INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Comparison Between C++ and Java --- A Case Study Using a

Networked Automated Gas Station Simulation System

Ying Chun Liu

A Major Report
In

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2002

€ Ying Chun Liu, 2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68461-X

Canadi

Bibliothéque nationale

services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Your fie Votre rétérerce

Our fle Notre rétdrencs

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Comparison Between C++ and Java ——- A Case Study Using a

Networked Automated Gas Station Simulation System

This project aims at the comparison between the features and qualities of the Java and
C++ programming languages. Even though they are both object-oriented programming
languages, there exists a surprising number of differences between C++ and Java. These
differences are intended to be significant improvements in favor of Java. It is by
investigating on these differences that we will see why Java and C++ are both such
beneficial programming language on different aspects. This project will take us through

the important features that distinguish Java from C++.

We proceed by first describing what are the key concepts of object-oriented
programming, then we present a case study that consists in the building of a software
system for the simulation of a gas station network system. The design of the system is
shown, then the system is built in two different versions using both Java and C++. Then

the differences between the two languages are shown in light of this experience.

11

Acknowledgements

Sincerely, I would like to express my deepest respect and gratitude to my major report
supervisor Dr. Joey Paquet for his guidance, invaluable suggestions, encouragement and
support throughout the course of this work. I am very thankful for the opportunity I had,

to work with him, and for everything he taught me during my master’s studies.

I wish to thank my colleagues at the graduate laboratory of the Computer Science
Department of Concordia University, especially Sherry Wang, ChunLei Ren and Bing
Chun Zhang for the fruitful discussions, suggestions and comments on the project and

software tools.

[would like to give a special thanks to my wife, my lovely son and my parents. It was

their love, patience and continued support that made this major report possible.

v

Table of Contents

ABSTRACT I11
ACKNOWLEDGEMENTS IV
1 INTRODUCTION 1
1.1 KEY CONCEPTS OF OBJECT-ORIENTED PROGRAMMING 1
1.2 LANGUAGE COMPARISON CRITERIA USED 2

2 IMPLEMENTATION DESCRIPTION 3
2.1 GENERAL DESCRIPTION 3
2.2 SYSTEM DESCRIPTION 3
2.2.1 Use Case View 4
2.2.2 Conceptual Architecture View 7
2.2.3 Topology View 8
2.2.4 Svstem Architecture View 12

3 IMPLEMENTATION DETAILS IN BOTH LANGUAGES 14
3.1 JAVA IMPLEMENTATION DETAILS 14
3.1.1 Java Implementation Structure 14
312 Java User Interface Description 17
3.1.3 Use of Packages and Libraries in the Java Implementation ----------——-—- 18

3.2 C++ IMPLEMENTATION DETAILS 19
3.2.1 C++ Implementation Structure Description 19
3.2.2 C++ User Interface Description 22
3.2.3 Use of Packages and Libraries in the C++ Implementation --------------- 23

3.3 DIFFERENCES IN IMPLEMENTATION TECHNIQUES 24
3.3.1 Svstem Structure Design 24
3.3.2 User Interface Design 24

3.3.3 Database Design
3.3.4 Nenvork Communication Desion
4 COMPARISON OF JAVA AND C++ LANGUAGES
4.1 PLATFORM INDEPENDENCE
4.2 EFFICIENCY
4.3 PORTABILITY
4.4 ROBUSTNESS
4.5 NETWORK READINESS
4.6 MULTITHREADING
4.7 INSTANT UPDATES OVER THE INTERNET
4.8 SECURITY
4.9 DYNAMIC CLASS INTEGRATION
4.10 ABSTRACTION
4.11 INHERITANCE
4.12 POLYMORPHISM
4.13 GARBAGE COLLECTION
5 CONCLUSION
REFERENCES
APPENDIX OPERATION INSTRUCTIONS

63

65

vi

Table of Figures

FIGURE 1: USE CASE DIAGRAM FOR THE GAS STATION SYSTEM 4
FIGURE 2: GAS-STATION NETWORK CONCEPTUAL ARCHITECTURE 7
FIGURE 3 TOPOLOGY OF THE GAS STATION NETWORK APPLICATION 8
FIGURE 4: SYSTEM ARCHITECTURE DESCRIPTION DIAGRAM 12
FIGURE 5: CLIENT SIDE IMPLEMENTATION STRUCTURE DIAGRAM IN JAVA —=oecmmemmecaacee 15
FIGURE 6: SERVER SIDE IMPLEMENTATION STRUCTURE DIAGRAM IN JAVA =coccommmeceeeee 16
FIGURE 7: USER INTERFACE OF GAS STATION CLIENTIN JAvA 17
FIGURE 8: USER INTERFACE OF GAS STATION SERVER IN JAVA 18
FIGURE 9: CLIENT SIDE IMPLEMENTATION STRUCTURE DESIGN DIAGRAM IN C++ —ececeeo 20
FIGURE 10: SERVER SIDE IMPLEMENTATION STRUCTURE DIAGRAM IN CH+ cmmmocemeeeeeen 211
FIGURE 11: USER INTERFACE OF GAS STATION CLIENT IN C++ 22
FIGURE 12 USE INTERFACE OF GAS STATION SERVER IN C++ 23
FIGURE 13: JAvA VELCRO EFFECT 32
FIGURE 14: JVM ARCHITECTURE 33
FIGURE [5: SERVER USER INTERFACE OF PROJECT WITH JAVA LANGUAGE 65
FIGURE 16: PERSONAL ACCOUNT REPORT 66
FIGURE 17: SYSTEM NEED A VALID SERVER NAME 66
FIGURE 18: MONITOR PANEL OF A GAS STATION 67
FIGURE 19: SET-UP DIALOG BOX 68

FIGURE 20: GAS PUMP PANEL 68

Vil

1 Introduction

This project aims at the comparison between the features and qualities of the Java and
C++ programming languages. Even though they are both object-oriented programming
languages, there exists a surprising number of differences between C++ and Java. These
differences are intended to be significant improvements, and if we understand the
differences we’ll see why Java and C++ are both such the beneficial programming
language on different aspects. This project takes us through the important features that

distinguish Java from C++.

Before analyzing differences between C++ and Java, we will start by describing what are
the key concepts of object-oriented programming. This will lead the way to a presentation

of the criteria on which the two programming languages will be evaluated.
1. Key Concepts of Object-Oriented Programming

Object: means the data is quantities into discrete, distinguishable entities. Objects can be
concrete, such as a file in a file system, or conceptual, such as a scheduling policy in a
multiprocessing operating system.

Class: means that the objects with same data structure and behavior are grouped into a
class. A class is an abstraction that describes properties important to an application and
ignores the rest. Each object is said to be an instance of its class.

Inheritance: is the sharing of attributes and operations among classes based on a
hierarchical relationship. A class can be defined broadly and then redefined into
successively finer subclass.

Polvmorphism: means that the same operation may behave differently on different

classes. In object-oriented methodology, the language can automatically select the
correct method to implement an operation based on the name of the operation and the

class of the object operated on.

Object-Oriented Methodology: the essence of object-oriented development is the

identification and organization of application domain concepts, rather than their final
representation in a programming language. Object is the core part of software

development to manipulate the inherent complexity of the problems.
1.2 Language Comparison Criteria Used

Comparaison on Implementation Techniques

Compare on aspects: System Structure, User Interface, Database Design and Network

communication design.

Comparison on Language Feature

Compare on aspects: Platform independence, Efficiency, Portability, Network readiness,

Security, Inheritance, Robustness and etc. features. Refer to Section 4.

Comparison on Language Characteristics

Compare on aspects: Data structure, Data Type, Algorithm and Language Design
Strategy.

3]

2 Implementation Description

2.1 General Description

Inspired by the gas stations spreading in Montreal, we used the concept of an automated
gas station network system as a case study. We do not pretend to strictly follow any
software development lifecycle for the development of these two programs, as the
problem at hand is quite simple, and the goal of the exercise is to compare the

implementation aspects of the two programs.

The system provides the functions of gas station network management and customers
behaviors. It simulates the most of gas station network scenarios on both customer and
gas stations. The software structure is based on the three layer topology, which are user

interface, domain application, and database layer.

The purpose of this case study is to refer to as many aspects of Java as possible through
the modeling and implementation of a real-life gas station network. We have developed
the Java code using JDK 1.2. The Java features that we have applied into this project
include: Java Swing, multithreading, JDBC and Java sockets. Polymorphism, abstract
class(interfaces), and inner class are used as the design techniques for JAVA version

development.

The C++ implementation has been developed using Borland C++ 3.0. The C++ features
we have applied includes: Multithreading, ODBC and C++ sockets (WinSocket), and

techniques such as overloading, polymorphism, and virtual functions.
2.2 System Description

Here we describe the system from different viewpoints: a very high level use-case view, a
conceptual architectural view, a topology view, and a detailed architectural view. The

aggregation of these views aims at the incremental description of the system from

abstract concepts to a physical implementation model. That leads the way to the next

section: implementation.

2.2.1 Use Case View

Figure 1: Use Case Diagram for the Gas Station System

Figure 1 describes the system from a very high level use case point of view. It is

applicable for the implementation in both Java and C++.

Actors

Administrator : An authorized user that uses the server application program to administer
the application and query the database to manage the gas station network.
Customer : A client that comes to a gas station and performs a gas filling operation using

a credit card.

Gas station clerk : Clerk mainly responsible for the activation of the gas pumps after a

customer has been granted permission from the server to perform a gas filling operation.

Use Cases

Connect to server : Input the correct server name, client will establish the connection with

the server. User can input the server name both on command line and after the system
prompt.

Change server : If the server crashes, client can change to connect with another valid

server.
Update gas price and gas tank volume : Each gas station can set its own gas price, also it
can change the volume of its gas pump (the purpose of changing gas pump volume is for
testing the relation between gas level of gas pump and monitored value)

Gas level low alarm : When the gas level of any gas pump is lower than a preset value

(5%), the monitor of that gas station will issue an alarm.

Gas tank re-charge : Monitor can re-charge the gas tank when its level is low.

Filling-up auto-stop when gas level low : Ifthe gas level of a tank is lower than a preset
limit and a filling-up session is in progress, The system will stop the session
automatically.

Authorization : Using a gas pump must get the permission from the monitor of the gas
station.

Client card number input : Clients input their card number with the keyboard on the
pump.

Client card number authentication : System will check if the card is valid or not.

Client card protection : If a card is being used by someone, it will be invalid for anyone

else at the same time.

Balance display : Gas pump will display the balance before and after the filling-up

session.

Filling-up pause and resume : Client can pause filling and resume.

Filling-up terminate : At any time, the client can finish the filling-up session.

Send data about the filling-up session to server : Send new balance of the client to the

server after gas filling-up session.

Validate client card : Check the card number and send validation information back to the

gas station.

Check the balance : Query the balance according to the card number and send balance

back to the gas station.

Update balance : Accept the new balance from the gas station and update the database.

Record filling-up session : Record the data of each filling-up session, which includes

station name, gas price, gas volume, and card number.

Display transactions by gas station : Given a station number, display all the transactions
that happened in this station.

Display transaction by transaction number : Given a transaction number, display all the

information about a specific transaction.
Display the client information : Display the information about a client, given a specific

account number.

2.2.2 Conceptual Architecture View

The physical structure of this gas station network is shown in Figure 2. The system
description is applied to both programming languages C++ and Java. In Figure 2, the
Server is assumed to be the Administration Station of this gas station network. The server
application software and management-related database are installed on it. The Backup
Server is a spare server. If the main server is not available, all gas stations may change to
communicate with the backup server. Gas Station I..N are virtual gas stations. General
clients can perform a gas-filling-up session through the user interface on these gas

stations.

Server
(Administration >

Station)

Gas Station 1 g Gas Station N
Gas Station 2

Figure 2: Gas-Station Network Conceptual Architecture

2.2.3 Topology View

The topology of the gas station network system using both Java and C++ is shown in
Figure 3. Note that the topology for the Java implementation includes the Java Virtual
Machine layer. For the C++ implementation, we do not have this layer: the Application
layer is built directly on the Operating System layer. The topology of the system consists

of two main parts: the client side and the server side.

Client Interface Server Interface
Client Application Server Application
Java VM ODBC/JDBC} Java VM
Operating System Operating System
Client Side Server Side

Figure 3 Topology of the Gas Station Network Application

Client Side Topology

The client side is made up of Client Interface, Client Application, Java Virtual Machine,
and Operating System in Java design. The C++ implementation is made up of Client
Interface, Client Application, and Operating System instead. The Client side is connected

by the Nenworking System to the Server side.

Client Interface : Through the Client Interface the client can input the server name both

on command line or use the system prompt to connect with the server. Also the user can

fill the gas and monitor the gas filling process from the client interface.

Client Application : The client application programs provides functions to enable

communication with the server such as setting up network communication, exchanging

information with the server, monitoring the use of the system by the customer, credit card
transaction processing, and gas level balance controlling. If a connection failure is
occurring with the server application, the customer can change to connect with another
valid server. The gas price can be changed independently in each gas station, because
different areas can have different gas prices. The gas station can change the volume of its
gas pump. The gas station monitor can automatically control the gas level of any pump. If
it goes lower than a preset value, the monitor will give an alarm signal to the system. The
system will take actions to recharge the tank. Any customer must get permission to
access the pump to get gas with control by the monitor. The client application can also
verify the customer’s credit to decide whether to activate the pump or not. If the card
provided by the client is not valid the pump is stopped. The interface will display the
balance before and after the filling-up session and after this session the program will send

the new balance to the server.

Java Virtual Machine : The Java Virtual machine is very important for any Java

program, development of the Java program and runtime environment, to describe
software that acts as an interface between compiled Java binary code and the platform
that actually performs the program's instructions. Once a Java virtual machine has been
provided and installed on a platform, any Java program (which, after compilation,
consists of bytecodes) can run on that platform. Java was designed to allow application
programs to be built that could run on any platform without having to be rewritten or
recompiled by the programmer for each separate platform. It is the Java Virtual Machine
that makes this possible. The Java Virtual Machine defines an abstract rather than a real
"machine” (or processor) and specifies an instruction set, a set of registers, a stack, a heap

that is garbage collected and a method area.

Client Operating System : The Operating System is there to control and coordinate the

use of the hardware among the various applications programs for the various users. The

client side operating system for the Client side is Windows 98.

Server Side Topology

The Server side is made up of Server Interface, Server Application, Java Virtual
Machine, ODBC/JDBC database adapters, and Operating System. The server side is

connected by the Networking System to the Client side.

Server Interface : The Server Interface that provides services to up to 100 gas stations

and provides a software interface to the client side to interact with the server side. The
user can query the information on the gas station by selecting the query options and

browsing the query results through the server interface.

Server Application : The server application programs first receives the card [D sent by
the client side and checks whether the card is valid or not, and then sends confirmation
back to the gas station. When the server application receives the query that requests the
balance according to the card ID, the server sends back the credit balance to the client
side. After the transaction is finished, the server application updates the balance data in
the database. The server application also records the data of each filling up session done
by a client. The stored data are station name, gas price, gas volume and card number. The
server application provides a functionality that can display all transactions in every

station. It also can display the client credit card number and balance.

ODBC/JDBC and Java Virtual Machine : We need the JDBC database adaptor in our

project to establish a connection between the server application and the underlying
database. This adaptor actually translates our Java database manipulation statements into
SQL statements, and submits them to the database management system. The database we
chose is a relational database based on SQL (Structured Query Language) for queries.
The purpose of using the Java Database Connectivity (JDBC) is to work as a bridge
together with ODBC to control the Microsoft Access Database.

Server Operating System : The Operating System is to control and coordinate the use of

the hardware among the various applications programs for the various users. The server

side operating system for GAS Station is Windows 98.

10

Network Communication

For the network communication we use the client/server interaction with socket
connections. When the gas system starts to work, the server waits for a client connection
attempt. After a client application sends a connection request to the server, the server
application sends a message indicating that the connection was successful to the client.
Then the client application displays this message. When the client or server sends a
termination message, the connection between client and server is terminated. Then the
server waits for the next client to send a connection request. When the server socket is set
up, the application will listen for a connection request from the client on port 8080. After
that, a number of connections can wait in a queue to connect to the server (that was set to
100 in our implementation). If the queue is full when a connection is requested, the

connection is refused and an appropriate message is sent to the requesting client.

11

2.2.4 System Architecture View

The following figure describes the system from the package dependency point of view. It

is applicable for both Java and C++ implementation.

Client User : Server User

Interface Interface

Client Domain SIS I Server Dornain
Objects RN ' Objects

Database
Interface

RO
Database
Package

Figure 4: System Architecture Description Diagram

The client side is connected by the networking system to the server side. The server is in
state to be connected by the client when it starts. Through the Client User Interface
package, the user can input information and control the gas station. The Client Domain
Objects package provides the gas station specific functioning, like filling session
simulation and etc. It is also for displaying all information for the client before and after
the filling up session. The Communication package sets up network communication,

which transmits valuable information between server and client. It is also responsible for

12

checking process and controlling gas level balance. Both C++ and Java version use the
socket-based communications, which enable application view networking system as if it
were file /O. The Database Interface package provides query information help and SQL
language implementation. The interface sets read and write access to the database and
query control. The Server User Interface package allows the user to select to query on the
station, account and transaction. The Server Domain Objects package will mainly
display the query result to the user. The application program provides the function that
can display information for transactions, account and station once the query is submitted.
The Database package is based on the Access relational database model, which includes

the transaction table, personal account table, and station table.

13

3 Implementation Details in both Languages

This section describes the implementation of the gas station network system, as

implemented in Java, and then in C++.

3.1 Java Implementation Details

3.1.1 Java Implementation Structure

The Java version of the system is described in this section. The client side and the server

side are depicted separately.

Client side User interface, domain package, and communication package are composed
of the classes as depicted in Error! Reference source not found.. Server side User
interface, domain package, communication, and database package are composed of the
classes as depicted in Figure 6. Direction arrow represents the dependency among
classes; this mean one class can provide service to other class and use other class service
as well. The detailed function prototypes are list to show the implementation methods on

both Client side and Server side. The functionality will not be detailed here.

Client Side Implementation Structure in Java

See Figure 5 for the Software Structure Description Diagram of Client side in Java
design.
See Figure 6 for the Software structure Description Diagram of Server side in Java

Design.

14

GasStationClient

void main(String(] args)
void arrangeUl(Container container,
ClientConnect client)

void setlnterface()

PumpPanel

ClientConnect

void SetServerName(String ServerName)
void Disconnect()

//submit the connection to server

void actionPerformed{ActionEvente)

void checkAmount(String str)

void checkCard(String str)

void checkState()

void displayNum()

void setAskForFill()

void setlnitState()

void setReadyState()

void transform()

//get client input and check the client input

information

ClientConnect

MonitorPanel

static synchronized void Send(String packet)

static synchronized String Recv()

Stnng getBalance(String CardNum)

int SetBalance(String CardNum, Stning

NewBalance,
String
StationName,
String Price,
String Litre)

/fsend and receive the information by socket

void actionPerformed(ActionEvent e)
void initiation()

int gasLevelA()

int gasLevelB()

void setChargeA(boolean YorN)
void setChargeB(boolean YorN)
void setlnitPancl()

void setGaslLevel(String pumplID, int level)
setPermitA(boolean YorN)
sctPermitA(boolcan YorN)
sctPermitA(boolean YorN)

/lrecharge the gas and filling the gas process

ServerSocketControl

/Isend/receive data from server

Figure 5: Client Side Implementation Structure Diagram in Java

TServerForm

FormCreat(..)
/linit socket and datas
/fconnect with Database m ODBC

Database

TableOfStation
Table OfAccount

| 4

A 4

TServerForm

ListenPortKeyPress(10bject *Sender, char
&Key),

ServerEnabledButton(..)

/{Enabled Server to be connected

ODBC database Driver

//{Connect to database

A

TQueryForm

> DataDisplayKeyPressed

QueryButtonClick(TObject *Sender);
ServerSocketClientConnect(TObject *Sender, //Set query type . then display records
TCustomWinSocket *Socket);

Queryinterface QueryControl
TableOtStationFilterRecord(TDataSet
AccountNoKeyPress(TObject *Sender, char *DataSet,
&Key); o— bool &Accept),
StationNameEditKeyPress(TObject *Sender, char TableOfAccountFilterRecord(TDataSet
&Key): *DataSet,

» bool &Accept);

w

SocketControl

SocketClientRead(..)
SocketClientConnect(..)
SocketClientDisConnect(..)
TformServer::SocketClientError(..)

Y

TServerForm

/iSet socket to prepare receive datas [«

v 4

ClientSocketControl

Get data from client socket

AddConnectionToListView(TCustomWinSocket *ClientSocket);
RemoveConnectionFromListView(TCustomWinSocket *Socket);
SetUserBySocket(TCustomWinSocket *Socket, const AnsiString
&UserNickName);

GetUserBySocket(TCustomWinSocket *Socket, AnsiString
&UserNickName);

TListltem * ListlternBySocket(TCustomWinSocket *Socket);
BroadcastMessage(AnsiString Message, TCustomWinSocket
*ExcludeSocket);

SendNotification(ServerNotification sn, AnsiStning additional,

TCustomWinSocket

Figure 6: Server Side Implementation Structure Diagram in Java

16

3.1.2 Java User Interface Description

Client Side User Interface in Java

The gas station client user interface is composed of a monitor and two gas pumps input
panels (Pump A and Pump B). The monitor is responsible for giving permission to a
filling-up operation, re-charge the gas tanks (we assume that each gas pump equipped
with one gas tank), and displaying the amount of gas that has been filled. The two pumps
will allow the user to input the card number, display the gas price, and input the amount

of gas to be filled.

23 Guy Concordia GAS STATION

Guy-Concordia GAS STATION

Figure 7: User Interface of Gas Station Client in Java

Server Side User Interface in Java

The gas station server user interface is a menu for the different queries on the database.
Query on station name will display all the transactions that happened on this station.

Query on a specific transaction will display all the information about this transaction, for

17

example, the amount of gas being filled, the total money, in which station, etc. Query on

personal account will display the account balance for all account numbers.

@Adminisllalion Bureau == B3

Query By Station name

Figure 8: User Interface of Gas Station Server in Java

3.1.3 Use of Packages and Libraries in the Java Implementation

This part describes the package and libraries used in Java implementation.

Client User Interface Network Communication
javax.swing.* java.net.*
java.awt.* java.io.*
java.awt.event.* java.lang.Thread.*

java.lang.*

Server User Interface Server Database
javax.swing.* java.awt.*;
javax.swing.border.* java.awt.event.*;
javax.swing.event.* javax.swing.*;
java.awt.* javax.swing.event.*
java.awt.event.* java.util.=*
java.lang.* java.sql.*

18

3.2 C++ Implementation Details

The C++ version of the system is described in this section. The client side and the server

side are depicted separately.
3.2.1 C++ Implementation Structure Description

The C++ version of the system is described in this section. The client side and the server

side are depicted separately.

Client side User interface, domain package, and communication package are composed
of the classes as depicted in Figure 9 Server side User interface, domain package,
communication, and database package are composed of the classes as depicted in Figure
10. Direction arrow represents the dependency among classes; this mean one class can
provide service to other class and use other class service as well. The detailed function
prototypes are list to show the implementation methods on both Client side and Server

side. The functionality will not be detailed here.

Client Side Implementation Structure in C++

See Figure 9 for the Software Structure Description Diagram of Client side in C++
design.
See Figure 10 for the Software Structure Description Diagram of Server side in C++

design.

19

TClientForm TclientForm

FormCreat(..) void ChargeAClick(TObject *Sender);

void ChargeBClick(TObject *Sender);

> void AccountNoKeyPress(TObject *Sender, char &Key),

A 4 void LitreAmountKeyPress(TObject *Sender, char &Key);
TClientForm void UPriceAKeyPress(TObject *Sender, char &Key);
void UPriceBKeyPress(TObject *Sender, char &Key);
ServerNameEditKeyPress(..) void RadioAClick(TObject *Sender);
StationNameEditKeyPress(..) void UPriceAChange(TObject *Sender),
i void RadioBClick(TObject *Sender);
l void UPriceBChange(TObject *Sender),

void UPriceChange(TObject *Sender);

TClientForm

TFormClient:.ConnectButtonClick(TObject *Sender),

TFormClient:: DisconnectButtonClick(TObject *Sender); TelientForm
A void SubmitButtonClick(TObject *Sender);
ClientSocketControl
voiud ClientSocketError(TObject *Sender, TClientInfoForm
TCustomWinSocket *Socket, TErrorEvent ErrorEvent, ———
int &ErrorCode); InfoDisplay()

void ClientSocketDisconnect(TObject *Sender,
TCustomWinSocket *Socket);

void ClientSocketRead(TObject *Sender,
TCustomWinSocket *Socket);

void ClientSocketConnect(TObject *Sender,
TCustomWinSocket *Socket);

.1

ServerSocketControl

Server Socket of Network

Figure 9: Client Side Implementation Structure Design Diagram in C++

TServerForm Database

FormCreat(..)
TahleOf<tanon

!

ODBC database Driver
P
TServerForm
A
ListenPortKeyPress(TObject *Sender, char &Key);
ServerEnabledButton(..)
QueryControl TQueryForm
TableOfStationFilterRecord(TDataSet *DataSet, » —-’L)
bool &Accept); DataDisplavKevPressed
TableOfAccountFilterRecord(TDataSet *DataSet,
bool &Accept):
1
Querylnterface
AccountNoKeyPress(TObject *Sender, char &Key);
StationNameEditKeyPress(TObject *Sender, char &Key);
QueryButtonClick(TObject *Sender);
ServerSocketClientConnect(TObject *Sender,
TCustomWinSocket *Socket),
DataDisplayKeyPress(TObject *Sender, char &Key);
h 4 v
SocketControl TServerForm
>
SocketClientRead(..)
SocketClientConnect(..) —— AddConnectionToListView(TCustomWinSocket *ClientSocket),
SocketClientDisConnect(..) RemoveConnectionFromListView(TCustomWinSocket *Socket);
+ * SetUserBySocket(TCustomWinSocket *Socket, const AnsiString &UserNickName);
GetUserBySocket(TCustomWinSocket *Socket, AnsiString &UserNickName);
ClientSocketControl
X TListitem * ListitemBySocket(TCustomWinSocket *Socket);
/IGet data from client socket
BroadcastMessage(AnsiString Message, TCustomWinSocket *ExcludeSocket);

Figure 10: Server Side Implementation Structure Diagram in C++

3.2.2 C++ User Interface Description

Client Side User Interface in C++

The gas station client user interface in C++ is composed of a monitor for pump A and
pump B and one user information input panel. The monitor is responsible for giving
permission to a gas filling operation, filling-up the gas tanks (we assume that each gas
pump equipped with one gas tank), display the gas level that has been filled by a
customer, and display the total value of a filling-up operation. The user information input

panel will allow the user to input the card number, unit gas price and selection for

different pumps.

Gas Statio

M

Y

TR T

)

1

1y

Figure 11: User Interface of Gas Station Client in C++

Server Side User Interface in C++

A gas station server user interface in C++ is composed of a data display panel and the
input field for user to query. The data display panel is responsible for display the query
results from the database. The user input field will allow the user to input the station

name and account number to query on them.

xI

ESPAR - n;ﬁmm?'

il 198! Station001
i 199 Station001
200 Station001
__ 205(Station00] _
344 ! Station001

i 345 Station001
o 346 | Station001
] 347/ Station001
348 Station(01

Bl 343iStation0l
E
E

B 350/station001_
‘?" 354 Station001
o 355 Stalion001
L R R

Figure 12 Use Interface of Gas Station Server in C++

3.2.3 Use of Packages and Libraries in the C++ Implementation

Client User Interface Server User Interface Network Communication
Controls.hpp Buttons.hpp ScktComp . hpp
StdCtrls.hpp Controls.hpp Server Database
Forms.hpp StdCtrls.hpp DBGrids.hpp
ExtCtrls.hpp Forms.hpp DBTables.hpp
ComCtrls.hpp ExtCtrls.hpp Db.hpp
Mask.hpp ComCtrls.hpp Grids.hpp
vel.h vel.h

23

3.3 Differences in Implementation Techniques

In order to improve the quality of the system and provide a friendly user interface, we
applied some special techniques on different parts of the system during the
implementation of this Gas Station Network. Here are described some technique used in
Java or C++. Note that each part will be compared to C++ implementation only if the

case is applicable.
3.3.1 System Structure Design

Basically, this system is composed of three parts: user interface, database, and network
communication. Both Java and C++ are object-oriented language. We fully took
advantage of this characteristic and designed two sets of APIs (one is for the network
communication and another is for database). These APIs not only make the system
integration smoother, but also make it possible to improve system functionalities

separately without affecting other parts.
3.3.2 User Interface Design

In the Java user interface, the system provides to the user friendly input scheme for the
account number and filling volume. It looks like a calculator panel, so the user feels more
comfortable with this input style. The concrete design and implementation is in public

class GasStationClient and described as following.

Definition of the button array and button label array:
JButton digit(]=new JButton[l6]:;
String keys[]l={"0",nln, n2n n3n ngn n5n ngn n7n _ngn ngn,
m,m,"0K","BK", "RN", "ST","CR"};

Add the action listener to each of buttons:
for (int i=0; i<16; i++) (
digit[i] =new JButton(keys([i]);
digit([i] .addActionListener (this);
keyboard.add(digit[il)}

Set the button state accordingly by calling functions:
public void setInitState()
public void setReadyState()
public void setWaitingState(int part)
public void setWaitAmountState ()

public void setWrongState()

In C++ implementation, it is not applicable to define an array of buttons, the input for

account and gas volume is implemented using text fields.
3.3.3 Database Design

In the Java implementation, connection to database is done by JDBC to ODBC and to
database. The connection method is in public class Record and in public class

Query, as shown in the following.

Define the database URL
String url="jdbc:odbec:gasStation2"

Connect to the database

try{
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver®) ;
connection=DriverManager.getConnection (url):;
}
catch(..) {
}

In C++, the database can be connected through ODBC directly. Then the tables are
connected with database, whenever the table is set to enabled the database is connected.
Dataset is the subset of the table. Whenever the data need to be displayed, the datagrid
component will response for displaying the data. Dataset and datagrid are database

components in Borland C++.

25

Both in Java and C++, the system provides data protection. To ensure data integrity, we
set up a data validation mechanism to identify the current status of each record. If queried
on a specific field, all the records have to be locked in case of updating by others, and
unlock the records that have been updated already. In Java, the code below demonstrates

how to set the validation bit to true in the database table in public class Record.

private void lockAccount(String a) {
query="UPDATE Account SET Lock =‘Y’
WHERE AccountNumber='" + a +"’;

try{
statement = connection.createStatement ();
int intRS = statement.executeUpdate (query):;
}

catch {..}

}

private void unLockAccount (String a){
query="UPDATE Account SET Lock='N'
WHERE AccountNumber ='" + a +"';
try{
statement=connection.createStatement ();
int intRS=statement.executeUpdate (query):
if (intRS==1){
JOptionPane.showMessageDialog(this,
nopensuccessfully!n);

}

statement.close () ;

}

catch(..){
}
In C++ implementation, the lock and unlock task is accomplished by setting the

following statements:

TableOfStation->Filtered=true;//Lock the dataset of table
TableOfStation->Filtered=false;//Unlock the dataset of table

3.3.4 Network Communication Design

In the Java implementation, the network communication function on server side is based
on Java sockets and multithreading. The main communication function is achieved by a
server thread. The server thread keeps listening on a specific port 5000 and accept
connect request issued by client hosts. When it accepts a new connection request, the
server thread dynamically assigns a unique port number to the client host, and creates a
new thread. The new thread uses the assigned port number to build a connection with the
client host, to communicate with the client host, and to query the database when the client
requests it. The server can make the communication more efficient by assigning a unique

port number to each client to avoid competition among multiple clients.

On the client side, the client application issues a connection request initially through port
5000. When the server assigns a new port number to the client, it builds connection by
the new port number and communicates with the server. The client can connect to a

backup server if the main server is not available.

In C++ implementation, we also use the TCP/IP protocol to implement communication
programming. The difference between client and server is important in design because
each uses the socket interface differently at certain step in the communication. On the
client side, we create the socket object when a connection to the server is initiated. The
socket’s default port number is 5790. On server side, the communication is based on
multithreading, which allow multiple clients to connect to one server. We set the server
socket to the multiple clients mode in order to service to multiple clients. The socket’s
default port number is also 5790. We use the open() and close () functions to operate
on the socket. Also, sendText() and receiveText() is for passing information
through the socket.

4 Comparison of Java and C++ Languages

This part will focus on describing the main differences between the C++ and Java
programming language. The aspects that are applicable on the gas station case study will

be mentioned on each related sub-sections.
4.1 Platform independence

Platform independence is useful in a networked environment. This means that the
programs built using a programming language can run unchanged on multiple platforms.
This is important in a networked environment because networks usually interconnect
many different kinds of computers and devices. In a typical enterprise environment, for
example, a network might connect Macs in the art department, UNIX workstations in
engineering, and PCs running Windows everywhere else. Although this arrangement
enables various kinds of computers and devices within the company to share data, it
requires a great deal of administration. Such a network presents a system administrator
with the task of keeping different platform-specific editions of programs up to date on
many different kinds of computers. Programs that can run without change on any
networked computer, regardless of the computer’s type, make the system administrator's

job simpler, especially if those programs can actually be delivered across the network. [1]

Java

The obvious advantage of Java using byte-code is platform independence. Write a
program in Java, and it will run in any environment in which the Java interpreter has been
implemented. A more subtle advantage of byte-code is its potential to express more
instructions in fewer units. If you're loading the code across a relatively slow transport
medium such as the Internet, loading and performing a final compile on a smailer amount

of byte-code makes more sense than transporting and executing larger native code. [10]

28

Java class files and byte-code (machine independent) for tailoring a program to a specific
platform is desirable in a stand-alone, homogeneous environment. But the computer
world is no longer a place of separate islands. The Intemet in general and the World-
Wide-Web in particular are different landscapes altogether. By definition, the Internet is a
network of networks, consisting of a variety of hardware and software platforms. The
trick is that all these platforms speak the same protocol so that they can communicate
seamlessly. Java is interpreted. That simplifies the development phase of an application
by eliminating the compile (although Java needs to be compiled to byte-code), link cycles
of a compiled language. The interpreter translates source code directly into byte-code.
This byte-code in turn is executed on the local machine. A Java program can be executed
on any machine that has an interpreter resident. The Java interpreter ensures less chance
to download any viruses. When a Java program is downloaded over the Web, it is placed
in a restricted region of memory. [15] The interpreter looks over all of the byte-code for
the program and makes sure that they obey the laws and constraints of the language. If
the byte-code is deemed safe, the interpreter lets the program run, but it still limits access

to certain system resources.

C++

C++ programs are platform dependent. For example, to add a programming element to
the Internet that can permeate the Web, we can not use C or C++ programs, because
there’s the problem of security. Most importantly for some purpose, a C/C++ program
compiled for a Sun work station running Solaris will not, for instance, run on MacOS or
Windows, nor will a MacOS program run on Solaris. What we need, especially for the

web, is an interpreted language.

C and C++ machine code (machine dependent) is built for speed and flexibility, and is
geared primarily for creating the most efficient machine code possible. Unfortunately,
since the program is inevitably optimized to a particular chip set, this creates machine

dependence, requiring you to recompile your code for different processors.

29

Verdict

The Java and C++ programming languages are both powerful high-performance
programming languages. However both languages were designed for different purposes.
The C++ programming language was designed to be a highly efficient general purpose

programming language with object-oriented features.

On terms of platform independence, the C/C++ and Java languages are geared toward
solving different problems. For Java, the issues are simplicity object orientation,
innovation, and platform independence. For C/C++, the issues are speed, power, and
programmer flexibility. The Java programming language was designed to be a secure,
portable, completely object oriented programming language. Therefore, Java can be used
by network programmers to develop secure client-server based applications that can be
executed on any platform. But interpreted languages can be slow, however, if the
interpreter must parse the source code into a machine language, though not one specific
to any particular chip. C++ is more suitable for speed concern system although it is

platform dependent.

Gas Station Implementation Result

This issue is not of any concemn for the gas station system because it is not a real
networked system, but only a simulation system. We did not need to consider the multi

platform issue.

Conclusion

An obvious advantage of Java compared to C++ is platform independence.

30

4.2 Efficiency

Java

Java using byte-code and an interpreter means code executes more slowly, roughly on the
order of 10 times more slowly than native C++. That is also a drawback of any
interpreted language such as Java. Compiled programming languages usually have longer
development cycles, however their applications will run at a much faster rate than
interpreted program applications. The new execution schemer for Java is more efficient

now.

C++

C++ compiler transfers the program inevitably optimized to a particular chip set, this
provides faster execution speed. The machine code generated by the C++ compiler are
machine dependent and optimized for a specific architecture.

Verdict

Compiled programming languages like C++ usually have longer development cycles.
However their applications will run at a much faster rate than interpreted program

applications. Unless Java runs on a chip supporting the op-codes of the JVM, native

C/C++ code will almost certainly be faster.

Gas Station Implementation Result

The gas station software gets the obvious network performance in C++.

Conclusion

Efficiency is an obvious advantage of C++ compared to interpreted Java.

31

4.3 Portability

Portability is an important aspect of software development. It allows flexibility in the
choice of hardware platform for each system component. Coupled to this is the need to be
able to benefit from the continuous and rapid progress being made in hardware

technology. [6]

Java

Java components portability can be paraphrased using an analogy to Velcro [11]. For
instance, if we want to temporarily mount a pair of speakers onto our computer monitor,
we could attach strips of opposing pieces of Velcro to our speakers and computer, and
then put the devices together. Using Velcro instead of, say, glue, gives the ability to move

the speakers at will, without any adverse effects.

Java Runtime Environment Java Class File
Native Application
Platform —l Logic

Figure 13: Java Velcro Effect

As shown in Figure 13, a Java executable, or class file, is the first piece, and the Java
runtime environment is the second. We can think of the Java runtime environment as the
receptor to which the Java executable bonds. The Java environment binds itself to the
specific native platform and provides a shield against any platform-specific issues by
eliminating machine-specific issues. This shielding is known as a layer of indirection for

the Java executable.

At the time the executable is handed to the Java runtime environment for execution by
the Java Virtual Machine (JVM), the application can assume a certain set of predefined
functionalities. It is up to the JVM to shield the application from any platform-specific

dependencies. As long as the platform has a JVM installed, all Java executables are able

32

to run. In this way, the Java application binds to the JVM and the JVM, in turn, binds to
the specific platform.[12]

The JVM is probably one of the most misunderstood technologies of the Java suite. Some
say that the JVM is an interpreter, interpreting Java-compiled byte-code into actual native
machine calls. This statement is not completely true. In fact, the JVM is not an
interpreter, but rather an emulator.[15] Virtual machine technology has historically been
distinct from interpreter technology. The reason lies in how and at what level the
interpretation takes place. Interpreters directly map a proprietary byte-code into system
calls. Some map directly into machine instructions, but no attempt is made by any

interpreter to emulate an intermediate machine architecture.

The JVM functions like an interpreter in some areas, but this comparison is not a direct
one. If anything, we can generally refer to interpreter as scaled-down, simplified, and
altogether less-complicated forms of a virtual machine. The JVM is an entire framework
for a machine architecture, not unlike Intel or Motorola. The only difference is that the
JVM does not require a chip or silicon-based implementation to operate.[18] As shown in
Figure 14, the JVM is broken into three distinct units of functionality, which all work in

harmony to achieve the primary task of executing class files.

Stack

1L

Garbage

Collection Heap

1L

Method
Area
Figure 14: JVM Architecture

33

To summarize the task of the class loader, it finds, verifies, and loads the class into the
JVM for execution. At this point, the JVM method region is loaded with all of the
classes’ methods, the JVM stack is loaded with class initialization, and the registers are
set to the initial class execution state. All that is left is for the class loader to signal the
JVM to begin execution.[2]1] The operating differences between a register-based
architecture and JVM’s stack-based model, for the point of class execution, the JVM
follows the exact model specified in that for popping operands off the stack and pushing

onto it for execution.

Java has other features to ensure portability. First of all, Java uses the same Application
Programmer Interface (API) and Application Binary Interface (ABI) on all platforms.
API is the interface used for writing source code and ABI is the executable file’s format.
When an API is on a range of different processors, it helps achieve program portability.
Using the same ABI for all platforms is beneficial because a program that conforms to a
system’s ABI is able to run on any processor that complies with the ABI. Finally, Java
uses the Unicode character set, which is an ASCII superset that represents the symbols of

the majority of alphabets in the world.

C++

If we use C++ appropriately it has the potential for producing highly portable
applications. That potential is more likely to be realized if we design for portability,

select sensible programming paradigms and use the right tools (including compilers).

The importance of porting is not just supporting multiple platforms at the same time but
recognizing that if we have a good product we might need to port it to a new platform at a
later stage. If we are among the majority of programmers who use Microsoft Visual C++
we already know just how a bad choice of tools can badly effect our productivity.
Moving from 16-bits to 32-bits will always require some work but when that is
compounded by substantial changes in the compiler your task is made much more
difficult.[9]

34

For C++, the ideas of architecture neutrality and portability go hand-in-hand. But there is
more to portability. One notable difference between Java and C++ is that, in Java, the
size of the bitwise representation of data types are all uniformly defined. For example,
int always means a signed two's complement 32 bit integer, and £loat always means a
32-bit IEEE 754 floating point number. This is just one example of what C++ calls

"Implementation specific” details. Java makes abstraction of such details.

Verdict

A Java program can run on all computer systems. This is the case because when Java
source code is compiled, this results in Java byte-code, which must be run by a Java
Virtual Machine (JVM). JVM is generally an interpreter that executes the byte-code
instructions. Therefore, any platform on which JVM is installed can run a compiled Java

program, while identical program behavior on different systems is ensured.

Gas Station Implementation Result

This issue is not of great concern for the Gas Station System because the system is not a

real network system, it is only a simulation of gas station system.

Conclusion

Portability is somehow Java’s “single best feature”, because it is a very obvious and

strong point of Java.

4.4 Robustness

Robustness is the ability of an object to fulfill its intended function notwithstanding a
changing environment and despite the violation of prerequisites. Robustness is meant to
overcome our deficiencies due to the searchlight effect and tunnel vision, linear cause-

effect thinking and the tendency to plausible thinking instead of deductive thinking.

35

Java

Java is considered to be simple because it is modeled after C++, making it easy for
programmers to learn the language. Java is also simple because it removes the complex
features of C++. Some of the removed features of C++ are pointers, structures, free

functions, operator overloading, multiple inheritance, and preprocessor directives. [18]

C++

C++ is a more complicated programming language. Its features are redundant, offering
several ways of accomplishing the same task. For example, most simple #define
statements can be replaced by simply declaring constants, free functions can be avoided
by simply defining class methods, and structures can be eliminated and replaced with

classes.

The following list is just some specific C++ features needed to be concerned. Be watchful
of states that can be altered inadvertently or accidentally:

1. Don't pass references and pointers to local variable.

2. Erect and strengthen barriers. Use wrapper classes. Apply maximum restrictions

to the validity range of variables.

3. Use const declarations whenever possible.

4. Adhere to defensive programming.

5. Avoid full path names following an #include statement.

6. Don't rely on internal representations of data or particularities of a specific
character set.

7. Usewhile(i<n) ... instead of while(i!=n) ... (if appropriate).

8. Set pointers to released memory to 0.

Verdict

Generally, Java is more robust :
1. Object handles initialized to null

2. Handles are always checked and exceptions are thrown for failures

36

3. All array accesses are checked for boundary violations
4. Automatic garbage collection prevents memory leaks
5. Clean, relatively fool-proof exception handling

6. Simple language support for multithreading

7. Byte-code verification of network applets

Gas Station Implementation Result

The Java version is easier to maintain and update than the C++ version. The Java version

is more robust than the C++ version because of the aforementioned reasons.

Conclusion
From the programming aspect, Java provides more robustness capacities.
4.5 Network readiness

This feature represents the various aspects of a language that makes it simple for the

programmer to build applications for the Internet, or any other networked environment.

Java

Java's main dynamic capabilities are Java's applets. They demonstrate the dynamic
capabilities when it used together with Java Servlet and other applications. Java is
interpreted, which means it is largely platform independent, and easily migrates programs
and objects from location to location. Java has left the door open to efficient compilation

in terms of current compiler technology. [17]

C++

Network programming in C++ is much more efficient than Java, but on the other hand, to
consider the aspect of programming through the Internet, Java provides more safety than
C++. On the other hand, C++ provides more flexible network features to make

programming in C++ to be much easier.

37

Verdict

Usually, we choose Java as a suitable language for a browser because of Java's
extensibility. A simple Java browser can be written in a fraction of the time the same
browser written in C++. Java seriously cuts dcwn the amount of coding time on large

applications. This is because of the simple features of Java compared to C++.

Gas Station Implementation Result

This issue is not of great concern for the gas station system because the system is not a
real networked system, it is only a simulation of gas station system. However, Java

solution proves that it is faster way to program on network applications.

Conclusion

Java is more suitable for writing Web based application by using the applet and servlet

packages.

4.6 Multithreading

Concurrency 1s important in our lives. Ironically, though, most programming languages
do not enable programmers to specify concurrent activities. Rather, programming
languages generally provide only a simple set of control structures that enable
programmers to perform one action at a time and then proceed to the next action after the
previous one is finished. The concurrency ability of Java and C++ can significantly

improve the system performance.[14]

Java

Java is a popular general-purpose programming language that makes concurrency
primitives available to the application programmer. Multithreading is a built-in feature of
Java language. The programmer specifies that applications contain threads of execution,

each thread designating a portion of a program that may execute concurrently with other

38

threads. This capability, called multithreading, gives the Java programmer powerful

capabilities.

We can think about many applications of concurrency programming. When programs
download large files such as audio clips from the World Wide Web, we do not want to
wait until an entire clip is downloaded before starting the playback. So we can put
multiple threads to work: one that downloads a clip, and another that plays the clip so that
these activities, or tasks, may proceed concurrently. To avoid choppy playback, we will
coordinate the threads so that the player thread does not begin until there is a sufficient

amount of the clip in member to keep the player thread busy.[14]

Java makes multithreading easy. It does so in two ways. First, Java provides classes that
can execute as separate threads of control. Second, Java makes coordination among

asynchronous threads part of the language itself, thus easing the programmer’s burden.

Java has built-in multithreading support. There’s a Thread class that inherits to create a
new thread (it override the run() method). Mutual exclusion occurs at the level of
objects using the synchronized keyword as a type qualifier for methods. Only one
thread may use a synchronized method of a particular object at any one time. In other
words, when a synchronized method is entered, it first "locks" the object against any
other synchronized method using that object and "unlocks" the object only upon exiting
the method. There are no explicit locks; they happen automatically. You are still
responsible for implementing more sophisticated synchronization between threads by
creating your own "monitor” class. Recursive synchronized methods work correctly.

Time slicing is not guaranteed between equal priority threads.

C++

A good way to prevent our C ++ programs from locking up is to use multithreading,
which simply means you write a program that enables multiple execution streams to

occur simultaneously within the same program. Each stream processes a different

39

transaction or message. For multithreading to be useful, we must run a multithreaded
program in a multitasking or multiprocessing environment, allowing multiple operations
to take place. For example, if you've started a lengthy, single-threaded calculation with
errant parameters, the only way to stop the calculation is to terminate the application
entirely. The program can't respond to our input because it's busy performing some other

operation. To prevent this problem, use multithreading. [3]

In C++, synchronizing provides integrity within a program. Threads share state, address
space, and resources provided by the operating system, allowing multithreading to work
with shared memory and making the CPU more efficient. However, a thread's state might
impact another. Programmers use synchronization to prevent this. Thread
synchronization doesn't mean the threads work together in lockstep like synchronized
swimmers. Rather, the threads agree about data access and modification, so one thread
doesn't corrupt the data that another thread is using. The CPU scheduler doesn't
understand program flow and can't anticipate when one thread might be inopportunely

interrupted. You'll need to specify explicitly such situations to prevent problems.[8]

Verdict

It is better using Java to expect multiple threads. Fortunately, for a Java programmer,
implementing multiple threads means taking advantage of the language and class
libraries. Java itself handles the coordination and scheduling of threads. The Java runtime
environment chooses which thread gets access to the CPU. It does this by scheduling
events based on priorities. All threads are not created equal: the thread with the highest
priority wins. If there’s more than one thread with the highest priority, the Java runtime

alternates between them, or all three of them, or however many there are.
If using C++ threading technique, the programmer has to take care by himself how the

threads will interact with each other, not the thread itself. It is more complicated than in

Java.

40

Gas Station Implementation Result

The gas station need the multithread to set up the multiple connection between the client
side and server side. In Java versions, the server subsystem has class inherit from thread
to be able to connect with 100 clients simultaneously. Java is achieved this by define the
Threadgroup object. In C++, the server uses the List structure to hold the client
connection with the server. Each time the client request to connect with, the socket and
client name will be added to this list. So, the server can be connected with the multiple

clients simultaneously.

Conclusion

Java threading is more easier to use than C++, as multithreading feature in Java language

simplify the usage of synchronizing designing.

4.7 Instant updates over the Internet

Some of the communication domains supported by the socket mechanism provide access
to network protocols. These protocols are implemented as a separate software layer
logically below the socket software. The socket provides many ancillary services, such as
buffer management, message routing, standardized interfaces to the protocols, and

interfaces to the network interface drivers for the use of the various network protocols.

Java

Java’s socket-based communication system, which enables applications to view
networking as if it were file [/O. A program can read from a socket or write to a socket as

simple as reading from a file or writing to a file.
Just like C++, Java provides stream sockets and datagram sockets. With a stream socket a

process establishes a connection to another process. While the connection is in place, data

flows between the processes is in continuous streams. Streams sockets are said to provide

41

a connection-oriented service. The protocol used for transmission is the popular TCP

(Transmission Control Protocol).

Java’s TCP/IP socket support is provided by a set of two classes, java.net.socket
and java.net.serversocket. The difference between the two classes lies in the role
of a client and server application. Client applications open a communication channel with
a server chosen by the user. Server applications maintain communication channels with
multiple clients at once. The java.net.serversocket package facilitates a server

application by spawning socket connections for each contextual client session.

C++

C++ libraries provide amazing facilities for the creation of TCP/IP client/server
applications. A socket is a private communication channel between a client and server.
However, one of the applications needs to initiate the socket connection. The
responsibility of establishing the socket falls on the client, and the responsibility of

accepting and waiting for the client request falls on the server applications.

In C++, the pnimary role of any TCP/IP socket server application is to accept new client
connections and fulfill the requests. However, there are two distinct development tasks
that can be taken in creating such an application. The first is called a blocking server, or a
server that can only process a single request at a time. The second, and more common of
the two, is called a concurrent server, or a server that can fulfill multiple requests

simultaneously. The difference between the two is how the accept () call is handled.[8]

Verdict

The network communication protocol for Java and C++ are basically same. They are both
TCP/IP and UDP. The byte-code for Java applets on web pages are always download

from web servers which is the latest.

42

Gas Station Implementation Result

The gas station in both C++ and Java version use the TCP/IP protocol and socket
technique to set up the connection between client and server. The only difference of
network communication between the C++ and Java is they have some different functions.

In principle, they are same.

Conclusion

The client side in Java can update instantly over the Internet.

4.8 Security

Security is very important for programming to avoid the potential bugs of the system.

Java and C++ has their own concemns for promise the security as following.

Java

Java offers a multilevel security model. The Java Virtual Machine (JVM) architecture
assesses the safety of code before the code is run. Also, the Java class loader, which is
the byte-code loading mechanism of the Java interpreter, builds a wall around potentially
unsafe classes. In this way, Java sets a foundation for high-level security policies that
control what kinds of activities are allowed for each application. This setup of several

layers of protection guards against dangerously flawed code, and viruses.

Java is more secure in the way that it does not include certain potentially unsafe C++
features. One of them is pointers. Java provides references instead of pointers, which
have been called “a safe kind of pointer”. A reference is a strongly typed handle for an

object, and in Java it can point only to the instances of classes.

The security manager controls the access to critical system resources. This allows the
writer of a Web browser to implement a specific security policy by subclassing the

security manager and overriding certain methods, and then installing the new version as

43

the system security manager. Since the subclassed security manager implements the
security policy, it is critical that the Web browser's version of the security manager is
implemented correctly. In the extreme, if a Java enabled Web browser did not install a
system security manager, an applet would have the same access as a local Java

application. [12]

The Java programming language provides a memory allocation model that is deferred
until run time. In C++ the memory layout is declared at compile time. Since Java defers
its memory allocation until run time, the memory can be mapped out according to the
hardware architecture the program is run on. This memory layout is used by compiled
Java code. The symbolic references in the compiled Java code are resolved to physical
memory. Therefore, programmers are unable to use traditional C and C++ pointer
arithmetic all memory allocation and layout is deferred until run time. The memory
allocation model of Java enables applications to be more secure and reliable, and also

reduces the risk of error prone source code.

C++

C++ is a strictly typed language; therefore it is not possible for a C++ application to
safely import new data types at runtime. C++ does static binding in compiling time and
dynamic binding as run time. It is not possible for C++ to safely determine the types and

relations of objects during execution.

Verdict

Security, an important advantage of Java is that it is more secure than C++. Not only that
it does not include the unsafe features of C++, but also includes some more specific
security features. Java is also more type safe than C++. This makes it possible for Java to
safely determine the types and relationships of objects during execution, as well as to use

new kinds of dynamically loaded objects at runtime with a level of type safety.

Java attempts to offer something no other language has introduced yet and that is the idea
of security built into the language and the implementation. Give the language some time
and the general population will be sure to agree that its the best choice for an application

that requires a secure environment. [7]

Gas Station Implementation Result

In Gas Station implementation, the Java Version avoids the use of the pointer and
memory allocation that are not safe. The C++ version has to take care of type binding at

the compile time and running time.

Conclusion

Java makes a lot of effort on software security.

4.9 Dynamic class integration

If the programming language is portable and interpreted, it allows programs to be more
flexible and dynamically extensible. The interpreter runs the source programs directly,
allowing classes to be linked on a need-by-need basis. These classes can reside on a local

machine or elsewhere across the network.

Java

When the class is linked, the Java interpreter resolves the references into numeric offsets.
Therefore, the storage of class objects is not done at compile time, but rather at run time.
This way, when an existing class definition is modified, it will not affect any classes that
refer to it. Java is based on C++, but has been simplified and cleaned up in many ways; it
has been extended in other ways. All program code is in classes and types, such as arrays

and strings. The programmer has less explicit control, such as control over :

1. Parameter passing modes

2. Pointer manipulations are not allowed

45

Single inheritance with a single-rooted hierarchy
Packages are a convenient way to provide some of the capabilities of multiple
inheritance

Parallel programming is via threads

The role of classes in Java:

L.
2.

In Java, everything must be in a class

There are no global functions or data; in Java use static methods or static data
within a class to simulate this

Forward declarations are not needed in Java

Source code is in . java files which compile to .class files

Typically there is a separate source file for every class, but even when several

classes are in the same source file, the compiler produces separate .class files

Some issues about Java classes vs C++ classes:

Primitive types :

l.

g

In Java, only boolean, char, byte, short, int, long, float, and double are primitive;
all other types are classes

Even primitive types have wrapper class representations in Java so they can be
treated like other classes

There is no automatic conversion from int or char into Boolean, and char uses the

16 bit Unicode character set

Strings :

2.

Strings are a separate class, not just an array of characters

Any literal enclosed in double quotes is automatically of type String

Arrays :

1.

2
3
4.
5

As in C++, arrays have a zero index base

There is a read-only length member

Arrays are created on the heap

Subscript bounds are enforced; out of range errors are handles with exceptions

Vectors are similar to arrays, but they can grow dynamically in size as needed

46

Parameter Passing :

1. The programmer has no direct control over parameter passing modes in Java

2. Primitive types are passed by value, unless wrapper classes are used, in which
case types are passed by reference
All non-primitive types are passed by reference

4. If you need a copy of an argument passed by reference, use the clone() operation

There are no default arguments

C++

In C++, when a class is modified by adding methods or instance variables, any classes
that refer to the containing class must be recompiled. This can be a cumbersome problem,

especially for large programs involving numerous classes and subclasses. [2]

C++ can be dynamically binding at the running time by using the inheritance and
polymorphism that provide the flexibility to design the more dynamically extensibility.

This feature is also applicable for Java.

There is no virtual keyword in Java because all non-static methods always use
dynamic binding. In Java, the programmer doesn’t have to decide whether to use
dynamic binding. The reason virtual exists in C++ is so we can leave it off for a slight
increase in efficiency when we are tuning for performance, which often results in

confusion and unpleasant surprises.

Verdict

Because of some more features not present in Java, so we prefer Java is a simplification
of C++ in following aspects:

1. There are no structs, enumerations, or unions

o

There is no scope resolution with ::, Java uses the dot notation

3. There is no goto in Java, use break or continue to a label

47

>

Pointer arithmetic is not allowed

There are no templates in Java

There is no preprocessor or macro definitions

There are no nested classes (but “inner” classes provide similar capability)

There are no inline functions

© © N oW

There is no specification of *“virtual” in Java

Gas Station Implementation Result

The system takes advantage of Java’'s simplicity. The system also take advantage of

C++’s dynamic binding and multiple data structure.

Conclusion

Java’s principle is simpler than C++ without low-level programming constructs that make

for error-prone programs, but C++ gives more flexibility to the programmer.

4.10 Abstraction

Data abstraction and object-oriented programming together represent a style of
programming that offers opportunities for improved software productivity. While other
modern programming techniques like modular programming are similarly motivated,
they often are used in concern with conventional procedural programming. They tend to
emphasize ways to overcome particular problems with widely used programming
practices, and thus offer incremental improvements to the art of computer programming.
Because if its close association with object-oriented programming, we have to think
about data abstraction and how to use data abstraction. The data abstraction similarly
offers substantial benefits when used with conventional programming style. More
important is the value of data abstraction as a necessary foundation, differs greatly from
other programming styles and methodologies in that it requires a different way of

thinking, a different approach to problem solving using computers. [2]

48

Java

Java is completely object oriented. Since Java does not support functional programming,
every procedure must be defined as a class method. Java provides several predefined
class methods that implement data types, network interfaces, GUI (Graphical User
Interface) toolkits, and more. Java provides the interface keyword, which creates the
equivalent of an abstract base class filled with abstract methods and with no data
members. This makes a clear distinction between something designed to be just an
interface and an extension of existing functionality via the extends keyword. It is worth
noting that an abstract keyword produces a similar effect in that you cannot create an
object of that class. An abstract class may contain abstract methods (although it isn’t
required to contain any), but it is also able to contain implementations, so it is restricted
to single inheritance. Together with interfaces, this scheme prevents the need for some

mechanism like virtual base classes in C++.

C++

Programmers have long recognized the value of organizing related data items in program
constructs like C’s struct, and then treating the resulting data structures as unit. Data
abstraction extends this organization to encompass a set of operations that can be
performed on a particular instance of the structure. Usually, the data elements and the
implementation of the operations that can be performed on them are held private or
encapsulated to prevent unwanted alteration. Instead of accessing data elements directly,
user code, often called client programs, must invoke the permissible operations to achieve
results. To do this, clients have access to a client interface or specification by which they

can know how to invoke the operations.

Programming languages that support data abstraction provide a language construct-called
a class in C++ and in some other languages-which we can use to encapsulate the abstract
data type’s data elements and operations. Although they are not precisely the same, we

often use the terms “class” and “abstract data type” interchangeable. [2]

49

In C++, nesting a class is an aid to name hiding and code organization. Java packaging
provides the equivalence of namespaces, so that isn’t an issue. Java 1.1 has inner classes
that look just like nested classes. However, an object of an inner class secretly keeps a
handle to the object of the outer class that was involved in the creation of the inner class
object. This means that the inner class object may access members of the outer class
object without qualification, as if those members belonged directly to the inner class
object. This provides a much more elegant solution to the problem of callbacks, solved

with pointers to members in C-++.

C++ is semi object oriented. Therefore functional programming is allowed in the
language. This makes it easier to convert functional based programs, such as C, to the

C++ language.

Verdict

Traditionally, code and data have been kept apart. For example, in the C language, units
of code are called functions, while units of data are called structures. Functions and
structures are not formally connected in C. A C function can operate on more than one

type of structure, and more than one function can operate on the same structure.

C++ is an object-oriented version of C. However. C++ uses compile-time binding, which
means that the programmer must specify the specific class of an object, or at the very
least, the most general class that an object can belong to. Java is the latest object-oriented

language and it has the same feature as C++ on terms of abstraction as following:

Encapsulation : implements information hiding and modularity (abstraction)
Polymorphism : the same message sent to different objects results in behavior that's
dependent on the nature of the object receiving the message.

Inheritance : you define new classes and behavior based on existing classes to obtain
code re-use and code organization.

Dynamic binding : objects could come from anywhere, possibly across the network. You

need to be able to send messages to objects without having to know their specific type at

50

the time you write your code. The type of variable is going to be decided at the specific
run time. Dynamic binding provides a maximum flexibility while a program is executing.
(18]

Exceptionally, in Java we have abstract class instead of virtual function as in C++. Also,
Java encapsulates the data and function implementation in one class, whereas C++ puts

the data and function declaration in the . h file and implementation in . cpp file.

Gas Station Implementation Result

In the Java implementation, the abstract class and the interface (pure abstract class) is
used as super abstract class. In C++, the base class and virtual function is used to achieve

class abstraction.

Conclusion

Both Java and C++ has the feature of abstraction by using classes.

4.11 Inheritance

In object-oriented languages, we can derive one class from another class. The derived
class (also called the descendant class) inherits the data members and member functions
of its parent and ancestor classes. The attributes and new operators have been appended.
The derived class typically declares new data members and new member functions. In
addition, when the operations of these functions are not suitable for the denived class, the

functions can be override by the derived class.

Java

Java uses a singly-rooted hierarchy, so all objects are ultimately inherited from the root
class object. Inheritance in Java has the same effect as in C++, but the syntax is
different. Java uses the extends keyword to indicate inheritance from a base class and the

super keyword to specify methods to be called in the base class that have the same name

51

as the method you’re in. (However, the super keyword in Java allows us to access
methods only in the parent class, one level up in the hierarchy.). The base-class
constructor is also called using the super keyword. In Java, all classes are ultimately
automatically inherited from the Object class. There’s no explicit constructor initializer
list like in C++, but the compiler forces you to perform all base-class initialization at the
beginning of the constructor body and it won’t let you perform these later in the body.
Member initialization is guaranteed through a combination of automatic initialization and

exceptions for uninitialized object handles. [12]

Inheritance in Java doesn’t change the protection level of the members in the base class.
We cannot specify public, private, or protected inheritance in Java, as we can in C++.
Also, overridden methods in a derived class cannot reduce the access of the method in the
base class. The final keyword provides some latitude for efficiency tuning it tells the
compiler that this method cannot be overridden, and thus that it may be statically bound

(and made inline, thus using the equivalent of a C++ non-virtual call).

C++

In C++, we can start a new inheritance tree anywhere, so we end up with a forest of trees.
C++ can get multiple hierarchy. C++ appears to be the only object-oriented language that
does not impose a singly rooted hierarchy. Base-class scoping in C++ allows us to access

methods that are deeper in the hierarchy. These optimizations are up to the compiler.[20]

Verdict

Multiple-inheritance is a feature in C++, but Java doesn’t provide multiple inheritance, at
least not in the same sense that C++ does. Like protected, multiple inheritance seems like
a good idea but we know we need it only when we are face to face with a certain design
problem. Since Java uses a singly-rooted hierarchy, we’ll probably run into fewer
situations in which multiple inheritance is necessary. The interface keyword takes care

of combining multiple interfaces in Java.

52

The multiple inheritance, in which a derived class may have than one base class. The
syntax for expressing multiple inheritance is simple to help practice modular
programming techniques in C++. Modular programming is not directly related to the
major themes of project. In Data abstraction and object-oriented programming, it is
nonetheless a useful programming technique. Because it provides a way to eliminate
global variable and function names, multiple inheritance thus reduces the chances that
you will have difficulties with duplicate names when we try to use several libraries in a
single program. For example, you can use one class to have features of multiple classes

instead of creating several classes.

Gas Station Implementation Result

The Gas Station System uses class inheritance in Java, and implements the interface to
achieve the multiple inheritance in Java. In C++, we design the pure virtual class to work

as the Java’s interface.

Conclusion

Java doesn’t support the multiple inheritance apparently, any class can only inherit from
one class; however, by implements interface it also support multiple inheritance. C++

support multiple inheritance apparently.

4.12 Polymorphism

Polymorphism is an object-oriented programming feature that allows the instances of
different classes to react in a particular way to a message (or function invocation, in C++

terms). It is ability of different objects to respond to the same message in different ways.

[7]

Java

In Java, polymorphism depends on the run-time dynamic binding as in C++. It captures

similarities of objects, thus simplify maintainability of code. Java reference variables of a

53

class type can be used to hold references of objects of classes derived directly or
indirectly. When the method is called on the reference variable, it is the version of
available in the current object is invoked, not the one available in the type of reference

variable. The polymorphism only happens for methods appearing in base classes.

C++

In C++, polymorphism depends on the inheritance between the base class and derived
class. The base class defines the type of derived class object. When the function is called
on the object, the correct version of the function will be invoked depend on the object
version (base or derived). By defining a virtual function, the derived function has to
implement the virtual function. When the function is called, the different version of
functions will respond accordingly. The principle of virtual function calling is
implemented by a C++ virtual function table. The function pointer can point to the right

function when the related function is called.

Verdict

Java does not have virtual functions. Also, it does not have the virtual function table (a
table structure contains pointers to virtual function) .The polymorphism is performed
more efficiently in Java than C++ because save the time to an indirection to the function

table. Java uses interface classes as the same function of C++ pure virtual class.

Gas Station Implementation Result

The gas station software applied polymorphism in Java implementation, which provides

the extendibility of the system for future update and for easy maintainability too.

Conclusion

Java’s polymorphism is performed more efficiently than C++ from the practical learning

experience. This issue may need more theoretical support later.

54

4.13 Garbage collection

By garbage collection, the system can avoid the memory leaking. Java and C++ use

different way to perform the garbage collection.

Java

Java’s garbage collection means memory leaks are impossible to cause, as Java use
automatically garbage collection. If you make native method calls that allocate storage,
these are typically not tracked by the garbage collector. However, many memory leaks
and resource leaks can be tracked to a badly written £inalize () or to not releasing a
resource leaks at the end of the block where it is allocated. The garbage collector is a
huge improvement over C++, and makes a lot of programming problems simply vanish.
On other hand, it might make Java unsuitable for solving some problems (sometime need
control memory by designer) that cannot tolerate a garbage collector, but the advantage

of a garbage collector seems to greatly outweigh this potential drawback.[18]

C++

C++ has to use destructor to delete the object form the system explicitly. In order to
release the resource of the system, the destructor will be coded explicitly but called
automatically. C++ also use new and delete as method to explicitly allocate and deal-
locate the memory. Both steps is very important to avoid memory leak error. Once the

object goes out the scope of its function, the destructor will be called implicitly.

Verdict

For some cases, Java provides an easy way to release the resource and avoid the memory
leaking. But for some special cases, the software needs to control the destroying the
object intentionally not automatically. C++ destructors makes more sense to achieve this

goal.

55

Gas Station Implementation Result

The gas station software in C++ has to take care of writing the destructor. The Java code
has no destructor at all, the system use the feature that frees the programmer from

explicitly allocating and de-allocating memory.

Conclusion

Java provide automatic garbage collection; C++ use destructor to do the garbage

collection.

S Conclusion

This part is mainly for concluding the differences between Java and C++ based on the

experience got from the project practice and academic research as well.

Language Complexity

Java is smaller than C++. It has fewer facilities. This is not necessarily a bad thing, in a
different context, ‘make smaller to make better’. Most of the features of high-level
programming languages that are not absolutely vital have been left out of Java. The
advantages, generally, of a smaller language are:

1. Easier to learn

2. Easier to understand, test, debug and maintain a program

3. Concentration on essentials.

Arguably, C++, which was derived from C, is large and complex. So Java is perhaps a
welcome return to basics. The bottom line is that C++ has a number of features that are
not present in Java. Examples are: operator overloading, header files, a preprocessor,
pointers, structures, unions, templates and implicit type conversion. Some of these are

arguably useful and others are superfluous.

Object-oriented programming

Both Java and C++ support object-oriented programming. However, Java is object-
oriented from the ground up - it was explicitly designed from the start to be object-
oriented. A full object-oriented language is called an object language. C++ was derived
from C (not an object-oriented language). It is easy to write a non-object-oriented

program in C++, but not possible in Java.

Inheritance

Java supports only single inheritance. This means that a class can only inherit from one
other class. There are major arguments in object-oriented circles about inheritance — what
is useful and what is desirable. Some languages, including C++, support multiple
inheritance, where a class can inherit from more than one other class. The designers of

Java thought that this was complicated and unnecessary.

Compilation and interpretation

Both Java and C++ are compiled, but whereas C++ is usually compiled to machine code,
Java is compiled to a machine-independent low-level code called byte-code. This byte-
code is then interpreted be the Java Virtual Machine running on the particular machine
that is apparently running the Java program. This gives the Java code platform
independence — the same type code can be run on any of a huge variety of machines, with

different operating systems.

Machine independence

Because of Java byte-code, Java programs can be run on any of a variety of machines.
This machine independence goes further, however. In C++, for example, there is
uncertainty about how big a vanable declared as an integer can be. Depending on the
architecture of the target machine, a C++ integer can be 16, 32 or 64 bits long. Thus the
way that a program behaves will be different from one machine to another. Such
ambiguity is removed in Java, because an integer is defined to be 32 bits long and a long
integer is defined to be 64 bits long — whatever the architecture of the machine it is
running on. Java is so machine-independent that porting a Java program to another

machine does not require recompilation.

Robustness and security

58

Java programs run on a virtual machine, rather than a real machine (like C++). This
means that the Java Virtual Machine can carry out a number of checks that a program is
running properly. For example, references to arrays are checked to ensure that the
subscript is within the array bounds. When something goes wrong — the program does not
crash (as with C++), but instead the virtual machine performs an orderly handing of the

situation. Similarly, the Virtual Machine can check for viruses within Java byte-code.

Concurrency

Concurrency is sometimes called multithreading or parallelism. It is the ability to do two
or more things at once. Now, while it is true that a single-processor computer can only
execute one instruction at once, a computer is sufficiently fast to switch between a
number of task that are apparently being carried out simultaneously. This switching is
called multithreading, multitasking or concurrency. Java was designed from the start to
provide concurrency (as part of the libraries). C++ does not support concurrency in such

an integrated way.

Garbage collection

When a C++ program requests memory to use as workspace, it must keep track of it and
return it to the operating system when it ceases to use it. This requires extra programming
and extra care. It is a common source of errors in C++ programs. This task of garbage
collection is carried out automatically in Java — an object that is no longer used is
automatically destroyed and the memory released. On the other hand, the explicit release
of resources (as is carried out in a C++ destructor function) is useful for releasing such

resource as files and windows.

Pointers

C++ has pointers but Java does not. Pointers are a way of referring to the actual memory
address of a variable or a function. Programming with pointers has long been a touch-

stone of the real hard-bitten programmer. But programming with pointers is extremely

59

error-prone and, because of the dangerous nature of machine addresses, can lead to subtle

bugs and sometimes errors that defy removal.

In C++, parameters can be passed to functions either as values or references (pointers). In
Java, any parameter that is a built-in type is passed to methods by value. This creates a
degree of safety, because a method cannot change the value of the parameter back in the
invoking method. If a value is to be returned to the user of a method, it is returned as the

value of the method (function).

Libraries

Like C++, Java programs make extensive use of functions (methods) from libraries. This
tends to make the language itself smaller as many actions are carried out by library

functions rather than the language itself. An example is input-output facilities.

Strings

In C++, strings are represented and manipulated as arrays of characters. Although there
are plenty of library functions to help, it is not always convenient, it is not conceptually
simple and it can be error-prone. In Java, a string is not the same as an array of
characters; it 1s simpler in concept and is more easily manipulated. For example, rather
than terminating a string of character with a special character (as in C++), strings in Java
have their length stored alongside them. Both C++ and Java provide a comprehensive set

of library functions to manipulate strings.

Data structures

Both Java and C++ support one-dimensional arrays. C++ directly supports
multidimensional arrays, but this is done in Java by using the concept that a component
of an array can itself be an array. The effect is therefore very much as if multidimensional
arrays are directly supported. Java does not support pointers that can be manipulated by
the program. At first sight this is disappointing for programmers who like to build linked

lists. But Java does not use pointers — though they are invisible and inaccessible to the

60

programmer. In a real sense, Java provides a higher level view of data structures than
C++, a view in which pointers are at a lower level, invisible and managed by the system.
To implement this in C++ requires the explicit use of pointers. In Java however, the way
that it can be implemented is to regard every item in the lists (an Object) as consisting of
the data item accompanied by another object — the remainder of the list. The Java code
looks like this. A particular example is where the data item in each item of the list is a

single integer.

Exception handing

Exception are unusual situations that arise as a program is running. Some can be
anticipated by the programmer; others are less easily foreseen. Some programming
languages, including C++ and Java, provide language mechanisms, called exception

handlers, for dealing with exceptions.

Templates

One of the more popular object-oriented features of C++ is templates. Templates allow
the programmer to create a set of functions (methods) that act on a type that is not
defined. The type of the data is defined when the class is used. This powerful facility
allows the programmer to write a reusable, general-purpose classes. Java does not support
templates. But all the Java object derived form the object class can be cast to any type.

This provides a functionality similar to C++ templates.

Names and packages

Problem with large C++ programs is that there can be a clash between different classes
with the same name. This can be a particular problem with large software, written by a

number of people and perhaps using library classes from number of sources.

Java helps to solve this problem by providing a package concept. A number of classes

can be grouped into a package. Two classes with the same name but in different packages

61

are regarded as unique. C++ has a facility called namespaces which solves this same

problem.

General Conclusion

Java and C++ have similar features which are applicable to solve the common problems.
However, the difference between Java and C++ has been accepted and applied by the
different domain requirements. Especially, Java is used as a rapid GUI generate tool;
meanwhile, C++ takes main role on developing the low level application for its
compatibility with the C language. Comparing on them give us the clear and meaningful
solutions on selecting language decision. From GAS Station system development, [have

got the practical experiences on how to utilize Java and C++ effectively and efficiently.

62

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[13]

(14]

Dov Bulka and David Mayhew, Efficient C++: Performance Programming
Techniques, Addison-Wesley, 2000, pp. 30-41.

Frank M. Carrano, Paul Helman, and Robert Veroff, Data Abstraction and Problem
Solving in C++: Walls and Mirrors (Second Edition), Addison-Wesley, 1998, pp.
102-121.

Tracey Hughes, Object-Oriented Multithreading Using C++, John Wiley & Sons,
1997, pp. 44-65.

Personalogic URL: http://www.personalogic.com/
Firefly URL: http://www.firefly.com/

Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and
Designs (Second Edition), Addison-Wesley, 1998, pp. 33-54.

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and
Designs, Addison-Wesley, 1996.

Jeff Prosise, Programming Windows with MFC (Second Edition), Microsoft Press,
1999, pp. 76-95.

James T. Smith, C++ Toolkit for Scientists and Engineers (Second Edition),
Springer, 1999, pp. 23-108.

Daniel J. Berg and J. Steven Fritzinger, Advanced Techniques for Java Developers
(Revised Edition), John Wiley and Sons, 1999, pp. 211-154.

Thomas W. Christopher and George K. Thiruvathukal, High Performance Java
Platform Computing, Prentice Hall, 2000.

Li Gong, Inside Java 2 Platform Security: Architecture, API Design, and
Implementation, Addison-Wesley, 1999, pp. 154-234.

Elliotte Rusty Harold, Java Network Programming (Second Edition), O’Reilly &
Associates, 2000.

Bill Lewis and Daniel J. Berg, Multithreaded Programming with Java Technology,
Prentice-Hall, 2000, pp. 35-103.

63

[15]

[16]
[17]

(18]

Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification (Second
Edition), Addison-Wesley, 1999, pp. 233-302.

Scott Oaks, Java Security (Second Edition), 2001.

Robert Orfali and Dan Harkey, Client/Server Programming with Java and CORBA
(Second Edition), John Wiley & Sons, 1998.

Govind K. Seshadr, Enterprise Java Computing: Applications and Architecture,
Cambridge University Press, 1999.

Dick Steflik and Prashant Sridharan, Advanced Java Networking (Second Edition),
Prentice-Hall, 2000, pp. 265-305.

Nigel Warren and Phil Bishop, Java in Practice: Design Styles and Idioms for
Effective Java, Addison-Wesley, 1999, pp. 24-56.

Steve Wilson and Jeff Kesselman, Java Platform Performance: Strategies and

Tactics, Addison-Wesley, 2000, pp. 211-256.

64

Appendix Operation Instructions

Server side

‘3 Administration Bureau

=% Query By Station name

DYy
)

Figure 15: Server user interface of project with Java language

There are 3 functions offered to general user:

e Query transactions by station name,
¢ Query transactions by transaction number,

e And Query personal account.

When mouse moves over certain item, the item will be highlighted. Then, click the
highlighted item will display the related report form. Fig.16 is an example of personal

account report.

X
coun! 8 a €
111111 9821
123456 19753
222222 4712
333333 818
345345 789659
444444 1000
555555 413
666666 80000
777777 7777

Figure 16: Personal account report

Client side

Start

To start a gas station (client application), you have to input the gas station name and the
server name. You can input them on command line, like ‘java ClientProject Gas-
Station-Name Server-Name'. If not, system will display a dialog box (fig. 17) asking you
to input them. Note that the connection with the server will not be established with a

wrong server name. Press ‘Cancel’ will quit the system.

Figure 17: System need a valid server name

66

Monitor
The whole appearance of a gas station is shown as figl5. The panel of monitor (fig.18) is

the heart of the gas station.

Figure 18: Monitor panel of a gas station

The following is the introductions of each part of the monitor:

e Each combination of a PERMIT button, a progress bar and a CHARGE button
manages related pump. The Progress Bar displays the gas level of related pump.

e When a user press ‘Request’ button on a pump panel, the related PERMIT button
will turn to red and flick. That means that someone is asking for filling gas. Press the
PERMIT button will give that pump authority and enable that pump.

e When the gas level of a pump is lower than a limit (5%), the related CHARGE
button will turn to red and flick. If an gas pump is working, it will be stopped
automatically. Press CHARGE button will re-charge that gas pump to level 100%.

e The Progress Bar indicates the current gas level of related pump.

e Press INITIATE button invokes a set-up dialog box (fig.19).

67

Figure 19: Set-up dialog box

In this box, user can change the gas price of each pump, the gas tank volume of each gas
pump, and change the server. Note that if any pump is working, INITIATE button is
disabled. If the set-up dialog box is on, any pump operation is prohibited.

Pump

There are 2 pumps in each gas station, Pump A and Pump B. They work independently.

Their operation procedures are same. Fig.20 is the picture of a gas pump panel.

KL ot T
input your card nun @

2)

3

@ |

)

4%

Figure 20: Gas pump panel

68

Display area (1) : Display various prompt information, such as balance, wrong input, etc.

Gas price area (2) : Display the current gas price. It will be changed automatically after

gas price is updated on monitor panel.

Amount area (3) : Display how many liters of gas a client want to fill.

Keyboard area (4) : Client input by clicking this keyboard with mouse. OK button is like
an enter key. BK button will back and erase the last input number. RN (run) button will
start or resume filling gas. ST (stop) button will stop filling gas. And CR (clear) button
will quit a transaction at any time.

Request area (5) : There is only one button inside this area — REQUEST button.

Whenever a client wants to begin a filling-up session, he or she must press REQUEST
button first. Monitor will receive this request and give a feedback to client. Then the

pump panel will be enabled and the client may start the session.

A Filling-up Session

The filling-up session is mainly for describe the filling process. The following procedure
is a complete filling-up session, suppose that both server and client sides (Administration

station and gas station) are in normal states:

¢ Click REQUEST button on pump A panel, a filling-up session start,

e PERMIT button (related to pump A) on monitor panel turns to red and flicks,

e Click PERMIT button means that the request has been authorized, PERMIT button
then turns back to normal (gray color), and the panel of pump A is enabled,

e Display area displays ‘Input your card number:’,

e Click digit buttons with mouse to input the card number (maximum length is 6), click
BK button to erase the last input digit, click OK to acknowledge,

e [f the card number is not valid or if somebody is using this number, Display area will
show ‘Invalid number, input again’, then back to previous step,

e If the card number is valid, Display area will show the balance of the client and how

many liters of oil he/she can fill according to the oil price,

69

After reading the balance information, click OK button,

Then Display area shows ‘How much do you want?’ to ask client to input the
quantity of oil he/she wants to fill,

Click the digit button to input figure, click BK button to update and click OK button
to acknowledge,

Display area displays ‘Press RN to start filling’, and Amount area display the
amount of oil the client wants to fill,

Click RN button will start filling, Display area display ‘You’ve charged xx liter’
continuously,

Now, if click ST button (stop) the filling-up will be paused and Display area will
display ‘Press RN to start filling’; after click ST button, click RN button will resume
filling-up,

During the filling-up session, if the oil level of pump A is lower than 5%, filling-up
will be stopped and the CHARGE button on monitor panel will turn red and flick,
Display area displays ‘Oil level low, please wait’; click the red CHARGE button will
re-charge the oil tank of pump A, and then, Display area displays ‘Oil level OK,
press RN continue’,

When filled oil reaches to the target of the client, the filling-up will be finished and
display area shows ‘Card number xxxxxx, new balance xxx $’, this information will
displays for 5 seconds,

5 seconds later, the filling-up session is completed, and the pump panel bake to initial

state.

Note: Anytime click finish button (clear) will terminate the transaction immediately.

70

