently consists of 18 divisions with each entry belong-
ing in exactly one division. In each entry the division is indicated using the three
letter codes. e.g., PRO = Prokaryotes. HUM = Human. PHG = Bacteriophages. PLN
= Plants etc. The grouping is mainly based on taxonomy with a fow exceptions like
the HTG, EST, STS, and GSS divisions. For these divisions, grouping is based on
the specific nature of the underlying data.

Expressed sequence tags (ESTs). The EST division files contain sequence and

mapping data on ‘single-pass’ cDNA sequences or ESTs from a number of organisms.

26

[n addition to the EST division files in the EMBL database release. the EBI provides
ESTLIB. which includes further information about the libraries from which the EST
sequences were derived.

High-throughput genome sequences (HTGs). [n order to make genome sequences
produced by high-throughput sequencing projects available to the user community as
soon as possible. the HTG division includes “unfinished' genome project data with
annotation for many of these records being generated through computer analvses.
Entries in this division all contain keywords to indicate the status of the sequencing. A
single accession number is assigned to one clone, and as sequencing progresses and the
entry passes from one phase to another. it will retain the same accession number with
only the most recent version of a HTG record rematning in ENIBL. Ounce “finished'.
HTG sequences are moved into the relevant primary ENIBL taxonomic division.

Patent sequence data. The EMBL database continues to collaborate with the
European Patent Office to capture patent sequences from patent applications and
integrate US and Japanese patent sequence data provided by the DDBJ and Gen-
Bank collaborators. Patent data can be retrieved from rhe ENIBLNEW and EMBL
databases and are also available via FTP.

EMBL record format is shown as Figure 3.

2.3.2.2 Submission of Séquence Data

Two major sources contribute to the EMBL Database: individual scientists. who
submit data directly to the collaborating databases. and genome project groups which
produce very large volurnes of nucleotide sequence data over an extended period of
time, including bulk submissions of ESTs, STSs. GSSs or large genomic records (high-
throughput and finished data). Researchers submitting new sequences directly to the
EMBL database use either the Internct (WEBIN) or a stand-alone software tool
(SEQUIN).

The EBI's submission tools incorporate facilities for providing and checking bio-

logical information.

o
~1

ID LIsop standard: ONA: PRO: 7S5 BP.

XX

AC X54GQ11: 578372

XX

S5 X64011.1

XX

T 28 -APR-1992 (Rel. 31, Creazed)

DT 30-JUN-1993 (Rel. 16, Last updated, VYersion 51
xX

DE Listeria ivancovii sod gene for superoxide dismutase
XX

KW sod gene; supercxide dismutase.

XX

csS Listeria ivanovii

oc Bacteria: Firmicutes; Bacillus. Clestridium group:
ocC Bac:illus Staphylococcus group: Listeria.
ho

PN {1
RX MECLINE: 92140371,
RA Haas A.. Joebel w. .

RT *Cloning of a supersxide dismurase gene from Listeria ivanovii by
RT funcrional zomplementaticn in Escherichia oli and characterization of the
RT Jene produycet.
RL Mal. Gen. Genaec. 2310313 -322:00390
o4
i (2]
RP 1-75%6
RA Frefo J..
LT
RL Submitted (I1-APR 13 to the EMBL SenBank DLBJ databases.
< J FKrefr, Inst:ituyt £, Mikzrobiologie, Universitast Waezzburg, Bilozentrum Am
RL Hubland, 37029 Wuerzbury., FRG

SWISS5 PROT: PIA7TH3. SODM_LISIv
Kory Locaticn Qualiifiers

sourse 1..7%%
db_xref:="taxon:ls3a°
Qrganism=*Lischnabkbb®
SCrainzcATIC 13113

RBS 95..130
gene=z‘sod*

terminator 723..73s
gene=‘sod*

<os 199..717
refz*SWISS-PROTP2"

‘transl_table=11

‘genez*sod*

‘EC_number=°1.15.1.1°

-product=*superox... °*

protein_:d=°"CAA3S.1°

'::An:la:zon:‘XTYELPKLPYTYDALEFNFDKETMEIHYTKHHHIYTTRLH....
Sequence 756 BP: 247 A; 136 < 151 G: 2232 T: 0 other:

S3A33333333333333 2288 8

SFLLALLLaa ggrgttacat 4gttctatgg aaatagggte tataccettee gccttacaat 50
TadtILott Itcacataad taataaacaa tCCcgaggagg aatttttaat gacttacgaa 123
ttaccaaaat taccttatac ttasgatget ttggagcoga attttgataa agaaac. . . . 139

Figure 3: The Record Format of EMBL

VECTOR SCANNING. a WWW-based interactive vector scanning service is
available for submitters to assist in the screening of sequences for vector contamina-
tion before submission. The vector screening service uses the latest implementation
of the BLAST algorithm and the special sequence databank EMVEC. comprised of
an extraction of sequences from the synthetic division of EMBL commonly used in
cloning and sequencing experiments. EMVEC is updated with each release of EMBL
and is available from the EBI's FTP server.

WEBIN is an Internet based tool for submission of nucleotide sequences to the
EMBL database. WEBIN is designed to allow fast submission of either single. mul-
tiple or even very large numbers of sequences. Sequence annotation in WEDBIN is
added from the "Summary and Sequence Features™ page. Anv number of relevant
features can be easily added to the sequence feature table from the comprehensive
list and by filling out the specific feature forms. To assist submitters in selecting
features for their sequence. WebFeat provides a full deseription of all EMBL features
and qualifiers while the EMBL annotation examples illustrate how these features and

qualifiers should be used within standard EMBL entries,

2.3.2.3 Retrieving EMBL Data

The Sequence Retrieval System (SRS) server at the EBI integrates and links a com-
prehensive collection of specialized databanks along with the main nucleotide and
protein databases. The SRS system allows the databases to be searched using, for ex-
ample, sequence. annotations. kevwords. and author names. Complex. cross-database
queries can also be executed and users should refer to the detailed instructions which
are available online.

The EBI provides a comprehensive set of sequence database searching algorithms
that can be accessed both interactively from the EMBL WWW site or by Email.
EMBL may be searched as a whole or by individual taxonomic division. The most
commonly used algorithms available are FASTA3. WU-BLAST. and NCBI-BLAST.

Specialized sequence analysis programs are available from the EBIL. Such services

29

include multiple sequence alignment and inference of phylogenies using CLUSTALW,
Gene prediction using GeneMark. pattern searching and discovery using PRATT. as
well as applications which have been developed in-house for various projects.
EMBnet, the European Molecular Biology Network was initiated in 1988 to link
European laboratories using biocomputing and bioinformatics in molecular biology
rescarch as well as to increase the availability and usefulness of the molecular biology
databases within Europe. Remote copies of the nucleotide and protein sequence
databases. updated daily. as well as other molecular biology resources are held at
nationally mandated nodes. As bioinformatics grows, EMBnet plays an important
role in support. training. research and development for the European bioinformatics

research (YUIIlIllllIlit}'.

2.3.3 DDBJ

The DNA Data Bank of Japan (DDBJ) [24] began its activities in ecarnest in 1986
in collaboration with EMBL and GenBank. Before beginning. there was a series of
discussions among Japanese molecular biologists and biophvsicists about the organi-
zation in which the data bank should be established. The discussion finally resulted
in i proposal for the data bank to be founded in the National [nstitute of Genetics
(NIG). which is governed by the Ministry of Education. Sports. Science and Cultire
(MESSC). The proposal was soon implemented with the endorsement of MESSC.
Since then. continuous support by MESSC has made it possible to maintain DDBJ
activities, and establish a new center in 1995 at NIG. It is called the Center for

I[nformation Biology (CIB).

2.3.3.1 Organization of the Database and Record Format

A large-scale data submission system MSS (Mass Submission System) has been devel-
oped and improved in DDBJ. MSS includes an off-line tool. MST (Mass Submission
Tool). which functions by arranging data into a form ready for submission and also

acts as a parser at a data producing site. Figure 4 is for overview and modules of the

30

large-scale data submission system.
Yamato I is a data management system at DDBJ. It is an objected-oriented
database management system written in C++. DDBJ record format is shown as

Figure 3.

Disseminating dag o usere
vith mey media and
actvork.

 awvd b facerma Na,

i Ratneval s Revwerds

il

Paone (ha P— — . i Hemabeps sesrch
Coaverven Tevl Cals o, Dot [l ASA T v

S =P iz vxr...'v.-.;i.-.—.x — { Visinple \igaaror
— .h‘,‘.‘.’lﬁm Datasaeg |, Hamiae L ARV iede awere

i
:

O
{ h Nea o Lolater Data Dady \[Lats
N FRL 2 4l o Brewwr
—
(A | _—

PIR et smalivar
See Ut D ?‘sw

e e et
ezl -+
4

SWISS PROT
[~y b

(j

Aot vmms (iy

HE <1 B saus € ,
Eoswmurinnd RIEmRwTT T

U

Figure 1: An Overview of DDB.J Database

2.3.3.2 Submission of Sequence Data

DDBJ has introduced a svstem which has the capacity to accept and annotate this
influx of data. When submitting ordinary data. a submitter has several options.
Firstly. Sakura. which requires only a WWW browser. like Netscape or MS Explorer.
Secondly. Authorin. which was originally developed by GenBank. The tool was specif-
ically aimed at a researcher who directly submitted nucleotide sequence data includ-
ing citation, source organism, natural host and laboratory host information. Thirdly.
Sequin. which was also developed by GenBank. can accept short mRNA sequence.
multiple annotations, segment sets of DNA in addition to the previously described

features of Authorin.

31

LoCus LISOD 756 bp oA 8CT 30-JUN-1993

DEFINITION Listeria ivanovii sod gene for superoxide dismytase.
ACCESSION X64011 s78572

NID g44010

VERSION X64011.1

KETWNORDS sod gene: superoxide dismutase.
SQURCE Listeria ivanowvii.

ORGANISM Listeria ivanoviti
Bacteria; Firmicutes:; Bacillus/Closcridium group:; Bacillaceae:
Listeria
REFERENCE 1
AUTHORS Haas,A. and Goebel,W.
TITLE Cloning of a
JOURNAL Mol. Gen. Genet. 231, 113-322(1992)
MEDLINE 22140371
REFERENCE 2 ibases 1 to 754)
AUTHORS Krefr,J.
JOUFNAL Submitted (21-APR-1392) to the
Kreft, Institut €.
Am Hubland. 8700 Wuerzburg, FRG
FEATURES Location /Qualifiers
scurce 1..78¢
Jrganism=°. °
db_xref:="taxan:1638°
‘strain="ATCC 1§119¢

RB3 35..1400Q
gena:*scd”

rerminatcr 721 .7%e
g2nez‘*ssde

promty 199..717

db_xref=c. .-
transl_tatle:

Jenes*350d4°

CUWEHAYTLFFONREPEY LOTEMN IMWDEENFEAFCAAL "

TomeT 247 a 1is 2 sl 3 il
N

L cgtratttaa ggugyttacar agtrcotatyg 2ddatdgggle tataslTite jeocttacaas

51 gtaattrott ticacatadd taataaacaa tcogaggayg 1attittaat jacitacgda
121 traccaaaat taccttatac tratgatget ttggagccga atttrgataa agaaacaatsg
181 gaaattcact atacaaagca ccacaatatt tatgtaacaa aactaaatga agcagtcerca
241 ggacacgcag aacttgcaag taaacctggg gaagaattag ttgctaatct agatagegte
30l cctgaagaaa ttegrggege agtacytaac cacggtggtg jacatgctaa ccatacttta
3sl ttctggteta gtcettagece 44atggtggt ggrgcetccaa ctggtaactt aaaagcagea
421 atcgaaageg aattcggcac atttgatgaa ttcaaagaaa aattcaatgce ggcagetgceg
481 getegeettg gttcaggatg ggcatggcta gtagtgaaca atggtaaact agaaattgee
541 wccactgcta accaagattc tecacttage gaaggtaaaa ctccagttcet tggottagat
30l gertgggaac atgctratta tcottaaatte caaaaccgtc gtcctgaata cattgacaca
561 trttggaatg taattaactg ggatgaacga aataaacget ttgacgcage aaaataatta
721 tcgaaaggcet €acttaggty jggrcttttta teecta

n

Figure 5: The Record Format of DDB.J

The DDBJI's system for managing large-scale data submissions primarily consists
of four separate parts which are (1) the WWW data submission svstem. (ii) large-scale
data submission system/off-line (installed at the submitter side). (iii) data submission
management system, and (iv) data storing systemn .

The WWW data submission svstem incorporates the internet environment so
that a submitter is able to interactively send an inquiry to DDB.J, and to receive an
ID. a password and a template ID from DDB.J. The system is. thercfore. designed
to properly handle all pieces of information necessary for the data submission. An
interface of the system is available in both Japanese and English depending on the
submitter’s preference.

The large-scale data submission system/off-line is publicly available by download-
ing the program from an FTP server at DDB.J. The svstem rigorously checks the tile
and annotations automatically excluding any invalid characters. It also allows a sul-
mitter to verify the file formats and consistency concerning annotation and sequence
prior to actually sending the data files by Email. Two types of files are used for the
submission: one is used for annotation and the other is employved for recording se-
quences. The file for annotation is in a tabular format which popular word processors.
spreadsheet and database management systems can handle. Therefore. a submitter
is not required to purchase an expensive platform in addition to their conventional
system. Nucleotide sequences are submitted in the FASTA file format. The large-
scale data submission system/off-line has another important function. which is to
antomatically verifyv the file format and consistency. This is important for submitting
large-scale genome data. because it greatly alleviates the number of efforts. which
exhaust the human resources of reviewers and annotators at DDBJ.

Data submission management svstem manages the submitted files and monitors
the submission progress. After receiving the Excel and FASTA files sent from a
submitter. a record is made for each submission by operating the system. and the
message is sent to other staff members of DDB)J by Email.

Data storing system performs more rigorous checking before completely loading

33

the files to the master database in addition to checking the consistency regarding
the annotation and sequence. The template information ranging from the locus.
definition. accession number, the feature information and to the source organism
is also loaded to the master database by the system. Finally, the system issues
an accession number to the administrator of DDB.J who notifies the number to a
submitter by Email.

There was a special case for submitting GSS (Genome Survey Sequence) data.
Kitasato University submitted the data using a tool called the GSSin which was
specially developed by DDBJ. In this case, the files. which are formatted in FASTA.
are sent to DDB.J through FTP. After receiving the files by a server named the
supernig. they are then automatically checked and registered to the Svbhase darabase
by using another tool called the GSSsub. which was also developed by DDB.J on a
UNIX server. Generous. During this process GSSsub also automatically monitors the
submitted files to ensure that they are valid. In addition. the system automatically
registers and releases the updated GSS data submitted from the university every
night. In the event of a registration error the system sends an error message to the
DDBJ administrator by Email.

DDB.J is now considering upgrading the data submission and processing svstems
by introducing a new type of architecture such as CORBA. which is an object ori-
ented distributed platform. The new systems will be well suited for more efficiently

managing the submitted data by reducing data handling labor and time.

2.3.3.3 Retrieving DDBJ Data

A device is developed by which to reorganize the entire database into a species-
oriented database in which the data are divided into a species as a unit. They have
developed a tool by which one can first specify a species of interest by its scientific. and
then carry out a keyword or homology search against the data for that species alone.
This tool is expected to be useful particularly for examining whether a particular gene

sequence is available for the species in question. As data accumulate in the database

34

at an ever-increasing rate, the tool will provide a means of reducing retrieval time.

The same tool as above is applied to ESTs. If one is interested in ESTs of a partic-
ular species, one might carry out a homology search against the data of that species
only by giving a probe sequence and specifying the scientific name of the species.
As the amount of ESTs grows tremendously, this tool will help reduce retrieval time
when one is concerned with a particular species. This is better understood when one
realizes that is greater than 70 percent of the rapidly increasing data are ESTs .

Another device they developed is a tool that allows one to give multiple probes at
once and individually retrieve homologous or similar sequences to those probes. If one
uses those two tools together. one would easily examine whether a set of sequences
for a particular biological function is available for a species of interest.

For retrieval of the complete genome data. the Genome [nformation Broker (GIB)
has been actively used worldwide web. Since the frst implementation of GIB. we
have repeatedly revised it and installed new complete genome sequence data into
it whenever such data becomes available. By use of GIB one can now search for a
particular gene not only for one species but also across the 23 species. In this way,
one can study. for example. the genomic organization of the gene and its neighbour

for different species.

2.4 The Parser of the BLAST Result

A BLAST output file is structures. consisting of a header. a number of sequence
alignments and a summary. BLAST Parser can read the result file from a BLAST
search and break it down into a tab-delimited file. such as it can be opened with
spreadsheet applications such as Microsoft Excel.

A typical alignment block from BLASTP output is as Figure 6.

A parsed file may be like Figure 7.

There are many kinds of parser versions now which implemented by Perl. Pyvthon.

C or Java. Some names and descriptions are following.

35

Number of letters in database: 183,724,322
Number of sequences in database: 583, 806
Lambda K H

Q.309 Q.12 Q.32
Gapped

Lambda K H
0.27 .04 0.23

Matrix: BLOSUMG2
BLAST? 2.1.1 [Aug-3-2]
Reference:
Altschul, Stephen F., Thomas L. Madden, Alejandre A. Schaffer.
Jinghui CThang. Zheng Zhang, Webb Miller, and David J. Lipman
*Gapped BLAST and PSI-BLAST: a new generation of protein *
Nucleic Acids Res. 25:1389-3402.
RID: 974692003-213072-16953
Query=
(222 letters!
Database: nr
.- Sequences; .. total letters
If you have any problems or .
Taxonomy reports
Distributicn of 10
Score E
Sequences producing signiticant aligrments: (bits
pir; {H71185 hypothetical protein CT648 - Chlamydia trachoma. D
pir{|D72046 cresa hypothetical protein - Chlamydia pneumcn: . 2
Alignments
>piri H714385 hypothetical protein CTHRGE - Chlamydia trachomatis {Seratype 2,
strain Uwl.Cxi
JbIAACEBISI. L] (AEQQLI3IT hypathecical preterwn (Chlampdia trachemaris)
Length: 223
Scere = 275 bits (697)., Expect = le-73
Identitins = 140,223 (624), Pesitives = 727223 (768}, Gaps = 1.221 (G
Query: 1 MVDPLKLFPKLDSERETASIORPLGTFLASELHKEVPAFSLGTAADSLI&?HEDV"PHPH 5
M+DPLKLFP D +KEeAes KP oPe SEL F 7 +FSLG sLe - K e M
sbycr. 1 HZDPLRLFPHFDGDKESAAVNXPSASPMPSELSKNVASFSLGGGGAALDSTTSTEELSLK 50
Query: &1 AHHQDRHSNIIDPELEEALDSEELKEOINNLEERLWDAQSTLQ-QDQHKLSOEHFEAVS? 113
AMMQD NS +*IDPELEEAL+SEEL+EQL+ LK RLWDAQ+ «Q QD «KL+ EH +Ae v
Sbjcr: A1 AMMQDKHSQL!DPELEEALHSEELQEOIHLLESRLWDAQTQMGMQDPDKLASEHXTALG? 129
Juery: 120 KXKXIKXKXIXZAEHTOQNLQTKEEEEHESVAEXMZTG¢:SSCEE:LHRALLT?SCRNCER 173
AEHTQQ *E »5V RF«VeWVSSGEE.LMNRALLYFSDRNGER
Sbjcr: 21 !TCLKHGDF?AZAEHTCQTTEGGNGDEEKSVTREIYEWVSSGEEILNPALLYFSDRNGER 1372

Juery: 183 ENLAZFLES

AVSRATQPAELFASIVGTTVSSIKTIMTTOLS 222

PATQPAELFASI®G TVSSeKTIMTTOLG
Sbrct: 131 ETLADFLEVAY YOPATORAELFASILGATVSSVETIMTTOLSG
spir; ID7IGd6 <ct688 hypathetical praten Thlamedia pneumcniae
Database: nor

Posted date

Jap Fenalties: Existence. 11, Extension: l

Number 2f Hits to CB: 54430123

tumber of Sequences: $33805

tiutber 2f extensicons: 2463903

Number successful extensions: 3015

Number of sequences better than 10.9 98

Numpber of HSP's better than 10.0 without

Number of HSP successfully gapped in

Number of HSP's that attempted gapping

Number of HSP's gapped tnon-prelim): 195

length of Jquery: 222

length of database: 133,724,322

effective HSP length: 63

2ffactive length of query: 159

effective length of database: 136,934,543

effective search space: 21364182496

effective search space used: 23364182496

au

1%}

T: 11l
A: 40
Xl: 16 (7.1 bits)

1

X2: 38 (l4.8 bits)
X3l: 83 (24.9 bits)
Sl: 42 (21.7 bits)
S2: 33 (31.3 bits)

Figure 6: An Alignment Block from BLAST

36

Start Subj End Subj Query Star Query End Score 8its Scorel
1 223 1L 222 278 637 2e-73 223 149 223 62%
1 224 1 222 270 684 7e-72 224 141 22 62%
5 226 1 222 258 653 3e-68 226 112 223 593%

S14 647 10 139 39.5 90 0.031 648 15 142 241%

Figure 7: A Parsed File of BLAST

2.4.1 PERL
2.4.1.1 Boulder

The Boulder data interchange format [25] is an easily parsable hierarchical tag/value
format suitable for applications that need to pipe the output of one program into the
input of another. It was originally developed for use in the human genome project at
the Whitchead Institute/MIT Center for Genome Research. but has since found use
in many other arcas including system administration and web software development.
[n addition to its use as a data interchange format, Boulder comes complete with a
small database based on the Perl DB-File modules. This database allows vou to store
arbitrarily complex objects. index them. and later retrieve them using a sitmple query
mechanism.

The Boulder::BLAST class parses the output of the Washington University (W)
or National Cenber for Biotechnology Information (NCBI) series of BLAST programs
and turns them into Stone records. You may then use the standard Stone access
methods to retrieve information about the BLAST run. or add the information to a
Boulder stream. The parser works equally well on the contents of a static file. or on
information read dynamically from a filehandle or pipe.

Boulder::BLAST::NCBI parses and read NCBI BLAST files. Specialized parser
for NCBI format BLAST output. Loaded automatically by Boulder::BLAST

Boulder::BLAST::\WU parses and read WU-BLAST files. Specialized parser for
WU-BLAST format BLAST output. Loaded automatically by Boulder ::BLAST.

There are following methods in Boulder:

37

The parse() method as shown in Figure 8 accepts a path to a file or a filehandle.
parses its contents, and returns a Boulder Stone object. The file path may be absolute
or relative to the current directly. The filehandle may be specified as an [O::File
object. a FileHandle object, or a reference to a glob (FILEHANDLE notation). If

vou call parse() without any arguments. it will try to parse the contents of standard

imnput.

$ stone = Boulder - Blast -> parse($file_path);

$ stone = Boulder :: Blast ~> parset Sfilehandler):

Figure 8: Function of Parse() in Boulder

[f you wish. you may create the parser first with Boulder::BLAST new(). and then
invoke the parser object’s parse() method as many times as yvou wish to. producing a

Stone object each time as shown in Figure 9.

Sstream = Boulder: Blast -> new.

Ssteam = Boulder: . Blast > acwi$tile], @ moare _tiles]).

$stream = Boulder: Blast -> new*FILEHANDLER),

Figure 9: New() Function in Boulder

The tags defined in the parsed BLAST Stone object are shown in following Fig-
ure 10. Figure 11. and Figure 12. Each BLAST-hit is represented by the tag.
BLAST-hits as Figure 13. There may be zero. one, or many such tags. They will be

presented in reverse sorted order of significance. i.e. most significant hit first.

38

Blast _program

The name cf the algorithm used %o run the analysis
8last_versicn

This gives the version of the program in whatever
*r2.0al3 -Washuy:' .
Blast _program_date

banner page.

form apgears on the banner Fa3e.eg
This jives the date at which the program was compiled, 1f and snl

7 f 1T appears

<n the

Figure 10: The Tags about the Program in BLAST Stone Object

Blast_run_date
This gives the date and time at which
CFriJul 4 09:32:15 1993
Blast_parms

This peints

parametsars

the similarity analysis was

TUN.L 1o The lormat
t0 4 subrecord <ontaining :nformaticn akous the algosrithm’'s runtime
The fcllowing subtags are used. Sthers Ty Der added 1n the tuture

Figure 11: The Tags about the

Run in BLAST Stone Object

Blast_query

The identifier for the search dequence. as defined by the FASTA formas.
first zet of non-white

search sequence °

Blast _db

‘name

3pace characters fcllowing the

yee
The Unix filesystem path ro the subject database.
Blast_db_title

This will be th
character. In

cther words
The title of the subject datatase.

Figure 12:
Object

The Tags of the Query Sequence and Subject Database in BLAST Stone

39

Name
The name identifier of the sequence that was hit
Length
The total length of the sequence that was hit
Sign:if
The significance of the hit. If there are multiple HSP5 in the h:it,
this will be the most significant :smallest: value.
Identicy
The percent identity of the hit. If there are multiple H5P3, th:is
will be the one with the highest percent identity.
Expect
The expectation value for the hit. If thare are multiple H5Ps, this
will be the lowest expectation value in the set.
Hsps
Ine or more sub-sub-tags. pointing to a4 nested record
centaining infarmaticn about each high-scering segment PaLr
'HG5PiI . See the next section for details.

Figure 13: The BLAST-hits Tag in BLAST Stone Object

Each BLAST-hit tag will have at least one. and possibly several HSPs tags. each
one corresponding to a high-scoring segment pair. These records contain detailed
information about the hit. including the alignments as Figure 1.

Figure 15 show a parsed Stone object. Long lines have again been truncated.

2.4.1.2 Bioperl: BPlite - Lightweight BLAST Parser

BPlite [26] is a package for parsing BLAST reports. The BLAST programs are i
family of widely used algorithms for sequence database searches. The reports are
non-trivial to parse. and there are differences in the formats of the various flavors of
BLAST. BPlite parses BLASTN. BLASTP. BLASTN. TBLASTN. and TBLASTN
reports from both the high performance WU-BLAST. and the more generic NCBI-
BLAST. BPlite is for those people who would rather not have a giant object specifi-
cation, but rather a simple handle to a BLAST report that works well in pipes.
BPlite has three kinds of objects, the report. the subject. and the HSP. To create
a new report. you pass a filehandle reference to the BPlite constructor as shown in
Figure 16 and Figure 17. A subject is a BLAST hit. which should not be confused
with an HSP. A BLAST hit may have several alignments associated with it. A useful
way of thinking about it is that a subject is a gene and HSPs are the exons. Subjects

have one attribute (name) and one method (nextHSP) as Figure 18.

40

Jignie

The s:ignificance (P value) cf thiz HS5P.
8i1ts

The number of bits of significance.
Exgect

Expectation value for thig HSP.
{denticy

Percent identity. =zitem Positives

Percent positive matches.
Score

The Smith-Waterman alignmens score.
Crientation

The word ‘'plus’‘ or ' ‘mipus’ ‘. This tag is only present for
nucleotide searches, when the reverss2 complement match Tay be present.
Strand

Jepending on algorithm used, indicates camplementarity of match and
Possibly the reading frame. This i1s copled out of the blast reporc.
Possibility include

*Flus / Minus" °*Plus Plus® -- blastn algor:t

Tel .20 e -2" blastx. tblastx
Query_start

Positicn at which the HSP Starts in the query sequence ‘l-based indexing}
Query _and

Position at which the H3P Stcps in the query sequence.
Subject_starc

Position at which the HSP starts in the subject (target) Senquence .
Subjecrc_end

Pos:iticn at which the HSP S%CpPs 10 the subject irarget; SeUence
uery, Subject., Alignment

These three tags contain strings which, rzgether,

Sreace the gapped
alignment of the qUery sequence with the subjece sequenc

Figure 14: The HSPs Tag in BLAST Stone Object

An HSP is a high scoring pair. or simply an alignment. HSP objects inherit all
the useful methods from Rangel/SeqFeaturel /FeaturePair. bt provide an additional
set of attributes (score. bits. percent. P. match. positive. length. querySeq. shjerSeq.
and homolugySeq) that should be familiar to anvone who has seen a BLAST report.
For lazy /efficient coders. two-letter abbreviations are available for the attributes with
long names (gs. ss. hs) as shown in Figure 19. Ranges of the aligned sequences in
query /subject and other information (like seqname) are stored in SeqFeature objects.

querySeq. sbjctSeq and homologySeq do only contain the alignment sequences from
the BLAST report.
2.4.2 Python

Someone considers that Perl does not scale well past small-to-medium sized projects.
Perl is very good for parsing large data files and extractin information, and for
S o

writing those parsers quickly and robustly. However. the problems in computational

41

Blast_run_date:=Fri Nov & 13:30:31 1398
Blast_db_date=2:40 pM EST Nowv &, 1993
Blast_parms=(

Hipmax=10

Expectation=1J

Matrix=+5,
Ctxfactor=2.G0

Blast_program_date=0s Feb-1393
Blast_db= ‘usr-ump quickblast182023aaa
Blast_version=2.0al3 -Washi
Blast_query=BCD207R
8last _db_title= test.fasta
Blast_query_length=332
Blast_program=hlastn
Blast_hitss
Sign:ifz) . Se-74¢
Expect=z} _ Se-73,
Hame =BCD20TR
Identity=130e25
Length=132
Hops=
Jubjec::CTGCTTTCAAACATTGATGGATTCCTCCCCTTGACATATATATATACTTTCGGTTCCCGCA
Signif=).%e 74
Length=312
Bres-243.1
Juery_startsl
Subject_end=1332
Cuurr:GTGCTTTCAAACATTGATGGATTfCTCCCCTTGACATATATATATACTTTGGGTTCCCSC
Positives=10042%
Expect=]).Se-74,
Identicy=10042s
Query_end:132
Odrientaticn:plus
Sccrezl669
Strand:Plus Plus
Subject _stare=}

Alignment= 10 11 L Lo

Figure 15 A Parsed Stone Object

[i
’ my $Sreport = new bio: Tools::BPlite(~th=>*STDIN), ‘

S report -> query | # access to the query name

$ report ~> database ; # access to the database name
Sreport —> nextSbjct : # gets the next subject

whule (my Ssbjet = $ report -> nextSbjetf

canonical form of use is in a while loop

Figure 17: The Attributes and Method of a Report Object

Ssbjyct - »name; # access to the subjact name
*3sbjcrt; # overloaded ts return name
3SD)Ct - »>naxtHSP: # gets the next HSP from the sbjco
~while(my Shsp = Ssbyct-»nextHSP) |

Figure 18: An Object of Subject in BPlite

Shsp - >score;
Shsp->bits;
Shsp-»percent;
Shsp->P;
Shsp->match;
Shsp->positive;
Shsp->length;

Shsp->querySeq: Shsp->gs;
Shsp->sbjctSeq; Shsp-»ss;
Shsp->homologySeq; Shsp->hs;

Shsp->query->start;

Shsp->query->end;

Shsp->query->seqname;
ShspA>sub]ect->prxmary_tag; # "similarity”
Shsp->sub]ect->source_:ag: # *"BLAST"
Shsp->subject ->star:;

Shsp->subject - >end;

"Shsp"; # overloaded for query->start..query-»end bits

Figure 19: An HSP Object in BPlite

43

biology are getting more complicated and the relationships between software packages
more complex. Python is much better at expressing those solutions and enabling
different components, developed by different people, to work together.

There are several versions of BLAST parser which developed by Jeffrey Chang and
et al. The release in March 2001 marks two milestone in the package. First. it has
support for sequences and annotations. alignments. substitution matrices. BLAST.
ClustalW. ENZYME. FASTA formatting. GenBank. GoBase. Medline. Prosite. Re-
base. SCOP, SwissProt, and UniGene. Second. it is the first non-developer's release,
which means it is now reasonable to expect people to download it and do work im-

mediately without having to mess around with the code.

44

Chapter 3
Jini

3.1 How Does Jini Network Technology Work?

In a running Jini system. there are three main players(7] as shown in Figure 20.
There is a service. such as a printer. a toaster. a marriage agency, ete. There is a
client. which would like to make use of this service. Thirdly. there is a lookup service
(service locator). which acts as a broker/trader/locator between services and clients.
There is an additional component. and that is a network connecting all three of these.
and this network will generally be running TCP/IP. The Jini specification is fairly
independent of network protocol. but the only current implementation is on TCP/IP.

Codes will be moved around between these three pieces. and this is done by
marshaling the objects. This involves serializing the objects in such a wav that
they can be moved around the network. stored in this “freeze-dried” form. and later
reconstituted by using included information about the class files as well as instance
data. This is done using Java's socket support to send and receive objects.

[n addition, objects in one JV'M (Java Virtual Machine) mayv need to invoke
methods on an object in another JVM. Often this will be done using RMI (Remote

Method Invocation), although the Jini specification does not require this and there

are many other possibilities.

45

client Lookugp service service

TCP/IP

Figure 20: A General View of a Jini System

3.1.1 Service Registration

A service is a logical concept such as a blender. a chat service. a disk. [t will turn
out to be usually defined by a Java interface. and commonly the service itself will be
identified by this interface. Each service can be implemented in many wavs. by many
different vendors. For example. there may be Joe's dating service, Mary's dating ser-
vice or many others. What makes them the same service is that thev implement the
same interface: what distinguishes one from another is that each different tnplemen-
tation uses a different set of objects (or maybe Just one object) belonging to ditferent
classes.

A service is created by a service provider. A service provider plays a number of
roles:

L) It creates the objects that implement the service. [t registers one of these - the
service object with lookup services. The service object is the “publically visible™ part
of the service, and will be downloaded to clients.

2) It stays alive in a server role, performing various tasks such as keeping the
service “alive”.

In order for the service provider to register the service object with a lookup service.

the server must first find the lookup service. This can be done in two ways: if the

46

location of the lookup service is known. then the service provider can use unicast

TCP to connect directly to it. If the location is not known. the service provider will

make UDP multicast requests, and lookup services may respond to these requests.
Lookup services as shown in Figure 21 will be listening on port -t160 for both the

unicast and multicast requests.

lookup service service provider

service

< object

Figure 21: Service Provider Finds a Lookup Service

When the lookup service gets a recuest on this port. it sends an object back to the
server. This object. known as a registrar. acts as a proxy to the lookup service. and
runs in the service’s JV'M (Java Virtual Machine) as shown in Figure 22, Any requests
that the service provider needs to make of the lookup service are made through this
proxy registrar. Any suitable protocol may be used to do this. but in practice the
implementations that you get of the lookup service (e.g from Sun) will probably use
RMI. What the service provider does with the registrar is to register the service with
the lookup service. This involves taking a copy of the service object. and storing it

on the lookup service as shown in Figure 23.

3.1.2 Client Lookup

The client on the other hand, is trying to get a copy of the service into its own JV')M. [t
goes through the same mechanism with the service. First. it finds the lookup service

using unicast or multicast as shown in Figure 23.

47

lookup service service provider

service
object

:> regiscar

Figure 22: A Registrar is Returned to Service Provider

lookup service service provider

service
- object
service ;
. registar
object & g

Figure 23: A Registar Registers the Service Object

client lookup service

service
cbject

V

Figure 24: A Client Looking for a Lookup Service

48

A client gets a registrar from the lookup service as Figure 23. Through the
registrar, the client asks for the service object as Figure 26 and a service object

is copied to client side as Figure 27.

client lookup service
R Z service
registar | € object

Figure 25: A Registrar is Returned

client lookup service

service
:> object

registar

Figure 26: Asking for a Service

3.2 Discovering a Lookup Service

A client locates a service by querving a lookup service. In order to do this. it must
first locate such a service. On the other hand, a service must register itself with the

lookup service, and in order to do so it must also first locate a service.

49

client loockup service

service

object $

™~ 1 service
registar object

Figure 27: A Service Object is Returned

The initial phase of both a client and a service is thus discovering a lookup service.
The search for a lookup service can be done cither by unicast or by multicast. [n
fact. the lookup service is just another Jini service. but it is one that is specialized to
store services and pass them on to clients looking for them.

Sun supplies a lookup service called reggie as part of the standard Jini distribution.
The reggie requires support services to work: an HTTP server and an RMI daemon.
rmic.

A Java object running as a service has a proxy compounent exported to the service
locators and then onto a client. [t passes through one JV'M in “passive” form and
is activated in the client’s JV'M. An object consists of both code and data. and it
cannot be reconstituted from just its data - the class definitions are also required.
So class definitions for service proxy objects must also be downloaded. usually from
where the service came from. The HTTP server is needed to deliver the class files
to clients. This gives two sets of class files: the set needed to rum the service and
the set needed to reconstitute objects at the client. The mahalo service supplied by
Sun as a transaction manager uses the class files in mahalo.jar to run the service. and
the class files in mahalo-dl.jar to reconstitute the transaction manager proxy at the
client. These files and support services are shown in Figure 28.

The other support service needed for reggie is an RMI daemon(rmid). A proxy

50

server
mahalo-dl.jar
mahalo proxy client
instance data v

Figure 28: Support Services for Mahalo

service gets exported to the client. In most cases this will need to comununicate back
to its host service. There are many ways to do this. One mechanisi is the Java RMI
systei. An rmid is a part of the standard Java distribution. This must be run on
the same machine as reggie. A rmid is responsible for starting services such as reggic.
[t will create a new JV'M on demand. to run the service. A rmid may look after a

number of services. not just reggie. and they will all be run in their own JV'\s.

3.2.1 Unicast Discovery

Unicast discovery can be used when vou already know the machine on which the
lookup service resides, so vou can ask for it directly. This is expected to be used for
a lookup service that is outside of vour local network. which vou know the address of

anyvway

3.2.2 Multicast Discovery

If the location of a lookup service is unknown. it is necessary to make a multicast
search for one. UDP supports a multicast mechanism which the current implemen-
tations of Jini use. Because multicast is expensive in terms of network requirements.
most routers block multicast packets. This usually restricts multicast to a local area
network, although this depends on the network configuration and the time-to-live of

the multicast packets.

3.3 Service Proxy

A service will be delivered from out of a service provider. That is. a server will
be started. to act as a service provider. [t will create one or more objects which
between them will implement the service. Amongst these will be a distinguished
object - the service object. The service provider will register the service object with
lookup service. and then wait for network requests to come in for the service. \What
the service provider will actually export as service object is usually a proxy for the
service. The proxy is an object that will eventually run in a client. and will usnally
make calls back across the network to service backend objects. These backend ohjects
running within the server actually complete the implementation of the service.

The proxy and the service backend objects are tightly integrated: thev must
communicate using a protocol known to them both. and must exchange information
in an agreed manner. However, the relative size of each is up to the designer of a
service and its proxy.

Basically. there are two kinds of proxy-fat proxy and thin proxy.

One extreme is where the proxy is so fat. which means it does a lot of processing on
the client side. Backend object(s) within the service provider itself are then typically
“thin”, not doing much at all. The role of the server is to register the proxy with
service locators, and just to stay alive (renewing leases on the service locators). The

service itself runs entirely within the client. The opposite extreme is where the proxy

()]
N

is thin, doing nothing more than passing requests between the client and “fat™ backend
objects. and most processing will be done by these backend objects running on the
server side.

Some services can be implemented by a single object. the service object. How
does this work if the service is actually a toaster. a printer. or controlling some piece
of hardware? By the time the service object runs in the client’s JVM, it may be a
long way away from its hardware. It cannot control this remote piece of hardware
all by itself. In this case, the implementation of the service must be made up of at
least two objects, one running in the client and another distinet one running in the
service provider. The service object is really a proxy. which will communicate back
to other objects in the service provider. probably using RMI as shown in Figure 29,
The proxy is the part of the service that is visible to clients. but irs function will be to
pass method calls back to the rest of the objects that form the total implementation
of the service. the “service backend™ objects. The proxy needs to communicate with

other objects in the service provider.

s2rvice locator

service
roxy
/ N
client service provider
service ﬁ{ . service
proxy ‘F‘ ~ implementation
/ /1 PMI A\
R % i
registar registar

Figure 29: A Thin Proxy

33

How is the proxy primed? This is not specified by Jini. and can be done in
a large number of ways. For example. an RMI naming service can be used such as
rmiregistry, where the proxy is given the name of the service. This is not very common,
as RMI proxies can be passed more directly as returned objects from method calls.
and these can refer to ordinary RMI server objects or to RMI activatable objects. Or
the proxy can be implemented without any direct nse of RMI. and can then use an
RMI exported service or some other protocol altogether such as FTP. HTTP. or a

home-grown protocol.

3.4 The Structure of Jini

3.4.1 Client Structure

Internally. a client’s pseudocode will include the following steps:

1) Prepare for Discovery

2) Discover a Lookup Service

3) Prepare a Template for Lookup Search

1) Lookup a Service

5) Call the Service

The client side code in Figure 40 is simplified from the real case. by omitting
various checks on exceptions and other conditions. As an example. it attempts to

find a BLAST service, and then calls the method getBlastResult() on this service.

This is just to show how the above schema translates into actual code.

3.4.2 Server Structure

The pseudocode of a BLAST service on the server side will include the following steps:
1) Prepare for Discovery
2) Discover a Lookup Service

3) Create Information about a Service

public class TestUnicastBlast

.

L
pukblic srtatic void main{string argw{])
{

new TestUnicastBlase()
)

pubtlic TesttnicastBlast()

1

Prepare for discovery
lookup = new LockupLaocatcr(* . *);

} Te2stUnicastFileTlassitier

Figure 30: Code Structure on Client Side

Wi

(4]

4) Export a Service

5) Renew Lease Periodically
The server side code is simplified from the real case. by omitting various checks

on exceptions and other conditions. As an example, it exports an implementation of
a BLAST service. a BlastImpl object. We do not give detailed explanations. This is

Just to show how the above schema translates into actual code in Figure 33.

* new LeasePenewalManager():

puclic class BlastServer implements DiscoverylListener
{
protected LeaseRenewalManager leaseManager

public static wve:id main(String argw(})
{
new FileClassifierServer();
keep server running (almese: forever to
allcw time for locator discovery and
- Xeep re-registering the leage
Thread currentThread() .sleep(Lease. FOREVER)

public BlastsServer:
LookupDigcovery discower = null:

scovery - empty hera

for di

Oisccver leokup service
- This uze he asynchrenous multicase prezassl
back into the discevered!) method

5 €
h calls
T < new chkupD:'covery(LockupD;sccvery ALL_ROUPS,

Praopare f£o
ver a4

3

c

dis2over. addDiscaveryListener (this)

public wsid stc:v@red(stcc?erygvent ave
ServiceRaegistrar registrar

{
AT this point we have 413

about g servize
71 minull, new Slaselmpl aull

Lttem = new !

EXpCrt a service
S2rviceReqistration Teg = registrar.register(item, Lease.FOREVER] :

Renew leas:ing
leaseManaqerArenewUn:xl(:eg.qecLedse(), Lease.FCOFEVER, th:is):

}
}’ BlastServer

Figure 31: A Code Structure on Server Side

Chapter 4

BLAST Server Design

4.1 Introduction

Applying the Jini technology. we develop a BLAST service system. We separate our
design into four parts. 1) Design for the service architecturoe. 2) Design for server

side. 3) Design for client side. 4) Common classes on server and client sides.

4.2 Design for the Service Architecture

Because the BLAST service is involved in database queries. all of the processing is
done on the server side. The proxy just exists on the client to take calls from the
client. invoke the method in the service on the server. and return the result to the
client. So we choose a thin proxy as shown in Figure 32.

Since the proxy need take calls from the client. the methods of the BLASTImpl
are called remotely. The class BLASTImpl has to inherit the interface Remote. The
BLASTImpl-Stub is gencrated from BLASTImpl by use of the rmic compiler. [n-
heriting from UnicastRemoteObject allows RMI to export the stub rather than the
service. which remains on the server. The class structure for this is shown in Figure 33

and Figure 34.

(9]

client JVM server JVM

BlastImpl

BlastImpl_stub [$ BlastImpl_stub

Figure 32: JV'M Objects for RMI Proxy

Blast Remote
A A
: I
e me e o e m - — = !
]
]
UnicastRemoteObject RemoteBlast
3 3
{ ------------------- -
|| 1
Blastimpl_Stub Blastimpl

Figure 33: The Class Diagram for RMI Proxy

impcrt commom. 8last;
import java.rmi.Remcte;

L.
RexcteBlast.java
*/

public interface RemcteBlast izplement Blast. Remote
{
}//RemoteBlast

public class BlastImpl implements RemcteBlast, UnicastRemotedbject
{

public BlastResult getBlastResulc * java.rmi. RemcteExcepticn
{

)

Figure 34: A Class Structure in Java

4.3 Design for Server Side

4.3.1 Register a Blast Service

The following code in Figure 35 is simplified from the real case. by omitring the
issties about user interface, various checks on exceptions and other conditions. As an

example. it exports an implementation of & BLAST service. a BlastIimpl object.

4.3.2 Create a User Interface

To post the service. a proxy for BLAST service and user interface to enter a query
are needed to post on the lookup service.

User interfaces are not yet part of the Jini standard. But the Jini community (with
a semi-formal organization as the “Jini Community™) is coming towards a standard
way of specifying many things. including user-interface standards and guidelines.
Guideline number one from the “serviceUI” group is: user interfaces for a service
should be given in Entry objects. The Jini Entry class is designed to allow the

additional information to be given in the request by adding extra objects.

public class BlastServer implements DiscoverylListener

{
= new LeassRenewalManager():

protected LeaseRenewalManager leaseManager
public stat:ic vo:id main(String argv(})
new FileClassifierServer(!;

/- keep server ruaning (almeset) forever to
4+ - allow time for locator discovery and
/- keep re-registering the laase

Thread.currentrhread(}.sleep(Lease.FDREVER);

)
public BlastServer:

1
LookupDiscovery discaver = null,

Prepare for discovery ampty here
Discover a lookup service
This uses the asynchronous mulrt:icast protoccl,
/ which calls back 1nta the discovered) meched
discever : new Lcokupoxsccvery(Lookuprscovery.ALL_G.QVPS

'

disccve:.addescavernys:ener:chxs);

“.JetRegistrars)
red 4 lookup service

AT this point we hawe
Credate information about a gervice
Serviceltem item : onew Serviceliteminull, new glastimpl ;. null,
EXpart a4 service
2 FOREVER,

F 7 regilstrar.registar(item, Leags

"
B3

Se:wx:eﬁeqxstratzcr

Renew leas:ing
leSeMdndqﬁrAr%nﬂwun:ll(fﬂquQ:L!dSEll. L2ase FOREVER., thigi:
)
}’7 BlastServer

Figure 35: A Code Structure on Server Side

60

To minimize the amount of serialized code that must be shipped around. the user
interface is created as much as possible on the client side. So we created user interface
on the client side but on the server side. So the user-interface should be exported
as a factory object that can create the user interface on the client side. The factory
imports the minimum number of classes for the interface to compile and be exported.
The other general cless can be get from client VAL A tvpical Frame factorv is the
one that returns a JFrame. Here a factory object, a FrameFactory object. is created
on the server side and exported to create user interface on the client side. as shown

in Figure 36 and Figure 37.

server JWM

zlient JVM

instant data

8lastImpl

BlastImpl

N
— 5[]

Blastimpl . ~lass

Figure 36: A FrameFactory Object on Client and Server Sides

In the sequenceEntryFrame class. we do not call setvisible(). but pack() as shown
in Figure 38.

If a client receives a Serviceltem containing entries with many factory implemen-
tation objects. it will need to download the class files for all of these. as it instantiates
the entry objects. There is a strong chance that each factory may be bundled into
a jar file that also contains the user interface objects themselves. So if the entries
directly contain the factories. then the client will need to download a sot of class files.
before it even goes about the business of deciding which of the possible user interfaces

it wants to select.

61

FrameFactory

JAN
'
1
t
‘
I
SequenceEntryFrameFactory |- - - — _ _ _ ~>| SequenceEntryFrame
+gJetFrame(}
A
: ____________ UlDescriptor
)
i
Entry
N
'
l
!
Serviceltem

Figure 37: A Class Diagram for Sequence EntryFrameFactory

mainUl Frame
*pack ()
& A QuitListener
t 1TSS s s e cr e - - - -~
' : ‘
[' [l
t | t
Ve o e e '
'
| et e ccccmae Resetlistener
1
!
'L
g1
SequenceEntryFrame | . ____________._ BlastListener
+SequenceEntryFrame () T
]
J
Y
Blast
+g2tBlastResule ()
L)
'
0
Y

BlastResult

Figure 38: A Class Diagram for SequenceEntrvFrame

62

‘This downloading may take time on a slow connection. such as wireless or home
network link. It may also cost memory, which may be scarce in small devices. So it
is advantageous to hide the actual factory classes until the client has decided that it
does in fact waut a particular class. Then. of course. it wiil have to download all of
the class files needed by that factory.

[n order to hide the factories. they are wrapped in a marshalledObject as shown
in Figure 39. This keeps a representation of the factory. and also a reference to its
codebase. so that when it is unwrapped the necessary classes can be located and
downloaded. By putting it into entries in this form. no attempt ts made to download
its classes until it is unmarshalled.

The decision as to whether or not to unmarshall a class can be made on a separate

piece of information. such as a set of strings which hold the names of the factory class.

SequenceEntryFactory
N
I
!
1
marshalledObject
BlastServer ’
= A
L} 1
} [}
]]
t]
) t
Y '
JoinManager Entry |. _ _ _ _ 5| UlDescriptor
' »
e 1
1 1
f 1
V
Serviceltem | = _ =4 Blastimpl

Figure 39: A Class Diagram for BLASTServer

63

4.4 Design for Client Side

4.4.1 Retrieve a BLAST Service

The client side code in Figure 40 is simplified from the real case. by omitting the issues
about user interface, various checks on exceptions and other conditions. As an exani-

ple. it attempts to find a BLAST service, and then calls the method getBlastResult()

on this service.

rublic class TestUnicastBlast

(
publ:ic static void mainiString argue(l)
{

new TestUnicastBlast();
i

public TestUnicastBlasei)

{
Lockuplocatcr locokup = null;
ServiceRegilstrar registrar = null,
8last a_blast = null;

Prepare for diszovery
lackup = new Lockupbocator(s. .. =) ;
B <

Discaver a4 lookup service
This uses the synchronous unizast prorocal

registrar = loskup . getRegistrar(s;
Prepare 4 template for liokup search
Jlass({] classes : new Class(] (Blast.=lass).
SarviceTemplate Spznew Sercicelemplate(nuil, slasges, nulli,
LIoKUp a serviza
classifier = (FileClassifiar) rejistrar. Lackupitag) .

© Call the service
BlastResult a_resulrz;
a_result = Blast.getPesult("QuerySag”);
}
} '/ TestUnicastFileClassifier

Figure 40: Code Structure on Client Side

64

4.4.2 Get a User Interface

To show a user interface on the client side, a client calls the function getUlFactoryv() to
get the Framefactory object and call the function getFrame() to get the user interface.
Finally. the client call the function setVisible() to the frame to show the interface. A

class diagram for a client is shown in Figure 41.

TestBlastService
1
A4 : v
ServiceTemplate
————— e —
1
---------- L]
v
Entry Blast
SequenceEntryFrameFactory e S T TR
* 3ot F g tmer () : A 0
YA s ' ,
: ¢ Y ' '
[4 UlDescriptor : Y
: et e Bt T FroamacF vt ory (] : [BIastResult]
' e
'
y X
]

SequenceEntryFrame __ .| Blastlistener F ~~=~=-=--~-
T ———

Figure 41: A Class Diagram for a Client

4.5 Common Classes on Server and Client Sides

Because the service is implemented remotely and runs in a separate JV'N. then the
BLASTResult object must be serialized for transport to the client JV'M. For this to
be possible. it must implement the Serializable interface. While the class files are
accessible to both client and service. the instance data of the BLASTResult object

needs to be serializable to move the object from one machine to the other. as shown

in Figure 42.

Serializable

A

BlastResult

Figure 42: A Class Diagram for BLASTResult

Class BLASTResult is inherence by four classes. as shown in Figure 43. Summa-
rvBR is used to represent the summary of the BLAST result as shown in the con-
ceptual user interface, such as reference ID, number of letters in the qUery sequence,
number of sequences in the database. GraphBR is used to present an overview of the
BLAST result. allowing vou to quickly identify the similar region. AlignmentBR is
used to show the accession number, which can be used to rotrieve this sequence from
the database. clone name. which is assigned by the researcher. Clone description.
the scores. which is linked to a diagram that shows the query sequence aligned with
the matching sequence from the database. DBEntrvBR is used to retrieve the other

information from Medline.

BlastResuit
SummaryBR GraphBR AlignmentBR DBEntryBR

Figure 43: A Class Diagram for BLASTResult Hierarchy

66

The interface of the BLAST should be accessible for client and server. The method
here is defined to throw a Java.rmi.RemoteException. This type of exception is used
throughout Java (not just the RMI component) to mean “a network error has oc-
curred”. This could be a lost connection, a missing server, a class not downloadable.

etc. The interface is shown in Figure 44.

s.n

Blasct. java

public i1nterface Blasce
{
public BlastResult getBlagtResultistring querySequence)
throws java.rm:. RemoteException;

} Blase

Figure 11: The Interface of BLAST Class

Chapter 5

Conceptual User Interface Design

The conceptual user interface is based on the user interface of NCBL

5.1 Input

The page is mainly to collect the information. which is needed for BLAST. such as
the query sequence. the set sequence. and the chosen database. [t also includes the
BLAST button to submit vour querv, RESET button to resot the information vou

have input as shown in Figure 45,

5.2 Output

We separate the whole BLAST results into four parts. 1) SummaryBR is used to
represent the summary of the BLAST result. 2) GraphBR is used to present an
overview of the BLAST result. allowing vou to quickly identify the similar region. 3)
DBEntryBR is used to retrieve the other informatiom from datebase. 1) AlignmentBR

is used to show the alignments in detail.

68

Pebeoeezy%tiiar b2

e
L]
Ty
¢ D -
Mobwwm b B
mea(r)

\.

I Options &r smeel Vit

Figure 45: The Input for BLAST Search

9.2.1 SummaryBR

A SummaryBR is shown in Figure 46. It often includes: 1) The number of letrers
gives the length of the sequence that was posted in the box in tne input page. 2) The
number of sequence in database. 3) The number of letters corresponds to the total

number of nucleotides in the database.

9.2.2 GraphBR

A GraphBR is shown in Figure 46. A graph is display to present an overview of
the BLAST result. allowing vou to quickly identify the similar regions. The query
sequence is labeled and is drawn as a thick red bar. Numbers below the bar give the
scales in bases. Sequences with the best match to the query sequence are shown in

red. Low scoring sequences show up as black bars.

69

Distribution of 32 Blast Hits on the Query Sequence

]tbuse-over to show defline and scores. Click to show alignments

Etngseq_l

T 250 500 750 1000

I Dashed lmesiepresen! gaps

| query

'sequence = = = L= = - = 'L - =
. = | ———) - -
' g

;' The sequence that's represented by e w. =z s m
i the red line has the highest scoreand ™ g : o
| appears to match the query sequence - Many sequences match =
| along its entrre length. e the query sequence n

! = this region

Figure 46: A Summary BLAST Result

5.2.3 DBEntryBR

A DBEntryBR is shown in Figure 47. It is used to retriove the other informatiom from
datebases. It includes some links such as following: 1) Link to the datanase served as
the entry point for this sequence. 2) Accession number. which can be used to retrieve
this sequence from the database. 3) The scores. which is linked to a diagram rhat

shows the query sequence aligned with the matching sequence from the database.

5.2.4 AlignmentBR

A AlignmentBR is used to show the alignments in detail. it is shown in Figure 48.
[t can include: 1) The score assigned by BLAST. In general. the higher the score.
the better the match between the query sequence and a sequence in the database. 2)
[dentities. In the example, 100 percent of the nucleotides in a 2110 base stretch of

the query sequence are identical to a 2110 nucleotide region in the sequence obtained

from GenBank.

Score E

Sequences producing signaficant alignments (bits) Value
mb | X16393 || ECHEMSY. Terantule mRRA for hemocysnin subunit a 183 0.0
emb | AJ230430 1 | ECA290430 Eurypelms californicum mRNA for he. 111 le-2t
emb | AJ290429 1 J ECA290429 Eurypelma californicum mRNA for he 10S 7e-20
emb | AJ277492 | | ECA277492 Eurypelma californicum mRNA for he 1n0 4e-18
emb | AJ27749] 1| ECA277491 Eurypelma californicum mRNA for he. . 88 2e-14
gbIAF003233 1 jAF0032S3 tfanduca sexta pro-phenol oxidase sub. 72 le-09
emb | AJ277489 1 |ECA277489 Eurypelma californicum mRNA for he. 70 4e-09
emb|X16834 1) ECHENSUE Tarantula mRNA for bemocyanin subunit e 68 le-08
emb | X04291 1} EC} Rl. Tarantula hemocyanin chain e mRNA fra. _68 le-08
emb|X166%4 | [EC DS Tarantula exon 5 for hemocyanin subun. 58 le-08
gblAEQCO0380) 1 £EQ03801 Drosophila melanoguster genomic scaf. 48 0.014
JbIAF161261 1|AF161261 Sarcophaga bullata prophenoloxidase 48 0 014
gb|AF161260_ 1]1AF161260 Sarcophaga bullata prophenoloxidase 48 Q 014
IRIACD04640 | ACHD4640 Drosopkila melanogaster DRA sequence. . . 48 0.014
emb|X16652 ||{ECHENED3 Tarantuls exon 3 for hemocyeanin subun. 28 0 014
4b) 1 D45835 1 | DROORA Drosophila melanogaster pro-phenol oxid. 48 0.014
IbjAC007357? 2] F3F1S Arabidopsis thaliana chromosome 1 BAC F 34 0 22
emb | X166353 LIEC D4 Terantuls exon 4 for bemocyenin subun. 441 0 22
RIAF199223 [{AFIS5223 Porphyromonas Jgingivalis tonB-linked. 42 0.86
emb 293929 1| HS272E8 Human DNA fequence from clone 272E8 on. 42 0 .86
emb|Y07618 1| |PGTLAGER P gingivalis tla gene 42 0 86
db3 | 049370 1 |BIPSIA Bombyx mori mRRA for prophenoloxidase 42 0 .86
ghIAC008080 ||ACQ08080 Homo sapiens clone RPL1-89N17 from 7. 49 3.4
FRIACD24848 1 |AC024948 Caenorhabdaitis eleguns clone Y67DSBA,. 40 3.4
ref| M1 009347 1| tlus musculus tectorin alpha (Tecta), mPRA 40 3.4
GhIAFL173375 1 |AF179375 tlycoplasma fermentans orfDi gene, In 40 3 4
gIbJACOQI430 1 |ACOA7450 Homo sapiens 12p BAC RPCI1t1-434Ct (R 40 3 4
FRIACO0TLTT | |ACQQS23T Homo saplens chromosome 19, CIT-HSP-. 49 3.4
gbiACDO29 L]AC002988 Human DNA frowm chromosome 1S-specifa a0 3.4
FBIACN02113 | |HSAC002113 Human Cosmid g1862x083 from 7q31.3 20 3.1
emb [X99805 1 {IXIALPHTEC tlus musculus mRNA for alpha tectorin 40 3 4
enb|ALITSSI1) 2ICNSOIRGL Humen chromosome 14 DNA sequence ++ 49 3.4
embiALIGI3T IDIALI36132 Human DNA sequence from clone RP11. 40 3 4

Figure 47: The Database Entries in BLAST Result

>umbD | X19393 1) ECTHEMSHA Tarantula mRNA for hemocysanin subunit =
Length « 2110

Score = 4183 bits (2110), Expect = 0 O
Identitiexs - T110/2110 (100%)
Strand = Plus / Plus
Query 1 q\ll'.cx)qnqnq’tqttwtcactttchcqmqcnthnqcnattccnnqntqnccutt 60
Illl|ll||lllIIllIIIIIIIIIIllllIlIIlllIllllllllllllllllllllll
Sbjce 1 q‘Q:cwnq‘qtqttqqtclctthcchqqq‘Acntcg\qcntttCCAQg\tq\cc‘tt 60
12

Query 61 th!:th\cg‘qc‘qg’ttctqqc:ctq\cqttqtth‘q\aqctccq‘:g’!‘..qﬂccgcc‘ct
IlllIIIIIIIIlIl|||lllllllllllllllIlllIIlIlIIlIIIlllllllIllll
Sbjict 61 ttqc-cqnc:‘qcnqqttcnqq!:cctq-uqctqt:cq:g\-qctc-cht-qccqccsct 1

2]
(=}

Query 121 Wtq-qcc;qttcctgc‘qncc-q‘th-cq‘-nqqcbt.nqtnccntc-c--cctt-qqt 180
III[IIIIIIIlllIIlllllllllllllllllllllllIllllllllllIIIIIIIHI
Shict: 121 qqtq-qcccqttcctqenqtcctq‘th‘cqn..qvcct.q’\-.c‘tcucsncctclqvt 180

Query: 181 ccc¢ttm§€tcccctcctqctttc.ccctqicc‘cttqqn‘c.-gccnuq‘q‘qtctcc <40
IIIIIIIIIlHIIllllllllllllllllIlIlIlllllllllllllllllllllllll
Sbjct 181 cccnntq‘tttcttct.ct.tqctttcaccc‘qnccncttgq‘ncnqqcctnqnq-qtct-c 240

Query 241 q-:qttttcr.qccncwcqctu.cct.cqttg\ctthtcngcttqgc-ntgl:.nchcq: 300
IIlllllllllllIIlIlIIIIllllllIlllllllllllllllllllllIlllllllll
Sbjict . 241 Q\cqf.cr.t.ctqccnt.qct.qctn-cttcmcwctthcc-qcctqqc‘nnqcccchcqn 300

Query 301 sqcr.tc;cmu:tccgccctqtt!:qccttctctqcaq“qttqcccu:ctt.ccthw\c 360
lIIIIllllllllIIlIlIIIIIIlIIllIIIIIIIllllllllllllllllllllllll
Sbict 301 nqct!:cnr.qtnctcc-ctctqtttgccccctcr.qc.qxgqttgccctccttc-tcggg\t 360

Query 361 c;\ctqccqnqchtcgtht-cct.cccqtcctnqn.qttcbcqct.q‘c-g\r_tc-ccccc 420
IIIIIIHHIIIIllllllllllllllllIIIIIIIIIIIIIIHIIIIIIIHIIIII
Sbjice 361 qnctqccq\qchtccthtncctcccqtcc‘aqt.qtttthccgnc aguattcatccce 420

Figure 48: The Detailed Alignments

il

Chapter 6

Summary and Future Work

Here. a distributed system is designed for BLAST service with Jini network technol-
ogy. Currently designing is a simple svstem. which can only process the requests form

clients synchronously. The future work to improve the systemn will include followings:

1) Supporting the nation of an analysis pipeline As the ability of scientific
investigation to produce large numbers of such sequences has become mainstream.
the ability to process. store. and analvze them becomes very inportant. The notion
of an analysis pipeline for processing and analyzing large batches of sequences has
risen recently. The sequence analysis pipeline consists of an ordered set of processing
stages. each of which does some well-understood operation on its input data. and
produces output data that may be used by some subsequent stage. With the idea.
a sequence analysis pipeline can logically be broken down into these compolents:
DNA analysis methods, database support, the distributed analysis server. the user

interface. and so on.

2) Handling the requests from clients asynchronously To handle multiple
requests from clients, the system receives these requests from clients and places them

on a request queue. from which requests are dispatched to be processed.

72

3) Using distributed processors to increase the throughput To increase the
utility of multiple processors system. parallel processing the computationally intensive
tasks in the sequence analysis portions of the pipeline, such as similarity searching. we
can distributed the analysis tasks over multiple processors. Since it is more valuable
for the distributed analysis system to maximize throughput. rather than to provide the
minimal turnaround time for a given job, scheduling multiple requests concurrently

should be considered.

Bibliography

(6]

(7]

[3]

Bruno A. Gaeta, Internet On-Ramp. Bio Techniques. 28(3) (2000) 436 -438.

Altschul, SF.. Gish. W.. Miller, W.. Myvers. EW. and Lipman. DJ.. Basic local
alignment search tool. .J. of Mol. Biol. 215(1990) 403-10.

Jini network technology. URL http://www.sun.com/jini/

What is Jini Network Technology?
URL http://www jini.org/whatisjini.html

Waugh. M., Hraber. P.. Weller, J.. Wu. Y.. Chen. G.. Inman. J.. Kiphart. D..
and Sobral. B.. The Phytophthora Genome Initiative Database: Infor-
matics and Analysis for Distributed Pathogenomic Research. Nuclew

Acids Research. 28 (2000) 87-90.

Inman, J. T.. Flores. H. R.. May. G. D.. Weller, J. W.. and Bell. C. J.. A high-
thrdbughput distributed DNA sequence analysis and database system.
[BM System Journal. 40(3) (2001) 164-186.

Newmarch, J.. Jan Newmarch’s Guide to Jini Technology. URL

http://jan.netcomp.mona.sh.edu.au/java/jini/tutorial/.lini.xml

Allison. L.. Wallace. C. S. and Yee. C. N.. When is a String like a String?
In AT Maths 1990(a) .

[9]

[10}

[11]

(13]

(14

[16]

Needleman. S. B. and Wunsch. C. D.. A general method applicable to the
search for similarities in the amino acid sequences of two proteins.

Journal of Molecular Biology. 48(1970) 443-453

Sellers, P. H., On the Theory and computation of evolutionary distances.

SIAM J. Appl. Math, 26(1974) 787-793.

Smith, T. F. and Waterman, M. S.. Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1981) 195-197.

Pearson. W. R. and Lipman. D. .J.. Improved tools for Biological Sequence

Comparison. Proc. Natl. Acad. Sci. USA. 85(1998) 2444-2448.

Altschul. S. F., Gish. W.. Miller, W.. Mvers. E. W.. and Lipman, D. .J.. Basic

local alignment search tool. Journal of Molecular Biology, 215(1990) 403 110).

Karlin. S. and Altschul, S. F.. Methods for assessing the statistical signifi-
cance of molecular sequence features by using general scoring schemes.

Proc. Nutl. Acad. Sei. USA. 87(1990) 2264 --2268.

Altschul. S, F.. Madden. T. L.. Schafer. A. A.. Zhang. J.. Zhang. Z.. Miller. \W .
and Lipman. D. J.. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Rescarch. 25(1997)

3389-3402.

Zhang, Z., Schaffer. AA.. Miller. W.. Madden. TL.. Lipman. D.J.. Koonin. EV"..
and Altschul. SF.. Protein sequence similarity searches using patterns as

seeds. Nucleic Acids Res. 26(1998) 3986-90.
WU-BLAST 2.0 Topics. URL http://blast.wustl.edu/blast/README.htm

Hughey. R., Parallel hardware for sequence comparison and alignment.

CABIOS. 26(17)(1998) 3986-90.

-1
[$1]

[19]

25

[26]

[ntel Corp.. Intel Architecture Software developer’s manual. [nstruction

Set Reference, 12(1996) 473 -1479.

Rognes, T., ParAlign: a parallel sequence alignment algorithm for rapid

and sensitive database searches. Nucleic Acids Res. 29(2001) 1647-52

TurboBLAST

URL http://www.turbogenomics.com/produ(:ts/turboblast-overview.html

Benson, DA.. Karsch-Mizrachi, I.. Lipman, DlJ., Ostell. J.. Rapp. BA.. and
Wheeler. DL.. GenBank. Nucleic Acids Res. 28(2000) 15-18.

Stoesser. G., Baker. W .. Broek. A.. Camon. E.. Garcia-Pastor, M.. et al.. The

EMBL nucleotide sequence database. Nucleic Acids Res. 29(2000) 17 21.

Tateno. Y., Mivazaki. S.. Ota, M.. Sugawara. H.. and Gojobori. T.. DNA Data
Bank of Japan (DDBJ) in collaboration with mass sequencing teams.

Nucleic Acids Res. 28(2000) 24-26.

Boulder Data Interchange Format

URL http://stein.cshlorg/software/boulder/

Bioperl URL http://www.hiupnrl.org/C‘ore/POD/Bio/T(,)olrs/BPlit(f.html

