INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI! films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

High Availability Solution for a Transactional Database System

Steluta Radulescu Budrean

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2002

© Steluta Radulescu Budrean, 2002

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
385 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68528-4

Canadi

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your Mg Votre rétérence

Our fle Notre rétdrence

L’auteur a accordé une licence non
exclusive permettant i la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

High Availability Solution for a Transactional Database System

Steluta Radulescu Budrean

In our increasingly wired world. there is stringent need for the IT community to provide
uninterrupted services of nenvorks. servers and databases. Considerable efforts. both by
industrial and academic communities have been directed to this end. In this project. we
examine the requirements for high availability. the measures used to express it. and the
approaches used to implement this for databases. The purpose of this project is to present
a high availability solution. using off-the-shelf hurdware and software components. for
Jast fallback and restart in a fast changing transaction-based application. The approach
uses synchronous replication. which. in cuse of a failure. is able to resvachronize the

databases without shutting down the system.

i

AKNOWLEDGEMENT

I'would like to thank Prof. Dr. Bipin C. Desai for his guidance and advice all along the
way. And I would like to take this opportunity to thank my colleagues Jean Millo and
Olivier Epicoco from SITA for their help and guidunce during this stressful period. and

the A.S.D. Department from SITA for their continuous support.

LIST OF FIGURES

FIGURE T CLUSTERED SERVERS ..ottt 12
FIGURE 2 STORAGE AREA NETWORK o1ttt oo 14
FIGURE 3 STANDBY DATABASE REPLICATION Lo oo 18
FIGURE 4 CLUSTERED DATABASE- SHARED DISK ARCHITECTURE [18] oo 23
FIGURE 5 CLUSTERED DA TABASE-SHARED NOTHING ARCHITECTURE [34].ev oo oo, 24
FIGURE 6 OVERALL ARCHITECTURE 1.ttt it 40
FIGURE 7 SYSTEM ARCHITECTURE oottt e 44
FIGURE 8 X-OPEN DTP MODEL .ottt oo e 46
FIGURE O CLIENT DESIGN oot e e 47
FIGURE 10 TUNEDO APPLICATION SERVER ~SERVER GROUP.c..vovoeooeoeeeeeoe oo 48
FIGURE 1T TUNEDO MULTIPLE SERVER GROUPS L. oot 49
FIGURE T2 APPLICATION DESIGN Looii oo e e h|
FIGURE 13 LISTOF SERVERS AND SERVICES . oo oo 56
FIGURE 14 SEQUENCE DIAGRAM FOR NORMAL MODE oo 57
FIGURE 13 SEQUENCEF DINGRAM FOR DEGRADED MODE oo 58
FIGURE 16 SEQUENCE DIAGRAM FOR THE RECOVERY PROCEDURE oo 39
FIGURE 17 SERVICFS STATUS AFTER MACHINE FAILURF Lo oo 61
FIGURE T8 NODF FAIWLOVER DENIO Lo e 66
FIGURE 19 NODE FALEBACK DEMO o oo e 67
LisT oF TABLES
TABLE 2= 1 HIGH AV AILABILITY MEASUREMENTS oo 4
TABLE 6-1: TEST OVERVIEW Lot 63

Table of Contents

1. Introduction............. . ceereetnirennreeessananes 1
2. The need for High Availability in today's markef ... 3
21 METRICS OF HIGH AVAILABILITY Lottt 3
2.2, CAUSES OF DOWNTIME Lottt e 5
23, SYSTEM RECOVERY ool ee e 7

3o Hight AVGQIUDILIEY MEUIOUS co.nnaneecevaaneeeereeeeereerrerersesssssseesseeasessssasssssssesssssssssssssenssesssssssssesessasessssessassas 9
S.ho 0 HARDWARE HA SOLUTIONS Lottt 9
3117 Redundant components.. e R
312 Clustered Servers.. . : v 1
3.1.3 Storage Area Networks : 14

3.200 DATABASE HA SOLUTIONS Lo 15
321 Stundby Dutabase and Distributed Databases 16
322 Parallel Processig. Clusters L B Ay

33 TRANSACTIONAL HA SOLUTIONS Lot 27
331 Transaction Processing PSRRI 27
332 Transactional Systems . 2y

34 HA METHODS < CONCLUSIONS Lot e 3]

4. Replication Solution for ensuring H-A in an OLTP environment......ueeeeeeeevseevnne... 33
4.1. PROBLEM DEFINITION RO UTRRE 3)
411 Assumptions and Constraints .. 34
412 Detailed Problem Definition.. . . . 35

4.2 PROBLEM APPROACH AND ANALY SIS e 36
421 Svstem and Functional Requirements . 36

430 ARCHITECTURAL AND FUNCTIONAL CONSTRAINTS. ... oo 38

vi

5. Proposed Solution and Its Design ceeeeeesesiesessnanaesserersnantessnarassnsresasanaseseaasesressstranas 40

510 DESIGN RATIONALE Lo et 40
317 Choice of urchitecture ... U L 40
512 Availabilioy 4
513 (Nerall Svstem Cost. ... U OO 4/
314 Scalabiliey P 42
315 Manageabiliy. ... A2

5.2, SYSTEM ARCHITECTURE Loiiiit it 43

330 SYSTEM DESIGN Lo 43
331 Dealing with Trunsactions......... 43
332 Subsystem Design . U . L 46

6. Implementation, Testing and Results . tersreeneetneeissseinstesisersrrars s et et atessessarassaraasassrnns 33

6.1. APPLICATION CONFIGURATION Lo e hR!
6.2 SERVER AND CLIENT APPLICATIONS oo 36
6.3 ADMINISTRATIVE SCRIPTS oo e 60
6.4. EXPERIMENT AND RESUL TS oo 63
7o CONCIUSION N JUIEE WOPK......uunneoeineenicenrrseereierinreeeeseeesessisssssssssessasstesmonsessssssssssessanssssssnsesssesssesss 69
B RESCTCHCCS cunnreeetretiieecstsscestsssssseststaesesta st ae s esessse s nesasoseesessss st sosensesesessassses st essessanasennenmsns 72
9. APPENUICES canneeanecreirrireeenreeeresannen sesttetieetesatntaetirttrsaeseareeses s nars s s bt b ne s s sesasnueanssnnaennas 76
Al APPENDIN A - CONFIGURATION FULE o 76
B APPENDIN B - MAKEFILE e e 82
C APPENDIN € - ENVIRONNMENT FILES e 86
D APPENDIN D = GLOSSARY oo S8

1. Introduction

A measure of availability is the length of time during which a system can be used for
uninterrupted production work. High Availability (HA) is an extension of that duration.
perceived as extended functionality of the system. masking certain outages. High
availability can be achieved through reliable components and redundancy: the latter allows a
backup system to take over when the primary system fails. In a highly available system.
unplanned outages do occur. but they are made transparent to the user[1].

There are degrees of transparency for a system. which imply degrees of high
availability and there are two major factors that influence it:

e Type of processing

The availability of a system is quantified ditferently depending on the type of

processing done. such as batch processing or real-time. The requirements to ensure

availability of a batch processing system. compared to a real-time system are very

different and hence a lot harder to achieve in the latter case. due to stringent time

constraints.

We shall direct our research towards the transactional systems that represent more of

a challenge in the IT industry (i.e. telecommunication industry. Web transactions

processing. banking transactions. etc.)

e The cost ot a system

In a highly demanding environment in terms of throughput and transactional

changes. the cost of a system that insures “continuous™ availability could be very

high. By endowing the system with redundant components this goal can be achieved

but the cost will definitely increase over reasonable limits.

The problem. which is addressed in this thesis. is the fast synchronization. in case ot
failures. of two databases supporting a transactional system. By taking the logic of
transaction coordination and write-ahead-log. outside of the database. the system relieves
the database of all its responsibility except as a repository and provides a recovery solution.
which is not dependent on the availability of the databases.

The organization of this thesis is as follows: In chapter 2. we give an overview of
high availability and a measure used for expressing it. In the next chapter. we present
some industrial approaches used to provide HA. Chapter 4 outlines replication solution
tor online transactional processing (OLAP). In Chapter 5. we present our proposed
solution and outline our design. Chapter 6 gives the implementation details and the
results of our experiments using this implementation. The conclusions are given in the

final chapter.

19

2. The need for High Availability in today’s market

The solutions for achieving HA are ranging from complete hardware redundancy to
software redundancy such as standby databases and replicated databases in case of
distributed systems. The challenge in most HA system is to compensate not only for
unplanned outages but also for planned outages as well. In the real world the HA solutions
are usually a trade-off between the systems needs and the cost economically justitied.

If money is no object. then we can over protect our systems against failure by
duplicating everything: even here. we would not attain more than 99.999% availability.
However. the goal is to have self-recoverable systems in homogenous and also
heterogeneous environments.

Mission-critical environments such as telecommunication industry and on-line business

applications have a need tor HA databases that offer throughput and real-time requirements.

2.1. Metrics of High Availability

To be able to really quantity and identity the availability of a system. the academic world
and the industry has defined some metrics that formalize the definition of a system’s
avatlability:

. Mean Time to Recover (MTTR)

MTTR represents the necessary time for a system to recover after a failure. The industry and
the academic world today concentrate on finding solutions to reduce this time and to make it
transparent to the users.

° Mean Time Between Failures (MTBF)

~
2

MTBF is mostly computed based on hardware failures. but today's industry has made
signiticant progress in achieving very good MTBF through redundant hardware and
software (e.g. clustered nodes etc.)

Another way of expressing availability is referred to as “number of nines™. This is
expressed as a percentage of uninterrupted service per vear and hence the downtime. A
system is considered highly available when its availability is 99.9 also called 3 nines™ [2].
As we can see from the table below. the aim of a = five-nines™ svstem is to have less than a

few minutes downtime per vear:

Availability ' Downtime
99.9% 525.6 min or 8.76 hrs :
| 99.99% 1 32.55 min
! 99.9992; 5235 min

Table 2-1 High Availability Measurements
There is a certain gray area in computing availability. given by the transparency of
recovery. which may or may not be taken into account tfrom the user’s point of view. An
interesting mathematical quantification is given by Clustra database. in a mulii-
node/clustered architecture[2]. The factors that are taken into consideration for computing
availability are as tollows:
e Percent of time a single node is unavailable:

Punavatlable - (Nrestart* Trestart) ~(Nrepair* Trepair) - (Nmnt* Tmnt)- (Nupdate* Tupdatet)
247365

Where:

Punavailable is the percentage of time a single node will be unavailable due to failure or maintenance.

Nrestart is the number of restartable node failures per vear
Trestart is the time to recover from a restartable node failure
Nrepair is the number of node failures per vear requiring repair
Trepair is the time to repair a node

Nmnt is the number of maintenance operations per vear

Tmnt is the time a node is down due to maintenance operations
Nupdate is the number ot OS updates per vear

Tupdate is the time a node is down during an OS update operation
¢ Likelihood ot a node failure (failure intensity)

Ifailure= Nrestart-Nrepair * T
24 * 365

Where:

Itailure is the likelihood of node failure

Nrestart is the number of reastartable node failures per vear

Nrepair is the number of node tailure per vear requiring repair

T'is the accelerator (increased likelihood of a second node failure if first one fails)- 2
e Hence MTBF can be calculated as tollows:

MTBF = 1
Punavailable* Ifailure* Nnodes

2.2. Causes of Downtime

Downtime is the time interval when the application database is not available to the users.
There are two categories ot downtime: planned and unplanned. Both categories have a
decisive impact on the availability of the system.

e Planned Downtime

¢ Hardware Upgrades: Most industrial scale databases reside on svmmetrical

L

multiprocessor (SMP) computing systems. While they allow hot upgrades (processors.
disks) when the limit is reached. a downtime is required to replace the hardware.
¢ Database Software Upgrades: Most databases require the entire database to be shut

down when a different version is installed or maintenance release is applied.

77
—
172

¢ Operating Systems Upgrades: For the upgrades of the OS the whole t

7
-
v

m

o

shutdown including the database.

¢ Application Modifications: When upgrading the application. which also entails database
structure moditications (add/modity tables). the application needs to be restarted.

¢ Unplanned Downtime

¢ Hardware Problems: CPU. Memory. and System failures. Most hardware today is very
reliable. however failure may occur. especially if the hardware is not protected through
backup components etc.

¢ Software Problems: Operating system. Database. The bugs in OS or database software.
are usually few but are hard to detect and difficult to repair. Usually software
maintenance releases must be installed. which means again restart of the database
system.

¢ Network Problems: Depending on the architecture. network problems may affect the
database systems. For example distributed systems can be affected by network failures.
since data is periodically copied at ditterent sites.

¢ Human errors: Manual intervention can alway's introduce the risk of failure.
All the causes identified above contribute to the failure of a svstem: however in this

thesis we will concentrate on the database systems recovery techniques.

2.3. System Recovery

A system that deals automatically with failures passes through two stages: failover and
fallback. When a failure occurs. the “failover™ process transfers the processing from the
failed component to the backup component. The failover process takes over the system re-
allocating resources to recover failed transactions and restores the system without loss of
data. The “fallback™ or recovery stage should follow immediately after. tryving to restore the
failed component and to bring it back on-line. Ideally this process should be completely
automatic and transparent to the users. Databases are the back-ends of most systems today:
the need for redundantreplicated and easy to recover databases. without loss of information
is one of the problems that exist in providing high availability for systems. Depending on
the degree of availability required. duplicating the hardware and/or replicating the database
could insure continuous service.

There are different methods to replicate a database ranging trom standby database to
active replication. For insuring that a database has a consistent replica there are a number of
solution available on the market. Problems arise when tailed database needs to be restored
and brought back on-line. In the simplest failover situation two systems are participating.
one is the primary and the other one is the secondary. It the secondary server is sitting idle
while waiting to take over. it is considered passive. it it is occupied with server tasks of its
own while waiting to take over it is considered active.

The failover schemes are difterentiated as follows. by the readiness of the standby
system to take over in case the primary system fails:

e Cold failover: tailover begins when a node fails and the second node is notified to take

~1

over: the database is started and the recovery process begins. This is the slowest failover
approach.

e [urm failover: When the failover begins the second node is already operational. but
some overhead is involved to synchronize the new node with the operations and state of
the failed node.

® Aot fuilover: The second node is immediately ready to act as the production node if
there is a fatlure.

When using duplicate systems. we need to insure that the two systems are
synchronized at all times. The common forms of replication are file-based replication.
database replication and disk block replication. Overall. replication is well studied and
various solutions exist. a more delicate subject is fine-grained synchronization in case of
high throughput and tallback techniques.

[n the next chapter we examine the method used to provide HA for database
systems. We will concentrate on database replication. synchronization and recovery

techniques.

3. High Availability Methods

The most common approach for achieving high availability is to endow the svstem with
redundant components. The hardware and software components of a system can be made
completely redundant but the cost will increase dramatically. thus high availability needs to
be achieved within reasonable limits. In the real world there are no perfect solutions. just
solutions that are best suited for certain problems. For each ot these problems. the industry

has provided various solutions. depending on the exact type of cost/performance scenario.

3.1. Hardware HA Solutions

Hardware producers have approached the problem. by making redundant components
function together (disks. controllers. power supplies etc.) and then moved to the second step
involving hardware’software embedded approach such as Storage Area Networks (SAN) -
private networks for storage. or Server Clusters — servers grouped together that appear as
single server.

Hardware solutions that aim for “fault free™ use technique like disk mirroring. RAID
(Redundant Array of inexpensive disks) and Server Clustering. These techniques. which are
part of the first generation ot high availability solutions. can provide only from | to 3 nines

in the 5 "nines™ method of defining availability[1].

3.1.1. Redundant components

A basic level of availability protection is provided to a system by using components that
allow the server to stay operational longer (i.c. uninterruptible power supplies (UPS).
Redundant Array of Inexpensive Disks —(RAID). etc.)0.

While these techniques provide protection from hardware failures. they offer little or no
protection tor the application or networked environment. This is the lowest cost of high-
availability protection. However. these kinds of solutions are used for most of the
production systems existing today. as a basic protection in case of hardware failure.

RAID technology guarantees disk protection. through ditterent techniques such as
disk mirroring. disk strapping. disk spanning. etc. These techniques are largely used to
protect special files or entire applications. The level ot redundancy (e.g. RAID 0. 1-7. 10
ete.). which is a combination of physical disks. logical disks and controllers. allows a wide
variety of choices depending on costperformance constraints0:

[n the database world the most often used techniques are RAID 1 for special tiles tor

example control files. and archive or redo log tiles: RAID 3 or 10 can be used for datatiles.

3.1.2. Clustered Servers

Clustering is a technique for allowing multiple servers to share the workload and in case of
failure take over the workload. From the Client’s point of view. the cluster appears as a
single server: behind the scenes. things are not that simple: however. the clustering

technology is mature enough to monitor the difterent levels involved. At a quick glance.

10

clustering can be divided into network clustering. data clustering and process clustering0.

e Network clustering deals with managing the network interface to the clusters. which
includes [P failover. device monitoring. heartbeat. load balancing etc.

e Data Clustering means that data is available to one or multiple nodes. Either shared
storage or non-shared storage can be used: each of these scenarios needs a ditferent
solution for the transfer ot storage control during the node transition usually provided by
the database clustering sottware.

¢ Process Clustering deals with allowing multiple nodes to participate in processing of a
single application.

Most of the main hardware providers starting with Digital Equipment in the 1980s
have embarked onto the quest of clustered systems. promising uninterrupted service and no
data loss. Overall. the results represent a big step ahead towards achieving the desired
continuous avatilability.

Figure | shows an example of clustered servers where sanity of the system is
determined by sending redundant signals between server nodes called “heartbeats™.

Providers like SUN propose SUN Cluster 3.0. which is a cluster solution that uses
proprietary hardware and Operating System 0. The main Key features of this solution are:
Global Devices. Global File Service and Global Network Services that enable multiple
Solaris systems to function together.

Compaq’s OpenVMS Cluster can have components up to 80 KM apart reducing the

risk ot disaster related tailures 0.

Chent

Heartbeat
Signal

Application
Server A

Application
Server B

—’—'L————

Heartbeat Heartbeat
Signal - 1 b~ Signai /1‘
Server A
Application Application
Data Data

Figure 1 Clustered Servers

HP proposes a middleware sottware solution in the form of HP Cluster Extension
XP. It brings together heterogencous systems like Veritas Cluster Server on SUN Solaris.
HACMP on IBM AIX or Microsott Cluster on Windows 2000 [6]. Through its disk arrays
HP provides fast failover using array-based mirroring host platform-independent solution
otfloading servers ot replication tasks. Hence. this cluster solution can be extended over
metropolitan distances. not only campus wide.

Veritas has put together a cluster in a solution called Veritas Cluster Server that
works on multiple plattorms like SUN Solaris. HP'UX. and Windows NT[8]. The features
provided by Veritas are similar to other products such as scalability (up to 32 nodes).
tlexible failover possibilities (one-to-one. any-to-one. any-to-any. one-to-anv). dvnamic
choice of failover ete. But what is worth mentioning is the integration with other Veritas

by

products such VERITAS Database edition for Oracle. This gets us closer to the problem that

12

we are facing regarding databases even in a clustered architecture. which is data integrity
and data replication for databases. Veritas File System uses Quick [/O files that have
become Cache Quick I/O files in the Veritas Database Edition. The Quick I/O files make the
database administration more flexible at the OS level. and improve database performance
(e.g. faster restart etc). Replication is made a lot faster. because only the changed data
blocks at the system level are replicated.

The PC world has started to use cluster solutions. which allows smaller applications
to benetit from clustering. One example is LiteKeeper [9] from SteelEve which provides a
sophisticated solution using proactive protection. trying to detect faults in advance. It also
uses intelligent processes and multiple LAN heartbeats. trving to limit the unnecessary
tailovers. One of the important features of LiteKeeper is that enables continuous operation
during planned downtime tor maintenance or upgrades as well as in the event of a system
tailure or it application ceases 1o respond.

Overall. cluster parallel processing offers several important advantages. Every
machine can be a complete system. used by a complete range of applications. Most of the
hardware needed to build a cluster sells in high volume with low prices. In addition. clusters
can scale to very large systems. and with little work. many machines can be networked. And
most important is that replacing a failed component of a cluster is trivial compared to fixing

a part of a failed SMP: thus reducing the downtime [14].

(2]

3.1.3. Storage Area Networks

Another approach used in achieving high availability is through hardware protection using
Storage Area Networks (SAN) that group together servers and storage devices. This avoids
attaching storage to an individual server. which increases the risk of failure. SANs are
designed to protect the files throughout an enterprise. using fiber optics connectivity.
redundant components and tailover technology. This also increases the scalability. reliability
and manageability of a system.

As shown in Figure 2 [10] the SANs use new technologies to connect a large number
of servers and devices. The deployment of SANs today are exploiting the storage-tocused
capabilities of fiber channel. The fiber channel SAN consists of hardware components such
as storage subsystems. storage devices. and servers that are attached to the SAN via

interconnect entities (host-bus adapters. bridges. hubs. switches).

Servnry

SAN
Storage
Manager

May ba the cugh
switzhes huts o
firect connest

Caskarra, Drakarrs, Crah array

Figure 2 Storage Area Network

14

The management software is also a major element of storage area nctworks and can
be categorized into two areas: the management of the fiber channel topology or storage
network management and the management of the storage. The heart of the storage
management software is the virtualization. The storage unit or data presented is decoupled
from the actual physical storage where the information may be contained. Once the storage
is abstracted. storage management tasks can be performed with a common set of tools from
a centralized point. which will greatly reduce the cost of administration. SANs can be
proprictary to the hardware vendor like SUN. IBM. Hitachi. or can provide for
heterogencous SANS like HP that can integrate together various platforms and OS.

Although this kind of hardware is much too claborate and expensive for the problem
tackled by this project. it represents one of the hardware innovations providing high

available systems: hence worth mentioning.

3.2. Database HA Solutions

For systems using databases. the hardware solutions are not enough to achieve high
availability. The most common approach is to create a database replica that can be used as
an alternate repository in case of failure. In today’s market. there are two major approaches
for creating a replica of a database: asynchronous replication or “after event” update of the
copy database and synchronous or redundant write to two systems.

The asynchronous replication usually is a built-in database teature and makes use of

the transactions logs that are sent to the other backup machines and applied online. Another

in

method used for asynchronous replication is via triggers/ snapshots. which are able to
update all the detined objects to different databases.

The synchronous replication uses the two-phase commit protocol that can be a built-
in feature of the database or a middle-tier can be used to ensure that the transactions are
committed or rolled back at all sites.

All of these methods in one way or another create multiple copies of the database that can

be used in case ol tailure.

3.2.1. Standby Database and Distributed Databases

[n traditional systems. the replication is achieved by having a standby system. which is a
duplicate of a production database. The standby replica is updated after the event. thus
making the standby system very close to the primary system.

When a failure of the primary system occurs. the standby system takes over and
continues the processing. Synchronization of the two databases has to be pertformed and
running transactions have to be rolled back and restarted. At best. the time necessary for this
operation is in the order of minutes and in worst case it may take hours betore the databases
are svnchronized.

While the Standby database is running. the primary has to be recovered to reduce
vulnerability of the whole system. [n some cases the two databases are switched back when
the primary has been restored. [n other cases the standby database becomes the primary. The
Standby approach is intended to offer protection atforded by redundancy. without the

constraints of the synchronous updates or the delaved backups. By providing asvnchronous.

16

reliable delivery. applications are not affected by the operation of the standby system or the
availability of the standby system.

One of the advantages of such a system is the ability to quickly swap to the standby
system in the event of failure. since backup system is already online. Also this system can
be configured over the wide area network. which provides protection from site failures. Data
corruption is typically not replicated since transactions are logically reproduced rather than
[/O blocks mirrored. Originating applications are minimally impacted since replication takes
place asynchronously after the originating transaction commits. The standby copy is
available for read-only operations. allowing better utilization of the backup systems.

Some of the limitations of this kind of system are that the standby system will be out
of date by the transactions committed at the active database that have not been applied to the
standby. Also the client application must explicitly reference the standby if the active
system fails and they need to be restarted in case of failure. Protection is limited to the
database data but the datafiles are not protected. As for the network. adequate network
bandwidth is necessary to insure the transfer of logs. Oracle tirst addressed this problem of
asynchronous replication with their Standby Database for Oracle 8i (sce Figure 3) and then
the improved Data Guard for Oracle 9i. Oracle Standby Database provides a classical
solution for log based asynchronous replication that could be managed automatically or

manually (copy and transter of the logs).

Master Machine Backup Machine

Locai
Archiang

Net 8
Connection

Standby DB

Managea
Recovery

Figure 3 Standby Database Replication

The primary database has to be in archive mode and the archive logs are sent to the
standby and applied to this database then the control files are updated.
However this scheme has a disadvantage: at fallback the Standby database cannot become
primary and it needs a shutdown ot the whole system to revert to the initial situation. More
interesting is the Oracle Data Guard that evolves from the initial [36] Standby database.
Data Guard allows difterent methods of replication like synchronous data copy. using two-
phasc commit of the local database and the standbv. or immediate data copy mode
(asynchronous mode) and finally batch copy of the redo logs.

Sybase with their Replication Server tor Adaptive Enterprise Server provide the
Warm Standby that tackles the problem by monitoring the transaction logs and “pushing”
the transactions to the standby database. Sybase uses the snapshot technology: instead of
sending the logs to the standby and applying them it sends the transactions directly. This
technology is widely used especially for maintaining distributed databases where a single
transaction updates multiple databases. However. Replication server and Adaptive Server
Enterprise Agent Thread will not distribute a multi-database transaction as an atomic unit of

work. The single multi-database transaction will be distributed to the replicate Adaptive
18

Server Enterprise DBMS as a set of transactions. each operating within their respective
database at the standby site. While the replication Server guarantees sequential execution of
transactions from a single database. it will not guarantee sequential integrity of multi-
database transactions (it does not use a dual commit protocol).

DB2 trom IBM provides the standby capability as a tailover option that can be contigured
as Idle Standby and Mutual Takeover. In Idle Standby configuration a system is used to run
a DB2 instance. and the second system is in standby mode. ready to take over. In Mutual
Takeover configuration. each system is designed to backup the other system.

Another form of replication is achieved through distributed databases that
encompass multiple database server nodes where each node runs a separate database. cach
with its own dictionary. Replication is the process of copying and maintaining database
objects in multiple databases that make up a distributed database syvstem. One of the
advantages of having distributed databases is the ability o replicate across multiple
platforms. This kind of replication improves the overall availability of a system by making
the data available at multiple sites. [t one site becomes unavailable then the data can be
retrieved at other sites.

For distributed database scenarios. Oracle provides replication utilities like Oracle
Replication Manager. that use two types of replication. master and snapshot replication to
replicate database objects [22]. Hybrid architecture between master and snapshots can be
used. to meet some special application requirements.

Master replication or peer-to peer allows several sites to manage groups of replicated
database objects. For this kind of scenario Oracle uses asynchronous replication and
transaction queue. The deferred transactions are pushed at the replicated sites at regular

19

configurable intervals.

Snapshot replication provides a point-in-time image of a table from the master site to
the replica and it can be read-only or updateable. The snapshot needs to be retreshed at
certain time intervals to make sure the data is consistent with the master. The changes to the
master table are recorded in a table called snapshot log. The main idea behind Oracle’s
distributed database systems is database link. A database link is a pointer that defines one-
way communication between two databases and allows a client connected to one of the
databases to access information from both of them as one logical unit. Oracle allows
distributed databases to be homogenous. with two or more Oracle databases. or
heterogeneous where at least one of the databases is not Oracle (using heterogencous agents
and transparent gateways) and client-server database architecture.

[nformix Enterprise Replication is built around the Dynamic Scalable Architecture
(DSA). which means that various replication models can be used such as: masterslave.
workflow and update-anywhere.

DS uses a log-based transaction and capture mechanism as a part of the database svstem.

Informix’s ER encompasses two ditferent functionality. such as creating a hot standby

database (mastersslave architecture) and also asynchronous replication of data to one or

multiple secondary sites (peer to peer architecture).

[n a Master Slave ownership. there are again three scenarios[34]:

* Data dissemination where data is updated in a central location and then replicated to
regional read-only sites.

* Data consolidation where data sets can be updated regionally and then brought together
in a read-only repository on the central database server

20

e Workload partitioning gives the flexibility to assign ownership of data at the table
partition level.

Peer to peer update. unlike master/slave ownership where replicated data is read-only.

creates a peer-to-peer environment where multiple sites have equal ability to update data. To

resolve update contlicts. this replication architecture supports a wide range of conflict

detection and resolution routines.

From the above. we can conclude that regardless of provider there are just a few
replication methods that are largely used [15]. The so-called tirst generation technology is
variously called “change-capture™ or “store and forward™ and ~log based™ methods. These
techniques require that a replication tool stored locally at each site captures the changes to
data : thesc changes are forwarded to other sites at replication time. The second generation
of replication technologies involves the use of “direct to the database™ methods. which

examine only the net data changes that have taken place since the last replication cyvele.

3.2.2. Parallel Processing, Clusters

Parallel Servers are the database built in capability to synchronously replicate the
transactions processed by a database system. A database instance is running on each node
and the data is stored on separate storage. The workload is distributed among the ditferent
nodes belonging to the Parallel Sever or Application Cluster.

This database solution comes on top of the hardware clusiering previously discussed and
deals with the application issues. It therefore allows multiple instances to work together.

share the workload and access the storage. The clusters share disk access and resources that

manage data. but the distinct hardware cluster nodes do not share memory[21]. Clustered
databases could be either shared disk or share nothing databases:

* Shared disk approach is based on the assumption that every processing node has
equal access to all disks (see Figure 4). In pure shared disk database architecture. database
tiles are logically shared among the nodes of a loosely coupled system with each instance
having access to all data.

The shared disk access is accomplished either through direct hardware connectivity or by
using an operating system abstraction layer that provides a single view of all the devices on
all nodes. In this kind of approach. transactions running on any instance can directly read or
modity any part of the database. Such systems require the use internode communication to
synchronize update activities performed from multiple nodes. Shared disk offers excellent
resource utilization because there is no concept of data ownership and every process node
can participate in accessing all data. A\ good example of shared-disk architecture is Oracle
Parallel Server (OPS) that constitutes the classical approach tor this kind of architecture
[18]. OPS oftfers protection against cluster component failures and software failures.
However. since OPS as a single instance Oracle. operates on one set of files. media failures
and human error may still cause system “downtime™. The failover mechanism for OPS
requires that the system has accurate instance monitoring or heartbeat mechanism. The
process of synchronizing requires the gracetul shutdown of the failing system as well as an

accurate assumption of control of resources that were mastered on that system.

bl

Interconnect

I'Is '!I rll!lrll

Shared Storage System
Figure 4 Clustered Database- Shared Disk Architecture [18]

As for the clients connections. the Transparent Application Failover enables an application
user to automatically reconnect to a database if the connection breaks. Active transactions
roll back. but the new database connection. made to a different node is identical to the
original one. Hence. we can say that the client sees no loss of connection as long as there is
one instance left serving the application.

. In pure shared nothing architectures shown in Figure 3. database files are partitioned
among the instances running in the nodes of a multi-computer system. Each instance or
node has affinity with a distinct subset of the data and all access to this data is performed
exclusively by the dedicated instance. In other words. a shared-nothing system uses a
partitioned or restricted access scheme to divide the work among multiple processing nodes.
Parallel execution in a shared nothing system is directly based on the data-partitioning
scheme. When data is accurately partitioned. the system scales in near linear tashion [34].

Multiple partitions are accessed concurrently. each by a single process thread.

A transaction executed on a given node must send messages to other nodes that own
the data being accessed. It must also coordinate the work done on the other nodes that
perform the required read/write activities. However. shared nothing databases are
fundamentally different from distributed databases in that they operate one physical
database using one data dictionary.

[nformix Parallel Extended Dynamic Server proposes a shared-nothing architecture

through partitioning of data. partitioning of control and partitioning of execution.

Co-server | (o-server 2 o-server 3

I I
b.l »4

Disk Disk Disk
log ! 182 log 2 334 log3 5&6

Figure 5 Clustered Database-Shared Nothing Architecture [34]

[n their case. each node of the cluster runs its own instance of Informix Dynamic Sever that
consists of basic database services for managing its own logging. recovery. locking and
bufter management. This instance is called a co-server. Each co-server owns a set of disks
and the partitions of the database that reside on these disks. A co-server will typically have
physical accessibility to other disks owned by other co-servers to guard against unexpected
failures. but in normal operation each co-server will access only those disks that it owns. In
case of failure of a node. there is no easy way to recover without shutting down the
database. hence this solution provides means for parallel execution and load balancing but
does not truly guard against failure.

A very interesting solution of shared nothing architecture and very high availability
24

is provided by Clustra database. it is not that well known except in the telecommunication
world. Clustra is a traditional database server. in the sense that it manages a butfer ot data
with a disk-based layout in blocks: it has a B-Tree access method. a semantically rich two-
phase record locking protocol. and it has a two-level logging approach. However. it is main
memory-based in the sense that tables may be declared to reside in main memory. It ensures
high availability [20] by dividing data into fragments that are again stored in data processing
and storage units. In turn. the nodes are housed in what it is reterred to as data redundancy
units. [f'a user needs to add nodes. the system scales linearly. It also automatically repairs
the data of corrupted or lost nodes. and provides optional online. spare nodes for maximum
availability.

This database addresses also the planned outages through rolling upgrades and
online schema modification (OSM). Total transaction capacity increases linearly with
number of nodes in the system. When a greater capacity is needed. new nodes can be added:
the capacity for cach node stays the same. while the total capacity increases. Scaling of the
database is also linear. If the number of nodes is doubled. the storage capacity is double. it
the nodes run on identical hardware.

The Clustra database runs over cluster oft-the-shelf hardware. but doesn’t require
special clustering features or operating system software that traditionally add complexity to
the system management and integration. The distinct feature of this architecture is that the
nodes do share neither disks nor memory. This keeps nodes isolated from one another: so
tailed nodes can be replaced without involving others. A node is defined. as a computer
comprised of'a CPU. local disk and main memory. Nodes are linked together to form a tully
replicated logical database via a LAN. The database is fully capable of repairing itself when

23

a failed node will not restart or the database content has been corrupted. without any
disruption in system operation. This capacity of self-healing is perhaps what is most
remarkable about this database.

. The shared-cache architecture provides the benetits of both shared disk and shared
nothing databases without the drawbacks of either architecture. This solution is based on a
single virtual high performance cluster server that utilizes the collective database caches ot
all the nodes in the system to satisty application request to any one node. In this way it
reduces the disk operation necessary for inter-node synchronization. Traditionally shared
disk database systems use disk 1/O for synchronizing data access across multiple nodes. The
cache fusion architecture overcomes this weakness by utilizing Global Cache Services for
the status and transter of the data blocks across the butfer caches of the instances. Real
Application Clusters is the next generation of Oracle Parallel Server and continues the
pursuit of insuring almost continuous availability by hiding tailures from the users and
application server clients.

The aim of the clustered systems in general is to offer transparent application
tailover by redirecting the clients that are connected to a failed node to available nodes. This
is done either directly by the cluster software through contiguration or by simple application
coding techniques through the client tailover libraries.

Fault resilience is achieved in clustered databases through re-mastering all database
resources onto the surviving nodes. guaranteeing uninterrupted operation as long as there is

at least one surviving database node.

3.3. Transactional HA Solutions

In the pursuit of having data replicated at different sites the Transaction Processing
approach is most commonly used: it is a way to coordinate business transactions that modity
databases and keeps a write-ahead-log of all the modifications made to the database over a
period of time. It is advisable for databases that are constantly modified. to ensure that the
data modifications are properly stored. It an error occurs or the system crashes while
modifications are being made. the write-ahead-log can be used to restore the database to a
previous error-free state.

The purpose of the present project is to tind an economical solution tor a HA system.
which provides fast fallback and restart in a fast changing transactional system using oft-

the-shelt components.

3.3.1. Transaction Processing

A transaction is used to detine a logical unit of work that cither wholly succeeds or has no
effect whatsoever on the database state. It allows work being pertormed in many ditferent
processes at possibly difterent sites to be treated as a single unit of work. Transaction data
can be stored in a flat file or be controlled by a Relational Database Management System
where strict rules are applied. Data within a Relational Management Syvstem must adhere to
the ACID properties [23] to avoid undefined behavior:

Aromicity: A\ transaction’s changes to a state are atomic. either all or none of the

changes made in the data happen. This means that all parts ot the transaction must be

complete. If an incomplete transaction is interrupted or cannot complete. the entire

transaction is aborted

Consistency: A transaction is a correct transformation of a state. This means that

data must be consistent within database before at the end of each transaction.

Isolated: Even though transactions execute concurrently. it appears to each

transaction that others are executed either before or after it. Another way ot sayving

this is that transactions are serialiazable.

Durable: Once a transaction completes successtully. its changes to the state survive

failures. Even it the database fails the changes should be reflected in the system after

it is restored.

In the distributed transactions processing. shared resources such as databases are
located at different physical sites on the network. A transaction-processing monitor helps to
facilitate distributed transactions processing by supplving tunctions that are not included in
the OS. These functions include: naming services. security at the transaction level. recovery
coordination and services. fault tolerance features. such as tailover redirection. transaction
mirroring and load balancing.

Because work can be pertormed within the bound of a transaction. on many ditterent
platforms and involve many ditferent databases tfrom various vendors. a standard has been
developed to allow a manager process to coordinate and control the behavior of databases
[24]. X'Open is a standard body that developed the Distributed Transaction Processing
Model and XA intertace to solve the heterogeneous problem.

X-Open applications run in a distributed transaction-processing environment. In an
abstract model. the X'Open application calls on Resource Managers (RMs) to provide a

28

variety of services. For example. a database resource manager provides access to data in a
database. Resource managers interact with a Transaction Manager (TM). which controls all
the transactions for the application. The \’Open DTP Model defines the communication
between an application. a transaction manager. and one or more resource managers. The
most common RM is a database (i.e. Oracle. DB2. Sybase etc.). The X Open X interface is
a specification that describes the protocol for the transaction coordination. commitment. and

recovery between a TM and one or more RMs.

3.3.2. Transactional Systems

A number of transactional systems on the market are used as a middleware in a three-tier
architecture tor distributed transaction-processing systems. As an example. we can look at
Customer Information Control System (CICS) and ENCINA trom IBM. and TUXEDO
developed by AT&T Bell Laboratory.

CICS is considered as [BM's general-purpose online transaction processing (OLTP)
software. It represents the parent ot all transaction processors[29]. CICS is a laver that
shields applications from the need to take account of exactly what resources are being used.
while providing a rich set of resources and management services for those applications. In
particular. CICS provides an easy-to-use application programming intertace (API). which
allows a rich set of services to be used in the application and to be ported to and from a wide
variety of hardware and software platforms where CICS is available. CICS is a very
general. all-purpose transactional system. used for communication with devices (terminals).
including printers. workstations and also interconnects with other CICS or non-CICS

29

systems.

Another transactional system is ENCINA that specializes in. providing means tor
building distributed transactional applications. The toundation of the ENCINA environment
is the ENCINA Toolkit. which is a set of low-level components for building distributed
transactional applications. ENCINA provides higher-level interfaces that are built on top of
the Toolkit. These interfaces hide many of the complexities of Toolkit-level programming.
The higher-level interfaces used for writing transactional applications include Transactional-
C and the ENCINA TX interface. ENCINA also supplies a transactional intertace (CPI-
C/RR) for writing X/Open-compliant applications that use the Peer-To-Peer
Communications Services (PPC). ENCINA provides the APIs necessary to communicate
with different RMs such as databases. but it does not particularly provide a direct interface
with the most used database such as: Oracle. Svbase. Informix ctc.

TUXEDO on the other hand. is very versatile allowing the users to build and manage
3-tier clientserver applications for distributed mission-critical applications[28]. It supports
server components executing in the network environment. Component sottware applications
are distributed and characterized by a logical 3-tier architecture:

e Client application form the first logical tier. initiating and invoking services tor core
business processing functions such as database reads and updates.

® The middle tier is composed of managed server components: server components
advertise their named services. process incoming message-based requests for these
services. and return the results to the requestor—a client or another service

* Resource managers. such as relational databases. constitute the third tier. and manage

the application’s data assets.

(2
(=]

Tuxedo provides the underlying execution environment for 3-tier applications. managing
client access to server components and constituent services. managing the service
components themselves. and providing the point of integration for database resource
managers.

Through standard interfaces. Tuxedo is casily integrated with the leading databases

(l.e. Sybase. Oracle). file and queue resource managers. There are two kev areas of

integration:

e Usage of APIs to perform standard manipulation functions (i.e. embedded SQL pre-
compilers):

e TM integrates with the resource managers X/Open DTP XA[23] intertace for global
transaction coordination. The XA interface is transparent and encourages database
independence by enforcing a clean separation between business logic and the data
model.

For distributed transaction processing with the goal of achieving database replication.

TUXEDQO represents one of the best candidates for a middle-tier. due to the programming

case and well-detined architecture.

Overall the transactional systems are a viable solution largely used in the distributed

systems today such as banking applications. airline reservation syvstems ete. They allow

building real-time. scalable and complex application.

3.4. HA Methods - Conclusions

The HA solutions presented above represent the state of the art in the industry and are

("9

largely used in various applications. They each represent a solution for a particular system
need. In our case most of the solutions are ruled out by their complexity. elevated cost or
lack of features to provide the HA that we are aiming for being less than 5 minutes of
downtime per year.

[f we look at the hardware solutions presented. the Clustered Servers and Storage
Area Networks are far too complex and expensive for small or medium size applications
that we are aiming for this prototype. However. in any production system there is a need to
use redundant components (e.g. CPU. disks. controllers etc.). to avoid a single point of
tailure.

As for database replication. the only solution that meets our high availability criteria.
is the clustered databases. having the nodes synchronized and able to take over in case of
tailure. This solution it is again very expensive and proprietary to one vendor. not allowing
heterogencous databases to be clustered.

This brings us to the idea of finding a solution to maintain to identical copies of a
database. which is not proprictary to one vendor and where the transactions are coordinated
from outside of the database. As presented above. the transactional systems are largely used
tor building distributed applications: hence using them to synchronize databases is just an

extension of their capabilities.

1J

o2

4. Replication Solution for ensuring HA in an OLTP environment

4.1. Problem Definition

Choosing a data replication technology can be a difficult task. due to the large number of

products on the market with different implementation and features. To add to this

complexity. data replication solutions are specitic to a DBMS. file system or OS. Making
replication decisions depends first of all on the amount of data that can be lost.

e If minutes of lost transactions are acceptable. an asynchronous solution will probably
provide a more cost-effective solution while still offering fast recovery. The most
common method is shadowing where changes are captured from the primary site and
applied to the recovery site.

e It this is unacceptable then synchronous replication can be used to mirror the two
databases. where the changes are applied at the secondary site in lock step with changes
at the primary site. In this scenario. only the uncommitted work is lost.

e When. no work can be lost the next step is to use transaction-aware replication. The
primary advantage of this approach is that the replication method understands units ot
work (e.g. transactions) and the data integrity has a greater potential.

Problems arise in a transactional environment such as the telecommunication world.
where no data can be lost and even the uncommitted/rolled back transactions have to be
reapplied. The solutions that exist and utilize the synchronous replication and two-phase
commit are database built-in features (e.g. Parallel Servers) that are proprietary to one

-

vendor and usually tunction in a homogenous environment.

tsa
[PF]

Considering a system with two databases that are updated at the same time using
synchronous replication. the purpose is that. in case of a failure. to be able to resynchronize
the two databases. without shutting down the system.

The problem addressed by this project is finding a solution. for a fast fallback and restart in
a fast changing transactional environment.

The part of the problem that is not addressed by the traditional Standby systems is
the fine-grained synchronization after the failed system is recovered. In any database
system. we can duplicate a database up to a point in time. but the synchronization can’t be
done completely while the system is running without causing data inconsistency.

By using transactional systems in conjunction with the database. the problem ot
synchronous writes in two or more databases is handled by the XA interface[23] The
recovery phase in such case. where a failed database has to be resynchronized and restarted

is tackled by this project.

4.1.1. Assumptions and Constraints

For this project. we will be looking at three-tier architecture. consisting of an Application
Server that connects to a database through a middle-ware and various Client Applications.
who access the Application Server.

The tollowing are some of the assumptions and constraints:

e The Application Server handles the logic and all the changes done to the two databases.
e The database is used strictly as a repository: hence the logic is handled outside the

database.

e The Client Applications connect only to the Application Server that handles the entire

interaction with the database.

e The synchronous replication is handled by the middleware (e.¢. TUXEDO).

e Changes related to the database schema. or software upgrades are not addressed in this

project.

4.1.2. Detailed Problem Definition

In case of failure we will be looking at the following two scenarios in order to restore the
database:

e Failsate

[t one of the databases tails. the Application Server will detect the malfunction and switch
the system to a degraded mode. This means that all incoming transactions are written to the
working database and also are logged into a Journal file.

e Fallback

Failed database is restored by making a copy of the tunctional database. up to the time of the
tailure (point in time recovery). Then all the changes logged in the Journal are applied to the
recovered database. All the new transactions should be Kept in queue so no writes oceur.
The system should be then switched back to the normal mode and activity resumed.

The major issues that need to be addressed are:

e What kind of operations should be stored in the Journal.te.g. only the ones that modity

&

the data. INSERT . UPDATE etc)

¢ Gracctully switch between normal mode to degraded mode without loss of data.

7]
th

* What operations are allowed during the degraded mode functionality (e.g. No schema

changes are allowed etc.)
e Applying the missing transactions to tailed database.
¢ Switching back to normal mode tfrom degraded mode.

These issues represent the core of the problem and will be addressed in detail in the design

phase.

4.2. Problem Approach and Analysis

Having defined the problem above. this section will present the necessary requirements for

the design and implementation of the system.

4.2.1. System and Functional Requirements

The tollowing are the functional requirements:

* Provide the Clients transparent access to the system databases. while presenting a single.
stable interface.

* Incase of failure. the Clients connections to the system and ability to work should not be
affected.

¢ Switch gracetully the Clients from one system to another in case of tailure.

e Application Server’s availability should be decoupled trom the database availability.

e The Application Server including the middle-ware and Journal files have to be protected

against failure.

(#9)
(=)}

e Database access. rather than being made directly through the Application Server will be
handled by the transactional system.

¢ Once a transaction has been taken in charge. and confirmed by the system it must not be
lost. even if it is to be processed later.

¢ Provide queuing mechanism store the transactions in case of a failure and thus to avoid
their loss.

* Provide timely response to the Clients and advise if a transaction needs to be rejected.

e When a database failure occurs. provide a gracetul failover and fallback procedure.

* In case of database failure. the functionality and capability of the overall system should
not be diminished.

¢ The data stored by the two databases should be identical at any time. except in case ot
degraded mode.

* All the changes to the database that occur during the degraded mode need to be recorded
into a Journal tile.

e Dam inconsistency should not occur at any time. Hence. the switch to and from
degraded mode should not generate any data inconsistency.

® Provide means for switching completely to a backup system. to case hardware and
software upgrades.

e The solution provided should be easy manageable trom an administrator point of view,

e The system must allow the use ot heterogeneous databases.

These requirements are oriented towards the functionality of the svstem in case of

tailover and fallback procedures and the database behavior in these particular situations.

(Y]
~J

4.3. Architectural and Functional Constraints

This kind of architecture is close-fit for transaction-oriented systems. as a non-expensive
solution. However. it has a level of complexity in the middle-tier level and the programming
involving XA interface.

The solutions on the market that have replication and failover capability built in the
database. are either too expensive or do not provide enough availability (after event replica).
Relying only on hardware protection with sottware monitoring means again that very
expensive choices need to be made. Hence. the solution that was chosen where the logic is
taken outside of the database is a hybrid between existing technologies and it is not viable in
all circumstances.

The major constraints that exist tor this kind ot architecture are:

e The choice of architecture needs to be based on off-the-shelt products to maintain a
reasonable cost for such a system. This reters to both hardware and sottware products
that will be used. As identitied before HA can be achieved. using specialized hardware
or software that are tault tolerant. but the cost and complexity would be too high.

e The hardware and software monitoring should be insured by third party software that
will monitor the system. to insure that no failure occurs.

e The system needs at least two nodes 10 insure the failover and fallback procedures.

e There is a maximum of databases that can be updated at the same time. The constraint
tor maximum number of databases is given by the transactional system used. and by the
network bandwidth available.

¢ The number ot databases used can impact the performance of the svstem due to the

38

slowdown introduced by the synchronous update. This system will function in a LAN
environment only.

This kind of solution is viable only in a three-tier architecture where the Client
Application does not have direct access to the database.

There is an extra burden of securing the Journal. assessing its size and ensuring for
space.

The system is conceived for a transactional environment and it is dependent on the

Transactional Svstem.

973
O

5. Proposed Solution and Its Design

5.1. Design Rationale

5.1.1. Choice of architecture

The main criteria for selecting architecture are:

Provide a relatively simple solution for a highly available system that makes use of

databases.

® Produce a system that is capable to function in a demanding transaction oriented
environment.

® The need to take the failover and fallback logic outside of the database

e Update of two or more databases without losing any data.

Figure 6 shows the proposed architecture. which is a classic architecture for such systems.

[tis a three-tier architecture including Client. Server and Database as repository.

Client Station Client Statian
LAN L ——
f ———
; Tuxedo | ! Tuxeda
!]
: —x |
* Appheation 1 Apphcaton,
| Server Datadase I Server Oatatse
\ || i L
Server 1 Server 2

Figure 6 Overall Architecture

40

The Application Server is build around the middleware and resides physically on the same
machine as the database. Each Database and Application Server resides on the same
machine. but the two databases have to reside on ditferent machines. The two machines are
a mirror of each-other forming a cluster. which is the simplest form of high-availability

systems.

5.1.2. Availability

The core of the problem is the availability of the system: hence. the architecture is chosen

keeping in mind the “no single point of tailure™ concept. Theretore. each of the components

of the system needs to be guarded against failure:

* The minimum hardware necessary to be able to replicate the servers and the databases is
two machines.

* Incase of database failure. the failover and fallback processes should be in place.

e The Journal file. the database data files and control files need to be stored on the

redundant hardware (e.¢. mirrored disks).

&

We could say that main design decisions were taken based on the availability constraints.

5.1.3. Overall System Cost

This Kind of system combines existing aftfordable technology in order to provide a solution
that achieves high availability. Hardware wise. this solution makes use of a simple system
composed ot two PC like machines without using special hardware that could increase the

cost dramatically. As a heterogeneous syvstem where the databases can be ditferent. we can

41

use one database. which is more expensive (e.g. Oracle) and the second one can be less
expensive (e.g. Informix).

The Transactional System introduces an extra cost. which is we can say “the price to
pay” for making use of the XA interface and being able to take the replication mechanism

outside of the database.

5.1.4. Scalability

The system presented in this paper deals with the simplest case of two machines/databascs.
just to demonstrate the viability of the solution. The scalability and the tlexibility of the
system are determined by the Transactional System that can be contigured to deal with
much more than two databases. Moreover. once the system is designed to deal with
distributed transactions. it is just a matter of configuration at the Transactional System to
point to additional databases. As for the recovery part the mechanism stays the same in case
of databases failure consisting of redirecting the recovery process towards the failed
database.

By taking the logic outside the database and decoupling the architecture in three

layers. the issue of scalability becomes easily manageable.

5.1.5. Manageability

The aim of this system is to deliver an easv to maintain almost self-recoverable svstem. The
three-tier architecture allows separating the maintenance of the system into the three layers:

Client. Application Server Middle-ware and Database. Once the system is setup. the manual

42

intervention is limited to the fallback procedure. in case of database or node failure. This is
due to the fact that the failed database needs to be restored up to a point in time by the
administrator. Even this procedure can be automated to reduce manual intervention.

As for the Application Server. there is no need for manual intervention. since the
middleware will migrate at this level all the process from one system to another in case of

tailure.

5.2. System Architecture

The proposed architecture for the system takes into account all the criteria concerning the
architecture quality. discussed previously. For the proof” of concept that we are trving to

conduct. we will consider minimum of necessary hardware as tollows:

Two PC based Servers with Linux OS. The machines used for testing have Pentium 111

700 MHz processors. and 312 MB of RAM.

e TCP/IP Network communication.

¢ Tuxedo sottware. which will be used as a Transactional System to build the Application
Server.

® Oracle 81 Database as database repository.

* Resource Manager Provided by Oracle necessary to work with Tuxedo's Transaction
Managers.

* The Journal Files provided by Tuxedo’s Q queuing mechanism. stored on mirrored disk

to minimize the loss of data in case of hardware failure.

4=
2

Note 5-1: The second database can be Informix. to prove that the solution supports

heterogeneous databases. However. for this project we will use only Oracle databases.

Figure 13 gives an overview of the system. identifying all the resources and interfaces used.
The Servers via Tuxedo’s Transaction Manager communicate with the Resource Managers

of the two databases or Queues. in order to commit all the changes (¢.g. SQL commands)

sent by the Client Applications.

Client

Cilent :
Interface |
1

—
'
'_ -—
Server 1 - : Server 2
- -
) Application Server i Application Server
) (Tuxedo) ; Lo {Tuxedo)
- : Heartbeat ,
' 1 Monitoring .
Tuxedo ! . .
1Q ! ™ 1 i : ™™ 2 1 Tulaodol
- i : i -
———e— — T . " ’ L
»” . Fj—" \’R<R\R_‘ 7 ‘ -
Journal (‘ Ru 1 ; RM 2 i Journal 2 |

TCPNP Connsation

Database 1
(Oracle)

0SS = Linux o - 0SS = Linux o

Figure 7 System Architecture

* Incase of Database failure. the operation continues with one Resource Manager. and the
Transaction Manager instead of the failed database updates the Journal File via the
Tuxedo/Q queue.

* In case of Server failure. the application tunctions in Degraded Mode on one Server.

44

until the other one is restored. The functionality is similar with the Database failure
scenario.
In case of large amount of data the databases can reside on different machines with separate

storage. like separate disk arrays etc.

5.3. System Design

The main part of design for this system revolves around the Application Server that makes

extensive use of Tuxedo’s capabilities to handle transactions in a distributed environment.

5.3.1. Dealing with Transactions

The Tuxedo System provides a C-based interface called Application to Transaction Monitor
[nterface (ATMI). As shown in Figure 8. the transaction boundaries are defined by the
Transaction Manager. The TM provides the Application with API calls to inform it of start.
end and disposition of transactions.

The Tuxedo System provides the components tor creating the Transaction Manager.
The Resource Manager vendor (Oracle. Informix. ete.) provides an XA compliant library
that is used along with the Tuxedo utilities to build a Transaction Manager program.

The N'OPEN application does not establish and maintain connections to the
database. The database connections are handled by the TP Monitor and XA interface
provided by the RM vendor. The RM also provides the means to communicate between

itselt and the Application via SQL. The TM and RM communicate via XA Interface. which

4
th

generally describes the protocol for transaction coordination. commitment and recovery.

Apylicaiion Marager
S 3 T Tt —A‘T‘ -
2 ACoacn usas N
resarces from aset o |Eﬂ;m xam Wmmmﬁ!
Resaures Maregers > ™ !

oS S O, SRS | g TX nerfae |

Figure 8 X-OPEN DTP Model
In our case when the system functions normally. a transaction would entail updating two
databases via two RDBMS Resource Managers using two phase commit protocol (2PC). In
case ot database failure a transaction would entail updating one database via RDBMS RM

and the Journal via Tuxedo/Q RM.

5.3.2. Subsystem Design

3.3.2.1.Client Design

The tunction of the Client is to gather information for subsequent processing and display the
information. In case of Tuxedo Client the core business functions are accessed as services
available to the Client. In our case the Client application will send information to the

services to update the databases (see Figure 9).

46

Update

UpdateL service
service

Figure 9 Client Design

The service advertised by the Server will be Update and its tunctionality will be
transparent to the Client in case of database failure. meaning that the Client will always call

this Service regardless what happens behind the scenes.

A Tuxedo Server encapsulates the business logic in the form of Services. The services can
be advertised. or made available to the clients. and de-advertised via programming not only
the system is booted.. For this application we will use this capability to change the
functionality of our main service called Update.

Server applications compiled along with the BEA Tuxedo binaries to produce the
server executables. In our case the servers manage the resources. hence update the databases
or the queue and also manage the recovery process. The servers are booted along with the

Tuxedo system and continue running until they receive a shutdown message. A typical

server may pertorm thousands of service calls betore being shutdown and rebooted.

The design of the servers and their service is based on the concept of group that

47

manages the resources. Figure 10 shows a Server Group that handles the interaction with a
database via the ATMI interface. The Server Groups are created by updating Tuxedo’s
configuration files. and accommodate the transactions related to the database or any other

resource manager.

tpbegin() |
tpcommit() Oracle Engine |
TMS_ORA «XA— Process }
e I

EXEC SOL——j

-
TUXEDO
Server Server Database
e Group1

Figure 10 Tuxedo Application Server -Server Group

For each RM that is used. four in our case we need a Server Group to coordinate all
the transactions directed towards this resource. The resources are databases and flat tiles. the
latter are be updated via the queuing mechanism provided by TUXEDO. called Tuxedo/ Q.

Figure 11. shows an example of five server groups that handle the update of the two
databases. the update of the database and a queue and the update of the tailed database from
the queue. The system needs two Server Groups for accessing the two databases and another
WO server groups to access the Journals. The fitth one is needed to handle the global
transactions generated by the Client. A group is assigned to a specific machine and the

servers could run on both machines to handle the tailover and also the load balancing.

48

Group § o —— e
roup 1 EXEC SQL-- -~ - +RM |
e S ?__ - , Orscie i
Updates + - XA ,f,:':::. .
== T+ Turedo WXATMUTE- TMS_ORA - - A
) Server !
: _ ;
R | e
Update 1 W
Normail A
Tuxedo 1
Server] [
et ' grove exec sat "M e
Cliant (Alias) - N - 3 e
Update Tuxedo ! Updatez . i~ XA Pgl:?::-
Server U opel—— & Tuzxedo wxatuurx. TMS_ORA '« - - __Tracess
- __ o | S Servar !
| — . -
- - | S
Update [<
Degraded : m
Yuxedo ‘-l 1
Server [T
T : | Group 3 Enqueue -
1 Y ey > TUXEDO/Q
1 UpdateQt ! bOXA
’]u———. Tuxedo “XATUVTA» TMS_QUE = - -- .
. Server i
o ! st T
Racover DB1 [] —
R.cc"::‘.'" H———————t TUXEAO e = : w
Server t
T | Group 4 Oegueuse - - T
"V R [» TUXEDO/Q
: Empty Q1 . v XA
- = (4 Tuxedo XATMUTEI. TMS_QUE < - - L _
Server o

Figure 11 Tuxedo Multiple Server Groups

Having to update multiple resources detining the same transaction. we will use
global transactions. [n Distributed Transaction Processing environment many RMs have to
operate the same unit of work. This unit of work is called global transaction and is logged in
the transaction log (TLOG) only when it is in the process of being committed. The TLOG
records the reply trom the global transaction participants at the end of the tirst phase ot a 2-
phase-commit protocol. A TLOG record indicates that a global transaction should be
committed: no TLOG record is written tor those transactions that are to be rolled back. In the
first phase. or pre-commit. each Resource Manager must commit to performing the

transaction request. Once all parties commit. transaction management commits and

completes the transaction. If either task fails because of an application or system failure.

49

then both tasks fail and the work performed is undone or "rolled back" to its initial state.
The TMS that coordinates global transactions uses the TLOG file. Each machine has its own
TLOG.

For our application the Server and implicitly the Tuxedo middleware will be
distributed over the two machines as can be seen in the Figure 12,
The Client application could reside on the same machine as the Server application or on
workstations. For this project. since we are concentrating the design of the Server. we will
choose the more convenient design for the Client: hence it will be a local Client.
The Client applications and the Server applications are distributed over the two machines.
From a Tuxedo point of view the configuration depicted in Figure 12 is one of a Master
Slave. The Master contains the Distinguished Bulletin Board (DBBL). which handles all the
global changes. monitors the system and restarts the tailed processes. Each machine has its
own Bulletin Board (BBL) that monitors locally the machine and reports to the DBBL the
state of the servers and services.

The second machine is contigured as a Backup of the Master: hence the application
can be completely switched over in case of the Master machine tailure

All the changes in configuration. once the software is compiled. are stored into a
binary file. called tuxconfig that has to be copied on both machines. Tuxedo provides a
network listener software called #listen that launches the Bridge server. allowing the two

machines to communicate with cach other.

_ TUSTEN TUSTB{ cs
v -~ -
Upcate V4
L 4
"\"\ R
A} ecovery +
\ o
/
' /’ : ,
b= Exidge Bridoe
™S, — .
TR ™S
Qo arucer e
/
Qe (oaes)

Figure 12 Application Design

Tuxeao
Sacngp
Upciate [:: R
TUXCartig
™S
[
u ___ ' ~ ' _____ .
!
Q;-a
Space

The System can find itself in three ditferent states. depending on the database node

availability: these states will be mapped into two Services: Update Service and Recovery

Service. From a functionality point of view these service are as follows:

Upduate Normal: Update the two databases via the Resource Managers. The Client

application calls the Update service advertised by the server. which result in the

update ot the two databases.

Update Degraded Mode: In case of database tailure the server will advertise a new

Update service that will update one database and the queue. which is our Journal.

® Recovery Mode: When the database has been restored up to the time of the failure. a

new service is called by a special client that updates the failed database from the

queue. When the queue is empty it will advertise the Update Normal Service instead

of the Update Degraded.

Theretore there are two types of processes: the automatic failover handled by the

Update service and the Recovery that will be called by the administrator. The Recovery is

started when the failed database in our case the Database 2 is recovered up to the time of

3

tailure. The time of failure is logged by the Update degraded service in a queue and can be
retrieved by the administrator via a special Client. When all the messages are extracted from
the queue and the two databases are synchronized. the Update degraded service is
unadvertised and the Update normal service is advertised again. To avoid adding more
messages into the queue while the two services are switched. volatile queues can be used
between the Client application and the Update service. making use of Tuxedo's Queue
Forwarding mechanism. Hence. both Updatel and Update2 Services are made unavailable.
while the Update Normal is advertised: in this way. the incoming messages are stored in the
volatile queue before being sent to the Update service. avoiding data inconsistency.

All the services described above are running on both machines. and regardless of which
database goes down. the complementary service will take over. For safety purposes. the
information will be saved in a queue located on the same machine as the sane database to
avoid the loss of information in case of the second machine ftailure. All the servers are
booted from the master machine. via the Bridge server provided by Tuxedo that uses the
network connection and the rlisten process on both machines that listen on the same port.
The Master'Backup role of the two machines (DBBL. BBL.) can be switched between them
via a script that monitors their sanity. avoiding the loss of the system in case of Master

machine crash.

th
(]

6.

Implementation, Testing and Results

6.1. Application Configuration

A Tuxedo application is parameterized via an ASCII configuration file. This file describes

the application using a set of parameters that the software interprets to create a run able

application.

The main sections that need to be configured in the UBBCONFIG tile are (see Appendix A

- Contfiguration File):

The RESOURCES section describes the global parameters for the application such as
the Master machine. type of machine (MP). maximum number of servers. load
balancing. system access etc.

The MACHINES section contains the description of the machines used by the
application. In our case there are two machines configured TUX1 and TUX2. where
TUX2 is the master machine and TUXI is the backup.

The NETWORK section identities the network addresses used by the administrative
programs (e.¢. listener and BBL).

The GROUPS section describes the server groups that will execute on each machine.
For our application we have detined cight groups. four on each machine that will
manage the resources and server:

¢ The groups ORAT and ORA2 manage the two databases on each machine.

¢ The groups QUEI and QUE2 manage the two queues on cach machine.
¢ The groups APP_GRPI and APP_GRP2 manage the servers that perform the

th
(V¥)

synchronous update ot the resources on each machine.

¢ The groups APP_QUE! and APP_QUE2 manage the servers that update the

queues on each machine.

The SERVER section lists the server names with their respective groups. Each entry in

this section represents a server process to be booted in the application. Qur servers are

defined as tollows:

¢ muainserv: manages the global transactions that updates the two resources.

*

e The SERVICES section contains parameters such as relative workload.

located on the two machines.
dbupdate and dbupdare2: pertorm the update of the respective databases.
qupdate and qupdate2: pertorm the update of the respective queues.

degserv and degserv2: retrieve the messages from the respective queucs.

dependent routing ete.

The services advertised by the above-described servers are:

*

CALLRM: manage the execution of the global transaction.
UPDATEL: Insert the message into the Database 1.
UPDATE2: Insert the message into the Database 2.
QUPDATE: Insert the message into the Queue 1.
QUPDATE2X: Insert the message into the Queue 2.

DEQUETL: Extract the message from the Queue 1.

DEQUE2: Extract the message from the Queue 2.

UNDOUPDATE!L: Advertise the UPDATEI! service under a different name.

UNDOUPDATE2: Advertise the UPDATE? service under a different name.

34

data

¢ REDOUPDATEL: Advertise again the UPDATE! service.

¢ REDOUPDATE2: Advertise again the UPDATE2 service.

¢ UNDOQUPDATETL: Unadvertise the QUPDATE! service.

¢ UNDOQUPDATE2: Unadvertise the QUPDATE2

¢ REDOQUPDATEL: Advertise again the QUPDATE! service.

¢ REDOQUPDATE2: Advertise again the QUPDATE2 service.

The configuration file is then compiled to produce a binary version of this file
(TUXCONFIG) that is copied on all participating machines along with the compiled servers
and clients betore the application can be booted.

To create distributed transactions processing. we must create a global transaction log
(TLOG) on cach participating machine. Parameters defined tor TLOG should match the
corresponding parameters defined in the Machines section of the UBBCONFIG file.

For a network application. we must start the listener process on cach machine (e.g. tlisten
[PAddress: Port). The port on which the process is listening must be the same as the port
specitied in the NETWORK section of the configuration file.

The application is normally booted using rmboor command. trom the machine designated as

the MASTER in the RESOURCES section of the contiguration tile.

th
Pl

6.2. Server and Client Applications

As specified before. all the server and the client programs are written using a C interface
(ATMI) provide by Tuxedo. The servers and clients are compiled together with Tuxedo and
started at the boot time.

Figure 13 shows the list of servers and services when the application is started. The
servers are distributed over the two machines to insure the functionality of the application in

case of database or node failure.

> ps<
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
TM™S TMS TMS APP_Q+ 30001 TUX1 - AVAIL
™S ™S T™MS APP_(+ 30001 Tux2 — AVAIL
TMS TMS TMS_ORA ORA2 3000 TUx2 - AVAIL
UPDATE1 UPDATE1 dbupdt ORA1 1 TUX1 - AVAIL
UNDQUPDATE1 UNDOUPDATE! dbupdt ORA1 ! TUX1 ~ AVAIL
REDOUPDATE1 REDOUPDATE! dbupdt ORA1 1 TUX1t — AVAIL
TMS ™S TMS_ORA ORA1 30001 Tuxt - AVAIL
™S TMS TMS_QmM WE2 30001 TUX2 — AVAIL
TMS TMS TMS_QM QUEN 30001 TUX1 — AVAIL
TMS THS ™S APP_+ 30002 TUX1 — AVAIL
TMS ™S ™S APP_Q+ 30002 TUX2 — AVAIL
UPDATE2 UPDATE2 dbupdrt2 ORA2 2 TUX2 - AVAIL
UNDQUPDATE2 UNDOUPDATE2 dbupdt? ORA2 2 TUX2 - AVAIL
REDOUPDATE2 REDOUPDATEZ? dbupdt?2 ORA2 2 TUX2 — AVAIL
™S ™S TMS_ORA ORA2 30002 TUX2 - AVAIL
™S ™S TMS_ORA ORA1 30002 TUX1 - AVAIL
T™S T™S TMS_QM QUE2 30002 TUX2 - AVAIL
T™S TMS TMS_QM QUED 30002 TUX1 — AVAIL
T™S ™S TM™S APP_Q+ 30003 TUX1 - AVAIL
TMS ™S ™S APP_Q+ 30003 TUX2 - AVAIL
CALLRM CALLRM mainserv APP _C+ S TUXY - AVAIL
CALLRM CALLRM mainsery APP_G+ 5 TUX2 - AVAIL
DEQUET DEQUE1 deqsery APP_G+ 7 TUXY - AVATL
DEQUE2 DEQUE2 deqserv? APP_G+ 3 TUX2 - AVAIL
UNDOQUPDATEY UNDOQUPDATE! queupdt APP _+ 11 TUX2 - AVATL
REDOQUPDATE 1 REDOQUPDATE! gqueupdt APP _Q+ 1 TUx2 — AVAIL
QUPDATE! QUPDATE1 queupdt APP_Q+ 11 X2 — AVAIL
UNDOQUPDATE2 UNDOQUPDATE2 queupdt? APP _Q+ 12 TUX1 - AVAIL
REDOQUPDATE2 REDOQUPDATEZ queupdt?2 APP _Q+ 12 TUX1 - AVAIL
QUPDATE2 QUPDATE2 queupdt2 APP_1+ 12 Tux1 - AVAIL
QSPACE TMQUEUE TMQUEUE QUE1 20 TUX1 = AVAIL
QSPACE2 TMQUEUE TMQUEUE QUE2 21 TUX2 - AVAIL

Figure 13 List of Servers and services

From the functionality point a view there are two main servers: the server that
updates the resources (mainserv). which runs on both machines. and the recovery server that

is specitic to each machine queue (degserv. degsery2).

th

6

The following figures depict the sequence of events for a request sent by the client

application (maincl) to update the databases. When a request is sent to the system there are

four ways to handle this request depending on the availability of the system:

¢ Normal Mode (Figure 14): the Client (maincl) calls the CALLRM service (mainsery)

which acts as a dispatcher. CALLRM calls both database resource services UPDATE]

(dbupdt)y and UPDATE2 (dbupdi2). If both services are successtul. then the transaction

is successtul and the Client receives the confirmation.

Client send a

: maincl cAll Manserv dbupadt dbupdt2
request to Insert
data into the Cg;";ﬁg" Call
system UPDATE!
Service
UPDATE1
oK Call
UPDATE2 o
Service
i
Normat Mode Giobal UPDATE2
» Transaction OK
Succesful |

Figure 14 Sequence Diagram for Normal Mode

¢ Degraded Mode (Figure 15): [f one of the databases is not available. hence UPDATE] or
UPDATE2 service returns a tailure and CALLRM service calls QUPDATE! (qupdr) or
QUPDATEZ (qupdi2?) services. If the Queuel or Queue? are updated successtully then
the transaction succeeds and the Client is informed that the message has been inserted.

without noticing the system partial tailure.

th

~4

Client send a maincl CAll mainserv dbupdt dbupdt2 qupdt
request to Insert
data into the C:E';VLIES Call
system -UPDATE1
Service
. UPDATEY
Failed
Call
UPDATE2
Service
UPDATEZ2
OK
Call
QUPDATE1 L
Service
QUPDATE 10K
Degraded Mode Global (and UPDATE20K)
DB1 Failed Transaction
Succesful in
Degraded Mode

Figure 15 Sequence Diagram for Degraded Mode

¢ Failure Mode: The last case is the system’s total failure when neither two databases nor
one database and a queue can be updated simultancously. and the transaction is rejected.
To insure that when a database/machine goes down a queue is always available. the
system will always try to update the queue located on the same machine with the
available database (e.g. update DB1 and Queue 1 both located on TUXI).

When the system functions in the Degraded Mode and the failed database/node is
recovered up to the time of the failure. the administrator has to launch a Client (degel) that
will synchronize the two databases. Betore starting this Client the Tuxedo administrator has
to restart all the services on the failed node.

Figure 16 illustrates the sequence of events that takes place once the
Recovery procedure is started. First the Client (degcl) calls the UNDOUPDATE! (dbupedr)

service that makes the UPDATEI service available only to the administrator until the
58

recovery process is done. Then the client calls the DEQUE (qupdr) service that extracts
messages from the queue and then updates the database via DBUPDATE!] service

(UPDATEL with a different name). When the queue is empty then the recovery is complete.

t
Administrator deqd! geqserv dbupdat qupd

Client sends the - l

Cail
recovery request UNDOUPDATE ! o

Service

|
UNDOUPDATET
oK

Cal
DEQUE
Service

DEQUE
OK Call
DBUPDATE
Service

DBUPDATE!
oK

Recovery
Complete

Call
UNDGQUPDATE ! o
Service

]
. UNDCQUPDATE 10K
!
Cail
REDQUPDATE! o
Service

REDQUPDATE"
oK
i
Call
REDOQUPDATEY “
Narmal Moge . Service
. REDOQUPDATEI1CK

Figure 16 Sequence Diagram for the Recovery procedure

To make sure that the queue is not updated anymore once the queuc is empty. the
Client calls UNDOQUPDATEL service that removes the QUPDATE!] trom the list of
available services and immediately after the REDOUPDATET! service makes the UPDATE]

service available to get back to the Normal Mode.

'
O

Transactions may fail during this switch and to prevent their loss the regular Client
(muincl) retries three times to commit a transaction before advertising the user that the
transaction has failed. The last step is to restore the QUPDATE!I service by calling
REDOQUPDATEI service. At this moment the system is again in the Normal Mode having

all the resources and services available.

Note 6-1: The reason that the services UPDATE]. UNDOUPDATE! and REDOUPDATE]
belong to the same server (dbupdt) is that a service can be advertised or unadvertised only
from within itself. This a Tuxedo limitation. The same principle applies to the other servers

that deal with resources (e.g. dbupdt2, qupdt. qupdt2).

6.3. Administrative scripts

In case of failure there are two scenarios that need difterent actions from the administrator's

side:

e Node failure (Figure 17): [f a node fails and all the process running on that machine die
including the remote BBL. then the DBBL will report the processes running on the
tailed machine as Partitioned. If the Master node fails the DBBL is also lost.

This means that the application will function using the servers that reside on the surviving

node.

60

Figure 17 Services status after machine failure

> psc

Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
TMS ™S T™MS APP_(+ 30001 TUX1 - PART
™S ™S ™S APP_Q+ 30001 TUX2 - AVAIL
TMS TMS TMS_ORA ORA2 30001 TUX2 - AVAIL
UPDATE1 UPDATE! dbupdt ORA1 1 TUX1 - PART
UNDOUPDATE1 UNDOUPDATE! dbupdt ORA1 1 TUx1 - PART
REDOUPDATE1 REDOUPDATE! dbupdt ORA1 1 TUX1 - PART
™S ™S TMS_ORA ORA1 30001 TUX1 - PART
T™MS ™S TMS_QM QUE2 30001 TUX2 - AVAIL
TMS ™S TMS_QM QUE1 30001 TUX1 - PART
™S ™S TM™S APP_(+ 30002 TUX1 - PART
™S ™S T™S APP_Q+ 30002 TUX2 - AVAIL
UPDATE?2 UPDATE?2 dbupdt?2 ORA2 2 TUX2 - AVAIL
UNDOUPDATE2 UNDOUPDATEZ2 dbupdt2 ORA2 2 TUX2 - AVAIL
REDOUPDATE2 REDOUPDATE2 dbupdt?2 ORA2 2 TUX2 - AVAIL
™S ™S TMS_ORA ORA2 30002 TUX2 - AVAIL
TMS ™S TMS_ORA ORA1 30002 TUX1 - PART
™S TMS TMS_QM QUE2 30002 TUX2 - AVAIL
TM™S ™S TMS_QM QUE1 30002 TUX1 - PART
TM™S ™S TMS APP_GQ+ 30003 TUX1 - PART
TMS ™S TM™S APP_0Q+ 30003 TUX2 - AVAIL
CALLRM CALLRM mainserv APP_G+ 5 TUX1 - PART
CALLRM CALLRM mainsery APP_i+ 6 Tux2 - AVAIL
DEQUE1 DEQUE1 deqgsery APP_G+ ? TUX1 - PART
DEQUE2 DEQUE2 deqserv?2 APP_G+ 8 TUX2 - AVAIL
UNDOQUPDATE1 UNDOQUPDATE! queupdt APP_i+ 11 TUX2 - AVAIL
REDOQUPDATE! REDOQUPDATE! queupdt APP_(+ 11 TUX2 - AVAIL
QUPDATE1 QUPDATE queupdt APP_+ 11 TUXx2 - AVAIL
UNDOQUPDATE2 UNDOQUPDATE2 queupdt? APP_Q+ 12 TUX1 - PART
REDOQUPDATE2 REDOQUPDATE2 queupdt2 APP_(+ 12 TUX1 - PART
QUPDATE2 QUPDATE?2 queupdt?2 APP_(+ 12 TUX1 - PART
QSPACE TMQUEUE TMQUEUE RUE1 20 Tuxi - PART
QSPACE2 TMQUEUE TMQUEUE QUE2 21 TUX2 - AVAIL

In case of Master node failure the Master role needs to be switched to the Backup
machine and the entries of the dead servers and services cleaned trom the DBBL (c.g.
pelean TUXT). This process can be automated via a monitoring script that checks the sanity
of the system (heartbeat) and when it detects a node failure it will execute the clean up script
as the one below. on the remaining node:

tmadmin <!
e<ho

master

pclean TUX1
q

61

The recovery process needs manual intervention due to the fact that the database has
to be brought up to the point in time of the failure. However. this intervention is minimal
and the downtime is transparent to the user. so it has no impact on the availability of svstem.

In order to synchronize the two databases without interrupting the service. the
following steps are necessary: boot the application server on the failed node and run the
database synchronization script. By using a “shell™ scrip as the one below. the processes will
be restarted and the databases synchronized while the system is running. without impacting

its functionality:

tmboot -B TUX1
tmboot -1 TUX1
/deqcl

¢ Database failure: If the database fails then the services related to this resource would be
atfected. but not the overall application. After that database has been restored up to the
time of the failure the services belonging to that group have to be restarted and then

start the actual recovery. This again can be done by using a “shell” script:

tmshutdown -g ORA1
tmboot -g ORA1
/deqgel

When these scripts have finished execution the svstem is back in the Normal Mode:
however. throughout this recovery process the application is running and its tunctionality is

not impacted.

6.4. Experiment and results

The goal of the testing is o verify the behavior of the svstem in case of software and
hardware failures testing that the database recovery mechanism could be performed without
transaction loss. The tests consists of failures in database. server processes. Master node.

Backup node and a packet of tests for measuring the systems response time.

Test Name Description Results
Database Failure One of the databases is shutdown ungracefully Passed
(See Note
(shutdown ubort) to simulate a database failure. 6-2)
Server Process Failure | Kill multiple server processes on one machine. Passed
(See Note
6-3)
Network Failure Shutdown Tuxedo’s listener (kill “t/istener™ Passed
(See Note
process). 6-4)
Master Node Failure The Master machine is rebooted while the Passed
(See Note
system is running. 6-3)
Backup Node Failure The Backup machine is rebooted while the Passed
(See Note
system is running. 6-6)
Response time Measure the number of transactions per second Passed
(See
tor: Note 6-7)
a) update ot the two databases
b) update one database and one queue
¢) read trom queue and update one database

Table 6-1: Test Overview

6

L

Note 6-2: Database Failure

The test was performed by shutting down the Database 1 completely and/or by shutting
down the database listener. Both machines were tested and the syvstem handled well the
loss of one database. The transaction that is executing at the time of the switch is rolled
back and handled by the retry mechanism introducing a 2 seconds delay. Tuxedo
Application Server sees a database as a resource. and if a resource is not available. the
system is automatically switched to Degraded Mode where a queue is updated.
Depending on the number of the transactions/second. the queue can be designed to
handle hours of Degraded Mode. The development system can handle maximum 35
transactions/sec. hence tor a Degraded Mode of for example two hours. the queue has to
be designed for at least 400.000 messages. The administrator has to make sure that
enough disk space is allocated for the queues. to secure the transactions during the

degraded mode period.
Note 6-3: Server Process Failure

When server processes are Killed randomly on both machines. the system is restarting
them automatically after they are declared dead. This may introduce a 2 seconds delay in
treating the current transaction that is rolled back and retried. The transaction that is
executing when the processes are Killed. it is rolled back but succeeds at retry using the
New server process.

Note 6-4: Network Failure

Shutting down the Tuxedo’s listener. simulating the network failure pertormed the test.

In this case. there is no communication between the services on both machines: hence

64

from a client point of view the second database is not available. The recovery scenario is
the same as for the database failure test. the queue being accessed locally to avoid any

data loss.
Note 6-5: Master Node failure

The test was performed by shutting down the Master Node. In this case the system loses
the DBBL that monitors all the servers the overall sanity of the system.

The Master node failure is the most critical test. having as a result the loss of all the
processes that run on this machine and ot the DBBL. The Backup node it is aware that
the servers on the Master node are not available and the application is switched to
Degraded Mode. This way the system continues to function in Degraded Mode without
service interruption. In the recovery process the Backup node needs to be switched to

Master in order to create a new DBBL then the failing node can be booted as Backup.

Note 6-6: Backup Node failure

The test was performed by shutting down the Backup Node. In this case the system
tunctions in Degraded Mode making use of the services that run on the remaining node.
The Backup node failure has as a result the loss of all the processes that run on this
machine. Tuxedo’s DBBL reports this loss as a ~Partitioning™ ot the em. The only
services that will remain unavailable are the ones related to the database that is
physically located on the Backup machine. Theretore. the processing continues in

Degraded Mode until the recovery process can be performed. but no transactions are

lost.

o)}
h

Figure 18 and Figure 19 illustrate a node failure and the recovery process. Figure 18

shows that while the client is running trving to insert a batch of 1000 messages. one of

&

the nodes it is rebooted. The system is switched automatically to a Degraded Mode.

wherein the queue (QSPACE?2) is updated. By listing the messages in the queue we see

that the messages were properly stored. While we performed this tested we simulated

that the clients continue running hence another 1000 messages are stored in the queue.

= —_ Terminal
window Edit Options

Inserted string is: test2 259 times
Inserted string is: test2 260 times
Inserted string is: testZ 261 times
Inserted string is: test2 262 times
Inserted string is: test2 263 times
Inserted string is: test2 264 times
Inserted string is: test2 265 times
Inserted string is: test2 266 times
Inserted string is: 7est2 267 times
Inserted string is: test2 268 times
Inserted string is: test2 269 times
Inserted string is: test2 270 times
Inserted string is: test2 271 times
Inserted string is: rest2 272 times
Inserted string 1s: test2 273 times
Inserted string is: test2 274 times
Inserted string is: test: 275 times
Inserted string is: testl 276 times
Inserted string is: tast2 277 times
Inserted string is: restl 278 times
Insertad string is: test2 279 times
Inserted string is: ftestl 280 times
Inserted string is: test? 281 times
Inserted string is: ce<tl 282 times
Inserted string 1s: test2 283 times
Inserted string 15: recr? 284 times

E Terminal

|-],

. Window Edit Options Help

. ~uxedg 31383 3157 0 22:43 ots/0 90:00:00 ps -fu ~

[tuxedo@yul-tux-1nx1 simpappl$ su
Passwarad:)
[root@yul-tux-lnx! simpappl® reboot -f

amadmin — copyright (c) 1936-1993 BEA Systems, Inc.

Poartions * Copyrignt 1986-1397 RSA Data Security, Inc.

All Rignts Reservad.

Distributed under license oy 3EA Systems, Inc.
Tuxedo is 3 registered trademark.
QMCCNFIC=/hame/tuxedo/s1mpapp/RIE

© aopen QSPACED

cinfo
ueud IOURNALT: 1715 Perststent Messages using 1715 p

ages.

0 Nonpersistent “Msssages using 0 dytes,
1715 Messages 1n Totii using 878080 bytes.

Queu2 ERRCRQ: 0 Persistent Messages using O pages.
0 Nonpersistant Messages using 0 bytes.
0 Messages :n total using J bytes.

Figure 18 Node Failover Demo

[n Figure 19 we illustrate the recovery process where the failed node is

booted. therefore made available to the application and the messages dequeued and

inserted into the recovered database. while another client is running. The

transactions that occur while the synchronization process is running continue to be

lo

(3484

oo

again into the two databases.

66

ed into the queue. until the time of the switch when the transactions are logged

-_—
=

Inserted string is: test3 975 times

2xec TMS_QM -A : Inserted string is: test3 376 times
on TUX1 —> process 1d=1513 ... Started. | Inserted string is: testd 377 times

gxec TMS_QM -A : . Inserted string is: test3 378 times
on TUX1 —> process 1d=1520 ... Started. | Inserted string is: test3 379 times

exel TMQUEUE -s QSPACE:TMQUEUE — : Inserted string is: rest3 980 times
on TUX1 -> process 1d=1921 ... Started. | Inserted string is: test3 381 times

exec TMS_ORA -A : Inserrted string is: test3 382 times
on TUX1 -> process 1d=1522 ... Started. | Inserted string is: rest3 383 times

exec TMS_ORA -A : Incerted string is: test3 984 times
on TUX1 -> process 1d=1525 ... Started. | Inserted string is: test3d 985 rimes

exec dbupdt -A : Inserted string is: test3 386 times
on TUX1 -> process 1d=1528 ... Started. | Inserted s string is: test3 387 times

exec TMS -A :

an TUX1 -> process 1d=1531 ... Started.
exec TMS -A ¢

an TUX1 -> process 1d=1532 ... Started.
exec TMS =-A :

on TUX1 —=> process 1d=1533 ... Started.
exec queupdt2 -A :

on TUX1 -> process 1d=1534 ... Started.
10 processes started.

Inserted string is: rest3 388 times
Inserted string is: test3 389 times
Inserted string is: test3 330 times
Inserted string is: test3 331 times
Inserted string is: test3 992 rimes
Inserted string is: rest3 993 Times
Inserted string is: tesr3 3S4 rimes
Inserted string is: test3 395 times
Inserted string is: test3 396 times
Inserted string is: test3 397 times
Inserted string is: test3 398 rimes
[tuxedo@yul-tux-1nx2 simpappl$./deqcl Inserted string is: testd 399 rimes
Dequeued 1715 messages Inserted string is: test3 1000 times

(tuxedo@yul-tux-1nx2 simpappl$ § . [tu<edo@yul-tux~-Inx! simpapp)$
i

— - e

>

Figure 19 Node Fallback Demo

The number of messages in the queue is the same as the number of messages that are
recovered (1713 messages). hence the two databases are now synchronized. Subscquently

the system reverts to a normal mode wherein both databases are updated.

Note 6-7: Response time measurements
The test was pertformed with a batch of 10.000 messages using a special client
application (addcl):
a) Normal Mode: update of the two databases : ~ 3 minutes
b) Degraded Mode: update one database and one queue: ~ 2.3 minutes
¢) Recovery Mode: read from queue and update one database: ~ 1.3 minutes
The throughput of the system in Normal Mode it is almost 35 transactions scc.
The overall test results bring us to the conclusion that the prototype can handle the

tailures and most important can make this failures transparent to the users. These tests were

67

chosen and performed to demonstrate the robustness and availability of the system in case of
major failures like node or database tailure.

The results show that the system functions in Degraded Mode in case of failure. The
Degraded Mode does not influence the performance of the svstem and it is totally
transparent to the users. The recovery phase is also done in parallel with the regular
transaction processing: it doesn’t cause downtime or performance decrease. The way the
recovery is handled reduces the manual intervention: the administrator has to run one script
to synchronize the two databases. hence the risk of human error is greatly reduced.

These tests demonstrate that the prototype can handle graciously the tailover and the
fallback. However for a real life solution the tests have to be extended to real life scenario
such as: testing the performance of the systems for large number of concurrent
users/connections and also the database moditications serialization ctc.

Considering that even in the worst case scenario. when the system needs to be
replaced and the application rebooted. it does not take more than 3 minutes for the system to
be back on-line. This indicates that the high availability criteria are met. Though the svstem
was not tested with real traftic to demonstrate 99.999 4 availability nonctheless. by making
the outages transparent to the users and being able to do the database svnchronization from
the write-ahead-log(queue) without service interruption or database inconsistency. the
prototype demonstrates that this is a viable solution. The solution can be evolved towards a

system that can ensure the high availability necessary for a real time svstem.

63

7. Conclusion and future work

The proposed solution presented in this project is a response to the problem of providing a
highly available system for a transactional system using databases. In our case Tuxedo.
introduces a new level of complexity in the design phase and administration. but on the
other hand the database is relieved from all the responsibilities except as a repository. This
makes the recovery a lot easier in case of crash. Tuxedo also adds an extra cost to the

system on top of the cost of Oracle or other RDBMS. But compared to the cost of hardware

~

and software necessary for example to purchase a clustered database (e.g. Oracle’s Real
Cluster Application) it is well worth it.

The project focuses more on the recovery mechanism and the database synchronization
with no service loss. There are certain aspects that the project does not tackle. like ditterent
types of operations that can occur in a database (e.g. Updates. Deletes. Schema
modifications etc). This system is a solution for a transactional environment where all the
messages coming trom the outside world are logged in a database and once stored. the data

is not modified (this being the typical use for recording events c.g. telecommunication
world).

Real Time replication of data is not ideal because it adds extra constraints in our case
the delay introduced by the synchronous database update. However. it is the only way to
make sure that the data is synchronized so when an application tails a switchover from one
node to another is instantancous: the users see no service interruption. To enhance the
performance. we can use an asynchronous update of the resources within the same
transaction. having as result. a faster access to various resources (e.g. it more that two

69

databases are updated). In this case the response has to be handled via programming as
opposed to the synchronous update that is handled by the dual-commit protocol.

One extra security measure that can be taken is to have a third database. which can be a
Standby copy of the Backup database. hence update after event. This database/machine can
be used as spare in case of failure to reduce the time the database is brought up to the point
in time of failure.

The main effort is required by the application configuration on Tuxedo’s side that
requires good analysis skills in a distributed environment. The programming ettort is not
extensive. being reduced to a number of C routines that make use of Tuxedo's ATMI
library.

The proot of concept presented in this project makes use ot minimum capabilities that
Tuxedo offers. To apply this architecture to a real lite application. there are several teatures
that could be added to the proposed design. to handle large volume of data. First the load
balancing option that allows the contiguration of the percentage of load for cach service and
group while allowing the remaining to be routed to alternate resources. For example it a
queue is overloaded the traftic is automatically routed to the alternate server that has a queue
with the same name. (e.g. 30% by Machine I and 70% by Machine 2). The system can be
configured to start multiple instances of the same server to accommodate the extra load.
Certain services can have priority over others. allowing the system to handle messages in a
different manner. This is also configurable on a service group basis and can also be the
object of future development.

In the real world. the Client applications are not local. they being located on various
workstations. These clients are managed by Tuxedo. and in case of failure. routed to

70

alternate nodes. This feature was not explored in this project. and can be the object of future
improvements. Also the security aspect of such a svstem was not at all taken into account.
Tuxedo offers an authentication mechanism that can be added to the design ot the
Workstation Clients.

Also as future work the application can be evolved to handle heterogencous databases.
This is easily feasible by using a different Resource Manager provided by the database
manufacturer. In order to speed up the tailover process in a production system a third party
software should be used to monitor the sanity of the system. For example Litekeeper from
SteelEye is a very good choice [9] and in our case it can be used to advise the Backup
system when the Master node is not available.

[n a distributed environment. the management ot different resources is made easier by
expanding the client-server model to a distributed. Another teature that is very usetul in a
real-life scenario is the data-dependent routing. Thus. different databases can be used to
store the data. depending on the value to be recorded. Through this feature. the scalability of
the system can be enhanced without diminishing the performance.

Therefore. we can say that the proposed system presented offers an interesting solution to
the database high availability issue by making use of a middleware. Tuxedo in our case. to

solve the synchronization and the recovery issues.

8. References

[1] Clustra Systems Availability Analyvsis —~-When “tive nines™ is not enough - 2001 Clustra Systems Inc.

Archived in: hutp: - www cs.concordia.ca ~faculty bedesai grads stellab Clustra_Availability WP pdf

(2] The five 9s Pilgrimage: Toward the Next Generation of High-Availability Systems -2000 Clustra Systems
Inc.

Archived in : http: www.cs.concordia.ca ~faculty bedesai grads stellab Clustra SNines WP pdt

(3] Raid Solutions - 2000. 200! Advanced Computer & Network Corporation

URL: http: www.acnc.com 04 01 00.himl

(+] DB2 and High Availability on SUN Cluster 3.0- IBM Corporation- August 2001

Archived in: hup: www ¢s.concordia.ca ~taculty bedesai grads. stellab suncluster.pdt

[5] Compaq Corporation - Open VMS —Clusters Overview. May 1. 1998.

URL:http: www.openvms.compaq.com. openvms. products clusters. Clusters Overview. htm|

[6] HP Cluster Server Solutions Overview. 2002 HP Corporation

URL: hitp: www.hp.com products! storage disk_arravs xpstorazesw cluster index.himl

[7] Polyserve: White Paper -Data Replication tor High Availability Web Server Clusters

Archived in: http: www .cs.concordia.ca ~faculty bedesai grads. stellab datarep _highavail.pdf

[8] Veritas Cluster Server V2.0 - Technical Overview

Archived in: bttp: www.cs.concordia.ca ~faculty bedesai grads stellab ves20_techover tinal 0901 pdf

[9] LifeKceper for Linux - 2001 SteelEye technology Inc.

Archived in: hup: www cs.concordia.ca ~faculty bedesai grads stellab kprdlinux. pdf

[10JOPEN SANs - An [n-Depth Brief. IBM White Paper . December 2000

Archived in: hitp: www.cs.concordia.ca ~facuity bedesai grads. stellab open_san.pdf

[F1]Polyserve: White Paper -Implementing Highly Available Commercial Systems under Linux using Data
Replication -Dec. 2000 -Doug Delay

Archived in: http: www.cs.concordia.ca ~faculty bedesai grads stellab data_rep wp.pdf

(12} Implementing an Automated Standby Database -by Rob Sherman - May 1999, Oracle Magazine

URL: http: ‘'www.oracle.com oramag oracle 99-May index.htm!?390r8i.html|

[13]Creating Hot Snapshots and Standby Databases with IBM DB2 Universal Database and V7.2 and EMC

TimeFinder. IBM 2001

Archived in: hup: www.cs.concordia.ca ~faculty bedesai grads stellab timetinder.pdf

[14] Linux and High-Availability Computing. Clustering Solutions for e-Business Today- Intel Corporation

Archived in: http: www.cs.concordia.ca ~faculty bedesai grads stellab linux_highavail.pdf

[15]Comparing Replication Technologies. PeerDirect Inc 2002

URL: http: www peerdirect.com Products WhitePapers Comparing Techs.asp

(16]Implementing Highly Available Commercial Application under Linux using Data Replication -Doug
Delaney -December 21, 2000. Polyserve. Inc

Archived in: hup: www.cs.concordia.ca ~faculty bedesai grads stellab data_rep wp.pdt

[17}Clustra Database 4.1 - Concepts Guide. Replication Architecture, July 2001 PeerDirect Inc.

URL: hup: www.peerdirect.com Products WhitePapers Architecture.asp

[18]Oracle 8i Parallel Server Concepts Release 2 (8.1.6) . Oracle Corporation 2001

[19] Extended Parallel Option for Informix Dyvnamic Server For Windows NT and UNIX -2001 Informis
Corporation.

{20} Clustra Database - Technical Overview - 2000 Clustra Systems Inc.

Archived in: hitp: www cs.concordia.ca ~faculty bedesai grads stellab Clustra Technical WP pdf

{21]Building Highly Available Database Servers Using Oracle Real Application Clusters -An Oracle White
Paper. May 2001

Archived in: hutp: www .cs.concordia.ca -faculty bedesai grads stellab high_avail clusters.pdt

[22]Oracle 8I Server -Distributed Database Systems- Release 2 (8.1.6) - December 1999 Oracle Corporation
[23] Oracle 91 Real Application Cluster- Cache Fusion Delivers Scalability -An Oracle White Paper. May 2001.

Archived in: hup: www .cs.concordia.ca ~taculty bedesai grads stellab_appclusters_cache.pdt

[24]Global Transactions -X Open XA - Resource Managers - Donald A. Marsh. Jr.- Januars 2000 Aurora
Intormation Systems Inc.

URL: http: www.aurorainfo.com wp3

[25] Distributed Transaction Processing- The XA - Specitication. Version 2 - June 1994 The Open Group

.
73

/

[26] Encina Transactional Programming Guide -IBM Corporation 1997

URL:htp: "www.transarc.ibm.com Libran ‘documentation. txseries 4.2-aix.en US.htm! aetgpt aetgpt02.htm=T

oC 182
[27]Global Transactions in BEA TUXEDO System. BEA Corporation

URL: hup: edocs.beasvs.com tuxedo. tux63 progged tps035. htm=997149

[28] XA-Server Integration Guide for TUXEDO - 1997 Svbase Inc.

Archived in: htp: www.cs.concordia.ca ~faculty bedesai grads stellab xatuxedo.pdf

[29]1BM CICS Family: General Information-Copyright International Business Machines Corporation 1982,
1995. All rights reserved. Document Number: GC33-0155-05

URL: http: www-4.ibm.com‘software.ts. cics. about

[30] BEA TUXEDO -The programming model -White Paper - November 1996

URL: http: ‘www.bea.com products tuxedo paper model.shtml

[31]High Availability Features - 2001 Oracle Corporation.

URL.: http: technet.oracle.com deploy availability htdocs ha features.html

[32] Issues Insufticiently Resolved in Century 20 in the Fault Tolerant Distributed Computing Field - Kane
Kim UCI Dream Lab- Oct 2000

Archived in: hup: www.cs.concordia.ca -taculty bedesai grads stellab srds2000 _slides.pdf

[33] Achieving Continuos Availability with Sybase Adaptive Server —2001 Syvbase Inc.

URL: Archived in: hitp: www.cs concordia.ca -taculty bedesai grads stellab HASy basePaper6. pdft

(34]Informix Enterprise Replication a High performance solution for Distributing and Sharing [nformation
1998 Intormix Corporation

Archived in: htp: www.cs.concordia.ca ~faculty bedesai grads stellab entrep pdf

[35] High Availability through Warm-Standby Support in Sybase Replication Server -1998 Syvbase Inc.

Archived in: http: www .cs.concordia.ca ~faculty bedesai grads stellab kprdlinux.pdf warm standby wp.pdf

[36] Data Guard Concepts - 2001 Oracle Corporation.

URL: http: _download-east.oracle.com otndoc oracle9i 901 doc server.901 a88808 standbycon.htm=573 14

[37] The Stanford Rapide Project- X OPEN Architecture Rapide Code

URL:hup: pave.stanford.edu rapide examples xopen code.html
74

[38] The TUXEDO System -Software for Constructing and Managing Distributed Business Applications -
Juan M. Andrade. Mark T. Carges. Terence J. Dwyer. Stephen D. Felts - November. 1997. also

URL: http: www.bea.com products.tuxedo paper modeld.shtml

[39]H. Tai and K. Kosaka. The Aglets Project. Communications of the ACM. Vol. 42(3) pp.100-- 101, March
1999

(40]Robert Breton. Replication Strategies for High Availability and Disaster Recovery. Data Engineering Vol
21(4) pp. 38-43

[41]Rosana S.G. Lanzelotte. Patrick Valduriez Mohamed Zait. Mikal Ziane. Industrial-Strength Parallel Query
Optimization: issues and lessons. An Intemational Journal. 1994, also

http: poleia.lip6.tr ~ziane infsyvs.ps.uz

[42] M. Tamer Ozsu. Patrick Valduriez. Distributed and Parallel Database Systems. ACM Computing
Surveys. vol.28. no.1. pp 125-128. March 1996.

[43]L. Rodrigues and M. Raynal. Atomic Broadcast in Asynchronous Crash-Recovery Distributed Sy stems.
Proceedings of the 20th IEEE International Conterence on Distributed Computing Systems. Taipe.

Taiwan. April. 2000.

~)
th

9. Appendices

9.1. Appendix A - Configuration File

*RESOURCES

[PCKEY 125456
DOMAINID simpapp
MASTER TUX2.TUXI

MAXACCESSERS 100
MAXSERVERS 100

MAXSERVICES 100

MODEL MP
OPTIONS LANMIGRATE
LDBAL N

SYSTEM _ACCESS PROTECTED
SCANUNIT 3
SANITYSCAN 2

DBBLWAIT 3

J

BBLQUERY

19

BLLOCKTIME 20
*MACHINES
DEFAULT:

APPDIR=""home’tuxedo/simpapp"”

TUXCONFIG="/home/tuxedo/simpapp/tuxconfig"
TUXDIR="'opt/tuxedo8.0"

ENVFILE="/home/tuxedo/simpapp/ubb.env"

"vul-tux-Inx1" LMID=TUX]
TLOGDEVICE="/home/tuxedo/simpapp/TLOG"
TLOGNAME=TLOG

TLOGSIZE=100

"vul-tux-lnx2" LMID=TUX2
TLOGDEVICE=""home/tuxedo/simpapp/ TLOG"
TLOGNAME=TLOG

TLOGSIZE=100

*NETWORK

TUXT NADDR=" 5374.164.47:3334"
NLSADDR=""374.164.47:2334"

TUX2 NADDR=""57.4.164.48:3334"

NLSADDR=""37.4.164.48:2334"

*GROUPS
ORAl

LMID=TUXI1

TMSNAME=TMS_ORA

GRPNO=1
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/adams/adamsboy+SqlNet=adamsdev
3+SesTm=60+LogDir='home/tuxedo/simpapp"

TMSCOUNT=2

ORA2

LMID=TUX2

TMSNAME=TMS ORA

GRPNO=2
OPENINFO="Oracle_XA:Oracle_XA+Acc=P'adams/adamsboy+SqlNet=adamsdev
4+SesTm=60+LogNir='home’/tuxedo/simpapp"”

TMSCOUNT=2

APP_GRPI
LMID=TUXI
GRPNO=3

APP_GRP2

LMID=TUX2

GRPNO=4

QUEI

78

LMID = TUX1
GRPNO =35
TMSNAME = TMS_QM TMSCOUNT =2

OPENINFO = "TUXEDO/QM:/home/tuxedo/simpapp/QUE 1 :QSPACE"

QUE2
LMID =TUX2
GRPNO =6
TMSNAME = TMS_QM TMSCOUNT =2

OPENINFO = "TUXEDO/QM:/homc/tuxcdo/simpapp/QUEl :QSPACE2"

APP_QUEI
LMID=TUX]I
GRPNO=7

TMSNAME=TMS

APP_QUE2
LMID=TUX2
GRPNO=8

TMSNAME=TMS

79

*SERVERS

TMQUEUE
SRVGRP = QUE1 SRVID =20
GRACE =0 RESTART =Y CONV =N MAXGEN=10

CLOPT ="-s QSPACE:TMQUEUE --"

TMQUEUE
SRVGRP = QUE2 SRVID = 2]
GRACE =0 RESTART = Y CONV =N MAXGEN=10

CLOPT ="-s QSPACE2: TMQUEUE --"

dbupdt SRVGRP=ORA1 SRVID=1 CLOPT="-A" GRACE =0 RESTART =

Y CONV = N MAXGEN=10

dbupdt2 SRVGRP=ORA2 SRVID=2 CLOPT="-A" GRACE =0 RESTART =

Y CONV =N MAXGEN=10

mainserv SRVGRP= APP_GRP1 SRVID=35 CLOPT="-A" GRACE =0

RESTART = Y CONV = N MAXGEN=10

30

mainserv. SRVGRP= APP_GRP2 SRVID=6 CLOPT="-A" GRACE =0
RESTART =Y CONV = N MAXGEN=10
degserv SRVGRP= APP_GRPI SRVID=7 CLOPT="-A" GRACE =0

RESTART =Y CONV = N MAXGEN=10

degserv2 SRVGRP= APP_GRP2 SRVID=8 CLOPT="-A" GRACE =0

RESTART =Y CONV = N MAXGEN=10

queupdt SRVGRP= APP_QUE2 SRVID=11 CLOPT="-A" GRACE =0

RESTART =Y CONV = N MAXGEN=10

queupdt2 SRVGRP= APP_QUEI SRVID=12 CLOPT="-A" GRACE =0

RESTART =Y CONV = N MAXGEN=10

*SERVICES

CALLRM AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
CALLDBQ AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
UPDATEL AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
UPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
QUPDATEL AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
QUPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
DEQUEI AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
DEQUE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10

81

UNDOUPDATEI AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
UNDOUPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
REDOUPDATE! AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
REDOUPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
UNDOQUPDATE!I AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
UNDOQUPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10
REDOQUPDATEL AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10

REDOQUPDATE2 AUTOTRAN=Y TRANTIME=30 SVCTIMEOUT=10

9.2. Appendix B - Makefile

ORACLE_HOME=/app/oracle/product/8.1.7

PROC = $(ORACLE_HOME)/bin/proc

IN = iname

OUT = outname

IC=

opt'tuxedo8.0include. app-oracle/product/§. 1 .7'precomp,public. app oracle product
8.1.7/rdbms/demo.. approracle/product'8.1.7 ‘networkpublic. approracle - product 8.1.
7:plsql/public

INCLUDES = $(IC)-atmi.h $(IC)'tx.h $(IC)/sqlcode.h SUC) userlog.h

all:mainserv dbupdt dbupdt2 queupdt queupdt2 degserv deqserv2 deqcl deqcl2

maincl addcl tuxconfig

mainserv:mainserv.c

buildserver -o mainserv -t mainserv.c -s CALLRM

deqgserv:deqgserv.c

buildserver -o degserv -f degserv.c -s DEQUE! -r TUXEDO/QM

degserv2:degserv2.c

buildserver -o deqserv2 -t degserv2.c -s DEQUE?2 -r TUXEDO/QM

queupdt:queupdt.c
buildserver -0 queupdt -f queupdt.c -s QUPDATEI -5

REDOQUPDATE! -s UNDOQUPDATE!

queupdt2:queupdt2.c
buildserver -0 queupdt2 -t queupdt2.c -s QUPDATE?2 -s

REDOQUPDATE? -s UNDOQUPDATE2

dbupdt:dbupdt.pc
$(PROC) iname=dbupdt.pc oname=dbupdt.c include=$(IC)"

85

sys_include=(SORACLE_HOME/precomp/public./usr/lib/gcc-
lib/i386-redhat-linux/eges-2.91.66/include./usr/include) code=ansi_c¢
buildserver -o dbupdt -t dbupdt.c -s UPDATE! -s UNDOUPDATE] -

s REDOUPDATET! -r Oracle_ XA

dbupdt2:dbupdt2.pc
$(PROC) iname=dbupdt2.pc oname=dbupdt2.c include=5(IC) "
sys_include=(SORACLE_HOME/precomp/public./usrlib/gcc-
lib/i386-redhat-linux/eges-2.91.66/include./usr/include) code=ansi ¢
buildserver -o dbupdt2 -t dbupdt2.c -s UPDATE2 -s

UNDOUPDATE?2 -s REDOUPDATE2 -r Oracle_ XA

maincl:maincl.c

buildclient -0 maincl -t maincl.c

addcl:addcl.c

buildclient -0 addcl -t addcl.c

deqel:deqel.c

buildclient -0 deqel -t degcl.c

deqcel2:deqel2.c
buildclient -0 deqel2 -f deqel2.c

84

tuxconfig:ubbconfig

tmloadct -v ubbconfig

M

9.3. Appendix C - Environment Files

¢ ubb.env file

ORACLE_BASE=/app/oracle
ORACLE_HOME=/app/oracle/product'8.1.7
ORACLE_SID=adamsdev
TNS_ADMIN=/app/oracle/product/8.1.7/network/admin
RM=Oracle XA

RMNAME=Oracle XA
ORACLE_LIBS="app/oracle/product/8.1.7'1ib

ORACLE_DIR="app/oracle/product/8.1.7'bin

¢ tux.env file

TUXDIR="0pt tuxedo8.0: export TUXDIR
PATH=STUXDIRbin:SPATH: export PATH
LIBPATH=STUXDIR/1ib:SLIBPATH: export LIBPATH
LD_LIBRARY_PATH=STUXDIR1ib:SLD_LIBRARY PATH: export
LD_LIBRARY _PATH

WEBJAVADIR=STUXDIR udataobj. webgui java
TUXCONFIG="home tuxedo/simpapp tuxconfig: export TUNCONFIG
LANG=english_us.ascii:export LANG

ORACLE_BASE=app/oracle: export ORACLE_BASE
36

ORACLE_HOME=$ORACLE_BASE/product/8.1.7:export ORACLE_HOME
ORACLE_SID=adamsdev: export ORACLE_SID
LD_LIBRARY_PATH=SLD_LIBRARY_PATH:SORACLE_HOME/lib: export
LD_LIBRARY PATH

PATH=$PATH:SORACLE_HOME/bin: export PATH
TNS_ADMIN=SORACLE_HOME/network/admin: export TNS_ADMIN
RM=Oracle_XA:export RM

RMNAME=$RM:export RMNAME

ORACLE _LIBS=SORACLE_HOME/lib:export ORACLE LIB
ORACLE_DIR=$ORACLE_HOME/bin:export ORACLE_DIR
TMTRACE=on: export TMTRACE

QMCONFIG="home/tuxedo/simpapp/QUEL: export QMCONFIG

87

9.4. Appendix D - Glossary

API - Application Programming Interface is the definition of the calling tormats to a set of’
procedures that perform a set of related tasks.

Asynchronous Replication — After event update of a copy database.

Asynchronous Communications - communications in which the requestor does not wait
tor the response but will poll tor it at a later time.

ATMI - Application to Transaction Monitor Interface. is the TUXEDO communications
application-programming interface.

BBL - Bulletin Board Liaison is an administrative server on each computer in the
application that manages application server.

BRIDGE - an administrative server that manages network communications between
computers within an application.

Bulletin Board - a distributed. partially replicated. memory data structure used to maintain
information in the TUXEDO system for name serving. transaction management. and run-
time information.

Client - a software module that gathers and presents data to an application: it generates
requests for services and receives replies.

DBBL - Distinguished Bulletin Board Liaison is an administrative server that runs on the
master machine and manages the distribution ot the Bulletin Board and global updates
thereto.

DSA - Dynamic Scalable Architecture

DTPM - Distributed Transaction Processing Model.

38

Failover — The procedure that takes over the system in case of failure transferring the
processing from the failed component to the backup component.

Fallback — The procedure that tries to restore the failed component and to bring it back on-
line.

LAN - Local Area Network

Load Balancing - assignment of request to queues for servers offering the requested
service in a manner to optimize throughput and/or response time.

Local Client — a client that runs on a computer where the TUXEDO System administrative
programs an d application servers run.

Journal - raw file used to store the data in case of one database not being available.

MTTR ~ Mean Time to Recover. represents the time for a system to recover after failure.
MTBF - Mean Time between Failures. represents the time between two system tailures.
OLTP- Online Transaction Processing.

OPS - Oracle Parallel Server.

Priority — processing of the messages based on an urgency tactor assigned by the
application.

Queue — a memory data structure to hold messages for processing.

/Q - the TUXEDQO subsystem that provides reliable. application queues.

RAID — Redundant Arrays of [nexpensive Disks.

RDBMS - Relational Database Management System.

RM - Resource Manager a module or collection ot modules. the most common of which are
databases. that maintain the state ot the application.

SAN- Storage Area Network. which are private networks for storage.

89

Server — a software module that accepts requests from the clients an other servers and
returns replies.

Server Clusters — Servers grouped together that appear as a single server.

Server group - a collection of server that can be activated. deactivated and migrated as a
unit.

Service ~ the name given to an application routine available for requests by a client in the
system with well-defined inputs. outputs and processing.

Synchronous Communications - communications in which the requestor waits for the
reply.

Synchronous Replication — Redundant write to two database systems.

TCP/IP- Transmission Control Protocol a standard operating svstem interface to
networking services.

Time-out - an event that occurs when processing takes longer than expected or configured:
time-outs can occur either when blocking tor an operation or due to a transaction taking
longer than specitied by application.

TLOG - Transaction Log is a stable storage area where the completion ot a transaction is
logged.

tlisten — TUXEDO Listener — an administrative program that povides an entry point to all
computers within the application: it is used primarily to propagate files and activate servers.

TM - Transaction Manager is the software that manages global transactions across multiple

computers and resource managers.

TMS - Transaction Manager Server is an administrative server that manages the two-phase

commit protocol and recovery for global transactions.

90

TUXCONFIG - the TUXEDO binary configuration file for an application definition.
Two-phase commit (2PC) - algorithm to ensure the atomicity and consistency of a global
transaction which requires the update of a number of replicates at different nodes of a
distributed database.

TX —an X/OPN intertace for transaction demarcation: based on ATMI.

UBBCONFIG - the ASCII file where TUXEDO administrators can define and application

configuration.

UPS - Uninterruptible Power Supplies.

Workstation Client - a client that accesses the TUXEDO System via the network.
X/OPEN - Standard body that developed the Distributed Transaction Processing Model.
XA- Interface that describes the protocol for transaction coordination. commitment and

recovery between a Transaction manager and one or more resource Managers.

91

