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Abstract

Fast Parallel Algorithms for Sorting and Median Finding

Taoufik Dachraoui

The problem of sorting has been studied extensively in the literature because of
its many important applications and because of its intrinsic theoretical significance.
Efficient sorting algorithms for parallel machines with some fixed processor intercon-
nection pattern are relevant to alniost any use of parallel machines. There have been
many efforts to find the best algorithm for sorting on different parallel machines:
Blelloch et al. [15] provided a quantitative analysis of the circumstances under which
different algorithms for sorting on the CM-2 were advantageous, and a similar effort
was made by Hightower et al. [40] on Maspar’s MP-1, by Dickmann et al. for a
Parsytec GCel {24], and by Helman et al. on a number of platforms [38].

Many sorting algorithms that perform well on uniformly distributed data suffer
significant performance degradation on non-random data. Unfortunately many real-
world applications require sorting on data that is not uniformly distributed. In this
thesis, we propose a new strategy, A-ranksort, for sorting on parallel machines which
has a stable behavior on input distributions of different entropies. Qur sorting algo-
rithm essentially consists of deterministically computing approximate ranks for the
input keys, and using these to route to destinations that are guaranteed to be close
to the final destination, and finally using a few steps of odd-even transposition sort
to complete the sorting.

We implemented A-ranksort, B-flashsort [40], Radiz sort [20], and Bitonic sort [6)
on a 2048 processor Maspar MP-1. Thearling [73] proposes a test suite of inputs with
which to evaluate the performance of sorting algorithms. We tested all the algorithms

on a very similar test suite. Our experiments show that A-ranksort outperforms all
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the other algorithms on a variety of input distributions, when the output is required
to be evenly distributed over the processors.

Using similar ideas, we also designed a new deterministic selection algorithm for
integers that is simple and fast. Our experiments show that our selection algorithm is
up to 25 times faster than Radiz sort and up to 5.3 times faster than B-flashsort im-
plemented on MasPar MP-1. In contrast, the best known comparison-based selection

algorithm [14] on the TMC CM-5 is less than 3 times faster than Radiz sort.
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Chapter 1

Introduction

The design and analysis of parallel algorithins involve a complex set of inter-related
issues that is difficnlt to model appropriatcly. These issues include computational
concurrency, processor allocation and scheduling, communication, synchronization,
and granularity (granularity is a measure of the amount of computation that can be
performed by the processors between synchronization points). An attempt to capture
most of the related parameters makes the process of designing parallel algorithms a
challenging task.

It is widely recognized that an important ingredient for the success of parallel
processing is the emergence of computational models that can be used for design
and analysis of algorithms and for accurately predicting the performance of these

algorithms on real machines [68].

1.1 Parallel Processing

Parallel and distributed computation is currently an area of intense research activity,
motivated by a variety of factors. There has always been a need for the solution of very
large computational problems. Technological advances have raised the possibility of
massively parallel computation and have made the solution of such problems possible.

Parallel computing systems [1, 77] consist of several processors that are located



within a small distance of each other. Their main purpose is to execute jointly a
computational task and they have been designed with such a purpose in mind; com-
munication between processors is reliable and predictable. Distributed computing
systems [58, 77] are different in a number of ways. Processors may be far apart, and
interprocessor communication is more problematic. Communication delays may be
unpredictable, and the communication links themselves may be unreliable. Further-
more, the topology of a distributed system may undergo changes while the system is
operating, due to failures or repairs of communication links, as well as due to addition
or removal of processors. Distributed computing systems are usually loosely coupled;
there is very little, if any, central coordination and control.

We are interested in computers that use high degree of parallelism to speed the
computation required to solve a single large problem. This leaves out distributed
systews such as a network of personal workstations, because, although the number of
processing units can be quite large, the communication in such systems is currently
too slow to allow close cooperation on one job.

The main purpose of parallel processing is to perform computations faster than
can be done with a single processor by using a number of processors concurrently. The
pursuit of this goal has had a tremendous influence on almost all the activities related
to computing. The need for faster solutions and for solving larger-size problems arises
in a wide variety of applications. These include fluid dynamics, weather prediction,
modeling and simulation of large systems, information processing and extraction,
image processing, artificial intelligence, and automated manufacturing.

Three main factors have contributed to the current strong trend in favor of par-
allel processing. First, the hardware cost has been falling steadily; hence, it is now
possible to build systems with many processors at a reasonable cost. Second, the very
large scale integration (VLSI) circuit technology has advanced to the point where it
is possible to design complex systems requiring millions of transistors on a single

chip. Third, the fastest cycle time of a von Newmann-type processor seems to be



approaching fundamental physical limitations beyond which no improvement is pos-
sible; in addition, as higher performance is squeezed out of a sequential processor, the
associated cost increases dramatically. All these factors have pushed researchers into
exploring parallelism and its potential use in important applications [77].

Parallel computers can be classified according to a variety of architectural features
and modes of operations [28, 32, 34, 37]. In particular, these criteria include the
type and the number of processors, the interconnections among the processors and
the corresponding communication schemes, the overall control and synchronization,
and the input/output operations. For more information on parallel computing see

[1, 42, 55, 77).

1.2 Models of Computation

Computational models that can he used for design and analysis of algorithms and for
accurately predicting the performance of these algorithms on real machines should be
a “bridging model” that links the two layers of hardware and software [76, 77].

A universally accepted model for designing and analysing sequential algorithms
consists of a central unit with a random access memory attached to it. The suc-
cess of this model is primarily due to its simplicity and its ability to capture in
a significant way the performance of sequential algorithms on von Newmann-type
computers [22, 60]. Unfortunately, parallel computation suffers from the lack of a
commonly accepted model due to the additional complexity introduced by the pres-
ence of a set of interconnected processors. In particular, the performance of a parallel
algorithm seems to depend on several factors such as overall resource requirements,
computational concurrency, processor allocation and scheduling, communication, and
synchronization.

There is a variety of models of parallel computation, incorporating different as-
sumptions on the computing power of each individual processor and on the interpro-

cessor information transfer mechanism.



Algorithmic models typically supply a simple abstraction of a computing device
and a set of primitive operations assumed to execute in a fixed unit time. The
assumption that primitives operate in unit time allows researchers to greatly simplify
the analysis of algorithms, but is never strictly valid on real machines: primitives often
execute in time dependent on machine and algorithm parameters. For example, in the
serial random access machine (RAM) model [26], memory references are assumed to
take unit time even though the data must fan-in on real hardware and therefore take
time that increases with memory size. In spite of this inaccuracy in the model, the
unit-time assumption has served as an excellent basis for the analysis of algorithms.

In the parallel random access machine (PRAM) models [30, 31, 33, 53, 66, 71],
memory references are again assumed to take unit time. For parallel algorithms that
access data in an arbitrary fashion, the assumption of unit-time memory references
can be justified. Accessing data through the network is a relatively slow operation
in comparison with arithmetic and other operations. Thus, counting the number of
parallel memory accesses executed by two parallel algorithms does, in fact, yield a
fairly accurate estimate of their relative performance.

However, the running time estimate is not as accurate as in RAM model. The
principal way in which real machines violate the unit-time abstraction of the PRAM
model is that some memory-access patterns are faster than others; Typically. real
parallel machines have a communication network that can support the abstraction of
a global memory. The algorithms designed in the PRAM model have a high degree
of parallelism [42] but perform a great deal of inter-processor communication. This
leaves unresolved the question of how to implement algorithms designed for a PRAM
model on real machines which have limited inter-processor communication bandwidth.

Many other models of parallel computation (e.g. BSP [76], LogP [19], and BDM
[43] models) were developed by researchers to address the limitations of the PRAM
model and gain improved performance measures. All these models are essentially
extensions to the basic PRAM model.

In practice, the user usually has a specific parallel machine of fixed size and wants



to find the best algorithm to use on that particular machine. Usually the size of
the data set is much larger than the number of processors in the machine, and it is
important to consider the scalability of parallel algorithms. A different approach is
to use a parameterized model, that has as parameters costs for various operations.
Implementations of the algorithm can then confirm the predictive capability of the

analytic model.

1.3 Sorting and Selection

Sorting is one of the most common operations performed by a computer and one
of the best-studied problems in computer science. Because sorted data are easier
to manipulate than randomly-ordered data, many algorithms require sorted data.
An early but exhaustive compilation of sorting algorithms and their behavior can
be found in [45]. The reason for the continuing interest in sorting is evident when
we consider the wide variely of applications to this problem, ranging from database
management to computational geometry. Sorting has been studied widely in the
parallel computation setting as well. Apart from the applications mentioned above,
sorting algorithms can be useful in solving routing problems in parallel machines.
Sorting has also frequently been used as a benchmark for evaluating the performance
of supercomputer architectures on non-numeric applications [63].

The problem of sorting a sequence X is the process of rearranging the elements
of X such that they appear in nondecreasing or nonincreasing order. In sequential
sorting algorithms, the input and the sorted sequences are stored in the Processor's
memory. However, in parallel sorting a particularly useful approach is that the input
and the sorted elements are distributed among the processors. A general method
of distribution is to order the processors and use this ordering to specify a global
ordering for the sorted sequence. For instance, if P: (processor i) comes before P;
in the enumeration, no element stored in P; will be greater than any element stored

in P; in the output sequence. We can enumerate the processors in many ways. For



certain paralle]l algorithms and interconnection networks, some enumerations lead to
more efficient parallel formulations than others (Kunde [47, 48] showed that sorting
on mesh-connected networks is slower for some indexing functions).

Sorting algorithms can be categorized as comparison-based and noncomparison-
based. A comparison-based algorithm sorts an unordered sequence of elements by
repeatedly comparing pairs of elements and, if they are out of order, exchanging them.
This fundamental operation of comparison-based sorting is called compare-exchange.
The sequential complexity of comparison-based sorting algorithm is ©(n log n), where
n is the number of elements to be sorted (e.g. Mergesort). Algorithms that are not
comparison-based sort by using certain known properties of the elements (such as
their binary representation or their distribution). The lower bound complexity of
these algorithms is Q(n) (e.g. Radiz sort).

In this thesis, we used MasPar MP-1 parallel machine that is based on a mesh
topology. The mesh is an attractive topology for parallel computers chiefly on ac-
count of its simplicity and inexpensiveness. Clearly, sorting on a two-dimensional P
processor square mesh requires (,/p) communication steps. The first O(,/p) sorting
algorithms on the mesh were due to Thomson and Kung [74] and Schnorr and Shamir
[70]. Since then, there have been several new algorithms for sorting on the mesh
[51, 49, 50, 54], each reducing the multiplicative constant in the leading term. Some
of these algorithms are optimal in the sense that they can be proved to require less
than 2,/p +o(,/p) communication steps. when each processor contains a single input
element. These algorithms have the disadvantage that they are quite complicated
and the lower order term turns out to be quite expensive in practice. Additionally,
we are interested in the more practical situation when N, the size of the data set, is
much larger than p, the number of processors available (N > p). A straightforward
transformation of these algorithms to handle this situation would then multiply the
cost by a factor of [N/p].

There have been many efforts to find the best algorithm for sorting on parallel

machines; Blelloch et al. [15] provided a quantitative analysis of the circumstances



under which different algorithms for sorting on the CM-2 were advantageous, and a
similar effort was made by Hightower et al. [40] on Maspar’s MP-1, by Dickmann et
al. for a Parsytec GCel [24], and by Helman et al. on a number of platforms [38].

Another common problem performed by a computer is that of finding the median
element in a set of data. The more general selection problem can be specified as
follows: Given a set X of N numbers and a number s, where 1 < s < N, find the
element with rank s in X.

One can, of course, select the sth element by sorting the input and indexing the
sth element of the output. With no assumptions about the input distribution, this
method runs in Q(N log N) time. But if we use Radiz sort, a non-comparison sorting
algorithm, and bucket sort is used as the intermediate sorting algorithm, the selection
problem is solved in O(Nk) time, where the input is a set of N integers in the range
0..N% — 1, but the cost of the sorting increases as the size of the integers to be sorted
increascs.

A fast linear expected time algorithm for selection is due to Hoare (36]. An
improved linear expected time algorithm that partitions around an element recursively
selected from a small sample of the elements is due to Floyd and Rivest [29]. Blum
et al. [13] showed that the selection problem can be performed in linear time in
the worst case. No more than 5.4305N are required to select the sth smallest of N
numbers, for any s, 1 < s < N [13].

Previous parallel algorithms for selection ([12, 35, 42, 62, 69]) tend to be network
dependent or assume the PRAM model. Efficiency and portability to current parallel
machines are difficult to achieve. In [14], the authors describe a comparison-based
parallel selection algorithm that is motivated by similar sequential ([20]) and parallel
([42]) algorithms. They used the Block Distributed Memory (BDM) model [43, 44]
as a computation model for developing and analysing their algorithm on distributed
memory machines. The selection algorithm that we describe in this thesis uses the
binary representation of the input elements, while all the other known algorithms for

selection are based on comparing pairs of elements and they must make at least NV —1



comparisons [45].

1.4 Scope of Thesis

In this thesis, we describe a new strategy for sorting. Our method essentially consists
of computing approximate ranks for elements, and using these to route to destina-
tions that are guaranteed to be close to the final destination. The main idea of our
algorithm is to divide the keys into small secgments that are ranked relative to each
other. The actual ranks within the segments will be calculated at the end. The
calculation of these approximate ranks is done deterministically. Our algorithm is
not a comparison-based algorithm; we use the bitwise representation of keys to aid
in finding approximate ranks. When thesc ranks are computed, keys are sent to ap-
proximnate destinations which are guaranteed to be close to the final destinations. No
keys are moved until the approximate ranks of keys are calculated.

Our algorithm was implemented on a 2048-processor Maspar MP-1 machine.
Thearling [73] proposes a test suite of inputs with which to evaluate the perfor-
mance of sorting algorithms. We tested A-ranksort on a very similar test suite: the
results are presented in Chapter 3. We also implemented B-flashsort [40], Bitonic sort
[6], and Radir sort [20]. In [40], B-flashsort was shown to outperform all the other
algorithms for randomly chosen data. Qur algorithm improves slightly on the perfor-
mance of B-flashsort for uniformly distributed data, for the case when the sorting is
required to be balanced, that is, when each processor is required to contain the same
number of keys at the end.

However, few real-world applications involve uniformly distributed data [75], and
algorithms that work well on random data often perform poorly on non-uniform data.
Our experiments show that on many input distributions, the space requirements of
B-flashsort simply exceed system limits. Regardless of the space limits, the running
time of B-flashsort degrades significantly on many input distributions owing to the

high load imbalance. Our algorithm, however, is relatively indifferent to the input



distribution, and is the best choice for a variety of input distributions. Specifically,
when the entropy of the data distribution is small, or when the data is chosen from
a sparse set, our algorithm significantly outperforms B-flashsort as well as the other
algorithms.

The advantages of our algorithm apart from its being the most efficient of known
balanced algorithms are that it is conceptually simple, deterministic, and exhibits
good performance for a wide variety of input distributions. It can be implemented
on any parallel machine; it can work very efficiently in any machine where there is a
cheap primitive for performing parallel prefix operations. Our algorithm can also be
adapted to work for any sorting order., though our implementation is for row-major
order and the performance is likely to degrade for some sorting orders. Our algorithm
is based on an approximate ranking approach. which can be easily adapted to perform
approximate selection. Finally, we are able to give both worst-case and average-case
analysis of the algorithm in terms of the costs of various operations. Therefore, it
should be straightforward to predict its performance on different parallel machines.
In fact, we show that the predicted time is quite close to the empirically observed
time in Section 3.3.

For the problem of selection, we designed a new deterministic algorithm, A-Select,
for integer data that is simple and fast. A-select, as in A-ranksort, relies on the
representation of keys as 4-bit integers. and examines the input keys r bits at a time,
starting with the most significant block of r bits in each key. The algorithm proceeds
in rounds or iterations; each iteration divides the input keys into buckets, and only
the keys in a selected bucket will participate in the next iteration.

An important characteristic of A-Select is that there is no data movement. We
implemented our algorithm on MasPar MP-1. Our experimental results show that
the relative performance of A-Select with Radir sort implemented on MasPar MP-1
is much better than the relative performance of the selection algorithm in [14] with
Radiz sort implemented on TMC CM-5. We predict that our algorithm would have

a better performance than the comparison-based selection algorithm in [14] on the



TMC CM-5.

The thesis is organized as follows. The next chapter describes the computational
models that will be used for the analysis of the algorithms and for accurately predict-
ing the performance of these algorithms on MasPar MP-1. In Chapter 3 we describe
our new sorting algorithm, and provide a performance analysis with experimental re-
sults. Empirical comparisons with previously known sorting algorithms are provided
in Section 3.5. In Chapter 4 we propose a new fast and deterministic selection algo-
rithm that uses the bitwise representation of the keys. We discuss future directions

in Chapter 5.
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Chapter 2

Model of Computation

It is widely recognized that an important ingredient for the success of parallel pro-
cessing is the emergence of computational models that can be used for design and
analysis of algorithis and for accurately predicting the performance of these algo-
rithms on real machines. A major challenge is to move toward architectures that
can efficiently implement a truly general-purpose parallel computation model [68].
The computation model should be a “bridging model” that links the two layers of

hardware and software [76].

2.1 Parallel Computer Architectures

Traditional sequential computers are based on the model introduced by John von
Neumann [60]. This computational model takes a single sequence of instructions and
operates on a single sequence of data. Computers of this type are often referred to
as single instruction stream, single data stream (SISD) computers.

There are many ways in which parallel computers can be constructed. These
computers differ along various dimensions such as control mechanism, address-space
organization, interconnection network, and granularity of processors.

The most widely used classification of parallel computational models is the simple

one proposed by Flynn [27], where essentially two different control mechanisms are
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pro.posed and nowadays widely used for parallel computers. These are single instruc-
tion stream multiple data stream (SIMD), and multiple instruction stream multiple
data stream (MIMD) architectures.

In SIMD architectures, a single control unit dispatches instructions to each pro-
cessing unit, that is, the same instruction is executed synchronously by all processing
units. Processing units can be selectively switched off during an instruction cycle.
SIMD computers use simple and readily scalable hardware to implement data paral-
lelism, which is a simple prograinming model. Examples of SIMD parallel computers
include the llliac IV, MPP, DAP, CM-2, MasPar MP-1, and MasPar MP-2.

MIMD architecture is a more general design capable of performing well over a
broader range of applications, where the processors each have their own control flow
and are inherently asynchronous. However, some new concerns, that do not exist
in SIMD architectures, must be addressed. Some of these serious issues are the
increased complexity of programmability and debugging of MIMD algorithms causcd
in part by the asynchronous nature of the MIMD machine. This inherent asynchrony
means that the set of all possible interleaving of the instructions is very large, and
that the designers of MIMD algorithms must consider all possible total orderings
of the operations and include sufficient coordination commands to ensure that only
proper interleavings can occur. Also, hardware deadlocks can occur with MIMD
architectures but not with SIMD architectures, thus special attention is required to
avoid such problems.

In SIMD computers the processors are kept in lockstep by the broadcast instruc-
tions. Therefore, unlike the MIMD computers, the processors need not communicate
to each other for synchronization purposes. Also, SIMD computers require less hard-
ware than MIMD computers because they have only one global control unit, thus the
processors can be smaller and more numerous. Furthermore, in MIMD computers,
each processor needs to store a copy of the program and the operating system, while

in SIMD computers only the global control unit needs to do so.
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Another important aspect of parallel architecture is the organization of the mem-
ory system. Generally speaking, there are two extreme alternatives known as shared
memory and distributed memory or message-passing architectures, and a variety of
hybrid designs lying in between [37, 77]. In shared memory architecture there is one
large global memory, and all processors have equal access to data and instructions
in this memory. A processor can communicate to another by writing into the global
memory, and then having the second processor read that same location in the memory.
This solves the interprocessor communication problem, but introduces the problem
of simultaneous accessing of different locations of the memory by several processors.
In distributed memory architecture each processor has a local memory that is not
accessible from any other processor.

Also. an important design issue in parallel processor and multicomputer systems
is the type and tepology of the interconnection network. A network is used to connect
processors or computers together or processors to memory. The availability of more
efficient and reliable networks is essential for achieving high performance. Many
network topologies have been proposed in the literature, for example, ring networks,
meshes, shuffle exchanges networks, and hypercubes [55, 67].

The diverse architectures and interconnection networks of the parallel machines
have a pervasive impact on algorithm performance. Each architecture has distinct

properties on which may depend the performance of algorithms.

2.2 Survey of Models of Computation

A universally accepted model for designing and analysing sequential algorithms con-
sists of a central unit with a random access memory (RAM) attached to it. The
success of this model is primarily due to its simplicity and its ability to capture in
a significant way the performance of sequential algorithms on von Newmann-type
computers [22, 60].

Unfortunately, parallel computation suffers from the lack of a commonly accepted
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model due to the additional complexity introduced by the presence of a set of in-
terconnected processors. Although much of human cognition does take place in a
parallel way, it seems that humans conscious thinking is sequential and that makes
designing, understanding and debugging parallel programs difficult. In particular,
the performance of a parallel algorithm seems to depend on several factors such as
overall resource requirements, computational concurrency, processor allocation and
scheduling, communication, and synchronization.

An algorithm designer should identify the architectural features that significantly
affect the performance of a parallel machine, and assign to each feature a quantitative
or qualitative measure (resource metric). These resource metrics abstract the archi-
tectural details of the parallel machine. Typical resource metrics include the number
of processors. communication latencv. bandwidth. block transfer capability, network
topology, memory hierarchy, memory organization. and degree of asynchrony [56].

Historically, the Parallel Randoin Access Machine (PRAM) is the most widely
used parallel model [30]. The PRAM model is the natural parallel analog of the von
Newmann model. In its simplest form the PRAM model consists of P synchronous
processors all operating and communicating via a shared memory. The number of
processors is usually a function of the input of a problem to be solved. The main
difference among PRAM models is in how they deal with the access of many processors
to the same memory cell if it is allowed [42, 77]. A PRAM computation is a sequence
of read, write (to the shared memory) and local computation steps, where the costs
of the memory access and local computation steps are uniform, and there is no extra
cost for synchronization.

Addressing the limitations of the PRAM model has motivated the development
of other models of parallel computation: the BSP model [76], the LogP model [19],
the BDM model [43], and recently the PRAM(m) model [59]. All these models are
extensions to the basic PRAM model. The extensions may be viewed as adding
more resource metrics to the PRAM model in order to gain improved performance

measures.
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Another solution to address the limitations of the idealistic model PRAM was
suggested by Blelloch in [8]: to add other primitives to the PRAM models that can
execute as fast as memory references in practice, and that can reduce the number
of program steps of algorithms, therefore making the algorithms more practical. In
his paper, Blelloch studied the effects of adding two scan primitives as unit-time
primitives to the PRAM models. The study showed that these scan primitives take no
longer to execute than parallel memory references, both in practice and in theory, but
yet can improve the asymptotic running time, and the description of many algorithms.

In this thesis we use a mesh-connected network model to which we add three
primitives, the scan, the reduceAdd and the route operations. However, in our model
the primitive operations are not assumed to take unit-time, instead they are machine-

dependcent and their time is measured empirically.

2.3 Experimental Environment

The first massively parallel machines had SIMD designs. This initial interest in
SIMD resulted both from characteristics of early parallel applications and economic
necessity. Commercial development and sales of SIMD machines for somewhat more
general applications is continuing. We implemented all the algorithms described in

this thesis on the MasPar MP-1 machine with 2048 processor elements.

2.3.1 MasPar MP-1 Characterization

MasPar Computer Corporation has designed and implemented a high performance,
low-cost. massively parallel computing system called the MP-1. The system works in
a SIMD fashion [9].

The MasPar MP-1 parallel processing system is a massively data parallel process-
ing system. It consists of a front end and a data parallel unit (DPU). The front end
supports a workstation that runs the ULTRIX operating system and standard I/0O.

The DPU consists of an array control unit (ACU), an array of processor elements
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(PEs) (up to 16,384 PEs), and PE communications mechanisms. The DPU is where

all parallel processing is done. The ACU is a processor with its own registers and data

and instruction memory. It controls the PE array and performs operations on singular

data (see below). The ACU sends data and instructions to each PE simultaneously.

Each PE is a load/store arithmetic processing element with dedicated registers and

RAM. Each PE receives the same instruction simultaneously from the ACU. PEs that

are active (see below) execute the instruction on variables that reside on the PEs.

The aspects of MasPar MP-1 that are important for our purposes are:

The parallel portion of the machine consists of a fully-programmable controller

and an array of PFs (up to 16,384).

The PE’s are arranged on a 2-D torus, with each processor connected directly
lo its eight ncarest ncighbors. Short distance regular communication is very

eflicient using this network.

A global router network that permits random processor-to-processor communi-

cation using a circuit-switched, hierarchical crossbar communications network.

Two global buses: a common bus on which the ACU broadcasts instructions
and data to all or selected processors, and a logical OR-tree which consolidates

status responses from all the processors back to the ACU.

Each processor has full addressing autonomy within its local memory. However,
an indirect memory access can take approximately 3 times longer than a direct

memory access (same memory cell address at all PE’s).

For a detailed description of MasPar MP-1 see [9, 17, 61]. Approximate timings

for the operations listed above are given in Table 2.

16



2.3.2 Programming Model: MPL Language

One of the most notable advances in computing technology over the past decade has
been in the use of parallelism, or concurrent processing, in high-performance comput-
ing. Of the many types of parallelism, two are most frequently cited as important to

modern programming [1]:

e control parallelism, which allows two or more operations to be performed si-
multaneously. (Two well-known types of control parallelism are pipelining, in
which different processors, or groups of processors, operate simultaneously on
consecutive stages of a program, and functional parallelism in which different
functions are handled simultaneously by different parts of the computer. One
part of the system, for example, may execute an I/0 instruction while another
does computation, or separate addition and multiplication units may operate
concurrently. Functional parallelism frequently is handled in the hardware: pro-

grammers need take no special actions to invoke it.)

o data parallelism, in which more or less the same operation is performed on many

data elements by many processors simultaneously.

While both control and data parallelism can be used to advantage, in practice the
greatest rewards have come from data parallelism. There are two reasons for this.

First. data parallelism offers the highest potential for concurrency. Each type
of parallelism is limited by the number of items that allow concurrent handling: the
number of steps that can be pipelined before dependencies come into play, the number
of different functions to be performed, the number of data items to be handled.
Since in practice the last of these three limits is almost inevitably the highest (being
frequently in the thousands, millions, or more), and since data parallelism exploits
parallelism in proportion to the quantity of data involved, the largest performance
gains can be achieved by this technique.

Second, data parallelism code is easier to write, understand, and debug than con-

trol parallel code. The reasons for this are straightforward. Data parallel languages
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are nearly identical to standard serial programming languages. Each provides some
method for defining parallel data structures. Very little new syntax is added: the
power of parallelism arises simply from extending the meaning of existing program
syntax when applied to parallel data.

The flow of control in a data parallel language is also nearly identical to that of its
serial counterpart. Since this control flow, rather than processor speed, determines
the order of execution, race conditions and deadlock cannot develop. The programmer
does not have to add extra code to ensure synchronization within a program; the com-
pilers and other system software maintain synchronization automatically. Moreover,
the order of events, being essentially identical to that in a serial program, is always
known to the programmer, which eases debugging and program analysis considerably.

All the algorithms in this thesis are implemented using the MPL language. The
MPL [57] is a data-parallel language based on C as defined in the ANSI standard
(ANSI x3.139 - 1988). A description of the added features which provide parallel

processing follows.

® A new keyword, plural, distinguishes between two independent address spaces.
Variables defined using the keyword plural are located identically on each PE
in the PE array. All the other variables are singular variables and are allocated

on the ACU.

o Plural expressions are supported.

e All arithmetic and addressing operations defined in ANSI C are supported for
plural data types. For example, you could write k = i + J, where k, 7, and j are

plural types.
e SIMD control statement semantics are implemented.
o SIMD control flow also controls the active set (see below).

An important concept in SIMD programming is the concept of the active set. The

active set is the set of PEs that is enabled at any given time during execution. This
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set is defined by conditional tests in the program. The size of the active set can be
no larger than the physical size of the PE array.
Plural data operations in an MPL program apply uniformly to all active PEs. For

more explanation of the active set and program control flow, refer to [57].

2.3.3 Input Key Characterization

As will be described later, it is important to correctly characterize the distribution
of the data that is being sorted. It should be noted that there are two possible inter-
pretations of the word “distribution”. The first refers to the probability distribution
of the values of the keys: value distribution (e.g. Are low-valued keys more common
than high-valued keys?). The second interpretation refers to the way in which the
keys are physically placed initially in the memory: allocation distribution (e.g. Are
the keys already in sorted order? Are they in reverse sorted order?).

Thearling [73] proposes a test suite of inputs with which to evaluate the perfor-
mance of sorting algorithms. We chose to test and evaluate the algorithms presented
in this thesis according to a similar test suite.

One technique to characterize the value distribution of data is to measure the
entropy of the data distribution. The Shannon entropy of a distribution [72] is defined
as Xpi| log p;| where p; is the probability of symbol i occurring in the distribution. The
entropy of the key distribution thus specifies the number of unique bits in the key.
There are various techniques for producing keys whose individual bits are between
0 and 1 of entropy. We use the method proposed in [73]. The basic idea is to
combine multiple keys having a uniform distribution into a single key by ANDing
them together.

We define the sparse data distribution to have keys chosen uniformly at random
from among 16 different keys. Following [75], we call the Sparse/random distribution
to be the distribution that has 1% of keys chosen uniformly at random from the set
of all 32-bit keys, and the remaining keys chosen from the sparse distribution defined

above.
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No. of Keys Key Size Value Distribution Allocation Distribution

210 32 bits Random Random
21
25
26
27 32 bits Random Random
28
29
210
2!1
8 bits
210 16 bits Random Random
32 bits
64 bits

Entropy = 0.811
Entropy = 0.544
Entropy = 0.337

210 32 bits Entropy = 0.201 Random
Entropy = 0.0
Sparse 16

Sparse 16/Random

Presorted Block Order
210 32 bits Random Presorted Cyclic Order
Reverse Sorted Block Order
Reverse sorted Cyclic Order

Table 1: Test cases for sorting evaluation on MasPar MP-1

There are several allocation patterns that are common, such as initially presorted
and reverse sorted data. We included in our test suite, as in [73], four different
allocation patterns: presorted block order, reverse block order, presorted cyclic order,
and reverse cyclic order. The block layout requires neighboring elements of the sorted
sequence to be a neighboring element in each processor’s memory except for required
breaks between processors, for any given fixed ordering of processors. The cyclic
layout requires neighboring elements of the sorted sequence to be in the memories of
neighboring processors. Figure 1 shows an example for each allocation pattern we

used in this thesis for testing the sorting algorithms.
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In Section 3.5 we evaluate and compare the performances of the algorithms along
four different dimensions: number of keys, key size, distribution of key values and
initial allocation of data to memory. Table 1 summarizes the test cases. The four
parameters to be varied are listed across the top, and the base case is listed in the
first row.

In addition to overall speed comparison there are many issues involved in evalu-
ating and comparing sorting algorithms (see [73]) including : stability, determinism,
memory efficiency, load balancing of the sorted data and the difficulties in extending
the sort to perform a rank or to sort complex non-integer keys. We will discuss the

above issues in Section 3.5.

2.4 Analysis of Algorithms on MasPar MP-1

This section defines an abstract model of the machine MasPar MP-1 that is used to
describe and analyse all of the algurithms in this thesis. By describing a particular
algorithm in terms of the abstract model, the analysis can be applied to other parallel
machines and approximate run-times can be generated by substituting appropriate
values for certain parameters.

Algorithm designers use a model of computation as a stable abstract machine
without being concerned about developments in architectures. Any programming
language implicitly defines an abstract machine. Thus, the programming MPL lan-
guage defines an abstract model for MasPar MP-1.

We consider five main types of primitive operations provided by the Maspar MP-
1. These are basic local primitive operations (this includes local operations such as
assignments, comparisons, incrementing counters etc.), the znet (X) or sending to
nearest neighbor operation, the scan (S) or parallel prefix operation, the reduceAdd
operation (C), and finally the route (R) operation that enables sending packets to
arbitrary destinations. The reduceAdd operation is a communication primitive that

takes a plural variable A;, 0 < 7 < p, as input and returns the singular value S A,
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Operation Time (in u s) Description of the operations

A 6 Time for an arithmetic operation

X 10 Distance-one nearest neighbor send time
R 1125 Average time to route to random destination
S 454 Time for scan operation

C 312 Time for reduce Add operation

Table 2: Time for different operations on Maspar MP-1

Our performance analysis is in terms of these primitive operations. The costs of the
primitive operations described in Tablc 2 are machine-dependent and are determined
empirically.

We will model the runtime of an algorithm algo, Taigo, on a SIMD parallel com-
puter using the sum of the computation time Tomp,aigo and the communication time
T eomm,aigo-

We predict the communication time of each algorithm bascd on the primitive
operations znet (X), scan (S), and route (R). The time complexity formula of the

communication 1s
Tcomm.algo = f(N, P)X + g(N. p)S + h(N, p)R

where f, g. h are functions that depend on the algorithm, and where N, the number of
elements o be sorted, and p, the number of processors available, are the parameters
of the algorithm.

Our model does not specify how local computation is to be modeled. We chose
to do an asymptotic analysis of the local computation and then we assign a constant

factor ¢; to each term in the time complexity formula of the local computation,
Tcomp,algo = ClAfl(Nyp) + CQAfZ(va) + ...

where the constant factors ¢;,¢ = 1,2,..., were determined empirically, and A is
nominally chosen to be the cost in us of storing a constant into local memory (direct

access) and incrementing a counter (assuming the operation is in a loop), that is in
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MasPar MP-1 A is about 6 us. It is useful to know that, on MasPar MP-1, the

indirect memory accesses cost approximately 3 times more than direct accesses.
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Chapter 3

A New Sorting Algorithm

3.1 Definitions

The input to our problem is a set X of N elements distributed over p processors of a
parallel machine. Each processor i (0 < 7 < p) is assumed initially to contain a unique
subset of | N/p| or [N/p] of these elements in the array Key:[j] (0 < j < N/p).
The ,/p x /P torus-connected array of processors (or two-dimensional torus) con-
tains p processors arranged in a two-dimensional grid with wrap-around edges; each
processor connected directly to its eight nearest neighbors (see Figure 2). More pre-
cisely. it corresponds to the undirected graph. G = (V, E), with V = {(z,y) lz.y €
(vP)} and E = {((z.9).(z.y + 1 mod \/B)) | = € (VB)y € (VB)} U {((z.¥). (z +
I mod \/p.y)) |z € (/P).y € (VP)} U{((2,y),(z+ 1 mod /P,y + 1 mod VD)) |z €
(vP).y € (VP)}U{((z.y).(z+1 mod \/p, \/P+y—1 mod vP)) |z € (/p)y € (VP)}-

where (n) = {0....,n — 1}. Each link is considered to be bidirectional.

Let P; ; be the processor located in row ¢ and column j. The processor By lies in
the upper left corner of the torus. An indexing scheme is a bijection from (vP) x (\/P)
to (p). The most natural indexing is the row-major order under which P; ; has index
1../p + j. The sorting problem on the 2-D torus is: Given a set X of N elements.
stored with [N/p] or [N/p] elements per processor, and an indexing scheme for the

processors, rearrange the elements so that every element in the processor indexed 7 is
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A A

Figure 2: 4x4 torus-connected array of processors. The elements on the processors are
sorted in row-major order. The diagonal wrap-around edges are not shown completely

here.

less than or equal to every element in the processor indexed j whenever 0 < i < j < p.
In addition, we require the elements within any particular processor to be sorted.
Sometimes, there is also a requirement that every processor have either |N/ p| or
[N/p] elements in the final sorted order; such an output is said to be a balanced
output. Figure 2 gives an example of elements sorted in row-major order: note that
the output in this example is balanced.

We use the term “with high probability” to mean with probability greater than
1 — 1/N°¢ for some constant ¢ > 1. In our analysis, we make use of the following

Chernoff bounds on the tails of the binomial distribution [5, 16].

Fact 1 (Bernstein-Chernoff bounds) Let Sy, be a random variable having binomial
distribution with parameters N and p (Sn, is the sum of N independent Bernoulli

variables each with mean p). Then, for any h such that 0 < h < 1.8Np,
P(Snp > Np+ k) < exp (—h?/3Np).

For any h > 0,
P(Snp < Np—h) < exp (—h?/2Np) .
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3.2 Description

In this section, we describe our algorithm for sorting, along with pseudocode for our
implementation on the Maspar. The basic idea of the algorithm is to determine, for
each input element z, the number of elements less than z, with an error less than A ,
where M will be specified later. This information can be used to send the element z
directly into its intermediate position in the output array. A sorting algorithm with

time complexity O(M) can then be used to complete the sorting.

Phase 1: Find an approximate rank for each key, such that the calculated rank is within
M of its actual rank among the keys.

Phase 2: Send the keys to their destination processors based on the approximate ranks.
Phase 3: Sort the keys locally within each processor.

Phase 4: Complete the sorling using odd-even Lransposition sort.

Figure 3: High-level Algorithm Description

A-ranksort consists of four basic phases which are summarized in Figure 3.

3.2.1 Phase 1: Counting Ranks

The heart of the algorithm is in the techniques used to compute approximate ranks.
The objective is to divide the keys into small segments. A segment is said to be
small if it contains less than M elements, where the value of M will be specified
later. Initially all the keys are in the same (large) segment. The algorithm proceeds
in rounds or iterations; each iteration divides the big segments into smaller segments.
To divide a segment into smaller ones, we use a variable called Block associated with
every key. Each possible value of Block defines a bucket. Further, all the keys in the
same large bucket in iteration 7 (that is, the keys with the same Block value) will be
in the same segment in iteration ¢ + 1. The variable Block associated with a key is
initialized to be the most significant r bits of the key (the value of r will be specified

later).
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L. Initialize Block variables and all keys to be unranked.
2. While unranked keys remain do

(a2) Compute local ranks of each value in the Block array.
(b) Perform a parallel prefix operation to find global ranks of keys.

(c) For each small bucket, fix an arbitrary order for the keys in it. These keys
are said to have been ranked, and will not participate any more in the ranking
procedure.

(d) Assign new segment numbers to elements in big buckets, and assign new block
values by adding on the next few bits of the key.

Figure 4: High-level description of COMPUTE-RANKS procedure.

Keys that are in small buckets during iteration i will not participate in iteration
¢+ 1; we assign keys within the same small bucket an arbitrary order, which fixes the
required approximate ranks. Thus, only the keys that are in the large buckets are as
yet unranked and will participate in the next round. These keys arc now assigned a
new Block value. To do this, first the large buckets are all ranked, in such a way that
the keys in bucket j have smaller ranks than the keys in bucket j+1. Clearly, if there
are k large buckets, the bucket number can be represented using s = [log k] bits.
If a key belongs to the large bucket ranked j in the current round, then its segment
number in the next round is j. Then the new Block value of an unranked key is set to
be the new segment number concatenated with the next r — s unprocessed bits of the
key (going from muost significant bits to less significant bits). We repeat this process
over the unranked keys until all the keys are ranked. This process is summarized in
Figure 4.

We now describe our algorithm in greater detail. For clarity, we also present
pseudocode for the procedure Compute-Ranks in Figure 5. Initially, all the keys
belong to the same segment, the Block values are set to be equal to the r most
significant bits of the keys, and all the keys are unranked.

For all Block values, lines 7-11 determine, for the unranked keys, how many times

each value k appears in each processor; this value is stored in Indez;[k], i.e.

28



COMPUTE-RANK(r,b,Key)

1
2
3

(o2 B ¢ I -

0w o~

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

nseg — 1
Offset[0} — s — 0
for j—0toN/p-1
Block;[j} — Key[jl(b—r,...,0—1)
Ranked;[j] — false
repeat
/* compute local ranks #*/
for j—0to2" -1
Indez;[j] — 0
for j—~0toN/p—-1
if Ranked;[j] = false then
increment Indez;{Block;{j]]
/* Find global ranks of elements */
nlargebuckets — Q
for j—0tonseg—1
for k—j2"*to (j+1)27°* -1
count — SUM(Indez;[k])
Indez;[k] —SCAN(Indcz;[k]) + Offsct[5]
if count > M and b > r then
Offset’[nlurgebuckets] — Offset[j]
Bucket;[k] — nlargebuckets
increment nlurgebuckets
SmallBucket;[k] — false
else
SmallBucket;[k] — true
Offset[j] — Offset[j] + count
/* Rank elements in small buckets */
for j—0toN/p—-1
if Ranked;[j] = false and SmallBucket;[Block;[j]] = true then
decrement Inder;[Block;[}]]
Rank;[j] — Indez;[Block;[j]]
Ranked;[j] — true
/* Assign new Block values */
if nlargebuckets > 0 then
s «— [log,(nlargebuckets)]
nseg — nlargebuckets
b—b—-r+s
if b<rthenr—b
for j—0to N/p—1
if Ranked;[j] = false
Block;[j] — Bucket;[Block;[j]]} < (r — s) + Key;[jj(b—r,...,b—s — 1)
SWAP(Offset,Offset’)
until nlargebuckets = 0
return Rank;

Figure 5: Pseudo-code for the procedure Compute-Ranks
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Indez;[k] = |{j|0 < j < N/p A —Ranked;[j] A Block]j] = k}|

Lines 12-24 iterate over each of the nseg.2"~* possible Block values, where nseg is
the number of segments to process. All the keys in segment j have the possible Block
values k = j277°...(j + 1)2"~* — 1, where the s most significant bits of the Block
value k is equal to j. For each value of k, the algorithm uses a Scan operation to
generate the array Inder. This would compute the number of keys with Block value
k that lie before the current processor in the indexing scheme. Clearly, these prefix
operations alone do not calculate the exact ranks of keys. We need to add in the keys
that are smaller than any keys in segment j as well as the keys in the same segment
7 but with smaller Block values. This offset is maintained in the Offset array. Thus.

the final value of I'ndcz[k] is defined as:

Indezilk] = [{(m,n))(0<m <i A 0<n<N/p A —~Rankedn[n] A
Blockm[n]=k) V (0Sm <p A 0<n< N/p A -Ranked,[n] A

Block n[n] < k}|

While iterating through Lines 13-24, if the number of keys with Block value equal
to k is more than M, i.e. count > M, then bucket k is considered to be a large bucket
and will survive as a segment for the next round.

Having computed Indez;[k], the rank of the last key in processor i with Block
value equal to k, lines 25-29 fix an approximate rank to all the keys in small buckets.
The ranks of the keys within a small bucket do not matter, since the keys in are
assigned ranks that are within M of their actual rank.

Lines 31-37 assign a new Block value for all the unranked keys. The Block values
are considered to be bit-strings (a,_; .. .a@o), where ao,...,a,—; € {0,1}. The s most
significant bits represent the new segment number and the (r — ) least significant bits
are the next unprocessed (r — s) bits from the keys, moving from the most significant

to least significant bits.
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The algorithm will eventually rank all the keys, so long as at least one new bit
of the keys is processed in every iteration. The progress condition of the algorithm
is that the number of large buckets found in one iteration is at most 2"~!. It is not
hard to see that this is always true if M > [0 ]|. Thus any value of M > N/27

where ¢ > 1 will suffice to guarantee termination of the loop.

3.2.2 Phase 2: Routing Keys to Approximate Destinations

For each key, based on its approximate rank found in Phase 1, we derive its destination
processor. Then, we send the keys to their respective processors.

If there are 27 processors and 2* keys per processor, the low order k bits specify
the array index. The next j bits then specify the processor index. If the number of
keys per processor is not a power of 2, then an appropriate divide operation suffices
to find the destination.

When a key is sent to its destination processor, there is no need to append the
array index of the destination to the key message packet, as required in radix sort
[15, 75]. This is because the keys are not necessarily ranked within segments. This

observation reduces the time required for routing keys.

3.2.3 Phase 3: Local Sorting

The third phase sorts the keys locally within each processor. We use the standard
serial radix sort in which each pass is implemented using a counting sort [20]. Radix
sort was used in our implementation, since it is significantly faster than comparison

sorts such as quicksort.

3.2.4 Phase 4: Final Sorting

In Phase 4 the algorithm performs at most [M/(N/p)] + 1 steps of odd-even trans-
position sort on the overall Key array in row-major order. Each-step of odd-even

transposition sort consists of a merge/split operation on two sorted lists located in
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two consecutive processors.

3.3 Performance Analysis

In this section, we will prove average-case and worst-case bounds on the performance
of A-ranksort. We will prove bounds on the time required for each phase of the
overall algorithm described in Figure 3. We analyse the algorithm in terms of the

basic operation costs described in Table 2.

3.3.1 Average-case Analysis

Lemma 1 Each iteration in Phase 1 takes time at most c; A2 + cA(N/p) +2°S

time where e, and c, are constants.

Proof: We use Figurc 5 in the analysis of Phase 1. The initializations in lines 1 -
6 take at most O(A(N/p)) time. It is easy to sec that computing local ranks (lines
7-11) takes at most O(2" 4+ (N/p)) local operations. Computing global ranks (lines
8-24) uses an additional O(2") local arithmetic operations and 27 scan operations.
Further computing ranks of elements in small buckets requires at most O(A(N/p))
time. As we will see below, lines 30-33 are not executed in the average-case. This

proves the lemma.

Lemma 2 Phase 2 can be completed in (N/p)R time.
Proof: Obvious. O
Lemma 3 Phase 3 can be completed in

(6/9)(c1A27 + 2 A(N/p))

where q is the size of the radiz used in the local radiz sort.



Proof: The analysis of Radix sort is omitted here. The interested reader is referred

to [20]. a-

Lemma 4 Phase { can be completed in M(c; X + c,A) time, where ¢; and c, are

constants.

Proof: At the end of Phase 3, each element is at most M ranks away from its
real rank. Therefore, M steps of odd-even transposition sort on the entire sequence
suffice to sort the input. (The description of odd-even transposition sort and the
above claim of its behavior are omitted here. Details can be found in [53]).
O
All that is required is to determine the number of iterations taken by the loop in
the procedurc Count-Ranks. A simple ohservation is that if the input elements are
choseu uniformly at random from the set {0,...,2% — 1}, then each combination of
the first r bits appears approximately the same number of times among the input
elements. In other words, the elements can be split into approximately equal sized
buckets on the basis of the first r bits. We formalize the above observation in the

following lemma.

Lemma 5 For randomly chosen input, the loop in thc COMPUTE-RANKS procedure

described in Figure § executes once with high probability.

Proof:  From the description in Section 3.2.1 it is clear that the loop executes as
long as there are buckets that contain more than M keys. We prove now that if the
input is randomly chosen, then in the first iteration, all buckets are small with high
probability. Therefore, all keys will be ranked in the first iteration, and the loop will
exit after the first iteration.

There are 2" possible buckets. If the input is chosen uniformly at random from
the set {0,2° — 1}, then the probability that a key has Block value equal to k& where
0 < k<2 —1is1/2". Therefore, the expected number of keys with Block value k
is N/27. Using Fact 1, and setting M = N/2"~! we obtain:
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N2 pr4l
Prob( # of keys with Block value k > N/2™~1) < e 38— < ¢-N/6

Thus, with very high probability, the size of the bucket with Block value equal to
k is at most M. Since there are 27 buckets, the probability that there is a & such that
there are greater than M keys with Block value equal to k is less than 27e—N/6 < N-©
as long as r is o( NV — clog N).
a
Choosing 2" = p/4 and M = N/2""!, and combining Lemmas 1 to 5, we get the

following:

Theorem 1 Given N elements chosen uniformly at random from the set {0,26 -1},
the algorithm A-ranksort completes sorting the inputs in time (c1(N/p)+pca+bcs) A+
(p/4)S + (R + ¢4 X)(N/p) with high probability, where cy,ca,c3,cs are constants.

3.3.2 Worst-case Analysis

Theorem 2 Given any N elements placed at a p processor mesh, the algorithm A-
ranksort completes in time at most ((b—r)(c;(N/p) + pc2) + bes) A + (b—r)(p/4)S +

(R + ¢csX)(N/p) where ¢, cz, c3,¢4,¢s are constants.

Proof:  Follows from the fact that there are at most b — r iterations in the worst

case, and from Lemmas 1 to 4. O

3.3.3 Analysis for Other Input Distributions

Lemma 5 shows that when the input is uniformly distributed, all buckets are small
with high probability. When we consider other input distributions, this may not be
the case. For example, for a sparse distribution of the type defined in Section 2.3.3, as
many as 16 buckets could be large at the end of any iteration. However, in this case,
in each iteration at least r — 4 new bits would be processed and thus a maximum

of (b—r)/(r —4) +1 = (b— 4)/(r — 4) iterations would suffice to complete the
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ranking procedure; it would be interesting to find the expected number of iterations
in COMPUTE-RANKS procedure instead.

It would be useful to prove performance bounds for the algorithm for fixed values
of M and r under an input distribution with entropy H, where 0 < H < b. While
we were unable to prove such bounds, empirical observations show that regardless of
the entropy of the distribution, the number of iterations is usually relatively small. It
would be interesting to prove that the number of iterations in COMPUTE-RANKS
procedure is bounded by a small constant with high probability.

It is important to notice that whenever the entropy is high (close to 4), the number
of keys in the largest bucket is closer to M = N/27~!, thus it takes only few more new
bits to process in order to divide this large bucket into small buckets. And whenever
the entropy is low (close to 0) the number of large buckets is low, thus the number
of new bits to process in the next iteration is closer to r; in this case the number of

iterations is bounded by b/r.

3.3.4 Space Requirements

We briefly describe here the space requirements of our algorithm. In Phase 1, an
bit array of size N/P is required to store the Block variables, and an array of size 2"
is required to calculate ranks. Space can be reused for all other variables. In Phase
2, keys will be stored at both origins and destinations of routes, thus doubling the
space required for the keys alone. In Phase 3, similarly, we need additional space for
storing the sorted keys. We also require a 27 size array to do the local radix sort.
Phase 4 can be done with an extra key-size array by a clever implementation of the
merge-split operation. Therefore the total space requirements of the algorithm can

be summarized as follows:

Type of variable Array size (per processor)
Key type N/p
log N bits 2 + 29
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3.4 Empirical Results

All our results and graphs are for 32-bit keys on uniformly distributed data, unless
specified otherwise. Figure 6 shows the performance of our algorithm on different
values of N/p. By examining our program A-ranksort, and using experimental results,
we derived the constants referred to in the analysis in Section 3.3. The costs of
primitive operations are shown in Table 2.

We can predict the performance of the algorithm using the following formula:
Ta-rantsort = Teomputerants + Troute + Tocatsort + Toddeven
where
Teomputeranks = A2" +22.5A(N/p) +2°S
Trowte = (N/p)R
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Figure 7: Predicted versus measured times for A-ranksort

Liocatsort = (b/(l)(2-7/‘2q + 13-3/‘(1\{/p))
Tnd,{even = 17Al‘[ + 0.751"[X

Figure 7 shows the closeness of the measured timcs to the time predicted by our
formula.

The choice of r and M clearly affects the performance of the algorithm, as does the
input distribution. In particular, as the value of r increases, the time taken by Phase
1 increases, but smaller values of r imply larger values of M which in turn, increases
the cost of the final sorting. Figure 8 shows the effect of varying r on the performance
of the algorithm. We note here that to get an improved version of A-ranksort, we
could calculate the best values of r for different values of N/p and choose the best r
for the given input. For example, the graph suggests that for N /p < 128, the value
of r that would minimize the running time would be 7 and similarly for N/p > 128,
the value r = 9 could be the best choice of .

Thearling [73] proposes a number of benchmarks to study the performance of
sorting algorithms on different types of input distributions, key sizes, numbers of
keys, and different allocation distributions. Figure 9 shows the performance of our

algorithm on input distributions with varying entropies. Our algorithm performs
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consistently well on all these distributions. Figure 10 demonstrates the performance
of our algorithm for diflerent key sizes: the algorithm appears to scale well for higher
key sizes.

We tested our algorithm on different kinds of presorted inputs. It can be seen
from Figure 11 that it performs well on block sorted, and reverse sorted orders, but
its performance on the routing step degrades considerably on cyclic orders. This is
easily understood by noting that on an input in cyclic sorted order, each routing step
would require routing an element from every processor to the same processor thus
causing congestion and delays. This can be avoided by randomly permuting the input

before or after computing the ranks and then performing the routing step.

3.5 Comparison with Existing Sorting Algorithms

There have been many efforts to find the best algorithm for sorting on parallel ma-
chines; Blelloch et al. [15] provided a quantitative analysis of the circumstances under
which different algorithms for sorting on the CM-2 were advantageous, and a similar

effort was made by Hightower et al. [40] on Maspar’s MP-1, by Dickmann et al. for
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a Parsytec GCel [24], and by Ilelman et al. on a number of platforms [38]. In order
lo evaluate the relative performance of our algorilthin, we selected the three most
promising alternatives for comparison on MasPar MP-1: bitonic sort [63, 6, 23], radix
sort [15, 23, 45], and B-flashsort [40].

Figure 12 shows the relative performance for a uniformly distributed data of our
algorithm with Radir sort, B-flashsort, Bitonic sort and B-flashsort with load bal-
ancing. The performance of A-ranksort is slightly better than the performance of
B-flashsort when load balancing is required by the application, but it is quite a bit
worse than B-flashsort when load balancing is not required.

Figure 13 compares the performance of the B-flashsort (without load balancing),
Radiz-sort, and A-ranksort for a variety of data distributions. We can see that for cer-
tain data distributions, specifically, for the sparse ones, B-flashsort fails to sort, owing
to space limitations. Even on distributions with smaller entropies, its performance
degrades considerably owing to load imbalance. The performance of A-ranksort is
also seen to be the best among all the algorithms for all data distributions, thus
making A-ranksort the algorithm of choice for many practical applications when the

distribution of data is not uniformly random.
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We have explained above that our algorithm does not perform well on all initial
input orders. It should be noted that there are initial orders for which Radir sort has
very bad performance as well [23], though it performs well on all the distributions in
our test suite. Similarly B-flashsort appears to be indifferent to the initial order of
the input.

As shown in Figures 14, 15, 16, 17, all sorting algorithms are dependent on the size
of their key since the cost of local computation (e.g counting, comparison, memory
access) increases, and the total amount of data (in bits) that must be permuted
increases. In case of radix sort, the key size also affects the number of permutations
that must be performed and the size of the histogram used in counting.

Figure 18 shows the running times of sorting 1024 keys per processor for different
key sizes. For 16-bit keys, B-flashsort is approximately 2 times faster than A-ranksort,
for 32-bit keys it is 1.6 times faster, and for 64-bit keys it is only 1.2 times faster.
As the size of the keys increases the performance of A-ranksort degrades more slowly

than the other algorithms, this is indicated by the graphs.
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In addition to overall speed comparison there are many issues involved in eval-
uating and comparing sorting algorithms, including : stability, determinism, load
balancing of the sorted data, memory efficiency, and the difficulties in extending the

sort to perform a rank or to sort complex non-integer keys (see (73])-

3.5.1 Stability

A sorting algorithm is stable if numbers with the same value appear in the output
array in the same order as they do in the input array. The property of stability
is important only when the elements to be sorted consists of a key and a satellite
data that is carried around with the key being sorted. Radiz sort is stable, while
the other three sorts are not. A-ranksort can be made stable by appending the array
index of the destination to the key message packet, as required in Radir sort (see
Section 3.2.2); this will slow down the routing phase by a factor of 1.2. Bitonic sort
and B-flashsort can be made stable by appending the original position of the data to
the least significant bits of the key. In this case, however, not only must the tag be

carried around during the route operations, it must also be used in the comparisons.

3.5.2 Determinism

An algorithm is said to be deterministic if its behavior (including running time)
on the same input data is always identical. Bitonic sort is oblivious to the data
or its initial allocation in memory and will always take the same amount of time.
However, the other three algorithms are dependent on the communication network
to perform random or irregular permutations. Their running time could vary if the
communication network is non-deterministic or if the initial allocation of the data
to .memory is changed causing different routing patterns which may or may not be
more efficient for the given architecture. In addition, the performance of B-flashsort
depends heavily on the random sampling of the splitting values. In case of poor

sampling the performance of B-flashsort degrades heavily owing to load imbalance.
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3.5.3 Data Balance

The distribution of N elements over p processors is said to be balanced, if each
processor holds V/p elements. B-flashsort does result in unbalanced data allocations;
the processors have different number of keys at the end of sorting. This imbalance
increases due to poor sampling. Furthermore, this imbalance depends on the value
distribution of the keys; for example, the imbalance increases with decreasing entropy.
The cost of the local sort in B-flashsort increases proportionally to the imbalance.
We can sec in Figure 13 that for certain data distributions, specifically, for the sparse
ones, B-flashsort fails to sort, owing to space limitations. A-ranksort, Radiz sort, and
Bitonic sort do not result in unbalanced data allocation. Although some applications
of sorting do not require that the processors loads be exactly balanced, many do.
Load balancing can be performed by first scanning to determine the destination of
cach sorted key and then routing the keys to their final destinations. The dominant
cost in load balancing is the extra route operation. We implemented a version of
B-flashsort with load balancing, the additional cost was up to 70 percent, and the

algorithm is outperformed by A-ranksort, as shown in Figure 12.

3.5.4 Memory Efficiency

An important concern is the space required by each sorting algorithm. Bitonic sort
executes in place and therefore requires only a small constant amount of additional
memory. A-ranksort and Radiz sort require an additional N/p key type variables
per processor that are needed to store the keys after the route (the route cannot
be executed in place). Also, 2" 32-bit words of space per processor are needed for
holding the bucket sums. A-ranksort requires an additional 2 32-bit words used
for local radiz sort, and N/p r-bit words for holding the block values. The space
requirement of B-flashsort depends heavily on the data distribution and the choice
of the splitters. For uniformly distributed data, the total space used is up to 2/N/p

key type variables per processor with high probability. Experiments show that for
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certain data distributions, specifically, for the sparse ones, B-flashsort fails to sort,
owing to space limitations. Even on distributions with smaller entropies, the space
requirement increases considerably owing to load imbalance (see the analysis of the
expected space used by B-flashsort for uniformly distributed data in [40], it is perhaps

interesting to do the same for other data distributions).

3.5.5 Rank

For a vector of keys, the rank operation returns to each key the rank it would attain
if the vector were sorted. Often, in practice, ranking the keys is more useful than
sorting. In many applications there is a large block of auxiliary information associated
with each key. The rank operation allows the user to rank the keys and than send the
data to the final sorted position. To implement a rank operation in tcrms of a sort,
we carry around a return address (the key’s original position) of each key during the
sort. Once sorted, the enumeration of their positions is sent back. as their rank, to the
location specificd by the return address. By implementing the rank operation using
Radiz sort, we can avoid the additional route operation by omitting the last route
operation, and sending the rank directly back to the position specified by the return
address. Furthermore, as each block of the key is used by Radir sort, that block can
be thrown away, thereby decreasing the cost of subsequent route operations. Because
of this, the running time of the rank operation based on Radir sort is probabbly
marginally more expensive than that of Radiz sort. Implementing the rank operation
using A-ranksort, B -flashsort and Bitonic sort slows down the algorithm by carrying

the return address around and by using an additional route operation.

3.5.6 Complex Keys

There are many database sorting applications where the keys are made up of com-

plex combinations of smaller fields. With comparison-based sorting such as Bitonic
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sort and B-flashsort, sorting such complex keys is relatively easy by defining a com-
parison function. For counting based algorithms such as A-ranksort and Radiz sort,
it might be difficult to convert the complex keys to integers and the resulting keys
may be rather long. For random distributions, while the performance of Radir sort
will degrade proportionally to the key size, A-ranksort will perform well with high

probability as shown in Section 3.3.
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Chapter 4

A New Selection Algorithm

The comparison-based model may not always be the most natural one for the study
of sorting and selection algorithms, since real machines allow many other opcrations
besides comparison. Many algorithms (e.g. Radir sorl) werc designed for sorting
integers using other operations besides comparison (e.g. indirect address, left shift,
right shift {2, 3, 52]). Integer sorting is in fact one of the sorting problems most
frequently encountered. We believe that integer selection is an interesting problem as
well.

This chapter presents a fast and deterministic algorithm. A-Select, for finding the
element of rank s given a set of N integers distributed across a parallel machine.
for a given integer s. Note that the median finding algorithm is a special case of
the selection problem where s is equal to [N /2]. The selection algorithm that we
describe in this chapter uses the binary representation of the input elements, while
all the other known algorithms for selection are based on comparing pairs of elements

and they must make at least N — 1 comparisons [45].
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4.1 Description and Performance Analysis

In this section, we describe the algorithm A-select, along with pseudocode for our
implementation on the MasPar. Qur algorithm, as in A-ranksort, relies on the rep-
resentation of keys as b-bit integers, and examines the input keys r bits at a time,
starting with the most significant block of r bits in each key. The algorithm proceeds
in rounds or iterations; each iteration divides the input keys into buckets; each pos-
sible value of the r bits defines a bucket. It is obvious that the keys in bucket z are
less than the keys in bucket j, for all i < j.

Only the keys that are in the bucket k; during iteration i, such that 2"' o B; < s;
and 21_0 B; > s;, will participate in the next iteration; where B; is the number of
keys in bucket j. In iteration 7 + 1 we use the next r bits of each key and select the
key of rank s;;; = s;—z'?"_'l Bj, where s, = s. After b/r iterations the keys in bucket
ks/r are all equal and the result of the algoritlun is one of those keys, i.e Zb/’ k200,

We now present the pseudocode for A-select in Figure 19 and describe it in greater
detail. The algorithm selects the sth element from the vectors Key;[0..n; — 1], for
0 <7 < p. For all block values (Key,[j](b—r,...,6—1),for0 < j < n; and 0 <i<p),
lines 4-9 determine for each value k and in each processor how many keys appear in
buckets 0... k; this value is stored in Histo[k].

Lines 10-17 select the bucket k, using the binary search technique, such that
Yo Histofk —1) < s < Y-P=s Histo;[k]. 1t is clear that the key with rank s belong
to the bucket k, thus only the keys with block value & will participate in the next
iteration, from which we select the key with rank s — P20 Histo[k — 1. We use
the vector count stored in the ACU, instead of a singular variable, in order to avoid
the use of an extra reduceAdd operation in line 26. It should be noticed that for any
selected bucket k, it is always true that the entity count(k — 1] at line 26 is already
computed at line 14, while searching for bucket k, and is equal to 3722 Histo; [k —1].

It is not difficult to see that the binary representation of the value res of the sth

element of the input keys is equal to (k; k... k,;/,), where k; is equal to the value
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A-select( Key;,n;,s,b,r)
1 res—0
2 while b >0
3 do
4 if b<rthenr b
/* local histogramming */
for j =0to 2" — 1 do Histo;[j] =0
forj=0ton; —1
do increment Histo;[Key;[j](b—r,...,b6 — 1)]
forj=1to2" -1
do Histo;[j] = Histo;[j] + Histo;[j — 1]
/* select bucket k where the sth key belong, using binary search * /
10 h~—27-1
11 k—h-1
12 whileh >1
13 do h — h/2

W 0o ~N o0

14 count[k] — reduce Add( Histo;[k])
15 if counilk} < sthen k — k +h
16 elsek—k—h

17 if reduceAdd(Histo;[k]) < s then increment k
18 res—res+kg(b—r)
19  if b > r then
/* only keys in bucket k will participate in the next iteration * /
20 m; — 0

21 for j=0ton; -1
22 do if Rey;[j](b—r,...,b~ 1) = k then
23 SWAP(RKeyi[m], Key[j])
24 increment m;
25 n; =m;
/* select the key in bucket k with rank s = s — ;-‘;(} B; */
26 if k > 0 then s — s — count[k — 1]
27 be—b-r
28 od

29 return res

Figure 19: Pseudo-code for A-select
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of the selected bucket in iteration j and LJ is the binary representation of k;; i.e
(kiky ... kyy,) = % k:25-¥. Lines 20-25 determine the keys that will participate in
the next iteration.

It is clear from the pseudocode that the worst-case time complexity of the local
computation is Teomp,4-Setect = b/T(c; AN/p+ c2A27), where ¢; and ¢, are determined
empirically and they are machine dependent. To analyze the complexity of the com-
munication time we observe that the while loop of lines 12-16 runs r — 1 times, and
an extra reduceAdd operation is used in line 17. Since the algorithm runs in b/r iter-

ations, the total number of reduceAdd operations is b. It follows that the worst-case

time complexity of A-select is

TA—Sclccl = Tcomp.A-Select +Tcomm..4—$elcct

= b/r(ciAN/p+ c;A27) + 6C

The space requirement of A-select is a constant number of singular variables, the
array of integers count of size 2" stored in the ACU, and an array of integers Histo;

of size 2" in each processor.

4.2 Empirical Results

The choice of r clearly affects the performance of the local computation of the algo-
rithm. In particular, as the value of r increases, the time taken by line 5 and lines 8-9
increases, and the number of iterations decreases. Also, the input distribution affects
the load balance of the processors; the running time of lines 6-7 and lines 21-24 de-
pends on how many keys in each processor will participate in the actual iteration. For
uniformly distributed data the processors are load balanced in all iterations with high
probability. As shown in the previous section, the number of reduceAdd operations is
equal to b and do not depend on r nor on the input data distribution.

All our tests are done for r = 8. We note here that to get an improved version of
A-select, we could calculate the best value of r using the worst-case time complexity

formulas given in the previous section.
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Figure 20: Performance of A-select on uniformly distributed data

Figure 20 shows the performance of A-select on uniformly distributed data and
on different values of N/p. Figure 21 shows the perlormance of A-select on input
distributions with varying entropies and N/p = 1024. We should notice here that the
cost of the communications needed by A-select is very low (less than 4% of the total
cost).

Figure 22 shows the relative performance for a uniformly distributed data of A-
select with A-ranksort, Radir sort, and B-flashsort. The performance of our selection
algorithm is much better (up to 25 times faster) than the performance of Radir
sort, and up to 5.3 times faster than B-flashsort. It is reasonable to predict that
A-select will perform very well on an MIMD computer knowing that only b reduceAdd
operations are needed to select an element from the input keys.

Comparing the relative performance of A-select with radiz sort implemented on
MasPar MP-1 and the relative performance of the selection algorithm in [14] with
Radiz sort implemented on TMC CM-5, and by noticing that our selection algorithm
needs only b reduceAdd operations to select an element from the input keys (compared
to O(2") scan operations needed by Radiz sort), we can safely predict that A-select

would have a better performance than the comparison-based selection algorithm in
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[14] on the TMC CM-5.



Chapter 5

Conclusions and Future Work

We have described a new parallel sorting algorithm, A-ranksort, which essentially
consists of deterministically computing approximate ranks for the input keys, and
using these to route to destinations that are guaranteed to be close to the final
destination, and finally using a few steps of odd-even transposition sort to complete
the sorting. Our algorithm is not a comparison-based algorithm; we use the bitwise
representation of keys to aid in finding approximate ranks.

The advantages of our parallel sorting algorithm apart from its being the most
cfficient of known balanced algorithms are that it is conceptually simple, determinis-
tic, and exhibits good performance for a wide variety of input distributions. It can
be implemented on any parallel machine; it can work very efficiently in any machine
where there is a cheap primitive for performing parallel prefix operations. A-ranksort
can also be adapted to work for any sorting order, though our implementation is for
row-major order and the performance is likely to degrade for some sorting orders.
Our algorithm is based on an approximate ranking approach, which can be easily
adapted to perform approximate selection.

The empirical results show that A-ranksort performance on data chosen uniformly
at random improves slightly on the performance of B-flashsort, the best previously

known algorithm, when the final output is required to be balanced. However, on
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input distributions of smaller entropies or sparse distributions, the performance of A-
ranksort remains relatively stable, whereas the performance of B-flashsort degrades
very badly. A-ranksort is the best choice for a variety of input distributions. Specifi-
cally, when the entropy of the data distribution is small, or when the data is chosen
from a sparse set, our algorithm significantly outperforms B-flashsort as well as other
known algorithms. Proving exact performance bounds for our sorting algorithm on
different input distributions would be an interesting avenue for future research.

Our analysis suggests that the performance of our algorithm would improve on a
machine like the CM-2 since it has a very fast scan operation, and the term in the
running time to do with scans would be reduced for A-ranksort and Radiz sort, while
the other algorithms considered here will not get a corresponding performance benefit
from this. Also, a machine with fewer but more powerful processors might allow a
choice of r smaller than the one chosen here, and thus reduce the time for scans as
well as for the final sorting phase. Verifying these ideas is beyond the scopc of this
thesis, but would be an interesting avenue of further research.

Our techniques for computing approximate ranks can also be used for other rank-
ing problems, such as selection. In Chapter 4, we described a selection algorithm,
A-select, that is based on the binary representation of the input keys. Our integer
selection algorithm is simple and fast. For N b-bit keys and p processors, the local
computation time complexity is O(N/p) and it uses only b reduceAdd operations to
find the sth element of the input data. An important characteristic of A-Select is
that there is no data movement. We implemented our algorithm on MasPar MP-1.
Our experimental results show that the relative performance of A-Select with Radiz
sort implemented on MasPar MP-1 is much better than the relative performance
of the selection algorithm in [14] with Radir sort implemented on TMC CM-5. By
noticing that our selection algorithm needs only b reduceAdd operations to select an
element from the input keys (compared to O(27) scan operations needed by Radir
sort), we can safely predict that our algorithm would have a better performance than

the comparison-based selection algorithm in [14] on the TMC CM-5.
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It would be interesting to design an algorithm for a more general selection problem,
where we find a set of keys in the input set of data (e.g find the keys with ranks
51,82, .., 5;). Future work may include developing and implementing algorithms for
such problems based on our techniques for computing approximate ranks used in

A-ranksort or based on a generalization of our selection algorithm.
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