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ABSTRACT

Feynman Rules and Static Quantities of the Charged Vector Bosons in a Left-Right
Supersymmetric Extension of the Standard Model

Pantelis Pnevmonidis

The Standard Model is reviewed and its extension is proposed to incorporate left-right
symmetry as well as supersymmetry. Model principles are developed to build a gauge
theory with supersymmetry and the minimal supersymmetric extension of the Standard
Model (MSSM) is briefly discussed. The left-right supersymmetric extension of the
Standard Model is introduced and the symmetry-breaking pattern is described. The
physical vector bosons, the charginos and neutralinos, and the Higgs particles are
identified. The Lagrangian terms for the interactions of the vector bosons A, Zi, Zg, Wi,
Wr amongst themselves as well as all corresponding Feynman rules are written down.
The interaction Lagrangian terms with three fields are obtained at least one of which is
the Photon A or a neutral vector boson Z; or Zz or a charged vector boson Wi or Wg.
Feynamn rules are written down for interactions with three fields at least one of which is
the Photon A, or a charged vector boson Wi or Wg. The Feynman rules are used in order
to calculate the anomalous magnetic moments and quadrupole moments of the charged
vector bosons Wi or Wi of the left-right supersymmetric extension of the Standard

Model.
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INTRODUCTION

While much has been said about the success of the Standard Model in the description of
the elementary particles that our world is made of and of the interactions between them,
the predominant wisdom in the field is that the Standard Model is not yet the theory of
everything. This is not surprising in principle, as the fundamental underlying principle of
renormalizability already implies that the Standard Model is only meant to be applicable
within a certain energy range. We learn from the Standard Model that at energies below
approximately 300 GeV matter particles interact via the electro-weak interactions, which
are unified, and via the strong interaction, which stands in a separate position. But the
Standard Model teaches us little about what happens at energies higher than 300 GeV and
the gravitational force is ignored entirely. The principal goal in particle physics is to
formulate, if possible, a theory that unifies all fundamental forces of nature under a single
framework. From this point of view, the Standard Model is unsatisfactory, even if it has
been able to stand the test of time in the accessible energy regime.

There are a wide variety of models attempting to go beyond the Standard Model. Some of
them already began in the mid-seventies when the Standard Model was relatively young
and substantial parts of its experimental verification were yet to come. In 1974-75 Pati,
Salam, and Mohapatra introduced the concept of lefi-right symmetry amongst matter
fermions and gauge bosons that mediate the forces between them. The goal was
originally to provide a mechanism for parity violation as well as a natural framework in

which neutrinos could be allowed to be massive.



At approximately the same time Georgi and Glashow proposed the grand unification
model SU(S) where all fundamental forces of the Standard Model are united at high
energies as one force with a single coupling constant. Moving towards lower energies,
the known Standard Model regime is created due to a mechanism that breaks the original
SU(5) symmetry. Minimal SU(5) appears to be ruled out today because of its
contradiction with the estimated proton lifetime. However the idea of grand unification is
still appealing and it might be realized in the context of some extension of the Standard
Model.

In 1973 Wess and Zumino introduced a new fundamental concept that is known as
supersymmetry. Supersymmetry transforms fermions and bosons into one another and, in
so doing, inevitably predicts new particles, because bosons and fermions must be
introduced as pairs of particles of equal mass. In nature this is evidently not the case, as
the superpartner of, say, the electron, would have had to be seen in some experiment, if
both particles had the same mass. It follows that supersymmetry must be broken so as to
lift the mass degeneracy and to render the new particles relatively heavy and hard to
detect. Moreover. the gauge group symmetries must be broken in such a way as to arrive
at the low energy limit, as we know it from Standard Model physics. Despite the absence
of conclusive experimental evidence, supersymmetry has been very fascinating for
numerous reasons. One of the advantages of model building with supersymmetry is that
radiative corrections to the masses of scalar particles are canceled in a relatively
unproblematic way due to corresponding corrections from superpartners. Furthermore,
local supersymmetry necessarily includes gravity and therefore it is perhaps an

appropriate perspective for the unification of all fundamental forces.



We cannot say today which raodel or which combination of models will ultimately form
the one that explains 'everything'. However, in the context of this work we believe that at
least supersymmetry must be involved, what ever the theory of everything might
otherwise look like. We also adopt left-right symmetry to build a lefi-right
supersymmetric extension of the Standard Model. Both symmetries, left-right symmetry
and supersymmetry, predict new particles. In particular, left-right symmetry introduces a
‘right-handed’' gauge force. In the physical spectrum it materializes in the form of the

bosons Z; and WS*, while the Standard Model Z and W bosons are henceforth denoted

L L .
as Z; and W, *. On the other hand, supersymmetry introduces all of the superpartners.

In order to prove that supersymmetry exists, one must either directly observe the new
particles or else measure the effects that they have on other observable quantities of the
model. While we have to wait for the next generation of accelerator physics to go into
operation, we can make theoretical predictions. In this work the subject is to calculate the
anomalous magnetic moments and the quadrupole moments of the charged gauge bosons
at one-loop level. The results depend in general on the particle content of the model.
Experimental verification of these results would constitute a signal of supersymmetry.

In Chapter | we begin with a review of the Standard Model and introduce the idea of left-
right symmetry. Chapter 2 develops the principles to build a gauge theory with
supersymmetry and the minimal supersymmetric extension of the Standard Model is
presented. Chapter 3 introduces the left-right supersymmetry and describes the
symmetry- breaking pattern. In Chapters 4, S, and 6 we develop the Feynman rules that
are needed to calculate the anomalous magnetic and quadrupole moments of the charged

gauge bosons. We finish with a conclusion.



Chapter One: The Standard Model

Chapter 1: The Standard Model

1.1  The Particle Content of the Standard Model

In a Standard Model [1] world matter consists of elementary fermions, three generations
(or flavors) of leptons and three generations of quarks. These matter fermions interact
through the strong, weak, and electromagnetic interactions that are mediated by the
exchange of virtual spin-one bosons. The leptons do not participate in the strong
interactions, the quarks do. In a group-theoretical framework, the fermions transform
under gauge groups and the requirement of local invariance under the gauge groups
necessitates, or explains, the existence of the spin-one gauge bosons. There are gauge
bosons for each group and their number equals the number of generators of the group.
The gauge group of the Standard Model is the product SUQ3).xSU(2) xU(1)y. Here

SU(3). is the strong interaction group and the combination SU(2); xU(1)y represents the

electro-weak interactions. Hence, there are eight gauge bosons for SU(3), the gluons G

(a=1...8), three gauge bosons for SU(2),, W: (a=1, 2, 3), and one for U(1)y, B,.
Moreover, there is an elementary scalar particle, the famous Higgs field, which originates
from an SU(2). doublet. This doublet is postulated in order to achieve the symmetry
breaking that will be discussed below.

We first introduce the notation for fermions. Quarks and electrons may be represented by
Dirac spinors and the neutrino may be represented by a Majorana spinor. The symbols

Vs €q» Uy, and d,, denote the four-component spinors of neutrinos, electrons, up-type,

and down-type quarks respectively.
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B Py o g s e
€q = s Uy = Ay = s Vm =|._
8Rm uRm dRm lo’2"Lm (l.l.l)

Here m is a generation index. In order of increasing mass:

Vm denotes v, =v,, v, =v, vy =v,
€, denotes g, ='¢’, €, ='y', g; ="’
q,,, denotes q,, ='v’, q,, ='c', q,; ="'

Qym denotes qq, ='d', q4, ='s', q4; ='b'

The left-handed components of these Dirac spinors and the upper component of the
neutrino are assigned to the group SU(2),. as doublets while the right-handed components
of the electron and the quarks are singlets under SU(2).. This is so chosen, of course, in
order to achieve a model that is in agreement with experimental observations, but at the
same time this choice of gauge groups opens the door to a certain criticism of the
Standard Model. We will return to this at the end of this chapter. The SU(2). fermion-

doublets and singlets are:

Y Vm YeUm
Lm=( L )9 Em =YREm> Qm 2( . )’ Um=YRum’ D"':YRdm

YLsm YLdm (112)

The scalar SU(2), doublet and its charge-conjugate in SU(2),-space are written as:

+ 0*
¢=(¢0], ®° =ir, @' =[ @ J
® -0 (1.1.3)

The scalar doublet is needed to break the group symmetry of the model. This will be
motivated and illustrated below.
The transformation properties of particles of the model under SU(3).xSU(2).xU(1)y are

summarized in Table 1.1:
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i 2 ) G €10
(1) w: (30
Qm (3 2 El;') B, @10
ST
s
© ey

Table 1.1: Particle content of the Standard Model - The numbers in brackets represent
the quantum numbers of the respective particles under the corresponding group
representations.

The convention regarding the quantum numbers in this chapter is the following: the
coupling to the U(1)y-gauge boson in the covariant derivatives stands for — iYgyB, and
the Gell-Mann-Nishima [2] formula takes the form:

Q=t +Y (1.1.4)
Here Q is a particle's relative electric charge and Y its hypercharge as specified in Table

1.1. Furthermore t3L =+1/2 for any up/down component of a SU(2) doublet respectively,

and t; =0 for any SU(2) singlet of Table 1.1.
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1.2 The Lagrange Density of the Standard Model
The Lagrange density may now be written down in three parts: £, gives the kinetic
energy terms for fermions and gauge bosons and their self-interactions, £1iges gives the

kinetic and potential energies of the scalar doublet, and £,,,,., gives the couplings of

the scalar doublet to fermions.

Eom = £ + £piges + £ vuiawa (a.2.n
£f — _lGa Gapv _l a Wap.v —lB Bp.v

2 4 W 4 W 4 W

0, [0 c)
-—t e ., B¥B¥ -2 mvgwrle _ 3 e | GUGW

1672 nvip 16n2 nvip 16m2 nvip

- i —
+ Lmiy" \6,, —%gLW:t’ +%gYBu)L,ﬂ + Emiy"(au +igyB, )Em

— i 1 1
+Qpuiy" ap ""gsGﬁ}“a ‘EBLW:ta __gYBp )Qm

2 6

- . i a.a 2 — . i ana (1.2.2)
+Umiy*| 0, —EgsG"k —?gYBu)Um+Dmly”(6u —EgsGul +§gYBuJDm

. . 2 2\2

£, =(a “legwi-lg B )d) N o'o-L

Higes I\ Tk pBLTRT 9BV M 2 (1.2.3)
£ vukawa = o LmE,® —h,, Q. D, ®-g .. Q, U, ®° +cc. (1.2.4)
The field strength tensors in equation (1.2.2) are:
G}, =8,G} -98,G +gsf*G>G¢

abc
Wi, =3, W2 -8, Wi+g €™ WPWS
(1.2.5)

B, =9,B,-4,B,

Here f** and €™ are the structure constants of SU(3). and SU(2), respectively, while

U(1)y is an Abelian group.



Chapter One: The Standard Model

The terms proportional to ©,, ©,, ©; have been included for completeness. While the
first two of them appear to be unimportant, the one proportional to @, gives rise to the

so-called strong CP-problem.

The Lagrange density part (1.2.2) is thus far invariant under SU(3).xSU2).xU(1)y;
however, as a consequence of this symmetry, all fermions and gauge bosons are mass-
less. In order to generate masses, the gauge group symmetry must be broken. The
symmetry breaking scheme is SU(3).xSU(2).xU(1)y -> SU(3)cxU(1)em. This means that
the theory is no longer invariant under SU(2) xU(1)y but it is still invariant under gauge
transformations of the electromagnetic force that we observe in nature. Electromagnetism
is represented by the Abelian group U(1)em. In this way two symmetries are unified into
one. However. the symmetry breaking does not affect the strong interactions that are
represented by the group SU(3).. For this reason the Standard Model is often said to
achieve only a partial unification of its three fundamental forces.

The Higgs doublet (1.1.3) is introduced into the theory in order to achieve this
breakdown. Once the Higgs doublet is called into existence, it gives rise to the Lagrange

densities (1.2.3) and (1.2.4). The former is responsible for gauge boson masses and the

latter for fermion masses. In particular, the gauge bosons W: and B, of SU(2). and
U(1)y respectively form linear combinations to become the massive vector bosons W:,

Z,, and the massless photon A, .

The symmetry breaking will be discussed in more detail shortly. But first, there is another
ingredient in the Standard Model theory. This is the requirement of renormalizability and

it is applied to gauge theories in general.
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1.3  Renormalizability

Physical theories generally come with an implicit minimum distance or maximum cut-off
energy, A. For example, QED as the theory of the electron and photon is physically
correct only up to an energy of twice the mass of the lightest particle heavier than the

electron, A =2m,,, which is twice the muon mass. At energies higher than this, muons

can be pair-produced in the final state even if they were not present in the initial state.
Then QED becomes the theory of the electron, the muon, and the photon. In a quantum
field theory the cut-off energy A must be carefully specified, because all states can
contribute to any given process in the form of virtual particles and calculations therefore
depend explicitly on the cut-off scale A. A theory is called renormalizable, if A enters
into physical predictions only through a finite number of parameters (such as the masses
and charges of the particles of the theory). Once the incalculable parameters are taken
from experiment, the theory is able to make definite predictions without detailed
knowledge of the physics at energies of the order of A .

Dimensional analysis provides a practical way to check the renormalizability of a given
Lagrange density. In units # =c =1, the dimension of the action integral S = Id‘x£(x) in
powers of mass has to be zero, [S]=0. Since the dimension of the volume element is
[d“x]= ~4, the dimension of a renormalizable Lagrange density must be always

[£(x)] =4 . Inspection of canonical mass terms such as lsz"B , —lmzHH , ~mP¥
2 o2

shows that, the dimensions of vector, scalar and fermion fields are [B"]=l, [H]=I,

)

[ U8

, respectively. Furthermore, in a renormalizable theory the dimensions of
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coupling constants are non-negative. In the Standard Model the couplings have
dimensions [z =[e, ]=[za]=0.

Given the particle content of the Standard Model, the Lagrange density
£sm = £ + £44igps + £vyaua IS the most general one that respects the symmetry

SUB)cxSU2).xU(1)y and that is renormalizable. The renormalizability of the Standard

Model was proven by 't Hoft in 1971 [3].

1.4  Symmetry Breaking
As mentioned before, the gauge group symmetry SU3).xSUR)xU(1)y needs to be
broken so as to generate the masses of the known particles. Here is how this works. The

Higgs doublet is expanded about its vacuum expectation value v:

I
o | =(@ +iv,) 0
o= ((DOJ _ ~/15 N [_l_(v . H(x))J (14.1)
® ﬁ(‘ps *‘i‘b4) 2

It may be shown that this form can always be reached from any arbitrary field
configuration via a gauge transformation, and the particular form (1.4.1) constitutes the
unitary gauge. The three degrees of freedom that are seemingly lost reappear in the form
of masses for three vector bosons as will be shown below.

The vacuum expectation value, in short v.e.v., is given a value of approx. v=246 GeV. It

is determined by minimizing the scalar potential

2 2
Viiges = ){‘D'fq) - “—]
nd 2% (14.2)

10
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Its minimum is found at:

q)*cp:ﬁ v
2 2

(1.4.3)
The constants A and pu” are real (unitarity), and furthermore, A is positive (stability) and
plis positive (so that the ground state is not invariant with respect to SU(2).xU(1)y).

The scalar ground state configuration

0
(@) E[% v] (1.4.4)

breaks SU(2).xU(1)y, but it remains invariant under a symmetry whose generator is
found to be tf_ +Y, which is identified with the electric charge Q. Thus SUQ2) xU(1)y is

broken to U(1)em.

The general procedure now is to insert

0
l
¢—)[ﬁ(v+ H(X))] (1.4.5)

into £, of equation (1.2.1) in order to identify the fields that are mass eigenstates of the

broken theory and the values of their masses. In the process the entire Lagrange density is
rewritten in terms of these mass eigenstates, as their interaction terms determine the
physical processes that are observed in experiments.

The subsequent parts of this chapter define the mass spectrum and some of the interaction

terms in the electro-weak part of the theory.

11
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1.5  The Higgs Mass

The Higgs mass is directly produced in the Higgs-potential V.. of (1.4.2). It is:

M7iges = 2Av7 =2y (1.5.1)

The Higgs mass is estimated to be 95,3 GeV < Muyiggs [4].

1.6  The Gauge Boson Masses

The kinetic part of £, gives:

. . 2 2 2
1 1 gLV iy L[ BLY 1 n B
——g Wit ——g. B [(®) =|5L—| WIW™4—[2L" 2,727 +0-A A
'( sz n 2gY p)( )‘ ( 2 ) n 2( y) ) COSzew ] (8

(1.6.1)

The Lagrange density piece (1.6.1) becomes mass diagonal by means of an orthogonal

transformation that removes mixed terms in the fields. Any orthogonal 2x2 matrix may

be parameterized by one variable; here it is called the mixing angle 0, .

[Zu]z(cosew —sinew) w
A, sinOy, cosOy, B, (1.6.2)
& gy

cosOy = —=——=—— sin@, = —2X—
[ 2 [ 2
g’ +ey’ g’ +gy (1.6.3)

Furthermore the following linear combinations of fields are introduced that diagonalize

the generator of electric charge:

(1.6.4)

w2 = (W! Fiw2)

2

The masses are from (1.6.1):
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(1.6.5)

The masses have been measured at Mw=80,419 GeV, Mz=91,1882 GeV. The photon A,

is massless.

One important relation that depends on details of the symmetry breaking is the mass ratio
(1.6.6)

My =cosOy

yA

1.7 The Fermion Masses

The fermion masses are generated in the Yukawa potential:

~ LB () ~ 0, Qu D (D) - 210 QU (%) + .

v _ v —_ v —_— 1.7.1
= —TimeLamYREn —_EhmnYLdeRdn —_ﬁ—gmnYLumYRun +cc. ( )

= (t)
This is made diagonal by means of the unitary transformations

— e o/ e s
8Lm - Umnerﬂ 8Rm - Umn 8Rn

uLm =U£!llll)lu£n’ uRm :Ui:l:)n u;(n
dLm = Ust(li:ld{‘n’ dRm = U(n:;:l dan (1.7.2)

The matrices have the properties

£ * u . TN 1.7.3
U(klllfanilcj) =fk6kj’ U( )fanE:uj) =gk8kj’ U:sdlz:fmnundj) =hk8kj ( )

km

such that the parameters fi, gy, h are all real. Substituting these field redefinitions into

(1.7.1) and writing the result in terms of the Dirac spinors (1.1.1) gives:
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(*) = -—% fmgmsm —%hmdmdm - _‘/“%gm UmUg,

(1.74)
Hence, the fermion masses are
v v ' (1.7.5)
M. =ﬁfm9 My, =75—hm’ M,, =778
M, <3eV M, =0,510 MeV M, =5 MeV My =7 MeV
M"u < 0,19 MeV M, ~105,658 MeV M, =13 GeV M, =02 GeV
M, <182 MeV M, =1777,03 MeV M, =175 GeV M, =4,5 GeV

Table 1.2: Fermion masses in the Standard Model

In the absence of right-handed neutrinos, the Yukawa-potential £y,.., of (1.2.4) bears

one term less for leptons than it does for quarks, and upon inserting the Higgs v.c.v.
(1.4.4) the neutrinos drop out altogether, so that only electrons and quarks obtain masses.
This is as expected, but one interesting point about it is that it is necessary to make
different field redefinitions for up-type and down-type quarks, while we retain the liberty

to redefine neutrinos under the same matrix as electrons:

- UMY = )/
Vig =Ubhvi = UmVia (1.7.6)
As a consequence the matrix product in the following expression between neutrinos and

electrons becomes a unit matrix due to the unitarity of the matrices of (1.7.2):

Yol opod I oonnd
VY EL, =8, Vi Y €,

_— —1V @ o7 unld e “y (e
VimY Elm —Umk lij"'LkY 8L; —Umk Umj

—)qmy“eLm =;m*{“yLem (1.7.7
Here in the end the summation indices are renamed, primes are dropped, and the spinors
(1.1.1) are employed. On the other hand, the corresponding expression for up-type and
down-type quarks does not simplify to unity, although experimentally it tums out to be

relatively close:
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—_ W/ ty1(d wa
Uy p1"dy g = U UL yhd, = (UTU9) ] y4d]

- anqm‘yden = anEmY“YLdn (1.7.8)
The matrix
Voo =(U™TUD),, (1.7.9)

is called the Cabbibo-Kobayashi-Maskawa matrix, in short CKM-matrix, and it plays a

role in the charged current interactions in the following section.

1.8 Electro-Weak Interactions: QED, Charged Currents, Neutral Currents

Here we examine the interactions resulting from the covariant energy terms from the

Lagrange density £;, for quarks and leptons:

= i i —

Lml‘Y”(—EgLW:ta +§gYBu)Lm +5Rmry“(|gYB“)eRm

Qir{-Lgwie_is B up v - 2g,B dy i Le,B, |d

+Qp iy _ESL ut ‘ggv u [Qm +UR plY ‘S‘gv w |Urm T AR n!Y ggv w 19Rm
(1.8.1)

If the physical vector bosons (1.6.2) and the physical fermions (1.7.2) are inserted into

(1.8.1), and if finally the result is cast in terms of the spinors (1.1.1), the following three

types of interactions are found.

1.8.1 Electromagnetic Interactions

Electromagnetic interactions of quarks and leptons may be summarized conveniently as:

Eem =€A, Y Q. fmy*f, (1.8.1.1)
fo
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The electric charge e is given by

e =g, sin@y, =gy cosBy, (1.8.1.2)
The summation is over the charged spinors of (1.1.1), i.e. f,: €, u,, dg-

The photon couples to all charged fermions in proportion to their respective charges.
Hence, QED is reproduced exactly from the Lagrange density of the Standard Model.
More precisely, it is a consequence of the electromagnetic symmetry of the scalar ground

state configuration.

1.8.2 Charged-Current Interactions

The charged-current interactions of quarks and leptons can be written as:

£cc = %WJ (;mYuYLam + an;mYuYLdn )+ %WJ(EMY“YLVm + (vf)mnamYuYLun)

(1.8.2.1)
The weak charged currents are the only ones that change the fermion flavor. If such
interactions did not exist. the lightest fermion of any species would be absolutely stable,
as flavor would be conserved. As a consequence, charged current interactions are
responsible for the majority of observed particle decays in the Standard Model.
The charged interactions of quarks break P and C, because they involve only left-handed
spinor components, and they also break CP (or T), however in a very detailed way. CP-
violation occurs, if it is impossible to make the CKM-matrix purely real by any
redefinition of fields. It may be shown that, in the presence of three quark generations

there is one complex phase in the CKM-matrix and CP-violation occurs. But if there were
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only two quark generations, the CKM-matrix would be able to become real and CP-
violation would be impossible in this sector.

The charged interactions of leptons break P and C, but conserve CP (or T), because there
is no CKM-matrix for leptons. This is related to the absence of a right-handed neutrino,
as was argued in section 1.7. As a result, there are separate lepton number conservation
laws for each lepton generation and leptons participate in the charged current interactions
with equal strength, which is called weak universality. Weak universality is indeed
experimentally observed, which speaks either for the masslessness of the neutrino or for
the difficulty to detect the mass, because it must be very small. If a right-handed neutrino
is included in the Standard Model framework, or alternatively, if the model is fully
extended into a left-right symmetric version, the lepton sector also acquires a CKM-
matrix, much like the quarks but with one exception. The electrically neutral neutrino
may be either a Majorana or a Dirac particle, while the electrically charged electrons and
quarks are carriers of an additive conserved quantum number and therefore must be Dirac
particles. If the Neutrino is a Majorana particle, it may be shown that two generations of

leptons are sufficient for CP-violation.

1.8.3 Neutral-Current Interactions
The neutral-current interactions of quarks and leptons can be summarized as:

(1.8.3.1)

Y4 -
= T Z me“([iYL -Q¢, sin’ 0y, )fm

" cosOysin@y, £
m

The summation is over the spinors of (1.1.1), i.e. f,:v,, €,, u,, d,. The neutral

interactions of fermions do not change the fermion flavor. These interactions break P and
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C, because they involve only left-handed spinor components, but they conserve CP (or

T).

1.9  Beyond the Standard Model

The Standard Model has been very successful in describing the low-energy world to
which we presently have experimental access. And yet it is generally believed that it
cannot be the final word in particle physics. Apart from the unsatisfied desire to unify all
fundamental forces in nature, there are a number of concrete arguments of why the
Standard Model needs at least to be extended to a more complete theory. The following
sections list the arguments that point to the relevance of a lefi-right supersymmetric
extension.

1.9.1 Left-Right Symmetry

The first portion of the critique of the Standard Model is on the fermion content of the
model and on the asymmetric way in which the fermions are assigned to SU(2). We
present a left-right symmetric version and put it in contrast to the Standard Model.

The basic idea is that right-handed fermion components transform as doublets under a
right-handed group SU(2)r just as lefi-handed fermion components transform under
SU(2)..- This concept requires a few new fields. There must be right-handed neutrinos, so

that quarks and leptons can be all assigned to doublets:

YLVm YRVm YLUm YRum
L m = ’ L = ’ Q =( )’ Q =( )
: (ne.n) o (YREmJ " rdn )T redy (19.1.1)

If right-handed neutrinos are included in addition to the left-handed ones, it is possible to

generate neutrino masses through Yukawa interactions as outlined in section 1.7. Left-
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right symmetry suggests itself as a more natural framework to consider massive

neutrinos. Furthermore, let the gauge bosons with respect to SU(2), be denoted from now
on as W:"’ and let a new set of gauge bosons W:‘ be introduced for SU(2)r. Omitting

QCD, the kinetic Lagrange density (1.2.2) becomes:

£ = -%w,}:w“*” -%w::w"”“ —-;-B,WB'*v

+f;miy" 0, —igLW‘f‘t' +Lg,,B}1 L, +Emiy“ 0, —-l—ngl:ht' +—l-g,,BLl Lem
2 2 2 2

i

- . a 1 — i a 1
+QLle“(ap—28LW:‘T —ggYBp]QLm "’QRm"Y“(au —EgRW:‘t _ggYBp)QRm

(19.1.2)
In the unbroken theory, left-right symmetry implies that the Lagrange density remains
unchanged under an interchange of the labels 'L' and 'R'. This form of extending the
Standard Model is interesting for many reasons.
Neutrinos probably have a tiny mass after all. In particular, the masses of lefi-handed
neutrinos are expected to be relatively small and the masses of right-handed neutrinos are
expected to be relatively big. The mechanism that achieves this is called a seesaw
mechanism. Using Higgs fields in triplet representations, the left- and right-handed
neutrinos become Majorana-particles with masses that are very different in magnitude
{5]. If neutrinos do have masses, several problems in cosmology can receive a plausible
solution. One of these problems is the solar neutrino puzzle, which is a discrepancy
between the observed neutrino flux from the sun and the value that is predicted by the
Standard Model of the sun. Massive neutrinos would also contribute to the missing mass

in the universe.
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In the Standard Model there is no apparent mechanism to cause parity violation. Instead
parity is broken by assuming that left-handed and right-handed fermion components
transform differently with respect to SU(2). By contrast, in a left-right symmetric model,
parity is originally conserved and may by broken in the low-energy regime due to a
suitable mechanism [6].

In the Standard Model the role of the U(1l)y group is to explain the existence of the
electromagnetic field, however the interpretation of the associated hypercharge quantum
number is obscure. By contrast, in the left-right version of the model the associated
quantum number is B-L (baryon number minus lepton number), which is the only
anomaly-free quantum number that had been left ungauged. Hence, the symmetry group
of the electro-weak sector is called SU(2) xSUQ)rxU(1)g..-

One of the puzzles of the Standard Model is why the CKM-matrix is so close to being a
unit matrix and why CP violation is so small. In the left-right symmetric model at least
this smallness can be explained by relating it to the suppression of V+A-currents [7] and
the strength of CP-violation is found to be proportional to the small mass ratio
M5 /MR, .

1.9.2 Super-Symmetry

A problem that befalls all renormalizable models with fundamental scalar particles has to
do with radiative corrections to scalar masses. The scalar masses receive additive higher-
order contributions, which are quadratically divergent. By contrast, fermion masses are
only logarithmically divergent, since they receive multiplicative renormalizations, and
the divergences can be eliminated with the aid of chiral symmetries. But for scalar

masses there are no symmetries to control the divergence. Instead, the parameters of the
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model must conspire in some ‘unnatural’ way so as to cancel the scalar divergences. This
is not impossible but problematic for the following reason. If the cut-off scale of the
renormalizable model is of the order of A, so is approximately the bare mass of the

scalar field that is responsible for symmetry breaking. With a view to a grand unification
scenario, we may estimate A >10'° GeV . On the other hand, the renormalized mass of
the scalar particle is of the order of My, ~ 10? GeV, for the masses of the W and Z

bosons to be of the correct magnitude. The existence of two so widely separated mass

scales in nature is referred to as the gauge hierarchy problem (GHP). As a result, the size
of the scalar mass renormalization is proportional to a factor of (Mﬂiggs / A)zz 107%. Not

only is this factor amazingly small, but in addition the renormalized mass value must be
readjusted or fine-tuned to every order in perturbation theory, which is felt to be rather
unnatural.

There are two classes of models that attempt to overcome the naturalness or fine-tuning
problem. One class of models presumes that there are in fact no fundamental scalars.
Instead, the appearing scalars have a deeper substructure consisting of new sets of
fundamental fermions that are connected through forces similar to QCD. These models
are known by the name of Technicolor. The other class of models is known as
supersymmetry. Supersymmetry postulates the existence of partner-particles for each
'known' particle in such a way that the pairs of partners each consist of one particle of
integer spin and one of half-integer spin and equal mass, and such that these partners are
transformed into one another through supersymmetry transformations. As a consequence,
perturbation theory also produces pairs of loops, which can cancel one another. To every

bosonic loop that contributes to the renormalization of a scalar mass there is a
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corresponding fermionic loop of opposite sign that cancels this contribution. The
cancellation of such partner-loops occurs to every order in perturbation theory, rendering
fine tuning unnecessary. This point is discussed further in the next chapter.

1.93 Grand Unification?

If the ultimate goal is to unify all fundamental forces of nature in a simple framework,
one may wonder about the group structure of the model, given that we generally believe
in gauge theories. In the unbroken theory, the Standard Model is based on a product of
gauge groups SUQ3)xSU(2).xU(l)y. To each group there corresponds a coupling
constant of arbitrary value. Perhaps a more satisfactory theory would be able to begin at
high energies with a single gauge group along with a single coupling constant and get
broken down at lower energies to resemble the Standard Model scenario. Georgi and
Glashow proposed a model with such properties in 1974 [8]. In their model the product
SU3)cxSUR2)xU(1)y is embedded into one grand unification group SU(S5). Then the
group SU(5) undergoes two stages of symmetry breaking. The first stage takes place at
about 10'° GeV and breaks in the manner SU(S) -> SUB)xSUR) xU(1)y; the second
stage takes place at about 10 GeV and breaks as SUB)xSUR@)xU(l)y -> U(1)em.
However, minimal SU(S) is ruled out as the ultimate grand unification scheme. The
model requires new, as yet unobserved super-heavy gauge bosons that are associated with
the first stage of symmetry breaking and allow processes transforming leptons into
quarks. Such interactions contribute to the proton decay but the predicted proton lifetime
is in contradiction with present observations. Moreover, the unification of the three
coupling constants into one unique numerical value at about 10'® GeV also does not work

exactly. Nevertheless, the principal idea of starting with a single grand group continues to
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inspire great enthusiasm. In fact, minimal SU(S) is merely a grand unification scheme for
a Standard Model world. It may be conjectured that nature is really based on a left-right-
symmetric extension of the Standard Model, in which case the grand unification group
would be SO(10), which is not ruled out. However, both SU(5) and SO(10) grand
unifications achieve symmetry breaking, like the Standard Model, by means of
fundamental scalar fields and therefore these models are all plagued with the same
difficulty of quadratically divergent mass corrections. In this work, we do not wish to
investigate grand unification in greater detail, as we are mainly interested in a
phenomenologically viable theory in the low-energy regime. But from our perspective
several points are noteworthy. Firstly, we probably ought to anticipate that nature
contains the large grand unification mass scale of approx. 10'® GeV in some way.
Secondly, if grand unification is a true concept, supersymmetry once again ought to play
a role in it in order to successfully deal with the divergent mass corrections. Thirdly, in a
supersymmetric grand unification scenario it is found that the three gauge couplings of

SU(3)xSU(2).xU(1)y do actually meet at one point at about 10'® GeV [1].
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Chapter 2: Gauge Theories and Supersymmetry

[t has already been stated that the particles in supersymmetric field theories come in pairs
of bosons and fermions that are transformed into one another. The name symmetry
implies that there must be generators to perform such transformations. We begin with a
simple Lagrange density, introduce the generators of supersymmetry and then go on to

build a realistic gauge theory.

2.1 A Basic Supersymmetric Field Theory
The obvious way to illustrate symmetry between bosons and fermions is to write down a
Lagrange density with both types of fields along with the transformation rules ([9], [10]).

l 1 1 1 2.1.1)

£=—08 A*A+—d B&“B+l‘{—’iy“5 ¥+ —F2+-G?
2H 2k 4 S )

This is a simplified version of the Wess-Zumino model. Here A and B are two neutral
scalar fields and ¥ is a Majorana spinor. The fields A and B may be combined in the
usual fashion into one charged scalar field, which is the superpartner of the Majorana
fermion ‘¥ . The fields F and G are auxiliary scalar fields. They have no kinetic energy
terms and they are not meant to interact with any of the other fields of the theory.
Furthermore, their dimensions in powers of mass are [F]=[G]=2 as opposed to the
canonical dimensions of the "physical’ scalars [A]=[B]=1. But their presence is required
so that the bosonic and fermionic degrees of freedom (four real components of a

Majorana spinor) match exactly. It may now be shown that the action
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_ 2.1.2

s=f[La,A0"A +lauBa“B+l%y“a;P +Lp? +102)d‘x @12
2 2 4 20 2

is invariant under the following set of global supersymmetry transformations.

5A =g

5B =gy’

SF = iey®0,¥

8G = ~ey’y°0,¥

8¥ = -iy’e8 A +7°y’ed,B - €F —iy’eG

8 = ~iy’ed, A +ey°y°9,B — F —igy’G (2.1.3)

Here € is a constant Majorana spinor playing the role of a parameter of the
transformation. The transformation is a global one, since the parameter € is constant. It is
thus possible to construct a theory in which bosons and fermions transform into one
another. But what is the nature of the transformation rules (2.1.3)? This is the subject of

the next section.

2.2 The Generators of Supersymmetry - The Supercharges

The generators of supersymmetry are operators that convert bosonic into fermionic states
and vice versa and commute with the Hamiltonian. Such operators are therefore
themselves fermionic in character. Since the generators commute with the Hamiltonian,
they correspond to conserved quantities, which motivates the name supercharge in place

of gencrator. If the supercharges carry spin 1/2, they may be represented by two-
component spinors Q, and, correspondingly, 63. The anti-commutator {Qa,aa} is a

non-vanishing 2x2-matrix that transforms as (%4,%) under Lorentz transformations. A

Lorentz-covariant expression is
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{Qwac} =20,4P, (2.2.1)

where the right-hand side also transforms as (!4,2). However, a theorem by Coleman and
Mandula {11] states that, if a quantum field theory has a second conserved vector
quantity in addition to the energy-momentum four-vector, the S-matrix equals one and no

scattering is allowed. Thus the only choice for P, is the total energy-momentum.

Furthermore, the Coleman-Mandula theorem also rules out any higher-spin conservation
laws. Hence, it follows also that spin 1/2 is the only choice for the supercharges and not
3/2 or higher.

From a group-theoretical point of view, equation (2.2.1) implies that the generators of
supersymmetry by themselves do not form a group; instead they form an extension of the
Poincaré-group (the Lorentz-group with its rotations and boosts plus translations in four-

dimensional space-time), because they are related to P, , which in tum is a generator of

the Poincaré-group. It would appear that the Poincaré-group was not the whole story. In
fact, the algebra of the super-Poincaré-group is a set of relations involving both
commutators and anti-commutators as shown below in equations (2.2.2) and (2.2.3).

Equation (2.2.2) gives the relations of the generators of the Poincaré-group in the absence

of supersymmetry.

s Ioa | = 1o =Moo + Ty =Tl )

[ ] qup A ™ o) 22.2)
[PH,P‘,]=0
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(Q..Qy}=0= {6“,6“}
bu’aﬁ}z 2626[)51

f @} -2,
[Qa’Pu]= 0

[" LW’Qalz "i(ouv )aBQB

[Jpv’ad ] = —i(c_r,,,, LBQB

In order to fully understand how the Q-operators are generators, it would be necessary to

(2:2.3)

introduce the notion of super-space. Super-space consists of eight coordinates; four of
these coordinates are the space-time coordinates introduced in special relativity and the
other four are fermionic partner-coordinates, realized by means of anti-commuting
Grassmann-variables. Formally, z™ =(x“,9“,6d) would be an eight-vector in super-
space. It is then possible to explicitly construct Q, as a differential operator in super-
space and relate it to 80, similarly to the four-momentum generator-operator, which is
P, =-idx,, . Thus supersymmetry transformations may be seen as translations in super-
space. Furthermore, particles are represented by super-fields that fall into multiplets in
super-space. In this way the concepts 'boson’ and 'fermion’ are unified as different aspects
of the same entity. This 'unification’ along with the generalized group structure (2.2.2)
explains why it is felt that supersymmetry is an elegant theory. However, we do not
pursue this interesting theoretical concept of super-space further, because we are in a

position to discuss the appeal of supersymmetry in particle physics without it.
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2.3  Building a Gauge Theory with Supersymmetry

Having argued that supersymmetry is beautiful it is now time to explain why it is useful.
The subsequent sections present two arguments. Supersymmetry is useful because it
helps greatly in the cancellation of quadratic divergences of scalar fields and because it
appears to be connected with gravity in a natural way. In fact, gravity comes to our aid
indirectly in justifying the way in which we chose to break symmetry.

2.3.1 Cancellation of Quadratic Divergences

Once the particles are introduced as boson-fermion pairs, the Feynman diagrams that
represent the particle interactions can also be related to one another like partners. It has
already been mentioned in Section 1.9.2 that diagrams can cancel in this way. A general
proof would consider a complete set of Feynman graphs that occur in a given model. To
give an example that illustrates the relevant graphs in question, one may add to the model
of Section 2.1 interaction terms of the form [12]:

£=_%g2 _gPrA 3.1.1)

Here g is a coupling constant and A and ‘¥ are the scalar and fermion fields introduced
in Section 2.1. These interaction terms give rise to mass corrections from graphs, which

at one-loop level have the structure indicated in Fig.2.1.

(a) ®)
A
b d
A A v

Figure 2.1: Cancellation of quadratic divergences in supersymmetry
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The graphs (a) and (b) of Fig. 2.1 correspond to the first and second terms of equation
(2.3.1.1), respectively. While both interaction terms have the same sign, the two loops (a)

and (b) have opposite signs, since (b) involves a closed fermion loop. The sum of both

graphs contributes to the squared scalar mass an amount dm? , which is found to be:

sm2o fA%( 1 1) miin(A/m?) @3.11)
Caflk?+m? K2 1622
The mass m] is a supersymmetry breaking mass. Unbroken supersymmetry implies

mf =0 in which case dm2=0. If supersymmetry is broken, then ms2 #0 and

consequently dm” =0 . However dm’ is only logarithmically sensitive to the cutoff A
and can be rendered finite.

Theories with unbroken supersymmetry are automatically free of quadratic divergences.
The cancellation ofquadratically divergent terms demonstrated above works to all orders
of perturbation theory and no fine-tuning is required. If supersymmetry is broken,
quadratic divergences still cancel to give a total result that is finite. Furthermore, it is
possible to introduce terms that break supersymmetry explicitly and still keep the theory
finite and, in particular, free of quadratic divergences [13]. Terms with this property are
called soft breaking terms. More about them will be said below in the discussion of
symmetry breaking.

2.3.1 The Role of Gravity

Gravity by itself is outside the scope of this work. However, supersymmetry points to it
so clearly and gravity also has its implications on particle physics. Therefore a few
remarks are in order. From one perspective, the presence of gravity is already formulated

within the algebra of supercharges. From another perspective, it is impossible to build a
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viable particle theory, if gravity is entirely ignored. This is because of problems in the
process of symmetry breaking. The next two paragraphs investigate both perspectives in
turn.

2.3.2.1 Supersymmetry and Gravity

The toy model of paragraph 2.1 only investigates global transformations. It is natural to
wonder what happens if the transformations are allowed to become local, i.e. functions of
space-time. The result is that there is a connection between supersymmetry and gravity.
This may be demonstrated here by stating a few known results, the detailed calculations
of which are found in the literature [13].

If the transformations (2.1.3) are generalized for £ =€(x), it is necessary to include a
term of the form:

W WH kot (23.2.1.1)
Here ¥* is a spinorial vector. The dimension of the constant x is M. A universal

coupling constant associated with local supersymmetry could therefore be x = ,/81tGN .

Gn is Newton's constant and « is the gravitational constant of general relativity.
The anti-commutator of two successive supersymmetry transformations, applied to a field

of a given theory, is found to be:
{8(e,(x)). (e, ()} X = -2ig, (x)ye,(x)8, X (2.3.2.12)

This is in fact nothing else but equation (2.2.1) and it may be verified for our toy model

with a constant € and X = A, B, ¥, F, G. The right-hand side is a translation and it now

depends explicitly on the space-time point x*. This is exactly the type of coordinate

transformation that gives rise to General Relativity.
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The variation of the action integral depends on the energy-momentum tensor and the only
way to make the variation vanish, so that the action is invariant, is to allow the metric

tensor to be non-constant, namely:

8g,, =Wuy.6 (2.32.13)

This is how matter fields are coupled to gravity. In so doing, one principal problem
comes from the fact that General Relativity is not a renormalizable theory. Lagrange
densities may be obtained but the dimension counting of Section 1.3 will be violated.
However, it is possible to impose the condition that the only nonrenormalizable terms are
those that depend on the gravitational constant, and that the theory becomes
renormalizable in the flat limit in which the gravitational constant goes to zero and space-
time becomes the Minkowski space. Imposing this condition is feasible because General
Relativity is locally flat over sufficiently small fragments of the space-time manifold.

Finally, local symmetries require the introduction of new fields that are called gauge
fields. This is essentially how the electromagnetic field is introduced in QED when the
symmetry U(l)m is made local. In the same fashion, in local supersymmetry it becomes
necessary to postulate the existence of a (Majorana) fermion partner of 3/2, which plays
the role of a gauge field of gravity. This fermion is called the gravitino, because its
bosonic superpartner is of spin 2 and is easily identified with the graviton. General
relativity is not originally a gauge theory. It is based on the principle of equivalence

instead. But it is interesting that local supersymmetry might reconcile both principles.
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2.3.2.2 Symmetry Breaking and Gravity: Spontaneous versus Explicit Breaking

In the unbroken theory the supersymmetric particle content is made of boson-fermion
partners of equal masses. This equality of masses is evidently not a property of nature,
because if it were, superpartners of the known particles surely would have been observed.
The gauge group symmetry must be broken in order to generate masses and
supersymmetry must be broken so that the masses of superpartners are no longer equal,
unless breaking supersymmetry can achieve both. We know from the Standard Model
how to implement a spontaneous breaking of the gauge symmetry. Ideally one would
wish to carry out the breakdown of supersymmetry in a spontaneous way as well. Two
possible mechanisms are known. One mechanism is the O'Raifertaigh mechanism [14]
and another is the Fayet-Illiopoulos [15] mechanism. They are called F-type and D-type
mechanisms, respectively, because the scalar potential consists of an F-part and a D-part,
as will be shown below. Supersymmetry may be broken by either one or by a
combination of both mechanisms. While this is an interesting topic to study in its own
right, we shall implement broken supersymmetry in a different way. The point is that
spontaneously broken global supersymmetry does not lead to an acceptable quantum
theory of realistic particles for several reasons.

1) It is possible to derive mass formulas that show that the boson masses cannot be
heavier than the fermion masses, which is clearly in contradiction with established
observations [16].

2) There are still light scalar particles that should have been observed. In particular, one
of the scalar quarks is always lighter than the lightest known quark.

3) It may be shown from (2.2.1) that:
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E.ac =(0]H]0) = (0[P°|0) =|Q,]0)" =0 2.32.2.1)

Since unbroken global supersymmetry implies Q,|0)=0, it follows that E =0 if

symmetry is conserved, whereas broken global supersymmetry requires E,,. > 0. But

this is problematic because it is shown to imply a non-vanishing cosmological constant.
However, in super-gravity the symmetry breakdown can be achieved at vanishing
vacuum energy [13].

Once it is established that global supersymmetry is insufficient to allow for a realistic
symmetry-breaking scenario, it may be concluded that it is in the nature of things to make
the theory local and in so doing to include gravity. On one hand this is a wonderful
opportunity, on the other hand it is also an extremely difficult and as yet unresolved task.
However, it may be proven that, it is possible to begin with a local supersymmetry, which
includes gravity, and to ask how the low-energy limit of the theory would look like. The
answer is that the low-energy limit can be described as a global supersymmetry with soft

breaking terms [13]. There are three classes of soft breaking terms:
1) Gaugino mass terms mAA or mA*A’ (Abelian and non-Abelian)

2) Scalar mass terms for superpartners of 'known' particles of the form p?g°€
3) Tri-linear scalar interactions, for example QfHdER (all particles being scalars)

This way of breaking supersymmetry is also used in our left-right supersymmetric model.
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2.4  The Minimal Supersymmetric Standard Model (MSSM)

The remaining part of this chapter presents a first realistic model that incorporates the
principles of model building that have been outlined so far. The MSSM ([12], [13], [17])
is a suitable opportunity to demonstrate how a supersymmetric gauge theory works,
because the field redefinition problems have explicit solutions (if there is only one
generation of quarks and leptons). By contrast, the left-right symmetric model of the next
chapter requires the diagonalization of matrices that are 3x3-dimensional and even larger
and must be solved numerically.

2.4.1 Two-Component Notation

Following supersymmetry conventions, we use from now on 2-spinors instead of the
traditional 4-spinors of Chapter 1. One motivation for 2-spinors is that, apart from leptons
and quarks it is by no means clear from the beginning what the 4-spinors are going to be
in the low-energy limit. The mixing of fields, which takes place as vacuum expectation
values are inserted, is more practically described with 2-spinors. The 2-component
notation is explained in detail in Appendix 2. However, it is possible to read this chapter
and the following ones without much effort, once a few simple definitions are made. Let
the symbol y denote a 4-spinor of a fermion and ¥, the Dirac matrices.

WE(E),GE(T] E), YuE(c—?u (:;] (2.4.1.1)
It follows from (2.4.1.1) that:

v E o n 24.1.
ViYW =§,0 &, + et n, (2.4.12)

This establishes the connection between 4-component language, left side of (2.4.1.2), and

2-component language, right side of (2.4.1.2). The reader is asked mainly to accept that
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some variables are naturally barred according to (2.4.1.1). These are the 2-spinor that are
lower components of a 4-spinor as well as the 2x2 block-matrix to the lower left of a

Dirac matrix. The bar over a 2-component object represents complex conjugation and it is
not to be confused with a bar over a 4-component spinor, which stands for y = y'y°.

In accordance with (2.4.1.1), the 4-spinors of quarks and leptons are naturally written as:

e:(ELJ’ u=(gL)’ dz(gLJ’ vz(gL] (24.1.3)
ER uRr dr vL

The conventions (2.4.1.1) suggest the point of view that the equations (1.1.1) always
meant to be (2.4.1.3). As a consequence however, in this new notation g, and €r mean

to create equal electric charge, while €, and g, create opposite charge.

24.2 The Minimal Supersymmetric Standard Model - The Particle Content
Comparing Table 2.1 with Table 1.1, the particles of the MSSM are the ones of the
Standard Model plus the corresponding superpartners. However, besides that the MSSM

requires the use of two scalar doublets plus partners and there are siglet partner fields W,
and y, . There are three reasons why there is second Higgs doublet.

1) The scalar doublet @, resembles the scalar doublet of the Standard Model. However,
the Yukawa-interactions of the Standard Model are not all permitted. Supersymmetry

forbids the interaction Q' ur®S » which occurs in the Standard Model equation (1.2.4).
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Bosons Fermions SUQRB)xSUR)xU(1)y
L= g L= g, £
CY er @1 -y

a-(y]

/
12
[\

O\ |
~——

g uRr (3 1 Z)
-7 3
ER aR (3 ‘ _l)
- T 3
Vs Wy 10
w? A2 @ 3 0
Bp 1'Y Q ! 0)
0 - (40 1
®, = “’tj &, =| (12
¢u \¢U}
{ L+ - (~+\ 1
\¢d U"a}

Table 2.1: The Particle Content of the Minimal Supersymmetric Standard Model

Generation indices are suppressed. The numbers in brackets represent the
transformation properties of the respective particle multiplets under their gauge groups.
The SU(3). quantum numbers are noted, however gluons and their interactions will be

ignored.
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This is demonstrated properly in super-space. A product of three super-fields is invariant
under supersymmetry, if all three super-fields are of the same chirality. However, while
Q! and ur are left-handed super-fields, ®] is a right-handed super-field. Since

Yukawa-interactions of charge conjugates of Higgs doublets are ruled out, it is

impossible to generate masses for up-type quarks with @, alone.

2) It is necessary to have a second higgsino doublet ®, along with @, with opposite

U(1) quantum number in order to cancel anomalies amongst fermions.

3) Three massless higgsino-fermions (Higgs superpartners) are needed in order to
generate the masses for the fermion-partners of the physical gauge bosons W* and Z.
One higgsino doublet would only provide two fermions as candidates for absorption.

The siglet partners y, and W, are required in order to construct an unbroken
supersymmetric theory with a unique tree level ground state that breaks SU(2)xU(1) to
U(1) (12]. However they are relatively unimportant in the phenomenology of the MSSM
and they disappear automatically in the left-right supersymmetric extension of the model.

The singlets y, and i, are included here for completeness.

243 The MSSM Lagrange Density

£MSSM = £gaugc + £mattcf—fcnnion +£m:mcr—boson +£i§x +£Yukawa + £Soll -V (2-43 l)
1 S 1 —— (243.2)

Eomge = =7 Wi W +ik (020, +81L € WEiE - BB +ikva" 90y

Wi =0, W) -9, Wi +g ™ w;’wvc 2.43.3)

B, =9,B,-0,B,
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The canonical form of a covariant derivative for gauginos in (2.4.3.2) involves the
structure constants, as does the field strength tensor of the gauge boson partner in
(2.4.3.3). Summation over repeated indices is usually implied. A rule to transform the
structure constants into generators is given in Appendix 3.

£ matter _fermions =

iljé}"(a'1 - :;-gLW'i‘ta + —;-gyB“)L +8Ri<1r“(('3‘1 +igyB, );:n

+iQTE"(a“ —%gL wit® —-;'ngu)Q + uRic"(a“ ——?gYB“);n +d,{i<r“(a'l +%gYBH)an

L= TH i a ~ s i i ~ — —p
+idlo (a,, _Eg'*W:t +58va)¢u +i®lo (6" _Egl‘w‘:t. ‘ESYBqu’d +iy, 6 9y,

(2.4.3.9)
£mauer—bosons =
1 i 2 2
(au - Eng;ta + EgYBu)L +|(au + igYBu)ERI
i i I 2 : i ’
. . 2 . R 2
t a_a 1 1 a a 1
+ (Bu —Eng"t +5gYBu]<Du + (Bu _Eg'“w"t _EgYBu)(bd
~ {2
+|6pwx
(2.4.3.5)
£25x =iV2 E*(%Lw' —%va)L +iv2 55 (- gyhy )Er
+iv2 6*(%#:' +%1Y)Q+i«/§ a,;(%gyxy)uk +iv2 E.;(-%ny)dk
+iv2 ¢;(§L>&‘€ -g—YAYJ&>,, +iv2 mg(&m’ +§ixy)<’ﬁd
2 2 2 2
+ hc.
(2.4.3.6)
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£vukawa = (2.43.7)
—hL (L er®, + L5 ®, + TTer®, )+ hic.
- hS(QtURQ)u +Qlig®, + Q'ur®, )+ he.
~hQ(Q' R, + Q'E B, + G drd, )+ hc.
~x(@ocy, + BB, + @y, )+ he.
2 2438
|+ —;—D:D‘[’_ + %DYDY +Voa ( )
(24.39)
e + X7, + |hd Qdy +hiLE +x§,® + 00,4
+ thd)dERI +n2qtoef + |hd°QTq>; + |h§L*q>§ +xDloS - p2|
e e 2.43.10
D! = %L(L*Lr’l,L +Q{1°Q, +DlT'D, + DD, ) ( )
gy lepo e 2. 1= 1 1 (2.4.3.11)
Voot = (243.12)
QhQGf(b ug +he.+py hQQ*d)ddR +hc.
+uihiC'd 8, +he. +pu x§, OIOS + he.
+u3QIQ+pl UL + gty +pddpdg +nieese
(2.4.3.13)

£soﬁ = mL(A.a;\.a + Xaia) + my(;\-y;\-y + XYXY)

While this Lagrange density is very impressive in size, most terms are quite regular and
common to any supersymmetric gauge theory. The main features are as follows.

1) The pieces £,5c, Ematcr—formions Ematier-boson » a0d £33, are completely determined,
once the particle content is specified. The covariant derivatives in the kinetic energy

reflect the transformation properties of the fields under their gauge groups. In £:5x

scalar fields interact with their fermion partners via the appropriate gauginos. The
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interactions again have the form of a covariant derivative with gauge bosons being
replaced with gauginos.

2) The piece £y,.., is in equally well determined from Standard Model experience,
bearing in mind however that supersymmetry forbids the use of charge conjugate scalar
doublets in combination with quarks and leptons. The notation in this chapter is chosen
such as to make a comparison with the non-supersymmetric Standard Model transparent.
There are other conventions in use but the Yukawa part of the Lagrangian is not the main
focus in this work.

3) The scalar potential parts are not so completely forced, as there is a measure of
arbitrariness with phenomenological parameters. However, the 'D-part’ is an
unmistakable function of group generators and hypercharge quantum numbers. The D-

part is %D: :+%DYDY and it is derived from a vector super-space multiplet. Its

2
counterpart is the 'F-part' Fi'Fil , which is derived from a scalar super-multiplet. Within

the scope of this work the F-part may be regarded as another series of renormalizable
interactions that are permitted.

4) The pieces £,4 and V_, provide the soft breaking terms that are discussed in section
2.3.2.2. The combinations of different fields in V,, are similar in form to the ones in

£y kawa and thus well determined.

2.4.4 Symmetry Breaking and Mass Eigenstates
Having implemented the breakdown of supersymmetry with explicit breaking terms, it

remains to break SU(2).xU(1)y to U(1)em. To this end the scalar doublets ®, and @, are
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to assume vacuum expectation values v, and vq4 respectively. Detailed calculations for the
MSSM are available in the literature [12]. Below we merely list some of the physical
fields and their interactions in order to comment on the hopes for experimental
verification.

The vev's of the scalar doublets are in general:

(@)= %(‘8’] (@)= %(‘2] .44.1)

It is impossible to put both scalar doublets into a simple form like equation (1.4.5) at the
same time. The number of scalars that are absorbed to generate boson masses is the same
as in the Standard Model. As a result the MSSM predicts additional physical scalar

particles. A suitable definition of variables is:

p

1 _ \
B, @, +(0,) =| 73+ HulO+iz () -
u(x) ) (2.4.42)
( 95 (x) )
b, > D, +<¢d> = _l_(vd +Hy(x)+ izd(x)) (2.4.4.3)
\\/5 y,

It is instructive to make a simplified model calculation taking v, = v, and omitting at

first the soft breaking terms. From the scalar potential one finds this Higgs spectrum:

N 1 (., s ~ M.=M 2444
H =—( +¢, ), H ={H* H* w
1 M.,=M (2.445)
HO - HO _ HO H° Z
[_2( d U)
1 M,=M (2.44.6)
hy = —=(Hg +11] b
1 ﬁ( d u)
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| M,=M (2.44.7)
hy =—|(2% +2° h® H
ﬁ( d u) 2
h? =v2Re(¥, ) Mo =My (2.4.4.8)
h? =2 1Im(y, ) Mo =My (2.44.9)
The Goldstone bosons are:
1 o\ (2.4.4.10)
¢ =—=(6:-4"). 6 ="
754 (c*)
| (2.44.11)
G'=—|z —zg
121

The Goldstone bosons are massless and they are absorbed to give masses to gauge
bosons, which form the massive fields W: » Z,,, and the massless photon A, . The vector

boson spectrum is the same as in the Standard Model. All formulae of section 1.6 are still

valid, except that one must make the change:

v vﬁ + vi (2.44.12)

The fermion partners of the scalar doublet components and the gauginos form 4-spinors
of particles that are identified as the superpartners of W*, Z,,and A, . Using the last

line of (2.4.3.6) and the last line of (2.4.3.7) it is found that:

o (& M_, =M (244.13)
o = ¢i ) @ = ¢L!_ © w
in A"

M, =M, (2.4.4.14)

l (~0 ~o)\) =
= 7_2_("—3“2) :

1Az
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- M; =M, (2.4.4.15)
= f(¢..+¢¢.)

\ "Vx
~ ’-il) M; =0 (2.4.4.16)
Y= .XY

\ 1Ay

The gauginos in (2.4.4.13) are in analogy to (1.6.4):

e_ U fi_.2) 4043 (244.17)
A =—AFir"), A =X
L)
The new gauginos in (2.4.4.14) and (2.4.4.16) are in analogy to (1.6.2):
Az) (cos8y —sinBy ) 2 (2.4.4.18)
A, ] \sin@y cosOy Ay

Hence there are multiplets of equal mass and equal number of fermionic and bosonic

degrees of freedom:

(12, &*, we) M=M,, (2.4.4.19)
me, 2 z) M=M, (2.4.4.20)
(b0, b9, b, 0, &) M =M, (2.4.421)
(7. A,) M=0 (2.4.422)

The presence of such mass multiplets means that supersymmetry is unbroken. If £.q is
taken into consideration, supersymmetry must be broken, since £, will interfere with

all results of equ. (2.4.4.13) through (2.4.4.18). In general, higgsinos and gauginos are

combined in a nontrivial way to form particles that are called charginos and neutralinos.
These are denoted in 4-component language as ¥; and Y, respectively. Calculations of

chargino and neutralino interactions will be performed in detail as of the next chapter.
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24.5 Interactions and Phenomenology

There is at present no conclusive experimental evidence of supersymmetry. The
unification of the three different gauge couplings at a GUT-point of approximately 10"
GeV serves only as indirect evidence. If supersymmetry can induce the scale of electro-
weak interactions, it is reasonable to hope for the discovery of supersymmetry effects in
the accessible low-energy regime. Low energy will mean relatively soon energies of
approximately 1 TeV. However, it is difficult to make very specific predictions and to
claim that they are binding. The full realization of the minimal supersymmetric standard
model, including QCD-related interactions and three generations of quarks and leptons,
carries 124 independent parameters. It is found that the greatest part of the parameter
space is unrealistic. Either this is a new naturalness problem, or constraints are imposed
to make the model more naturally realistic. But then, theoretical assumptions can be
made in a variety of ways and different assumptions may cause very different
phenomenological predictions [4]. In any case, it is at least possible to calculate lower
bounds for the masses of unobserved particles. The MSSM-related models predict lower-
bound values starting at about 10? GeV, which is not at all out of reach. Another
important prediction is that the scale of supersymmetry breaking must be not higher than
approximately 1-10 TeV for a successful resolution of the naturalness problem that was
discussed in Section 1.9.2. Hopefully it will be possible to probe this energy region
relatively soon.

Another feature common to a large class of models is the existence of a 'lightest

supersymmetric particle' (LSP), which follows from a new quantum number. If B-L is
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taken as conserved, supersymmetric models possess a multiplicative quantum number
called R-parity. It is defined for a particle of spin S as:

R = (—1)¥B-Lh2S (24.5.1)

Equation (2.4.5.1) implies that the 'known' Standard Model particles are R-even while
their superpartners are R-odd. If R-parity is conserved, supersymmetric particles are
produced in pairs. In general they are unstable and quickly decay into lighter states, but
the lightest particle that carries a conserved quantum number must be absolutely stable. A
prime candidate in many models is the lightest neutralino. Neutralinos are also
interesting, because they are, like neutrinos, candidates for dark matter in the universe
[18]. Cosmological constraints suggest that the LSP is almost certainly electrically
neutral and color-less [19]. For if dark matter contained a particle that is charged and
absolutely stable, one would have to explain why the missing mass of the universe is not
charged. And if dark matter contained a particle that is colored and absolutely stable it
would be hard to explain the abundance of this colored particle as a free particle and why
dark matter should exhibit a preference for a particular color.

In the context of this work, a possible interaction type with neutralinos in the context of
this work is:

(24.5.2)

eZ — 1
— M Z0.n ° oy oF ~0
X2 cos@,, sin@,, XY 2((N );‘YL+(N y’:‘h)x"

Herc (No);'k and (N"I; arc model-dependent matrix elements. There are 4 ncutralinos

s in the MSSM with lower bound masses below 100 GeV. Being neutral and color-less,

neutralinos interact weakly in ordinary matter and are expected to escape the detector,
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avoiding direct observation just as neutrinos do. Consequently, the experimental
signature in R-parity conserving models would be an amount of missing energy.

The goal in this work is to make theoretical prediction on the anomalous magnetic
moments and the quadrupole moments of gauge bosons where signals of supersymmetry
may be expected. The magnetic and quadrupole moments have been calculated both in
the Standard Model and in the MSSM. We shall make the calculations in the left-right

supersymmetric model, which is introduced in the next Chapter.
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Chapter 3: Left-Right Supersymmetric Extension of the Standard Model

3.1  The Particle Multiplets

GAUGE FIELDS
Bosons Fermions SUQ2)xSUR)rxU(1)sL
wls -y G 10
AL = A-oL
AL J
W ) 30
AR = ;\.OR
A
vu A'V (1 l 0)
MATTER FIELDS
Bosons Fermions SUQ2)xSUR)rxU(1)s-
T VLm (VLm (2 ! —1)
LLm =l ~ LLm =
ELm \SLm
E — VRm _(;Rm (1 g —l)
Rm -~ LRm— -
8Rm KERmJ
~ (d up ) I
QL = ,...L ) Q =( Lm (_2. ! —)
m \dLm Lm dLm) 3
- (g are) 1
QR.,,=~"') Qg =| 25 (1 2 —)
dRm Rm dRm} 3
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HIGGS SECTOR
Bosons Fermions SU@2).xSUQR)xU(1)s-.
(_AL++ ‘ZI+ @ ! 2)
Ho=| & i, -| &
~0
\ a° Ay
(~5,° (-3° G1 -2
K= & Ro-| 5
U 5
Hp =| A" Hg ={ A}
20
\ ARO \ AR
&N (-52) @3 -2)
Kg =| 8¢ Kp = ;5,;
(3% (=)
\ T \
Fl 4= (¢:)u.d ‘[::l .= (flou.,d (z g 0)
\$2u.0 ) " \ $2u.d /
g o) o 7§,t..dJ @20
“ 0% ) 0

Table 3.1: The Particles of the Left-Right Supersymmetric Standard Model Extension
The numbers in brackets represent the group transformation properties of the particle
multiplets

The full Lagrange density of the left-right supersymmetric model is shown in Ref. [20].
In this work only those Lagrangian parts will be invoked that are needed and the
similarity with the MSSM will be stressed.

In the fermion sector of matter fields the model possesses a right-handed neutrino (per

generation). In this way all leptons and quarks can be assigned in a symmetric way to
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SU(2).. and SU(2)g, as indicated in Chapter 1.9.1. The corresponding superpartners are
now added also. The gluons and their superpartners as well their interactions with the
quarks are omitted, since QCD interactions are outside the scope of this work. Particles
that couple to the U(1)s. boson have a covariant derivative term -iYy_ gyB, and the
particle quantum numbers under SU(2) xSU(2)rxU(1)g-. satisfy the Gell-Mann-Nishima

relation in the form:

Q:ti-{-ta-{-YB‘L (3.1-1)

Here Q is a particle's relative electric charge and Yg.. its hypercharge as specified in
Table 3.1. Furthermore, t; =+1/2 for any up/down component of a SU(2). doublet
respectively and tf_ =+1, 0, -1 for any up, middle, down component of a SU(2), triplet
respectively. SU(2),. singlets have t; =0. The same may be said, if the label 'L’ is
replaced with the label 'R’

In this work all SU(2) triplets are written in the form of column vectors. Appendix 3
gives an alternative notation. The four multiplets F,:‘d and F.:l,d are called bi-doublets,
because they transform under both SU(2),. and SU(2)g, as indicated in Table 3.1. There is
also an alternative notation for the bi-doublets, which is shown in Appendix 4. The bi-
doublet quantum numbers tf_ and t% are subject to a special rule that is also explained in

Appendix 4.

The increase in the number of Higgs multiplets, as opposed to the MSSM, is due to the
following reasons. The symmetry-breaking scheme of our lefi-right supersymmetric
model is more complicated and requires more scalars to acquire vacuum expectation

values. The particle content must initially reflect left-right symmetry, i.e. invariance
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under the interchange of the labels ‘L' and 'R'. Finally, as pointed out in the MSSM, it
must be possible to generate all up-type and down-type fermion masses and to cancel
anomalies generated by Higgsinos. This is why ﬁ-type Higgsinos have an anomaly
partner of K -type with opposite hypercharge.

While the Higgs bi-doublets are typical of left-right symmetry, Higgs triplets may
possibly be replaced with doublets. However, triplets are preferred, because they are able
to generate small Majorana-masses for v, and at the same time large Majorana masses

for vg. By contrast, Higgs doublets generate Dirac masses that make it is more

problematic to obtain a small v, mass [5].

3.2 Symmetry Breaking ([21], [22], [23], [24])
The first breakdown is that of supersymmetry at a scale of approximately

Mgysy =1 TeV . It is implemented in the model from the start in the form of explicit soft

breaking terms. As a result, gauginos, squarks and sleptons are the only particles that
carry mass. The quarks and leptons as well as the gauge bosons are all still massless as a
consequence of the invariance of the Lagrange density under SU(2) . xSUQ2)rxU(1)g.t..
Furthermore, the model is initially invariant under parity. This means g, =g, where g,
and gg are the coupling constants corresponding to SU(2).. and SU(2)g respectively.

The gauge group symmetry must be broken spontaneously in order to generate masses for
quarks, leptons and gauge bosons and in order to break parity. As in previous chapters,
spontaneous symmetry breaking means that some Higgs multiplets receive vacuum
expectation values. There are breakdowns at three different stages. At the first stage only

the discrete symmetry of parity is broken.
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SU(2), xSU@)g xU(l)g_ xP —Mr=2 5 SU(2), xSUR)g x U1 G-2.1)
Mparity is the scale at which the breaking occurs. The result is g, # gz , however, no
gauge boson masses are generated. The second stage takes place at a scale My, dueto

(Hg )= 0. In this work we also take (Kg)=0.

SU(2), xSUQ)g xU()g_, —2— SU), xU()y (3.2.2)
This generates masses for right-labeled gauge bosons. It is allowed to assume

Mpyiey = My, - The particle world now possesses the same symmetries that the Standard

Model takes as a starting point. The final breakdown stage is the analogue of the Standard

Model breakdown and it takes place at the weak scale of My, -
SU@), xU()y —2%s U(D)qy (3.2.3)
This is achieved by taking (Fj):O and <Fj'>:0 and possibly but not necessarily

(H ) =0 and (K )#0.

As the discussions of the Standard Model and the MSSM have shown, the physical fields,
or mass eigenstates that occur in nature may arise as linear combinations of the original
fields of the particle content. In particular, in left-right supersymmetry:

1) The photon and massive vector bosons arise from gauge bosons mixings.
2) Gauginos A and Higgsinos H, K , F form charginos %* and neutralinos %°.
3) The Higgs multiplets H, K, F form physical scalars H*, pseudo-scalars A° and

Goldstone bosons G* and G°.

All of these mixings are considered in turn in the next three chapters.
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Chapter 4: Vector-Boson Mass-Eigenstates and Interactions

The goal in the following three chapters 4, 5, and 6 is to obtain the interactions and
Feynman rules of the photon and the massive vector bosons with all other physical fields

of the theory. The photon is denoted as A, and the neutral and charged massive vector
bosons as fo R Z"; . Wfi . W;‘I . These fields are formed out of the gauge bosons that are
specified in Table 3.1. Subsequently, in chapter 7 the Feynman rules are used to calculate
properties of the charged vector bosons W, and W,*. This means that the focus in this

work is on the interactions that involve A e W:‘t, and W‘fi. However, the interactions

with Z:f and Z:; also come out naturally and they are noted as well for future reference.

This chapter begins with the interactions that vector bosons have amongst themselves.
4.1 Mixing of Gauge-Bosons into Mass-Eigenstate Vector-Bosons
Masses for right-labeled vector bosons are generated at the symmetry breaking stage of

equation (3.2.2). To this end the following triplets assume vacuum expectation values.

Hg & (Hg)+Hy, Kz > (Kg)+Kg

0 ‘Vsl\
(HR)=71_5 0 |, (KQ:% 0 J 4.1.1)
Vag 0

(sce also Table 3.1.) Only neutral fields may develop a v.e.v. in order to preserve

electromagnetic gauge invariance when the symmetry breakdown is complete. It is

sufficient to substitute Hy —(Hg) and Ky —(Ky) to identify the physical fields and
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their masses. Substituting Hp — (Hg)+Hg and Kg —(Kg)+Ky gives the full

interaction Lagrangian. We also define:

Ve = VA, + VL “.12)

Mass terms arise from the covariant kinetic energy of the corresponding scalar triplets.

£uinny ks =|(au —igR‘taW:’ -2igyV, )HRIZ +I(au —igktawgih +2igyV, )Kklz @1

Inserting H — (Hg ) and K —(K) from (4.1.1) into (4.1.3) gives the mass terms:

L2 a2 re 1 o 2 ) (4.1.4)
Enmewi 28 =5 VR B Wy LA (a2 +48,%)282"* +00B,B*

In analogy to chapter 1.6, mixed terms in the fields have been removed due to an

orthogonal transformation:

R . RO
Z,|_ (COS(p —sm(p) w,
B, sing cosp )| V, @.1.5)
cosq>=i—sg—' sinm:—Lszg—'
Ve’ +4g," B Ver® +4gy’  Br 4.1.6)
Furthermore, as usual:
Re _ | ((RE oy R2 R3 0 4.1.7)
W, = f(wu +iW, )’ W, =W,

The masses are from (4.1.4):

(4.1.8)

The masses of Wft and Z:f have a ratio of:
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My, cosg 4.1.9)
M, 2

R
A comment on the factor of l/ V2 in (4.1.9) will follow shortly.

A similar process is repeated at the symmetry breaking stage of equation (3.2.3) where
the masses for lefi-labeled vector bosons are generated. The definition of vacuum

expectation values at this stage is:

F, > (E)+F, Fy — (B )+
(F-»:%(%]’ (F”:%(,:) (4.1.10)

The remarks under (4.1.1) apply similarly to (4.1.10). The corresponding covariant

kinetic energy of the scalar bi-doublets is:

2

. ) > ] .
1g La 18 i ig L ig ke et

4.1.11)
Inserting the vacuum expectation values form (4.1.10) into (4.1.11) gives the mass terms:

2 2 2 L L (4.1.12)
£MassWL’,ZL,A L (Ku +Kq )Wu"W .

+%%(xu2 +x,° Xng +ggsin? q))Z:;Z'““ +0e A A*

This entails an orthogonal transformation that is the analogue of that in the Standard

Model:
[Z"; ] _ (cosew ~sin Ow) wo
A, sinBy,  cosBy, )| B, 4.1.13)
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_ gL _ gL
cosOy, -\/ > = - >
BL *Br SIN Qg " +dg 4.1.14)
sin@y, = ErSINQ 28

\lng +8R2 sin” @ Jng +4g'2
Two approximations have been made in the equations (4.1.12) through (4.1.14). Firstly, it

is assumed that the field Z:f decouples from the breakdown process at this stage.
Secondly, in general there is also a CP-violating mixing between the fields Wft and

WJ‘* [25]. However it is very small and we neglect it. Qur approximation is realized by

assuming vp >> K,,k4 >> Vv, where v is the would-be vacuum expectation value of a

neutral left-handed triplet field.

The masses at this stage are from (4.1.12):

l ( 2
My, =5VKy +K4 8L

M, = %unz +x gl +gelsinlo (4.1.15)

=gl e e = T B

M, =0

The masses of W,* and Z_ have a ratio of:

T, = cosBy (4.1.16)
Z,

Comparing the mass ratios (4.1.9) and (4.1.16), it is found that they differ formally by a

factor l/ V2. This is due to the fact that the fields ZE and W:‘i receive mass from a

Higgs field that is a member of a SU(2)-triplet, whereas the fields Z| and W!* receive

their masses from SU(2) bi-doublets.
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In summary, the model has undergone two stages of symmetry breaking and the fields
that are specified in the particle content in the Table 3.1 have formed physical fields in

the following way.
SU(2), xSUQ)g xU(Dp_. — 25 SU(2), x U(l)y

R3 _ /RO R
Wp —Wu ,Vu-—>Zu,B“

(4.1.17)
Rl R2 R
WRI WR2 _, whe
SU@) xU(l)y, —% 5 U(l),,
L3 _ L0 L
WE =W B 7L A,
(4.1.18)

Ll ysL2 L
W, W wt
The field B, corresponds to the U(l)y gauge boson of the Standard Model in the

unbroken theory. The coupling constant pertaining to this field is called g' here and it is

defined from gy and gg as:

2gvgr

2g =ggsing=———"S
2 2
Ver™ +48v (4.1.19)

However, in our model B‘1 is an intermediate field in the sense that it occurs in between

two mixing stages. Since B, only appears at an intermediate level, it is practical to
eliminate it so to get a relation between the initial fields WJ‘O, W:o , V, on one hand

and the final fields 7,:; AL, ZS on the other.

W‘lLo cosOy, sinQy, 0 Zk
W:o =| —sinpsinBy, singcosOy cosp || A, (4.1.20)
v, —cos@ sin@y, cosecosO,, —sing Z:f
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This transformation is orthogonal as are separately the two transformations at the two
mixing-stages (4.1.5) and (4.1.13), and the inverse transformation is given by the
transposed matrix. The matrix in (4.1.20) represents also the most general form to
parameterize the transformation. In fact, the columns of the matrix are the unit basis
vectors in three-dimensional space in spherical polar coordinates. However,
approximations may be hidden in the particular definitions of the mixing angles.

The identities below are worth noting in view of their importance in virtually every

practical calculation:
Q _ e B cos’ @ M. — e
Ve " cosOysing Sk Ve * cosBy tang 4.121)
2 e 2 €

M;

TS Mw =8, =M
Kuz + Kdz ’ smOw Kuz + Kdz ) cosGw Sln9w (4 1 22)

€ (< <

1
2 cosOy,

’ gl_ - . ’
cos@cosOy, sinBy

N | —

Br = sinQcosOy, ' Bv 4.1.23)

A consistency check

Schematically the number of parameters e, 0y, ¢ equals the number of coupling
constants g, , gg, gy, Since g' is more or less an auxiliary variable. However, some
models assume g, =g, in which case 0, and ¢ are no longer independent. They are

then related as follows:

_ Jeos(26,,) (4.1.24)

coOs@=———=_sin@=tan0,,, g, =
9 cosOy, 1 w> 8L =8r

57



Chapter Four: Vector-Boson Mass-Eigenstates and Interactions

In that case the mixing of physical fields out of the initial ones assumes this shape:

( \
Z;) |cos@y -sin@y tan@y - tany [cos(20y,) | W°

A, | =] sinBy, sin@y, Jeos(26y,) Wi
R
Z, 0 ‘/cosi 20y, ) _tan6y, \A (4.1.25)

This set of equations is identical with the one given by Mohapatra and Senjanovic [5].

However, in this work we generally permit g, # g .

4.2 Interactions of Vector Bosons
The interactions of the vector bosons amongst themselves arise from the kinetic energy
terms for gauge bosons of the model.

£kin—gaugc = _%W&Vawl,pva _%W’l:,aWvaa _%

v (4.2.1)
v,V

A useful identity is:

1 v 1 + -uv | (/] Ouv , - + - Ov - Ov 0 -v
VAW - —5 Wi W - Wl W +ig(Wo WHEW - Wo WHw WO, WHrwW)

1 + 3y 7 +yy/-V +yyrt+ —xgr-V +ypr— v + - v
—Egz(W“ WIEWS W™ - WIW W W) g2 (W W wOW - wrw o w; we)
4.2.2)
On the left side of the identity (4.2.2) we have
= abc yyrb
Wi, =0, W, -9, Wi +g ™ WPWS 4.23)
On the right side of equation (4.2.2) all field strength tensors are just the linearized curls

!
+0 +0 +0 % 1 = yxs2
Wi =0, W -a, W0, Wi =—(W! Fiw?)

Y2

“4.24)
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The identity (4.2.2) is specific to SU(2), because it relies on properties that are specific to
the structure constants of SU(2), for example €®*e™*=§%§= — 555 .

The set of equations (4.1.20) is to be inserted into (4.2.1) while taking advantage of
(4.2.2). The result is pure kinetic terms, trilinear and quadrilinear interactions.

Pure kinetic terms

£ pure kinetic

= _% WL WL _%A“VAM' —%Z,'IVZL"V __;_ W R _%Zﬁvzmw 4.2.5)
Interactions with three fields

£w w2, =igL cosOw(W.i‘v*WL'“ZL" _ WJ.V—WLﬂAZLv + Z";VW"“‘W'“"') (4.2.6)
£w, wa =18, sinOy (w;v*wL‘“AV —WLTWEHHEAY + AWWL“‘WL"') 4.2.7)

Ew,wez, = -igg sinBy sing(WRrWRHZL _ WR-WRaZLY |, 7L wRwR-v)  (4.28)
Ewgwozy =i8k Cos@(WRTWRHZRY _ WR-WRsuzRY ; 7R yyReuyyR-v) 4.2.9)
£w, wea =igg cosOy sin q,(w;‘;w"-“Av —WRTWRAY 4 AWWR“‘WR‘V) 4.2.10)

Interactions with four fields

‘ Wi WL W W 4.2.11
£WLWLWLWL =—5gL2((W|:‘ wt u)z_w'ia wt uw\f‘ wt ) ( )

: - Ry 4.2.12
Euggw, =58 (WS WErf - Wi wrosw-we-) (4.2.12)
Ewowziz, =81 c0s? Oy (WH WhrZbzLy _wiezlewl-zLv) (4.2.13)
Ewawaziz, = —8r sin?0y, sin? o(WR*WRHZLZLY _ wRezluyR-71Lv) (4.2.14)
Ewwyzaze = Br’ cos? o(WR WRHZRZRY _ R+ ZRuyyR-7Rv ) (4.2.15)
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£ woan = -BL7sin2 0y, (WEWLHA AY - WE ARWL-AY) (4.2.16)
Ewawean = ~gg’ cos’ O, sin’ (p(Wf*WR'“AvA" - W:"A"W"}'A") (4.2.17)
Ewwza = (4.2.18)
g, sin0y cosOy QWL WEHZLAY —WhZUWWEAY - Wit ArWEZY)
£w wezea = (4.2.19)
—gg’cosO, sin@ cosw(ZWf*WK’“ZsA" - W:‘*ZR“W\',"A" - W:‘*A“Wf'ZR")
Ew wezn = (4.2.20)
ga”sinBy cosBy sin? @RWR WRHZLAY — WRZWWR-AY - WR*ArWR-ZLY)

(4.221)

£wkw,l7.Lz“ =

8o’ sindy, singcos@(WR WRHZLZRY _ WRZWWR-ZRY _ yRezRuyR-7Lv)

The corresponding Standard Model parts are reproduced within these interaction terms.

1 1

| v L olpuv
£ 1an dard Model =—5Wuv+wl . ‘ZA;.VA” —ZZ""Z ¥

(42.22)

+Ew o wz, tEwwa YEw woww, T Ew w2, 2, +Ew, woaa tEw w oz, A
. Lt R

Interactions between W,* and Z,, such as £y w7 . £w wzz, - £w, wze»

£w,w,7,z, » do not occur. This is a consequence of the fact that one matrix element in

(4.1.20) is zero, which in tum reflects the way in which the gauge group symmetry is

broken.
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4.3 Feynman Rules for Vector-Bosons

Three-Field and Four-Field Interactions

0

Fu.lp(kl’kZ’in)E (kl _kz)p‘l.m +(k2 ‘ks)“'h.p +(k3 ‘kl)ﬂlw 4.3.1)

Sapys = MapMys ~ Ny Mps ~ NasMpy (4.3.2)

A B C Feynman Rule

7L W owp —igpcos8y o (k, k,.k;) 4.3.3)
A wrow —ieFy, (kg .k, k;) 4.34)
Z, w; wg ietan0yF, (k, kyk;) 4.3.5)
7o Wi W; -—igg COS‘PFmo(kl’kzka) (4.3.6)
A wr o wy —ieFy (kg ky k) 4.3.7)
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Feynman Rule

ig LZ Saﬁ.y&

~g, " cos’ @y, Sap.ys
~ie? Supye

—ieg; cosOy, Sum&
igaz SaB,y&

~gr 2 cos? ® Sepys
—ie’ S
—iegg COSQ Suﬂ.y&
~e? tan? Ow SaB,yS
ie” tan0,, Sap.ss

egg tanBy cose S5 5

4.3.8)

4.3.9)

(4.3.10)

4.3.11)

43.12)

(4.3.13)

(4.3.149)

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)
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Chapter 5: Fermion Interactions with Vector Bosons

S.1  Mixing of Gaugines and Higgsinos into Charginos and Neutralinos

As the Lagrange density is expanded about the vacuum expectation values (4.1.1) and
(4.1.10), the gauginos and higgsinos of the model form linear combination to become
massive physical fields. This occurs in two different places of the Lagrange density: in
interactions of the form particle-sparticle-gaugino (analogues of equation (2.4.3.6) of the
MSSM) and in some of the soft breaking terms. In our model the terms that are

responsible for the formation of charginos and neutralinos are the following ones.

2 a0 - Ay

iV2-ay Ay A% glan 0 -y |+2eavi|| B |+he
0 A -2 A
Me -k (3%

+iv2(-8Y 8 8y feelre 0 —;: “2g Al || 35 |+he.
0 A -2 8"

[d"“ ] +he.
¢2u
(d"" ] +hc.
2

. oo oY 8 -2 \[2_)":. g M V2R
+iv2(e m{z (ﬁli _12‘)*‘7(‘/51; ) ]

e )
2{v2a; A8 g 2%

O (CRRAT R RN) o

2d 2d

J

+ %mL).‘LA.iL + %mkliklik + %mvl.vlv +he.

2 - o B (5.1.1)
+p.2(A;_‘8,_’ T+ALS + A0 )+ h.c.+u3(A;'8R + A dg + A% SY )+ hc.
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The left-handed delta-fermions in (5.1.1.) do not participate in any mixing, as the
corresponding vacuum expectation values are zero by assumption. However, they are
included here, because they are also massive Higgsinos due to u,.

The matrices that need to be diagonalized in order to obtain canonical mass terms are too
big to permit explicit solutions. The diagonalization problems require numerical
solutions. In this case it is advantageous to insert the complete set of vev's (4.1.1) and
(4.1.10) into (5.1.1) and to perform both breakdowns (3.2.2) and (3.2.3) simultaneously.
Inserting the vev's produces two Lagrange densities, one for charginos and one for
neutralinos:

(5.12)

£f' —mix = £ £

chargino + neutralino

The subsequent sections deal with £, and £ . ino in turn. The mixing will be

described in terms of 2-spinors and then 4-spinors will be formed.

5.1.1 Chargino Mixing
£ch argino =
. ~ .o . ~_., IK . SO { 'y - - Yy
iV, BrARAR + Vs, BrORAR + -J—%(gLXL +8rAR )¢2u + T;(gl_k[_ +grAr )¢,d
+ 101,920 + 92, 0ig + MU AL + mpARAL + Psz’ﬁgﬁ +P3Z‘;{8§_ +he.
(5.1.1.1)

To write this Lagrange density in a mass-diagonal form, we need to define the following
chargino states.

+T cat LS € G T
y E(‘O‘L —iAg by b AR)

_T e I e S~ 2
v E(‘ -k by b 8R) (5.1.1.2)

Then:
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( A
m, 0 0 gj;_d 0
BrKd
0 Mg 0 8rVa,
X= \/—2_
BLKy ErKy 0 -1 0
V2 2 (.1.1.3)
0 0 — i, 0 0
L 0 grVs 0 0 —H3

With these variables the Lagrange density takes the form:

T
£d,,gim=— IO XI ]+h.c=—;q1 XT\V‘—%W Xy* +hec.

(5.1.1.4)
A non-symmetric matrix X can be diagonalized with two unitary matrices U and V such
that U'XV ™ =M, where Mp is a diagonal matrix with real, non-negative entries, which

may be called M. Then with a little calculation it may be shown that:

—r— _ (5.1.1.5)

~ o~

£chatgino= MDX x _MDx X =-ZM XIXI

In equation (5.1.1.5) " and %~ are 'vectors' with 5 'components’ like w* and y~ whose

entries are, in turn, 2-component spinors.

=l g ox o x)

Y
b uou o 1) (5.1.16)
And these ‘components’ are, in terms of the diagonalizing matrices U and V:
5
Xi =Zvij‘l1}
j=
- 3 -
ki =§U‘jq’j (5.1.1.7)

On the other hand, the 7; in (5.1.1.5) are 4-component Dirac spinors, defined by:
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% =["—‘_)
ye (5.1.1.8)

The charginos are thus defined in terms of the undetermined elements of the matrices U

and V of (5.1.1.7).

5.1.2 Neutralino Mixing

£

neutralino —

. . ~ i ~
WVa, (— gklgi + 2gvlv)Z°R +1vg, (gR;‘gl - 2gvl-v)sg + 7“(" gL}‘g. + gR;"(:! )¢|ou
+“(Td(g l(:_ ‘gk)\-(:t )E)d +%mL}‘(:.)"(:_ +%mk)‘2ll(:l +%mvl%lov

= pl$&$§d - u.3&33.. + u3Z°R§3 + hc.

(5.1.2.1)
This part is also expressed in vector-matrix-form, if we define:

T ) . . ~0 = L e 5.1.2.2
Q" =(-in} -if -y F & B B OF W) 122
( g K g K \

m 0 0 -2k Sk 0 0 0 O
2 2
grK grK
0 mg 0 Rz - Rz ¢ —BrVa, ~BRrVYs,
0 0 mv 0 0 zgval 2gvV8l 0 O
_Bi%e BRK. g 0 " 0 6 o0 0
Z= 2 2
ng"d - ng"“ 0 " 0 0 0 o0 (5.12.3)
0 -—grva, 28vVa 0 0 0 -H; 0
0 0 0 0 0 0 0 0 p
. 0 0 0 0 0 0 0 wp O
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1 (5.1.2.4)

£ tive = —EQOTZ.Q" +he.
Let M be the matrix that makes Z diagonal and m; be the nine eigenvalues of Z, in other

words MZM" = diag(m,).
This gives rise to a new 'vector’ whose entries are 2-component spinors
T
=l 8 8§ )
0_ % 0
Xi =§M‘i9i (5.1.2.5)

[n addition, there are the 4-component Majorana-spinors

0
1= [X—LJ
Xi (5.1.2.6)

And the Lagrange density becomes

1 l & on
£ peutratino = —Ezmax?x? +he.= -EZmix.”x?
j=1 i=l

(5.12.7)

5.2 Interactions between Vector Bosons and Fermions

The purpose of this section is to work out the interactions between the vector bosons
Wi, WRE . Z-, ZR, A* and the fermions of the theory. The fermions are quarks,

leptons, charginos, and neutralinos.
The interactions of the fermions with the vector bosons arise from the fermions' kinetic

part of the Lagrange density. [n our model the fermion kinetic part is:
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£ kin fermion —

iL*me_r“(a“ -‘gTLt’w;" +igVV“)LLm +iL'Rmc"(au -'gT“t“w:* +igvV“)LRm

S ig, . i _ i i
+|Q[mc“(6" —%t wl -%v“ )QLm +.Q;mo"(a" -%t*w}" —%v" )Qh
+ifi] a"(6, —ig v W —2ig, V, J, +ifi}c" (@, - igat* W - 2ig, V, Jfi,
+iK]c"(9, —ig "W +2ig, V, K +iK}c"(0, —iget* W +2ig, V, JK

L L v L R
FIAL' 0" (5,0, +8, € WAL +iAL"G" (6,0, +8r Cue W )ARS +ikva"d,Ay
+il~=J'E“(a '32L Wl - %r'w:')i'jnﬁj”é"(au 'gzL Bwh g; t'w:‘)?u“

1

+i’ﬁdlta'"(a“ _lgTLtiw':a ng awRa)Fd +|Fd (a _EZL_ awla |g2R aw:‘)Fd

5.2.1)
The next step is to insert the set of vectors (4.1.20), the charginos (5.1.1.7) and the
neutralinos (5.1.2.5) into (5.2.1). Furthermore, the result will be formulated in terms of 4-

spinors. The 4-spinors of the theory are:

d
il izl
VRm €Rm Ur'm Rm
A+ A+ 20 G
~ ~ ~ A
{5 o) () ()
L : R (5.2.2)

+ 0
i =[X—J i =[x_o]
Li Xi

There are several interesting details to the calculation that is required at this point.

However, there is only enough room to summarize the results below. Repeated indices
shall imply summation. Chargino indices take the values 1 through 5 and neutralino
indices take | through 9. Furthermore, generation indices for quarks and leptons take the

values | through 3. Since neutrinos are possibly massive, there will be two CKM-
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matrices in interactions with W'f" and Wfi , one for quarks, (Xmn), and one for leptons,

(Ymn). (The CKM-matrices arise due to field re-definitions in Yukawa-interactions;

compare the general conclusions in Sections 1.7 and 1.8.2).

Interactions with two fermions and the photon

- 2— I— = ~%
£, =€A, q —ev'e, + —3—um'y“um —gdm}'“dm + X,}Y"Xj

+l~)_{y"5: + 25—E*y“l~)t* +2D ;"y"r);*)
(5.23)

Interactions between Z:: and two fermions

£ ———L-v—'11 )v +g, “(——l— +sin’ @ )e
fZ, COSOWSinew mY 27L m mY ZYL w m

+u_':yu(l'yl4 —zSinz Ow )um +d—m.'yu(—lYL +lsin2 Ow Jdm
2 3 2 3
+(l—2sin29 )BFY“ﬁt* ~sin?8,, D} D} Dﬂy"Do -2sin?@,, Df:‘Y"D++

+X, (( )LYL (I);YR)iI*’i?Y“E((Z?_);YL*”(Z?_);(YR)ZE)

(5.2.4)
(Z ),l; Evklv,l +;VBV +;V 4Vj4 —sin OWSJ}
() =uu, +%U;3Uk3 +%U;4U“ —sin20y, 8,
(22}, = %M Mo+ MM ;M;,,Mjs +%M;9Mj9 525
@) =z )
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Interactions between Zﬁ and two fermions

R
eZ'1

£ =——"—o v_'y"(ly +ltan2<p)v +e_y"[—ly +ltan2<p)s
s cos@ytang | ™ (2'F 2 mom 2°F 72 "

— | 1 -— l 1
+umY“(EYR —gtanz (P)Um +dmyu(_57R —glallz (p)dm
—tan’ @ D y*D* —tan? o D v*D{ —tan?g ﬁy“ﬁg +(l—tan2 q)) FyeDE

+'i}v“((zﬁ )_'i-k 7L+(ZE ):( Tr )i:*‘i??u %((Z?t )ij L (Z% ):‘ Tr )ig)

(5.2.6)
(i) = vV, +%v,:3vj3 + %v,:,,vj4 —tan? VsV,
(ng i = U;ZUI:Z +%U;3Uk3 "‘%U;Uu ‘laﬂz(PU;sUks
(3 ) E%ML,M,, —%MLSMJ-S +%M;8M,~8 —%M;‘,Mj9
+{-1-tan? oMM ¢ —(-1-tan? oM, M}, 527

(@) =Lz )

Interactions between W:* and W}* and two fermions
£?wa,fwa =

g + - -
V2

+ 8 +
J%WR (Ymn mY TrEn +xmn mY YRd )+h.C.

o~

+8|.W;1L+(— L'y"D{ +Diy*Dy )"' hc.-gg W:+6§+Y"(V|:SYL +UgsTr )i; +hc

+gLWL+X,, (LJkYL+LJ1(YR)i£+h'c'+ng:+i;Y( Riuvo+ ﬂ(YR)io+h£

(5.2.8)
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. | S 1 .
Lﬁk =My Vi + =M Vi + =My Vj5

V2 2

l ] l .
L'}k =-UyM,, —ﬁupMu _EUﬂMks
. l * L l .
R =-My,V; +J_5'Mksvj4 +M6Vis +"/_5Mk9vj3
 J l . . l .
R;( =-U;pM,, -—=UzM,, + UisMy; ——=U; Mg (5-2.9)

2 2

53 Feynman Rules for Vector Bosons and Fermions

The list of Feynman Rules contains interactions between two fermions and one vector
boson. The vector boson is the photon A or W, or Wy .

Feynman-Rules for Photon Interactions

Au
f f

f Feynman Rule

€, ieY“ (5.3.1)

u, .2 (5.3.2)
—legy“

d, | (5.3.3)
ICE‘Y“

T ~iey, (5:3.4)
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D; —iey, (5.3.5)
D - 2iey, (5.3.6)
Bt ~2iey, (5.3.7)

Feynman-Rules for Interactions with W:‘i and W:‘i

1y
fi f
f, f, W, Feynman Rule
o Vm L : 538
© Y W“ - lgT;YmnY“YL ( )
-
v, €n Wp _ig_‘/;_Y;mquL (5.3.9)
d, u wh+ .8 (5.3.10)
T = SR
\/i mn L
L-
u, d, W, —i%x;mY"YL (5.3-11)
€n  Vm W&t : . (5.3.12)
H _lgT;YmanYR
R-
Va Em Wu _igT;YanuYR (5.3.13)
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_ig_Rx. anYR

w/i m
- gT;Xn mY“YR

ig "
igLy"

—ig.y"

—ig 7"
igRyn(VI:SYL + UksYk)
igRY"(VksYL +Uistr )
—ig y" LI}kYL + LI}RYR)
- igLY“(Lli;YL + L?(;YR )

—igpy" R}‘kYL + R?kYR)

- igRY"(Rllf;YL + RE;YR)
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Chapter 6: Scalar Mass Eigensates and Interactions with Vector Bosons

This chapter provides the last set of Feynamn rules of interest to this work. These are the
Feynman rules for vector bosons and scalar particles, which are Higgs, sleptons, and
squarks. The task is similar to that of the previous chapter: finding the physical Higgs
particles that are formed as symmetry breaking takes place and inserting them into the
Lagrange density along with (4.1.20). However, this chapter is organized differently than
the previous one. In Section 6.1 we shall work out the consequences of inserting (4.1.20)
alone, because this leads to a useful intermediate result. Section 6.2 presents the physical
Higgs fields and Section 6.3 gives the scalar-vector interactions in the finished form.

Finally, Section 6.4 lists the Feynman rules.

6.1 Interactions of Scalar Bi-Doublets and Triplets with Vector Bosons
The interactions between vector bosons and scalar particles arise from the covariant
kinetic energy of the gauge bosons that are specified in Table 3.1. In our left-right

supersymmetric model the relevant part of the Lagrange density is:
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2

£kin.salt -

X 2 .

2 . . 2
1g 1g O
+’(a“ ——2R—‘[aw:‘ —-3—VV" )ka

+[0, ~ig W2 ~2igyV, JH, |+, ~igat* W ~2igy V, JHa|

+[o, g W + 2ig V, K [ + [0, ~igar* W +2igy V, K

(. g i . g ig :
+{o, -Bqw _%taw:a)p; +{o, - Brawis B oy e
\ \
(, _ig ig " e ig :
+ \au ——2—Ltin ——-Z&t’W:')FJ + \au -th;w;‘ —Tﬂt'w,{“]ﬁ:‘ (6.1.1)

Next the set of equations (4.1.20) that relates the gauge bosons to physical vector bosons
is inserted. The results can be expressed conveniently in the form of seven summation
rules. The advantage of these rules is that the choice of vacuum expectation values of our
model versus another is left optional. In fact, the choice of the Higgs sector altogether is
left optional. If the Higgs sector were different, only the summation over the specified
particles would have to be altered in a self-explanatory way. Here are the results from
inserting (4.1.20) into (6.1.1).

1) Two identical scalars and one neutral vector

= s, tapn
£xxA.xeL.xeR =ZIX o"'x
x

ez ZR
| Q,eA, +——"_——(t{" -Q, sin’ 0y, )+#— o —Ltanz(p)
cos0y, sinfy, cosOy, tang@ 2
6.1.2)
The sum is over all possible scalar fields:

Vim: ELm> VRm> Rm* Uim> dLm, Ug e dRm,
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—ALH’ AL+, ALO. —AR++’ AR+’ ARO, —SLO, SL-’ SL--’ _8R0, SR-’ SR--,
0 - 0 0 - 0
¢lu’ ¢2u s ‘bru’ ¢2u ’ ¢ld= ¢2d’ ¢rd? ¢2d

au

3,-d

n

2) Two scalars x and y of different flavor and one charged vector

XYLWE XpyaWa

Z (igLVT[’_‘yx:_épYLwt++igL TE’yLé"xLW‘{‘_)

XY
i Y= . . .= _ (6.1.3)
+ z (lgm/T,’{yxka"yRW‘:1 +|gm/'['|’{yyka"ka: )
Xp.¥Yr

The summations are over the following pairs

(x.y0):

CrmEim)s @medin) Cac780 ) (0078,°), (8.2.5,7). (,7.8.7).
(68,02, ). (6783, ). (%034 ). (672.0%)

(xg.yg):

Fem o) e drm ) 8072807 ), (a2 26°)s (862,857, (e85 ).
(6002, ), (6103, ). (63034 ). (672.9%)

Moreover, the following replacements have to be made for squarks and sleptons:
U7 0 = Xl @y s dp 0Ty, - (X' ) dr 045,

E.Rmé“a‘km - i'.““i']‘l.tmél".a‘Rn’ a;méuERm - (i'l' )mnal.lméwﬁkn

~e -l_l"‘-' by ~e ~u~ -~ ~“~ ~f ~e "u—u
n o, 0"€ o, = Yoon, 0"€ ., € 0" —-)(Y )m,,eLma n,

6.14)
~ -“~ 7e ~a "u~ ~ ""~ T ~g -u~
ana €Rm —>Y,,,,,ana €Rn> €RmO ng,. —)(Y )Mckma ng,
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~2
) o ('l‘,i‘y + l) is the eigenvalue of T., in other words the quantum number of the angular

momentum operator in SUi(2)-space with respect to the multiplet of which x,_ and y,_ are
members (and similarly for 'R'). Charged vector bosons that mediate flavor changing

interactions clearly recognize the fields they interact with by the dimension of their SU(2)
multiplet. By contrast, t;* is the eigenvalue of the third component of the angular
momentum operator in SUi(2)-space with respect to the field x (and similarly for 'R’).

For a field x that exists in the three-dimensional representation of SU;, (2): T =1 and
(t* = £1,0, while in two dimensions: T =% and t;* = i% (and similarly for 'R’).
3) Two identical scalars, two neutral vectors

L]
£xxAA.xeL7.L.xeRZR,xxAZL.xxAZR.xeLZR = Z XX
X

2
cZ- eZ® Y
*|QeA, +——X (¥ -Q, sin?0 +—"(l3" - —% tan?
(Q 7 cosOy sinOy (e -0, w) cosOy tangl * 2 T ?J1 (615
The summation is the same as under (6.1.2).
4) Two scalars of different flavor, one neutral vector, one charged vector

XX AWE X Xg AWR X X, Z W X XgZ Wi X X Za W X XgZg Wi

2 (gLﬁx[yLWu“ 8L Tl’_‘yy:_x,_W:;')-«Qx +Qy)eAu

XYL

eZt eZR Y, +Y

——* {4t -(Q, +Q, )sin20y Jr———B {3 g3y X7 Y 4an?2
cos8,, sin(i)w(L L (Q" Q,) w) cosfy, tang| * ® 2 ¢

+ Y (ga T xpYa WE* +gg Té’YRxRW.f‘)°((Qx +Q, JeA,

XR-YR

Y An eZ® Y +Y
+_“(¢{" +;Y —(Qx +Qy)sin29w )-f—“—(t,’(" +3 —‘—zimz(pJ

cosO,, sin0,, cosOy, tan¢@
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The summations in (6.1.6) are the same as in (6.1.3).
While the phi-Higgs scalars interact separately with Z,, W;" and W; (see (6.12),
(6.1.3)), it ums out that they do not interact with the combinations Zy W, and Z, Wy.

This is so because the combination of quantum numbers ty +% —%(Yx +Yy)tan2(p is

zero, if x and y are two phi-Higgs of the same SU(2)-(bi)-doublet. In that case

X

tg = % = -ty while Yg.. is generally zcro for phi-Higgs ficlds. It follows that phi-Higgs

fields cannot change flavor through interactions with Z, .

3) Two identical scalars and the combinations W, W[ , Wy Wy

XX WIW xgxgWaWg

Zgﬁ(T,f (tx + I)—(ti")z)x'LxLWJ'*WL‘“ +Zg§(T,’;(T,§ +1)—(t;")z)x;ka:*w“-"
Xg

XL

6.1.7)
The sums run over all possible scalars, not forgetting that the bi-doublet fields must be
considered in the left-sum as well as in the right-sum.
6) Two identical phi-scalars and the combinations W' Wy , Wg W[

Because the phi-Higgs bi-doublet scalars transform under both SU(2) and SUg(2), they

do not 'see’ the gauge bosons differently.

£“wgw; = ZELQR\/TI’.‘(TC + l)—(li")z\/T,’l‘(T,’{ + l)"(‘l3tx)2 X.X(WJ'+WR-" + W:+WL_")
X=0,.94

(6.1.8)

The sum is over phi-Higgs fields only.
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7) Two triplet scalars of different flavor and combinations of two identical vectors
Triplet delta-Higgs can change the flavor such that the electric charge between the delta-
fields changes by two units. As a consequence both of the participating gauge bosons
must have the same electric charge.
£ oawowe aawew- =

T Ik y WE WL + g2 Ty x, W W)
XLoYL

+ YT xpy W WR 4 g2 Ty a g WRWR-)

XR.Yr

(6.1.9)

Summation over

(stYL)3 (_ALH’ALO)' (—SLOvSL--); (xR’YR): (‘ARHvARO)’ (_SRO’SR—-)
Equations (6.1.2) through (6.1.9) complete our task of inserting the physical vector

bosons (4.1.20) into the Lagrange density (6.1.1).

6.2 Interlude:

Mixing of Scalar Bi-Doublets and Triplets
Here we formally define the mass eigenstates in the Higgs-sector. These states arise from
the D-part and the soft breaking terms of the superpotential. As in the case of charginos
and neutralinos, there are matrices to diagonalize numerically and results will be written
in the form of undetermined matrix elements. The relevant parts of the potential may be

taken to be most generally:

1 1 1

a a 6.2.1)
Viup erpotcntial-Higes = ED?.DL + ED;DR + ED'D' + Veon
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D} =ELgwr) + B Rl eE) 4 gy en + B g o]

+gLHLTtaHL +gLKLTtaKL
D2 =g7kp;'ep; +%RF,§":‘F,:' +%RF;%°F; +§2&F;"r'rj'
+gRHthaHR +gRKRYt'KR

D' =%"(2HL“HIL +2Hg 'Hg - 2K, 'K, —2KR*KR)
Vir =mZEF e m2F'EY + m2E! Fl +m2E"'E
+miHg "Hy +m2K 'Ky +m2H, "H, +m3K 'K,
-my ud( Flit’F) +F"l1:2Fd) mwd( F'T 2F"T Fl:'titzF‘:t)
—md (AR + ARy +A%EL )-m2. M(A*,{’s,;" P A‘;*s‘,{')

. (6.2.2)

o —— + o +t I PR teot

The superpotential conventionally enters into the Lagrange density with an overall minus

sign. We have to insert into (6.2.1):

¢?u - (xu + HO +|z|u)

(VA, + HA. + iZA,)

0 -0 .
(xd +Hyy + lsz) ("sl +H;, +lzsk)

0
¢4

'ml—&l*
{
;ﬁl_k\l—ul—

¢?d '}‘—(H + lZl(l) (HAL + IZAL )
¢(2)u (H wt izgu) "o \_/l'-_é-(HaL + izsl. ) (6.2.3)

The neutral scalar fields in (6.2.3) are split into 'real’ parts, which are scalars (CP-even),
and ‘imaginary’ parts, which are pseudo-scalars (CP-odd). The scalar fields mix to form
Higgs fields that are denoted with letters H and the pseudo-scalars mix to form fields that

are denoted with letters A and suitable superscripts. The mixtures of charged scalars are
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again denoted with letters H and suitable superscripts. As in the mixing of charginos and
neutralinos we need to define a few 'vectors'.

Doubly Charged Fields

6.24)
& =l ny)
++ ++ --* ——T H. -
R
(6.2.5)
++7 tt ti
Yoo E(Hi H, )
Singly Charged Fields
+T + -* - + - + + -*
X E(AL oL b2¢ $ 92 b4 Ar g )’
_T +* - - +* .- +°* +* -
X E(AL 8[_ ¢2d ¢lu ¢Zu ¢|d AR 8R )’
T (6.2.6)
yt E(H;: H; H; H; Hf H G; Gi)
Neutral Fields
" =(H, H, HY HY, HY HY M, H,)
Xy = A 5y Id 2u fu 2d Ag & /0
y =00 H oM omd e om M HQ),
T
Xg E(ZAL Zs, z?d Zgu Z:)u ng Zay Zsl )’
6.2.7)

v =(a} A3 A Al Al Al G G
The indices 's' and 'p' are to remind of 'scalar’ and 'pseudo-scalar' respectively. There are

two charged Goldstone bosons for the left-handed and the right-handed charged vector
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bosons and two neutral Goldstone bosons, similarly giving mass to the left and right-
handed Z-bosons. The masses of the Goldstone bosons are theoretically zero. In order to

make uncomplicated use of Einstein’s summation convention we may also define
H:,: EG;‘, H: EG§, Al = Go, Ag ng (6.2.8)
Without loss of generality we may assume that the superpotential has been expanded and

those pieces have been singled out that are quadratic in the fields and therefore

responsible for mass terms. This part of the superpotential has this form:

£ poucntial- Higes Masses = ZXL ;(Mﬁ)uxL ,+Zl" ( ).
i,j=1 i.j=

+ Zx (M" ),Jx +— szl(Mo)ux‘ i+ prl(Mo )“ Xp, (6.2.9)

i, j=I | =1 | =1
The matrices 'M' in this equation (6.2.9) have the dimensions of the cormresponding
‘vectors' and they are real symmetric. The matrices ‘M’ are diagonalized by new

orthogonal matrices 'R’ such that
(Rﬁi )ij(Mﬁi )jk (Rﬁi )lk = diag(m,ﬁ, mfi),

(Re<),ME %) (REE), = diag(me®, m22),

(Rt)lj(Mi)Jk(Rt) (m., ,m6,00)
(R2); (M2 )5 (R? )y = diaglen?, ... m2, )
(RS);(M2),.(R2), = diag(m?, ... m, .0,0) (6:2.10)
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Hence, the matrices 'R’ of (6.2.10) can make the potential (6.2.9) mass-diagonal:

2 L 1$ 0.0.0 8 0.0_0
£pul |»|=Zm[+_ lyL Y[, ,*‘Zmitl)lk i¥r |+Zm Yi yl _2'§m3|y51ysl _gmplyplypl

i=1 i=l
6.2.11)

The new fields 'y are related to the old fields 'x’' through
YIilti =(Rit)ijx|tzi,-v Yf i (RL )u XL y, (Rt)u Xj»
Yei =(R2)i,-xf,-, Ygi =(Rg)ij"g,-

We do not attempt to obtain explicit expressions for the matrices 'M' and 'R’, however

(6.2.12)

numerical values for the matrices 'R’ may be obtained from the literature [26], which is

sufficient to make practical calculations with the corresponding Feynman rules.

6.3 Interactions of Higgs Fields with Vector Bosons

The symbols for our Higgs fields have been defined previously. The final step is to take
the Lagrange density pieces (6.1.2) through (6.1.9) and insert first (6.2.3) and then
(6.2.12). In so doing, we single out the interactions of three fields of which at least one is
a vector boson and the others are Higgs or Goldstone bosons. To our knowledge
interaction Lagrangians and Feynman rules like the ones in this part of the theory have

not been published previously. The results are listed below.

& . (6.3.13)
E ol AN A = 2|eA“§Hi S H[" +|eA"zl:Hi O*H;
= 1=
&2 o 82 - . (6.3.14)
£H‘H"wn =—|gR;ZIW':{ Hj akaal‘jk—lngZlZ'w: HkauH; al'jk
=l j= =l j=
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8 4 8 4 -
£ eow, = 18L 2D Wy TH O Hia, i —ig 2.3 Wy THO*H " a,
k=t 3 k=1 j=3

8 8
. R -2 . R-15053
£ onew, ="iBr {V_“w" *H;0"Hia; ; —igg :,:'wu HY6"H a,
j‘ =] j' =

8 - 8 -
£ =-ig, Y W, 'H;0"Hpa,; —ig, D W, H{8"H}a,

HOH* W,
Jk=t jk=l

8 8
Ripr -3 a0 R- , 03
=-gg Zw" 'H;0"Avas; +8g ZWu Apd“H;a
Jk=l jk=l

£

ACH W,

8 ]
Ligg-3 L-,0373
£A°H'wl_ = —gl_ kzlwu Hj a“Aga&jk +gL kzwll AkauH}ank
jk= k=t

8
_ 2 uReyRp 0
£H°WRWK _gRWu w ZHjau’
=
2 L L & 0
— ol + -u
£ow w, =BLW, W Zﬂja&j

I

8 8
L - -
£ 0w, w, =88R W, "W Y Hiag; +g go W W" *D Hjay,

)=l j=l
g2R ReysR+ 2 gﬁ R-wuis/R 2
£ .. =— WITWRHN Hima, - 2R W WRBY Hi*g, .
H™ W Wy /2 u JZ_I: 3 99 /—2 B ;‘ i 99
R+ % R
+ - -
£ aw, =CBRAMW, ZlHjam,j+egRA“W" D Hjay,
= =
LS . 3
- - +
£H.AWL =egLA"W,1 ZlHja,,'jﬂegLA“W'l '|Hja“'j
= i=

8 8
2 + - 2 .
£nw, =ERZR WS ZlHja,z'jJrg;z;;wf D Hja,,
F §

(6.3.15)

(6.3.16)

(63.17)

(6.3.18)

(6.3.19)

(6.3.20)

(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)



Chapter Six: Scalar Mass Eigenstates and their Interactions with Vector Bosons

£, ‘Z, Wq ngkluwMZH 313,+8LERZ"WR ZIH+313_,
=
£z, —gLL"WL"ZH ay +gLL"WL'ZH+a“J
FI 5=l

The coefficients that appear in equations (6.3.13) through (6.3.28) are:

ay =(Ra*) R ) +RE2), . R® i

a5 = R R2 ) +HRES), (R
=g(kf),-,;(ks)kj—%(af)“(kf)u

3R RS R )R- R @) R2)es

a4k =‘%(R iR )i~ J—( R*),,(R ).
+%(Ri)j.s(kg)k:s‘%(Ri)j.a(Rg)k.ﬁ%(Ri)j.s(Rg)k.s—‘;‘(Rt)j.6(Rg)k.6
as.ji =%(W)p(ko)kﬁ%(w)u(ko)

l (Rt); S(Ro)k stS (Ri)j 6(R0 )k A~ N;] (Rt)_l 7(R0) J_%‘(Rt)j.tl(kg )k.s

..

1 (s 0 1 [+ 0
ag ji =7—2‘(R );,.(Rp)k,.—-J—i(R )LZ(Rp)kJ

+‘;‘(Ri)Ls(Rg)u*%(Ri)m(Rg)u*%(ki)j.s(Rg)k.S’“%(Ri)j.ﬁ(Rg)kﬁ
a; = |<2 (Ro)p‘“ 5 (RO) 6+Vay (Rf )L7+"6. (RQ );s

ag; = %“(Rg)j.s*%d('{g );6

_ t1 tt
g = Va, R: )u+"8. (R )j.z
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6.3.27)

(6.3.28)

(6.3.29)

(6.3.30)

(6.3.31)

(6.3.32)

(6.3.33)

(6.3.34)

(6.3.35)

(6.3.36)

6.3.37)
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(6.3.38)
a0 = “'(_2"([*i )j.s+%d(Ri)j.6+%(Ri)m+ ‘:;% (Ri)is
ay; = '%(Rt);us +K_2d(Rt)j6 (€339
P ) (6.3.40)
ap;= —71—2‘%9("11. (R\t )j.7 Vs (R_ )j.s)

a3 =COSQW(——'Szl(Ri)j's*__‘;A(Rt)jﬁ)+ sin? Ow (_ ‘:/AER (Rt)jj*'%(Rt)j‘a] (6.341)

cosOy

(6.3.42)

64  Feynman Rules for Vector Bosons and Higgs Fields

The list of Feynman Rules contains the interactions between three fields at least one of
which is the photon A or W or Wy . More rules may be drawn from equations (6.1.2)

through (6.1.9) according to circumstances.

Feynman Rules for two Scalar Fields and one Vector Field

V.
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v, S S; Feynman Rule
A ﬁ[_n ELII —ize(p-o-q)“ (6.4.‘)
3
A ug, Ug, —ize(p+q)“ 6.4.2)
3
A do A ize(pra)® ¢4
A dg, dg, i% e(p+q)* (6.4.4)
A ELII E[‘n ie(p + q)"l (6.4.5)
A Er, Ra ie(p+q)* (6.4.6)
Cwo v, R g e T (64.7)
L L Lm "T;(PW)"(YT)M
Wy €La Vim 8L " (6.4.8)
—.|_( + Ymn
NG P+q)
wl; an ERm . gR ulS (6.4.9)
—iZR (p+q*lY
ﬁ(p q)( )mn
We g VRm g < (6.4.10)
T 500V ),
W, UL, d 8L alt (6.4.11)
—1==(p+"\X" ).,
EL (prqp(K')
Wi d, Up gL o (6.4.12)
" —i==(p+q)" X,
5
Wy u d .g s (6.4.13)
R Rn Rm _lT';_(p+q)u(x )mn
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A g T H-  —2ie(p+qticfl.al (G415
A H! H; ~ie(p+q)*,ie{l.8} (6.4.16)
w w I} igea, (P je L2l kefl.8 G417
Wy H H igra, u(p+q)*.je{l,2} .k e{1.8} (6.4.18)
w wT By igeasu(p+q*.je Bd)kell.8)  (GAI9)
' H H; ig a,, (p+q)*,je 3,4}, ke {1..8} (6.4.20)
wg H, HO igea; P+ ke fl.8)  (6420)
Wy H} H? igra; x (P+q)*,jk e {1..8} (6.4.22)
Cwy TR H ig 2, (p+q) pkefl.8)  (6423)
W HY H} igia, (p+q)t.jke {1--8} (6.4.24)
wg TR Al geas.(P+Q)* kel 8 (6425)
Wy Hj AL —grasu(P+q)*,jk e {l.8} (6.4.26)
Cwr T Al g2 P+ jke{l. 8 (6427)
' Hy A} -g136,(p+9)*,jkefl.8} (6.4.28)
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Feynman Rules for one Scalar Fields and two Vector Fields

S
A P
w* \'\'
S wt W Feynman Rule
Hj We Wr igrasMa,-i€ 1.8} (6.4.29)
N TN e e < AT @6y
W TTW T g erag i e 0843
HY w; Wy ig, grag, M- € {1.8} (6.4.32)
"""" 7 wWgwr | Cdigtagma.efay 6433y
Hj We Wi  —iglagn,,.je 2} (6.4.34)
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A S

w* 9
In the above diagram the charged vector boson, be it positive or negative, is always

meant to be going into the vertex. The arrow of the corresponding charged scalar field S

is omitted. It flows such that charge conservation is not violated.

Vv, w S Feynman Rule
A Wi Hj iegra 9N J € {l --8} (6.4.35)
A Wi H; iegrajo N, -j€ (1.8} (6.4.36)
AT we H,  iegagma.je(l-8] (6437
A W, H} ieg ay N, je {18} (6.4.38)
e wg H;, iglag na.jc 8 (6439
Zy Wi H; igf{alzvj'qm_ .jefl..8} (6.4.40)
oz, T wi T ig graNu.icfl.8f (64.41)
Z Wy H! ig 8ray3 M -i€ {1..8} (6.4.42)
oz, T w2 T igla, na.jcll 8 (6443)
z, W H; gl na. eyl (6444)
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Chapter 7: Magnetic Moments and Quadrupole Moments of W,"and W;

7.1 Magnetic Moments and Quadrupole Moments in Left-Right Supersymmetry

The magnetic moments and quadrupole moments of W;" and W3 can be read off from
the vertex function [** calculated for interactions between the photon A and two Wy or
the photon A and two Wg. The magnetic moment is called x -1 and the quadrupole
moment is AQ . The most general CP- and U(1).m invariant vertex, when all particles are

taken on the mass shell, is:

2
w

QMP = qpnul _qlnup’ pHe = 2Punw +4QMP

e = ie(AP“*P +2(x —1)Qe +4AQ—p“q‘q"]
M (7.1.1)

At tree-level the tensor structure of ™ is not complicated enough and one merely finds

A =1, k-1=0, and AQ=0. In order to produce all the terms of equation (7.1.1) it is

necessary to calculate the vertex function [ at least to one-loop level. Figure 7.1
indicates the basic process that needs to be calculated. The particle masses and the
momentum variables that correspond to the form of (7.1.1) are also shown. The particle
that connects to the photon carries mass M and the particle that does not connect to the
photon carries mass m. We use the mass ratios t and o respectively as well as the fine-

structure constant a. .

el M m (7.12)
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AN

w*, (p-q) W*, (p+qf

Figure 7.1: Vertex for the interactions AW, W, or AW W, at one-loop level. The W-
bosons are strictly on the mass shell and the photon is taken in the limit ¢* — 0.

The virtual particles of the internal lines depend on the particle-content of the model. All

loops may be assigned to four distinct classes of problems indicated in Figure 7.2.

w Cb w st Cb sl f é fl w é W
/ ZaA \ / 2 \ / o \ / H \
w w w w w w w w

Figure 7.2: Classes of Loops; 'sl' and 's2' are scalars, 'f1’ and 'f2’ are fermions, and H
must be a Higgs-type scalar.

Tables 7.1 through 7.4 in the sections below list the results for all possible loops of our
lefi-right symmetric model. The possible particle combinations for the internal lines are
specified in the tables. The Feynman rules of the three previous chapters have been used.
The calculations are made with the dimensional regularization technique ({1), [10], [27])

and in unitary gauge ([28], [291, [30]).
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7.2  Virtual Supersymmetry

One crucial but outstanding test of the Standard Model is the observation of trilinear and
quadrilinear gauge boson interactions. Such interactions have been discussed in Sections
4.2 and 4.3 and it is clear that they represent the non-Abelian structure of the Standard
Model gauge forces (see the remark on top of p. 59). Experiments of the near future are
aimed at the direct observation of three gauge boson couplings and it is here that we hope
to observe signals of supersymmetry too. The interaction type shown in Fig. 7.1 is
equally a trilinear interaction but with virtual particles plugged into the vertex. The
contributions to the magnetic and quadrupole moments depend on the particle content of
a given model, namely the combinations of particles that can be taken as virtual particles
that contribute to the process. Thus it is hopefully possible to see effects from
supersymmetry particles, even if the supersymmetry particles themselves are not
observed as yet. One is justified to speak of virtual supersymmetry.

A recent calculation in the MSSM framework of the magnetic and quadrupole moments
of the W-boson [31] ended with a conclusion that may be interpreted pessimistically as
well as optimistically. Even if there are deviations from the Standard Model fit in the
expected data output, they would be too small to be interpreted in favor of MSSM-
supersymmetry. On the other hand, quantities that are hard to observe are the cleanest
observables in favor of the interpretation of new physics, once something unexpected has
been measured. If MSSM-supersymmetry is not what one may reliably expect, then we
are doubly encouraged to hope that deviations from the Standard Model fit point to our
left-right supersymmetric model, since its additional particles may produce more striking

deviations from the Standard Model.
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The following sections list the results of the calculations of the magnetic and quadrupole
moments of the W-bosons of the model. The formulae have been compared with
calculations that have been performed previously in the Standard Model [28], in a
supersymmetric version of the Standard Model [29}, [30], and in the MSSM [31]. While
the particle content of our left-right supersymmetric model is richer, not all particles are
new ones. Hence, several formulae have to be either identical or similar in form as
previously. The result of the comparison is that the formulae in this work are reliable.

The next step to undertake will be a numerical evaluation of the results given in the
following Sections 7.3 and 7.4. The current numerical value for « can be taken from

Ref. [4] and Ref. [33]. The full magnetic moment is given by p,, =e(l+uc+l.)/2Mw

and the electric quadrupole moment by —e(x—k)/ MZ, . In the Standard Model, at tree
level the values of the variables are x =1 and A =0. Ref. [33] reports:

-1.3<x <32 for A=0 and -0.7<A <0.7 for x =1 in p;-)—bevcyx and pv,yX at

Js =18 TeV.
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73  Magnetic Moments of W and W7
Table 7.1:  Contributions to the Magnetic Moment of W,
The External Fields (Fig. 7.1) are AW, W
Particles in T c x-1
the loop
W, WA 1 0 S5a
3n
1
WL WL Z, Mz, 2 ! lz4 +52° -182% +16z-8
w, = —— =
16n%| 3 6> 6 , o(1-z)+2
ELn ﬁLn al-m Mil—n di., ng 2 2( a l)
-N 2 = Idz
Mw, My, 1622\ 3 ,,,(1 z)+z +z{e -1)
aLn aLn U Md"v,.. Mg, N B (—l)X X Idz z' -2 —zz(t,z, —l)
My, My, ‘16n’\ 3 ol(l-2z)+2 +z(t,2l —l)
ELn ELn vLm M~ MHL 2 3 — 2 2 —
La - _ 8L ( l)YmnYmn Idz - -2z -z (‘t l)
My, My, 16n* (l z)+z* +Z(t )
uLn uLn dLm Mu“ Mdm —N ng (g)x X l— Idz Z —Z +Z +2 (tll “D
Mw, My, “16n2\3 i o ol(l-z)+2? +z(t,2, —l)
dipdiaUe My, M, gl 1. 1 Y 2 -2+ +zz(tﬁ -l)
M M ezl "3 KXmaXma -——Idz 101 Na 2 2
W, W 16n°\ 3 6 , oL(l-z)+z +Z(‘tn —l)
€LaflaVim M, M, g’ ( v |1 ]'dz 2'-2° +2? +Zz(1.’,2| —l)
My, My, 2 "™M6 ¢ oi(l-z)+2? +z(tﬁ —l)
DE* DE* DE Mb;‘ Mﬁ{ B _l__j- 28—z} + 2?2 4-22(1:2 —l)
My, My, 8n*> |6 § o(1-2)+22 +z(1:2 —ﬂ
DI D D" Ms Ms. 8l 1_]&z°—z3+zz+zz(tz—l)
My, My, 8nl6 ; oX(1-2)+2° +z(1:2 -1
D} D{ D} Mz, Mg _§_Li l_]-dzz"—z:‘ +Zz+22(t2—l)
My, My, 8a*\6 ; o(l-z)+2° +z(t2 —D
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Table 7.1 continued

Particles in T c -1
the loop
~+ =+ ~0 M., M_ 2, .
WX 5 i “ng(Ltj Ly +LSLY)
My, My, 8n
1 ].dzz4—z}+zz+zz(tf—l)
6 <5'§(l—z)+zz+z(‘tjg -D
-o (g )
222 -z
. i |dz
(okt]j oz(l—z)+zz+z1: l
H:‘P H;_ H: MHi:: M”: -2 g2 8L, a +“'dz Z _27 —ZZ(TJZ—I) \
My~ My, gn? HTHE 3T I G2 (1 Z)+22+Z(‘l’j"—l))
je{3 4}k e {i..6}
+ - ptt 3
My, My, ga? WM 0 ok(l—z)+z +‘(t12 ))
ke{3,4} je{l 6}
H: H; H(k, MHI! MH? —ia Y .(l*_“'dz 22 -z (tf_l) 3\
My, My, g2 MHTAM 3 o oi(1-z)+22 +z(tf—l))
jefl.6}, ke{l 8}
I H; AL My My g, . -(l+ljdz 222 -2 -1) )
My, My, gn2 oY 6"(’\3 0 oi(1-z)+2? +z(1: )
jefl. 6} k efl.6}
W W H? 1 MH‘,? gt a Idlz -223 + 472
202 28,8 2
My, 2r*My, i-2)+22
_]G{l..6}
Wp W HY My, Mo gigk N t[dz 7' =27’ + 422
Mw, My, 327°M3, i KNP oi(1-z)+22 +2(x-1)

jefl.6}
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Table 7.2: Contributions to the Magnetic Moment of Wy
The External Fields (Fig. 7.1) are AWy Wy
Particles in T c x—1
the loop
W, W, A I 0 e
in
W We Z, 1 M, 1 4 3 2 _
MWL c2e? tan2 0 201 5 i[dz—z—z +5z" -18z2° +16z-8
. 16n? 3¢* 6 c’(1-z)+2?
1
We We Zg Mz, C Lt 52 1822 1628
My g (201 5 faz2
" 8n’| 3 o> 6 a’(1-27)+2?
ug, Ug, aRm Mﬁn. M&._ ng 2 % | ldz z' -27° —zl(tﬁ -1
M, My Nelg3 KmeXm 3+ ) 2(1-2)+ 72 +2(c -1
R Wy 0 Onm Z)+7° +Z\x,
an an ﬁRm Mak.. Mﬁ“ -N ng (_ l)i. e l+ ]-dZ 2t -2 -2° Ti -1
My, My, “1ox’\ 3) " ™3 1 ei(1-z)+ 22 +z(2 -1
ERn an VRm MER,. Minm gRZ ( l)?. ? 1 + ]‘dz Z4 —223 —Zz(ti —l)
My, My, 16n? A I ﬁ,(l—z)+zz+z(t2-—l)
Upg Upq drm My, My gr’ 2 z' -2 +2 +Z"'(t —l)
My, M ~Ner o fdz 7
Wy W, 16n23 ol(1-2)+2? +Z(‘t l)
dry dro Urm Mg, M, N g’ (_l)x. X l—[dz ' -2 +z +z2(1:,,—l)
Mw, My, “16n?\ 3) """ ™" 6 a2 (1-2)+ 22 +zls2 1)
€RoERa VRm M, M, gg ( DY j-d z' -2’ +2? +zz(t§ —l)
Mwn Mwl ne mn 2m(|—2)+22 +Z(‘t§ -1
D' Dr' X Moy My Br” 5 (y* .
=2V, V.. + U U
My, My, P ( ks Vks ¥ Uis kS)

. 1_}&2‘—z3+zz+zz(t: —l)
6 ; 62(1—2)+22+Z(t|2‘—ﬂ

2
g . .
_—8:2 2(Vk5Uk5 + Uksvks)

! 222 -2
[mk (‘,‘ldzcz(l -z)+2? +z(1:§ —D]
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Table 7.2 continued

Particles in the T c k-1
loop
=+ S M.,, N{”H 2 . .
ke D X o ‘ng(Vksts +UksUks)
N{wl Mw. 81(
AR 12 -1
. __Idz
6 oz(l—z)+zz+z(t§—l)
2
- Ex (V vk5+Uk5Uk5)
i
222 -z
°| oty |dz
0 o(-z)+2? +Z(tk—l)]
~+ ~+ ~0 M-.‘ M~0 2 .
whibe JE ok - (RiRY +RERE)
Mwll ka
1 i“dzz ~Z’+2z +z(jz—l)
6 o oi(l-z)+72 +z(tjz—l
2
~Br_(RLRE +RRRE)
! 2
22° -z
o T, |dz
[ kt’(,[ cz(l—z)+zz+z(tf—l)J
Hi" Hi"He M. M, —Zia a -l+l‘[dz z4—2z3—zz(‘tf—-l)
M M gn? TN 3 or(l-2)+2* +zle? -1)
Wy We 0 k ]
jefl,2}, ke{l 6}
Hj Hj H' MH;’ My —§'2‘—a a -(l+]dz z' -2 -72° f )
My, My, gn? YT 0 or(l-z)+22 +L(1:J2
keﬁz}Jeﬁ 6
HiHjHy M, M, &, . (1 Fz z'- w2 -1)
My, My, 8a2 Y9 “’ 0 oi(l- z)+z +T1:2 l)
Je{l..6} ke{l 8}
HiH7 A, M. M, B, . l+}dz 2*-27 -2 -
My My gn Y758 3 1 otl-2z)+2? +z(1:- l)

je{l.6},ke 1.6}
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Table 7.2 continued

Particles in the T c k-1
loop
W, W H) My M, gigd | z* -27’ +42?
M M Tonin2 283 T Idz ) )
we My 32n°M3, 3 5 oi(-2)+22+2(x-1)
jefl.6}
W Wy HY l MH? gy (1 'dzz" -22° + 422
M TrevoR il ko j1-2)+2
Wr T We \ 0 O'j Z)+Z
je{l.6}
Wr W HYY l Mu:* gr (1 'dzz4—2zs+4zﬂ
M ton?ME,_ 7% 3 J 2(1-2)+2
Wa T My, 3 o oill-z)+z” )
jel2}
Wr We Hj™ ! MH{’ gr (1 Idzz4_223+422\
M 16n*M3,_ 13 J o2(1-2z)+2>
We T My, \" o0 it—z)+z
ie{L2}
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74  Quadrupole Moments of W;"and Wy

Table 7.3: Contributions to the Quadrupole Moment of W,
The External Fields (Fig. 7.1) are AW, W,
Particles in T c AQ
the loop
W WA 1 0 la
9=
W Wz, 1 Mz gl I(H_)'Idz 2’(1-2)
My, i6n’ 3\ o c’(1-2)+2°
U, u 5 i M- 31 _
Lo “tm v o _N, & (2)x aXumn j'dz - L - 2) .
W, My “16n23 2(1-2)+ 2% +2(c2 -1)
dndinin Ma, M. 8’ Nge 5 (21 2(1-2)
M M c 2 mn‘*mn I 2 2 2
W, W, ler“\ 3 3,5 oi(l-z)+z +z(1:rl —l)
€, &L Vim M: M;, t 2(1-
Lo VL _: . : (_ e v (2 I 47 (t-2)
W, My, l6 "3 (l z)+2° +z( l)
ug,u,d M, M 2 -
Ln YLa dipm _ \ d, N, g (2))( X, Idz z (lzZ) i
w, My “16n%\3 ol(1-z)+z +z(tn —l)
d ,d ,u., M M, 2 -
L UL d, =N, gL ( l)x X, Idz z (lvz) '
My, W, 16n2\ 3 o2 (1-2)+ 22 +2(2 -1
€10 ¥y Vim M:,, M, gL ( l) Idz z'(1-2)
My, My, mn Yoo 3] 62(1-2)+ 2 +2le? -1)
ﬁt‘* 5I+ ﬁz Mbl’.‘ Mﬁf_ g l]'dz z (l Z)
My, My, 6] o’(l-z)+2? +z('|:2 —l)
D{ D D{* My M, g.l(1 ‘I ” 2 (1-2)
My, My, a6, o’(1-2)+2° +Z(t2 —D
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Table 7.3 continued

Particles in T G AQ
the loop
D;DiD; M; Mg g [1 "‘- i 22(1-2)
My, My, 226, o’(l-2z)+22 +z(‘|:2 —l)
MMM M. M 2
X Xj X i % 8L R*
Tl - Loy +Leik)
1! ’(1-2)
°| = |dz
[6(! ot(l-2)+2? +2\c? -1
H*H;"H;, M,.. M, 2 2! 3(1-2)
LY H H; gL z(l-z
! -2=5a,,.:a,,: = |dz
My, My, 8n’ 24 az'k‘[.'i;! oi(1-2z)+2° +z(tf —ﬂ
je {3 4}k € {1..6}
HyHyH My M, 8 2(1-2) W
! dz
w, My, " 8n g 2222 ! ol(l-2z)+ 2z +z(t —D}
ke {4}, je 1.6}
Hj Hj Hﬂ MH,»’ MHE 2 2! 23(1-2)
v v a4k_|a4kj I (l ) 2 (2_1)
wL wl. 0 YA +Z +Z tj )
jefl.6}.kefl.8}
HY Hj A} M Mg B, . a i[ 2’(1-z)
My, My, ek ek 35 oe(l- z)+zz+z(tf—l)
jefi.6}.ke 1.6}
WL W H? l Mu;’ g 2! || ~z)
M 32 M2 A3.j 38, Idz 2(1_ ) 2
w, T w, ; zZ)t+2
je{l..6}
We We H} My, My, Bigh . . z'jdz 2(1-2)
My, My, 321t2Mf,,L 8178 3, of(l—z)+zz+z(t—l)

jefl..6}
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Table 7.4: Contributions to the Quadrupole Moment of Wy,
The External Fields (Fig. 7.1) are AWy Wy

Particles in the T c AQ
loop
W W A 1 0 la
9
W W Z; ! M, e’tan’ 0y, 8+<:'2 ldz 2’ (1-2)
M 16 2 I 2(1_ ) 2
Wy T o z)+z
W Wi Zg 1 M, gR2 2( )Idz 2} (1-2)
My, 16x” 3\ o2 2(1-2)+ 22
HRn ﬁRn aRm Mﬁkn ME,,,, N gr 2 (2)x x dz ZJ(I Z)
M IV - ma‘‘mn I o2
Wy My, “16n2\3 (l L)+L +£( -1
dy d, @ M; M;, 2 ~ -
o Tk B e ; ‘Nc'gR 2(-1))(:““)( Idz 2 23(1 2 2) 2
My, My, 16n°\ 3 Z(1-2)+z +z(1:n —l)
ERn ERn va Mzkm MﬁRm ng ( ) Idz Zs(l —Z)
My, My, 16n° ma Ymn m(l z)+72? +z(‘r,2l -1

uRn uRn dRm Ml.l

2 3
- gr (2 z(1-2)
N X 2 Xm dz
Mw, ka ‘16n? (3) ( 6“ o,z,,(l—z)+zz+z(t,2,—l)J

an an Urm Mdn M“m gRZ 1 . 2 l ZJ(l -2)
M M Nc 3l T 5 anxmn _Idz 2 2 2
Wy We 16s*\ 3 3; oi(l-z)+2* +z[:2 -1

ERn ERn VRm Mtn M"m gRZ (_I)Y. Y. zifdz 23(1 -2)
Mw, Mw, 16n? maoma 3] oi(l-z)+22 +z( l)
By Dy 7y My My g, fue :
222V, sU 5 +V, U
My, My, ) ( ksUks + Vis kS)

[llj 2 (1-2) ]
6, 2(l—z)+zz+z('l:z—ﬁl)

~f o~ 5++ M._, M...
X, X, 4 (vksvk5 + UkSUkS)

o
IS
=]
%
[

<
£
: l

f1! 2(1-2)
(6 o o o -1)]
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Table 7.4 continued

Particles in the T c AQ
loop
T M. M )
XJ X.J Ak X, 12 gR (Rt' Rk_|+R R:‘)
Mwll ka 2"

1 2’ (1-2)
o| = |dz
(6! oi(l-z)+2? +z(t,z —j]
HPHHD My My, WY S -y o—
LTl 3, Gk(l z)+z +z( l)
jefl,2}.kefl.6}

z’(1-2) ]

2

_8Er_
8n? gq2 2LkidL, k{ Idz o-k(l —z)+z2 +z(1:z —l)
)

HiH;H M, M.

i
ke{l 2},jefl.6}
H} Hj Hﬂ MH,’ MH‘,: 2 2! 23(1—7.)
2a3 ki 33k _I 3 3
My 8 3; oil-z)+2+2lc? -1

jefl..6},kefl. .8}
HiH A} M, . M, ' 3(1-
ity A H AC aSk,aSk,[ j- z’(1-2)
0
eql.

My, My, or(1-2)+2 +2le? -1
6}k e {1..6}
W W H My M H | (1-2)
My, My, ma&jas,( 6[ 2(1—2)+Zz+z(t—l)]
je{l. 6}
We WeHD T My gt . _fgf (1-2) ]
My, 321t2M%‘,ll 7 7"\30 crf(l—z)+z2
jefl.6}
We W II77 ! M- gr a2 (-z—ldz zZ’(1-2)
My, l61|:2M%,,'l >3 ("JK30 crf(l-z)+22)
ie {2}
W Wi H™ 1 Eﬁ g W -—]'d 2(1- z) )
My, 162°M3, 279 2(l ~z)+2%
16{1,2}
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7.5  Cancellation of Divergences
The triangle graphs whose internal lines are all vector bosons are the most difficult to
calculate. In particular, the contributions to the magnetic moments of W and W3

become finite in a very detailed way.

(a) A ) ©
A A
W W,
W, W, w,
/N )
A A
WL A W, WL/ \WL
@ R (©) . ® .
W WL
W W WL
L[
/0N Y 2"\
WL wl wL W,_
(2) A
Figure 7.3: Cancellation of Divergences of Lefi-Handed
W We Vector Bosons
w, w,

In Fig. 7.3 the graphs (a) and (d) define the scope of the calculation as indicated earlier in
Fig. 7.1. However, the remaining graphs (b), (c), (e), (f), (g) of Fig. 7.3 also contribute to
the magnetic moment of W*.

None of the graphs of Fig. 7.3 is finite, if taken individually. However, it has been known
that the sum of all of them combined is finite. The graphs of Fig. 7.3 occur identically in
the Standard Model and were calculated in 1972 [25]. Those results were confirmed in

this work. It should be noted that the finiteness depends non-trivially on the mass ratio:
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1 M, a5s.1)
-
c M,

Only the graphs (d), (e), and (f) in Fig. 7.3 depend on o . If the form of the mass ratio is

=cosOy,

altered, one must check again how the cancellation of divergences overall works.

Now we turn to findings of our own in the right-handed sector. In Fig. 7.4 the graphs (a),
(d), and (h) define the scope of the calculation. The graphs (a) through (g) of Fig. 7.4 all
have analogues in Fig. 7.3 if the label 'R’ is replaced with 'L'. However, in Fig. 7.4 the
graphs (d), (e), and (f) now depend on the different mass ratio:

1 My  cosg (7.5.2)

| r 4 =
c M, V2
Due to interference of the factor l/ V2, not only are the graphs (a) through (g) of Fig. 7.4
individually divergent, but also their sum remains divergent.
But then there is a new set (h), (i), (j) in Fig. 7.4 that does not have analogues in Fig. 7.3
with switched labels ‘L' and 'R'. The absence of such analogues in Fig. 7.3 is a

consequence of the fact that one of the matrix elements in the mixing matrix of physical

fields is zero. We recall that:

WJ‘O cosO, sinB,, 0 Z:;
Wfo =| —sin@sin@y, sin@ cosOy cos@ A, (1.5.3)
V, —cos@ sinBy, cos@ cosOy, -—sing Z:f

(See also the remarks at the end of Chapter 4.2.) The set (h), (i), (j) alone is again both
individually and summarily divergent, but the combination of all graphs (a) through (j) of

Fig 7.4 is found to be finite.
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In summary, the cancellation of divergent terms has worked exactly. The exceptionally
difficult graphs of Fig. 7.3, 7.4 serve as a grand consistency check for the form of the
mixing matrix (7.5.3) and the two different mass ratios (7.5.1) and (7.5.2).

(@) ®) ©

(é\ > A A \

W. wl

) (e) ®

S “ =N\

Za
We Wi We
(8) A
w Figure 7.4: Cancellation of Divergences of Lefi-Handed
N We Vector Bosons
Wa W,
) (i) \ @ .

{é\ w/ ) AN

Wa W, W,
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CONCLUSION

The theoretical appeal of supersymmetry in building gauge models has been presented.
Radiative corrections to scalar masses of scalar particles cancel and supergravity is
shown to be capable of developing a globally supersymmetric low-energy limit plus soft
supersymmetry-breaking terms.

A lefi-right supersymmetric extension of the Standard Model has been proposed. The
symmetry-breaking pattern of the lefi-right symmetry has been described and the mixing
of physical vector bosons from the gauge bosons of the particle content has been put in a
neat form using two mixing angles that correspond to two different stages of breakdowns
that break SU(2).xSU(2)rxU(1)s.. to the electromagnetic symmetry U(1)en. The right-
handed vector bosons are shown to have a mass ratio that is different from the one of the
Standard Model, because the corresponding scalar particle that receives a vacuum
expectation value is a member of an SU(2)-triplet.

Rules have been formulated that summarize a large variety of vector boson interactions.
The interactions with scalars and fermions are shown to be proportional to functions of
quantum numbsers of the involved particles and of the two mixing angles 0, and ¢ . The
summation rules in Section 6.1 for vector-scalar interactions may even be useful in
models different from ours. For example, Ref. [21] raises the possibility of extending the
Higgs sector in order to better describe parity violation. This work provides the tools that
would be needed in order to easily modify our results accordingly, if it should be

necessary.
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The anomalous magnetic moments and the quadrupole moments of the charged vector
bosons have been calculated in the framework of a lefi-right supersymmetric extension of

the Standard Model. In particular, many results that are listed in Sections 7.3 and 7.4

have not been published previously. These are the results involving W:t as external

particle and the results involving WuLi as external particle in combination with virtual
particles that are characteristic of left-right supersymmetry. Furthermore the finiteness of
those loops with Wfi as external particle has been demonstrated in detail in Section 7.5.

Relatively soon we expect relevant data to be available form measurements of three-
gauge-boson couplings. While such measurements are interesting enough to the Standard
Model in order to directly prove the non-Abelian structure of its gauge forces, they may
be even more interesting to detecting signals of supersymmetry in the data. If reference
[31] is right and small deviations from the Standard Model cannot be interpreted as
MSSM-supersymmetry, we may hope that they can be interpreted as left-right
supersymmetry instead. If this is true, it is going to be not only a signal of supersymmetry
but also of lefi-right symmetry. A definite claim cannot be made at this point, since this
work lacks a numerical evaluation of the theoretical results, for which there was not
enough room. The numerical analysis is going to be the next logical step to take.

Another step can be taken in a different but related direction. The interaction Lagrangian
of the neutral vector bosons have been worked out as well and the calculation of their
static quantities suggests itself to follow up on this work. In this area one of the most
recent works has been conducted once again in the context of MSSM-supersymmetry
[32]. The present work on the other hand provides all the theoretical prerequisites to

undertake the same adventure in the uncharted terrain of left-right supersymmetry.
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Appendix One: Conventions

Appendix 1: Conventions

The Metric Tensor
1 0 0 O
0 -1 0 O
l-“"=
T =0 0o -1 0
0 0 0 -1 (A.1.1)

Spinors and the Projection Operators y, and yq

The upper components of a 4-spinor are taken to be 'left' and the lower ones to be 'right'.

B (WL) (A12)
\v =
YR

The projection operators Y, and yy are defined by:

(WL) ( 0 ) o
YW= » TRY =
0 Yr

The projection operators y, and y, satisfy a typical set of equations:

2
Yo =YL

TR’ =1Tr (A.1.4)
TL+vr =1
YLYR =YrYL =0

The following equations are convention-independent and always valid:
W =7, Yo =71,

_— = —_ — (A.1.5)
LY =¥ye, YRY =Wy,
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Appendix One: Conventions

The Levi-Civita-Tensor and ¥,

There are (more than) two choices. Set number one:

. i
Ys =YoY1Y2Y35 ¥s = 2 et YuYvY2Yp

1 1
YL =5(1+Y5)v Yr ='2‘(I“Ys)
023

Set number two:

s =iy’y'yy’

1 |
YL =§(I“Ys)s TR =§(I+Ys)

€o13=1

(A.1.6)

(A.1.7)

(A.1.8)

(A.1.9)

(A.1.10)

(A.L.11)

Even permutations of indices in the Levi-Civita Tensor preserve the sign, odd

permutations change it and ‘cyclic' happens to be odd.

The two sets (A.1.6, 7, 8) and (A.1.9, 10, 11) seem to be the ones that are most widely

used. They both rely on the fundamental definitions (A.1.2) and (A.1.3) and they both

have the consequence that Tr('ysy”y"'y"y")z 4i "™ _ In fact, the sign on the right-hand

side of this trace theorem is convention dependent.

The two sets (A.1.6, 7, 8) and (A.1.9, 10, 11) are equivalent in the sense that they both

agree with (A.1.2) and (A.1.3). If all formulae are expressed in terms of y, and yg

rather than y,, as it is done in this work, then the formulae all have the same form in

either set of conventions.
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The Alternative Metric Tensor

For future reference it is helpful to note the alternative choice of the metric tensor,
because it is as widely used as ours.

One may choose either n*' =diag(l -1 -1 -1) or n*" =diag(-1 t 1 1).
However, the choice of the metric influences the algebra of Dirac matrices due to the
Clifford equation: y"y" +y"y* = 2n""1. The Clifford algebra must be formally the same
in either convention, i.e. without a change of sign on the right-hand side of the equation.
To avoid the change of sign, a factor of minus i (it could as well be plus i) is defined into

each Dirac matrix on the left-hand side. Table Al.1 lists various expressions in either

metric (see next page).
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(°f =1 (F

6O) =10, G4 =%, k=1, 2,3

—l,kzl, 2,3

t
() =yoy4y0
ys +vs7" =0
(vs) =75
7’157’ =75
7Y =1rs YR =10
Forvon) -For
Yiy'y W, ) =¥ty ¥,
I S
(‘Pw YR‘PZ) =Warty ¥,
@'YLWzy =$27R‘*’1

(W'YR‘PZ)? =¥y ¥,

0™ =diag(-1 1 1 1)
-Yll.yv +Yvyu =2nuv!
2

=-s

m
)(Xu

y=iy'y’

£ irac = —WOY —myy

(@+m)y =0

GOF =-1, (*F =1.k=1,2,3
(o) =—°, () =v*.k=1,2,3
() =vory®

Mys+ys1h =0

(rs) =7

YrsY° =15

1’ =—1r. Y9’ =1L

@W“Y[,l{’z )f = —¢2‘Y"7 e

(Trrve, ) = Farye,
(Frrow,) =Py

(@IYR‘[&)’ = QZYL‘PI

Table Al.1: Comparison of Metric Tensor Conventions
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Appendix Two: Two-Component Language - Dotted and Undotted Spinors

Appendix 2: Two-Component Language - Dotted and Undotted Spinors

It is customary in supersymmetry to employ a notation that keeps the transformation
properties of 2-spinors under Lorentz transformations transparent. The purpose of this
chapter is to explain this notation ([10], [12]).

Transformation Properties

The Lorentz group SL(2,C) is equivalent to a product SU(2)xSU(2). It is possible to
define 2-component spinors in such a way that they transform under either one of the two
SU(2)-factors. Such spinors are called Weyl spinors and their quantum numbers are
denoted as either (!4 0) or (0 '4). (2 0) and (0 Y2) are inequivalent representations of the
Lorentz group. If the transformation matrix acting on a 2-component spinor in the

representation (‘2 0) is called M, the corresponding transformation matrix of (0 ') is
(M" )'r - In this scnsc, if we write a 4-spinor as y = (\uL,wR)T, then y, transforms under

the matrix M and y, transforms under thc matrix (M"y. We now introducc a notation

that emphasizes the different transformation properties of 2-spinors.

Any four-component spinor is generally written in the form:

(éuj (A2.1)
Y=)—g
n

This notation is extremely precisc, as it is loaded with information. The bar of ;]_d reflects

the '** of (M"y, the raised index of n° reflects the -1' of (M" )r, and the dot on the
index reflects the change from (‘2 0) into (0 ‘). Hence, one can always read the

transformation properties of any given 2-spinor from the way it is written.

s



Appendix Two: Two-Component Language - Dotted and Undotted Spinors

The bar over a 2-spinor is not to be confused with a bar over a 4-spinor, which is defined

as y

w'y?. Instead, the bar over a 2-spinor stands for 'something like' complex
conjugation, namely:

—-a a - . A22
6] ) k22
In fact, this is merely another way of stating the relation between (% 0) and (0 '%). One

can read from (A2.2) that M and (M"y are transformation matrices of inequivalent

representations, but that M* and (M" )T are transformation matrices of equivalent

representations.

Spinor indices can be raised or lowered using a metric tensor:

- - —a g5 A23
Xa =EapX - X =£P34 (A23)
The spinor metric is anti-symmetric and its components are:

0 1 (A24)

g% =¢% = [—l 0] =—Eqg = €43 = io?

However this is also the charge conjugation matrix in SU(2) space. Hence re-inspecting
the upper and lower components of (A.2.1) along with (A.2.3) shows that the
representations (%2 0) and (0 %2) are linked by charge conjugation. The charge conjugate

of £, is

(€ =i0?Ca) =) = () =& (A23)
Here too the notation indicates the change from (2 0) into (0 '%) in all detail.

Definitions

Equation (A.2.1) defines the Dirac spinor y and the ‘natural’ positions of its indices. The

term natural means here that the metric has not yet been used to raise or lower an index.
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Appendix Two: Two-Component Language - Dotted and Undotted Spinors

The following equations define a few more important quantities and the natural positions

of their indices:
;___(nu Ea) (A2.6)
[ qa) (A2.7)
¥ =|-a
\&
_f 0 o, a‘-,] (A2.8)
Yp | —aB
\0',1 0

There is also a relation for barred and unbarred components of Dirac matrices:

C—Szu = 0’& (A29)
Majorana spinors satisfy y° =y and therefore take the form

‘e (A2.10)
W Majorana = ‘x‘d

For practical calculations it is sometimes useful to take a Dirac spinor y = ( Eﬁ} as a pair
n

of Majorana spinors a=(§§ ] and b=(1‘:] and to calculate with y=y,a+ygb and
n

y° =yga+y, b using only the algebra of the projection operators Y, and yg.
How to Avoid Indices

While the notation is now very precise, it is quite cumbersome to use in practical work.

Here is a little taste. Raising and lowering indices with an anti-symmetric matrix has the
property that

p— (A2.11)
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This is so, because:

N"Eq =e%%, npE" =M, npE" = -ePingE’ = qgEf = n 2" (A2.12)
Moreover, 2-spinors that carry indices behave like anti-commuting variables:

N%E, =0 (A2.13)
However, the indices can be largely ignored while calculating, if we define:

€ =n%, (A2.14)

This defines the new index-less expression n& as well as the natural positions of its

indices, if it is desired to show them.

Then it follows from (A.2.11) and (A.2.13) that:

nE, =-n.E° =E%n, (AZ15)
Applying the definition (A.2.14) on the left and the right side of (A.2.15), it follows that:
nE=2&n (A2.16)

2-component spinors that do not carry indices behave like regular commuting variables.

In the same way it may be shown that:

nE=n"g, =&n

nE=ne& =&n

§|°’u§2 Eéld? o =-£,0"¢, (A2.17)
'115“7_12 = ﬂluo'z;';'—lzn = "ﬁz?ﬂl

Equation (A.2.9) has been used in the third line and fourth line of (A2.17).

Note that ¢c’y = —x 6" @, but (;i E"Dijxj = —xio'“(DT )ijaj , where D is a 2x2 matrix and

the indices i, j are linear algebra indices.
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In the present work the rules (A.2.17) generally allow us to make calculations completely
without indices. The rules also allow us to put the indices back at any given time simply
by observing their natural positions according to definition.

Simplified Definitions

For the purposes of this writing it is sufficient to use the simplified definitions

v=()v-b Bn(2 %) 218)

o. O

in order to convert from 2-component language into 4-component language and back, for
example:

_‘Ijﬂp‘l’z = E|E"§z +'l|°'u'—|2

q’-I'YpYLWZ = El‘—’ugz = —§Zo“g,

WY, YrW2 = N0t N, = —n,0 (A2.19)
The New Notation at Work in Physics

From Chapter 2 onward all 2-spinors are expressed as dotted and undotted Weyl 2-
spinors. Indices are suppressed, taking advantage of (A.2.17). However many 2-spinors
are still naturally barred, in fact a half of all of the 2-spinors are. For example, following

the general definition (A.2.1), the leptons of the Standard Model are represented as:

o (EL J - (ZL) (A2.20)
CR VL

The natural positions of indices are implied as defined in (A.2.1). The convention is that

the original notation (1.1.1) from Chapter One always meant to be this (A2.20). However,

one must get accustomed to the fact that it is 'now’' €, and £R (meaning ¢, and g“)

that generate equal electric charge, while € and £; (meaning ¢, and £r, ) generate
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Appendix Two: Two-Component Language - Dotted and Undotted Spinors

opposite charge. (Observe for example that ge:skuemi-e,_dau =€gE +E Eg )
There is nothing peculiar about this, it is simply how the notation works and everything is
well defined.

In conclusion, here is an example. It is an enlightening exercise to write the kinetic
energy of leptons of the Standard Model in 4-component as well as 2-component
language.

Let all of the 4-spinor and 2-spinor variables below be defined by (A.2.20). In 4-

component language SU(2),. doublets and a kinetic energy are given as:

(A221)
L =[‘Y|_V)’ E= YRE
YL LE
£ coxin = Liy*D5 L+Eiy"DRE (A2.22)

The same in 2-component language is:
(VL] - (A2.23)
LL = ’ eR
gL

£ Lepxin = iL"c_fluD,LLl L +sRic"D:f ER (A2.24)

Here D:; and D:f are the covariant derivatives under SU(2),. of left- and right-handed

spinors respectively.
Using equations (A2.18) through (A2.20) it is relatively straightforward to show that

(A2.22) and (A2.24) are identically equal.
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Appendix 3: Covariant Derivatives of SU(2)-Triplets

Consider a triplet of fields, for example gauginos that have a kinetic energy of the form:

3, (A3.1)
£ igitckinaic =1 D0 O (Bucd, +81 €e WIS
ab.c=l
One has to expand the sum (A.3.1) and substitute the U(1).m charge eigenstates:
(A3.2)

A =W Fin2), wE = (W' Fiw?2)

V2 V2
It is more practical to handle generators instead of structure constants, because matrix
multiplication is very straightforward. Matrices can be introduced in two different ways.

With Three-Dimensional Generators

L0 10 H0 =i 0 10 0
1_ [t 2 _ 1], . 3_
T=gojr o T o|f 0 -i|T=jo 0 0 (A33)
010 0 i 0 00 -1
_x‘
—_| 40
A=| A (A3.4)
A

The matrices (A3.3) are generators of 3-dimensional SU(2) and (A.3.4) is a spinor in 3-

dimensional SU(2)-space. The minus sign in front of A plays a role when 4-spinors are
formed. The connection with (A3.1) is:

N0 Bucd, + 21 o WEPE =in"5" (3, —ig, T*W2)A (A3.5)

The fields -A*, A%, A~ behave as carrying the SU(2) quantum numbers +1, 0, -1

respectively, see for example the summation rules of Chapter 6.1.
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With Two-Dimensional Generators

t,___(o l), 1:2=(0 _i),t3=([ 0)
1 0 i 0 0 -1 (A3.6)

-
A= V2 1 (A3.7)
=
2

The matrices —;t' , built from (A3.6), arc gencrators of 2-dimensional SU(2).
The rule is in this case:

ii’&“(s,ca“ +8 € W:))f = m(ﬁ&"(a“ —ith’W:)A)

(A3.8)
It is still true of course, that the fields —A*, 2%, A~ behave in calculations as carrying the
SU(2) quantum numbers +1, 0, -1. All expressions given in (A.3.5) and (A.3.8) are
identically equal.
The three-dimensional convention (A3.4) is the author's choice. The two-dimensional
convention (A.3.7) is often used in the literature for triplet scalars that occur in left-right
symmetric models. Triplet scalars are formally different than gauginos, because they
carry nonzero U(1)s..-quantum numbers. As a result, the electric charges of triplet scalars
are not (+, 0, -) but (++, +, 0) or (0, -, - -), which is a reflection of the Gell-Mann-

Nishiyima formula (see Table 3.1 and equation (3.1.1)).
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Appendix 4: Quantum Numbers of SU(2) Bi-Doublets

The quantum numbers t; and t} of the bi-doublets F,:'d and F.:{d of Table 3.1 are:

3 1 3 1 3 i
0 t; =— | {tyg =+— + ti=+=]| | tg =+—
F! .= Plug N L 2 R 2 F.:ld _ ‘(I)u.d - L 2 R 2
* ¢;u.d ’ ¢2Il.¢l l

3
i =+—| | tg =—
L 7 R

The same applies to the superpartner bi-doublets.

Wf recognizes the 'spin-up’ and 'spin-down' states of bi-doublet Higgs fields as
expected, but WuL 'sees' the members of F,Ld both as 'spin-down' and the members of

F!; both as ‘spin-up'. There is a special rule for bi-doublets to take this into account. In

addition to the usual Pauli matrices (A3.6) we need two more sets of matrices that differ
in the definition of the third matrix, where the distinction between 'spin-up' and 'spin-

down' is made.

g (o o [0 i a (1o
Yoo YTl o) le -
01 0 -i 1 0
l: 2: 3: (A4’2)
4=i o) (0 3) 9o 3}

These 'Pauli-matrices' are used in the equations (4.1.11), (5.1.1), (5.2.1), and (6.1.1).
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Another convention is found in the literature. The SU(2)-spinors F, ; and F,Ed may be

defined into one 2x2-matrix:

= (¢(l)u,d ¢l+u,d ) (A4.3)

ud =~ - 1
¢2u,d ¢2u.d

But again the quantum numbers (A4.1) make it necessary to formulate a special covariant

derivative rule. Distinguish first:

0 + Al4
[¢l(|;,d ¢00 J Oﬁ(F“‘d )E ( 0 ¢lu,d ] ( )
2ud

diag(Fu.d)
Yet another set of 'Pauli-matrices’ is needed:

| 01 " 0 -i) , -1 0 (Al.5)
T. = < = T, =

o) tioo) Lo 1

And then in this language:

: i i
D,F,q= (a“ -%t’ w2 -%r“ W:‘)Fu'd

ig
(6u =Lt

: 2wl -%tawfa)diag(&d){a“ -'%Lr“w,}‘ —lgTRtaW:a)off(Fu'd)

(Al.6)
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Appendix 5: integration of Feynman Parameters

Triangle loops have three propagator factors corresponding to three internal lines. The

appropriate Feynman parameters rule is:

| (A5.1)

. :
d
Of Y @ll—x—y)+bxrcy)’

1
L J'dx
abc
This is nontrivial because the two integrations are interdependent. However, under some
circumstances the denominator of (A5.1) depends only on the combination x + y. In that
case the two integrations separate.

Let f(x,y) be a function of x and y and g(x+y) a function of x + y. Then it may be

shown that:
Ifd"l_fxdy f(x.y)e(x+y)= ljdv 'jdzf(v,z -v)g(2) (A5.2)
= ]'dz g(Z)]dV f(v,z- v)
Example
| dxl-xdy x2+ Xy (A5.3))
0 o (Kz_Mz(cz(l—x—y)+(x+y)2+(t2_l)(x+y)))'l
= Idz 1 Idv (vz +v(z— v))

o (Kz —Mz(oz(l -z)+2° +(~r2 —l}z))] 0

The integration over the parameter v can be evaluated at once.
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