INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

EVALUATION OF FLIGHT SIMULATION
SOFTWARE DEVELOPMENT TOOLS

Reza Ghassemian

A Thesis
in
The Department
of

Mechanical Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

© Reza Ghassemian, 2002

i+l

National Library
of Canada du Canada
Acquisitions and

Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68454-7

Canadi

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fi@ Votre rétérence

Our kie Notre rétérance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

EVALUATION OF FLIGHT SIMULATION
SOFTWARE DEVELOPMENT TOOLS

Reza Ghassemian

One of the CAE product lines is commercial aircraft flight simulators for which
over 400 engipeers develop the simulation codes. Currently, aircraft design documents
are converted into source code manually. This approach is time consuming, generates
large number of errors in the code, and the code generated is very hard to debug. An
alternative approach is to use commercially available software development tools to
implement the design documents into a visual environment and automatically generate
the simulation code for the implemented model. This approach is expected to reduce the
software development process, minimize the number of errors in the generated simulation
software, and provide user-friendly environment for debugging the code more easily and
efficiently, and plus many more advantages. This thesis contributes in the development
of such an approach. It addresses the new software development method using
MATRIXx which is one of the leading commercial software development tools widely
used in aerospace industries. Two aircraft system, medium commercial jet's flight
warning computer and a generic autopilot, have been chosen to evaluate the use of
MATRIXx as software development tool. This thesis will explore the use of MATRIXy
and its advantages over manual coding, and will identify if there are any evaluation
criteria or implementation issues that will make the use of MATRIXx impractical. In
addition, it will be examined if there is any need for post-processing utility to adapt the

generated code to flight simulation software environment.

iti

ACKNOWLEDGEMENTS

The author would like to take this opportunity to thank his supervisor Dr. J. V.
Svoboda for his continuous guidance and support. The author also likes to acknowledge
his appreciation to CAE for providing the opportunity to do this project, particularly, to
Mr. P. Jarvis for his continuous assistance. [also like to thank Sorin Busuioc for his
invaluable help throughout this project. And last, but not least, the author wishes to
express his sincere thanks to his family and friends for their invaluable encouragement

and support.

iv

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ...ttt e eneeeee e Xii
LIST OF VARIABLESttt XV
LIST OF ABBREVIATIONS ...t eineanens XX
I. INTRODUCTION ..ottt e e et e e e s e e sereee s 1
1.1. Current Method Used to Develop Flight Simulation Softwarecccccovevveeennenn. 2
1.1.1. Manual Code Generationccooueevveeerieeeniierenieenieeenree e e e 3

[.1.2. Disadvantages of the Current Approach........cccoooiiiiiriiiiiinii e 4

1.2. Alternative Approach Using Software Development Toolc.cccoeveeieriinieenenn. 5
1.2.1. Advantages of the New Approachccooooiiiiiieeeee 5

1.2.2. Requirements for Selecting a Software Development Toolceccveeennns 6

F.30 WhY MATRIX N ettt ettt st e st s e e 8
L3 Xmath. et 9

1.3.2. SystemBUIld......ooooiiiiiiiiie e L1

1330 AULOCOAE ...ttt ettt e 12

1.3.4, DOCUMENEIT ...ttt 13

1.3.5. Summary of Advantages for Using MATRIXx..cc.ccoenvririiiiinniiiiieneeee. 14

2. THESIS OBJECTIVES ... ettt 16
2.1. Implementation of the Selected Systems Using MATRIXx..ccccccovnuveemniinniinncnns 16
2.1.1. Development of the Component Librarycccccoeeeviiviiiiiiniiinrniceennneen. 17

2.1.2. Modeling the Boolean System (Flight Warning Computer)..........c.ceueeee... 17
2.1.3. Modeling the Dynamic Control System (Autopilot)ccccceccuiiervenucnnne 18
2.1.4. Generation of the Simulation Software Automatically..........cccccevrevvrrnnenn. 19
2.2, Evaluation Criteria.....cc.uveeeruiereiirreeenteeereeeeeee e senaeeeesneee e e s aeneeesemeteesenneeesnmneenns 19
22010 GeNETAl...ooiiieeie e 19
2.2.2. Implementationc...ccoiieeieeic ettt e e 20
2.2.3. UNIE TESHNE ..eeeeueienieiieeieiieerr ettt sre e e e s st eeeesresnre s e s e e ssnressebeeernenenes 20
2.2.4. Code GENEIALIONoevveeeuiirieiieeieriete sttt e eibe e s eeesteeseas e s e seseessnesens 20

3. BOOLEAN SYSTEM...coi ittt et e s rnvee e s e 21
3.1. Flight Warning COmMPULET..........cocteeiriiieeertreteete et teeeeesrr et e s e 21
.11 Types Of FAIUIESooveiiiiiiiiiiieeeeeccceeeecrte et e 22
3.1.2. Warning/Caution Classification........ccccceeveerveeerrereersenrnreenrreeseeenneeesneennnn 22
3.1.3. Priority RUIES ..ottt rrae s e e s s s s 23
3.2. Electronic Instrument SystemM(EIS)cocciiiiiiiiiiiieiecirceeee e e e 23
3.2.1. Display UnitsS(DU) .c..oeiriiireiiieiiirriiie e eseete s teeeeetre e s sese e s e seneeseeeens 24
3.2.2. Display Management Computer(DMCQC)covevirivirneeincicrneeneee e 25
3.2.3. System Data Acquisition Concentrator(SDAC)cooouvvecererccrienennnennne. 25
3.2.4. Attention Getting DeVICESc.cceevmiiiciiiiiiiic it 25
3.2.5. LoUdSPEAKETSveriueiieiiriiiiiicecicneete ettt s 25
3.3. Electronic Centralized Aircraft Monitor (ECAM) ..o, 25
3.3.1. ECAM Control Panel.......ccccoocuireirieiinniinncintentcecteseitnncenecesaeesneeenns 26
3.3.2. C0lor Code. ... oottt ettt 27

vi

3.3.3. Failure of ECAM DUooiiiiiiieecteeteeeetee e 28
3.3.4. Aural IndiCationcoouiieieiiiitientinee ettt e 28
3.3.5. ECAM ProCeduresccoeverreemiieniiiieesteete et e e eee s er e 29
3.4. Engine/Warning Display (E/WD).....ccoioiiiiiiiiiiieee e 29
3.4.1. E/WD Message Managementc.ccccovvivuierniirennsierneeeeireeessiesesneaesssreennens 30
3.4.2. Flight Phase Inhibitionc..cooviriiiniiniiiee e, 31
3.3, MEIMOS. ittt ettt ettt ettt e et a e s s e e ete e eareeeaseeennes 32
3.5. System Display (SD) coeeeoooieeee e e 33
3.5.1. System Pagescocoooiiiiiiiiiiiiceett ettt 34
3.5.20 StAtUS PABE...eiiieieieeeece ettt 35
3.5.3. Permanent Data........ccccoovieiiimiiiiiiieeeeete e 36

4. DYNAMIC CONTROL SYSTEM.....cccoiiiiiiiiiieieeeeeeereeeeeeee e 37
4.1. Automatic Flight Control Systemsccooceiiiiiimiiieieecee e 37
4.1.1. Stability/Control Augmentation SYSEIMSccccueerieeirieriereriieiereeirereeenens 38
G120 AULOPIIOIS .cotiiitiet ettt et e e e s 38
4.1.3. Flight Guidance SyStemsccccoviiiiiieiiiiiiicee et 39
4.2, AULOPIIO ...ttt ettt ettt e e e e e e e sb e e e rneenaeean 39
4.2.1. Single-Axis AUtOPIlOt.....c..oooeiiiiiii e 39
4.2.2. TwO-AXIS AULOPHIOt.c.eiiiiiiieee e 40
4.2.3. Three-AxXis AULOPIIOt.....cooiiiiiiieieeieeeee e eere e 40
4.2.4. Autopilot Control Panelccccciriiiiiiiniieeeeeeceec e 41
4.2.5. Autopilot Control LOOPSccccceeriireiieierecieeeeseeteeectee e eeeeeee e ee e 42

vit

4.2.6. Autopilot Modes of Operation........c..ccoeceevvuveimieniieniiiiniiniiecccieeeeeee, 43

4.3. Pitch AXIS AULOPILOL ..coieeiiiiiiiieiiiceeeeetee et s et e e e et s 45
4.3.1. Altitude Hold Modeccocoeriiiiiiiiiiie et 45
4.3.2. Altitude Preselect Capture/Track Mode.......cooceeveeviveniiiniiiiniiiiniicninene 46
4.3.3. TAS Hold MOde......ooiiiiiiiiieieceee e 47
4.3.4. Mach Hold Modecoouiimmiiiiiiieeeeee et 48
4.3.5. PUChMOde.....ooiiiiiiiiiiie et 49
4.3.6. Vertical Speed Mode........coocevviiriiniiinieieeeicerceercce e 50
4.3.7. Glideslope Capture/Track Mode........cccceiviiiniiiiiiniiii e 51

5. MODELING AIRCRAFT SYSTEMS USING MATRIXx .ccocvvvirenee. 53

5.1. Useful Tools Developed for This Projectccoceeieoernienienieieiiinicceceees 33
.11 Search Tool ...t 53
5.1.20 QUETY TOOL .ottt e et 55
5.1.3. EXPOTt TOO eeeieiiiiiieiieeeee ettt ettt 57
5.1.4. Adding or Removing a Specific Input from a SuperBlock..........c.......c..... 59
5.1.5. Searching for a BlockID in the SystemBuild Editor.......ccccccovviiiniinnnine 61

5.2. Modeling Flight Warning Computer Using MATRIXx ...coooiiiiiiiiniiiiaiiieceee. 62
5.2.1. Approach Used for Modeling Flight Warning Computer.........c.ccc.cccueee.e. 62
5.2.2. Why Design Custom BIOCKS?cocueeoiiriiiriiieieicie e 63
5.2.3. Designed Custom Blocks for FWC Modelc..cooccoiiiiiiiii. 65

5.2.3. 1. Logical BIOCKS ..ooiieeiiieecieeetieccteteciteere et e e st 65
5.2.3.2. Custom Macro SuperBIockscccoiiiiiiiiiiiiiiiieeeee e 66

viii

5.2.4. Implementation of Flight Waming Computer in SystemBuild.................. 72

5.2.5. Code GEeNErationcc.ccuueeeeeireieiieeieetertee st e e eenrressiere e s s nee s neneesnee 75
5.25.1. Using Default Template Program........c.ccccoevvviveeveirneeiecreniennnninnne 76
5.2.5.2. Using User Defined Template Program.........c.ccoecuerrvenvceennneennnen. 77

5.3. Modeling Pitch Channel Autopilot Using MATRIXx....ccoovvciiminicrinnieeiiccnees 80

5.3.1. Design of the Blocks Used in Autopilot Model............ccccoveiinniniienanneen. 82
5.3.1.1. Transformation from Continuous to Discrete Domain.................. 82
5.3.1.2. Customized BlockScript Blocks for Autopilot Model................... 84

5.3.2. Implementation of Autopilot System in SystemBuild...........c..ccccvveernnnnen. 86

5.3.3. Simulation of Autopilot SYStem......c.cceeveriiiriiriniieriteee et 90
5.33. L. AXIS SYSEEIMIS...coiiiiiiiiriieeeiereereeesreeeessaeeseseeessesnreessssenessnsnsassnsen 91
5.3.3.2. EQuations Of MOIONcccceeeeuiireieniieeciieecerereeeiee e e sveeessereeasennes 93
5.3.3.3. Aerodynamic Forces and Momentscccoeveeevrriecrinnicieeiceenennes 95
5.3.3.4. The AtmMOSPhEre.......ccceoiiiieeeeeetectee et 99

6. MATRIXx EVALUATION ...ttt 103
6.1. Evaluation Criteri@.......coveeeieiieieeiteeceeeseeeneeceeetee e e ee e e e stae s ne e e ere e e samee s 103

6.1.1. GENEIAL......eioiiiieeiie ettt ettt ete e ae ettt e st a et e aee s eaneeas 103
6.1.1.1. Ease of Learning and US€cccceerevieiirneerrrrienreceeerenieeneeieeenns 104
6.1.1.2. Quality of Online Helpcooeoiimiiiiiieeeeeceeee 104
6.1.1.3. Types of Systems Best/Least Suited for the Tool........................ 105
6.1.1.4. Recommendation for Version Control.........ccc.ccceverevuinnierenecnane 106

6.1.2. Implementationcccceceriieeeinieiicnititie ettt sene et et aes 106

ix

6.1.2.1. The Time Required for Coding a Model in SystemBuild............ 107

6.1.2.2. The Accuracy of the Modeling Using SystemBuild.................... 107
6.1.3. UNIt TESHINE ...eviieiieiiieeieieeee et ireeeeet e e ssrareee st aseeesesasenssareseasesssnsesnens 108
6.1.3.1. Friendliness of User Interface.........ccccoccrveevecnncieinnccenenencnnnnee. 108
6.1.3.2. EXECUtion SPEEdcccouverirerrirererireereenirteerseinereeeeese s senrnreee e 111
6.1.3.3. Ease of Use of Scripting for System Simulationc....cccccceee.. 112
6.1.4. Code GENETALIONouveviiriieeeeeeerirerreererteereerateeesaeaeeeseessrsreeneesteesaseeesens 112
6.1.4.1. Ease of Template Programming...........ccceeeeverrueeeneesenereennecenneen. 113
6.1.4.2. Quality of the Code.....c..ooeiirmiiniiiiiiiiiiieieccte e 113
6.2. Evaluation 0f ReSUILS........cevviiieriiiiiiireeeeeree et e 114
6.2.1. Manual Code Versus Automatic Generated Code for FWC System....... 115
6.2.2. Simulation Results for Autopilot Systemcc.ceeiiiriiiieiiniciieeneee. 116

. CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS 122

T L. COMCIUSION «eeeeeeteeeeeeee e e it ettt et saeetsaeesrsesrusssnsssssransarssssssssssnnsessessnsnnnsssssssnsnnens 122
7.2. Recommendations and FUuture WorkS. ... vvveeeeeiieemieieiireeeeevereevieenererrsnneeenes 125
RE T E R EIN CE S ... oottt eteeeeeeessseesraesanesnnesaesenssnesasassssnssessssansansenes 128

APPENDIX I COMPARISON OF MANUAL CODE AND AUTOMATIC

GENERATED CODE FOR FWCcoccciiniiiiiiinn, 131

APPENDIX 2 TEMPLATE PROGRAM USED TO GENERATE THE

CODE FOR FWC.....coooiiiiiiiieicccccnre e 137

APPENDIX 3

APPENDIX 4

APPENDIX 5

INITIALIZATION OF THE FWC MODEL PRIOR TO

CODE GENERATIONoiimiiiiiniiirie e, 146
POST PROCESSING UTILITY DEVELOPED FOR

FWC e 149
CALL BACK FUNCTION FOR LAG FILTER 151

Xi

Table
4.1

Figure

1.1

1.3

3.1

3.3
34
3.5
3.6
3.7

3.8

4.1

43

4.4

4.5

LIST OF ILLUSTRATIONS

Page
Pitch and roll mode of Operation...........ccecevviiireiiine e 44

Page
Sample design dOCUMENL. ...co..eiiiiiiiiiiiiieeiee ettt 3
Manual coding of sample design document............ccccveieevriiieniiiiienieee e 3
MATRIXx product family OVEIVIEW. .cccoccuiiiiiiiiciiiiieieecer e 9
Basic overview of FWC Operation..........ccccceeeeievieinreineicenieeneenecrecnceen 21
Electronic instrument System COMPONENLS.cc.cuueeeeuiiierirereeeererereeeeeeieeesienes 24
ECAM control panel.oceuviiiimiieierees e 26
Engine/Wamning display Unit.c.cccooiiiiiiioiieeece e e 30
Take off MEMO MESSAZES. ...eovuviirriiriierie ettt 32
Landing memo MESSAZES. ...cccceeviuiriieiiiiiieice et e e 33
System diSPlay UNMIL..cooviiriiieiceite ettt e e e e e e 33
Advisory message on E/WD. ..ottt 35
Typical three-axis autopilot.cooriiiiiie e 40
Typical mode select panel for large commercial jet.........ccccccoiniiiniicniiinneae. 41
Inner and outer loops of autopilot SyStem.ccocceireiiiiiiiiiiiiercceeeeceeeee 43
Typical schematic diagram of altitude-hold autopilot.ccccccoeinnin 45
Altitude preselect capture/track mode.ccooceereeieriinnieriiicnienecreneeecee, 46

Xii

4.6

4.7

4.8

4.9

4.10

4.11

4.12

w

Speed control using auto-throttle.ooviiiiiimniiiieeee 47
Speed control using auto-drag.ccccceiiiiiiiiiiiiiiiiec e 48
Block diagram of mach hold mode.ccooieiriiiiiieeeee, 49
Block diagram of pitch hold autopilot.cooeeeivieeiireriiieeeeeeee 50
Vertical speed control block diagram.ccoovveiriiiiiiiniiiiieceee e 51
An airplane flying below the glide path..........cccocoiiiiiiini 52
A block diagram of glideslope capture mode.ccocevvveeveirieeieiiiieeee e, 52
Search tool GUI and operation.ccccviiiiiiiniiniiieeee e 54
QUETY OIS ettt 56
EXPOIt tOOIS. ..eeiiiciie et 58
Output of export tool for sample washout filter.............ccoooeiiiiiiiiins 59
Deleting an input using the SuperBlock property.....cccoccccoeiiiiiiiieinniecnineeen. 59
AdArem tOOL. ..ot 60
ID search utility and itS OPeration.ccocccocerveecriniierneieee e 61

Comparison of the generated code for predefined and customized AND gate. 64

Customized logical blocks.oieiiiiiiiiieiiic e 66
Customized macro procedure SuperBlOcks.ocveviioiiiiiiiiiiiiicieiee e 67
Confirmation GUIL ..ottt 68
Sample confirmation SuperBlock.ccooviireiiiiiiniie 68
BlockScript block representing confirmation macro.ccccceeeceeeeiiicrinccenenenne. 69
AutoCode generated code for sample macro procedure SuperBlock. 70
The code and icons generated automatically for the confirmation macro. 70

xiii

5.16

5.17

Operation of customized add_to_fault _list macro.ccecceeeeveerevecrnccinninne. 71
Sample warning page and MATRIXx model.c..ccooveriiniiininiiinniicnnineens 73
Operation of “INi™ ULHIIEY. ooovirriiieiiee e 75
The components of generated code using default template program. 76
Customized BlockScript blocks.coooeeeimiiiiii 85
Customized 1ag fIlter.oooiiriiiieieeeeee e 86
Pitch channel autopilot flowchart. ... e 87
Pitch channel autopilot implemented in SystemBuild. 87
[nertial and body axXis SYSIEML.......ccreiiveerriierinie ettt 92
Angle of attack and sideslip.cocccooviiiniiiiiiiiiiii 9
EUlEr @ngles. . .neeiiiieeee e 98
Variation of temperature with altitude.ooocccviiiiiiiiiiin 100
Xmath commands WIRAOW.cccoeeveiiiiiiiiiiiieieneiee et 109
SystemBuild editor’s customized pull down menu.ccoccoceinieiiinnennnne 110
Sample large commercial jet data.coocoeeiiiiiiniiii 116
Simulation result with autopilot disengaged..............ccociriiiiiii 119
Simulation result with autopilot engaged.coeveiriiiiiiiiiiiiiiiiiiiceee, 120
Result of changing autopilot gain.cccoocciiiiiiiieec e 121

Xiv

Cp
Cpo

CDu

F AXx

Fay

LIST OF VARIABLES

Total drag coefficient

Basic drag coefficient

Drag coefficient due to angle of attack
Drag coefficient due to elevator angle
Total lift coefficient

Basic lift coefficient

Lift coefficient due to pitch rate

Lift coefficient due to angle of attack

Lift coefficient due to rate of change of angle of attack

Lift coefficient due to elevator angle

Total pitch coefficient
Basic pitching moment coefficient
Pitching moment coefficient due to pitch rate

Pitching moment coefficient due to angle of attack

Pitching moment coefficient due to rate of change of angle of attack

Pitching moment coefficient due to elevator angle

Mean aerodynamic cord
Airplane drag
Aerodynamic force along X body axis

Aerodynamic force along Y body axis

Xv

Fa, Aerodynamic force along Z body axis
Fr« Trust force along X body axis
Fry Trust force along Y body axis

Fr, Trust force along Z body axis

g Acceleration of gravity

g0 Gravity at sea level

h Altitude

Lix Moment of inertia about X body axis
lyy Moment of inertia about Y body axis
I Moment of inertia about Z body axis
I, Product of inertia about Y body axis

L Aircraft lift

La Aerodynamic moment about X body axis
Lt Trust moment about X body axis

M Aircraft moment

M. Aerodynamic moment about Y body axis
Mt Trust moment about Y body axis

m Airplane mass

Na Aerodynamic moment about Z body axis
Nt Trust moment about Z body axis

P Pressure

Ps. Pressure at sea level

p Angular velocity along X body axis

Xvi

) Angular acceleration along X body axis

q Angular velocity along Y body axis

Angular acceleration along Y body axis

q Dynamic pressure

R Gas Constant

r Angular velocity along Z body axis

; Angular acceleration along Z body axis
S Wing area

s Laplace domain variable

Ts Sampling rate

T Temperature

TsL Temperature at sea level
Usg Reference velocity

u Velocity along X body axis

u Acceleration along X body axis
Vi True air speed

\ Velocity along Y body axis

% Acceleration along Y body axis

w Velocity along Z body axis

w Acceleration along Z body axis

z Z transform variable

xvil

Angle of attack
Angle of sideslip
Aileron angle
Elevator angle
Rudder angle

Roll angle

Roll rate

Lapse rate

Pitch angle

Pitch rate
Air density

Density

Density at sea level

Filter time constant

Yaw angle

Yaw rate

Xviii

A/T

ADV

AFCS

ALT

AP

BRT

CAS

CLR

DMC

DU

E/WD

ECAM

EFIS

EIS

FWC

GUI

HTML

IAS

ICAO

INOP

IRS

LIST OF ABBREVIATIONS

Auto-Throttle

Air Data Computer

Advisory

Automatic Flight Control System
Altitude

Autopilot

Brightness

Control Augmentation System
Clear

Display management computer
Display Unit

Engine Warning Display
Electronic Centralized Aircraft Monitor
Electronic flight instrument system
Electronic Instrument System
Flight Waming Computer
Graphical User Interface

Hyper Text Markup Language
Indicated Air Speed

International Civil Aviation Organization
[noperative

Inertial Reference System

Xix

LNX

ND

PC

PFD

PGUI

RCL

RTV

SAS

SBA

SD

SDAC

SEL

STS

T.O

TPL

UCI

XFR

Linked Executable

Navigation Display

Personal Computer

Primary Flight Display

Programmable Graphical User Interface
Random Access Memory

Recall

Run Time Variable

Stability Augmentation System
SystemBuild Access

System Display

System Data Acquisition Concentrator
Select

Status

Take Off

Template Programming Language
User Callable Interface

Transfer

XX

1 INTRODUCTION

Flight simulators have proven to be practical devices in the aerospace industry
throughout their history. One of the first flight simulators was the Sander Teacher,
created in 1910. Using this device, students learned how to balance the simulator in
reaction to the wind disturbances by the appropriate movement of pulleys connected to its
wings. A variation to the Sander Teacher simulator was Walters’ machine where
disturbances were introduced by the trainer. Around 1929, one of the first modern
simulators was developed by Link, which only allowed for the independent simulation of
control surfaces. During the 1930’s, the Link trainer was further developed to include
altitude, rudder/aileron interaction, and course plotter to allow the instructor to monitor
the simulation of the flight. Introduction of analog computers enabled the developers to
design electronic simulators to solve the equation of the motion of an aircraft. in which
the differential equation was represented by a series of electronic components such as
resistors, transistors, and capacitors [1].

After the introduction of digital computers, the development of flight simulators
entered a new era. Digital computers enabled the development of more sophisticated
flight simulators by introducing motion systems and visual systems. Programming
languages replaced the electronic components that were used to model the aircraft
dynamics and other various systems. FORTRAN was one of the earliest programming
languages used to develop simulation software for flight dynamic models. There have
been a vast number of languages developed since the creation of digital computers, of
which FORTRAN, C, and ADA have been widely used to write flight simulation

software. Rapid development of these programming languages and of digital computer

W

components has made it possible to meet the requirements of more powerful simulators at
a low cost, and has led to the development of state of the art full flight simulators
containing visual systems and motion systems with six degrees of freedom [2].
Nowadays, flight simulators are used for a variety of purposes: flying qualities
testing, simulation software development, stability and control, flight control
development, crew training, flight test support, human factors, flight control research, etc
[2]. In order to meet the requirements of growing demands for flight simulators.
engineers are working hard to minimize development costs and to shorten production
time. Unfortunately, the manual coding of the aircraft systems is costly and requires a
great deal of time to enable the engineers to develop, test, verify, and implement
simulation software. To overcome this problem, many software packages such as Matlab
and MATRIXx, have been developed to allow the designers to concentrate more on the
system development process rather than on the manual coding process. [n the next
section, the manual coding of aircraft systems is briefly discussed. In addition. the
disadvantages of manual coding will be addressed. The subsequent section explores
available software development packages, their advantages, and the reasons behind

selecting MATRIXx for evaluation as a software development tool.

1.1 Current Method Used to Develop Flight Simulation Software

One of CAE’s product lines is the development of state of the art commercial and
military flight simulators. CAE builds from thirty to fifty simulators a year for which
more than four hundred engineers develop software. The manual software development
technique currently used at industries will be discussed briefly in the next section. In

addition, the disadvantages of this approach will be addressed.

1.1.1 Manual Code Generation

In order to simulate an aircraft system, its schematic design document is
converted to real-time source code. In the current approach, engineers translate the
schematic diagrams of the aircraft systems into source code manually. This method is
explained with an example; Figure 1.1 shows a small sample of a logical block diagram

and the corresponding manually written code is shown in figure 1.2.

Figure 1.1 Sample design document.

{

or 2 = inl || in2;
or_I2 = in3 || in4;
and_3 = or_2 && or_l2;
}

Figure 1.2 Manual coding of sample design document.

In manual coding, the code for each diagram is written as a separate C equation.

The blocks with the highest execution priority are coded first. Normally, each block is

coded in a new line. Each aircraft system could contain up to 50000 lines of source code.
Although this method has been used for many years, it is not the most efficient way to
develop software for flight simulators today. The disadvantages of this method are

explained in the next subsection.

1.1.2 Disadvantages of the Current Approach

The current software design method results in a large number of errors in the
developed source code. For example, around 3000 errors were generated in the airbus
330 flight warning computer simulation software. One of the reasons for these errors
could be due to typing mistakes. Another reason might be the result of cutting and
pasting source code from one model to another that has similar content and neglecting to
modify the variables that should be changed for the new model. Moreover. the execution
order of blocks could be set wrong while coding the diagram manually. Due to the fact
that codes are less visual than the system schematic, generated errors are hard to debug
and this in turn slows down the design development process. Furthermore, there is no
guarantee that the manual code will directly correlate all blocks in the design document to
the hand written code. The generated code in Figure 1.2 can clarify this situation. Some
software developers may combine the last two lines of the code into one line or even
possibly combine all four lines into one line of code. Doing this will not create any
problems in the result of the simulation, but the direct representation of the blocks in the
generated code will be eliminated and could create problems when debugging the code or
comparing it with the actual design documents. Finally, in manual coding,
standardization of the code among different design teams is difficult to introduce and it is

also difficult to reuse software components within various projects.

1.2 Alternative Approach Using Software Development Tool

An alternative method for developing simulation software for flight simulators is
by using a software development tool. Currently, there are various advanced system
modeling and software development packages available. Some of the packages that are
commonly used in aerospace and automobile industries are Matlab, MATRIX,
Foresight, Easy$5, etc. One question that arises, is which software development package
could possibly satisfy the software design requirements for the flight simulation software
environment. To answer this question, an extensive study was performed that proposed
set of criteria that a tool should meet in order to be considered a good candidate to be
evaluated as a software development tool for commercial aircraft simulator product line.
Unfortunately, the exact information of why it has been decided to evaluate MATRIXx
can not be provided due to confidentiality issue. However, a general argument can be
made to clarify why the MATRIXx product family has been selected for evaluation as a

software development tool.

1.2.1 Advantages of the New Approach

One of the features that these software development tools offer is the ability to
implement the design documents in the provided graphical environment, and to generate
the corresponding real-time code automatically using their automatic code generator. In
other words, these tools provide the designers with a user-friendly environment to
implement the aircraft design documents in a more functional and visual manner in
contrast to hand coding. After designing a model in their visual environment, the

graphical representation of the system model will function as an interface to the

simulation code automatically generated. Implementing the system in a visual manner
also allows the designers to compare the original design data with the implemented
system more intuitively rather than comparing the design documents with hand written
code. This is due to the direct correlation between the design data and the corresponding
model implemented graphically that may not exist when coding the system manually. In
addition, these tools minimize the dependency on the language that is used on the target
machine, since the code is generated automatically and the debugging of the system is
performed on the models built in a visual environment rather than manually generated

code.

1.2.2 Requirements for Selecting a Software Development Tool

As an initial proposal for this project, a set of evaluation criteria to be used to
evaluate MATRIXx, and a set of implementation issues to be resolved during the
evaluation period, had been defined. A general argument can be made for the candidacy
of MATRIXx based on the criteria and implementation issues for the flight simulation
software environment. Based on the initial proposal and from experience gained during
the project, consideration for evaluation of MATRIXx would be according to the
following properties: editing capability, implementation ability, debugging capability,
automatic code generator, automatic document generator, and others.

The first requirement that the tool should support is the editing capabilities. The
tool should provide utilities to extract information from the model built in its graphical
environment. This means that the user should be able to write scripts to extract, modify,
and / or automate the creation of any information such as block parameters, input/output

connections, etc. The tool should also provide the ability to search for certain parameters

in the designed model. Furthermore, it should support comparison of entire or part of
two models built in its schematic environment and it should allow the block icon to be
customized or modified on or after creation.

The second requirement is that it must meet satisfactory implementation
capabilities. The tool should primarily enable the designer to model a system in a
hierarchical fashion. In addition, it should allow multiple instances ot the same block to
be implemented in the model and in such a way that whenever one of the blocks is
modified, the corresponding instances are also modified. Moreover, it should support
implementation of state transition hierarchy.

Another requirement the tool should provide, is a complete set of blocks or
capabilities that allow users to define customized blocks and organize them in user-
modifiable arrangement. The tool should provide condition blocks such as if clause. for
loop, while loop, and case container blocks that are only executed when the user-defined
condition is satisfied. The tool should also provide a block that allows the user to insert
an existing C algorithm into the model.

In addition to the above requirements, the tool should provide the user with an
interactive debugger such that the user may input any signal to a block, group of blocks,
and / or the entire model, and be able to monitor the output of the simulation. The user
should also be able to block step through the model to verify the block execution order in
the model. Moreover, the tool should provide data handling of the simulation to initialize
certain data, write and read the data from a host program, save the output data for future

use, and be able to graphically represent the output of the simulation.

The most important requirement is a real-time C code generator and document
generator. The code generated should be easy to follow and well commented such that
the corresponding block or blocks of a code segment can be easily recognized from the
model. The code generator should also generate the code fast and in an efficient manner
by providing the user with options to optimize or minimize the generated code. The
generated code should be capable to be linked to other utilities in the flight simulation
software environment. Furthermore, the user should also have the option of creating
functions, macros, or inline coding of a block or collections of blocks. The document
generator should allow the user to generate a user-specified format which would include
RTF or HTML format, to insert user-defined parameters and comments in the documents,
and to customize or program the document generator easily and efficiently. Finally, the
tool should have a user-friendly interface, quality on-line help or documentation, fast

execution speed, and a high level of stability [3].

1.3 Why MATRIXx

In the previous section, the characteristics that a tool should contain to be
practical for simulation software development were presented. One tool that satisfies all
these requirements, and is widely used in aerospace and automobile industries for
advanced modeling, simulation, and in software development, is the MATRIXx product
family. A brief overview of the MATRIXx product family is helpful in order to clarify
how MATRIXx supports the requirements. The MATRIXx family consists of five
products: Xmath, SystemBuild, AutoCode, Documentlt, and RealSim. These products

and their inter-correlation are illustrated in figure 1.3. The application of these products

will be explained in more detail, except for the RealSim application which was not part of

requirements for the evaluation of MATRIX in this project.

Documentlt

Hardware Integration
and test

Hardware Systems

Figure 1.3 MATRIXx product family overview [4].

1.3.1 Xmath

The Xmath environment provides mathematical analysis, system modeling, and
visualization and scripting packages, with over 700 hundred predefined commands and
functions. These functions and commands cover applications from basic mathematical
operations to more sophisticated levels of graphical user interface (GUI) tools such as the
Interactive Control Design tool. In addition, Xmath is an object-oriented design tool that

includes numeric, non-numeric, and user-definable objects. These objects provide

10

suitable data handling, fast and optimized program execution through optimal algorithms,
and ease of use due to their intuitive syntax.

Xmath’s MathScript programming language facilitates function or command
programming and design analysis. Data handling can be automated and customized
using MathScript language. Functions and commands can be written in the same way as
predefined ones to handle the various types of data objects in an intuitive manner. Users
are also provided with MathScript object programming to define and create custom
Xmath objects.

Xmath offers an open architecture environment of SystemBuild using
SystemBuild Access (SBA) commands. SBA commands can be used to create any
SystemBuild module and to modify or query any parameter of the existing module. They
may also be used to automate many tasks such as an initialization of parameters included
in the SystemBuild models.

Xmath also supports a linkage of its environment to external programs, thereby
allowing users to call external routines into the Xmath environment or vice versa. For
this purpose. Xmath uses the linked executable (LNX) program to call external C, C++,
and FORTRAN routines into Xmath, and the user callable interface (UCI) program to
allow external programs to designate Xmath as a server.

Additionally, Xmath supports a fully programmable graphical user interface
(PGUI) that allows users to create their own windows, dialogs, result displays, etc. By
using PGUI and MathScript scripting languages, users can design powerful user-friendly
tools such as a pre-designed interactive filter design tool. For example, this tool can be

used to design various filters and is capable of displaying the results interactively in the

11

same window as the type of design approach and transformation between filters is

selected [5].

1.3.2 SystemBuild

SystemBuild is a graphical design environment that can be used to model and
implement systems such as dynamic systems. SystemBuild is also used for validation
and implementation of systems through non-real time simulation and real-time code
generation respectively. SystemBuild supports both top-down and bottom-up design
approaches using a hierarchical structure level group of fundamental blocks called a
SuperBlock, as well as allowing hierarchical state transition implementation, thus
providing an environment for the design of more complex systems.

The SystemBuild environment consists of three main windows: Catalog Browser,
SystemBuild Editor, and Palette Browser. The Catalog Browser is a tool that manages
the structure of the designed models and handles tasks such as saving or opening the
entire or part of the model into or from a file. The Palette Browser is a fully
customizable library of over 80 pre-defined blocks. Users may define any number of
custom blocks and organize them in an arbitrary manner in the Palette Browser. The
SystemBuild Editor is a visual design environment allowing ugers to design their model
by dragging and dropping the blocks from the Palette Browser and Catalog Browser.

SystemBuild is a flexible architecture design environment that allows the user to
modify it for specific design requirements. SystemBuild Access commands allow the
user to automate the required design specification. Designers may alter the Palette
Browser in any way to satisfy the various design environments and to provide team

members partial or full access to all blocks defined in the palette. SystemBuild also

provides a components block that can be used to archive, distribute, and license any
designed SystemBuild model hierarchy, thus protecting the data and design details from
other group members while the overall design is shared among various groups.
SystemBuild also allows the engineers to validate their design in the early phases
of a project in order to save time and money. The validation is performed using the
SystemBuild non-real time simulation tool called the interactive simulator. The
interactive simulator provides a graphical user interface with block and time step
debugging capabilities, Run Time Variable (RTV) modification of system parameters,

etc. It also supports ten various integration algorithms for high accuracy simulation [6].

1.3.3 AutoCode

AutoCode is a tool that automatically generates real time C or ADA code from the
models built in the SystemBuild environment. The generated code is traceable and
commented accordingly. AutoCode supports customized code generation using a
configuration option and template file. AutoCode also provides modular code generation
such as reusable standalone functions using the procedure SuperBlocks.

There are six various procedure SuperBlocks that can be chosen to meet a specific
requirement: Standard, Inline, Macro, Startup, Interrupt, and Background procedure
SuperBlocks. Standard procedure SuperBlocks are used to generate reusable or stand-
alone functions. Inline procedure SuperBlocks are used to generate inline code as if the
code is generated for a normal block. AutoCode generates a macro call in the generated
code for the macro procedure SuperBlocks. Startup procedure SuperBlocks are used to

initialize the required data in the startup phase. Interrupt and Background procedure

SuperBlocks are used to generate code for a specified interrupt routine and for tasks to be
executed in the background respectively.

AutoCode supports propagation of block attributes such as signal labels and data
types. If signal labels are specified, then they will be used as signal names in the
generated code, otherwise the AutoCode generates signal names according to the parent
SuperBlock’s name and the ID of the block the signal is coming from. Data types, block
output scaling, and signal scoping are propagated exactly as they are defined in the
SystemBuild environment.

The AutoCode advance option provides a graphical user interface to set the
desired options prior to code generation. The code generated by AutoCode is almost
fully customizable using a template programming language. AutoCode uses a default
template file to generate the code. However, users may define their own template
program, or modify the existing template, in order to generate the code that meets their
specific requirements.

In summary, some of the most important applications of code generated by
AutoCode are as follows: Non-real time and real time simulations, rapid prototyping,

stand-alone simulation, SystemBuild user code block, etc [7].

1.3.4 Documentlt

Documentlt enables the user to extract the desired information from the graphical
presentation of the system in SystemBuild, and to generate software specifications and
design documents in a user-defined structure and format. Documentlt provides a
template programming language to tailor the formatting and the structure of the generated

documents to satisfy the requirements of the software design documentation.

14

Furthermore, the template program allows the users to insert any appropriate comments
at a user-defined location in the generated document. It also supports templates for
various texts format, namely: FramMaker, InterLeaf, Rich Text Format for Microsoft

Word, and HTML format [8].

1.3.5 Summary of Advantages For Using MATRIX

Using MATRIXx, the aircraft system is implemented in the SystemBuild
environment, tested and validated using SystemBuild interactive simulation, and finally
the corresponding code is generated automatically using AutoCode to satisfy the software
design requirements. For this purpose, AutoCode, the real time code generator is used to
generate a C code with direct correlation between the generated code and the model built
in SystemBuild. The only effort to be made for the code generation process is the
development and customization of a template program such that the automatically
generated code satisfies the specifications of the target applications. This template
program is used as an interface between the SystemBuild models and the generated code
to tailor the code to the requirements needed for the target machine. Moreover, the
template program needs to be developed only once for any application, and it can be
reused for other applications as it is, or with slight modifications.

Another capability that MATRIXx offers is an automatic document generation
from the models built in SystemBuild. The benefit of this facility is more apparent when
one thinks of all the changes that will be made to the model in SystemBuild during a
debugging process. Any changes made will be reflected in the design documentation,
automatically eliminating the need for modifying the documentation manually whenever

some part of the model is modified.

Consequently, with use of the MATRIXx product family, the number of errors
that occur in the manual code will decrease dramatically since the design environment is
more visual. Secondly, it will maximize productivity by reducing the time required for
coding a system. In addition, it provides an environment that simplifies the
communication between various design teams and will provide reusability of common
models between various design projects. Finally, it will help new engineers to adapt to

the working environment much faster and easier [9].

2 THESIS OBJECTIVES

The main objective of this thesis is to evaluate the usefulness of MATRIXy as a
software development tool for flight simulators. The objective of the evaluation is
divided into two parts. The first objective is to implement the selected aircraft system in
SystemBuild and determine if there are any implementation issues which make the use of
MATRIXx impractical in the flight simulation software environment. The second
objective is to comment on the criteria that will be used to evaluate MATRIXx to
determine if it is beneficial to use MATRIXx to develop software for flight simulators.
For this purpose, two different aircraft systems, a reduced scope of medium commercial
jet flight warning computer system and a typical generic autopilot system, have been
selected for evaluation in order to consider the nature of various kinds of typical systems
implemented at industries, namely the Boolean and dynamic control systems. The first
part of this chapter covers the method of implementation of the systems in SystemBuild.

and the second part discusses the evaluation criteria used to evaluate MATRIX .

2.1 Implementation of the Selected Systems Using MATRIXx

Implementation of the chosen aircraft systems in SystemBuild is divided into
three major steps. The first step is to develop a component library of all the necessary
blocks used to model each aircraft system in the SystemBuild environment. Once the
component library is defined, each system will be modeled appropriately in SystemBuild
to determine whether a suitable simulation code can be generated automatically from the
developed model. Finally, if necessary, an appropriate template program will be

developed to translate the nature of the each model in SystemBuild into a real-time C

17

code in such a way that the generated code satisfies the flight simulation software design

requirements.

2.1.1 Development of the Component Library

A component library must necessarily be developed for each Aircraft system due
to three reasons. The first reason is that the predefined library that is provided in
MATRIXx is not complete, and certain blocks, such as a flip-flop block, have to be
developed. The second reason is that normally, when a block is created, its parameters
such as name, output type, and icon, have to be initialized. Obviously, it would take long
time to initialize these variables each time an instance of any block is created. To solve
this problem, a custom block can be created when necessary to simplify the task of the
designer by automatically initializing the appropriate parameters upon the creation of
each block. The last and the most important reason is that by using custom blocks, users
can control the code generation from the models built in SystemBuild. As an example,
when using a custom macro procedure SuperBlock, designers can reuse any already
defined macro, and by using BlockScript blocks, the code generation for any block can be

tailored to meet the design specifications.

2.1.2 Modeling the Boolean System (Flight Warning Computer)

The flight warning computer has been selected to represent a typical Boolean
system implemented in flight simulators. The purpose is to implement the flight waming
computer in SystemBuild and determine if MATRIXx is a suitable tool for use in
modeling Boolean systems. An appropriate block should be defined for previously

developed macros to facilitate reusability and controllability of the code generation.

18

Furthermore, care should be taken during the implementation of the systems in
SystemBuild using properly predefined or customized blocks in order to minimize the
amount of generated code and to reflect the schematic of the original design documents,
thereby simplifying the comparison of the design documents with their corresponding
models in SystemBuild. Since SystemBuild does not provide automatic transfer of input
information such as input names and labels from a child SuperBlock to its parent
SuperBlock, a utility should be developed to perform this task automatically. The main
task in implementing a flight warning computer system in the SystemBuild environment
will be to model the system in such a way that a suitable real-time C code can be

generated from the implemented model using the AutoCode code generator.

2.1.3 Modeling the Dynamic Control System (Autopilot)

A typical generic autopilot was chosen for the purpose of evaluation of
MATRIXx to reflect a typical dynamic control system implemented in flight simulators.
The modeling of the autopilot consists of the implementation of many dynamic control
loops and control laws. An appropriate method should be chosen to model the autopilot
mode of operation in order to ensure that only the corresponding engaged mode of
operation is simulated during simulation. Since flight test data has not been provided for
this project due to confidentiality issues, an approximate mathematical model will be
developed to calculate the motion variables and the aerodynamic forces and moments
acting on the aircraft in order to simulate the autopilot system. Furthermore, a standard
atmosphere model should also be implemented to determine the dynamic pressure that is

used in aerodynamic forces and moments calculations.

19

2.1.4 Generation of the Simulation Software Automatically

AutoCode generates a real time C code for the models built in SystemBuild using
a template program language. The purpose is to write a template program to generate a
code such that the code is as close as possible to a hand written code. Even though the
template programming language can be used to tailor the generated code, there are some
restrictions that cannot be avoided. A utility should be written to initialize the model
appropriately, prior to code generation. In addition, any necessary post processing
utilities should be developed to delete undesirable portions of the generated code that can

not be eliminated using customized template program.

2.2 Evaluation Criteria

The second objective of this thesis is to use the identified evaluation criteria to
evaluate MATRIXy as a software development tool for flight simulators. The evaluation
criteria used are based on the initial proposal given by CAE. However, they have been
changed according to experience gained during the project. The evaluation criteria are
divided into four groups: general, implementation, unit testing, and code generation. The

purpose of each criteria is discussed briefly in the next subsections.

2.2.1 General

One of the reasons for using MATRIXY, is that it provides a suitable working
environment that new employees can easily adapt to and learn quickly. For this purpose,
a set of criteria has been selected to evaluate MATRIXx for its general performance.
First, it is required to determine the ease of learning and use of the software. After that,

the quality of the online help and documentation will be evaluated. Furthermore, the

criteria will evaluate which type of system is best suited for MATRIXx. Finally, a
suitable method should be recommended for identifying the differences between

revisions of the same system.

2.2.2 Implementation

The main purpose of the implementation criteria is to find out how much time will
be saved during the software development process using MATRIXx compared to manual
coding of the system. It will also be used to evaluate the accuracy of the modeling of the

systems in the MATRIXy environment.

2.2.3 Unit Testing

The objective of unit testing criteria is to evaluate whether MATRIXx provides a
friendly user interface for its products (Xmath window, SystemBuild editor, etc.). In
addition, the execution speed of the MATRIXx family and the ease of use of scripting for

system simulation will be evaluated.

2.2.4 Code Generation

Template programming language is used to extract the desired section of the
implemented model in SystemBuild and to generate the corresponding real time source
code automatically. The purpose of the code generation criteria is to evaluate the ease of

template programming in addition to the quality and accuracy of the generated code.

3 BOOLEAN SYSTEM

One of the aircraft system that was chosen for evaluation of MATRIXx as a
software development tool is the flight warning computer (FWC) system. The FWC
system represents a Boolean system that primarily does not contain any dynamic blocks
or dynamic loops. The FWC has been selected to reflect a typical Boolean system
implemented in flight simulators. This chapter discusses briefly the operation of the
typical flight warning computer system and describes how the warning messages are

arranged and provided to the pilots.

3.1 Flight Warning Computer

The flight warning computer is responsible for computing warnings and cautions
occurring during the various flight envelopes, and providing the crew with operational
assistance for both normal and abnormal configurations of the aircraft systems. Two
identical flight warning computers provide this operational assistance through electronic
centralized aircraft monitor (ECAM) display units that display visual messages and use

loudspeakers to announce aural alerts and synthetic voice messages.

[(spac]
[®s]
:\/ FWC

Figure 3.1 Basic overview of FWC operation.

~
o

As shown in figure 3.1, the flight warming computer receives the required data
directly from aircraft sensors and systems for generating red warnings, or from two
identical system data acquisition concentrators (SDAC) for generating amber cautions.
SDAC acquires data from aircraft sensors and sends the appropriate signals to the display
management computer for display of status pages and engines parameters, or to the flight
warning computer to display ECAM messages or aural alerts. The FWC also provides
radio altitude callout, decision height callout, landing distance and landing speed

increment during approach by synthetic voice messages [10][11].

3.1.1 Types of Failures

There are three different kinds of failures: Independent, Primary, and Secondary.
In an independent failure, an isolated system or part of equipment has been affected
without influence on the performance of other systems in the aircraft. Primary failure
occurs when an affected system or part of equipment degrades the performance of other
systems or parts of equipment. Finally, the secondary failure is a failure of a system or a

part of equipment because of primary failure [11].

3.1.2 Warning/Caution Classification

Messages generated by the flight waming computer can be divided into two
groups: failure messages and infurmation messages. Failure messages are subdivided
into three groups: level 3 red warning, level 2 amber caution, and level 1 amber caution.
Level 3 red warning occurs when the aircraft is in a dangerous configuration. a flight
condition limit has been reached, or there is a system failure alerting the system safety.

In these cases, the configuration or failure needs immediate action from the crew. Level

23

2 amber caution indicates a failure that does not directly affect flight safety and does not
require the immediate action of the crew, but alerts the crew to the configuration or
failure. Level | amber caution only requires crew monitoring and it is the result of
failures leading to loss of redundancy or system degradation. Information messages are
subdivided into two groups: advisory and memo. Advisory messages provide the crew
with system parameters, and memo messages inform the crew of normal or automatic

selections of functions that are only temporarily used [11].

3.1.3 Priority Rules

Level 3 warning messages that require the immediate action of the crew have
priority over level 2 caution messages, which in turn have priority over level | caution
messages. There are a set of rules within each level of messages which are taken into
account when multiple messages of the same priority level have to be sent to the display

units.

3.2 Electronic Instrument System (EIS)

The components of the electronic instrument system are shown in the following
block diagram. The figure shows the flow of the data from the aircraft sensors and
systems to the flight waming computer. After these data are analyzed by the flight
warning computer, they are sent to the display units through the display management
computers or to the loud speakers directly from the FWC to announce the appropriate
messages. The operation of each component of electronic instrument system will be

described in more detail in the following sections.

i = o K :
I z !
WARN | ==
' 8 WARN ;|
Trom o .
1 je :g (cnn,,
PN 1
Pl 1 ! l ﬂ i
. ! H -—
Ty = DOMC 1 ;r"—'l DMC 3 ———7i oMC2 — B .-
: ; ‘ X
—_—
i s ’
‘ 17 !
. | | ISR
A ; I acz ||
i i -
S) | —
1
SDAC 1 I spac 2 !
- i
)
— P
A/C SYSTENS SENSORS e DS meAs) WY § AFS SESTRS
INPUTS FR INPJTS FOR FADEC
= RED WARMINGS - AMBER CAUTIONS Fal
~ SYSTEN PAGES ~ SYSTEN PAGES L&
= FLIGHT PWASE FooC

Figure 3.2 Electronic instrument system components [11].

3.2.1 Display Units (DU)

The electronic instrument system display units consist of six identical full colored
cathode ray tube display units, which provide the crew with flight and aircraft system
information. The EIS is divided into two subsystems: Electronic flight instrument system
(EFIS) and Electronic centralized aircraft monitor (ECAM). EFIS consists of four
display units, two primary flight display (PFD) units that provide mostly flight
parameters, and two navigation display (ND) units to display navigation data. ECAM
consists of two display units: Engine/warning display unit (E/WD) which provides engine
indications, warning and caution messages and memos, and system display (SD) which

displays a synoptic diagram of aircraft systems, status messages and permanent data [1].

o
W

3.2.2 Display Management Computer (DMC)

Three identical display management computers receive data from the aircraft
sensors and other computers. They process the data and generate the appropriate signals
to be displayed on the display units. Each computer consists of two independent EFIS

and ECAM channels, and is capable of feeding one PFD, one ND, and either EW/D or

SD at the same time.

3.2.3 System Data Acquisition Concentrator (SDAC)

Two identical SDACs receive data from aircraft system sensors and feed the
DMC and FWC. DMC uses the signals to generate system pages and engine parameters

and the FWC uses the signals to generate amber caution messages and aural alerts.

3.2.4 Attention Getting Devices

There are two sets of attention getting devices; one for the captain and one for
first officer located under the glareshield. Each set consists of one “*Master Warn™ light

that flashes for red warning, and one “Master Caut” light that flashes for amber cautions.

3.2.5 Loudspeakers

Aural alerts and voice messages are announced using the loudspeakers provided in

the cockpit even when set to off.

3.3 Electronic Centralized Aircraft Monitor (ECAM)

ECAM consists of two display units; Engine waming display (E/WD) and
System/status display (SD). The E/WD displays warning/caution messages or memos.

The SD displays system synoptic or status.

3.3.1 ECAM Control Panel

The ECAM control panel is shown in figure 3.3. The Operation of each button is

explained in more detail.

Figure 3.3 ECAM control panel [12].

The OFF / BRT knobs control respective ECAM display unit brightness and turn
them on or off. If the upper display unit is turned off, E/WD is automatically displayed
on the lower ECAM display unit.

Pushing the T.O. CONFIG button performs takeoff power application simulation
test to trigger a warning in case the airplane is not in proper takeoff configuration. The
“TO CONFIG NORMAL™ message is displayed on the E/WD if the test has been passed.

When the EMER CANC button is pushed, the next step taken depends on the type
of situation. In a warning situation, the current aural warning is cancelled and the
MASTER WARNINGS lights are extinguished without affecting the ECAM message
display. In a caution situation, any current caution messages and aural signals are first
canceled for the rest of the flight, and then the STATUS page automatically displays the

message “CANCELLED CAUTION™ and the title of the inhibited failure.

There are eleven system page buttons that when pushed, display the related
system page on the SD and light up after being manually pushed, or when an advisory is
detected. If same button is pushed a second time, it calls up the related current flight
phase or current waming system page.

If the ALL button is pressed and held, the lower ECAM displays all the system
pages in sequence at one-second intervals. If the ECAM control panel fails, this button
can be pushed and held until the desired page is shown, releasing the button will select
the page.

The CLR buttons illuminate when a warning, caution, or status message is
displayed on the E/WD. Pushing an illuminated button will change the ECAM display.

When the STS pushbutton is pushed it lights up and the STATUS page is
displayed on the SD. If there are no status messages to be displayed. the message
“NORMAL" will appear on the STATUS page for 5 seconds. Pressing the STS button a
second time or the CLR button will clear the STATUS page.

Pushing the RCL button recalls suppressed warning or caution messages that have
been obscured by use of the CLR button or caused by the flight phase inhibition. If there
are no suppressed messages the “NORMAL” message is displayed on the E/WD for five
seconds. If this button is pushed and held for three seconds the caution messages,

canceled by pushing the EMER CANC button, will be displayed on the E/WD [11].

3.3.2 Color Code

Warning and caution messages on ECAM are color coded to indicate the
importance of each message. Red is used for warnings that need the immediate action of

the crew. Amber is used for caution messages, which indicate awareness but no

immediate action is required. Green indicates normal operation. White indicates title
and remarks. Blue messages are limitations or actions that need to be carried out.

Finally, magenta is used for special messages such as inhibition messages [14][15].

3.3.3 Failure of ECAM DU

In case the upper ECAM DU fails, the E/WD automatically replaces the SD on
the lower ECAM DU. System or status messages can be displayed either on the ND unit
by using the ECAM/ND XFR switch, or they can be temporarily displayed on the lower
ECAM DU for a maximum of 30 seconds by pushing and holding the required system
page button on the ECAM control panel. Alternately, if the lower ECAM DU fails, the
system/status messages can be displayed either on the ND unit using the ECAM/ND XFR
switch or they can be temporarily displayed on the upper ECAM DU for a maximum of
30 seconds by pushing and holding the required system page button on the ECAM
control panel. If both ECAM DU fail, the engine warming messages can be displayed on
the ND unit using the ECAM/ND XFR switch and system/status messages can be
displayed on the ND unit for a maximum of 30 seconds by pushing and holding the

required system page button on the ECAM control panel [11].

3.3.4 Aural Indication

Red warnings are announced by continuous repetitive chimes as long as the
warning exists, unless the pilot pushes the “EMER CANC” button on the ECAM control
panel or the “MASTER WARN” button located under the glareshield (this excludes ‘over
speed’ or ‘landing gear not down’ warnings). Amber caution warnings are announced by

a single chime for a duration of half a second.

3.3.5 ECAM Procedure

Whenever a failure occurs in a system, ECAM performs the following sequence.
The corresponding warning and caution messages are displayed on the E/WD. Except for
level 1 amber caution messages, the master warning or master caution lights on the side
panels light up. Aural indication is sounded except for level | amber cautions. The SD
unit displays the system page corresponding to the failed system to help the crew identify
the affected system. The CLR button lights up on the ECAM control panel. When all
necessary actions have been performed to overcome the failure, the CLR button should
be pushed repeatedly until only MEMO messages are displayed on the E/WD, the SD
displays the present flight phase system page, and the CLR button light on the ECAM

control panel is of f [11][13].

3.4 Engine/Wamning Display (E/WD)

The engine/warning display unit is in the upper ECAM display unit and is divided
into four parts as shown in figure 3.4. On the upper left side the engine parameters are
displayed, and on the upper right side the total fuel on board and slat / flap positions are
displayed. The lower left part, in case of a failure, displays primary or independent
warnings and cautions and in normal operation it displays memo messages. The lower
right part displays secondary failure, memos, special lines (e.g. “AP OFF™), or the title of
the affected system by an independent or primary failure when there is an overflow on

the lower left part of the E/WD.

30

Figure 3.4 Engine/Waming display unii [17].

3.4.1 E/WD Message Management

There is a priority order defined for the display of messages on the E/WD. The
priority order is as follows: special lines (e.g. red warnings or limitation), level 3 red
warnings, level 2 and level | amber cautions, secondary failure messages, and memos.

Messages are displayed on the E/WD from top to bottom in Z fashion. As soon as
a system failure is detected and no flight phase inhibition has been activated. the title of
the failure and the corresponding actions that should be taken are displayed on each line
separately. Each action line, except in some cases, is cleared as the flight crew has
performed the required action. Once each line is deleted, the empty line is filled by
upward transfer [10].

Memo messages that were displayed on the lower left part of the E/WD prior to
the occurrence of the failure reappear when the CLR button on the ECAM control panel

is pushed once. In addition, if there is a secondary failure after executing each action, it

31

will be displayed on the lower right part of the E/WD. Also, system pages corresponding
to the secondary failure are displayed automatically on the SD to indicate the affected
area. After the CLR button is pushed a second time, normal operation memo messages
are displayed on the lower right part of the E/WD and the status page is called up on the
SD to provide the crew with operational assistance to complete the flight with the
affected area. Pushing the CLR button for a third time results in an automatically call up
of the system page for the current flight phase and a status reminder appears on the
bottom of the E/WD.

In order that different failures can be easily identified, the primary failure title is
boxed and the secondary failure is shown with a star in front of the title of the affected
area. If there are too many messages to be displayed in the space provided on the lower
part of the E/WD, a green arrow pointing downwards will appear at the bottom of the
display unit to indicate the overflow of the messages off screen. The crew can view that

information by pressing the CLR button on the ECAM control panel [11].

3.4.2 Flight Phase Inhibition

The flight envelope has been divided into ten phases from starting point power on
to engine shut down. According to these phases, the flight warning computer’s functions
have been divided in order to improve the efficiency of its operation. In some phases,
such as landing or takeoff, the flight wamning computer inhibits some warnings and
cautions that would be displayed on the ECAM display units to decrease the pilot’s
workload. For example, consider certain failures are inhibited in phase three, if the
failure occurs before entering phase three; the warning will be displayed immediately and

will be displayed as long as the failure persists even during phase three. But if the failure

occurs during phase three, the warning is not displayed until the airplane exits phase three
and enters phase four where the wamning is not inhibited. Then the warning is displayed

as long as the failure persists [11].

3.4.3 Memos

Memo messages indicate a temporarily used system or function under normal
situations. They are displayed on the lower part of the E/WD and are normally green. In
this section, only take-off and landing memos are discussed.

Take-off memo messages are displayed automatically two minutes after the second
engine has been started, or manually when the pilot pushes the CONFIG TEST button if
at least one engine is on. They are blue before the required actions are performed and are
green afterwards. Figure 3.5 shows a T.O memo after the take off configuration test has
been performed and everything is in normal configuration. These memo messages are

erased at the moment of take off power application [11].

Figure 3.5 Take off memo messages.

The landing memo is displayed when the aircraft’s altitude is below 1500 ft if the
landing gears are down, or below 800 ft if the landing gears are not down. The color of

the message is blue if the required action is not performed, and green if the action is

33

performed. After touch down, this memo is erased. The landing memos are shown in

figure 3.6 [16].

[REIF R

Pty
S

Figure 3.6 Landing memo messages.

3.5 System Display (SD)

The system display is the lower ECAM display unit and is used to display a synoptic
diagram of system pages or the status page. As an example, the system status that

corresponds to the warning messages in figure 3.4 is shown in the following figure.

MAN 4
Sysi SYS2 SAFETY

VENT T
INLET EXTRACT -
[a— | —

A
PACK4

Figure 3.7 System Display Unit [17].

34

3.5.1 System Pages

There are twelve different system pages that can be displayed on the SD. The
status pages are secondary engine parameters, air bleed, cabin pressurization, electric
power, hydraulic, fuel, auxiliary power unit, air conditioning, doors/oxygen, wheel, flight
control, and cruise. System pages are displayed either automatically or can be called up
by the flight crew to be displayed on the SD.

The pilot can call up each system page, except the cruise page, by pushing the
appropriate button on the ECAM control panel. The chosen system page will be replaced
automatically in case of warning or advisory messages.

Automatic call up of a system page can be caused by a failure, advisory message.
or flight phase mode. If a failure is detected the appropriate system page is immediately
displayed on the SD.

System page relating to the phase of operation is automatically displayed if no
warning/caution or advisory messages are detected.

Advisory call up occurs when a parameter is out of its normal range. In this case,
the appropriate system page is displayed with the out of range parameter flashing in green
until the value is back to normal. If only one ECAM display unit is operating, the
relevant button on the ECAM control panel flashes to indicate the defect area and a
boxed advisory message is displayed on the upper part of the message area on the E/WD

as shown in Figure 3.8. In some flight phases the advisory call up is inhibited [10][11].

35

Figure 3.8 Advisory message on E/WD.

3.5.2 Status Page

The status page is filled from top to bottom. This page displays Limitations.
Approach procedures, Procedures, Information, Cancelled Cautions, [noperative systems.
and Maintenance status. The first four are displayed on the left part of the SD from the
top with a line separating each group. Cancelled cautions are displayed on the lower left
side, INOP SYS are displayed on the upper right side, and Maintenance status is
displayed on the lower right side of the SD. In case of an overflow, a downward arrow is
displayed on the lower part of the SD to indicate information off screen. By using the
CLR button on the ECAM control panel the pilot can view the overflow information.

The status page is displayed automatically when the crew performs all required
actions in case of failure or when, during descent, the slats are extended and there is no
information or only maintenance messages are available. The status page may be
displayed manually by pressing the STS button on the ECAM control panel. The E/'WD
shows the status reminder “STS” when there is other information than “CANCELLED
CAUTION" or MAINTENANCE available. If there is still MAINTENACE information

at the time of engine shut down, the status reminder “STS” will flash on the E/WD [11].

36

3.5.3 Permanent Data

There are five parameters that are displayed on the bottom of the SD called
permanent data. These parameters are shown in figure 3.7. Total air temperature and
static air temperature are displayed in green on the bottom left side of the SD. The value
of the load factor if it is out of limit is displayed in the lower middle part of the SD or, in
case it 1s not displayed, the selected altitude from the flight control unit is displayed in
green if it is selected in metric units. Universal time coordinated is also displayed in the
middle part of the SD. Finally, on the lower right part of the SD, the gross weight is

displayed in green [11].

37

4 DYNAMIC CONTROL SYSTEM

A typical generic autopilot system was selected to evaluate the use of MATRIX
as a software development tool for flight simulation software. The autopilot system
represents a typical dynamic control system developed in flight simulators. This chapter
provides the user with a brief theory about the autopilot system. It concentrates primarily
on the pitch channel autopilot since only this part of the autopilot has been implemented

and tested using MATRIXx.

4.1 Automatic Flight Control Systems

The automatic flight control system (AFCS) provides the pilot with the basic
piloting functions that reduce unnecessary or dangerously high workloads that pilots must
perform in order to allow the pilots to concentrate on the more important tasks of the
flight envelope [18]. The detailed concept behind the design of automatic flight control
systems is beyond the scope of this project. Therefore, only a brief overview of the
concept is discussed. In deriving the equations of motion of the airplane many
assumptions have been made to simplify the derivation of the equations [19][20]. Using
these assumptions, the equations of motion of the aircraft can be divided into two groups:
longitudinal motion and lateral motion, each containing three equations.

The solution of longitudinal motion for a general aviation aircraft results in two
different modes: the short period mode and the phugoid mode. The short period mode is
a high frequency heavily damped oscillatory response, which is felt as a bump by the
flight crew or passenger. The phugoid mode is a lightly damped long period oscillatory

response, which is very annoying if not controlled.

38

The solution of Lateral motion for conventional aircrafts results in three different
modes: spiral mode, roll subsidence mode, and dutch roll mode. The spiral mode is
slowly divergent implying instability. The roll subsidence mode is highly damped, and
finally the Dutch roll mode is a damped oscillation with various damping ratios and
frequencies for different types of aircrafts.

[f the high frequency unstable modes have a higher frequency than the pilot
bandwidth, it proves to be very difficult for the pilot to control the airplane in these
modes. Therefore, closed loop automatic control systems have been designed to
sufficiently dampen these modes to ease the pilot’s workload [21]. Normally, AFCS can
be divided into three groups; stability/control augmentation system. autopilots, and flight

guidance systems [18].

4.1.1 Stability/Control Augmentation Systems

The stability augmentation system (SAS) is a closed-loop control system that uses
the control surfaces to damp the unwanted high frequency angular motions in pitch. roll
and yaw [22][23]. The control augmentation system (CAS) controls the unwanted
motion and also provides the pilot with a specific type of response to the control inputs.
such as pitch rate or normal acceleration. Examples of these systems are the yaw damper

system and pitch-rate augmentation system [22].

4.1.2 Autopilots

The autopilot system is a closed loop system that is used to establish and/or
maintain a required flight condition. The autopilots are designed to perform various tasks

from single axis control to the more sophisticated three axis control [21].

39

4.1.3 Flight Guidance Systems

The flight guidance system either provides the pilot with the necessary information
to fly and control the airplane manually, or combines the information with autopilot to
control the airplane automatically. The former is called the flight director system which
provides the information through a flight director indicator on the primary flight display
units. The latter system is called the flight management system and it couples the
function of autopilot with data provided by the flight director to control the airplane
automatically {18].

In early airplanes the flight director and autopilot had separate computers to
perform their tasks, and generally the autopilot computers were more sophisticated than
the flight director computer. In contrast, in modern airplanes today. the autopilot
computer also performs the task of the flight director. Consequently, the pilot can let the
autopilot fly the airplane in the desired mode and use the flight director to monitor

autopilot performance [24].

4.2 Autopilot

The autopilot is used to maintain and/or establish the required flight condition.
Autopilots are designed in various degrees of operation and control functions. They can
be very simple and only control the airplane in single axis, or can be fully equipped and

control the airplane in pitch, roll, and yaw axis.

4.2.1 Single-Axis Autopilot

The single-axis autopilot normally controls the airplane only about the roll axis

using ailerons control surfaces. This kind of autopilot is very simple in concept and it

40

uses only the ailerons in the control loop to maintain the airplane’s lateral stability more
commonly known as the wing level. In addition, it has the ability to track and maintain
the heading of the airplane by using signals from the navigation system. It is also able to

turn the airplane automatically using the command signals from the pilot [25].

4.2.2 Two-Axis Autopilot

The two-axis autopilot primarily controls the airplane in a roll and pitch axis.
There are two control loops with ailerons and elevators in the loop to control the airplane
in roll and pitch. Normal modes of operation of this autopilot are heading-hold, manual

turn control, and in some cases, altitude-select and altitude-hold modes [18].

4.2.3 Three-Axis Autopilot

Three-axis autopilot is capable of controlling the attitude of the aircraft in roll,
pitch and yaw using ailerons, elevators and rudder respectively. It is also able to combine

the ailerons and the rudder to perform co-ordinate turns.

MACH AUTOMATIC CONTROL LOOP MACH
L_SENSOR

N
ALTITUDE AUTOMATIC CONTROL LOOP ALTITUDE w
L__SENSCR
.1\

MEADING AUTOMATIC CONTROL LOOP HEADING

L__SENSOR

A
ATTITUOE AUTOMATIC CONTROL LOOP ATTITUDE
L_SENSOR

A

DAMPER AUTOMATIC CONTROL LOOP [RATE CF TURN
SENSOR

SERVOMOTOR AUTOMATIC CONTROL LOCP T

SERVO | ;1 I N
—>| MOTOR AILERON

ROLL IHEADlNG l 3 3 3
CHANNEL CONTROL
PITCH SERVO
ATTITUDE DAMPING |—> —) ELEVATOR
CHANNEL ALTITU0E CONTROL CONTROL | ~ |compyuren| LMQIOR AIRCRAFT
VAW CONTROL | —> AMPLIFIER <50 BEMAVIOR
Bihwee L, e
MACH MACH I - SERVO FUEL
CHANNEL | CONTROL > [>| MoTOR FLOW

Figure. 4.1 Typical three-axis autopilot [26].

41

Figure 4.1 shows the block diagram of a typical three-axis autopilot used for
commercial aircraft. It also illustrates the autopilot’s ability to maintain the mach number

or speed in addition to altitude control and heading control [26].

4.2.4 Autopilot Control Panel

The automatic flight control system must be capable of letting the pilot interact
and send commands to the system in order to change the aircrafts attitude. This is done
through the autopilot control panel. Figure 4.2 shows a typical large commercial jet
autopilot control panel that is located under the glare shield. For this aircraft, autopilot
computers are also used as flight director computers and the same knobs are used for
autopilot and flight director modes as opposed to other aircrafts that use different buttons
and knobs for the autopilot and flight director. In addition to mode select panel there is

also a controller panel containing turn control knobs and pitch wheel controls.

PRESET COURSE
CONTROLS & INDICATORS F/0'S

FLIGHT DIRECTOR
TURB/SPEED oy_oFF swiTeCH

SWITCH
CAPTAIN'S COURSE

FLIGHT DIRECTOR ‘#’E"E%T‘s'gfgg}ime SELECT "‘g"g’o'c“ FIO'S PTW
ON-QFF SWITCH & INDICATOR SWITCN CONTROL xnon

1)@ "M @EL@A?T

AUTOTWROTTLE aachacam
ENGAGE SWITCH AU'I’OPILOT nsssr HEADING m«v MODE SWITCH & e DT SELECT
& GREEN LIGHT ENGAGE SELECT KNOB & SELECT GREEN LIGHT S e

CAPTAIN'S SWITCHES INDICATOR SWITCH

FLIGHT DIRECTOR

ALTIT
PITCH TRIM WHEEL (PTW) LTITUDE SELECT

KNOB & INOICATOR

Figure. 4.2 Typical mode select panel for large commercial jet [25].

The two flight director switches engage or disengage the corresponding flight
director channel. When the auto-throttle (A/T) system is on, it operates the throttle to
maintain the selected speed during an automatic landing. The autopilot engage levers are
locked in “off” position until certain interlocked circuitry is fulfilled in order to ensure
that the autopilot is able to safely take control of the aircraft. When the levers are in
manual position, only the turn knob control and heading hold modes are accessible for
the roll channel, and the pitch wheel control can be used for pitch attitude hold mode
except for altitude hold mode. There are two course select knobs that control the course
select bugs on the captain’s and first officer’s horizontal situation indicators. The mode
of both autopilot and flight director are controlled through the mode select switch in the
middle of the panel. If the autopilot is set to manual mode, the mode select switch only
controls the flight director modes. When the switch to the right of the altitude select
knob is on the “ALT SEL" position, the airplane will capture the selected altitude shown
on the digital read out and hold the desired altitude after capture. Finally, an automatic
landing is possible when all the three (for category III landing), or at least two autopilots
(for category II landing) are engaged and operational, and two flight directors are also

operational [24].

4.2.5 Autopilot Control Loops

Each axis of the autopilot system commonly consists of two loops as shown in
figure 4.3. The first loop is the inner stability loop that controls the stability of the
airplane by sensing any variations or disturbances to the airplane’s attitude, and then

returns the disturbed attitude to an acceptable stable position.

43

The outer loop receives data such as airspeed and heading from the airplane’s
sensors, pilots, and the navigation radio in order to modify the currently stabilized
attitude by performing some maneuvers to reach a new stable path. The data required to
change the current attitude to a specific flight path depends on the mode of operation.
The number of modes of operation depends on the type of autopilot designed. The modes
are selected by the pilot through the mode control panel, except in some cases when they
are automatically selected. For example, the glide slope mode is activated automatically

as soon as the airplane is in the approach mode [27][28].

Aearodynamics

Inner Toop ’ ’ 1
Attitude Error Signai
sensing sensingl ..] processing I
Feedback J
Auto:nlot ulo'cl Interlock Servomotors
and manus
demand nputs controls (actustors)

Control surfaces

i Manometric,

! radio nav. and Signal
I other signal processing

sensing l

Quter 100p

XEXEK Mechanical coupling

Figure 4.3 Inner and outer loops of autopilot system [25].

4.2.6 Autopilot Modes of Operation

The autopilot automatically controls the airplane in the roll, pitch and yaw axis,

depending on the mode of operation selected by the pilot. If the autopilot computers are

used as flight director computers, these modes of operation (except in some cases) are the
modes of the flight director as well. Some common autopilot and flight director modes
for roll and pitch channel are shown in table 4.1. In addition to the mode of operations
given in the table, the autopilot is capable of controlling the rudder in conjunction with

ailerons for turn coordination.

PITCH AXIS

ROLL AXIS

Altitude Hold

Heading Hold

Altitude Preselect Track

Heading Select

Altitude Preselect Capture

VOR Capture

Glideslope track

VOR Track

Glideslope Capture

Dead Reckoning

[AS Turbulence
Mach Back Course
Pitch Localizer Capture

Take-off Vertical

Localizer Track

Vertical Speed

Take-off Lateral

Go-Around

Roll

Table. 4.1 Pitch and roll mode of operation [29].

45

4.3 Pitch Axis Autopilot

In this project, only the pitch axis autopilot has been implemented in SystemBuild

to evaluate the use of MATRIXx. Therefore, only pitch axis modes are discussed in more

detail.

4.3.1 Altitude Hold Mode

In this mode. the autopilot controls and maintains the altitude of the aircraft from
any deviation of the commanded altitude. This mode is usually engaged in cruise mode.
Normally, the pilot controls the aircraft during the climb and descent, and once the
desired altitude has been reached, the pilot engages this mode to let the autopilot control
the aircraft’s altitude. In more sophisticated autopilots, the pilot is able to select an
altitude and the autopilot will automatically reach that altitude and engage the altitude
hold mode to maintain the commanded altitude. Figure 4.4 shows a typical block

diagram of the altitude hold autopilot.

| Snanhahabtt et it 1

Reference [aput

Aurcraft h

Dynamics 9

em eemm e e .-

Figure 4.4 Typical schematic diagram of altitude-hold autopilot [30].

46

The lag compensator block is required to maintain the stability of the outer loop.
The system is unstable for positive values of the lag compensator’s gain when there is
only altitude feedback, therefore pitch rate feedback is necessary to keep the system

stable [30].

4.3.2 Altitude Preselect Capture/Track Mode

In this mode, the autopilot controls the aircraft to capture and track the preselected

altitude. Figure 4.5 illustrates the operation of this mode.

ALTITUDE SELECTED
DESCENT VIA PITCH MODE

ALTITUDE MODE CAPTURED

ASCENT
VIA PITCH MODE B

Figure 4.5 Altitude preselect capture/track mode [26].

At point | the pilot preselects the desired altitude while the pilot may select any
vertical mode to fly the airplane to the capture point, except glideslope capture, go-
around or altitude-hold modes. At point 2, which is the capture point, the autopilot
automatically selects the altitude preselect capture mode to capture the selected altitude.
The capture point depends on the rate of climb or descent at which the airplane is flying

toward the selected altitude. It is also limited by the maximum distance from the desired

47

altitude. Once the selected altitude is reached, the track mode maintains and controls the

selected altitude [24].

4.3.3 IAS Hold Mode

The speed control is used by more sophisticated autopilots and is normally
integrated in high performance aircraft systems. The autopilot uses the indicated air
speed hold mode or the mach hold mode to control the speed of the aircraft. The IAS
hold mode is normally used during the approach and flight phase.

One way of controlling the speed is by using auto-throttles, which use feedback
control loops to control the throttles. The block diagram of this approach is shown in

figure 4.6.

Ueat Speed
- —+ ACTUATOR ENGINE D

+ Thrust authority
s

PITOT-LAG

Figure. 4.6 Speed control using auto-throttle [31].

48

The analysis of the system (given in the reference) demonstrates that the
performance of auto-throttles improve with faster engine response [31].

In the above approach, the engine-lag can have severe effects on the control of the
speed. Therefore, in some aircrafts. auto-drag controls are used instead of auto-throttle.
The auto-drag approach uses speed brakes as a feedback to control speed. The advantage
of this approach is that it causes less damage to the engine because the speed is controlled

at a constant throttle setting. The auto-drag block diagram is shown in Figure 4.7 [31].

SPEEDBRAKE Speed

) ACTUATOR SpeedBrake

PITOT-LAG

Figure. 4.7 Speed control using auto-drag [31].

4.3.4 Mach Hold Mode

This mode is used during the cruise flight phase and it controls and maintains the
mach number at a constant value. Before this mode is engaged, the pilot should fly the
airplane to a level flight path and reach the desired mach number. Once this mode is
engaged, the autopilot maintains the desired Mach number. During the cruise, as airplane

fuel decreases, the speed of the airplane increases. Therefore, the autopilot sends a

49

command to the elevator to cause the airplane to climb smoothly in order to keep the

mach number constant. A sample block diagram of mach hold mode is shown in figure

4.8 [32].

Ugret) = 0 €y . Elevator | O¢ Aircraft u
3 » Amplifiey -) >
* Q..@ ” Servo ynamcs
[!]
ey
Rate
Gyro
10(s + 0.1) =

Figure. 4.8 Block diagram of mach hold mode [32].

4.3.5 Pitch Mode

This mode is usually used in a wing-level flight condition. In this mode, the
autopilot controls and maintains the airplane’s pitch attitude at the time of engagement.
A sample block diagram of this autopilot is shown in figure 4.9. The dynamic
compensation assures that the steady-state error of the system is small. The pitch rate
feedback into the inner loop provides good overall damping of the system. In the

diagram G, represent dynamic compensator, k represent gain [33].

50

Elevator

Servo > A/c

- mm e m-,

Figure. 4.9 Block diagram of pitch hold autopilot [33].

4.3.6 Vertical Speed Mode

In this mode, the autopilot controls and maintains the reference vertical speed.
The reference vertical speed is the actual vertical speed of the airplane at the time of
engagement, but it can be changed using the vertical speed control wheel located on the
controller panel or on the mode control panel in some cases [34].

A typical vertical speed control block diagram is shown in figure 4.10. The gain
control will assure a smooth dynamic response. The disadvantage of this system is that
the vertical speed below the minimum drag speed cannot be controlled, and in this case

the pilot must take control of the aircraft [35].

AIRCRAFT

u

DYNAMICS q

Pitch Rate
Gyro

Pitch

Altitude
Gyro

Gain Control H

h Aircraft

Computer

Figure 4.10 Vertical speed control block diagram [35].

4.3.7 Glideslope Capture/Track Mode

This mode is engaged automatically when the airplane is in approach mode. In
this mode, the autopilot captures and tracks the glide slope beams radiated from the glide
slope transmitter located near the runway threshold. The capture of the beams can be
from above or below the glide slope beams, and as soon as capture occurs, the other
mode of autopliot is automatically disengaged. The capture point depends on the closure
rate. Figure 4.11 shows an airplane flying under the glide path. From the figure it can be
observed that in order to capture the glide path, the value of the angle I should be zero.

This concept is used to design a system to capture and track the glide slope beams and is

shown in figure 4.12.

e Ghde Path Centerline

Glide Slope
Transmitter

WLl 277777 77777777777777777777777777, R
unway

Figure.4.11 An airplane flying below the glide path [36].

[a}

len
<)
1

d
- -

[.
e Glide Path{ " [Altude Autopilot| ™| 7 i. Uy]
0 l—v 5735 R ||

Coupler 1 Aucratt Puch

Ghide Path Angle l

Figure 4.12 A block diagram of the glideslope capture mode [36].

53

5 MODELING AIRCRAFT SYSTEMS USING MATRIXx

Two types of aircraft systems were chosen for evaluation in this thesis: the
Dynamic Control System and Boolean System. For the purposes of evaluation of
MATRIXx for the dynamic and Boolean systems, a typical generic autopilot and a

medium commercial jet’s flight warning computer were used respectively.

5.1 Useful Tools Developed for This Project

MATRIXx comes with a number of sample tools, in some cases incomplete or
even non-functional, to show users the power of its math scripting language, especially
when it is combined with its fully programmable user interface (PGUI) language. Even
though these tools are not fully functional, they provide users with some ideas to develop
their own tools to simplify many tasks during design development. In this project, it was
useful to develop new tools, or to modify an existing non-functional tool, to facilitate
certain tasks such as searching the whole model for a specific type of information.
Nevertheless, it is necessary to mention that these tools were developed only for
evaluation purposes and may not be fully functional for all system models, but can be

modified in the same manner to work with any developed system.

5.1.1 Search Tool

A model built in SystemBuild, such as an aircraft system, may consist of
thousands of blocks and SuperBlocks, each containing as many as hundreds of pieces of
information like names, IDs, labels, user parameters, input signals and many others.
Suppose a designer has to find a bug in a previously built model after working couple of

weeks on a new project. Normally, there is a great chance that the designer does not

54

remember all the details that were used in the previously designed model. A search
utility would be a good option for searching for a certain variable that was used in the
model. For this purpose, a tool was developed to search for specific information in the
entire model and provide the user with all of the blocks and SuperBlocks containing that
information in a user-friendly interface.

This tool only searches for the common keyword of blocks or SuperBlocks. It
does not search for all keywords that a block or SuperBlock may include. It neither
supports search of State Diagram parameters nor DataStore Keywords. A complete
search tool can potentially be developed, but would require more time and programming
beyond the scope of this thesis and is left for future development.

The search tool GUI consists of four buttons, two pull down menus that allow the
user to select a block or SuperBlock and the corresponding keyword to be searched for, a
text field to enter the value of the keyword, and two scroll fields that display the results.
The following example demonstrates the operation of the search tool. Assume a user
wishes to search all of the blocks containing the user parameter variable named Ac.S

(Aircraft wing area) in the autopilot model. Figure 5.1 shows the results of the search.

®iTg] wlx] [W{e]>] o] o] .t | > n:
. - I

What ta Sanceh? Tds Pound
IB“““ :I) . Forces_ Mom
Choase Search Types - 2]
: 12
|parsmeter vasriables =] S 1
- . . . 2
Entar the Search Valua: v
JAcs
[- - Claar . I - Search .. l
L Modify l S Qﬂt,]r
Restr L —.

Figure 5.1 Search tool GUI and operation.

55

The field in the middle of the GUI displays the names of all of the SuperBlocks
that contain the block with the specified keyword. The selection of any of the
SuperBlocks in this field will first bring up the SystemBuild editor with the selected
SuperBlock, and then it will display all of the ID’s of the blocks containing the keyword
in the selected SuperBlock in the right field. Double clicking any ID in the right field
will double the size of that block in the SystemBuild Editor to simplify the recognition of
the block in the editor. The clear button will initialize all variables used in the search
tool and prepare the tool for a new search. The modify button has not been implemented

and is left for future development.

5.1.2 Query Tool

Queryblock and querysuperblock are two of the SystemBuild Access commands
that are used frequently during the development of scripts or tools to automate certain
tasks that will simplify the workload of the designer. These commands are used to
extract information from the blocks and SuperBlocks using their respective keywords.
Consider that the designer wishes to write a script to extract the IDs of the blocks
included in a SuperBlock, one must question which command, combined with which
keyword, would yield the best results. To answer this question, one must try each
command using various keywords. To do this, the query command and the keywords
with the correct syntax must be typed into the Xmath command area. The problem with
this solution, is that the designer either has to remember the correct syntax for all the
keywords, or has to check the help file to find out the syntax each time this command is

going to be used. For this reason, it is beneficial to develop a tool with a user-friendly

56

interface that will enable the user to use this command without having to remember the
syntax for each keyword.

The graphical interface of this tool is illustrated in figure 5.2. This tool consists
of a pull down menu from which the user may either choose to use the queryblock
command or the querysuperblock command. Selecting either of the commands will
change the window’s appearance for use of the selected command. Many of the
keywords are common to their respective class of blocks and some keywords are only
used for specific type of blocks, therefore two combo boxes are available; one for
common keywords and one for specific keywords. To query for a SuperBlock or a block
keyword, the name of the SuperBlock or the ID of the block should be entered in the field
provided for each, and any keyword may be chosen from either of the combo boxes to

reflect the results in the Xmath results field.

S0 caequerplool Xmath GUI Tool [- 18]] l 28 caequerptool Xmath GUI Tool
Query _ S | QueyT T _ O . S
- Query Block— - - ~ T —‘Oligiyjﬁﬁp“gqﬁlogk._ —= - —
Eater the ID of the Block . + || Easte the Neme of the SuperBlock |
Block Keywords [K { ‘SuperBlock Keywords | A
! ‘ ' ; -) 17.. - - . ;
(a) Query block GUI. (b) Query SuperBlock GUIL

Figure 5.2 Query tools.

This tool is also useful for non-advanced users of MATRIXx to explore the

function of each keyword simply by choosing them from the combo boxes and observing

57

the results in the Xmath window. Note that this tool may not be fully functional since it
has been designed solely to monitor the function of each keyword in order to simplify the
design of the scripting programs written for this thesis. Further development of this tool

is left for future work if found to be useful for users.

5.1.3 Export Tool

The export SuperBlock and export block are two predefined samples of math
scripting tools that come with the MATRIXx product family. They are helpful tools that
save the models built in the SystemBuild environment in the form of a math scripting
language and SystemBuild Access (SBA) commands. This form of saving is more useful
when it is used for viewing purposes in editors such as notepad. The export Scripts are
also very helpful for designing custom blocks if these blocks need a callback function
(used for creating and initializing a block whenever it is dragged and dropped from the
Palette Browser). Normally, the callback function contains many SBA commands that
can be extracted directly from the above saved files and used with a slight modification in
the callback function. This will eliminate the need to remember all of the SBA
commands and their syntax when writing the callback functions.

The problem with the existing export SuperBlock script was that if a SuperBlock
contained another SuperBlock, the tool would export the child SuperBlock as a
continuous SuperBlock without any blocks inside no matter what type of attribute the
child SuperBlock had and whether or not it contained any blocks. In other word, it did
not support the export of the SuperBlock hierarchy. Therefore, it was necessary to
modify the tool to export the SuperBlock hierarchy correctly. A GUI was also developed

for this tool to facilitate the use of this tool by providing a friendly interface for the user.

58

The interface of this tool is shown in figure 5.3. The default value for the export
upon activation of the tool is the SuperBlock. The user may select to export a block by
using the provided combo box. It also allows the user to enter the directory in which the
file is to be saved. It is necessary to mention that this tool may not be fully functional,
especially if the SuperBlock contains State Diagrams or DataStores. Future work is

required to complete the development of this tool.

B Bt Wanath 3UL Tool BQEp ot amath UL Tool

CExport Tool - — - - : ‘:ﬁa(iﬁhi"" = e ———
What to Export? [superblock =] | ‘Whatto Bxport? e |
What Type? G MSC CMS . : T e e . . ;
) : Enter theID of the Bloek® - I i
Enter the name of the Superblock l .) 5 -
: L : g
Save As: [::\temp\ | Save'As: .‘F:\!emp\unnued.ms !
Apply | Clear | Done I ‘_Aypl.y “ ' ‘ Clelr"l Done | %

(a) Export SuperBlock GUI. (b) Export block GUI.

Figure 5.3 Export tools.

The usefulness of this utility is demonstrated with an example. Consider that a
designed block needs to be customized with a callback function. First, using this utility,
all the information about the block can be extracted in the form of a math script function
and the required SBA commands. This is shown in figure 5.4. Then, the required
keyword with the corresponding values can be cut and pasted from this math script file
directly into the call back function. This procedure will not only save time but will also

eliminate the need for remembering the SBA command’s keywords and syntax.

Dis Ife Jewth Hep

iCreatefloce “Slecuscript™,(

2
la = 2,
laguts = 1,
htnu BN
Cade
[§ "tmll (in); = sutputs: (out):” ; “pavameters: (ic,prev_ ll pvn lu() F 3l
"M IREIOENT ; (llll ll“) L "eleat ll ic .prev_ia.pree_sut:
“1F IMIT thew™ ; prov_in=ia;= ;= eut=lc;” ; “else” ;
" suteprev_eute (l!l’l(l 5"” l))'(ll'!‘.'(ll prev_La)-prev_set);” ;
- wn_u-l-: : “endif ;" | “prev_sat-sut; ;" |,

Sutpataccwracy =~ &,
Sutpurscepe = ~Lecal™,
Centitner = 0,
Prapagateladels = “OFF°,
Custonicon = ..
[~t1cewm 'Iill L i 'lm MEICHT: 1880 “SET I.llI vietn 2~
LT Texs _FONT ".l“ TEXT Je8 788 22 ‘ug’- -
e u line 2 60 5“ 29 SeW ; —oRaw_ITLXT 140 384 ﬂ TPtett g
L 10 fexv FoNT v CIET_LIsE_wviein - “ORAV_TLXT 386 -138 !2 “tustin'™ |,
13

a ; N

Figure 5.4 Output of export tool for sample washout filter.

5.1.4 Adding or Removing a Specific Input from a SuperBlock

This utility was developed to add or delete an input from a SuperBlock. Assume
that a SuperBlock has ten inputs and input number five needs to be deleted. SystemBuild
provides automatic deletion of the inputs from the last entry as is shown in figure 5.5.
Therefore, one way of deleting input number five is by using the block property dialog to
remove the last input and change all of the input’s attributes and connections from input

six to ten to input five to nine. This approach is very cumbersome especially if the

SuperBlock has many inputs.

0 .
FIGURE 137 - | ﬂ OO T F'_—_[%ﬁ
Ambutes [Code ironts | Oupues | Document | Cammment N T T .
! |oues] o] Com] . lcot W o] Domr | Comemt]
] trexd Label [Datal - . . - |
SPTH SPTHTL Floal -] -| Label Input Name lreag DataT : R '
[2 [sPTnToL SPTHTOL Flos] 3 lspmar SPTHTL Float ~[e-
SPTHIC |SPTHT Float | [2:15PTHTOL SPTHTOL Float =0
| ¢ [SLP SLPM Foa - sPTHia PTHTC Foat ~[o
| 5 ISITHETA SITHETA Fioat - LPM LPM Float =0
¢ [SPITATE SIATRTE Fos =l [BlsiHETa ITHE TA Foa [0
SPTAMOMP SPTAMCMP Flow > g [sPATE SIMVTRIE Foa = [
g 1siTAS SITAS Foat 2 SFTRMCMP. SPTAMCMP Foat ~{a
[3 |SPOVNPR SPOYNPR Foa > [alsitas SITAS Fioa -[o"
1‘: SIREPQS SIREPQS . [Logca =] I [sFOvNPR SPGYNPR [Fow <o
. - P) e
U < alhg - 3
Owurrnl T H
Jcmoma . e R . Cmellpes -
I I ' o e dtaws]
[+ 3 Loncel . . =
I N R - .. I LI - _ue |

Figure 5.5 Deleting an input using the SuperBlock property.

60

Another method is to use the SBA command to extract all of the information
about the connections and input attributes in the form of a matrix, and then delete line
five and restore the results back in the SuperBlock property. This approach is the
obvious choice, but it requires some programming. Consequently, it is handy to create a
utility to avoid performing the same task every time an input needs to be erased from a
SuperBlock.

The interface of this utility is shown in figure 5.6. Users can choose to add or
remove an input, to or from a specific row by entering the name of the SuperBlock and
the number of the input that needs to be added or erased. This utility also keeps track of
the external connections; whenever an input is added or erased from a super block. the

external connections are also shifted accordingly.

(0 adedrem - Xmath GUI Tool

“Enter the information needed —
choose the type of desired function

@ Add anlnput € Remove anlhput

Enter the name of the superblock I

Enter the Input Number - o l

Apply | Clgar_' I . -Done

Figure 5.6 Addrem tool.

61

5.1.5 Searching for a BlockID in the SystemBuild Editor

This is a very small but helpful utility that identifies a block in the SystemBuild
Editor. Whenever an error occurs during a simulation, the cause and the hierarchical
location of the block that caused the error is displayed in the Xmath log area. The
SuperBlock containing this block sometimes has many other blocks, and the more blocks
a SuperBlock contains, the smaller the blocks appear in the editor, and the harder it is to
recognize the block ID by just looking at the editor. Normally, it is necessary to zoom in
on the editor’s contents and move around the editor using the cursors to find the block.
This utility will recognize the block using its [D and will double the size of the block in
the editor, eliminating the need for zooming in and searching through the editor. The

operation of this utility is shown in figure 5.7.

B _ o] =]

] wb‘rnbu

Enter the Id: R R TR e o
= Clnrl Dml plue&all!' W&lhrn méumsw - K|
Mmoo

«

_[ofx]|

sl_l_l:h ~r— Jl — 1

Du:rdeSwsﬂbck Si:npl:Pmn Simpl:Sktw Inpmompw m&w
0686

—%@—:ﬂ_::ﬂf v e

Figure 5.7 ID search utility and its operation.

5.2 Modeling Flight Warning Computer Using MATRIXx

Flight warning computer (FWC) messages cover various aircraft systems such as
autoflight, hydraulics, engines, etc. In this thesis, only part of the engine model was
chosen to evaluate MATRIXx. The main interest was to generate a C code using
MATRIXx so that the generated code would be as similar as possible to a manually
written code. This approach. if achieved, would yield reusability of the existing CAE
dispatcher and predefined macros and functions. In addition, the generated code would
be more readable, easier to follow, and most importantly, more controllable. The
following subsections will demonstrate the design of custom blocks, initialization utility,
complete customized template file, and all other necessary programs needed to achieve

the generation of the desired code.

5.2.1 Approach Used for Modeling Flight Warning Computer

The MATRIXx open architecture environment offers the designer various
approaches for achieving the design requirements. However. the problem is to decide
which approach should be taken in order to obtain maximum benefits from MATRIXx.
To answer this question, designers should consider all options and try each of them,
analyzing all results and finally decide on what technique would yield the highest
success. This procedure requires time and experience with MATRIXx. In spite of that,
the approach used to model the FWC system in this thesis was based on experience
gained during the short time given to evaluate MATRIXx.

The approach used was to model the FWC and generate a C code using AutoCode
in such a way that the generated code would look exactly like the manually written code.

However, even though MATRIXx offers vast user custornization of its environment,

63

there are many restrictions to modification of its environments. For this reason, an
initialization utility was needed to pass some variables from the SystemBuild
environment into the generated code using template programming language, a post
processing utility was needed to eliminate undesired parts of the generated code, and

many custom blocks needed to be created to manipulate the nature of the generated code.

5.2.2 Why Design Custom Blocks?

One of the advantageous features of the SystemBuild environment is the ability to
design custom blocks. SystemBuild comes with various predefined block libraries, but
these block libraries are not complete and users need to design custom blocks such as
confirmation and flip flop blocks. There is another reason for designing custom blocks,
and that is to control the generated code for blocks. In some cases, it is important and
sometimes critical to control the size of the code due to the memory that is reserved for
each subsystem's simulation code on the flight simulator. As an example. consider the
AND block that comes with MATRIXx. the code generated for this block is shown in
figure 5.8. Essentially, there is nothing wrong with the code and it definitely represents
an AND gate operation, but as shown in the illustration, there are three lines of code
generated for this block that could be replaced with just one line of code. This does not
mean that the shorter code runs faster, but simply means that less memory would be
needed to store the generation code. This would be more evident if the reader would
think of all the AND blocks that are used in the entire model. If AutoCode generates two
more lines of code for each of these blocks, then the simulation code will contain
thousands of lines that could be simply eliminated. The same applies to the other

predefined logical blocks. To solve this problem one could design a custom AND block

by using a logical expression block. AutoCode generates only one line of code for this

block as illustrated in fig 4.8, thus large amounts of code would be removed from the

simulation code.

r* Logical Operator -- AND-OR-NOT */

/* {test.b_and_1.1} */
test = U->inputl;
test = test && U->input2;

Y->b_and_1 =test;

/* -—-- Logical Expression */
/* {test.b_and_2.2} */

Y->b_and_2 = U->inputl && U->input2;

Figure 5.8 Comparison of the generated code for predefined and customized AND gate.

Another reason to use custom blocks, is to control the generation of the source
code. This is due to the fact that the users do not have any access to manipulate the code
generation at the block level for any blocks. However, using customized BlockScript
blocks, Macro procedure SuperBlocks, user-code blocks and logical expression blocks,
the designers can alter the code generation in some manner. In addition, customized
blocks could also optimize the generated code for increased execution speed.

Finally, customizations of blocks are a good choice if a block needs to be

initialized in the same manner every time it is created. Consider some parameters of a

65

block such as its icon and the output data type that follows the same convention, each
time a new block of this type is dragged and dropped from the Palette Browser to the
SystemBuild editor, these parameters need to be set to the same values. Consequently, it
is helpful to customize this block with a callback function in order to automate the
initialization of any necessary parameters upon the creation of the block. This task will

save time and will reduce the amount of repetitive work.

5.2.3 Designed Custom Blocks for FWC Model

In the following sections, all blocks that needed customization in order to
implement the selected FWC model in the SystemBuild environment are discussed in

more detail.

5.2.3.1 Logical Blocks

Logical blocks were customized using logical expression blocks. Figure 5.9
shows all of the logical blocks that were needed for the selected FWC model. Even
though SystemBuild comes with predefined logical blocks, there are three main reasons
to use customized logical blocks.

The first reason is to minimize the size of the code as was explained in the
previous section (how customized blocks affect the size of generated code). The second
reason is for initialization of some parameters such as block name, output name, and
output label, so that all logical blocks follow the same naming convention automatically
upon creation of the block. For example, for an AND gate the name of the block, output
name and label would be b_and 2, in which b stands for Boolean, “and” for AND gate,

and 2 is the block ID.

66

2 M..: : u’.‘ o - - = M.m . — .
. sysbid + @ wibtd . sysbid
B e @o Do } OR> B AND)
+ 9 coe_asopiot + 9 cae_ssopiot + 9 cae_sutopiot
- P coe_fwe S - @ cae_twc —_— - 9 cae_iwc .
RS B0) " S D 3 b
orgate OR oigale AN
D andoate s D andgate / oE | 4
D macio ® macro D macro
D others _ D others — D others e
[o
OR > AND }
/
q
AN
@ OR> o D >
Ready ; Roady 7 Poady =

Figure 5.9 Customized logical blocks.

Finally, the icon of the block has been created in such a way that it resembles the
blocks as they appear on the design document. The circle in front of any input of the
block means the negation of that input prior to the operation of the block. This will
prevent any confusion when comparing the original design documents with the model

build in the SystemBuild editor.

5.2.3.2 Custom Macro SuperBlocks

AutoCode generates a macro call for a macro procedure SuperBlock. Therefore,
choosing this SuperBlock is beneficial for use in a model where the code for a block
representing a macro call has already been developed. By customizing these blocks, not
only the already defined macros will be reused, but also the generated code for these
blocks will be exactly the same as the manually written code, and this is the objective of
this part of the project. Each custom block contains a callback function to automate the

initialization of the parameters, icon, and the macro code. On the other hand, in order to

67

simulate the model containing macro procedure SuperBlocks in the SystemBuild
environment, the designer should build a block that reflects the nature of the macro inside
the macro SuperBlock. This can be done using BlockScript blocks or user-code blocks.

Figure 5.10 shows the macros that were developed during this project.

5 Fal-tte Browser !E X § P d-tte Browser

D others

Ready

Figure 5.10 Customized macro procedure SuperBlocks.

Each custom block also contains a graphical user interface (GUI). The GUI is
helpful for entry of some variables that are used for various parameters. The callback
function takes the values from the GUI and sets the block parameters to their appropriate
values. This method decreases the designer’s workload by automatically performing
many tasks at the same time. Consider the example of dragging and dropping the
confirmation macro from the Palette Browser to the SystemBuild editor. [Immediately
after dropping the block in the editor, the confirmation GUI (as shown in figure 5.11)

appears.

68

C' antum natho 31 Teol

- Enter the lnlormatlon needed —
choose the type of conﬂrmauou needed

(o Conﬁrmnﬂox\,up c Conﬂmﬁomdown .
Enter the order of:the_ ggnﬁm}aﬂon A
|01 .“ ' ..‘v,' >:

Enter the dehy'nf the ;:énﬂmﬁoxi;

Figure 5.11 Confirmation GUI.

The GUI contains a toggle button to select, either the confirmation up or
confirmation down macro, and two text fields to enter the order and the delay of the
confirmation. Figure 5.12 shows the icon of the block created for both cases with the
same value of confirmation order and delay. It also shows the code created for

confirmation up.

rc:um:m:nn

Atrtxtes Code |m|um|om|mm- Tht: Dow Gomeet Tk Gytow Fmow Seminion W_Tesh Map
M_CONFIRMATION 1P -

Laraihent e sleln] clalxsolx| Sln) vl vlala] the g
Sl A | -]

Ptqv??ﬂnf)‘\n J1

™ Ducrdte SuparBlack Slmpl:Pmnd SlmpleSkew xnpuu O\npuu Enable Signal |
page 7700030]} Nane
Conf u 7700030 21 nt _d 7700030 23
CONF 01 CONF 01
b_cont_J1 h_cont 322
Editor | EDIT_COM 24

x| G J
o o

FAeedy _ - " - - T

Figure 5.12 Sample confirmation SuperBlock.

69

Observe that the icon for each block is different and the values of the
confirmation delay and order are shown on the icon as well. The reader should pay
attention to the name and the output label of the blocks that are created automatically. In
the name Conf_u_7700030_31, conf stands for confirmation, u for up, 7700030 has been
extracted from the parent SuperBlock name seen in the SuperBlock property field in the
editor.

If one looks inside the confirmation macros, he should verify that a BlockScript
block has been automatically created in the macro SuperBlock. In addition, by looking at
the code of the BlockScript block, the reflection of the confirmation delay in the code

will be apparent. This is shown in figure 5.13.

awmmm%%m&.‘fﬂ&b

F| 8[| wlas) - (W& @S] =) |>|E§|M|_fjﬂ|zuz -|

Sl -l -l i -l 2l

Duscrete Procedure SuperBlock Procedure Class Inputs Outputs
Cenf_u_7700030_3t Macro 1

]

ehe‘m.! sart) hen
sarterue,

Hex TD=TIME+2. |
o -R-sent 2l
Script outslalse,
elsed (0 X stagt) hen
£(TD <= TIME) then

outwrue,
- else

[Nl
,‘Cn&i

Lel

Figure 5.13 BlockScript block representing confirmation macro.

Another important issue that should be mentioned, is the automatically generated
code that is highlighted in figure 5.12. The first line is the name of the macro, and the
rest are the parameters of the macro that will be reflected in the generated code as shown

in figure 5.14.

70

/* {Conf u_7700030_31.31} */
M_CONFIRMATION_UP(td7700030_31,started7700030_31,
prev7700030_31,2.0F,input,b_conf 31);

Figure 5.14 AutoCode generated code for sample macro procedure SuperBlock.

Let’s summarize the process to see how much work has been done using a custom
block with a callback function combined with a GUIL. The following figure shows all the
programs that have been entered automatically in the macro SuperBlock and BlockScript
block properties. Note also that the value of the confirmation delay entered in the GUI
has been used in the icon, BlockScript block code, and in the macro SuperBlock code.
Clearly, entering this information for each SuperBlock of this type would require much

time and repetitive work which has been eliminated by using these customized blocks.

Cont u 7700030 31 ’ e e
31 Wy . - 03K tmp - Hotepad !Em -
— /i S0 & macro_s05405.... =] B
inputs: in; - 2
T P-cone3t ougpu!s: aut; = Eﬂ‘ :dlt i.mh H_.]P
2s parameters: (TD,start);
Enviranment: TINE; M_CONFIRMATION UP; -]
logical in ,out, start; ta7700030 31 . -
9’
if (tin) then o .
&) .con_ 0709 ump - Noteped =1 || HRINTET started?7700030_31;
: P rT rev7700030_31;
Fle E&it Saxch Hep elself (in & tstart) tnen ||P 91
1 startetrue; -
BcoN_wIDTH: 1200 - To-TIME+2: 2.0F;
ICON_HEIGHT: 800 out=false;
DRAW_LINE 2 300 0 300 800 elseif (in & start) then
DRAW_LINE 2 150 100 150 700 1€ (TD <= TIME) then
DRAW_LINE 2 80 180 150 100 elasntrue:
DRAW_LINE 2 150 708 220 700 out=False;
DRAW_TEXT 700 600 22 'COMNF 01 endif;
DRAW_TEXT 708 220 22 ‘2 s ° - endif; - v
y O Al {4

Figure 5.15 The codes and icon generated automatically for the confirmation macro.

71

Another important customized macro SuperBlock is the add-to-the-fault-list.
Each logic page of the engine system consists of a message list which should be sent to
the display units if the engagement logic is set to true. The function of the add-to-fault-
list is to add the fault messages to the correct list. Each macro is set to true if the logic is
engaged and false otherwise. Thus, if each page contains several add-to-fault-list macros,
this block should be dragged and dropped twice to messages that exist in the page. This
is a very cumbersome job because more than a hundred logic pages exist for just the
engine model, and each page consists of several memos. To solve the problem, this block
was customized using a callback function and GUI; shown in figure 5.16. As soon as the
block is dropped into the editor, a dialog box pops up and asks for the number of
messages. A GUI will be built based on that number and the user is asked to enter the
messages in the text box provided. Consequently, this block needs to be created only
once for each logic page. Observe that with this solution, an inline SuperBlock
containing a macro procedure SuperBlock for each message with the appropriate name

and icon has been created.

Hianbier of messages is requf B8 0w e Tt Kmath 501 Tuol

-Enter the Messages ta be dllphyedf—;-—f—'-%

Oascrets Procedure SuperBlock Procedurs Class
T
1{message 1 messege_T711030 s

|7 2] message 2
3message 3

qmuue‘l
[Tk] 5 55

6fmessage 6

7] message 7

2. Pinished |

KX}
Ready

Figure 5.16 Operation of customized add_to_fault_list macro.

72

On the other hand, sometimes the messages for consecutive logic pages are
almost identical, therefore, messages entered in the GUI are saved for the next time the
block is created. This will further simplify the design of the model in SystemBuild. It is
necessary to mention that this block is created only for purpose of code generation and it
is not intended to be operative in the SystemBuild simulation environment. However, if
one wishes to simulate the model in SystemBuild, a block that performs the function of

the add-to-fault-list macro should be inserted into each one of these SuperBlocks.

5.2.4 Implementation of Flight Warning Computer in SystemBuild

In order to understand the implementation of the FWC in the SystemBuild
environment, it is helpful to take closer look at a sample logic page. Figure 5.17a shows
a typical logic page for FWC. For purposes of comparison, the implemented logic page
is shown in figure 5.17b. The input entries to this page come from various aircraft
systems such as the air data computer (ADC) or system data acquisition concentrator
(SDAC). Based on these inputs the appropriate messages, if applicable, are sent to the
display units. If the output to the biggest box in the figure is true, this page's messages
will be added to the list of messages that should be displayed on the display units.
However, some restrictions such as flight phase inhibition for these messages may apply.

SystemBuild supports both top-down and bottom-up design approaches, from
which the bottom-up approach was chosen for this project. In this approach, each logic
page has been designed separately as a SuperBlock. Then, all designed SuperBlocks are
grouped in a top level SuperBlock to represent existing messages for an aircraft system
such as an engine system. In other words, for each system there are collections of logic

pages covering all of the messages for the system. Each of the aircraft system messages

73

have been represented as a top level SuperBlock with all pages as child SuperBlocks as

shown in figure 4.18.

¥
'A —— m J J’ tsw 156 PHCI MEATIMD NOT AVAIL >
v s
- , recues 3 ravtr o,
> |
o |
- i raLse 2y
' imtl il
| Q
' S D)
' N [Teerd I
' ‘7 PULSIE 24 -
' |
V|

— [!

— reosss 3 et ram o,

(a) Design document [37]

aoe IO Senpe NMan

[la Lt Gew Commact Took Qptiow Window Simmlation My Tooh Help -

Flaite] wlal - [P S| -] >alu] 2z o
=42 m [scatar <|[Scutar <[~lcustom -jlsalis -]

Driscrete SuperBlock Sample Penod Sample Skew Inputs Outputs Enable Signal g3
page 7700030 0.00! 0 17 1 None

b
]

jm

Tv.
ARARANEA

(b) MATRIXx model

Figure 5.17 Sample warning page and MATRIXx model.

74

Consider the inline SuperBlock, the biggest block in figure 5.17b. This
SuperBlock contains an if-else-then construct block that takes care of the messages that
should be sent to the display units if the output of the flip-flop block is true, otherwise
there is no message to be displayed. Moreover, all of the messages are grouped in the if-
else-then block as an inline SuperBlock. This organization of blocks enables the
AutoCode to generate very easy to follow codes similar to manual codes.

A problem that one encounters in a bottom-up approach is that SystemBuild
supports only automatic flow of input labels from the higher SuperBlock hierarchy to
lower SuperBlocks. In this approach, the input should be entered for parent SuperBlock
as one goes from lower to higher in the SuperBlock hierarchy. In addition, all parent
SuperBlock inputs should be connected to their appropriate input entries of the child
SuperBlocks. This would be very cumbersome work if the designer does it manually. A

”

utility called “ini”, which is presented in appendix 3, was developed to facilitate the
designer work. This utility automatically extracts all input labels of all children
SuperBlocks, sorts them in alphabetical order, deletes the inputs that fill multiple lines in
the name list, modifies the parent SuperBlock input label and name list, and connects all
the input entries from the parent SuperBlock to the child SuperBlock. This utility also

performs another task that will be explained in the next section. The operation of this

utility is shown figure 5.18.

75

TV Gpstemiluakd Uibdon o hagten 77

s fdt Vew Cormect Joo Qptons Wydow Hep Be £k Yow fovect Joos Qpione Widow Heb - e
P wl | 9>] DI oo D] 2] Pl wl =LA >] BIS] o] wi@u] 2z ST <]
=] Fomtar ~|[Scater -} -0 =|-|m] [Scatar ~|[gcaiar -1l . - -]
Drscrete SuparBlock Sample Paicd Sample Skew 'nputs C Drscreate SupeBlock Sample Pencd Sample Skew Inputs Outputs Enable Signal
chapter 77 Q1 a 9 chapter 77 [11§] a2 l Parent
JYPRITITIT
52
meen
2 e
22y
=
o
=
Reay

Figure 5.18 Operation of “ini” utility.

5.2.5 Code Generation

Once the model has been implemented and validated in the SystemBuild
environment, the corresponding real-time C code can be generated using AutoCode.
Template programming language (TPL) is used to customize the generated code.
AutoCode comes with a predefined template program that is used as default to generate C
code. Users may modify the template program accordingly to satisfy the requirement of
their design. Designers may also rewrite a template program according to their needs and
this is the approach chosen to generate the C code for FWC model. This approach may
not be the best solution but it should be remembered that there was a time limit for this
project, and most importantly, this approach was chosen based on experience gained

during that short time.

76

5.2.5.1 Using Default Template Program

SystemBuild analyzer flattens the entire model prior to code generation such that
all the blocks with the same timing attributes are grouped together in a subsystem. The
analyzer also controls the order of execution for blocks contained in each subsystem.
After the analyzer completes its job, AutoCode generates a real-time code based on the
execution order that has been set by the analyzer. The generated code consists of various

components that are shown in figure 5.19 [38].

(: Sewtent from Non U ser Moditiabile Template Tl

Initisi Encs
l E Sewinent frotn User Moditiable Template Tade
‘gine Stind . . . -
Bexc Rgtound C) Seginern frosn Stand adoowe Lobitaes |ale
(Inteeruapt H.mdlcz'j
3
Mattaper Schiedules | Tl]

I Dispatcher |

v

Input Output
Routrnes

Pre emptible
Subsystems

Figure 5.19 The components of generated code using default template program [39].

The scheduler is a time-critical routine and its main task is to take care of the

execution of subsystems, data flow between the subsystems, and to perform functions

such as handling input/output and interrupts routines. The dispatcher handles the

77

dispatch of each subsystem from the list created by scheduler according to the execution
priority of all subsystems starting from the highest priority {39].

By using the template programming language, designers are able to modify or
rewrite these routines except for the routine set by the analyzer that handles the execution
order of the blocks inside each subsystem. This means that by using the template
program, the user can neither change the order in which the blocks are executed, nor the
algorithm used for coding each block inside a subsystem. However, the designer may use
a sequencer block to change the execution order of the blocks in the SystemBuild
environment. The sequencer performs its task simply by forcing the executions of the
blocks on its left side to take place before the blocks on its right side. In the case that the
sequencer block is used, care should be taken when dealing with read and write variable
blocks, if-then-else block, and in some cases, standard procedure SuperBlocks to make
sure that the order of execution of the blocks satisfies the expectations. In addition, the
later restriction can be resolved using BlockScript block, and can be used to develop user
defined algorithms using the BlockScript language. Note that these restrictions are
resolved in the SystemBuild environment prior to code generation from the SystemBuild

model and not using the template programming language [40].

5.2.5.2 Using User Defined Template Program

In the early phase of this project, it was believed that it would be difficult to adapt
the AutoCode generated scheduler, the most critical part of the code, to the CAE
environment. Therefore, due to the short time available for the project, the main effort
made was to find out whether it was possible to generate a code such that the

automatically generated code would be similar to the manually written code. Doing this

78

would not only eliminate the need for AutoCode hard to trace scheduler, but would also
allow for the reuse of already existing routines such as the CAE dispatcher and macros.
In the following paragraphs, the required code structure is first briefly explained, and
then each problem encountered to satisfy this requirement and its respective solution is
explained in more detail.

In order to understand the operation of the user defined template program the
reader should recall that each FWC system is represented as a top level SuperBlock and
each of its warning logic pages are designed as a child SuperBlock. The user defined
template program translates this SuperBlock hierarchy into the generated code in exactly
the same order as it appears in the SystemBuild model. The overall structure of the
desired generated code is as follows. The top level SuperBlock has been coded as a
module that handles the computation of the FWC warning messages. All necessary
external and internal variables to this module have been declared in the beginning of the
program. Then, each logic page has been translated into an equation in the module with
declaration of all the variables used only in this equation. In addition, a comment
according to the naming convention of each warning logic page is generated for each
equation, and this simplifies the identification of each equation in the generated code.
Consequently, in this manner the generated code is well-organized, well-commented, and
easy to trace. For a comparison of the manual code versus the automatically generated
code, refer to appendix 1.

In designing the FWC model, only SuperBlocks with same timing-attributes,
macro procedure SuperBlocks, and inline procedure SuperBlocks have been used.

Therefore, these SuperBlocks and their contents will be categorized as one subsystem

79

with the block execution order set by the analyzer. On the other hand, recall that
template programming language does not support manipulation of the execution order
inside a subsystem. Consequently, it is not guaranteed that the code for all blocks
contained in each logic page would fall in the appropriate order inside a separate
equation. This problem is solved using two different techniques, namely by using a
sequencer block between each child SuperBlock in the model, or by changing the
sampling period of each child SuperBlock appropriately prior to code generation. The
sequencer block guarantees that the code for all blocks on its left be generated before the
code for the blocks on its right. But, consider that for a model with ten children
SuperBlocks, nine sequencer blocks would be needed for grouping the block codes for
each page into separate equations. As a result, this approach does not create an orderly
schematic diagram of the system model. The second technique ensures that each child
SuperBlock and its content are coded separately in a subsystem. Note that the sampling
rate is changed prior to the code generation using a MathScript utility and it does not
effect the simulation of the model in the SystemBuild environment. Regardless of which
approach is used, the generated code should be modified using a post-processing utility in
order to be functional. The reason that the post-processing utility is needed is explained
in more detail later in this section.

Another problem encountered is that the TPL does not provide a token to extract
the parameters of the macro procedure SuperBlock, which are entered in the code tab of
SuperBlock property into the generated code. These parameters need to be declared as
internal variables inside each equation that contains a macro procedure SuperBlock. The

solution for this problem is for these variables to be passed from the SystemBuild model

80

into the generated code using user-parameters. However, user-parameters cannot be
vectors, which further complicates passing the parameters to generated code. In addition,
it is cumbersome to define a user-parameter for all macro SuperBlock parameters that are
used in the model. To simplify this task, the initialization program “ini” includes a
routine that automatically extract the parameters of all the macro procedure SuperBlocks
from each child SuperBlock and declares them using an appropriate naming convention
in the child SuperBlock property. During code generation, these parameters are extracted
using the written template program and are coded as internal variables in their proper
place.

Finally, as mentioned earlier. AutoCode treats all SuperBlocks with the same
timing attributes and their contents as a subsystem. Furthermore, each subsystem and its
external inputs/outputs are coded automatically as a structure in the generated code, and
for every structure, AutoCode generates a declaration of variables. Unfortunately, the
template programming language does not allow the user to eliminate these structures and
their variable declaration. Therefore, using math script programming language, a post-
processing utility, which is presented in appendix 4, has been written in order to
transform the generated code into a code similar to the hand written code by deleting the

unwanted code that has been automatically generated.

5.3 Modeling Pitch Channel Autopilot Using MATRIXx

A typical generic autopilot was chosen as the dynamic control system for the
purpose of the MATRIXx evaluation. Due to confidentiality issues, the design
documents (including label definitions, block descriptions, operation of autopilot modes,

etc.) were not provided. Additionally, in the provided design documents some of the

81

engagement logic blocks were not meaningful, and some connections of blocks were
missing. For example, there were “AND” gates with one or no input at all. There were
no indications of where the inputs to specific engagement logic came from, or where the
outputs were supposed to be connected to. Therefore, it was impossible to develop a
model to represent the complete autopilot. Even if one could manage to implement the
entire given model in the SystemBuild, there would be no guarantee that the model would
work because of the missing connections and necessary documents in the system model.
On the other hand, during this part of the project, the license for AutoCode was not
provided. and this made it impossible to generate code for the autopilot model designed
in the SystemBuild environment. Nevertheless, care was taken during the modeling of
the autopilot in the SystemBuild such that a code should be automatically generated for
the model if the license for AutoCode were available.

In spite of the facts mentioned above, only the pitch axes autopilot was chosen to
evaluate the use of MATRIXx. Although only part of the autopilot was modeled in the
SystemBuild environment, this information was sufficient for the consideration of
MATRIXx evaluation for dynamic control systems because the roll and yaw channel
autopilots use essentially the same blocks as the pitch channel autopilot in their design.
As a result, if the pitch channel autopilot was successfully implemented and validated in
the SystemBuild environment, then the roll and yaw axis autopilots would also be
implemented in the same manner. In the following sections, the custom blocks
developed for this model are explained and then the design consideration to implement
the control loops in the SystemBuild is discussed in more detail. Finally, the reader will

have an understanding of the approach used to fly the aircraft in pitch axis and will also

observe the overall schematic diagram of the aircraft model implemented in the

SystemBuild environment.

5.3.1 Design of the Blocks Used in Autopilot Model

The SystemBuild Palette Browser provides various dynamic blocks such as an
integrator and time delay block. The parameters and icons of these blocks need to be set
with the creation of each block in the SystemBuild editor. Moreover, recall that users
cannot alter the AutoCode to generate user-defined algorithms for these blocks in the
generated code. Therefore, it is practical to design these blocks as BlockScript custom
blocks; first to automate the initialization of desired parameters such as block name and
icon, and second for designing a desired routine to be reflected in the generated code.
The dynamic blocks provided in SystemBuild are designed such that upon creation, if the
parent SuperBlock is continuous the block will be created in continuous form, and if the
parent SuperBlock is discrete the block will be in discrete form. Considering this is not
necessary when designing the blocks for the autopilot model due to fact that the autopilot
will be modeled in discrete form. In the next section, the methods used to transform
continuous systems into discrete system are explained. Afterwards, the custom blocks

created for the autopilot system are presented.

5.3.1.1 Transformation from Continuous to Discrete Domain

In autopilot schematic documents, filters are presented in the S domain namely
continuous time domain. The difference between continuous and discrete time
presentation of these blocks is that in continuous time, these blocks are presented as a

differential equation, while in discrete time they are in forms of difference equations.

83

There are various techniques to transform continuous time filters into the discrete time
domain. Even though there are optimal techniques available for this transformation, for
the purposes of evaluation in this thesis, the filters are transformed from continuous time
to discrete time using approximation techniques such as the Tustin or Trapezoidal
method, Forward Euler method, and Backward Euler method [41]. This transformation is
performed by substituting the S domain variable s into its equivalent form in the discrete

domain as shown below:

Forward Euler method s — Z_;l (5.1)
S
Backward Euler method s - z-1 (5.2)
Tz
Tustin method s — -3(2—_—& (5.3)
Ty(z+1)

The transformation from continuous to discrete time domain is demonstrated with
an example using the Backward Euler method. Consider a lag filter in the S domain,

which is of the form:

X(S) s+l (5-4)

by substituting z

for s and some algebra the lag filter becomes,
sZ

84

Y(Z) l T,z T,

- _ - s (5.5)
X(z) t(z—_l}ﬂ t(z-1)+Tez t(-z7")+T,

Tgz

taking the inverse z transform from the above equation gives,
(t+Ts)y(n) - ty(n —1)=Tyx(n) (5.6)

rearranging the terms and some algebra yields:

y(o) = ey = e Tex(n) (57
o) =——(eyn =) T yla-)-Toyla- D+ Tox(a) (58)
y(n)=y(n =1} — % (x(n)- y(n 1) (59)

The above equation indicates that the output of the lag filter at any time depends
on the input to the filter at that time, the output from the previous cycle, and the sampling
rate of the system. In addition, this equation is used to implement the lag filter using

BlockScript language in a customized BlockScript block.

5.3.1.2 Customized BlockScript Blocks for Autopilot Model

Dynamic blocks have been customized in order to simplify the task of the
designer, speed up the design process, and control the generated code for these blocks.
Each block consists of a callback function with a GUI. Users are asked to choose the
algorithm to be used for implementation of the block in discrete form, and to enter

information such as the gain of the block. The information entered in the GUI is then

85

used to create the code for the BlockScript block, the icon of the block, and the
initialization of variables that were provided. The customized blocks that were
developed for this model are shown in the following figure 5.20. For the purpose of

demonstration, the callback function for the lag filter is provided in appendix 5.

M [~1E]
Y
1Y -
D e
D aren S
iy’
e
TB+1
NS
B+t
Reasdy - [

Figure 5.20 Customized BlockScript blocks.

For example, consider what happens when creating a lag filter. As soon as the
block is dropped in the SystemBuild editor, a GUI (figure 5.21) pops up that allows the
users to choose the type of transformation, as well as enter the value of the filter time
constant. From the figure, it is also clear that the value of t entered in the GUI is not only
used in the generated code, but also appears in the icon of the block. The reader should
also verify that equation 5.9, derived in the previous section using the Backward Euler

approximation, is implemented in the generated code.

86

PO LasFoe mah UL Tool

-Choose the type of App

¢ Tustin
* Euler Backward
€ Euler Porward

Enter the Value of Taw

Figure 5.21 Customized lag filter.

5.3.2 Implementation of Autopilot system in SystemBuild

The pitch axis autopilot module simulates the necessary computation to generate
an elevator command in order to control the aircraft along the pitch axis. It receives
inputs such as mode of operation, appropriate gains for current mode control law,
altitude, airspeed, and all other necessary information needed from the various aircraft
modules to control the aircraft in the currently engaged mode of operation. The
simplified pitch module is simulated in its proper order as shown in figure 5.22.

Each step in the figure has been represented as a SuperBlock in the SystemBuild
environment, which is demonstrated in figure 5.23. Additionally, in order to assure that
each SuperBlock is executed in the desired order, a sequencer block has been placed
between each SuperBlock. The sequencer block guarantees that the outputs of the
complementary filter are computed before they are sent to the control law computation
blocks, and output of control law blocks are computed before they are used by the inner

loop blocks.

87

l Dputs

Complem entary filters,
Geains and reference

C am putation

1

Control Law C am putation

Autopilot & Flight Director
Inner loop

Elevator
Command

Figure 5.22 Pitch channel autopilot flowchart.

{1} FFueh Channcl

Bile Edx Yiew Comect JTools Qpuions Window Help

| en| wlcu] (W@ x] @S] =[] el@]a] BT <

=1 I -f -' [tentae = |xeniar < |[Ormnge llcumom < J[souag -1
[T Duerete cupesDiceh Semple Porvd Sample Shew Inguts Ouipats Enedis suonal |
Piteh Channel o 0868 o B . Parnt

Figure 5.23 Pitch channel autopilot implemented in SystemBuild.

The largest block in the above figure represents the control law computation for

the autopilot system. Depending on which mode of operation is engaged, the

88

corresponding control law should be simulated. To perform this task, two possible
methods were evaluated.

The first possible implementation was to use condition SuperBlock. In this
method, each control law is considered as either a macro or a standard procedure
SuperBlock due to the restriction that only these two Superblocks can be nested inside the
condition SuperBlock. AutoCode generates a subsystem for each SuperBlock of the
standard procedure class and this coding structure is useful if a function is reused in a
model repeatedly, but, not for the autopilot model because each control law model is
simulated only once in each execution cycle. Therefore, passing variables from the main
code to the subsystem will introduce an overhead in the execution time. On the other
hand, the macro procedure SuperBlock will be hard coded as a macro call in the
generated code. However. the macro procedures will eliminate the overhead of a calling
function if the macro is small. Otherwise, the macro will not solve the overhead of the
calling function. In any case, the macro procedure Superblocks are not an appropriate
choice due to the fact that a macro has normally been used to represent the execution of a
single block and not a dynamic control model such as control law computation.
Consequently, condition block currently is not the obvious choice to model the autopilot
system in the SystemBuild environment. However, the condition block could be
considered useful if it supports inline procedure SuperBlock, in the future release of the
MATRIXx family.

The second block that could be used to model the control law computation is an
if-else-then construct block. This block supports standard, macro, and most importantly,

inline procedure SuperBlock. As explained previously, the macro and standard

89

procedure Superblocks were not used for the condition block in the autopilot model
implementation. Fortunately, AutoCode does not generate structures for this block and in
contrast to a condition block, inline procedures are supported within this block, therefore,
the generated code would be as expected.

Regardless of which approach is used, the main problem encountered in designing
the autopilot model was due to algebraic loops not supported by AutoCode. An algebraic
loop occurs in a model when an input to a block depends on its output in a loop within
the same execution cycle of simulation. In this case, the simulator is not able to clearly
identify which block in the loop should be computed first. Using a default integration
algorithm, the simulator adds a delay block to the output of one of the blocks in the loop
such that the input or output to the block causing the problem will be delayed by one
execution cycle. By doing this, the simulator is able to set the execution order for the
blocks that are within the loop. However. in some cases, this will have unexpected
results on the output of the simulation.

Algebraic loop could be eliminated by using two techniques. The first technique
is for the user to use a delay block in the loop similar in method to that of the simulator:
the difference being that the user chooses where to place the delay block in the loop for
satisfactory result. Even though, this method solves the problem of algebraic loops. it is
not suited for use in all applications due to the delay it introduces into the execution of
the system. The second technique is to use a pair of variable read and write blocks
instead of a delay block in the model wherever an algebraic loop exists. In order to
understand how this method solves the problem it is helpful to recall that the analyzer

sets the execution order in each subsystem prior to simulation. The read from variable

90

block has the highest priority in the execution order and the last block executed is the
write to variable block. Thus, using read and write blocks in a loop will not only assure
that the analyzer is able to set an execution order in a loop without confusion, but it also
ensures that there will be no delay in the execution process of the system. However, if
read and write are used to eliminate algebraic loop, then the read from variable block
should be initialized appropriately to guarantee that the values in the loop that pass
through the read and write block are as expected within the same execution cycle time.
Finally, the initialization of the read block variables can be done using either startup
procedure SuperBlock, executed only once in the beginning of the simulation, or by using

a mathscript script that is executed prior to the simulation of the system.

5.3.3 Simulation of Autopilot System

In order to simulate the autopilot system, it is necessary to receive inputs from
various aircraft sensors and systems to maintain the desired attitude of the aircraft by the
appropriate control surface movement to oppose the forces and moments that push the
aircraft away from its current stable position. In practice, the autopilot system is coupled
to the aircraft model, and by using aircraft flight test data and linear interpolation tables
provided for the coefficients of aerodynamics forces and moments, the forces and
moments acting on the aircraft are computed. Unfortunately, neither the flight test data
nor the complete aircraft model were provided for this project due to confidentiality
issues. Moreover, complete flight test data is hard to find elsewhere and if found, the
data is not complete, roughly rounded, and is provided only for a specific flight
condition. Consequently, the only choice to simulate the autopilot system was to develop

an approximate mathematical model to calculate the aerodynamic forces and moments,

91

using data found for the coefficients of these forces and moments for given flight
condition. Even though this approach is not used in practice, for the purpose of this
thesis it was sufficient in order to simulate the autopilot system in the SystemBuild
environment. In the following sections, the necessary mathematical models used to

simulate the autopilot system are explained in more detail.

5.3.3.1 Axis Systems

Prior to derivation of the equation of motion and the aerodynamic forces and
moments, it is necessary to define a clear axis system in which the motion of aircraft, and
forces and moments acting on it are calculated. Figure 5.24 shows the inertial and body
axis system. The body axis system which is used for motion calculation is fixed to the
aircraft body with its origin attached to the center of gravity; X axis forward to the nose
of the aircraft, Y axis along the right wing, and Z axis downward. The inertial axis is
fixed to the earth with its positive direction of X axis pointing to the north, Y axis
pointing to the east, and Z pointing to the center of the earth, and it is used for calculation
of acceleration forces, aircraft position and orientation with respect to earth.

Normally the aircraft velocity in space does not coincide with any axis in body
axis systems. The body axis velocity components can be obtained using angle of attack

and angle of side slip (figure 5.25) that are represented by the following equations.

Angleof attack : a=tan™ (5.10)

Angleof sideslip : B=sin"' & (5.11)
v

.) Y
O ene TS
Fra o AT
Ve -
L ~h
e .
¥p
Earth)
1 - ¢
-\‘L' , -
v €

r
(b Y, Relative wind

Z %

Figure 5.25 Angle of attack and sideslip {42].

93

Another important axis system is the stability axis system in which the
aerodynamic forces and moments are calculated. The stability axis system is obtained
from the body axis system by rotating the aircraft along the Y axis by angle of attack
[20].

In Figure 5.24, the direction and notation of the aircraft’s translational and
rotational velocities can be observed. In addition, the signing convention of the control
surface movement is aiso shown. The translational velocities are u, v, and w which
represent velocities along the X, Y, and Z axis respectively. The rotational velocities are
p. q, and r and represent roll rate, pitch rate, and yaw rate about the X, Y, and Z axis
respectively. These notations will be used in the next section to introduce the equation of

motion of the aircraft.

5.3.3.2 Equations of Motion

The equations of motion are derived using Newton’s second law. Many
assumptions have been made to simplify the derivation of these equations. The first
assumption is that the aircraft is a rigid body which makes it possible to consider the
motion of the aircraft to have six degrees of freedom; three rotational and three
transnational motion equations. The second assumption is that the earth is fixed in space
to make it an inertial reference point where Newton’s second laws are valid. The
complete discussion of these assumptions and their effect on driving the equations is
beyond the scope of this project. However, these two assumptions form the basis to
derive the aircraft’s equations of motion [20].

The motion of the aircraft along the X, Y, and Z body axis systems can be

obtained from the equations given by: [43]

Forces Along X Axes: II'(U— vr+ wq):—mgsine-f- F.. +Fp

ForcesAlongY Axes: m(v+ ur—wp): mgsindcosO+F, +F,

Forces Along Z Axes: m(w —-uq+ vp) = mgcosdpcosO+F,, +F;,

The motion of the aircraft about the X, Y, Z axis is given by: [43]

Rolling moment about X axis : [, 1;—1” r-1,pq+(I, - Iyy) rq=L,+L;
Pitching moment aboutYaxis: [<.q+(l“ —1,)pr+l (p? _rf)=M, +M,

Yawing moment aboutZaxis : I, r -1, EH-(IW -1,.)pq+I_qr=N, +N;

And the kinematic equations are given by: [43]

Roll rateabout X axis:

Pitchrateabout Y axis:

Yaw rate about X axis:

p =(I>—\Ifsin6
q=écos¢+\'ucosesin¢

r =\chos€)cos¢—ésin¢

94

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

95

5.3.3.3 Aerodynamic Forces and Moments

As was mentioned in chapter three, the equation of motions is divided into
longitudinal and lateral equations. Since only the pitch axis autopilot has been
implemented in the SystemBuild environment, it is sufficient to implement longitudinal
equations of motion to simulate the autopilot system. In addition, note that these forces
and moments are calculated in the stability axis system. However, forces and moments in
the equations 5.12 to 5.17 are represented in the body axis system. The longitudinal

forces and moments can be represented as:

Aerodynamic Forcealong the X axis: F.=-D (5.21)
Aerodynamic Forcealong the Z axis: F,,=-L (5.22)
Pitch Moment about the Y axis: M,=M (5.23)

Where,
D=Cyq$S total drag force (5.24)
L=C,q$ total Lift Force (5.25)
M=C_ a Sc total Pitching Moment (5.26)

In the above equations, S is the wing area, c is the mean aerodynamic cord, and
a is the dynamic pressure which is given by:

- l 2
a=1pVi (5.27)

96

Where,
p air density

Vr aircraft true air speed

In equation 5.25, Cy is the total lift coefficient. The following equation represents

the lift coefficient considering only the most significant factors that influence it [44].

C,=Cy+CLa+C . 20:;0 +C,, 2‘50 +Cy4. 8, (5.28)
where,

o angle of attack

q pitch rate

S elevator angle

U, reference velocity

Cuo the basic lift coefficient
Cra the lift coefficient due to angle of attack

C . the lift coefficient due to rate of change of angle of attack

Ciq the lift coefficient due to pitch rate

C.s, the lift coefficient due to elevator angle

97

The drag coefficient shown in equation 5.24 can be computed using equation
5.29. Note that in this equation, only the most significant factors have been considered

[44].

Cp =Cpe +Cpea +Cp;4 6, (5.29)
where,
Cpo the basic drag coefficient
Cpe the drag coefficient due to angle of attack

Cps, the drag coefficient due to elevator angle

The pitching moment coefficient used in equation 5.26 can be computed using the

most significant factors affecting it, according to equation 5.30 [44].

Cp=Cro+Craa+C . = sC, £ 4C_. 5, (5.30)
ma 2U, U, ™

where
Cmo the basic pitching moment coefficient
Cma the pitching moment coefficient due to angle of attack

C . the pitching moment coefficient due to rate of change of angle of

attack
Cnq the pitching moment coefficient due to pitch rate

C.s, the pitching moment coefficient due to elevator angle

98

Recall that the aerodynamic forces and moments are calculated in the stability
axis system, but in order to calculate the aircraft acceleration and position, these forces
and moments should be transformed to the body axis and inertial axis system
respectively. The transformation from one axis system to another is performed using the
Euler angles shown in figure 5.26.

Euler angles are represented by heading angle (y), pitch angle (0), and bank angle
(¢). The procedure of transformation is to rotate one axis system by w, 6, ¢ respectively
to make the first axis system coincide with second axis system. The order in which one
axis system is rotated in order to be transformed into another system is very important

since different rotation order, would yield different results.

Figure 5.26 Euler angles [45].

Keeping in mind the above procedure and rotating the inertial axis system to
coincide with body axis system, the following transformation matrix from body axis

system to inertial axis system is obtained [46].

99

(Yaw Term) (Pitch Term) (Roll Term)
X, cosy siny O0f/cos®@ 0 -sinB||1 0 0 X,
Yy, {=|-siny cosy O} O 1 0 0 cosd sind ||y, (5.31)
z, 0 0 1f|sin@ 0 cosO [|[0 —-sind cosd ||z,
or
Xy cosBcosy cosOsin y -sin® || xg
Y, |=|sinOsindcosy —sinycos¢ sinysinOsind+cosycosd sindcosb ||y, (5.32)
z, sinBcosdcosy +sinysing sinysinOcosd—cosysin® cospcosO || z,

The equation 5.32 is used to transform body axis velocities into inertial system

velocities from which the aircraft position is obtained.

5.3.3.4 The Atmosphere

International Civil Aviation Organization (ICAQ) adapted a standard atmosphere
model in 1952. Based on this model the atmosphere is divided into different regions
from which only the first two, namely troposphere and stratosphere, are important for the
operation of most aircraft. The temperature in these regions depends on altitude and its
variation is shown in figure 5.27. Once the altitude is known the temperature, pressure,

and density can be obtained for each region in the following manner.

100

90

80

HEIGHT (k)

0
160

THERMOSPHERE

MESSOSPHERE] o

STRATOSPHERE

|
OPOSPHERE]| =

180 200

220

240

260 280 300

TEMPERATURE (“K)

0.001
0.002

0.005
0.01

0.02

002
0.1
02

05

PRESSURE {mb)

Figure 5.27 Variation of temperature with altitude [47].

100

In general, the relationship of pressure and density with temperature is given by

the equations 5.33 and 5.34 [48][49].

9|

)

o}

_ T —go/(R}.)
Tl

_ T ~(1+go /(RR))
Tl

(5.33)

(5.34)

101

where,
P Pressure.
p Density.
T Temperature.
R Gas Constant.
A Lapse rate.
go Gravity at sea level

The troposphere region is below 36.089 ft (11 km) in a standard atmosphere. In
this region the temperature decreases as altitude increases at a rate of 6.875x10°° (altitude
in feet). Sea level values are used for the variables shown by subscript | in equations

5.33 and 5.34. These values are as follow; [50]

Tg, =288.16K
P, =2116.2 b/ ft*
P, = 0.0023769 slug/ ft’

go = 32.17f/5°

Consequently, substituting the sea level values in equations 5.33 and 5.34 yields:

T=T, (1-6.875x10°h) (5.35)
P=Py (1-6.875x10° h)**" (5.36)

p=pg, (1-6.875x10" h)"**' (5.37)

102

In the stratosphere, a range of up to 82025 ft (25 km) is of interest since most
aircrafts operate under this altitude [49]. In this region, the temperature is constant and
the reference values are calculated in the boundary of the troposphere and stratosphere
region. By using equations 5.33 and 5.34 and substituting the reference values, the

stratosphere equations in a standard atmosphere are obtained [50].

T=216.66K (5.38)
P=471.913¢(000081 (o360 (5.39)

p=0.000705939 ¢!-0.0000:811 (n-36089)) (5.40)

103

6 MATRIXx EVALUATION

The main purpose of this chapter is to discuss the evaluation criteria and
evaluation of the results for both the flight warning computer and the autopilot systems.
The first part will concentrate on the evaluation criteria used to evaluate MATRIXx as a
software development tool. In the second part, the evaluation of the results for autopilot
non-real time simulation in the sytembuild environment, and automatic code generation

for flight warning computer system will be demonstrated.

6.1 Evaluation Criteria

The criteria used for the evaluation of MATRIX in this chapter are based on
work done during this project. First, the evaluation criteria for MATRIXx software in
general are explained. Then, the evaluation criteria regarding the resolved
implementation issue will be explored. After that, the unit testing within MATRIX is
discussed. Finally, the criteria regarding code generation and template programming

language will be verified.

6.1.1 General

The general evaluation criteria will cover ease of learning and use of MATRIXx,
quality of its online help, the type of system that is best suited for the tool, and finally the

recommendations for the version control.

104

6.1.1.1 Ease of Learning and Use

MATRIXy is a very comprehensive tool with various programming ianguages
provided for design and implementation of a wide range of systems. It also supports an
extensive range of predefined functions and tools. Therefore, to evaluate this criterion, it
1s necessary to identify by whom and how this product will be used. For users that do not
need an advanced understanding of MATRIXx’s various programming tools, this product
is easy to learn and use. Couple of weeks of use is sufficient to become familiar with
Xmath and SystemBuild environments, and to be able to use the basic features of this
software. However, in order to have an advanced understanding of this software and
learn most of Xmath and SystemBuild features, time and experience with the software is
required. On the other hand, to leam most of its functionality and programming
languages, to write scripts, develop graphical user interface, create customized blocks,
alter the template programming language or write one, and become accustomed to other
programming languages such as LNX, first the user need to have programming skill,
second spend time and put lots of effort. In general, for users with some programming
skills, most of the programming languages that MATRIXx offers are easy to learn and

use, but time and experience are required to learn its full functionality.

6.1.1.2 Quality of Online Help

MATRIXx provides online help and an online manual. The online help is in
HTML format, well organized, and provides an extensive library of the MATRIXx
product family’s features with their syntax and information on how to be used. Although
the online help has very user friendly interface, it contains some bugs such as links that

do not bring up the exact location of corresponding information, and whenever the help

105

window is enlarged or decreased in size, the location of the information that is being
viewed is lost. Furthermore, in some cases the information provided is not complete and
is confusing and at times too advanced for most users. In other cases, the online help
refers the user to online documentation for more detail but there is no more information
provided in the online documentation than was in the online help and vice versa. In
contrast to online help, the online documentation is viewed using acrobat reader. It is
very well organized and provides advanced topics for all MATRIXx features in more
detail. It primarily concentrates on design documents and programming languages used
by the MATRIXx product family. In some cases, the online documents lack the
necessary detail to provide a good understanding of the topic. In other cases, the topic
presented is good for use as a reference of system behavior for advanced users but not for
beginners who need to understand how the system works. Altogether, the online help and

documentation are useful and handy, but definitely require future enhancement.

6.1.1.3 Types of Systems Best/Least Suited for the Tool

Two types of systems were used to evaluate MATRIXyx; a typical generic
autopilot system (for representation of a dynamic control system) and a typical medium
commercial jet’s flight warning computer (for representation of a Boolean system). The
results of the evaluation confirm that both systems are well-suited for the tool. However,
there are more restrictions when implementing the dynamic systems due to feedback
loops which develop algebraic loops in many cases. Nevertheless, MATRIXx offers an
open architecture environment to allow users to implement either of these systems

through the customization of blocks, SuperBlocks, template programs, etc.

106

6.1.1.4 Recommendations for Version Control

Two various methods can be used to introduce revision history into the
SystemBuild environment which in turn can be forwarded to the generated code and
documentation. The revision history could contain the name of the person who does the
modification, the date of modification, and the nature of the problem that has been
solved. The first technique is to drop a text box into each SuperBlock to identify the
version of the model and history of the revision each time a user modifies any property of
the SuperBlock. The second method is to enter the revision history in the SuperBlock
property using the user parameter keyword. In any case, a utility can be developed to
perform this task and to provide the user with a user friendly interface for adding new
comments to the revision history. This tool would first require users to add the new
information in the corresponding text fields, and then it would automatically modify the
existing revision history according to the information provided by the users. As an
alternative, the user may modify the existing history manually by entering the
information directly into the text block code tab or by modifying the user parameter in
the SuperBlock property. Finally this information could be extracted using a template

program and inserted in the generated code or documentation if required.

6.1.2 Implementation

The implementation criteria will be used to evaluate SystemBuild to verify how
much time is saved using MATRIXx software, and how accurate the implemented model

in the SystemBuild environment is compared to the existing approach.

107

6.1.2.1 The Time Required For Coding a Model in SystemBuild

The main effort made to implement a system in sytembuild has been the
development of the component library. Each custom block from the library has been
designed to automatically perform the initialization of each block. Consequently, this
approach will dramatically minimize the time required for coding a model in
SystemBuild since most of the job is done automatically prior to the creation of each
block. The time required per page on a schematic basis could be anywhere from between
one to two minutes depending on how many blocks are used in the page, and how fast the

designer is accustomed to working with SystemBuild.

6.1.2.2 The Accuracy of the Modeling Using SystemBuild

Modeling a system using SystemBuild is much more accurate than a manual
coding of the drawings. A manual drawing generates many mistakes. For example, the
manual coding of Airbus 330 created mistakes in 3000 pages of the system schematic.
The first reason could be due to the fact that manual coding is difficult to compare to the
original schematic diagram. The second reason is that some designers cut and paste
while programming two similar pages and forget to change the variables in the currently
designed page appropriately. Another reason could be due to a typing mistake when
someone tries to finish the job quickly. In addition to the above, manual formatting of
the code is time consuming and delays the software development process. In contrast to
manual coding, designing a model in SystemBuild is more accurate because it is easier to
compare the schematic presentation of the model in the SystemBuild environment with
the original schematic system design documents. Moreover, most of the work is

performed automatically, and results in less typing mistakes. In addition, there is no need

108

to cut and paste because it would take about the same time to cut and paste a block as to
create a block. Finally, since the code is generated automatically for the model in the
predefined format, modeling the system in the SystemBuild environment will eliminate

the need for formatting the code currently done by hand in a manually written code.

6.1.3 Unit Testing

The unit testing criteria is used to evaluate MATRIXx for friendliness of its user
interface, execution speed, and the ease of scripting for system simulation. The

evaluation of these criteria is done in the next subsections with their relevant comments.

6.1.3.1 Friendliness of User Interface

MATRIXx provides easy to use and friendly user interfaces for all of its products.
Each product will be evaluated separately. The Xmath window consists of two parts: the
command line and the result area. The command line allows users to enter predefined
commands or executable files and; the result of this action will be displayed in the result
log. The result area poses a bothersome problem at times. Normally, when the buffer of
applications like the result area is full, the buffer will be emptied from the top of the
window and the current result will be displayed at the bottom. This is not the case with
the Xmath window. Whenever the result area’s buffer becomes full the result will be
displayed from the top and sometimes shows arbitrary locations of the result which
causes confusion because it is not obvious where the last results are displayed.
Therefore, to overcome this problem, users have to clear the result window before
executing new programs, and this is unpleasant since the previous results are useful in

most of cases. This problem is shown in figure 6.1.

109

X Xmath Commands M= £ X Xmath Commands [][O x]
Bile Edit "' Qptions Window Help Rite Edit' View Qpuions Window Help
Analyzing model «|f nach _._|
SuperBlock Reterence Map : (Subsystem, SuperBlock, (Il)
1 AIRCRAFT Rate Status: disczete
1 Autopilot Sanpling rate: 0.066
1 Pitch Channel WIRCRAFT™)
1 Complementry Filtezs
1 FIGURE 120 23 catalog objects loaded.
1 FIGURE 121 Analyzing model
v SuperBlaock Refezence Map : (Subsystem, SuperBlock, (le
<f | » < »
;] » Lj dj
Ready ‘mam :|Ready {main e

Figure 6.1 Xmath commands window.

The left picture in figure 6.1 illustrates how when the buffer becomes full in the
middle of execution of a program, the result area displays the result at the bottom of the
window up to the point that the buffer is not full. As soon as the buffer is full, the results
start to be displayed from the top of the window, and stop when the execution is finished.
From the right picture, it can be observed that the end of the last result, and middle of
previous result, are not separated from each other and this makes it difficult to know
where the last result has been displayed.

The SystemBuild Catalog Browser also has a user friendly interface with menu
bars and a display of the hierarchy structure of the implemented model. However. it has
one main drawback; it does not provide an undo function for delete function. This means
that if a SuperBlock or SuperBlock hierarchy is deleted accidentally and the model has
not been saved prior to deletion, then this SuperBlock and the efforts to build it are gone.

In contrast to the Catalog Browser, the SystemBuild editor provides an undo
command, but it undoes all the actions that have been performed since the last time the

editor was updated. Therefore, if the editor is not updated frequently, the undo function

110

will delete all the work that has been done since the last update and once a user presses
the undo button, there is no way to go back, the work is gone and there is no redo
function available. This is a major problem since sometimes the user needs to undo only
the last action, and not all the work that has been done from the last time the editor was
updated, or sometimes the undo bottom is pushed by mistake and half an hour or an hour
of a job is lost. Furthermore, it does not allow the input and output connections of a
block to be on the same side to create a schematic for a block that resembles the original
design documents. Finally, it is not possible to line up the external input and output
connections to have a clear view of all the external inputs and outputs in the created
model.

Regardless of the problems mentioned abcve, the SystemBuild editor has a user
friendly interface and it also allows the user to have two custom menu bars with buttons
to perform repetitive actions, eliminating the need to enter the commands in the Xmath
command line. This is demonstrated in figure 6.2 that shows the customized pull down

menu for tools created in this project.

[At HAR T

fle EQ Yjew Connect Tocls Qptions Window Simulsion I

F|@ty| wic| > |W|@] x| DI ofvafe L, (Rl <

Eleledml | Al A e g

Duwcrate SupeeBlock Sempls Perwod Sample Skew tnputs Out: "”‘ ¢ t 3
AIRCRAFT 0 066 a 23 D cs———

Figure 6.2 SystemBuild editor’s customized pull down menu.

111

The Palette Browser window is very well organized, and displays the categorized
group and blocks belonging to each group in same window, allowing the users to select a
group on the left side and see the blocks for that category on the right side of the window.
[t also allows users to organize the customized blocks in any way they wish to place them
in the browser.

The interactive simulation window provides a user friendly environment for non-
real time simulation of the models built in SystemBuild. It provides a time and block
step for debugging purposes. However, the time step only evaluates the next execution
cycle outputs, and the block step shows only the next block that is executed. The
drawback is that this window does not buffer any previous results which mean it is not
possible to look back and forth at two or three consecutive time cycle outputs.

Finally, the size and location of the Xmath window can be saved for next time
Xmath is run. This is not the case for other windows, and it would be beneficial if
MATRIXx supports saving the size and location of the Catalog Browser, SystemBuild

editor, and the Palette Browser in its future release.

6.1.3.2 Execution Speed

MATRIXx was evaluated for each aircraft system on a different machine. In the
case of the flight warning computer, MATRIXx was evaluated on a Pentium I class PC,
200 MHz processor, 64 M RAM, and Windows NT operating system. A portion of the
engine system warnings model was implemented in SystemBuild and the corresponding
code was generated automatically using AutoCode. The time taken to generate the code
and perform the post processing of the code using math scripting language was less than

ten seconds for this model. The autopilot system was simulated on a Pentium II class PC,

400 MHz, 128 M RAM, and windows 98 operating system. Only the pitch channel
autopilot was implemented, and it was linked to a simplified mathematical model of
equations of motion, standard atmosphere model, and aerodynamic forces and moments
model. The system was simulated for two thousand seconds with a sampling period of
0.066 of a second, and the time taken to perform this task was approximately 40 seconds
which is very fast. Altogether, the execution speed of the MATRIXx family evaluated in
this project was satisfactory, and the faster the host machine is, the faster the execution

speed.

6.1.3.3 Ease of Use of Scripting for System Simulation

In many ways, the math script language is similar to other programming
languages such as FORTRAN. Consequently, if the user is familiar with programming
techniques, then learning the math scripting language combined with the SystemBuild
access commands to write script for system simulation is a mater of learning the syntax.

Furthermore, Xmath provides the linked executable (LNX) program to call external C
and C™ routines into Xmath and the user callable interface (UCI) program which allows

external programs to call Xmath as a server. These two programs are more likely similar

to C language, and users familiar with C would learn them very quickly.

6.1.4 Code Generation

The automatic code generation of the models in SystemBuild is done through a
template programming language (TPL). TPL programs can be used to reflect the desired
portion of a schematic representation of the models into real time C code to meet a

specific requirement. The following criteria will be used to evaluate the ease of use of

113

the template programming language and the quality of the code generated for the flight

warning computer system built in SystemBuild.

6.1.4.1 Ease of Template Programming

The template programming language is a multi-purpose program. It controls the
structure of the generated code and can be used to insert source code and comments into
the generated code. It also allows users to extract the required data from the SystemBuild
model and reflect it in the generated code. The template programming language has its
own unique syntax, and its concept resembles programming languages such as
FORTRAN. It uses TPL tokens to extract almost any data from the SystemBuild model
by scoping into each SuperBlock or subsystem. Its syntax is easy to learn and each TPL
token extracts specific information from the SystemBuild model in the same way that the
SystemBuild access commands extract information. Therefore, if a designer is familiar
with the Xmath scripting language and SystemBuild commands, then it should not be

difficult to learn the template programming language.

6.1.4.2 Quality of the Code

In this project a specific template program was written to generate a code to
resemble the hand written code for the flight warning computer system. However, it was
not possible to perform this task completely due to some restrictions in the template
programming language which resulted in the generation of undesired code.
Consequently, to overcome this problem, a post processing utility was written using the

math scripting language to delete part of the undesired code that was generated

114

automatically. Regardless of this issue, the quality of the generated code was exactly as
required which will be illustrated in the evaluation of results in the next section.
According to the report presented by AverStar, the SystemBuild model and its
corresponding generated code in C may have inconsistencies in the result. Divergences
occur when the variables used in the BlockScript blocks are not initialized explicitly.
This is due to the fact that the variables used in BlockScript block are initialized to zero
or false if they are not explicitly initialized in the BlockScript code. Therefore it does not
create any problems in the SystemBuild simulation. This is not the case when the code is
generated for this block, because the default initialization of variables in the BlockScript
block is not reflected in the generated code. On the other hand. if the variable is not
explicitly initialized in the generated code, then it could either be undefined or have any
arbitrary initial value depending on its scope. Therefore, all the variables with a zero
initial value should be explicitly initialized in the BlockScript block to overcome this

problem.

6.2 Evaluation of Results

In this section, the results obtained for the simulation of the autopilot system and
the code generated for the flight warning computer will be discussed. There will be a
complete demonstration of the customization of AutoCode to generate a code that
satisfies the software design requirements. Additionally, it will be demonstrated that a
system implemented in the SystemBuild environment can be validated using a non real-

time interactive simulation engine prior to the code generation.

115

6.2.1 Manual Code Versus Automatic Generated Code for the FWC System

For the purposes of evaluation of MATRIXx for the flight warning computer, a
portion of the aircraft warning system was selected. The primary effort made was to
generate a code similar to the manually written code. Consequently, the flight warning
computer system components were designed and implemented in the SystemBuild
environment accordingly to achieve this goal. [n appendix 1, the manually written code
is compared to the automatically generated code using MATRIXx for the selected part of
the generated code. The only differences between the codes are the comments and the
revision history written in the manual code. These differences are not important since
they do not play a role in the execution of the code, and they are presented solely for the
clarity of the code and recognition of the modifications made to the code by various
designers. Most important, is the similarity between the structure and the source code
introduced in the codes. As can be observed, the structure of both codes follows the same
conventions starting with the ‘includes files’ followed by a declaration of external and
local variables for this system, and the presentation of each waming logic page as a C
program equation with the appropriate comments for easy identification of the various
logic pages contained in the system. Note also that the static variables inside each
equation are declared and initialized as required, and the debugger code is also inserted in
the automatic generated code the same as with manual code. The template program
written to generate this code is provided in appendix 2. It is also important to mention
that the code generated using MATRIXx has been tested on the flight simulator, which

had exact same result as the manual code.

116

6.2.2 Simulation Results for Autopilot System

In order to simulate the autopilot system practically, flight test data such as
aerodynamic coefficients are required for specific flight conditions to calculate the
aerodynamic forces and moments coefficients as the aircraft attitude changes. However,
due to confidentiality issues the flight test data was not provided. Many other resources
were explored for these data namely the regulation given in advisory circular 25.1329-1A
(Automatic Pilot System Approval), FAA publications, etc; however, there were no flight
test data available for accurate simulation of autopilot. Nevertheless, for purpose of
evaluation of MATRIXy, the approach taken was sufficient to prove that the autopilot
model built in SystemBuild is functional. A large commercial aircraft was used for this

simulation, and the flight data used is shown in figure 6.3.

Transport aircraft: Boeing 747

Longuudinal €, Cn C, Ca, Ca. C. [[o% Co Cia Coe Cae Cin Cay

M =025

Sea level 1 02 570 66 =120 67 -2 41 -8 -081 00 027 03318 -1 34
M = 090

40.000 1t 0ns 0042 SS 047 -1 Q006 -90 6 S8 =50 02 028 -0l 0l -2

Lateral ¢, € €. € ¢ € ¢ € o T S

M=025

Sea levet 096 -0.221 0.1%0 =045 =012t 0101 -03 00361 O 0064 017 o007 -0 1Mm

M o= 1090

30,000 ft -85 -~010 020 -03 0 0y -0 125 001d oon ants oons oM

Nowe All dernivatives are per radian

Center of gravity and
mass characteristics
W = 636,600 ib
CG at 25% MAC

1, = 18.2 x 100 Slug-it’

I, = 33.1 < 10® Slugft
1, = 49.7 < 10% Slugft*

be=19568"M0
ce2701t

T
Iy = 0.97 < 10% Siug-ft’ ~
Refarsnce geomaetry AN
S = 5.500 ft* a\

e

Figure 6.3 Sample large commercial jet data [S1].

17

The data represents the coefficients of forces and moments of the aircraft in
cruise, and the autopilot mode normally used for cruise is the altitude hold mode. Prior to
the simulation, the parameters of the aircraft were initialized as given in figure 6.3 with
the altitude hold mode selected. Consider that the aircraft is flying in a steady state
condition without external forces and moments acting on the aircraft. Theoretically, the
altitude of the aircraft will stay constant as the aircraft flies. The result of the simulation
is consistent with the theory as expected. To illustrate the role of the autopilot in
controlling the stability of the aircraft in pitch axis, a moment of the magnitude 500 ftlbs
is exerted upwards about the Y axis at the time around 100 seconds. In the first scenario,
shown in figure 6.4, the autopilot is disconnected from the aircraft. Note that the forces
and moments acting on the aircraft are constant and equal to zero up to 100 seconds.
Verify also that the altitude is constant with time for this period of simulation time. As
soon as a moment is introduced, the aircraft starts to deviate from its steady state and
with autopilot being disengaged, the attitude of aircraft changes in a growing harmonic
manner which indicates instability.

In scenario 2, shown in figure 6.5, the autopilot is engaged and as long as no
external forces and moments are acting on the aircraft and the motion of the aircraft
remains steady. Once the external moment is exerted in the pitch axes, the autopilot
changes the elevator control surface accordingly to oppose the external moments, and
dampens out this unwanted moment and returns the aircraft motion to its normal stable
condition. However, it can be observe that the time taken for the autopilot to perform its
task is much longer than expected. This recovery time can be shortened by changing the

autopilot gains. Figure 6.6 reflects this scenario where the gain of the autopilot has been

118

altered to decrease the time in which the autopilot brings the aircraft back to a stable
attitude.

There are other factors that the autopilot does not respond rapidly in order to
overcome the external moments. The first reason is that the mathematical model
developed for this simulation of the aircraft is an approximate model and many factors
have been neglected in calculating the forces and moments acting on the aircraft due to
the unavailability of aircraft data. The second reason is that the available data for
aerodynamic forces and moments coefficients are rounded roughly, and they are provided
in the books only for the purpose of demonstration of aircraft behavior in certain
conditions. For example, the total lift coefficient for the Boeing 747 is given as 0.52 in
Roskam and as 0.5 in Nelson. For illustration purposes, this difference does not create
any problems. However, for simulation of the system, this small amount is a significant
factor in determining the aerodynamic forces and moments; since this value is multiplied
by the wing area equal to 5500 ft* and the dynamic pressure at 222.8 Ibs/ft* to give the lift
of the aircraft. The difference for aircraft lift using these values is approximately 24000
Ibs.. a very large difference that has a great effect on the system’s behavior. Therefore,
for simulation of aircraft this data should contain more significant decimal points;
basically the more decimal points would yield the more accurate results.

Nevertheless, the results shown in figures 6.4, 6.5, and 6.6 illustrate that the
autopilot implemented in MATRIXx controls the aircraft stability in pitch axis.
However, the system has not been tested for all pitch channel autopilot modes due to
unavailability of aircraft data and incomplete autopilot design documentation provided

for this project.

119

-~ Xmath Graphics: main.ans
Fle Edt View Options JYools Windows - =~ =~ ¢
WAN=lo | elalo|8loe) -
, . . 200002
) i 1
1 i [
)) 1 20000.1
]]]
T .0.0268 - . . « 20000
- 1
' : i
) ' ' 19998.9
] [})
] 1)
. . . 199998
0 200 400 600 800 0 200 400 800 800
Elevator Angle Altitude
2501 . . . 3 , .
25008 ; ! !
25008 3] O R dmmemm- bemmoma
25004 ! ; !
§ 25002 F-J 1) SRS PR dmmeee N
25 ! ' '
2.4098 0
2.4008
2.4084 N : : e
0 200 400 600 800 0 200 400 600 800
Fx
600 .
P I A P deeeman e
200 faodooaooos P R
“w g 0 1 IL 1
o z | ' '
200 feodmmmtncanaan demeee o bemmom
400 F--docmeaoat . R
)] [
800 s PR L
0 200 400 600 800
Fy M
2 3
£ g
150
M M

Figure 6.4 Simulation result with autopilot disengaged.

120

o
3 — . S . . S v
@ ' [' @ [' ' [«© [
' ' ' [' '
' ' ' "ot ' '
' ' ' o ['
t)] 1 1 1) [}
o | ' [(R =] v _J____v_Jo I I
||||||||||||| 192 T Y (=) ' [h o '
© t © 1))) © 1
' [v '
' [['
v ' [Voo '
© 1 1)))]
b - —1- - -48 =2 -—t --48 x IS PRI = Iy —
Lm] ' g v [' ¥ = '
g ' ' ' ' ' '
< ' ["o '
)))) 1]
' ["o '
' o "o "o o v
=T Am -=r -=-1Q vll.llq.ILll.ll_vle “r--
' N T ¢ '
' "o] '
v S S— — v
' I ' ' [v '
oo Voo ' ' ' ' !
M M 3 N M M
o o o
™M o~ Q @ © r~ M N -~ O 9« o 0O O 9 © 9 ©Q 9 © o
: 8 808 & & a g 9 8 S ¢ 8 <
: g8 8 8 S 9 oo sql N
i o m m & % % % sq|y
L o & o o 0 @ sqy
§ N N - - -
u
T g
! [=} Q
g T —TT m r—Tr—r T o T T T % v T
[N "o oy @ Yor o ' o ' ' ' [
; "ot oo o ' ' ' ' '
-~ ' oo] ' ') ' '
ﬂﬁ "ot oo t o 0] ' '] ' '
B . o oo [T ' ') ' [
) v Yo 8 [' o U R A [
g it Shatis Shutt « fhniin Mntie Mauliy Hintie TSI, ” ldlum T [a (]]
E3 B "o o © o0 ' ' ' ' ¢
— "o Voo I ' ' ' ' Voot
ah "o o it [T R ' ® ' ' ' ' '
[} [} [b-4 [} [[- * ' ' [[
w ~— "o [M. [T ' 2 ' ' ' le " "
.& | 1. 49 ot a_s_ s > 21 _l0 IR T R R . >
=7 " 1 = .“lnmln.l.. S R i < 1 ' '] w [
e} 2 =
v lm Vo oo ~ oo ' kel ' ' ' "
c _/ "o oot -4 [' PN ' ' ' 1 '
0 K] ' o = [' ' ' 1 T
n) 1) w [} t]) [}) 1 vJInll.fl -l - -
‘0 r ' t 1 ' ' ' o [} ' ' o " “ " "
[-
A&l -1 §-4-18 f-i-i-d g |48 RE R
v ’ ¥ ' [' ' ' ' "o
1]] e G W) Vo ' ' ' " " u "
= ' ' t Y T T
.m. W - [' [' 1 ' ' ¢ ' ' “ " “ "
— 1 t [})
: 17 [ARSI I . R N B
o W O T NV OO o o o o Q © 0O O O © O
= K o 8 8 3 o 9 328283 g9 « a8 ¥
M| <] ©9cS ©g9g ~ 00 0o . s
£ o o o " Q NN N ql sqI
x
.\m. A pes Bap
"

800

400

200

Figure 6.5 Simulation result with autopilot engaged.

100

121

P [=] E3

w Options Tools Windows =~

WM“WMH%M@MQ@@;

Xmath Graphics: main.ans
Fle Edit Vie

- =

- -

0.0015

o o o
S v v o - — o r
[1 © [[' @ ' [' [«©] [
1 ' ' ' ' [[' '
) ' ' ' ' [v ' '
' ' ' ' ' [[' '
' ' ' ' ' [' ' ' '
| \ Q | v _ o 1__ 419 Y||.||...|.|..,.||m.|.nv ' [}
S 1 v 1 b4 ' h ' h S
' ' ' Vo ' 1
1) 1) [} 1 ()
' ' ' v "o
o ' [' ' ' [
© ' ') "o '
S 2 et)oea--48 x cateebr e -48
? M ' 1) ? [¢ @ 2
a ' ' ' "o [
' ') [[
' ' ' oo t
' ' ' "o [
= ' ' ' m .o ¢ W
“STrTT Ty T T STt T Ty T T T
~N ' ' ' N v v N
i T T ' ' ' [o
7 1) — ——r —t
' ' ' ' ' [[
' ' ' ' ' o t
A i 0 A L A 0 A Il L 'l 0
o™ - o (o] [13] ™ ~N - o - N 0O O Q9 0O O O 9
Q aQ o <3 * 8 2 8 o m o
o o § o o © N o ©
j=) sql
8 8 & 3 & sam
& § @ 2 sam
- -
U
Q o o
T ¥ Y T T (=] T v Y T Q T T T [=) T T T v
[oo © [' © ' ' ' @ ' ' ' '
"o oo [T T 1 ' ' ' [[
Vo o [T ' ' ' ' ' [
"o oo [B ' ' ' ' Vo Vo
"o Vo ' ' ' . ' '] I
Vo Vot m []) g ' 1 ' =) [e
“YTY"ITATATAAT STTITATATA TN =Tr--F-- =TT T] [}]]
Vo oy © [T T ' o ' ' ' © ' '
"o oo ' ' ' ' ' ' '
"o [ey [B ' o ' [' "o '
Vo o 4 [' 2 1 . ' v e v
"o Voo & " ' o ' ' ' ro "o
Ao _Joa_a_11_ 19 o _d_s_a_a2_gJ4_a_1O PR N IR IR S ' 1 ' '
1 ..F R .m .m g =& b- 4= .“ il .“ Q M .“. ™ " 1 m < "o '
o ! roor ® [I ' 8 ' ' ' [[
' Yoo oy ' = ' t) [[
[Voo 2 Yoo ' o ' ' ' ' |
[[w [I ' ' ' ' [[
[Voo o Yoo ' o ' ' ' o ['
4.1 FRR _t_1.Jd.4 e el oSt v v
[[Lm [' m ' ' [m ' .A.v ' '
[} [[(] ['] [] [} TR
1 v [[} 1 ' S ===~ %" " ™ 7
v ' T r Y [Vo
' [Voo ') \ ' ' [
1o oo o ' ' ' ' "o Voo
N M o P N o " N " o P M
[B =) Q O « O Q0 O 0 0 O gD o~ N [=] Q m o o Q
o o O 6 o o © o223 ?Q . © «Q 1] o
o °9 O o 9 o ~ Q0 9 A
o Q * o ° NN NN NN sqi
? ? sq8
pes Bap

800

400

200

150
Figure 6.6 Result of changing autopilot gain.

00

1

7 CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS

7.1 Conclusion

The main purpose of this thesis was to evaluate the use of MATRIXx as a
software development tool for flight simulators. The current hand coding approach is not
only time consuming, but also generates many errors in the code. However, the
MATRIXx product family provides a user-friendly environment to implement aircraft
systems in a visual environment, and to generate the source code for the corresponding
models automatically. This approach will speed up the software development process,
provide better communication between different project teams, reduce coding errors, and
provide a faster integration of new engineers into the work environment.

In this thesis, there were 2 objectives to achieve. The first objective was to
implement the selected aircraft systems in the SystemBuild environment and to identify if
there were any implementation issues that made the use of MATRIXx impractical. The
second objective was to define set of criteria to evaluate MATRIXx and to determine if
MATRIXx is a suitable tool to be used as software development tool. For this purpose
the reduced scope of the typical flight warning computer system and a typical generic
autopilot were chosen to reflect the nature of the various typical systems implemented in
flight simulators. The flight warning computer was chosen to represent a typical Boolean
system. Due to the time constraints for this part of the project, it was decided to see
whether it is possible to generate a C code for the flight warning computer as similar as
possible to the hand written code. The autopilot system was chosen to reflect a typical
dynamic system. The complete autopilot model could not be implemented due to

incomplete documentation provided for this project. Therefore, pitch channel autopilot

123

was chosen to evaluate MATRIXy for dynamic control systems. On the other hand, the
license for AutoCode was not available for this part of the project. As a result, it was
impossible to generate the simulation code for the autopilot system implemented in
SystemBuild. However, care was taken during the autopilot design by choosing
appropriate implementation approach as if the AutoCode license was available.

For flight warning computer, an appropriate component library for the blocks
used in the selected model was developed. Logical expression blocks provided by
SystemBuild were customized to represent the logical blocks used in the model. The
logical blocks were customized to initialize certain variables upon creation of a block to
reduce the generated code, and to resemble the models built in SystemBuild to the
original design documentation data for the purpose of simple comparison. Furthermore,
macro procedure SuperBlocks were customized to represent the already defined macros.
For these blocks, AutoCode generated a macro call just as the macro is represented in the
manual code. The flight warning computer was designed in a bottom-up fashion. Each
warning page was represented as a SuperBlock, and all the warning pages belonging to
an aircraft system were placed in a top level SuperBlock. A utility was developed to pass
the external input parameters from all child SuperBlocks to their parent SuperBlock, sort
the information, delete the multiple instances of same input, and automatically connect
the external input of the parent SuperBlock to the corresponding child SuperBlock. A
template program was written to automatically generate the corresponding real time C
code as close as possible to hand written code from the flight warning computer model
built in SystemBuild. Since some information could not be extracted from the

SystemBuild model using the template programming language tokens, a utility was

124

developed to pass these variables on to the generated code automatically by using user
defined parameters. Due to some AutoCode restrictions, the automatically generated
code contained undesired code that could not be eliminated using the template
programming language. Therefore, a post processing utility was developed to
automatically delete the undesired portion of the generated code. The generated code
from using the defined template program and post processing utility was exactly as a
code that would be written manually. This automatically generated code was tested on
flight simulator and the result obtained was satisfactory. Therefore, it can be concluded
that the initial goal in this part of the project was achieved successfully.

In implementation of autopilot system, all dynamic blocks contained in the
selected model, such as the integrator block, were customized using BlockScript blocks
to take control over the AutoCode generated code for these blocks. The autopilot model
was designed in a bottom-up fashion. The control laws for pitch channel mode of
operation were placed in an if-else-then block in order to support inline code generation
for these control laws, and to make sure that only the engaged mode is operated during
the simulation. Unfortunately, due to confidentiality issues, the flight test data needed
(such as aerodynamic forces and moment coefficient) to simulate the model was not
provided. Therefore, an approximate mathematical model was developed to simulate the
autopilot system using the rough data available for aerodynamic forces and moments
coefficients. The model calculates the aircraft motion variables and aerodynamic forces
and moments acting on the aircraft. A standard atmosphere model was also developed to
calculate the Mach number needed as input to the autopilot system and to calculate the

dynamic pressure needed for aerodynamic forces and moments calculations. The system

125

was tested for a typical large commercial aircraft flying in cruise with the altitude hold
mode selected. An external moment was inserted for a specific period of time and the
result of the simulation for autopilot being engaged and disengaged was observed. It was
illustrated that while the autopilot is disengaged, the aircraft has unstable behavior.
However, when the autopilot was engaged, the external moments and the resulting forces
dampened out, and the aircraft returned to its normal operation over a period of time.
The time taken to dampen out the external moments and forces might not be as fast as
expected. This is due to the fact that the aerodynamic model built is approximate; the
values of the aerodynamic forces and moments coefficients were rough data, and this data
was assumed to be constant for small deviations of the flight condition which is not the
case in practice. Nevertheless, the result obtained in this project was satisfactory for the
purpose of evaluation of MATRIXx.

As the second objective of this thesis, the evaluation criteria defined to evaluate
MATRIXx was discussed in chapter five. The evaluation criteria used is divided into
four categories: General, Implementation issues, Unit testing, and Code generation. In
general, the MATRIXx product family proved to satisfy all the criteria. However, as
discussed in chapter five, it needs future enhancement; namely to provide less restrictions
for AutoCode and SystemBuild, to fix some bugs appearing in its GUIs, and to provide
more command and utilities for its products such as an undo command for the Catalog

Browser.

7.2 Recommendations and Future Works

The flight warning computer was implemented in SystemBuild for the purpose of

code generation only. Due to time limits for this project, the goal was to generate a

126

simulation code automatically that would resemble the manually written code as close as
possible. It is not possible to simulate the implemented model using the SystemBuild
non-real time simulation. Because blocks, which were represented as macro calls in the
manual code, were implemented using customized macro procedure SuperBlocks. In
order to simulate the macro procedure SuperBlocks, its corresponding algorithm has to be
implemented inside the SuperBlock using other blocks. For some macros such as
confirmation, pulse, or flip-flop, their corresponding algorithm was implemented using
BlockScript block inside the macro SuperBlock. Consequently, when the code is
generated for the model, a macro call is generated in the code and when the model is
simulated using interactive simulation, the BlockScript block representing the macro will
be simulated. This is not the case for all macros implemented in the flight warning
computer. Therefore, in future work, whenever a complete flight warning computer is
going to be implemented using MATRIXY, this task should be kept in mind.

The template program was written to generate the code for a selected portion of
the flight warning computer and will not work for the complete model. This is due to the
part of the code that searches for specific information of a macro block in the
SystemBuild model and generates the appropriate code for that information. In the
written template program, only the implemented macros for the selected model are
searched for. As a result, in future work when a complete flight warning computer is
implemented the corresponding part of the template program has to be modified
accordingly.

On the other hand, it was not possible to implement and simulate a complete

autopilot system due to incomplete design documents that were provided. Moreover, the

approximate mathematical model developed to simulate the aircraft is not mainly used in
practice. In this project however, it was the only choice due to the available
documentation and data. Consequently, the complete implementation of the autopilot
system, generation of its corresponding code automatically, and simulation of this system
in a more practical way is left for future work.

Finally, as was explained in section 4.1, due to personal interest some utilities
were developed to simplify the creation of the component library and the task of the
implementation of the systems in SystemBuild. These utilities proved to be useful tools
during this project. They provide users with a user friendly interface to perform
repetitive functions that should be entered in the command line with the correct syntax.
These utilities eliminated the need for remembering all the syntax and keywords of the
functions that are normally used during the modeling of a system. Even though these
tools had satisfactory results during this project, they are not fully functional for the all
the commands that are provided with MATRIXx. In the future, any of these tools can be
easily modified to be functional with more commands and keywords to simplify the task

of the designer.

10

11

12

13

14

15

16

17

128

REFERENCES
J. M. Rolfe, K. J . Staples, Flight Simulation, Cambridge University Press, pp. 14-
3s.

E. Bruce Jackson, Results of Flight Simulation Software Survey, NASA -~
Langley Research Center, AIAA 95-3414.

CAE Electronics-Dept 78, Evaluation of MATRIXx as a Software Development
Tool by Concordia University, Statement of Work.

Integrated Systems, Inc. , Getting Started (Windows), 000-0119-004, March
1999, p. 1.2.

http://www.windriver.com/products/html/xmath.html
http://www.windriver.com/products/html/systembuild.html
http://www.windriver.com/products/html/autocode.html
http://www.windriver.com/products/html/documentit.html

Integrated Systems, Inc. , How To Write Production Quality Code Graphically,
2,500 COLMO0038, May 1998, pp. 1-12.

CAE Electronics Ltd., Software Design Documents A320 Flight Warning
Computer, 10018900, February 1998.

A319/320/321 Flight Crew Operating Manual, Indicating/Recording Systems.

http://www.meriweather.com/a320/320_main.html

Peter Mellor, Computer-Related Factors in Incident to A320 G-Kman, Gatwick
on 26 August 1993, University of Bielefeld, February 1995, p.13.

http://www.chipsplace.com/helpful/Airbus/Instrument.htm

[an Moir, Allan Seabridge, Aircraft Systems, Longman Group UK Limited, 1989,
p. 153.

D. h. Middleton,, Avionic Systems, Longman Group UK Limited, 1992, p. 75.

William A. Wainwright, Advanced Technology and The Pilot, Airbus Industry,
Fast, Number 14, February 1993, p. 4.

18

19

20

21

23

24

25

26

31

32

33

34

35

129

Basics of Automatic Flight Control, Mech 609 Class Note, pp. 1-6.

Dune Mcruer, Irving Ashkenas, Dunstan Graham, Aircraft Dynamics and

Automatic Control, Princeton University Press, 1973, pp. 204-205.

Donald Mclean, Automatic Flight Control Systems, Prentice Hall International
(UK) Itd, 1990, pp. 16-27.

Bandu N. Pamadi, Performance, Stability, Dynamics, and Control of Airplanes,
American Institute of Aeronautics and Astronautics, Inc. 1998, pp. 537-595.

Bnian L. Stevens, Frank L. Lewis , Aircraft Control and Simulation, New York :
Wiley, 1992, p.203.

M. V. Cook, Flight Dynamics Principles, Amold, 1997, pp. 234-240.

United Air Lines, inc., Avionics Fundamentals, 1974, p. 252-301.

E. H. J. Pallett, Automatic Flight Control, BSP Professional Books, 1987, pp. 85-
91.

Edward L. Safford, Aviation Electronics Handbook, Tab Books, 1975, pp. 92-
101.

CAE Electronics Ltd., Avionics Systems, February 1996, pp. 4.17-4.18.
Pallett, pp.159-160.

CAE Electronics Ltd., CAE Generic Flight Control Computer, 10019685.
Pamadi, pp.616-618.

Jan Roskam, Airplane Flight Dynamics and Automatic Flight Controls Part II,
Roskam Aviation and Engineering Corporation, 1979, pp. 1143-1148.

John H. Blakelock, Automatic Control of Aircraft and Missiles, John Wiley &
Sons, Inc., 1965, pp.92-93.

Stevens, pp. 285-286.

Canada air Inc., Pilot Training Manual, p. 4.34.

A. Morris, Flight Control & Automatic Control, Course Notes, pp.113-116.

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

130

Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc.,
1989, pp. 219-220.

System Description Note, Flight Warning Computer, Aerospatiale, December
1992.

Integrated Systems, Inc., AutoCode Reference, 000-0155-005, February 1999, pp.
5.4-5.5.

Integrated Systems, Inc., AutoCode User’s Guide, 000-0155-005, February 1999,
pp. 1.5-1.6.

Integrated Systems, Inc., SystemBuild User’s Guide, 000-0155-005, February
1999.

http://lorien.ncl.ac.uk/ming/digicont/digimath/

Eugene A. Morelli, Airplane Dynamics. Modeling. and Control, NASA Langley
Research Center, May 1997.

Jan Roskam, Airplanc Flight Dynamics and Automatic Flight Controls Part [,
Roskam Aviation and Engineering Corporation, 1994, p. 21.

Peter Lawn. “The Enhancement of a Flight Simulator System with Teaching and
Research Applications.” M. A. Sc., Concordia University, 1998.

Thomas S. Alderetel, Simulator Aero Model Implementation, NASA Ames
Research Center, Moffett Field, California.

Louis V. Schmidt, Introduction to Aircraft Flight Dynamics, , pp. 93-97.
www.met-office.gov.uk/education/training/atmosphere.html

Steven A. Branddt et al, Introduction to Aeronautics: A Design Perspective,
American Institute of Aeronautics and Astronautics, Inc., 1997, pp. 40-44.

Richard S. Shevell, Fundamentals of Flight, Prentice-Hall, Inc., 1983, pp. 63-71.

Mario Asselin, Operational Aircraft Performance, Concordia University, Cource
Note, pp. 18-21.

Nelson, p. 260.

131

APPENDIX 1

COMPARISON OF MANUAL CODE AND AUTOMATIC GENERATED CODE FOR

FWC

Manual Code 1/3

7o §1% 00 €7 fed o/

+ G(F €N (2 235 ‘1awdaTq

PR L 7T I
/e 012 90 §7 afef 2

T1asas q
sooanelut

fo SER GO (T AFed

1oy paufitsun

1210 ut pantjop freaite aie

11 $3{7PTI€A D71 113 1wa d1e(a] L/

Jossesseeervsesssessasseessnsarssecnsesssssnsescsstssscctessonetstoscnssasenal

‘e SITYINYA 143163 .

/esanssanseansasnrossecsesssseasstesnestssretsnssancestsrctsonssssscancananesl

fe MU o7 o1 wuTaputTmbasge, apntsuty
To MOIONi o/ S w0dsip, apnpouty
o MICHI of JLwuaTabgree, apapoity
o MdOCHI o/ WS tTAbyreE, apniouty
7o D400 of JAUqiIsagTAb) g, epnpotuty
fe X000 o7 JospaqerTapaTabarge, epnpouty
7o MOOH o7 S JepTabnzge. apniantg

e MMM W7 Y tpswssh, apniduty
fe 20N o BV, apngary

Jo XXM o/ < QUIPIS 2pniouty
Lo M0N0 «Q otpIs> epniouty
fe 0N ot < yiva apngouty

I I A A T A S A H H H 1 3 1 34 1 43354
SIIVHAIT 3YD 9
SATUVHALT- O ¥YUNYIS

S8 sssansn0805050508050505585580850888555853885688558845958./

N

IN]

2

J

J

3

J

« AlqeTIes 7 puv 37 133Uy A
G2 IIC1 £ TL L66TIPTLE 1 ° (7mrbagge D
J

<« a8y (ezop pafuryd 2

£S 1I61 15701 centbnyel ¢ o (rretoTee)
J

< WD A9 ¥RLLINTHOILYHATANOD IDUYHD 2
QI 1701 41760 (48118521 €3 (rmsbazqe D
J

« 23 P18 10} 020-00 (7 Ut aluvyd stfog »

=)

UL RLRS 0L (661d35¢7 ¢ 2" (Immlor(e

< 73 PIS 103 SIRTOTRIGEN-00-77 UL II6N] FIFPE »
11 9Ems 01 1L (6614857 § 2" (TrmbOLEY

< 7@ IS 10} 0$0-00-27 ME efueyd djEoy >
TU TZET #2 40 L661ATNY 93 (ZrabozCY

« wixdetp 103 0451p 2BUVYD >
a9 2E4P $5 KO (6513708 L O {TAbOI(@

« dted quapt ayy 1asut >
9@ TEAE BL LD (6617304 @ D (IADO(E

VUL UL UU UL DU

« 1alfingap M4 @03 30 unt1asut >
6% 7§99 07 11 we6IuTL(T 6 3'(tmably(V

< Indino agiey 1n] 3T ppr >
e TEar 16 61 Be6luvrge 0f O (rAnbole?

- €189TNU 190YT APA[IUL 03 E1Apray uniiFnbha patjipom »
LU S CAVRRE AR TTIRCUIS N SR 420 T 4

GUOUUULDUU UL D

K108 OB TARY,
asoding
90LIORIET & 0D FIVILVASOUIY & (1] Jod

sadua1agey

10} 14y 1380

€0 W™ 100 D0g 1TV FUP Q2(Y PYY O €D360] GUIUIPA A1 10) RpOY ID01IEQY

uotIeat iy

SINL1DA 1P S]]) epnioug

SaAt1IAp uot19|1dor)

o Ul {2173

[T LH uotiviayy

[L LU PIEHRE $520044

itl N X unt 1P 1AENIOY

it uaishsqns

3210 TAY PICMIJCS washs
1661 ‘8¢ Aror 93ivg
JuviqeT (atueg s1041ny
HIVINHIS 2EV 19T0I8N)

£ IMMISAY joq Az

D rmanzeyY at ainpon

(I IeTUNTR~2) (7 4009 1Y PUP QI(Y ¢ JM1 YT jo uotavinais LISIN
ol

148
drg O 3YI[ROISHIAATMILSYHI OadsUT (E700° ST B1/30/8661 # 1 @ 1 A (In02€® 'PIS of
748 B1SI9NTTBLE646665TAT(LLILIOILTLEPIRGE ~1APOONTISS o/

132

Manual Code 2/3

fLEx

tPtoa) (Immbsav proa

/o ET WPeq uetivpnuie taandaco farutem ety L

SIQPTIEA UPA[OM (RO AY) g pud . 7
1 strocqzIninoTq

S1r00¢cINann o

e

re

‘jIetrgoszandine ‘q
‘ntrangrindano q
I

B

‘3 s0r0ngandann g
‘sot00fzIndino q
/e

‘e

‘1 ¢oranfzindinoq
‘goroocandine’q
‘e

‘e

'3 strpnganhineTg
seronezandino
ie

/e

“3oesronezinvinn
‘onpnos T andann g
/e

‘e

“1TurrgoE T IndtIne Ty
‘nytongzandine g
N

7e

rrangandine g
‘neroofsanhine g
/e
‘e

1

‘povaq
“1ooppogtzandann q
‘NteoUzIndaneTq
le

‘e

ndino
Sty 00°

nno
oty oo

ndinn
Sor 00°

ndinn
00?00

It inn
See 0n

inding
o5 09

mdann
arr on’

ndinoe
0(* 00°

ndine
0t Q0

o/
€2 afod ./

fz obe

.i

Y
¢z ofed

ot

tz afiet

§2 shvd

§7 abed

o/
(e abed

TA0ungInepunngTq
/e AMNINO L/
le £90 00°F7 nbud ./

‘PAN00E T INNpUNNE Ty
te WINO ¢
010 00 ¢t abvd ,/

‘0S000¢ T INCPUNaRTQ
/. 1ndano

ot
/e 080 00 €7 obed

’

AL B |
‘370gogofzandineTq
'ofn0otIndaneTq
1. IndINO ¢
/e 0(0 00 (T plivd

‘376zooggzandino™y
‘eT000¢ZInd N0
/e INdINO ¢
/e ST0°00° €T POV o/

‘3707000¢2Indan0™q
'02000€ndano™q
/o AINAINC L7
ts 02000 (7 abod ¢

*3761000¢ 2andanoTy
‘g1poofgIndanoTq
7o IWING L/
fe &10 Q0 7 nbud

~

“170t000f g intane T
‘ntnoorrintinn q
/o INA N0
fe 01000 €7 8bed

~

‘3 gononriIndane
‘R00p0LTINdIND T
e WNVNiNO 7
/e SO0 00 g7 afivd

/e PINPOT SIY] U] PAKN SAIGELIVA Y] BUTIR] ,/

I P R NN NN R R R R AR L R
’e SATHYINYA 1vD01 o

fessssssnreseeerssasevosnesnssssrssssscoscasroctnsvsasnccssccasannsonsonsncesl/

s "iemaaT g
/e Anttuy oy

7+ SFE00 €C

133

Manual Code 3/3

te PUR- tabfing

‘o e |¥ptiubagapiab
tOprjucsiapeli) 31
ANOTNOOEIXAINT T T LaRO()
VITOTOC0ET ININO TH et) e acog 2 IrdanaTqOIen 1)) CKITHHAD IO) ¢
1 gragossrTassd(Ien) T TA10CCZZIINICLICN])) (L ntocnL R Iaent)
SO INSYOT000EIXTUNI T IV 01090E7 Inhann T g1 -0 1000r 2 ardIne Tt JueHT S AHAD
VI UT01000 20 TA I e 1T OO0 12RIS Ju- T AR, (P 1xeqapteb) Jaug ide

te <1 n

‘Pevit (0ton0e? o [Zlubagapiab) jy ex(e
1-NPt 0100063 -+ [t)ubaaptal) gt eege
f0-vPt (01000C2 -+ lo]utatepiab) 3t

¢ e wpt ot

re 1191518

TrpTatannzandine g ¥otaangIAIaNt It et e Tppe

CsIvd < 3 otneagTandane q) sgpe
LINHE < 3Tntognezinling)
tageanerandane qr gt

AN 021 ¢
1I002I0 ABIA 1TOIANNIZIICIS 17010007 P 0INONE T In Ie) T RITINADY AN HOTIVKHTANDD K

ML=t tegnIne AR
TAWIVA-LT0I00nz T Ites

1o panfrean ntiee

“TTetano ez funy d1aieqe
1
e
210 00 7 (1] 18
(0160023 IIN" 1) caTtLtRT TAA - WO 0TR0) (0
pta Ly

tesserssressessraenes cevessessssanest
01 £ g o
re R LI RN ER LE § .

esseresssersasee

seesssesssecnenne ererssstsacens:

A - {wptnhagap el
[RR R RE S LU L L APR I

TINGOQIDFIXIANT TLIFOT

VETSnNonczandaIne quivetr) (Snonot CinaIna T3 ‘KIT4HAD LIV T3]
AETAIN0RIEI AR TIIENT) L 40000TT 11081390 13) T 1TS0000ZIPILIN]) "

VL TNEYSUCO0CSRAAHTT T IN-3TRn000s 230NN T - 50000€2 1MTIN0 T SR TANAD
LUINe1T0000TTITARIE Jae 1TONN0ATTIIPIN =17 500002IP 3. XD} axmqapiab) Jugade
}

g >y}

‘TeNpy 45000062 -+ [7]ubaqapisb) gy
"1-¥PY 18000087 -~ [tlubeqapiel) 31
toexPY 1GU0NNET = [0l ubaqapial}

» XpP1 Uy
!
/o VIRIS-3aBfngeg o/

C1ITS0E00E T INIINN T TYQDOD0IIXIUNTT 1) IsTTTIINe) "0y ppe
['359v4 ~ }3750000¢2ndan0"q) aste
{'3ndL » 3750000(ZInMIn07q)

(Son00tZandano™ql 3t

R R Y
DONOZTITAIS LTENNNNSFIEAE 1T RNONNEIP Y CN000(TINIINO T HITIHAD) AN HOTLYRMTINOD K

3NML- 176000020 Anrd
L) 25 BT S R ELEL]

tey) paubyisun Dtiels

‘1 §nnnGETE tucy oSties

%00 00 €7 1) 394
16000082 IMIN0) OHILLINT T4HA HOO 01000 (79

tee o/
Iy ereresteninenns teesnsarienseenss
e S (T 1e8ys
e SOV YD KT PRUD IXAL

Tesnsereccnns “esssssevsansererstnnae

$sssssrtosnensnen

fesanrsveaannne S PEEIbNe0NRNceNENIIOIIRIIENOIIINOIIOIRIIOITSSE
‘. £z wnon
e

R R TR T PR P P PP P PP PRy)

Y ummasr o2g¢ |l z33btmh || zagymh) 3%

(emedigree aoInagg,
- [lamt teys ativas
e
mapt .o

.

134

Code Generated Using AutoCode 1/3

N6ONNE T INCPHnee o

otegogzanvhine g

jTenppociantinn g’
sotpog¢rIindino q°

3 nngnngzaininn
0nE00f7INAdINY g’

1 sevooczandlino gt
stroofzindann g’

1Tnqen0f 7 andnn g
SP00EZINdIneTg”

jTorr0oczIndano"q’
orro0fTINAdIND q*

$oftongsIndino g’
ofenogzandino q*

10037’
1 0p0n00s 2anino g’
0r00OETINd NN Ty

7NN T INOpPUNNG g

CAN0DETINepUnNIsTy’

1spto a’
1Tor0n0ETIndann Tyt
ofFNonfgIndtIno g’

1 sz000fmantane g
T000fcInedInG o

e s)vlInn 7
. 0020NET Afed

‘

Lo SACINN Ly
7. S0R00ET Ao

/e SAININN Ly
re 00PCOET PFed

/e SAINdINO Ly
I+ GE200€2 whert

/e 8INCNIND g
fe 0620082 8OO

/e sAINdINO /
/. 0PPOOET AOPd

/. sIndann g
/e OER0OCT AOOd

Je SAININN Ly

7+ 0P000OET Afied

te SINdINO g
te T7000F8 ohed

fe ®INgINN L
‘e 9700047 ~feY

7e RANAINO g

/e 05000€7 ohva

s ®andann oy
afior

.

!

.

.
-~

/

of

o/

/. gININD Ly
/e ST000ET BEVS ./

370zoootcanthineTq”
oroontzndinoTq’
1+ BIDINO ¢/

/e 0200017 06O L/
3 stoongrandinoTq”
$1000¢ ¢ 3ndIno~ "
/. SIndIna
/e §1000¢¢ ®red o7

170tgoos T intano T q”
otonogzIinvano™q’
/. s3ndino
/. 01000€C Pfed ./

17%0000¢ z1ndano~q”

$0000¢2Indan0"q
/e SINGINO ,/

7+ §0000€C 8Bvd o/

1eyd psubisun

sessesesssesssssscrsarernvessescevsn/

SATAVIHVYA Y01 ot

[eeeeaneeessseosreenossessssessessesesessnscsvaveresennvsansescncesesvae/

1auan~q

A0 paubisun H19INe

Jas0ss0assestsesrsrsesssnonssesnovsrossssvsessstossssnscroseacassssssacenes/

le

SA'TAVIUYA NH3ILX3 ol

Josesnssasssroscenststonvanssssersasssesnsatassssssseasennervetsasorvsanl

Fe DAONG
/e D4D0NI
/e DMIONI
/e O4IOM
1o DAION
Lo 0N
‘e 340N
1o 24O0HI
/e MIONI
7o D40
/e IAI0NI
e DAI0NG

.
o/
ol
o/

JWoOdRtp. epaiouly
JwnuTxputTAbgzEv. epniouty
Y watTmhoZEe. BpNISUTY

LA DduRTAbAZ{P, apniouty

L xxf IR iom) Tmboze, PENTOUTE
L4s1aget ‘qpaTebogie. apnioute
Y gepTabipzev. Apnioutls

LU xxTIIvW Apsussh, apnjouty
AP, PpPR{OUTS

“4TatipiIs> npnisute

<} OIF18> ApNiouLe

<Y’ yavw> opniouty

1e555555555555555380355655655555565555555555655655555556595555655656555555553
ST

SITHRRIT-D OHYONYLS
§55085555585585656555585535555555685556586555555585685666566555565565658665668./

3¥0 1

135

Code Generated Using AutoCode 2/3

se U1 L OTGONET M JUSS) o
o« XINPH DIIRR 10T [I IN .

17 0oneIes

[AIET ERIRL AL
1Y+ 1TntonoEIprIIeas’
F0ML - 1 01000 TAm et

1 oviey

paultsun 011923

smssseevsencenet

Jessasnansssssessssssosessasnns . sesses
‘e 01000t »fivd ot

saensasesresscnne/

Jevscossovsenasensnesosescsssnsecs

{
/e pu3-ashbingeq o/
{

t0 v [Wtjubsaspyah
(hpijucwiapiabi) gt
tivs
0000F IXIGNLTL1I9013) ' 3760000€ 21N IN0TALIPOLE) *§0N00CZINMINNTALIvOT]) "HATIMAILIvNT) °
2760060€7PAIIRIR IV) (LT 400008 ZARIIROL) “2TS000NLIPIIvOL)
< INTYG0000€ 2XIANT T JV23750000 2 1MINIT Ju+60060¢ T INAING X JUHITIHAD
TINET S0000fIPOITNIS 3N 2760000 AR I JN-TT 60000 IPY. [P E] ixnatap Al J 1t ide
1
€0 Wt

TexP1 ASANCOLE - (T1ubaqapisly it eRye
CTeNPL L4N0ANET vv TIUEARAPIAL) 3t neyn
et 10000t e = [nfulegopiaty 1t

g+ ¥pr oaut
4
/e 110N 3OO L/

t
TU)7SN00NS TININO T YEANCaS TXIANL T 1Y 1911 Itne o ppe
7o {1 1 5000000 V0®) o/
fa XYOIN{Y] PIICR 10R() e e e e PR
‘o e 3 qonontrindino’g
se (0t 1RO T oot rewan) oy
fe tNtREALIVY fENAT L e e P
} aegn

P RnennE I TIno T YE0OUNE IXAMNL T TR TIIne Ty Ty e
te {1 1 ne00agY PR} L

o N LERTITENT.L B ce e eieieamaa ol
1 - 37s00nnrrandanoTq

fe (21 Mrafop goojofrowaa) L/
. BT

ry ot ey fenihe

Vot gsoncozandanoTq § gt
te (11 'SON00ETOWAW)
Jo BELAUANLIY oo oo i eeeeeneaas g

*150090€ 2 10IN07Q KA 1AHAD
40 09°27GN00 a1 2760000 TPRIIRIS ETARN0NF TN AN HOTIYRY 14N0DTR

\._nn‘ncaaonﬁ:,.“:cuu.\
‘e IOIY OIdOR I8RA e e e e e Wt

T %0n00€IR?

buot Syivae
asTivd » I7S0000(TPI1IVISE’
andL « Tsonooganed

1p315v2PYD patbisun djiealw

ceseasssssssesanssassscnosstcestsnasnarcnsel
50000¢2 ahed ot

sessnuscserrsscanerssstscnrsersaaasnensosenae/

/esesaeraarsseassessosesasnasstsosseotarssrastiocvssssrscansvascacscvsossenarel
S (rmdryn ./
Jeonesasnsesasvecasrsssasssesnsnrstacacssesosritsesvassescacavsctsvsssnscansaal

fusnaer Lo zagectmb] znbgel [223el b gt

'.§ A'3 (pmshozge RaInngs,
s {laR1 IEYD 21919

Juapuy

(P3oA) femehisae ploA

fe €T Yo0R - untiwpnuie 1aindyos Guiusen BTL4

1TgttnarrandireTg?
GrronfraintarnTq’
7e e3ndano oy
7e G1POOEE 8OvY

1ITotsantantann gt

136

Code Generated Using AutoCode 3/3

(
/+ PU3-2866Nq0Q ,/
(

o = {xptlubagopimb
(Ixpyjuomqapimbi) ¥
‘1vo
1000€2XINIT1I001T) *3701000€23ndIN07G{19013) *01000€2Ind 1IN0 q(1¥01) ‘RATAHAD (10T 3) *
1701000€ZP211V18(3I9013) *1701000€2AR28(1%01)) ' 1701000EZPI(IvOT3) "
- TJNEY0T000EZXINNITT° JA=}701000€230dIN0Tq° Ju=01000€ZINAINO™q* JA=HIZ4HAD
‘IN-1701000€ZPA11RIS “ Ja=1701000€EARIA " JA=1T0T000CZP3. ' {XPT] IX31¢opimb) JIut2ds
)
€€ > xpy) 3%

tZ=xpt {01000€Z == {Z)ubaqapimb)]y Rs(s
'1=XPt {Q1000EZ == {{)ubagapimb) }y eua
‘Grapt {01000EL == [0)ubaqspimb) it

'ge Xpr Uy
}
/e 11V15-10800Q0Q o/

*13701000€2IndIN0OTY VO 1000€ZXIANI 118" 2w} 01 ppw

/e (1°1701000€27PPY) o/
/e %30(d O130R 108 ----

'0 = 3T01000€ZINdINOq
7+ (11°119601 0to00EZOWRE) o/
/e UOTSERIAXT [VIIHOT wovcmaennn-o

Y,

) ns(a
(

*13701000¢ZINIINOTq ' YOTO0OC EXHANT T} IS8T 11Nw) 02 ppe
/e (1°17010006270PF)} o/

/e YOO[Y OIDOH 18K ------- meeeeeeeaas P
‘T = 3Totpe0EzIndinoTq

7« (171180801 0to00Czowaw} o/

e HOTESPIANT [POIDO] - - eco-iiaLaas P e ot

)t 01000fZ3ndIn0"q) 3%
7o {7 '0t0DOfZOWME) L/
fo BSTIUAYLIT - emmmemoenooe s .- -t

10100062 1n0IN07Q "HIZIHAD
‘40 N9°1701000¢2AR I 1TO1000(ZPA 1P 16 1701000 IP I N HOTIYHHIINOD H

137

APPENDIX 2

TEMPLATE PROGRAM USED TO GENERATE THE CODE FOR FWC

@/***

@/ Written by: Reza Ghassemian

@/ Date: November 23, 2000

@/

@/ This template program is developed to generate a code for the selected FWC
@/ system such that the code resembles manually written code at CAE.

%ﬁ***
@INT 1,il,i2j.k@

@INC "c_intgr.tpl"@@

@INC "c_sched.tpl"@@

@INC "c_async.tpl"@@

@SEGMENT MAIN() STRING psarray[5], tdarray[5],array[100],s3,temp INT blank,
num_user_par, num_td, psind, index, count, flag@@

@ASSERT STRCMP("C" language_s)@@

@ASSERT not multiprocessor_b@@

@SCOPE PROCESSOR 0@@

@SCOPE SUPERBLOCK 0@@
/*35335355383555358535553358555355555553555558358555SISSTEIISITSEISEFISS
STANDARD C-LIBRARIES
& CAE LIBRARIES
$355383585555535555555555538358355853383555558553555ETSI5ST5SEFSHISIS5*/

#include <math.h> /* 'NOCPC */
#include <stdio.h> /* INOCPC */
#include <stdlib.h> /* INOCPC */
#include "cae.h" /* INOCPC */
#include "gqssmsdi.h" /* INOCPC */
#include "a320qw_def.h" /* INOCPC */
#include "a320qw_cdb_labels.h" /* 'INOCPC */
#include "a320qw_fwclib.h" /* INOCPC */
#include "a320qw_smpc.h" /* INOCPC */
#include "a320qw_mnem.h" /* INOCPC */
#include "a320qw_indx_num.h" /* 'INOCPC */

#include "dispcom.h" /* INOCPC */

138

/**/

* EXTERN VARIABLES */

/**/

extern unsigned char

@j=0@@

@LOQOPP i=0, i It num_sb_in_i, i=i plus |@@

@IFF STRCMP(sb_extin_dsc_ls[i], "external") eq @@
@IFF j eq 0@@

@22@ @sb_extin_name _lIs[ij@

@j=l@@

@ELSE@@

@22@,@sb_extin_name_ls[i]@

@ENDIFF@@

@ENDIFFQ@
@ENDLOOPP@@

k]

/**/

/* LOCAL VARIABLES */

/**/

unsigned char

@LOOPP k=1, k le ntasks_i, k=k plus |@@
@SCOPE SUBSYSTEM k@@
@SCOPE SUPERBLOCK proc_sb_id_li[0]@
/* @sb_name_s@ */

/* outputs */
@LOOPPi=0,i It num_uni_sb_i,i=1iplus |@@
@SCOPE SUPERBLOCK uni_sb _li[ij@@
@IFF sb_parent_id_i eq proc_sb_id_li[0j@@
@IFF STRSTR(sb_name_s,"memo")@@
@IFF keq |@@
@2l@ @sb_extin_name_ls[0]@

@ELSE@@

@21@ ,@sb_extin_name_Is[0]@

@ENDIFF@@

@flag=0@@

@LOOPP i1=0, il It num_blks_in_sb i, il=il plus 1@@
@SCOPE BLOCK il@@

@IFF STRSTR(blk_name_s,"logb") and flag eq 0@@
@LOOPP j=0, j It num_blk_out_i, j=j plus |@@
@21@ ,@blk_out_name_Is[jl@

@ENDLOOPP@@

@flag=l1@@
@ENDIFF@@
@ENDLOOPP@@

@ENDIFF@@

@IFF STRSTR(sb_name_s,"mess")@@
@2 1@ ,@sb_extin_name_Is[0]@
@ENDIFF@@

@ENDIFF@@
@ENDLOOPP@@

@SCOPE SUPERBLOCK proc_sb_id_li[0J@@
@LOOPP i2=0, i2 It num_sb_out i, i2=i2 plus |@@
@IFF STRSTR(sb_extout_dsc_Is[i2], "loc")@@
@21@ ,@sb_extout_name_ls[i2]@

@ENDIFF@@

@ENDLOOPP@@

@ENDLOOPP@@

k]

/* Flight warning computer simulation : Book 23 */

void avsqww23 (void)

{

/*
C'Indent
*/
static char rev[] =
"$Source: a320qww23.c,v $";

if (qwlfrz || qwlgfrz || qwl77frz) return;
@SCOPE SUPERBLOCK 0@

139

/**/

/* @sb_name_s@

*/

/**/

@IFF ntasks_i le 0@@RETURN 0@@ENDIFF@@
@FILECLOSE@@
@FILEOPEN("stdout","append")@@

Generating subsystems definitions ...
@FILECLOSE@®@
@LOOPP k=1, k le ntasks_i, k=k plus |@@
@SCOPE SUBSYSTEM k@
@SCOPE SUPERBLOCK proc_sb_id_li[0]l@

140

[ek ke ek K R R R R ok ke ok Rk ok ok ok s e s ko ok Kk K o ok ok

* @sb_name_s@ */

/**/

{

@index=0@@

@psind=0@@

@LOOPP i=0, i It num_blks_in_sb_i, i=i plus |@@
@SCOPE BLOCK i@@

@IFF blk_has_out_b@@

@LOOPP j=0, j It num_blk_out_i, j=j plus |@@
@IFF STRSTR(blk_out_name_lIs[j],"b_")@@
@IFF STRSTR(blk_name_s,"dum") eq 0@@

@IFF not(STRSTR(blk_out_name_ls[j],"b_output") or
STRSTR(blk_out_name_Is{j],"b_sound"))@@
@array[index]=blk out name_ls[j]@@
@index=index plus |@@

@ENDIFF@@

@ENDIFF@@

@ENDIFF@@

@ENDLOOPP@@

@ENDIFF@@

@ENDLOOPP@@

@LOOPP i=0,ilt num_uni_sb_i, 1 =1plus 1@@
@SCOPE SUPERBLOCK uni_sb_li[ij@@

@IFF sb_parent_id_i eq proc_sb_id_li[0]@@
@IFF STRCMP(sb_attr_s,"Macro")@@

@IFF STRSTR(sb_name_s,"Conf")@@
@psarray[psind]=STRSTR(sb_name_s,"23")@@
@psind=psind plus |@@

@IFF STRSTR(sb_extout_name_Is{0],"b_output") eq 0@ @
@array[index]=sb_extout_name_ls[0]@@
@index=index plus |@@

@ENDIFF@@

@ENDIFF@@
@IFF STRSTR(sb_name_s,"INV")@@

@array[index]=sb_name_s@@
@index=index plus |@@
@ENDIFF@@
@ENDIFF@@

@ENDIFF@@
@ENDLOOPP@@

@count=index@@
@IFF index gt 0@@

unsigned character

@blank=0@@

@LOOPP i=0, i It index , i=i plus |@@
@IFF STRSTR(array(i],"and")@@
@blank=1@@

@count=count minus |@@

@IFF count neq 0@@

@21@ @array(i]@,@
@ELSE@@

@21@ @array[i]@;@
@ENDIFF@@

@ENDIFF@Q@
@ENDLOOPP@@

@IFF blank eq |@@

@ENDIFF@@

@blank=0@@

@LOOPP i=0, i It index , i=i plus |@@
@IFF STRSTR(array[i],"or")@@
@blank=1@@

@count=count minus |@@
@IFF count neq 0@@

@21@ @array[i]@.@
@ELSE@@

@21@ @array[i]@;@
@ENDIFF@@

@ENDIFF@@
@ENDLOOPP@@

@IFF blank eq |@@

@ENDIFF@@

@blank=0@@

@LOOPP i=0, i It index , i=i plus |@@
@IFF STRSTR(array(i],"not")@@
@blank=l@@

@count=count minus |@@

@IFF count neq 0@@

@21@ @array[i]@.@
@ELSE@@

@21@ @array(i]@;@
@ENDIFF@@

@ENDIFF@@
@ENDLOOPP@@

@IFF blank eq 1@@

@ENDIFF@@

141

@blank=0@@

@LOOPP i=0, i It index , i=i plus |@@
@IFF STRSTR(array(i],"pulse")@@
@blank=1@@

@count=count minus 1@@

@IFF count neq 0@@

@21@ @array[i]@,@

@ELSE@@

@21@ @array([@:@
@ENDIFF@Q@

@ENDIFF@@

@ENDLOOPP@@

@IFF blank eq |@@

@ENDIFF@@

@blank=0@@

@LOOPP i=0, i It index , i=i plus |@@
@IFF STRSTR(array(i],"conf") @@
@blank=1@@

@count=count minus @@

@IFF count neq 0@@

@21@ @array[i]@,@

@ELSE@@

@21@ @array[i|@:;@
@ENDIFF@@

@ENDIFF@@

@ENDLOOPP@@

@IFF blank eq |@@

@ENDIFF@@

@blank=0@@

@LOOPP i=0, i It index , i=i plus | @@
@IFF STRSTR(array[i],"INV"Y @@
@blank=1@@

@count=count minus @@

@IFF count neq 0@@

@21@ @array[i]@,@

@ELSE@@

@21@ @armray[i]@.@
@ENDIFF@@

@ENDIFF@@

@ENDLOOPP@@

@IFF blank eq | @@

@ENDIFF@@

142

@ENDIFF@@
@IFF psind gt 0@@
static unsigned character

@LOOPP i=0, i It psind , i=i plus |@@
@IFF ieq 0@@

@22@ prev@psarray[i]@ = TRUE
@22@ ,started@psarray(i]@ = FALSE
@ELSE@@

@22@ ,prev@psarray[i]@ = TRUE
@22@ ,started@psarray[i]@ = FALSE

@ENDIFF@@
@ENDLOOPP@@

A

static long

@LOOPP i=0, i It psind , i=i plus |@@
@IFF i eq 0@@

@22@ td@psarray(i]@

@ELSE@@

@22@ td@psarrayfil@

@ENDIFF@@
@ENDLOOPP@@

@ENDIFF@@
@define_subsystem()@
/* Debugger-Start */

{
int idx =3;

@SCOPE SUPERBLOCK proc_sb_id_li[0]@

@s3=STRSTR(sb_name_s,"23") @@
if (qwidebeqn[0] == @s3@) idx=0;

else if (qwidebeqn[l] = @s3@) idx=1;
else if (qwidebeqn[2] == @s3@) idx=2;

if (idx<3)
{
sprintf(qwidebtext[idx],"@

@LOOPP i=0, i It num_sb_in_i, i=i plus |@@

@array[index]=sb_extin_name_ls[ij@@
@index=index plus |@@
@ENDLOOPP@@

@/**

143

@LOOPP i=0, i It num_sb_out_i, i=i plus |@@
@array[index]=sb_extout_name_ls[ij@@
@index=index plus |@@

@ENDLOOPP@@

@LOOPPi=0,ilt num_uni_sb _i,i=iplus |@@
@SCOPE SUPERBLOCK uni_sb_li[il@@
@IFF sb_parent_id_i eq proc_sb_id_li[0]J@@
@IFF STRSTR(sb_name_s,"memo")@@
@array[index]=sb_extin_name_ls[0]@@
@index=index plus |@@

@flag=0@@

@LOOPP i1=0, il It num_blks_in_sb_i, il=il plus 1@@
@SCOPE BLOCK il@@

@IFF STRSTR(blk_name_s,"logb") and flag eq 0@@
@LOOPP j=0, j It num_blk_out_i, j=j plus |@@
@array[index]=blk_out_name_Is[jl@@
@index=index plus |@@
@array[index]=blk_out_dsc_lIs[jj@@
@index=index plus |@@

@ENDLOOPP@@

@flag=1@@

@ENDIFFo@

@ENDLOOPP@@

@ENDIFF@@

@IFF STRSTR(sb_name_s,"mess")@@
@array[index]=sb_extin_name_Is[0]@@
@index=index plus | @@
@array[index]=sb_extin_dsc_Is[0]@@
@index=index plus |@@

@ENDIFF@@

@ENDIFF@@

@ENDLOOPP@@

@IFF psind gt 0@@

@LOOPP i=0, i It psind , i=i plus |@@
td@psarray[ij@=%f,@
prev@psarray[i]@=%f,@
started@psarray[i]J@=%f,@

@ENDLOOPP@

@ENDIFF@@

@LOOPP i=0, i le index div 6, i=i plus @@
@IFF i eq index div 6@@

@LOOPP j=i times 6, j It i times 6 plus index mod 6, j=j plus |@@

@array[j]@="%f{,@
@ENDLOOPP@@

@ELSE@@
@LOOPP j=i times 6, j It i times 6 plus 6, j=j plus |@@

144

145

@array[j]J@="%f{,@
@ENDLOOPP@

@ENDIFF@@
@ENDLOOPP@"
@IFF psind gt 0@@
@LOOPP i=0, i It psind , i=i plus |@@
J(float)td@psarray[i]@@
,(float)prev@psarray[i]@@
,(float)started@psarray(i]@@
@ENDLOOPP@
@ENDIFF@@
@LOOPP i=0, i le index div 6, i=i plus |@@
@IFF i eq index div 6@@
@LOOPP j=i times 6, j It i times 6 plus index mod 6, j=j plus |@@
(float)@array[j|@@
@ENDLOOPP@@
@ELSE@@
@LOOPP j=i times 6, j It i times 6 plus 6, j=j plus |@@
J(float)@array[j]@@
@ENDLOOPP@
@ENDIFF@@
@ENDLOOPP@);
if ('qwldebmon[idx])
qwidebeqn[idx] = 0;
}
}
/* Debugger-End */
}
@ENDLOOPP@@

qwldone = TRUE;
t /* End of function avsqww23 */
@/
@FILEOPEN("stdout", "append")@@
Output generated in @output_fname_s@.
@FILECLOSE@®@

@ENDSEGMENT@@

146

APPENDIX 3

INITIALIZATION OF THE FWC MODEL PRIOR TO CODE
GENERATION

#***

Written by: Reza Ghassemian
Date: October 10, 2000

This utility is used to initialize the FWC model prior to code generation. It passes
the external input variables from the lower level SuperBlock hierarchy to the
higher level. In addition, it creates the required user parameters to be passed to
the template program which uses these to generate the simulation code.

I O3 I 3 I I I I It

¢ ke 3 ¢ 3k e 3 e e Ak dle ok 3k e e e ke e Ak 2 3k A ok 3 A e Ak Ak e 3k ke e ek A 3 3k 0 2k e 3 A A A A e A A e Ak A 2l k3K e 3 e Ak 3 A A A A A Ak e A o Ak kK K
Command ini sbn

in=(];

[refl=references]=querysuperblock(sbn);
[mol,]=size(refl);

for j=1:mol

sbnl=refl(j);

[inl=inputlabel,inc=inputcomment]=querysuperblock(sbn!)
in=[in;inl,inc]

out=[];

st=(];

editcatalog sbnl
[ref=references]=querysuperblock(sbnl);
[rmo,cno}=size(ref);
logic mo,sbnl
Itn sbnl
for i=1:mo
[t1=procedureclass}=querysuperblock(ref(i));
if t1=="Macro"
[t=macro]=querysuperblock(ref(i));
[r,c]= size(t);
ifr>1
[n=name]=querysuperblock(ref(i));
if stringex(n,1,3) < "VAL" then
for j=2:r
st=[st;t(j)];
endfor

endif
endif
endif
endfor

[num, }=size(st);

for i=1:num
ind=index(st(1),";");
st(i)=stringex(st(i),1,ind-1);
if stringex(st(i),1,4) == "prev" then
out=[out;st(i)+" = TRUE"];
elseif stringex(st(i), 1,4) == "star" then
out=[out;st(i)+" = FALSE"];
elseif stringex(st(i),1,2) == "td" then
out=[out;st(i)];
elseif stringex(st(i),1,3) == "lim" then
out=[out;st(i)];
endif
endfor

[out,]=sort(out);
[rsiz,]=size(out);

num=0;

for i=1:rsiz

if stringex(out(i),1,2)=="td" then
num=num-+1;

endif

endfor

for i=1:rsiz
out(i)="@s"+string(i-1)+"_s@ "+out(i);
endfor

out=[out;"@num_sb_user_par_i@ "+string(rsiz)] ;
out={out;"@num_td_par_i@ "+string(num)];

if find(in="external") = null then

out={out;"@num_external_i@ "+string(0)] ;

else

out=[out;"@num_external_i@ "+string(1)] ;

endif
modifysuperblock sbnl , {Comment=out}
endfor

147

148

in2=(];
flag=0;
[rsiz,]=size(in);
for i=1:rsiz
for j=i+1:rsiz

if in(i,1)==in(j,1) then

in(j,1)="2";
flag=1;

endif
endfor
endfor
if flag > O then
[in2,sortindxJ=sort(in(:,1));
for i=1:rsiz

in2(i,2)=in(sortindx(i),2);
endfor
j=find(in2=="2");
ijl1=ij(1,1)-1;
in2=in2(1:1j1,:);
else
in2=in;
ij l=rsiz;
endif
main.in=[],
main.in=in2;

modifysuperblock sbn ,
{inputs=ijl,inputname=in2(:,1),inputlabel=in2(:,1),inputcomment=in2(:,2)}
logic ij1,sbn

[bI=BlockList]=querysuperblock(sbn);
for j=1:mol
sbnl=refl(j).
bid=bl(j);
[inl=inputlabel]=querysuperblock(sbnl)
[sizein,]=size(inl);
for i=1:sizein
ij2=find(in2(:,1)==in1(1));

if 1j2 then

createconnection 0,bid,[1j2,i];

endif
endfor
endfor

endcommand

149

APPENDIX 4

POST PROCESSING UTILITY DEVELOPED FOR FWC

#***

Written by: Reza Ghassemian
Date: November 23, 2000

#
#
#
This utility is used to delete the portion of the generated code that could not be
avoided using the template programming language.

#

#

a6 2k o a4 o ke 2k o o5 Ak 2 o 4 A ok ok 2k Ak A ok ok Ak K ¢ ke Ak e 5 Ak A e o4 ke ek ke e A o Ak A o e ke ok o ok ke Sk o ok Ak ok i e ko K ke ks ok ok X ok kK ok

[sb_name=name]=querysuperblock()

creatertf sb_name , {rtf="c:\codegen\filez\"+sb_name+".rtf"}

autocode sb_name,
{options="c:\codegen\autostar.opt",rtf="c:\codegen\filez\"+sb_name+".rtf" file="c:\codeg
en\filez\"+sb_name+".c"}

#execute file="c:\codegen\Fix_code.ms"

post processing of the generated code.

temp_name="c:\codegen\filez\"+sb_name+"_1.c";
if exist(temp_name, {file}) then

oscmd("del temp_name")

endif

temp_name2="c:\codegen\filez\"+sb_name+".c";
myfile=[];

ind=0;

myfile=read(temp_name2);

len=length(myfile);

ind=index(myfile,"void subsys");

while ind <> -1

ind [=index(myfile,"/***** Qutput Update. *****/");
temp=stringex(myfile,1,ind-1);
temp2=stringex(myfile,ind1+28.len);
myfile=temp-+temp2;

len=length(myfile);

ind=index(myfile,"void subsys");

endwhile

len=length(myfile);

ind=index(myfile,"U->");

while ind <> -1
temp=stringex(myfile, 1,ind-1);
temp2=stringex(myfile,ind+3,len);
myfile=temp+temp2;
len=length(myfile),
ind=index(myfile,"U->"),
endwhile

len=length(myfile);
ind=index(myfile,"> 0.0");

while ind <> -1
temp=stringex(myfile,1,ind-1);
temp2=stringex(myfile,ind+5,len);
myfile=temp+temp2;
len=length(myfile);
ind=index(myfile,"> 0.0");
endwhile

len=length(myfile);
ind=index(myfile,"Y->"),

while ind < -1
temp=stringex(myfile,l,ind-1);
temp2=stringex(myfile,ind+3,len);
myfile=temp-+temp2;
len=length(myfile);
ind=index(myfile,"Y->"),
endwhile

len=length(myfile);
ind=index(myfile,"!(!");

while ind < -1
temp=stringex(myfile, 1,ind-1);

myfile=temp+stringex(myfile,ind+3,ind+17)+stringex(myfile,ind+19,len);

len=length(myfile);
ind=index(myfile,"!(!");
endwhile

fprintf(temp_name,"%s",myfile)

display("******pOSt processing is complete******

150

151

APPENDIX 5

CALL BACK FUNCTION FOR LAG FILTER

#***

Written by: Reza Ghassemian
Date: November 31, 2000

This program executes upon creation of a lag filter in SystemBuild editor. This
program generates a GUI to allow users to enter the required information.

It then uses the values provided by users to create the lag filter’s icon and its
code in the form of blockscript language.

I I I I I [R’ I

3¢ 2k 2K 24e e 24 o 2 2 A e 2k 3k A e 206 e 246 ok e e A ok 4 e 3 e Ak e 2 A A A K A Ak e ke ok ke ok Ak e Ak o Ak e e Ak ke K kA ok A ek Ak 2k ok A Ak 38 o Ak ok K ok

Command LagFilter {fragName, widget, instance}

alias T "LagFilter"
alias MW "MainWin"

if (exist(fragName))
goto *fragName;
else

if (lexist(_LagFilter, {partition}))
new partition _LagFilter
endif

if (uiExist(T, MW))
void = uiShow(T, MW);
void = uiWindowDeiconify(T, MW);
void = uiWindowRaise(T, MW);
else

_LagFilter.choice=1;
_LagFilter.tau=0;

_LagFilter.tool = uiTooiCreate(T, {name="LagFilter", partition="_LagFilter."});
_LagFilter.width =350;

_LagkFilter.height = 210;
MainWin = uiWindow(T,

{name = "MainWin",

type = "panel",

title = "Lag Filter",
visibility = 1,

width = LagFilter.width,
height = _LagFilter.height,
xr=0,

yr=0});

_LagFilter.MainWin = MainWin;

Message = uiPanel(MainWin,
{name = "message",

title = "Choose the type of Approach”,

height = _LagFilter.height,

width = LagFilter.width})

void = uivarchoice(Message, {

ﬂags ="V",

items =["Tustin","Euler Backward","Euler Forward"],

values =[1,2,3],
varname = "choice",

xr=15,

yr=30,

width=130,

height=60})

void = uiseparator(Message, {
flags = "h",

xr=0,

yr=100,

width=350})

void = uilabel(Message, {

text ="Enter the Value of Tau:",
xr=15,

yr=110,

width=200,

height=20})

void = uivaredit(Message,

{

varName = "tau",
flags ="s",
xr=200,

yr=110,

152

153

width=100,
height=30})

void = uibutton(Message, {
type= "Button",
text= "Done",
xmath = "Done",
yr=150,
xr=145,
width=60,
height=40})

endif

void = uiShow(T, MW);
endif

return;
HBHH B R R R R R R R R R R R R R R R BB R R B HH R
<Done>
if _LagFilter.choice==1 then
iconstring=[
"ICON_WIDTH: 600"
"ICON_HEIGHT: 1000"
"SET_LINE_WIDTH 2"
"SET_TEXT_FONT 14"
"DRAW_TEXT 300 700 22 '1™
"draw_line 2 60 500 520 500"
"DRAW_TEXT 300 300 22 "+string(_LagFilter.tau)+"S+1"
"SET_TEXT_FONT 1"
"SET_LINE _WIDTH 1"
"DRAW_TEXT 300 -130 22 "Tustin"]
bcode =[
"inputs: (in); "
"outputs: (out);"
"parameters: (ic,prev_in,prev_out);"
"ENVIRONMENT: (TIME, TSAMP),"
"float in, ic ,prev_in,prev_out;"
""; "if TIME == 0 then"
" prev_in=in;"
out=ic;" ; "else"
" out=prev_out+(TSAMP/(0.5*TSAMP+"+string(_LagFilter.tau)+"))*(0.5*(prev_in +
in)-prev_out);"
" prev_in=in;" ; "endif}"
"prev_out=out;"]
elseif _LagFilter.choice==2 then

154

iconstring={

"ICON_WIDTH: 600"
"ICON_HEIGHT: 1000"
"SET_LINE_WIDTH 2"
"SET_TEXT_FONT [4"
"DRAW_TEXT 300 700 22 '™
"draw_line 2 60 500 520 500"
"DRAW_TEXT 300 300 22 "+string(_LagFilter.tau)+"S+1"
"SET_TEXT_FONT 1"
"SET_LINE_WIDTH 1"
"DRAW_TEXT 300 -130 22 'B_Euler"]

bcode = ...

["inputs: (in); " ; "outputs: (out);" ; "parameters: (ic,prev_out);" ; "ENVIRONMENT:
(TIME, TSAMP);" ; "float in, ic ,prev_out;" ; "" ; "if TIME == 0 then" ; " out=ic;" ;
"else"

" out=prev_out+TSAMP/(TSAMP+"+string(_LagFilter.tau)+")*(in - prev_out);"
"endif;" ; "prev_out=out;"]

elseif _LagFilter.choice==3 then

iconstring=[

"ICON_WIDTH: 600"

"ICON_HEIGHT: 1000"

"SET_LINE WIDTH 2"

"SET_TEXT_FONT 14"

"DRAW_TEXT 300 700 22 '1™

"draw_line 2 60 500 520 500"

"DRAW_TEXT 300 300 22 "+string(_LagFilter.tau)+"S+1"

"SET_TEXT_FONT 1"

"SET_LINE_WIDTH 1"

"DRAW_TEXT 300 -130 22 'F_Euler™]

bcode = ...

["inputs: (in); " ; "outputs: (out);" ; "parameters: (ic,prev_in,prev_out);" ;
"ENVIRONMENT: (TIME,TSAMP);" ; "float in, ic ,prev_in,prev_out;" ; "" ; "if TIME
==(then" ;" prev_in=in;" ;" out=ic;"; "else"

" out=prev_out+TSAMP/"+string(_LagFilter.tau)+"*(prev_in - prev_out);"
" prev_in=in;" ; "endif;" ; "prev_out=out;"]
endif

modifyblock _LagFilter.id, {Code=bcode,Customicon = iconstring, IconType =
"Custom"};

void = uidestroy(T)
delete _LagFilter.*
delete _LagFilter.
return;

endcommand

