INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
conﬁnuing&omlefttoﬁghtinequalsecﬁonswithsmalloverlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Beill & Howell informanon Company
300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA
313:761-4700 800.521-0600

Simulation of the Error Control Procedures in the
Xpress Transport Protocol

Duc Quang Duong

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March, 1997

© Duc Quang Duong, 1997

i+l

National Library
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services

395 Waellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéeque nationale

services bibliographiques

Your fle Votre référence

Our file Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant 4 la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-26013-5

Canadi

ABSTRACT

Simulation of the Error Control Procedures in the
Xpress Transport Protocol

Duc Quang Duong

Computer networking technology has seen explosive growth over the past thirty years.
Along with the rapid development of high speed communication media, the demand for a
more efficient transport layer protocol is increasing. Many research activities have been
devoted to this area. The Xpress Transport Protocol (XTP) is one such example. XTP was
designed to fix some deficiencies in the Transmission Control Protocol (TCP), and to provide
a highly efficiency transport service.

This thesis presents the simulation of the error control procedures of XTP by using a
simulation tool called SMURPH (System for Modeling Unslotted Real-time Phenomena),
which is an object-oriented configurable simulator. Ethernet is the chosen LAN environment
for the simulation of XTP in SMURPH.

The simulation results show that XTP has excellent performance, even for large file
transfers in an environment with high bit error rates. The excellent performance of XTP is
due to the excellent design decisions made for the error control mechanisms.

Fiber optic transmission medium is rapidly becoming available for communication
networks. The low bit error rates are a beneficial result of the move toward fiber optic
networks. The thesis thus investigates the performance of XTP and the behavior of the XTP
error control for bulk transferring in a low bit error rate environment.

The thesis also studies the Ethernet Capture Effect problem, which results in

performance degradation of XTP simulation. The thesis shows that XTP can overcome the
Ethernet Capture Effect by using an enhanced backoff algorithm for its collision resolution.

iii

ACKNOWLEDGEMENTS

[am very grateful to my thesis supervisor Dr. J.W. Atwood, whose generous support
and guidance have made the completion of this thesis possible. I would also like to express

my gratitude to the members of my thesis defense committee.

I would like to especially thank Mr. Guo Kun and Mr. Georges Chung Kam Chung for

their support during my thesis study.

I would also like to thank my parents, my brothers, and my sister for all of their

support.

Finally, I wish to thank Mrs. Sandra Wright, of Toronto, Ontario, and all Sisters at St.

Joseph Mother House, of London, Ontario.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES ...ttt e e e e e e e e sneesneemnreees vii
LISTOF FIGURES ...t et e e e e e e e e e eeneeenneeeeeean viii
LIST OF LISTINGSt et ee e e e e e e e e eeeenneeaeeeeeennnns xi
LIST OF ABBREVIATIONS ... Xit
1. INTRODUCGTION ...t e e e e e e e e eeneeeennnnnnes 1
2. ANINTRODUCTION TO XTP.....ooeeeeeeeee e 3
2.1 Background....... ..o 3
2.2 ProtoCOl COMCEPLSoooiiiniiiiieeeeetieee e e 5
2.3 COMEEXL. ..ottt 5
2.4 ASSOCIALION ..ottt ettt e e e e e e e e e e e e e nnanee s 6
2.5 Data Stream and SeqUENCE SPACEooooieieiieiiiiiiiiieeeeceee e 6
2.6 XTP Packet Types and StrUCIUTeS...........c..oouoiviiiiieiicieeieeeeieeeeeeee e 6
2.6.1 Header FOrmat............oooiiiiiiiieee e 8
2.6.2 Information SEGMENtocoiiiiiiiiiiiiiceeeee e 11
2.6.2.1 FIRST PaCKEL........ooiiiiieeeeeeeeeeee e 12
2.6.2.2 DATA PACKEL ... 13
2.6.2.3 JOIN PECKELo 13
2.6.2.4 DIAG PaCKet ... 14
2.6.3 Control SEGMENL..........coooiiiiiiiee e 14
2.6.3.1 CNTL PaCKeL ...cooniiiiee e 14
2.6.3.2 ECNTL PacCKetoooiniiee e 15
2.6.3.3 TCONTL PaCKet ..o e 16
2.7 XTP Emror Control ..o 16
2.8 Status REPOItS.........coiiiii e 19
2.9 RetransmusSION StrateZY...........ooovviiiiiiiiiieiiieieeeeeee e 19
2.10 Connection set-up, ending and managementccoeeiiiiimiiieieeeeeeeannn. 19
21T THIMEES - et 22
2.12 Synchronizing Handshakecccooooiiiiiii e 23
213 FIOW CONLIOL ... e 23
2.14 Rate CONLIol..... .o 24
215 XTP MUICASE ... e 25
2.16 CONCIUSION. ...ttt ettt e eee e 26
3. AN INTRODUCTION TO SMURPH AS A SIMULATORTOOLccoevvveennn... 27
3.1 Development History of SMURPHcocoooiiiiiiiiiiiee e 27
3.2 Programming a protocol in SMURPH....................cooooiiiiiiiiiiiiiceeeeeeeee. 28
3.3 SMURPH TYPES.... ..ottt e e e e 29
3.4 Defining Network GEOMELIYcooviiiiiiieiiiiiiieieeeeeee e 31
3.3 PrOCESSES..... ittt ae e 31
3.6 ACHVItY INtErPIeters.oooiiiiiiiiiiee e 32

3.7 Defining traffic cONditions.................oc.ooommoioi e 32
3.8 THMC .o 33
3.9 Performance MEASUTESo..oooouimmieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 33
3.10 SMURPH DebUBZET -........oeoomiiiieoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 33
3,11 DESCUSSION ..ottt 34
4. SIMULATION OF XTP USING SMURPHcoocooooomooeeeeeeeeeeoe 35
4.1 Conceptual Model of XTP Simulatorin Smurpho.ocooooooooooeo 35
4.2 SMURPH PIOCESSESooiiiiemeeeo 37
4.2.1 The Initialization ProCess.ccooooeoieoiooeeeeeoeeeeeee e 39
4.2.2 The WIIter PrOCESSooioooiiooeee 39
4.2.3 The Sender PrOCESSc.coo.iiiiiiieeeeeeeeeeeeeeeeeeeeee e 41
4.2.4 Process SErialiZer............ooooooiiiiiiieeeeeeeeeeeeeeeeee e 44
4.2.5 Process XTP_RateControl..................oooooiiiiiioieieoeeeeeeee oo 45
4.2.6 Process XTP_Timer........occooimiiiiiiiiiieoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 47
4.2.7 The process Ethernet_ TranSmitterccooovooeoooeoeoeoeoeo o 50
4.2.8 The process Ethernet ReCeiVer.coooovovooioooeoo 50
4.2.9 The process XTP_RECEIVET.................ocoooooooieieeeeeeeoeeeoee oo 50
4.2.10 The process XTP_Readercoccooiimeoeoeeeoeeeeeoeeo 53
4.2.11 The process CONSUMIETc.oomeoieeeeeeeeeeeeeeeeeeeee oo 56

4.3 Opverall Data Structures Used in the Simulation... . 57
4.4 Determining the Round Trip Time (RTT).....ccoooooeeee oo 64
4.5 Policy for the setting of the DREQ bit in bulk transfer..................................._ . 64
5. XTP SIMULATION PERFORMANC Ecoccooiiimmooeeeooeeeeeeoeeeeoeoo 66
5.1 The SMURPH Tunable Parameters...................ccooooooeooioooo 66
5.2 The XTP Tunable Parameterscocoooooiooooooooo 66
5.3 MEASUTEMENLS.oociimiiiiiiiiiio e 67
5.4 The Simulation PIan................c...ooiio i 68
5.5 The Simulation ReSUILS e 70
6. XTP IN LOW ERROR RATE ENVIRONMENTooooooooooioeoe oo 86
6.1 The XTP simulation plan in low error rate environment...................................._ 86
6.2 XTP simulation results in low error rate environment._ 86
6.3 The behavior XTP’s error control in a low error rate environment........................... 90
6.4 The pattern of PACKELScoooooi oo 95
6.5 The ReCOVEry TIMecccoooomiuiiiiiieeeeeeeee e 97
7. THE ETHERNET CAPTURE EFFECToooooiiiieeeeeeeoeoeeeeeeeeoeoe 100
7.1 The Ethernet Capture Effect ..o 101
7.2 The CABEB AlGOrthm. ... 102
7.3 Performance of XTP with CABEB algorithm.................o...ocooooooi 106
8. CONCLUSION ...t 113
8.1 TRESIS GOALS........cooiiimiiiiieeeeeeeeee e 113
8.2 XTP PerfOrmanceccoooouiiiiiioieeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeoee oo 113
8.3 FULUIre WOTK. ... 114

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table

Table

5.1:
5.2:
5.3:
5.4:
5.5:
5.6:
5.7:
5.8:
5.9:

5.10:
5.11:
5.12:
5.13:
5.14:

6.1:

6.2:

6.3:

6.4:

LIST OF TABLES

Page
Throughput vs. Offered loads for 6 Byte Messages (no delay).................. 72
Throughput vs. Offered loads for 128 Byte Messages (no delay)............... 73
Throughput vs. Offered loads for 1 KByte Messages (no delay)............... 74
Throughput vs. Offered loads for 8 KByte Messages (no delay)................ 75
Throughput vs. Offered loads for 1 MByte Messages (no delay)................ 76
Throughput vs. Offered loads for 6 Byte Messages (with delay)................ 77
Throughput vs. Offered loads for 128 Byte Messages (with delay)............. 78
Throughput vs. Offered loads for 1 KByte Messages (with delay).............. 79
Throughput vs. Offered loads for 8 KByte Messages (with delay).............. 80
Throughput vs. Offered loads for | MByte Messages (with delay)............. 81
Average Message Delay vs. Offered Loads for 6 Byte Messages............... 82
Average Message Delay vs. Offered Loads for 128 Byte Messages............ 83
Average Message Delay vs. Offered Loads for 1 KByte Messages............ 84
Average Message Delay vs. Offered Loads for 8 KByte Messages............. 85

Throughput vs. Offered loads for | MByte Messages (with delay) with error
control (Selective Retransmission), and different bit error rates................. 88

Throughput vs. Offered loads for | MByte Messages (with delay) with error
control (Go-Back-N), and different bit errorrates................................ 89

The patterns of data packets sent by the Transmitter after a data packet
isdamaged. ... 97

Transmitter’s average recovery time for XTP simulation runs of
1 MB messages (delay and no delay), with bit error rate of 1/4,000,000
and with Selective Retransmission Error Control.......................... ... 98

vii

LIST OF FIGURES

Page
Figure 2.1: XTP CommunicationModel...___ 5
Figure 2.2: Seven Types of XTP Packets..____ 7
Figure 2.3: XTP packet: 2 majorsegments......................................._ 7
Figure 2.4: XTP HeaderFields.._ 8
Figure 2.5: XTP packet: Information Segment Structure Overview................... 11
Figure 2.6: FIRST Packet Syntax.._...___ 12
Figure 2.7: DATA Packet Syntax...__._ 13
Figure 2.8: JOIN Packet Syntax..__ 13
Figure 2.9: DIAG Packet Syntax...____ 14
Figure 2.10: CNTL Packet Syntax.......................cco..oo 15
Figure 2.11: ECNTL Packet Syntax..___ 1S
Figure 2.12: TCNTL Packet Syntax..._ 16
Figure 2.13: SpansinaDataStream..._. 17
Figure 2.14: Possible packets exchanged for example in figure 2.13........................ 18
Figure 2.15: Association Establishment..___ 20
Figure 2.16: Fully Graceful Independent Close.....................................__ 21
Figure 3.1: The hierarchy of user-visible compound tYPES. ... 30
Figure 4.1: Simulated Station Architecture [Chung93]............................_. 36
Figure 4.2: Data Flow Diagram at a station of the simulation program..................... 38
Figure 4.3: Finite State Machine for the process XTP_Writer................................ 40
Figure 4.4: Finite State Machine of the process XTP_SENDER............................. 43
Figure 4.5: Finite State Machine of the process XTP_Timer................................. 49
Figure 4.6: Finite State Machine of the process XTP Reader............................... 55
Figure 4.7: Data Flow Diagram between processes of a station of

the simulation program.. 58
Figure 4.8: Signal Flow Diagram between processes of a station of
the simulation program... 61

viii

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5 .4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:

Figure 6.1:

Figure 6.2:

Figure 6.3:
Figure 6.4:
Figure 6.5:

Figure 6.6:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Throughput vs. Offered loads for 6 Byte messages (no delay)................. 72
Throughput vs. Offered loads for 128 Byte messages (no delay)................ 73
Throughput vs. Offered loads for 1 KByte messages (no delay)................. 74
Throughput vs. Offered loads for 8 KByte messages (no delay)................. 75
Throughput vs. Offered loads for 1 MByte messages (no delay)........... ... 76
Throughput vs. Offered loads for 6 Byte messages (with delay)................ 77
Throughput vs. Offered loads for 128 Byte messages (with delay)............. 78
Throughput vs. Offered loads for 1 KByte messages (with delay).............. 79
Throughput vs. Offered loads for 8 KByte messages (with delay).............. 80
Throughput vs. Offered loads for 1 MByte messages (with delay).............. 81
Average Message Delay vs. Offered Loads for 6 Byte Messages............... 82
Average Message Delay vs. Offered Loads for 128 Byte Messages............. 83
Average Message Delay vs. Offered Loads for 1 KByte Messages............. 84
Average Message Delay vs. Offered Loads for 8 KByte Messages............ 85
Throughput vs. Offered loads for 1 MByte Messages (with delay) with error
control (Selective Retransmission), and different bit error rates..... ... 88
Throughput vs. Offered loads for 1 MByte Messages (with delay) with error
control (Go-Back-N), and different bit errorrates...................__ 89
Timediagram................................... ... 93
Receiver’s specification of errors................................. 94
The pattern of data and CNTL packets sent and received

by the Transmitter...................................... . 95
Average Recovery Time of XTP simulations runs of 1MB messages (with
delay), with bit error rate of 1/4,000,000 and Selective Retransmission

Error Control.................. 98
Examples of Transmit Cases...................................._ 103
Throughput vs. Offered loads for 1 MB messages (with delay),

with Error Control (Selective Retransmission).......................... . 109

The number of collisions vs. Offered loads for 1 MB messages (with delay),
with Error Control (Selective Retransmission)........................... . 110

ix

Figure 7.4:

Figure 7.5:

Throughput vs. Offered loads for | MB messages (with delay),
with Error Control (Go-Back-N)

The number of collisions vs. Offered loads for | MB messages (with delay),
with Error Control (Go-Back-N)

Listing 1:
Listing 2:
Listing 3:
Listing 4:
Listing 5:
Listing 6:
Listing 7:

LIST OF LISTINGS

Page
pseudo-code for the process XTP_Sender.. 42
pseudo-code for the process Serializer.. 44
pseudo-code for the process XTP_ RATECONTROL................................ 46
pseudo-code of the process XTP_Timer..........................oooiiiiiii 48
pseudo-code for the process XTP_Receiver... 51
pseudo-code for the process XTP Reader.................................... eeeeens 54
pseudo-code for the process Consumer....................................... ... 56

BEB

CABEB

FDDI

FSM

LANSF

MAC

SMURPH

TCP

VLSI
VMTP
XTP

WAN

LIST OF ABBREVIATIONS

Binary Exponential Backoff Algorithm.

Capture Avoidance Binary Exponential Backoff Algorithm.
Indivisible Time Unit.

Fiber Distributed Data Interface.

Finite State Machine.

Local Area Network.

Local Area Network Simulation Facility.

Medium Access Control.

Remote Procedure Call.

System for Modeling Unslotted Real-time Phenomena.
Transmission Control Protocol.

Transport Protocol class 4.

Very Large Scale Integration.

Versatile Message Transaction Protocol.

Xpress Transport Protocol.

Wide Area Network.

xii

1. INTRODUCTION

Computer networking technology has seen explosive growth over the past thirty years.
The transmission rate of the Local Area Network (LAN) has been increased from 10 million
bits per second (Mbits/sec) in the 1970s, to the order of 100 million bits per second in the
1980s. We expect to see the deployment of Wide Area Network (WAN) gigabit per second
networks in the 1990s.

Along with the rapid development of high speed communication media, the demand
for a more efficient transport layer protocol is increasing. Many research activities have been

devoted to this area. The Xpress Transport Protocol (XTP) is one such example.

XTP’s aim of achieving high efficiency in transport service is reflected by the design
decisions made in the error control protocol. This thesis presents the simulation of the error
control procedures of XTP. The simulation results can be used for performance analysis of

XTP.

The tool used to simulate XTP is the System for Modeling Unslotted Real-time
Phenomena (SMURPH). The word “unslotted” means that the user has absolute freedom in

specifying the flow of time as well as its granularity.

As mentioned in [Gburzynski9la], simulating a communication protocol has the
advantage of being less time consuming than building a corresponding mathematical model.
In addition, assumptions that are usually made in the mathematical models can be easily

implemented.

The thesis consists of 8 chapters:

The second chapter introduces the background of XTP, and describes the operations of
XTP, which includes connection management, data transfer, error control, termination

management, and multicasting.

1. Introduction 2

The third chapter explains the basic structure of the simulation tool SMURPH, which

has been used in this thesis as the performance simulation tool for XTP.

The fourth chapter presents our design of the XTP simulation program. It includes all

the data structures, algorithms, and pseudo code of the XTP simulation programs.

The fifth chapter documents the test plan for the XTP simulation program. It states all
the assumptions on which the simulation program and the simulation test plan were based.
This chapter then shows all the simulation results, as well as the analysis of the XTP

throughput performance obtained from these simulation results.

The sixth chapter studies the performance of XTP and the behavior of the XTP Error

Control in a very low error rate environment.

The seventh chapter explains the Ethernet Capture Effect problem in the XTP
simulation. It then presents an enhanced backoff algorithm than can be implemented to solve

this problem.

The last chapter is the conclusion of the thesis. It also proposes future enhancements

to our work.

2. AN INTRODUCTION TO XTP

2.1 Background

XTP is designed to provide high throughput and a reliable transport service to its users,
in an optical fiber network. The XTP design is motivated by the needs of contemporary and
future distributed, real time, transactional, and multi-media systems, with high transmission

speed, and low error rate.

The two most successful transport protocols, the Transmission Control Protocol
(TCP)(1977), and the ISO Transport Protocol class 4 (TP4)(1982) were designed for an era
when network transmission bandwidth was low and error rates were high. Many new
generation of protocols have been designed to provide the services that TCP had failed to
provide. Delta-t (for connection management)(1978), NETBLT (for bulk data
transfer)(1986), VMTP (for transactions)(1986), and many other new generation of protocol
designs are the result of identifying and fixing some deficiency in TCP. XTP joins this list
with contributions in: orthogonal protocol functions for separating paradigm from policy,
separation of rate and flow control, explicit first-class support for reliable multicast, and data

delivery service independence.

Separation of paradigm and policy. At the core of XTP is the set of mechanisms
whose functionality is orthogonal to one another. The most notable effect of this is that XTP
clearly separates communication paradigm (datagram, virtual circuit, transaction, etc.) from
the error control policy employed. Further, flow and rate control as well as error control can
be tailored to the communication at hand. If desired, any of these control procedures can be

turned off.

Separation of rate and flow control. Flow control operates on end-to-end buffer
space. Rate control is a producer/consumer concept that considers processor speed and

congestion. TCP does not provide rate control, and combats congestion with low-start and

2.1 Background 4

other heuristics. XTP provides mechanisms for shaping rate control and flow control

independently.

Explicit reliable multicast support. The transport layer multicast is a unique feature in
XTP. It does not exist in other well-known transport protocols, such as TCP and TP4. The
potential applications of multicast (e.g., distributed databases, distributed simulation,
multimedia workstations, teleconferencing, sensor data distribution) are so numerous that
multicast is XTP’s most distinguishing and important feature. XTP’s multicast is not an
attachment to unicast; rather, each mechanism used for unicast communications is available

for multicast as well. The number of communicants is orthogonal to paradigm and policy.

Data delivery service independence. XTP is a transport protocol, yet with the advent
of switched networks rather than routed internetworks, a traditional network layer service
may not be appropriate in every instance. XTP requires only that the underlying data delivery
service provide framing and delivering of packets from one XTP-equipped host to another.
XTP also employs parametric addressing, allowing packets to be addressed with any one of

several standard addressing formats.

XTP takes benefit from many new generations of protocols. Its design choices aim at
meeting the performance goals, the requirements of new high speed networking environment,

and the demands of VLSI execution environments.

The work reported in this thesis is based on the XTP protocol specification, revision
4.0 (issued in 1995). Only a minimal description of the protocol is given in this Chapter;
interested readers are referred to the most recent version of the XTP specification
[XTPForum95]. Furthermore, the influences of the conventional protocols (such as TCP,
TP4, Delta-t, VMTP, etc.) to the design of XTP are described in [Strayer92].

2.2 Protocol Concepts 5

2.2 Protocol Concepts

XTP provides a means for reliably delivering packets between two or more end
systems. [Each host retains and exchanges state information with its peer. The state
information is encoded as control information in packets. The following concepts are basic

to XTP: context, association, data stream, and packet.

2.3 Context

The term context denotes state information kept within one end system. This
information represents one instance of an active communication between two (or more) XTP
end points. A context must be created before sending or receiving XTP packets. There may
be many active contexts at an end system, one for each active conversation. Figure 2.1

illustrates active contexts in two end systems.

Initiating Corresponding
End Point Association End Point
Local XTP Remote XTP
Implementation Implementation
Context Context
Manager Manager
% Data Stream / Control Info R L,_ggj
V4 \ Data Stream / Control Info 7

/
/ \ /

Contexts Initiating Context Corresponding Context

Figure 2.1: XTP Communication Model.

2.4 Association 6

Each context manages both an outgoing data stream and an incoming data stream as
well as the potential for both sending and receiving control information. The relationships
between context, and data stream, and the exchange of control information are illustrated in
figure 2.1 (for simplicity, this figure shows a unicast association; a multicast association is

similar with more end points).

2.4 Association

An association is the name given to the aggregate of a pair of active contexts and the

data streams between them as illustrated in figure 2.1.

The process of creating an association is not symmetric. That is, one host is an
initiator and the other host is a passive listener. However, once an association exists, it is
symmetric: data and control packets may flow in full duplex fashion in either direction

between end systems.

2.5 Data Stream and Sequence Space

A data stream is an arbitrary length string of bytes, where each byte is represented by

a sequence number. XTP sequence numbers are 64-bit unsigned integer values.

Sequence numbers provide the basis for flow control and error control between XTP
end systems. Flow control regulates the volume of data that may flow between end points by
controlling the portion of sequence space that may be transmitted. Data reception is
acknowledged in terms of sequence numbers. Also, transmission errors and retransmission
are defined in terms of sequence number pairs, called spans, which delineate a portion of

sequence space.

2.6 XTP Packet Types and Structures 7

2.6 XTP Packet Types and Structures

A packet is the basic unit for information exchange between the endpoints of an
association. The fields within a packet hold the information pertaining either to the state of
the association or to the data being transferred. In XTP, there are 7 types (figure 2.2) of
packets with 2 formats: a control format and an information format (figure 2.3). Both
formats have the same header but have different bodies. The control packets carry a Control
Segment and are used to exchange protocol state information between contexts in an
association. User information, including user data and protocol diagnostic messages, is

carried in the Information Segment of the information packets.

Type Format Function

CNTL Control State Exchange control packet
ECNTL Control Error Control Packet

TCNTL Control Traffic Control Packet

DATA Information User Data Packet

FIRST Information Initial Packet of An Association
JOIN Information Multicast Join Packet

DIAG Information Diagnostic Packet

Figure 2.2: Seven Types of XTP Packets.

L XTP Packetj

L Header I Information Segment or Control Segment]

Figure 2.3: XTP packet: 2 major segments.

2.6 XTP Packet Types and Structures 8

2.6.1 Header Format

All XTP packets use a fixed header syntax consisting of the following fields: key, cmd
(command), dlen (data length), check (check sum), sort (priority), sync (synchronizing
number), and seq (sequence number). The key field steers the packet to the proper
destination context. The cmd field dictates how the packet to be processed. The dlen and
seq fields identify the packet’s contents with respect to the data stream. The check and sync
fields are used to determine the validity of the packet, and sort field orders the act of parsing
the packet among all contending activities. The XTP header and its fields are shown in figure
2.4 below.

) (Header(32 Bytes))_ .

[key(8) I cmd(4) | dien(4) | check(?)] sort(2) | sync(d) | seq(8)

=
.....
.....

] options(3) | ptype(1)]

31[30 29 [28]27]26 [25[24 23 [22 21 [20[19]18]17]16] 15 —08 | 07 -05] 04 —00 |

N[EIN|[M[R[S[N|F[S[D[R[W[EIE|B ver lpformat

o|p|lo|ulElolola|[rR|R]|C]|clO|N]|T

cl|G|E|L|S|R|FIS|E|E|L|L[M|D[A] rsvd

H|E|R|T TiL|{T|Q|Q|O]|O G| bits

E R|I O|N s|s

C wla E|E

K K

Figure 2.4: XTP Header Fields.

2.6 XTP Packet Types and Structures 9

The 32-bit cmd field carries the options set for the packet in the options field, plus the
type of the packet and the version of the protocol that generated the packet in the pfype field.

The bitflags in the options field select XTP modes and mechanisms. The logic
convention is positive: a function is enabled if the corresponding bit is set (value is 1), it is
disabled if the bit is cleared (value is zero). Zero or more bits may be set in the header. In

the following, we briefly discuss the meaning of some of the bits in the options field.

NOCHECK
When set, this bit indicates that the checksum is calculated over the header field

only, and the rest of the packet is not summed. When cleared, the checksum is

calculated over the whole packet.

NOERR
When set, this mode bit informs the receiver that the sender will not retransmit data,

and directs the receiver to disable error correction processing. This is called no

error mode.

MULTI
When set, this bit indicates use of muliticast mode. The value of this bit must be the

same in all packets over the life time of the association.

RES
When set, this bit enables reservation mode. By setting this bit, the sender indicates

to the receiver that the alloc values provided by the receiver in its control packets
(section 2.6.3.1) must represent actual client buffer space available, not XTP
internal buffer space. The purpose of reservation mode is to avoid overflowing XTP

buffers during bulk transfer.

SORT
When set, this bit indicates that the value in the sort field of the header should be

interpreted and used for sorting/prioritizing the packet.

2.6 XTP Packet Types and Structures 10

NOFLOW
When set, this mode bit indicates that the sender does not observe flow control

restrictions (section 2.13). Specifically, the allocation limit imposed by the receiver

(in the alloc filed of control packets) does not constrain the sender.

FASTNAK
This bit indicates that the receiver should provide aggressive error notification. If a

receiver detects an out-of-order packet and the FASTNAK bit is set, then the
receiver immediately returns an ECNTL packet (section 2.6.3.2) to the sender to

indicate the error. The FASTNAK bit has no effect when the NOERR bit is set.

SREQ
When set, the receiver must respond immediately with a control packet (section

26.3.1). The SREQ bit is set by an XTP sender according to its output

acknowledgment policy or when responses are needed to recover from errors.

DREQ
When set in a data-bearing packet, the receiver must send a control packet after all

enqueued data, up to and including any in this packet, have been delivered to higher-

layer applications.

WCLOSE and RCLOSE
These bits are the basis for disconnect handshakes carried out by the close state

machines (section 2.10).

EOM
This bit is used to delimit message boundaries in a data stream: when set, this bit

denotes the current packet is the last packet of a message.

END
When set, this bit indicates that the sending context is being released. It is used in

the last packet of a closing handshake and also when an association is aborted

(section 2.10).

2.6 XTP Packet Types and Structures 11

2.6.2 Information Segment

The Information Segment encapsulates user and other protocol and diagnostic
information. XTP packets containing an Information Segment as their payload segment are
called Information packets. FIRST, DATA, JOIN, and DIAG packets are the information
packets corresponding to the possibilities in figure 2.5. The first two types (FIRST, and
DATA) can contain higher layer (user) data. These are referred to as data-bearing packets.

These other two (JOIN and DIAG) contain transport layer message only.

[Information Segment j

t Data Segment J

t Address Segment I Traffic Specifier J

t Diagnostic Segment J

Figure 2.5: XTP packet: Information Segment Structure Overview.

2.6 XTP Packet Types and Structures 12

2.6.2.1 FIRST Packet

The syntax for a FIRST packet is shown in figure 2.6. The FIRST packet carries all of
the information necessary to find a listening context at a destination host, and establish an
association between that context and the sending context (section 2.10). To effect this, the
FIRST packet includes an address specification. The Address Segment of the FIRST packet
contains destination and source addressing information. The address field holds the
addresses for the source and destination endpoints. The aformat field specifies the format of

the address, and the alen field specifies the segment’s total length.

The traffic specifier segment contains the traffic information fields. These fields are
used to negotiate traffic shaping information. The service field indicates the type of the traffic
expected for the association. The traffic shaping information is held in the traffic field, whose

format is determined by the tformat field, and whose length is given by the #/en field.

&Ieader L Address Segment L Traffic Specifier | Data Segment

...............

tlen(2)[_service(1)] tformat(1) | raffic(@ * 8n))

-

.

I alen(2)| adomain(li aformat(l)l address (4 + 8n)|

Figure 2.6: FIRST Packet Syntax.

2.6 XTP Packet Types and Structures 13

2.6.2.2 DATA Packet

The syntax for the DATA packet is shown in figure 2.7. After establishment of the
association, subsequent data transfers in both directions use the DATA packet. The seq field
(figure 2.4) in the Header indicates the beginning sequence number for the data contained in
the Data Segment. The first 8 bytes of a Data Segment may be marked, or “tagged”, for
special use by higher application. The btag field is opaque to XTP, meaning that XTP

transmits the contents of the btag field but does not look inside or interpret it.

E Header L Data Segment)

[Bag@®) | Data(n) |

Figure 2.7: DATA Packet Syntax.

2.6.2.3 JOIN Packet

The JOIN packet are used to join an in-progess multicast conversation. A JOIN

packet has the syntax shown in figure 2.8.

£ Header I Address Segment Ll‘raﬁic Speciﬁer]

Figure 2.8: JOIN Packet Syntax.

The Address Segment, and the Traffic Specifier Segment of the JOIN packet have the
same formats as those in FIRST packet (section 2.6.2.1).

2.6 XTP Packet Types and Structures 14

2.6.2.4 DIAG Packet

DIAG packets are used to report pathological conditions that are either fatal or which
require corrective action. The format for a DIAG packet is shown in figure 2.9. The code
field indicates the major error category, and the val field modifies that category with more
specific information. The message field is not parsed by XTP, but may be written to a log file

or given to the user.

(Headerl Diagnostic Segment)

[code® | val(4) | message(n) |

Figure 2.9: DIAG Packet Syntax.

2.6.3 Control Segment

A Control Segment reports the state of the context that sent it. XTP packet contains a
Control Segment as their payloads are refered to as control packets. Control packets are

used to exchange state information between XTP endpoints.

The Control Segment is included in CNTL, ECNTL, and TCNTL packets. The three
packet types correspond to the three possibilities for the Control Segment.

2.6.3.1 CNTL Packet

The format of the CNTL packet is shown in figure 2.10. The three fields in the

Common Control Segment represent the state information for which a control packet is most

2.6 XTP Packet Types and Structures 15

commonly needed. The fields in this segment are common to all three control packet types.
The first two fields, rseq, and alloc, are flow control parameters and together define the flow

control window (section 2.13). The rseq field holds the highest sequence number for data

received without gaps.

[Header LCommon Control Segmentj

| rseq® | alloc(8) [echo(4)

Figure 2.10: CNTL Packet Syntax.

2.6.3.2 ECNTL Packet

The format of the ECNTL packet is shown in figure 2.11. The Error Control segment
includes all the fields of the Common Control Segment with two additional fields, nspan, and

spans.

The nspan field indicates the number of pairs of sequence numbers held in the spans
fileld. A pair of sequence numbers, or span, indicate the data that have been correctly
received. The gap information, which can be determined from the spans field, allows this

packet’s transmitter to selectively retransmit only the missing bytes of data (section 2.7).

(Header I Error Control Segment J

-

.

.

[rseq®) | alloc(8)| echo(4) | nspan(4)] spans(16n) |

Figure 2.11: ECNTL Packet Syntax.

2.6 XTP Packet Types and Structures 16

2.6.3.3 TCNTL Packet

The format of the TCNTL packet is shown in figure 2.12. The TCNTL packet is used
to negotiate a traffic specification, which usually happens at or near the beginning of the
association. The Traffic Control Segment includes all the fields of the Common Control
Segment with two additional fields and a Traffic Specifier. The two additional fields are rsvd
(reserved) and xkey (the exchange key field). The Traffic Specifier contains traffic shaping
information, and its format was briefly described in 2.6.2.1 (the FIRST Packet).

[Header I Traffic Control Segment j

| Rseq(8) | alloc(8) | echo(4) | rsvd(4) | xkey(8)[Traffic Speciﬁeﬁ

Figure 2.12: TCNTL Packet Syntax.

2.7 XTP Error Control

Error Control in XTP is based on the exchange of information regarding lost or

damaged data and the retransmission of these data.

The receiver detects missing packets by checking its incoming data stream for gaps in
the sequence number. The receiver records the missing data by keeping the sequence number
of the first missing byte, and optionally by keeping a list of spans of correctly received data.
When a control packet is sent, the receiver’s context checks to see if any data are missing, If
there are no data missing, then a CNTL packet is used. This packet acknowledges the receipt
of all data whose sequence numbers are less than the value in the rseq field (section 2.6.3.1).
If missing data have been detected, an ECNTL packet is sent. In addition to using the rseq

field in this packet to acknowledge data in the same manner as in

2.7 XTP Error Control 17

the CNTL packet, the nspan, and the spans fields (section 2.6.3.2) are used to selectively

acknowledge spans of data received.

The example in figure 2.13 illustrates the construction of a spans field. For an
incoming data stream of eleven 100-byte packets with seq fields of 0, 100, 200, 300, etc.
The receiver only sees packets with seq field values 0, 100, 200, 300, 600, 700, 900, 1000.
Since bytes 0 to 399 are a contiguous sequence, the receiver fills the rseq field of the ECNTL
packet with 400. The receiver then describes all other intact spans using the spans field.
Here, two spans exist, so the value in the nspan field would be two and the pairs within spans
field are [600,800] followed by [900,1100]. This combination of rseq, nspan, and spans
makes it possible for the data stream’s sender to calculate that sequence numbers 400

through 599, and 800 through 899 should be retransmitted.

gap Span gap Span
[[0...100...200...300 ... 399] 400...... . .-+399[600 800]800 " 399900 1100]
| \ ; N/
rseq = 400 [600,800] [900,1100]
First span Second span
1n spans n spans

Figure 2.13: Spans in a Data Stream.

Receipt of an ECNTL packet implies that some data have been lost. The rseq, nspan,
spans fields specify what data are lost. The transmitter may retransmit data whose sequence
numbers start at rseq and continue to the highest sequence number sent by the transmitter.
This is go-back-N retransmission. Alternatively, the transmitter may selectively retransmit
only the data specified as missing. In this case, the transmitter retransmits data starting at
rseq (400) and continuing up to, but not including, the first value of the first spans pair
[600,800]. The next piece of retransmitted data is from the second value (800) of the first

spans pair, and continuing up to, but not including, the first value of the second spans pair

2.7 XTP Error Control 18

[900, 1100]. Figure 2.14 can be used to show the possible packets exchanged between the

sender and receiver of the example in figure 2.13.

Transmitter Receiver
FIRST (seq = 0) _\
DATA (seq = 100) B rseq = 100
DATA (seq = 200) s rseq =200
DATA (seq = 300) [~ rs¢q =300

DATA (seq = 400) —_ — \ rseq = 400
k lost

DATA (seq =500) —m87H1o—— —~——,
* lost

DATA (seq = 700)

/

rseq = 400, nspan = 1
spans = [600,700]

DATA (seq = 800) [rseq =400, nspan = 1
k lost spans = [600,800]
DATA (seq = 1000 rseq = 400, nspan =2
SREQ bit set) spans = {[600,800] [900,1000] }
Data packet with SREQ bit on
to request for a CNTL packet [rseq = 400, nspan =2

spans = {[600,800] [900,1100]}

. +—— ECNTL
spans = {[600,800][900,1100]}

]
Retransmission of
fost paCketS ——\
s T~

Figure 2.14: Possible packets exchanged for example in figure 2.13.

2.8 Status Reports 19

A Transmitter requests the status of the receiver’s incoming data stream by setting the
SREQ (as shown in figure 2.14) bit in an outgoing packet’s header. The SREQ bit indicates

to the receiver that the status must be reported immediately to the transmitter.

2.8 Status Reports

Status reports in XTP are requested by setting SREQ (or DREQ) bit in an outgoing
packet. If SREQ bit is set in an outgoing FIRST, or DATA packet, the CNTL packet
response is returned immediately, recording receiver status at the time of the arrival of the
requesting packet. If DREQ is attached to a FIRST, or DATA packet, the CNTL packet
response is sent once the data have been delivered to the destination host, thus providing

more useful information to the sender, including the updated values alloc and rseq.

SREQ/DSEQ-initiated status reports are controlled by the sender. No policy for
setting SREQ or DREQ is defined in XTP, but a timer (Wtimer) (section 2.11) must be
started when a packet is sent with SREQ bit set. If WTIMER expires, a new request for the
status report is issued, and XTP enters a synchronizing handshake (section 2.12), when all

further data transmissions are halted until the correct status is received.

2.9 Retransmission Strategy

Data packet retransmissions in XTP are triggered by the arrival of status reports
(ECNTL packets with non zero npans) showing missing data. As a result, XTP will never

retransmit a packet without a positive indication that it has not been received.

2.10 Connection set-up, ending and management

XTP, unlike conventional protocols, uses a single packet to establish a virtual circuit
connection. Figure 2.15 shows the establishment of an association. The context B at one
end-system is initially in a quiescent state. A user awaiting the start of an association

requests that context be placed in the listening state (1). At the other end-system, a user

2.10 Connection set-up, ending and management 20

requests the establishment of an association (2). The context handling this user moves from a
quiescent state to an active state, where it constructs a FIRST packet with explicit addressing
and service information obtained from the user. The FIRST packet is sent via the underlying

delivery service.

Context A Context B
Listen request (1)
Send request (2) (Context is listening)
FIRST packet sent T —
(Context goes active) T Match FIRST to listening context (3)

(Context goes active)

Association Established (4)

Figure 2.15: Association Establishment.

When the FIRST packet is received by the destination end-system, the address and
service information in the FIRST packet is compared against all listening contexts. If a match
is found, the listening context is moving to the active state (3). From this point forward, an
association is established, and communication can be completely symmetric since there are
two data streams, one in each direction, in an association (4). Also, no other packet during
the lifetime of the association will carry explicit addressing information. Rather, a unique
“key” is carried in each packet, which allows the packet to be mapped to the appropriate

context.

In XTP, the closure of an association results in the release of each data stream (as in
TCP). Moreover, each data stream can be ended through a graceful close or a forced
termination. Three header bits (figure 2.4): WCLOSE, RCLOSE, END are involved in the

closure features. A fully graceful independent close is shown in figure 2.16. Context A

2.10 Connection set-up, ending and management 21

initiates the close of its outgoing data stream with a packet with WCLOSE bit set. When all
data are accounted for according to the error control parameters for the A-to-B data stream,
Context B responds with a packet with RCLOSE set. At this point, the A-to-B data stream
is graceful closed, but the B-to-A data stream remains open. Later, context B initiates the
close of its outgoing data stream by setting the WCLOSE in an outgoing packet. Context A
responds accordingly with an RCLOSE. At this point, Context B sends a packet with the

END bit set, and the association is terminated.

Context A Context B

WCLOSE —-H\
T——

L — 1" RCLOSE
] .

| __——1— WCLOSE | RCLOSE
/

WCLOSE |[RCLOSE ~ _____ \

| ___——T——— WCLOSE | RCLOSE | END

—

Figure 2.16: Fully Graceful Independent Close.

2.11 Timers 22

2.11 Timers

Certain aspects of the XTP control procedures reply on timers to signal when an
expected event has failed to occur. Without the use of timers, the protocol risks deadlock.

There are four timers in XTP: WTIMER, CTIMER, CTIMEOUT, and RTIMER.

The WTIMER is the timer that guards against the lost of a packet with the SREQ bit
set. Whenever a packet is sent with the SREQ bit set, the sender’s context also starts the
WTIMER, loading it with a smoothed round-trip time (section 4.4) estimate. The
WTIMER is the amount of time the transmitter will wait for the arrival of the control packet
requested. If WTIMER expires before the requested control packet arrives, the context

starts the synchronizing handshake, as described in the next section.

The CTIMER is the timer that ensures that the other endpoint of the association is still
alive. When an context becomes active, the CTIMER is armed. This is a long duration
timer. A count is kept of all the packets that arrive at this context. When the CTIMER
expires, the context examines the packet count. If the count is greater than zero, the
CTIMER is reloaded, and the packet count is cleared. If the count is zero, the CTIMER s
reloaded, and the context enters into a synchronizing handshake as described in the next

section.

The CTIMEOUT timer limits the amount of time a synchronizing handshake can

continue before the context aborts the association, as described in the next section.

The RTIMER is the rate control timer used to govern the frequency of sending bursts

of data. Its use is described in section 2.14.

2.12 Synchronizing Handshake 23

2.12 Synchronizing Handshake

Whenever a packet is sent with SREQ bit set, the transmitter increments a context’s
variable named save_sync by one and pass it into the sync field of the packet’s header. The
context sending the packet with the SREQ bit set also starts the WTIMER.

If a control packet arrives at the transmitter before the WTIMER expires, the value in
the echo field of the control packet is compared with the save_sync value. If they are equal,
the WTIMER is stopped. If the WTIMER expires, the context enters the synchronizing
handshake procedure. The objective of synchronizing handshake procedure is to probe the
receiver by sending control packets at exponentially increasing time intervals until a
successful handshake occurs or the CTIMEQUT expires or the number of retries exceeds a
limit. If either CTIMEOUT expires or the number of retries exceeds a limit, XTP aborts the
association. No data-bearing packets are allowed to be sent during a synchronizing
handshake, including retransmitted data; retransmission may proceed once the handshake has

completed.

2.13 Flow Control

The volume of XTP output is regulated by an end-to-end windowing flow control
mechanism. (The rate at which XTP sends packets into the network is regulated by an
independent, timer-based mechanism described in next section). XTP’s flow control is based
on a sliding window of sequence numbers. A sequence number is assigned to each output

byte of the data stream, starting with the initialized sequence value.

Two fields in control packets are used in flow control procedures. The value in the
alloc (allocation) field in a control packet sent to the transmitter indicates the sequence
number not to be exceeded by the transmitter. This value represents the upper edge of the
flow control window. The value in the rseq field in a control packet sent to the transmitter is
one greater than the last byte contiguously received. This value serves as the lower edge of

the flow control window.

2.14 Rate Control 24

Two options bitflags modify the way flow control is handed. The RES bit in the
packet’s header sent by the transmitter indicates to the receiver that it should advertise
conservative flow control values, specifically, the alloc value should reflect only as much
buffer space as the user has allocated for the association. This is called reservation mode.
The NOFLOW bit in a packet’s header indicates to the receiver that the transmitter does not

wish to adhere to flow control, so flow control in the forward direction will be disabled.

2.14 Rate Control

Rate control governs the producer-consumer relationship between XTP endpoints.
Rate control is concerned with how fast packets and their contents can be processed, or
consumed, at the receiver. Parameters throttling the rate of production can be fed back to
the sender through the rate control parameters of the Traffic Specifier of the TCNTL packet
(section 2.6.3.3). If explicit rate control parameters are not available, default rate and burst

parameters must be used.

The output packet rate is regulated by two context variables, credit and burst, and by
the refresh timer called RTIMER. The values for credit and burst can be calculated from
the default parameters rate, and burst. The rate value specifies the maximum data rate in
bytes per second. The burst value specifies the maximum number of bytes to be sent in a
burst of packets. The rate value divided by the durst value gives the number of burst-size
transmission per second, or the rate at which the credit variable is refreshed. The burst value

divided by the rate value gives the time period of RTIMER (section 2.11).

The credit and burst variables are initialized with the burst value. With each outgoing
data-bearing packet, credit is decremented by the sizes in bytes of the user data transmitted.
Data transmission must cease when credit becomes zero or negative. Upon each expiration
of RTIMER, the internal variable credit is updated with the value burst (credit is updated

approximately rate/burst times per second). Output is permitted as long as credit is greater

2.15 XTP Multicast 25

than zero, and is suspended when credit becomes zero or negative. The suspended state

lasts until credit is refreshed at the next RTIMER interval.

2.15 XTP Multicast

Multicast is the capability to provide Group Communication (one-to-many), as
opposed to Unicast (one-to-one) exchanges. Multicast requires from the underlying service a
proper addressing capability, i.e., broadcast or multicast. In XTP, a multicast association is
initialized by a FIRST packet with the MULTI bit (in the packet’s header) turned on and a
multicast address assigned to the address segment. All the multicast packets have the
MULTI bit turned on. All the mechanism defined in XTP unicast mode are provided in
multicast mode. In particular, flow control and rate control are available. The three error
control methods which are used in point-to-point XTP are possible: no error control at all,

go-back-n and selective retransmission.

In multicast mode, control packets sent by multicast receivers in response to a received

packet with SREQ bit set, are multicast to the group and not only unicast to the sender.

The sender must face a set of control streams. Consequently, at the multicast sender,
the management of control packets does not obey the rules of the unicast mode. Multicast
mode raises the problem of synchronizing the different control streams. After multicasting a
packet with SREQ bit set, the sender must wait for the return of all control packets, then
compare the received values so that actions (in terms of error control, flow control, rate
control) are taken. The strategy used to deal with that appear to be decisive in the

performance of a multicast association.

This thesis simulates XTP in unicast mode, so the XTP multicast operation is not
described in more detail in this section. Interested readers are referred to the most recent

version of the XTP specification [XTPForum95].

2.16 Conclusion 26

2.16 Conclusion

The basic concepts of XTP were briefly described in the sections above. The influences
of the conventional protocols (such as TCP (1977), Delta-t (1978), ISO TP4 (1982),
NETBLT (1986), and VMTP (1986), etc.) can be found in [STRAYER92]. It is evident that
XTP built much of its functionality on mechanisms and concepts introduced in the above
conventional protocols. What makes XTP unique is that it combines these good ideas into a

protocol whose mechanisms are as much as possible orthogonal to each other.

3. AN INTRODUCTION TO SMURPH AS A SIMULATOR TOOL

Recent advances in computer and communication systems have resulted in demand for
new tools for their analysis. The mathematical modeling techniques have so far proved

inadequate in dealing with these systems, and simulation seems to be the only alternative.

This chapter introduces the System for Modeling Unslotted Real-time Phenomena
(SMURPH) as the tool which we used to study the performance of XTP with error control.
In the following, we introduce the development history, and the basic concepts of SMURPH,

to help the reader to understand the simulation design of XTP in the next chapter.

3.1 Development History of SMURPH

SMURPH descends from an earlier package called the Local Area Network Simulation
Facility (LANSF). LANSF is a software simulation modeling package, which was
developed by Dr. Pawel Gburzynski and Dr. Piotr Rudnicky at the University of Alberta in
1988. LANSF was originally developed for investigating Medium Access Control (MAC)
level protocols. The idea of LANSF was to provide a friendly environment for describing
networks and protocols in such a way that the description would look as an abstract
implementation. The environment would take care of accurate modeling of the physical

elements constituting the networks (e.g., communication channels).

Although LANSF had been built with intention of using it in research on
communication protocols, it can also be used to model other communication bound systems.

By now, LANSF has been distributed to over a hundred academic and industrial institutions.
However, one disadvantage of LANSF was its low flexibility in describing compound

data structures. Furthermore, the code written in C for simulation programs using LANSF

was difficult to maintain and modify. The idea of re-implementing LANSF in C++ was born

27

3.2 Programming a protocol in Smurph 28
from the comments of the Networking Group of the Lockheed Space and Missile Company.

SMURPH is the new version of LANSF programmed in C++. It is not a single
interpreter for a variety of networks and protocols, but it configures itself into a stand-alone

modeling program for each particular application.

3.2 Programming a protocol in SMURPH

SMURPH package provides a set of predefined types, objects, functions, and macros
operations. Some of the predefined data structures of SMURPH are:

e configuration elements of a distributed communication system (e.g.,
stations, channels) and

¢ information passed among stations (e.g., messages and packets).

In addition, SMURPH provides:

e functions for accessing the communication system (e.g., startor

terminate packet transmission) and

e tools for process handling (process creation, termination, or

synchronization through the use of signals).

In a protocol program using SMURPH, the user-supplied types and data definitions
together with the protocol processes are contained in C++ files. They look like a regular
program in C++ which has access to the SMURPH libraries of types, data structures,
functions and macros operations. A special support program is provided whose purpose is to
merge the user protocol files with the SMURPH libraries and create a stand alone version of

the simulator. With this approach, the user gets the full power of C++ combined with the

3.3 Smurph Types 29

power of a realistic, emulated environment for programming, executing, and monitoring

communication protocols.

3.3 SMURPH Types

By a SMURPH type we mean a compound, predefined, user-visible type declared as a
class with some standard properties. Figure 3.1 presents the hierarchy of built-in basic
SMURPH types. We assume that all of them are derived from a common ancestor called
class which reflects the fact that they are all compound types, and that the words “class” and

“type” can be used interchangeably to denote the same concept.

From figure 3.1, all objects exhibiting dynamic behavior belong to type Object, which is
an internal type, not visible directly to the user. This type declares a number of standard

attributes and methods that each Object must have.

Timer and Client stand for specific objects rather than types. These objects represent
some important elements of the protocol environment and are static, in the sense that they
exist throughout the entire execution of the simulator. Each of them occurs as exactly one
copy. Therefore, the actual types of the above objects are uninteresting and are hidden from
the user. Other Objects may exist in multiple copies; some of them may be dynamically

created and destroyed during the simulation run.

Generally, all objects belonging to the subtype 4/ (for activity interpreters) are models
of some entities belonging to the protocol environment. They are responsible for modeling

the flow of the time.

The objects shown in figure 3.1 are described in more detail in the following sections of

this chapter.

3.3 Smurph Types

Object

RVariable Station

Timer

Client

30

Class
CGroup
SGroup
Message Packet
EObject
Al
Observer
Process
Port
Traffic Mailbox
Link

Figure 3.1: The hierarchy of user-visible compound types.

3.4 Defining Network Geometry 31

3.4 Defining Network Geometry

The geometry of the modeled network, although static from the viewpoint of the
protocol program, is defined dynamically by explicit object creation and calls to some
functions and methods. As perceived by SMURPH, the topology of modeled network is

defined as interconnection of stations, ports, and links.

Stations are objects of type Station (Figure 3.1). A station typically attached to a link
(or a number of links) via ports. A port (an object of type Port) represents a connection of
one station to a link. A link (an object of type Link) models a simple communication
medium, e.g., a fiber optic carrier, a coaxial cable, or a radio channel. In this way, stations
are similar to modules, links are similar to channels, and ports are similar to interaction points

in ESTELLE.

In SMURPH, Stations, Ports, and Links are assigned numeric identifiers which

generally correspond to the order in which the particular objects have been created.
3.5 Processes

The dynamic part of the user specification, i.e., the protocol program, has the form of a
collection of cooperating processes which are executed by the stations. Each process (an
object of type Process) can be viewed as an interrupt handler: its processing cycle consists of
being awakened by some event, responding to the event by performing some protocol-related

activities, and going back to sleep to await the occurrence of another event.

Each process could be seen as a finite state machine (FSM) in which each state is

written in the form of a wait function call.

3.6 Activity Interpreters 32

3.6 Activity Interpreters

Operations of protocol processes are driven by events. These events are generated by
objects called A/ (Activity Interpreter). The operation of an Al consists in transforming

activities into events. This is what we mean by interpreting activities.

A typical example of an Al is a Mailbox (an object of type Mailbox), which provides a
means for inter-process communication: each process is capable of triggering events that can
be perceived by other processes. Mailbox provides a systematic way to synchronize

processes, especially those running at the same station.

3.7 Defining traffic conditions

The traffic in the network consists of messages that arrive from “outside” to be
processed by stations. By processing a message, we mean splitting it into one or more

packets and transmitting it over the network to the destination (a specific station).

The traffic distribution is described by the collections of the so-called traffic patterns

which are objects of type Traffic.

Each traffic pattern is associated with specific message and package types. Messages
and packets belonging to different traffic patterns may have different, protocol dependent

structures.

SMURPH provides two standard base types Message and Packet that can be used to
define protocol-specific message and packet types. The type Message also contains an array,
which will hold the additional protocol-specific attributes. Most of the attributes of Packet

are inherited from Message.

3.8 Time 33

3.8 Time

Time in SMURPH is discrete, which means that there is an indivisible time unit (ITU),
and two moments in real time that differ by less than one ITU are assumed to take place at
exactly the same time. SMURPH defines the type TIME, whose precision can be specified by
the user. Since 7IME can have a large precision, SMURPH provides standard functions to

perform multi-precision arithmetic on variables of that type.

Besides the ITU unit, SMURPH also provides the concept of virtual seconds for better
readability of the simulation results. A virtual second is represented by a number of ITUs
specified by the individual user. In our XTP simulation, one virtual second is equal to ten

million ITUs, because the ETHERNET transmission rate is 10 million bits per second.

3.9 Performance measures

One important objective of modeling networks and protocols in SMURPH is to
investigate their performance. Some performance measures are calculated automatically by
the SMURPH package. The user can easily collect additional statistical data which augment

or replace the standard measurements.

3.10 SMURPH Debugger

SMURPH offers a dynamic status display (DsD) program where snapshot states of the
stations and links can be displayed while the simulator is running. The user has some control

over what information is displayed on various windows.

SMURPH also provides some standard functions to let the user display his own

variables, messages, and information relating to some objects in the protocol program.

3.11 Discussion 34

3.11 Discussion

Overall, SMURPH provides minimal features for complex protocol performance
simulations. As a result, the implementers of a protocol simulation have to design their
protocol program in great detail, in order to obtain a proper simulation results. However,
since the coding is now done in the object oriented language C++ , it is easier to maintain
and modify a protocol program implemented in SMURPH than the similar one implemented
in the old version LANSF.

4. SIMULATION OF XTP USING SMURPH

Our simulation of XTP uses an Ethernet environment within which two stations set up
virtual circuit connections to each other, and transfer data using XTP. The work of this
thesis is based on the works of Chen [Chen89] and Chung Kam Chung [Chung93]. Chen
simulated the revision 3.3 of XTP using LANSF. Chen wanted to find out the maximum
throughput of XTP in a no-error environment. Chung Kam Chung extended Chen’s work by

modeling the error control mechanism of XTP (revision 3.6) in LANSF.

The work of this thesis follows the assumptions that were mentioned in [Chen89] and

[Chung93]:

e The datalink layer service uses I[EEE 802.2 class I service, which is a

connectionless service.
® The limited capacity of the buffers and queues is not simulated.

e Message fragmentation time is not simulated.

4.1 Conceptual Model of XTP Simulator in SMURPH

Figure 4.1 shows the conceptual model of a station architecture of our simulator.

There are four simulated chips:

The main processor chip simulates the single processor that will handle the

different tasks of the protocol sequentially.
¢ The timer chip handles all timer operations.
® The rate control chip handles XTP rate control mechanism.

® The Ethernet chip performs CSMA/CD operations.

35

4.1 Conceptual Model of XTP Simulator in SMURPH

36

MAIN PROCESSOR
XTP WRITER XTP READER
PROCESS PROCESS

XTP RECEIVER
PROCESS

XTP SENDER
PROCESS

|

XTP TIMER
PROCESS

RATE CONTROL

XTP RATE
CONTROL
PROCESS

l

ETHERNET CONTROLLER

ETHERNET
TRANSMITTER

Figure 4.1: Simulated Station Architecture [Chung93].

4.2 XTP Processes in SMURPH 37

4.2 XTP Processes in SMURPH

In our simulation, eleven main processes will be used at a station to implement XTP.
The processes: XTP_Initialization, XTP_Writer, XTP_Sender, Serializer, XTP_RateControl,
XTP_Timer, and Ethernet_Transmitter are used for preparing a packet to be sent to the other
station. The processes: Ethernet_Receiver, XTP_Receiver, XTP_Reader, and Consumer are

used for receiving a packet sent from the other station.

The process XTP_lInitialization sets up the virtual circuit environment. The process
XTP_Writer simulates the generation of messages arriving at a station. The process
XTP_Sender breaks messages into packets, and performs core operations of XTP. The
process XTP_RateControl simulates the rate control mechanism in XTP. The process
XTP_Timer sets up the timers used, and the process Ethernet_Transmitter is used to transmit

a packet on the underlying delivery service.

The process Ethernet_Receiver is used to receive a packet arriving at a station. The
processes XTP_Receiver and XTP_Reader are used to implement the error control

mechanism of XTP. The process Consumer simulates an XTP user at the receiving end.

The process Serializer simulates the main processor which runs the processes

XTP_Sender, XTP_Receiver, and XTP_Reader.
Figure 4.2 shows the flow of a packet through these processes at a station.

SMURPH gives the processes the ability of communicating to each other using signals.
SMURPH is deficient in the sense that additional parameters to be passed between processes
will require the user to define more complicated data structures. In our simulation, we

defined generic queues, which can be used to store parameters passing between processes.

In the following sections, we will describe in more detail the above processes, the

signals passed between them, and the generic queues used by these processes.

42 XTP Processes in SMURPH

A

XTP
SENDER
Process

N

SERIALIZER
Process

)
(1)

XTP RATE
CONTROL
Process

(183)
Y

XTP
TIMER
Process

(125)
N

ETHERNET

TRANSMITER
Process

38

CONSUMER
Process

XTP
READER
Process

XTP
RECEIVER
Process

ETHERNET

RECEIVER
Process

Figure 4.2: Data Flow Diagram at a station of the simulation program.

4.2 XTP Processes in SMURPH 39

4.2.1 The Initialization Process.

The initialization process at a station of the XTP simulator sets up the virtual circuit
simulation environment. It creates a context for the station with a receiving station. For
example, if our XTP simulator has three stations (identified in SMURPH by station number
1, 2, 3), then the initialization process of station 1 will create two contexts: one context is for
the receiving station 2, and the other context is for the receiving station 3. Similarly, the
initialization process of station 2 will create two contexts: one context is for the receiving
station 1, and the other context is for the receiving station 3. Similarly for the initialization

process at the sending station 3.

The context at a station contains the state information of both the outgoing data
stream and the incoming data stream. From the example above, at the station 1, the
context associated with station 2 may contain the following parameters: the sequence number
for the next packet (of the outgoing data stream) to be sent to the station 2 by the sender
station 1, the WTIMER, RTIMER (Section 2.11); the values of alloc (allocation) and rseq
(section 2.13), etc. The value of the alloc field is a do-not-exceed sequence number for the
incoming data stream, calculated by the receiver station 1, that limits the amount of data that
the sender station 2 may transmit. The value of the rseq field is one past the highest
consecutive sequence number received without error at station 1. The station 2 can receive

values of alloc and rseq from a returning control packet.

4.2.2 The Writer Process

The process XTP_Writer at a station is intended to set up an interface for a user to
create an active open virtual circuit and then send data. However, the writer process in our
simulation serves merely as a triggering process to start the chain reaction of the entire

simulation.

4.2 XTP Processes in SMURPH 40

The process XTP_Writer has the following functions: (a) It waits for a packet arrival
signal which is generated by the SMURPH traffic scheduler process, (b) When a new packet
has arrived, it will send a signal to the process XTP_Sender (which is discussed in the next
section), (c) it returns to (a). Packets arriving at a station are saved on a SMURPH internal
packet queue. Figure 4.3 shows the Finite State Machine (FSM) of the process
XTP_Writer.

IDLE

Receive
MESSAGE_ARRIVAL

Signal

BUSY

Send
XTP_SEND
Signal

Figure 4.3: Finite State Machine for the process XTP_Writer.

4.2 XTP Processes in SMURPH 41

4.2.3 The Sender Process

The process XTP_Sender performs the core operations of the protocol including flow

control and rate control.

When the process XTP_Sender receives the signal XTP_SEND (from the process
XTP_Writer), it dequeues an arriving packet from the SMURPH internal packet queue
(mentioned in section 4.2.2). It then saves the packet in the appropriate context. From the
example in section 4.2.1 above, when a packet (to be sent to the station 2) received by the
station 1, it will be saved on a waiting queue in the associated context (for the receiving
station 2) created in the process XTP_Initilization (section 4.2.1). A context with waiting
packets to be sent is saved on a queue called WPX_L. Listing 1 shows the pseudo-code for

the process XTP_Sender.

The pseudo-code in listing 1 shows that the process XTP Sender starts when it
receives the signal XTP_SEND. It then checks if there is any context on the WPX L queue
with waiting packets to be sent. If one is found, each packet dequeued from the waiting
queue is given a sequence number, packet type, etc., and then it will be enqueued on a queue
called PSR_L. The PSR_L queue will be used later by the process Serializer. If a context
reaches the flow control limit (section 2.13) or the rate control limit (section 2.14), the
context will be blocked, no more packet, are dequeued from the waiting queue. A blocked
context can be unlocked when the XTP_SENDER process receives the unblocked signals

from other processes.

4.2 XTP Processes in SMURPH 42

PROCESS XTP_SENDER
Input signals:
e XTP_SEND from the process XTP_Writer
« FLOW_UNBLOCKED from the process XTP_Receiver
o CREDIT_UNBLOCKED from the process XTP_Credit

Output signal
 PROCESSOR_START to the process SERIALIZER

BEGIN

Start:
wait for XTP_SEND signal arriving from the process XTP_WRITER.

If there is a context which is not blocked and with packets to be sent then
continue at label is_wait
EndIf

If all the contexts of the station are blocked then
continue at Start
EndIf

Receive the arriving packet from the SMURPH internal packet queue.
Save the packet on the waiting queue of the associated context.

Is_wait:

set context to BUSY

REPEAT
*send’ a waiting packet (simulate delay time to copy the packet to the buffer of the station;
enqueue the packet, and the associated context to the PSR_L queue)

UNTIL alloc or credit limit is reached

Continue at Start

ENDPROCESS

Listing 1: pseudo-code for the process XTP_Sender.

4.2 XTP Processes in SMURPH

The Finite State Machine of the process XTP_SENDER is shown in figure 4.4.

43

XTP_SEND all contexts
signal are blocked
received

Find a

context with
waiting packets
to be sent

Block
Context

Flow Unblocked or
Credit Unblocked
signal received

An Unblocked Context all contexts are
with waiting packets unblocked with

Alloc or to be sent is found no waiting packets
Credit Limit to be sent
reached

Send
Waiting
Packets
of Context

Receive
arriving packet
and save on an
appropriate
context

Send
Processor_Start
Signal

Figure 4.4: Finite State Machine of the process XTP_SENDER.

4.2 XTP Processes in SMURPH 44

4.2.4 Process Serializer

The purpose of the process Serializer is to simulate the fact that the sender, receiver,
and reader processes are running on a single CPU. The process Serializer schedules the three
processes in FIFO order. Whenever a process wishes to use the processor, it sends a signal
to the process Serializer and puts an event item on the PSR_L queue. When the process
Serializer receives the signal from the sending process, it wakes up and checks the contents
of the PSR_L queue, and performs the operations according to the event. The operations are
to signal a waiting process or to dequeue the event from the PSR_L queue and to put it on
the RCNTL_L queue that is going to be used by the process XTP_RateControl (section

4.2.5). Listing 2 shows the pseudo-code for the process Serializer.

PROCESS SERIALIZER

Input signals:
« PROCESSOR_START from the XTP_Sender, XTP_Receiver, XTP_Reader processes

Output signals:
» COPY_IN_DONE to the process XTP_Sender
o COPY_OUT_DONE to the process XTP_Reader
» CHECK_SUM_DONE to the process XTP_Receiver
« NEW_ENQUEUE to the process XTP_RateControl

BEGIN

Start:
wait for the PROCESSOR_START signal.

Dequeue the first event item (a packet and an associated context) from the PSR_L queue
Wait for the delay time specificd by the event

[f the packet type specified by the event item is NONE Then
SEND signal specified in the event item
Else If the packet type is FIRST
Enqueue the packet (and the associated context) to the OUP_L queue
Signal the process Ethcrnet_Transmitter
Mark the context to indicate rate control blocked state
Else
Enqueue the packet (and the associated context) to the RCNTL_L queue
If the context does not indicate the rate control blocked state
Signal the process XTP_RateControl
EndIf
EndIf
EndIf

Continue at Start
ENDPROCESS

4.2 XTP Processes in SMURPH 45

4.2.5 Process XTP_RateControl

The process XTP_RateControl inserts delay between packets that go on the same
route. It has the following functions: (a) To wait for a signal (from the process
ETHERNET_TRANSMITTER (section 4.2.7)) indicates that a packet has been sent to the
receiver, (b) to update the time the last packet has been sent for a context, (c) to look at
each event (a context and a packet to be sent) from the RCNTL_L queue, (d) to calculate the
time the packet will be delayed before it can be sent, (¢) To insert the event and the delay
time to the CALLOUT_L queue, and (f) to return to (a). Listing 3 shows the pseudo-code
for the process XTP_ RATECONTROL.

4.2 XTP Processes in SMURPH 46

PROCESS XTP_RATECONTROL

Input signals:
 NEW_ENQUEUE from the process SERIALIZER
» ETHER_DONE from the process ETHERNET _TRANSMITTER

Output signals:
» ARM_TIMER to the process XTP_Timer

Begin
Start:

Wait for the signal ETHER_DONE from the process ETHERNET TRANSMITTER or
the signal NEW_ENQUEUE from the process XTP_SERIALIZER

If the received signal is ETHER_DONE then
Dequeue a context from the RTM_L queue (section 4.2.7)
Change the state of the context from rate control blocked to rate control unblocked
Record the time of the last packet has been sent for the current context
Continue at New_Enqueue
EndIf

If the received signal is NEW_ENQUEUE then
New_Enqueue:

While not at the end of the RCNTL_L queue Do
Look at the current event (a packet and an associated context) of the RCNTL_L queue
If the context does not indicate rate control blocked state
Calculate the time the packet will be delayed before it can be sent
Subtract the delay time of the packet by the amount of
(current time - the time the last packet has been sent for the context)
Change the state of the context from rate control unblocked to rate control blocked
dequeue the event (a packet and an associated context) from the RCNTL_L queue

Insert the event and the delay time to the CALLOUT _L queue (the event with the shortest delay
time is inserted at the head of the CALLOUT _L queue)

If event was inserted at head of CALLOUT L
Send signal to the process XTP_Timer
EndIf
Endif
Point to the next event of the RCNTL_L queue
END While

Continue at Start

ENDPROCESS

Listing 3: pseudo-code for the process XTP_ RATECONTROL.

4.2 XTP Processes in SMURPH 47

4.2.6 Process XTP_Timer

The process XTP_Timer maintains a callout list, which keeps track of delay time
between packets to be sent on the same route or the time corresponding to various timers:
WTIMER, CTIMER, etc. (section 2.11). The callout list is similar to those found in
operating systems. The functions of the XTP_Timer process is: (a) Delay for the amount of
time specified by the first event found on the CALLOUT_L queue, (b) if before the delay
time expires and the process receives a signal informing that a new event has been inserted at
the head of the CALLOUT _L queue, the timer process will restart at the new head event of
the CALLOUT_L queue, (c) if the delay time expires, the process calls the function
Timer_Intr_Handler, which will perform operations specified by the timer involved. For
example, if WTIMER expires, a synchronizing handshake is entered. Listing 4 shows the

pseudo-code for the process XTP_Timer.

PROCESS XTP_TIMER

Input signals:
« ARM_TIMER from the process XTP_RateControl or the function Timer_[ntr_Handler

Output signals:
» PROCESSOR_START to the process Serializer
« ETHER_SEND to the process Ethernet_Transmitter

BEGIN
Wait for the ARM_TIMER signal

Start:
Wait for the delay time specificd in the first event of the CALLOUT _L queue

If the signal ARM_TIMER is rcceived before the delay time expires then
Continue at Start
Else (* the delay time expires *)
dequeue the first event of the CALLOUT_L queue
pass the event to the function Timer_Intr_Handler
Continue at Start
EndIf

ENDPROCESS

4.2 XTP Processes in SMURPH

FUNCTION Timer_Intr_Handler

Input parameter:
» Pointer to an event passed by the process XTP_Timer

BEGIN

If the event is a timer of type CTIMER then
enter synchronizing handshake
EndIf

If the event is a timer of type WTIMER then
If endpoint is currently in the synchronizing handshake state then
decrease the retry count
If retry_count <0 then
Terminate connection and simulation
EndIf

Save current sync value into saved _sync

Send a CNTL packet with SREQ bit on

re-insert the event on the CALLOUT_L queue with double delay time
Else

Enter Synchronizing handshake state

Save current sync value into saved_sync

Send a CNTL packet with SREQ bit on

re-insert the event on the CALLOUT _L queue with double delay time
If event was inserted at head of CALLOUT_L

Send signal ARM_TIMER to the process XTP_Timer
EndIf

EndIf
EndIf

If the event specifies a packet to be sent

append the event to the OUP_L queue

Send the signal ETHER_SEND (o the process ETHERNET _TRANSMITTER
EndIf

END (* Function Timer_Intr_Handler *)

Listing 4: pseudo-code of the process XTP_Timer.

48

4.2 XTP Processes in SMURPH

The Finite State Machine of the process XTP_Timer is shown in figure 4.5.

IDLE

Receive Signal
ARM_TIMER

Receive Signal
ARM_TIMER

CALLOUT_L queue

Empty

CALLOUT_L queue not empty

[3

) 4

Delay time expires

INTERRUPT
HANDLER

Figure 4.5: Finite State Machine of the process XTP_Timer.

49

4.2 XTP Processes in SMURPH 50

4.2.7 The process Ethernet_Transmitter

The process Ethernet_Transmitter is used to transmit a packet sent via the underlying
delivery service. The process has the following functions: (a) when the signal ETHER_SEND
from the process XTP_RateContrl is received, the process dequeues the first event (a packet
and the associated context) from the OUP_L queue), (b) it then transmits the packet, and (c)
it enqueues the remaining context to the RTM_L queue, which is used by the process
XTP_RateControl (section 4.2.5), and (d) it goes back to (a). The algorithms used by the
process Ethernet_Transmitter to handle the problem of packet collision will be discussed in

chapter 7.

4.2.8 The process Ethernet_Receiver

The process is used to receive a packet when it arrives at a station. After the receiving
the packet is copied to a buffer of the station, the process Ethernet_Receiver enqueues the
packet to the INP_L queue, and sends the signal ETHER ARR to the process
XTP_Receiver.

4.2.9 The process XTP_Receiver

The XTP_Receiver process performs the core of XTP packet reception operations. It

has the following functions:

¢ Simulating checksum calculation of the receiving packet.

o Discard if data packet received has sequence number that exceeds buffer allocation
of the receiving station, or data packet is a duplicate or packet is corrupted.

® If the receiving packet is a ECNTL packet, and the fields nspan, and spans of the
ECNTL packet indicating lost packets (section 2.7), the process will retransmit the

lost packets.

Listing 5 shows the pseudo-code for the process XTP_Receiver.

4.2 XTP Processes in SMURPH 51

PROCESS XTP_RECEIVER

Input signals:
« ETHER_ARR from the process Ethernet_Receiver
+» CHKSUM_DONE from the process Serializer

Output signals:
« DAT_PACKET_ARR to the process XTP_Reader
« FLOW_UNBLOCKED to the process XTP_Sender
BEGIN
wait for the ETHER_ARR signal from the process Ethernet_Receiver
Start:

Dequeue an event (an arriving packet) from the INP_L queue

Simulate the delay time for check sum calculation by sending a signal to the process SERIALIZER
Wait for the signal CHKSUM_DONE from the process SERIALIZER

Get the appropriate context that associated with the receiving packet.

Pass the context, and the receiving packet to the function Update_x
Continue at Start

ENDPROCESS

Listing 5: pseudo-code for the process XTP_Receiver.

4.2 XTP Processes in SMURPH

Function Update_x

Input parameter:
«» Pointer to a context, and a packet

BEGIN
If packet is a DATA packet then

I[f (Packet’s sequence number + packet size) > alloc OR
(Packet’s sequence < expected sequence number (rseq)) OR (Packet is damaged) then
Discard packet
Return;
EndIf

If (packet’s sequence number == rseq) then
extend rseq by packet length

If the context indicates the station that receives the packet has
some lost packets before (nspan > 0) then
Update nspan and spans
endif

enqueue the packet and the associated context on the RD_LIST queue
Send the signal DAT_PACKET_ARR to the process XTP_Reader
EndIf

Else
(* Packet is a CNTL packet *)
If packet has its SREQ bit on then
Send back a Control Status Packet
Else
Copy Control Status packet to the context
If the field nspan in the Control Status Packet > 0 then
Retransmit packets specified by nspans and spans fileds of the Control Status Packet
EndIf

If alloc limit was extended then
unblock context if the context is currently in the flow control blocked state
Send the signal FLOW_UNBLOCKED to the process XTP_Sender

EndIf

[f the endpoint station was in the Synchronizing handshake state and the Control Status Packet

received removes the synchronizing handshake state then
unlock flow of new data packets for the context
EndIf

If the Control Status Packet is the reply of the previous request then
Calculate RTT (Round Trip Time)
Cancel WTIMER

EndIf

EndIf
EndIf
END (* Function Update_x *)

4.2 XTP Processes in SMURPH 53

4.2.10 The process XTP_Reader

The process XTP_Reader has the following functions:

e Simulating the delay time for copying data from the buffer of the station to the
user’s buffer.

e Record the gaps of missing data if the sequence number of the incoming data
packet is greater then the expected sequence number (rseq).

e Update the alloc (section 2.13) value.

e Send a CNTL Status Packet if the incoming DATA packet has its SREQ bit on.

e Pass the non-duplicate data packets to the process Consumer.

Listing 6 shows the pseudo-code for the process XTP_Reader.

4.2 XTP Processes in SMURPH

PROCESS XTP_READER

Input signals:
« DAT_PACKET_ARR from the process XTP_Receiver
o COPY_OUT_DONE from the process Serializer

Output signals:
« PROCESSOR_START to the process Serializer
« DATA_READY to the process Consumer

BEGIN
Wait for the signal DAT_PACKET_ARR from the process XTP_RECEIVER
Start:

Dequeue an event from the RD_L queue

Simulate the delay time for copying data packet to user’s buffer by sending a
signal to the process SERIALIZER

Wait for the signal COPY_OUT_DONE by the process Serializer

If packet’s sequence number > expected sequence number then
record the spans list

If the SREQ bit of the packet is on then
Send CNTL Status Packet to the Transmitter
EndIf

Enqueue event (the packet and the associated context) to the CONSUME_L queue
Send the signal DATA_READY to the process Consumer

Continue at Start
EndIf

Update alloc value
If SREQ bit of the packet is on then

Send CNTL Status Packet to the Transmitter
EndIf

Enqueue event (the packet and the associated context) to the CONSUME_L queue
Send the signal DATA_READY to the process Consumer

Continue at Start

ENDPROCESS

Listing 6: pseudo-code for the process XTP_Reader.

4.2 XTP Processes in SMURPH

Figure 4.6 shows the Finite State Machine of the processs XTP_Reader.

Send

Receive
DATA_PACKET_ARR
Signal

Simulate

delay time for

Status Report SREQ bit off copying data
Packet into user’s
buffer
Signal
Receive process
SREQ bit on COPY_OUT_DONE Serializer
Signal
Copy Out
Done
Signal
Process
Consumer

Figure 4.6: Finite State Machine of the process XTP_Reader.

55

4.2 XTP Processes in SMURPH 56

4.2.11 The process Consumer

The process Consumer has the following functions:

¢ Simulating the delay time of consuming data in user’s buffer.

e Send a CNTL Status Packet if the incoming DATA packet has its DREQ bit on.

Listing 7 shows the pseudo-code for the process Consumer.

PROCESS CONSUMER

Input signals:
e DATA_READY from the process XTP_Reader
« CONSUME_DONE from the process Serializer

Output signals:
» PROCESSOR_START to the process Serializer

BEGIN

Wait for the signal DATA_READY from the process XTP_READER
Start:

Dequeue an event from the CONSUME_L queue

Simulate the delay time for consuming data in user’s buffer by sending a
signal to the process SERIALIZER

Wait for the signal CONSUME_DONE by the process Serializer

If DREQ bit of the packet is on then

Send CNTL Status Packet to the Transmitter
EndIf
Continue at Start

ENDPROCESS

Listing 7: pseudo-code for the process Consumer.

4.3 Overall data structures used in the simulation 57

4.3 Overall data structures used in the simulation

The main processes used in the simulation of XTP in SMURPH have been described in
detail in section 4.2 above. These processes communicate with each other by using signals.
Additional parameters to be passed between processes will require the using of queues.
During process communication, whenever a process places an event on a queue to be used by
another process, the initiating process will send a signal to the other process. Figure 4.6
shows the flow of data through the main processes of the simulation. The queues used for
passing additional parameters between these processes are also included in figure 4.7. Figure

4.8 shows the signals that are sent and received between these processes.

4.3 Overall data structures used in the simulation

| WPX_L Queue] |

RETRANS_L queue

/ XTP
SENDER

wcess

‘ﬂSR_L Queue f—

SERIALIZE
Process

| RONTL_L queue]

XTP

RateControl
ﬁwcess

RTM_L queue

[

CALLOUTL queue

XTP_Timer
Process

L OUP_L queue]ﬂ—"

Transmitter

[CNTL_SY'NC queuel

Process

58

CONSUME
Process

4

CONSUME_L queue|

XTP_Reader
Process

RD_LIST queue

XTP
RECEIVER
Process

INP_L queue

Ethernet
Receiver
Process

A Data/CNTL
packet arriving
from the underlying
Medium Service

A Data/CNTL packet is sent on the underlying delivery service

Figure 4.7: Data Flow Diagram between processes of a station of the simulation program.

4.3 Overall data structures used in the simulation 59

As mentioned in the sections above, the processes XTP_Receiver, XTP_Reader, and
Consumer, may have to send a CNTL packet. Similarly, a CNTL packet may be sent by the
process XTP_Timer when a Timer expires. CNTL packets created by these processes and
their associated contexts will be enqueued on the PSQ_ L queue which is processed by the
process Serializer. When the process Serializer processes a CNTL packet whose associated
context is in the Synchronizing Handshake state, the CNTL packet (and its associated
context) will be enqueued on the CNTL_SYNC queue which has high priority to be
processed by the process Ethernet_Transmitter. This will ensure that no data packets are

sent (or resent) during a Synchronizing Handshake (section 2.12).

The purposes of the queues shown on figure 4.7 can be summarized as the following:
WPX L : Used for preserving a pointer to a context that has packets waiting

to be sent.

RETRANS_L: Hold copies of packets that have been transmitted, but not yet

confirmed of receiving by the receiver.
PSR L . Hold copies of (data/CNTL) packets (and their associated contexts)
which have been processed by the processes: XTP_Sender,
XTP_Timer, XTP_Receiver, XTP_Reader, and Consumer.
This queue links these processes with the process Serializer.
RCNTL_L : Links the process Serializer and the process XTP_RateControl.

CALLOUTL : Links the process XTP_RateControl and the process XTP_Timer.

OUP L . Links the processes Serializer, XTP_Timer with the process

Ethernet_Transmitter.

4.3 Overall data structures used in the simulation

CNTL_SYNC: Links the process Serializer and the process Ethernet Transmitter.

RTM L : Links the process Ethernet Transmitter and the process
XTP_RateControl. It is used to pass the time the last packet has

been sent for a context.

INP L : Links the process Ethernet Receiver and the process
XTP_Receiver. It is used for passing received (data/CNTL)

packets between these processes.

RD LIST : Links the process XTP_Receiver and the process XTP_Reader.

It is used to pass received data packets.

CONSUME_L : Links the process XTP_Reader and the process Consumer.

4.3 Overall data structures used in the simulation

XTP_Credit
Process

XTP_Writer
Process

Credit_Unblocked Xtp_Send

Processor_Start

XTP_Sender
Process

Copy_In_Done

New_Enqueue

XTP
RateControl
Process

Processor_Start

Ether_Send

XTP_Timer
Process

Ether_Done

Ether_Send

Ethernet
Transmitter
Process

61

Consumer
Process

Consume_
Done
Data_Ready
Processor_Start

Copy_Out_Done

SERIALIZER
Process

XTP_Reader

Process

Processor_Start

Processor_Start
Data_Packet_Arr

Check_Sum_Done

XTP
Receiver
Process

-

Flow_Unblocked

Ether_Arr

Ethernet
Receiver
Process

Figure 4.8: Signal Flow Diagram between processes of a station of the simulation program.

4.3 Overall data structures used in the simulation

The purposes of the signals shown on figure 4.8 can be summarized as the following:

XTP_Send

Copy_In Done

Consume_Done

Copy_Out_Done :

Chk_Sum_Done :

Processor_Start

New_Enqueue

: Used by the process XTP_Writer to indicate to the process

XTP_Sender that a new packet has been received.

: Used by the process SERIALIZER to indicate to the process

XTP_Sender that the task of copying data from user’s space

to XTP’s space has been completed.

: Used by the process SERIALIZER to indicate to the process

Consumer that the task of consuming delay has been

completed.

Used by the process SERIALIZER to indicate to the process
XTP_Reader that the task of copying data from

XTP’s space to user’s space has been completed.

Used by the process SERIALIZER to indicate to the process
XTP_Receiver that the task of check sum delay has been

completed.

: Used by the processes XTP_sender, XTP_Timer, Consumer,

XTP_Reader, XTP_Receiver to indicate to the process
SERIALIZER that there is a request to use the processor.

: Used by the process SERIALIZER to indicate to the process

XTP_RateControl that a new unblocked packet and its

associated context has been enqueued to the RCNTL_L queue.

62

4.3 Overall data structures used in the simulation 63

Arm_Timer : Used by the process XTP_RateControl to indicate to the
process XTP_Timer that an event (a packet with its delay
time and its associated context) have been inserted on

the head of the CALLOUTL queue.

Ether Send : Used by the processes XTP Timer, and SERIALIZER
to indicate to the process Ethernet Transmitter that there
is an outgoing packet and its associated context have

been enqueued to the OUP_L queue.

Ether_Done : Used by the process Ethernet_Transmitter to indicate to the
process XTP_RateControl that a packet has been sent
successfully and that the associated context of the packet,
and the time the packet was sent have been enqueued to the

RTM_L queue.

Ether_Arr : Used by the process Ethernet_Receiver to indicate to
the process XTP_Receiver that a (data/CNTL) packet has

been received and enqueued to the INP_L queue.

Data_Packet_Arr : Used by the process XTP_Receiver to indicate to the process
XTP_Reader that a new data packet has been received

and enqueued to the RD_LIST queue.

Data_Ready : Used by the process XTP_Reader to indicate to the process
Consumer that a new data packet has been enqueued to

the CONSUME_L queue.

4.4 Determining the Round Trip Time (RTT) 64

4.4 Determining the Round Trip Time (RTT)

As discussed in section 2.11, the value of the round trip time (RTT) is needed for the

timers. But getting the accurate values for RTT can be very difficult.

In XTP, if SREQ is set in a DATA packet, a CNTL packet is returned immediately,
making it is possible to determine the round trip time (the correlation of the returning CNTL
packet with the original DATA packet with the SREQ bit set is possible because the sync
value in the DATA packet is returned as echo field in the CNTL packet). If the sending times
for all DATA packets with SREQ bit set have been recorded, it is possible to calculate the
RTT.

4.5 Policy for the setting of the DREQ bit in bulk transfer

In Chen’s simulation [Chen89], the sizes of the messages were smaller than the
allocation window, so an update of the receiver status was obtained frequently enough
(section 2.8, 2.13). In the simulation of bulk data transfer [Chung93], the message is much
longer than the allocation window. Chung Kam Chung [Chung93] has investigated the policy

that should be used for the setting of DREQ, to ensure that data flows without interruption.

At a certain point in time, before the allocation window will close, the transmitter
should set the DREQ bit on an outgoing DATA packet so that the CNTL status packet sent
in reply will reach the transmitter with an updated alloc value before the old alloc limit is
reached. This will ensure that the flow of data will not be blocked. The guiding principle in
designing the condition to be satisfied is that there should be enough time to send a status
request, receive the response, send the missing packets, and receive the updated alloc value,
prior to the closure of the alloc window. Given a rate value for the underlying route, and an

observed round trip time (RTT), the condition for setting the DREQ bit is as following:

(alloc - (seq + packet_len)) < (2 x rate x RTT)

4.5 Policy for the setting of the DREQ bit in bulk transfer 65

Chung Kam Chung [Chung93] has examined a variety of scenarios, using this condition
for setting the DREQ bit, and determined that the flow of DATA packets will remained

uninterrupted in all error cases.

5. XTP SIMULATION PERFORMANCE

The XTP simulation program is based on the work of Chen [Chen89], and Chung
Kam Chung [Chung93]. Chen simulated the revision 3.3 of XTP using LANSF. Chen
wanted to find out the maximum throughput of XTP simulation in a no error environment.
Chung Kam Chung extended Chen’s work by modeling the error control of XTP (revision
3.6) in LANSF.

The XTP simulation program in SMURPH has been run on a SUN processor using
SUN OS 4.1.3. The standard UNIX debugging tool dbx was used during the process of

implementing the XTP simulation program.

5.1 The SMURPH Tunable Parameters

There are many tunable parameters in SMURPH. We are only interesting in the

following four:

» The Message Length, which specifies the length of a message which is generated by
SMURPH. This parameter is specified in bits.

o The Message Interarrival Time, which specifies the rate of messages arriving at a

station of the XTP simulation.
e The Number of Stations of the XTP simulation.

o The Maximum Number of Messages that SMURPH can generate for a station of

XTP simulation. Once this number is reached, an XTP simulation run is finished.

5.2 The XTP Tunable Parameters

The tunable parameters of the XTP simulation program are:

66

5.2 XTP Tunable Parameters 67

alloc, which defines the allocation window size in bytes (section 2.13).

* wtimer, which defines the initial value of WTIMER (section 2.1 1). WTIMER is
updated when a new value is calculated for RTT (section 4.4).

* climer, the context life timer value (section 2.11).

* copy_delay, which specifies the delay time for copying data from user’s buffer

space to XTP’s buffer space, or from XTP’s buffer space to user’s buffer space.

e checksum_delay, which specifies the check sum delay time for outgoing and

incoming packets of a station.

o consume_delay, which specifies the delay time caused by the consumption of a

a data packet by an XTP’s user of the receiving station.

* XTP_ERROR, XTP _FASNAK, XTP_GO_BACK_N, XTP_SELEC T RETRANS
are Boolean variables stating whether error control (with Go-Back-N (section 2.7)
or selective retransmission (section 2.7)), or FASNAK (section 2.6.1) should be
enabled in a run of the simulation program. If XTP_ERROR is not enabled, the

the simulation program will disable the error control processes.

5.3 Measurements

There are two measurements that we wish to obtain from a run of the simulation
program: the actual throughput and average message delay. The throughput of the

simulation is obtained by using the following formula [Chen89]:

Delivered Sequence [Bytes]
Last Sent Completed [seconds]

Actual Throughput of the Simulation =

5.4 The Simulation Plan 68

where Delivered Sequence is the sequence number of the last packet successfully delivered to

the XTP’s user, and Last Sent Completed is the simulation time when that delivery occurred.

Message delay is the difference between the time when the message was queued by the
process XTP_Writer (section 4.2.2), which simulates the XTP’s user at the transmitting end,
and the time when the message is received by the process Consumer (4.2.11), which

simulates the XTP’s user at the receiving end.

5.4 The Simulation Plan

The XTP simulation involves two stations using a single virtual circuit. The circuit

setup is done at the initialization processes of the simulation program.

The message sizes used for different runs of the simulation are 6 Byte, 128 Byte, 1IKB
(1,024 Bytes), 8 KB (8,192 Bytes), and 1 MB.

o The 6 Byte message is the minimum number of bytes that a user can send, which fits
the XTP minimum packet length criterion. This message size could represent

a terminal accessing activity.

The 128 Byte message represents a Remote Procedure Call (RPC) activity.

The 1KB (1,024 Bytes) message represents a page fetch operation.

The 8 KB (8,192 Bytes) message represents a file transfer operation.

The 1 MB (1,024 KB) message represents a large file transfer operation. This
message size is much larger than the allocation window size, and thus requires

the policy outlined in section 4.5 to be used.

There are different load numbers used for the simulation runs of a message size. The
offered load numbers were calculated by partitioning the expected maximum throughput of
the simulation into equal intervals. The load numbers are equal to 10%, 20%, 30%, etc., of
the maximum throughput. Four more offered load numbers were added to the simulation of

the message size of IMB. They are equal to 110%, 120%, 130% and 140 % of the expected

5.4 The Simulation Plan 69

maximum throughput. These four added load numbers are used to determine the

performance of XTP when it is saturated.

The expected maximum throughput for a message size is given by [Chen89]:

User Data Length

Maximum ected Throughput = x Total Bandwidth
b ki Total Packet Length

The XTP simulation run for a message size with a typical load is carried out twice: the
first run assumes that there is no delay for copying data from and to user’s buffer space, while
the second run assumes there is a delay. The checksum delay is assumed to be included in the
copy delays, because it is possible for the XTP entities to calculate the checksum for a packet

while it is being copied.

SMURPH generates 10,000 messages for a XTP simulation run of a message size. For
message size of IMB (bulk transfer), only 100 messages are used since larger number of
messages results in simulation crash due to the lack of memory. Given that the object
transferred is much larger for this case than it is for the other cases, this reduction is not

significant.

For an XTP simulation run with error control, the bit error rate is 10 (each bit of the

Data/CNTL packet has a chance of 10°® to be corrupted).

For a typical message size, under a specific load, the performance of the XTP

simulation is measured in three different cases:

1) No error occurred during the Simulation.
2) Error may occur during the simulation. Lost data packets are retransmitted by

Selective Retransmission Error Control Mechanism.

5.5 The Simulation Results 70

3) Error may occur during the simulation. Lost data packets are retransmitted by Go-

Back-N Error Control Mechanism.

5.5 The Simulation Results

Tables 5.1 to 5.5 show the performance of XTP during the transfer of messages of
sizes 6 Byte, 128 Byte, 1KB, 8KB, and 1 MB, with no delay in copying data from and to
user’s buffer space, under different loads specified in section 5.4. Figures 5.1 to 5.5 show the

corresponding graphs for the tables 5.1 to 5.5.

Similarly, tables 5.6 to 5.10 show the performance of XTP during the transfer of
messages of sizes 6 Byte, 128 Byte, 1KB, 8KB, and 1 MB, with delay in copying data from
and to user’s buffer space, under different loads specified in section 5.4. Figures 5.5 to 5.10

show the corresponding graphs for the tables 5.5 to 5.10.

The effective throughputs in tables 5.1 to 5.10 are derived from the formula discussed
in section 5.3. The effective throughputs may be greater than the message arrival rates
(offered loads). The reason is that, the total delivered sequence number (in Bytes) of a
station of the XTP simulation run (as reported by SMURPH) will also include the headers of

all the data packets arriving at the station.

High throughputs are observed from figures 5.1 to 5.10. The maximum throughputs
observed for 8 KB and IMB messages are approximately 85% of the available bandwidth.

From figures 5.1 to 5.10, we notice that the decrease in the performance of XTP due to
errors being allowed to occur, is minimal for message sizes of 6 Byte, 128 Byte and 1 KB.
For message sizes of 8 KB, and 1MB, there is approximately 25% decrease in performance
when errors are introduced. This is mainly due to the fact that smaller message sizes have a

smaller probability that the message will be corrupted during the simulation. A 6 Byte

5.5 The Simulation Results 71

message has a probability of 4 x 107 of getting corrupted, whereas a 8 KB message, which is
broken into data packets, has a probability of 6.76 x 10 of getting corrupted.

Tables 5.11 to 5.14 show the average message delay for the 6 Byte, 128 Byte, 1KB and
8 KB messages. Since saturation is already reached in bulk transfer (message size of 1 MB),
recording the average message delay is meaningless. Figures 5.11 to 5.14 show the

corresponding graphs for the tables 5.11 to 5.14.

The performance of the underlying Ethernet has some impact on the performance of
XTP [Chung93]. The average message delay is expected to grow exponentially in the
Ethernet environment once the load offered reaches a certain point [Gburzynski91]. Due to
the probabilistic nature of the Ethernet protocol, it may happen that two or more stations will
collide for an arbitrarily long time. This probability is described as the Ethernet Capture
Effect, and it is increased tremendously when the load offered reaches a certain threshold
with large message sizes. As a result, the backoff algorithm, which is used when a collision
has occurred, plays a large role in the performance of Ethernet, especially when the message
size is large (for example, message sizes of 8KB, or IMB). A good backoff algorithm will
decrease the probability that the stations resend their packets at the same time after a collision

has occurred. The Ethernet Capture Effect and an enhanced Backoff algorithm will be

discussed in chapter 7.

[Chen89] mentioned that the copy and checksum delays play an important role in the
performance of XTP. From the results of the XTP simulation runs with error control, we can
conclude that these delays are not as important as the performance of the underlying
Ethernet. Ethernet was found to bottleneck, limiting the transfer of data. The delay resulting
from the collisions occurring in the underlying network was, occasionally, 50 times higher
than the copy delay. A good backoff algorithm should be able to decrease the number of

collisions, and thus increase the performance of XTP (Chapter 7).

5.5 The Simulation Results

Message Length Effective Throughput (B/s)
L 6 Bytes (48 bits)
IMessage Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
2,730 22,300 22,100 22,200
5,328 44,700 44 700 44 500
7,986 66,700 67,000 66,500
10,644 89,300 89,700 90,400
13,302 112,000 112,000 112,000
15,960 135,000 133,000 135,000
18,618 156,000 157,000 154,000
21,276 178,000 177,000 178,000
23,934 201,000 202,000 200,000
26,582 223,060 222,000 220,000
29,250 247,000 240,000 249,000
31,908 268,000 266,000 260,000
34,566 284,000 274,000 257,000
37,244 307,000 267,000 246,000
39,894 315,000 269,000 258,000
42,553 316,000 271,000 263,000

Table 5.1: Throughput vs. Offered loads for 6 Byte Messages (no delay).

350,000 -

300,000 -

250,000 -

200,000 -

150,000 -

Throughput (B/s)

100,000 -

50,000 -

—&—No Error

—&— Error (Selective
Retransmission)
—«—Error (Go-Back-N)

5000 10,000 15,000 20,000 25,000 30,000 35000 40,000 45,000

Load (B/s)

Figure 5.1: Throughput vs. Offered loads for 6 Byte messages (no delay).

5.5 The Simulation Results

73

Message Length Effective Throughput (B/s)

128 Bytes (1024 bits)

Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
36,680 53,400 52,900 53,300
79,616 107,000 107,000 107,000

{119,170 160,000 160,000 161,000
ft 158,730 213,000 213,000 214,000
198,295 267,000 269,000 270,000
237,829 320,000 314,000 321,000
277,356 373,000 372,000 376,000
316,989 426,000 429,000 437,000
356,447 479,000 487,000 477,000
396,040 533,000 531,000 540,000
435,819 586,000 573,000 559,000
475,483 639,000 573,000 545,000
515,091 675,000 574,000 540,000
554,353 677,000 575,000 549,000

Throughput (B/s)

Table 5.2: Throughput vs. Offered loads for 128 Byte Messages (no delay).

700,000 -

600,000 -

500,000 - /'

400,000 - /'
/‘ —e—No Error

300,000 -
A —&—Error (Selective
Retransmission)
X ——Error (Go-Back-N)

200,000 -] /
100,000 - "/

T Y 1

0 100,000 200,000 300,000 400,000 500,000 600,000

Load (B/s)

Figure 5.2: Throughput vs. Offered loads for 128 Byte messages (no delay).

5.5 The Simulation Results

Message Length
1 KByte (1024 Bytes)

Effective Throughput (B/s)

Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
98,305 103,000 101,000 103,000
197,634 206,000 201,000 211,000
295,937 309,000 308,000 315,000
394,240 411,000 416,000 418,000
492,544 514,000 517,000 519,000
590,849 617,000 625,000 632,000
689,191 719,000 713,000 729,000
787,510 822,000 821,000 847,000
879,347 918,000 917,000 920,000
984,142 1,030,000 967,000 909,000
1,082,452 1,100,000 961,000 923,000
1,180,676 1,100,000 964,000 917,000
I 1,279,041 1,100,000 962,000 900,000

Table 5.3: Throughput vs. Offered loads for 1 KByte Messages (no delay).

1,200,000 -

1,000,000 -

Throughput (B/s)

200,000

800,000 -

600,000 -

400,000

7

) aa

——

—&—No Error

—— Error (Selective
Retransmission)
— — Error (Go-Back-N)

200,000

400,000

T T

600,000 800,000

Load (B/s)

.l

1,000,000 1,200,000 1,400,000

Figure 5.3: Throughput vs. Offered loads for | KByte messages (no delay).

5.5 The Simulation Results 75

I Message Length Effective Throughput (B/s)
8 KByte (8192 Bytes)
lMessangRate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
114,688 115,000 120,000 120,000
229,377 235,000 242,000 238,000 1
344,064 355,000 359,000 354,000 "
458,753 474,000 479,000 480,000
573,441 592,000 597,000 594,000 i
688,132 711,000 710,000 712,000 I
786,437 812,000 812,000 818,000 It
907,511 948,000 944,000 951,000 I
1,032,219 1,070,000 1,030,000 992,000 1,
1,148,889 1,130,000 1,030,000 994,000
1,261,569 1,130,000 1,030,000 993,000 It
I 1,376,252 1,130,000 1,030,000 991,000 (
(1,490,946 1,130,000 1,030,000 992,000 It

Table 5.4: Throughput vs. Offered loads for 8 KByte Messages (no delay).

1,200,000

|

1,000,000 a & e

800,000 -
v
/ —&—No Error

600,000 - /
72 —i— Error (Selective

400,000 4) Retransmission)
A —a— Error (Go-Back-N)
A

200,000 - /

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000

Throughput (B/s)

v v

Load (B/s)

Figure 5.4: Throughput vs. Offered loads for 8 KByte messages (no delay).

5.5 The Simulation Results

76

" Message Length Effective Throughput (B/s)

1 MByte (1024 KByte)

[[Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
1 14,688 112,000 144,000 112,000
196,608 231,000 226,000 248,000
327,680 317,000 349,000 376,000
458,752 467,000 474,000 493,000
589,824 650,000 597,000 545,000
720,896 737,000 761,000 747,000
851,968 820,000 908,000 740,000
917,507 858,000 785,000 702,000

1,048,576 987,000 988,000 724,000
1,179,648 977,000 1,080,000 741,000
1,245,184 1,070,000 1,080,000 760,000
1,310,720 1,080,000 1,050,000 731,000
1,441,792 1,090,000 1,080,000 751,000
1,672,864 1,130,000 1,080,000 754,000
1,703,936 1,130,000 1,090,000 740,000
1,835,008 1,130,000 1,090,000 745,000

Table 5.5: Throughput vs. Offered loads for 1 MByte Messages (no delay).

1,200,000 -

1,000,000 -

800,000 4

600,000

400,000

200,000 -

Throughput (B/s)

—&— No Error

~—&— Error (Selective
Retransmission)

—— Error (Go-Back-N)

0

200,000 400,000 600,000

T T T T

800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000

Load (B/s)

Figure 5.5: Throughput vs. Offered loads for 1 MByte messages (no delay).

5.5 The Simulation Results

77

Message Length
6 Bytes (48 bits

Effective Throughput (B/s)

Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N) "
2,730 22,300 22,300 22,100

5,328 44,200 44,200 44,600 1l
7,986 66,300 66,700 66,700
10,644 89,700 89,500 90,300
13,302 112,000 112,000 112,000
15,960 137,000 136,000 134,000
18,618 157,000 154,000 156,000
21,276 178,000 178,000 176,000
23,934 196,000 201,000 201,000
26,582 221,000 221,000 220,000
29,250 243,000 246,000 242,000
31,908 265,000 268,000 262,000
34,566 286,000 270,000 264,000
37,244 311,000 270,000 260,000
39,894 315,000 273,000 252,000
42,553 316,000 272,000 256,000

Table 5.6: Throughput vs. Offered loads for 6 Byte Messages (with delay).

350,000 -

300,000 4

250,000 4

Throughput (B/s)

100,000

50,000

200,000 4

150,000 4

—<&— No Error

—&— Error (Selective
Retransmission)

—a—Error (Go-Back-N)

0

T~ Y

5,000 10,000 15,000 20,

Load (B/s)

T -t

000 25,000 30,000 35,000 40,000 45,000

Figure 5.6: Throughput vs. Offered loads for 6 Byte messages (with delay).

5.5 The Simulation Results

78

LMemge Length Effective Throughput (B/s)

128 Bytes (1024 bits)

Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
36,680 53,400 53,400 53,600
79,616 108,000 107,000 109,000

119,170 160,000 163,000 163,000 i
158,730 215,000 213,000 214,300
198,295 268,000 268,000 265,000
237,829 322,000 320,000 322,000
277,356 372,000 372,000 376,000
316,989 426,000 426,000 427,000

{356,447 483,000 476,000 481,000

[396,040 536,000 533,000 535,000

lk 435,819 591,000 575,000 541,000

475,483 645,000 576,000 537,000

I 515,091 675,000 576,000 538,000

[554353 677,000 575,000 538,000

Table 5.7: Throughput vs.

Offered loads for 128 Byte Messages (with delay).

700,000 -
600,000 -
A
@ a
m 1y
=~ | 400,000 - /
g “ —&—No Error
g 'A/—
3 | 300,000 - .
= A —#— Error (Selective
=~ Retransmission)
200,000 4 s —s—Error (Go-Back-N)
e
100,000 - "‘/
/
o L LS T L] T L
0 100,000 200,000 300,000 400,000 500,000

Load (B/s)

600,000

Figure 5.7: Throughput vs. Offered loads for 128 Byte messages (with delay).

5.5 The Simulation Results

Message Length Effective Throughput (B/s)
1 KByte (1024 Bytes)
Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
98,305 103,000 103,000 102,000
197,634 206,000 208,000 209,000
295,937 312,000 311,000 311,000
394,240 411,000 417,000 422,000
492,544 516,000 514,000 516,000
590,849 617,000 612,000 616,000
689,191 717,000 726,000 725,000
787,510 822,000 821,000 821,000
879,347 918,000 844 000 908,000
984,142 1,030,000 963,000 920,000
1,082,452 1,100,000 962,000 921,000
1,180,676 1,100,000 964,000 917,000
1,279,041 1,100,000 964,000 922,000

Table 5.8: Throughput vs. Offered loads for | KByte Messages (with delay).

1,200,000 -

1,000,000 -

Py 800,000 4
0
o
]

2 600,000 -
[o:]
3
e
=

= 400,000 A

200,000 -

0

—&—No Error

—&— Error (Selective
Retransmission)

—— Error (Go-Back-N)

200,000 400,000

600,000 800,000

Load (B/s)

T

-3

1,000,000 1,200,000 1,400,000

Figure 5.8: Throughput vs. Offered loads for 1 KByte messages (with delay).

5.5 The Simulation Resuits

Message Length Effective Throughput (B/s)
8 KByte (8192 Bytes)
Message Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
114,688 115,000 122,000 119,000
{229,377 235,000 243,000 239,000
344,064 360,000 352,000 352,000
458,753 474,000 473,000 473,000
573,441 592,000 585,000 588,000
688,132 711,000 715,000 704,000
786,437 812,000 830,000 814,000
907,511 948,000 953,000 953,000
1,032,219 1,070,000 1,060,000 1,010,000
i 1,148,889 1,130,000 1,060,000 1,010,000
" 1,261,569 1,130,000 1,060,000 1,020,000
1,376,252 1,130,000 1,060,000 1,010,000
([1,490,946 1,130,000 1,060,000 1,010,000

Table 5.9: Throughput vs. Offered loads for 8 KByte Messages (with delay).

1,200,000 -
1,000,000 4 - " N N
— 800,000 -
0
a
=]
g 600,000 - —e&—No Error
o
3
E —i— Error (Selective
- 400,000 - Retransmission)
—a— Error (Go-Back-N)
200,000 -
o L Ll L] L L] L

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000

Load (B/s)

Figure 5.9: Throughput vs. Offered loads for 8 KByte messages (with delay).

5.5 The Simulation Results

81

Message Length Effective Throughput (B/s)
1 MByte (1024 KByte)
lMessage Rate (B/s) No Error Error (Selective Retransmission) | Error (Go-Back-N)
114,688 137,000 102,000 118,000
196,608 168,000 250,000 259,000
327,680 367,000 355,000 328,000
458,752 429,000 461,000 441,000
589,824 553,000 621,000 530,000
720,896 704,000 693,000 679,000
851,968 1,070,000 895,000 746,000
917,507 928,000 967,000 947,000
1,048,576 1,120,000 955,000 907,000
1,179,648 1,110,000 1,100,000 954,000
1,245,184 1,130,000 1,100,000 949,000
1,310,720 1,130,000 1,090,000 976,000
1,441,792 1,130,000 1,100,000 982,000
1,672,864 1,130,000 1,100,000 983,000
1,703,936 1,130,000 1,100,000 973,000
1,835,008 1,130,000 1,100,000 981,000

Table 5.10: Throughput vs. Offered loads for | MByte Messages (with delay).

1,200,000 -

Throughput (Bis)

1,000,000 -

800,000 A

600,000 -

400,000 1

200,000

—&— No Error

~—i—Error (Selective
Retransmission)

——Error (Go-Back-N)

0 200,000

400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000

Load (B/s)

Figure 5.10: Throughput vs. Offered loads for | MByte messages (with delay).

5.5 The Simulation Results

Message Length

6 Bytes (48 bits) Average Message Delay (TU)
Message Copy delay TU = Time Unit
16 Time Unit 1 second = 10,000,000 TU
Message Rate No Error Error
L (B/s) No Delay Delay No Delay Delay
[2,730 640 724 645 735
5,328 741 784 751 793
7,986 810 842 818 863
10,644 893 944 921 958
13,302 978 1,030 1,030 1,090
15,960 1,080 1,130 1,190 1,210
18,618 1,170 1,260 1,410 1,440
21,276 1,290 1,310 1,670 1,680
23,934 1,400 1,410 2,070 2,170
26,582 1,170 1,530 3,010 2,930
29,250 1,670 1,700 5,350 8,220
31,908 1,750 1,790 65,200 86,400
34,566 1,850 1,870 510,000 475,000
37,244 35,600 30,400 1,150,000 1,260,000
39,894 271,000 352,000 1,860,000 1,690,000 I
42 553 811,000 757,000 2,220,000 2,120,000 |

Table 5.11: Average Message Delay vs. Offered Loads for 6 Byte Messages.

2,500,000 -
—&— No Error (No Delay)
—&— No Error (With Delay) a
2,000,000 - — —Error (No Delay) /
A
—— Error (With Delay)
5 | 1.500,000 4
=
>
] a
[<+]
a 1,000,000 -
500,000
0 L e -~ o 1\ a e 'a? ,
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000

Load (B/s)

Figure 5.11: Average Message Delay vs. Offered Loads for 6 Byte Messages.

5.5 The Simulation Results

Message Length

128 Bytes (1024 bits) Average Message Delay (TU)

Message Copy delay TU = Time Unit

336 Time Unit 1 second = 10,000,000 TU

Message Rate No Error Error
(B/s) No Delay Delay No Delay Delay
36,680 1,700 2,670 1,770 2,730
79,616 1,840 2,760 1,850 2,770

119,170 2,000 2,880 1,980 2,880
158,730 2,200 3,020 2,160 3,000
198,295 2,450 3,170 2,360 3,170
237,829 2,770 3,510 2,660 3,420
277,356 3,210 3,860 3,100 3,790
316,989 3,830 4,390 3,780 4,820
356,447 4,770 5,330 6,790 5,770
396,040 6,470 6,960 15,000 12,000
435,819 10,100 10,200 352,000 259,000
475,483 23,300 26,400 1,450,000 1,700.000
515,091 274,000 275,000 2,420,000 2,290,000
554,353 1,090,000 1,100,000 3,580,000 3.470,000

Table 5.12: Average Message Delay vs. Offered Loads for 128 Byte Messages.

4,000,000
—&— No Error (No Delay)
3,500,000 —~8&— No Error (With Delay) 3
3,000,000 - —a=—Error (No Delay)
Error (With Delay)

—1 2,500,000 - Y
= s
=
> | 2,000,000 A
L
[+
(a1

1,500,000 - '

1,000,000

500,000 -
0 N e e e e Yot
0 100,000 200,000 300,000 400,000 500,000 600,000
Load (B/s)

Figure 5.12: Average Message Delay vs. Offered Loads for 128 Byte Messages.

5.5 The Simulation Results

1 KByte (8192 bits) Average Message Delay (TU)
Message Copy delay TU = Time Unit
2694 Time Unit 1 second = 10,000,000 TU
Message Rate No Error Error
(B/s) No Delay Delay No Delay Delay
[98,305 9,260 17,300 10,200 18,500
(l 197,634 9,910 17,800 10,550 18,700
It 295,937 10,700 18,600 11,100 19,300
It 394,240 11,700 19,500 12,400 20,700
ft 492,544 13,200 20,900 14,100 22,600
Ik 590,849 15,100 22,900 18,000 25,300 ||
689,191 18,200 25,500 23,300 32,300
f 787,510 23,600 31,300 35,100 47,900
| 879,347 34,300 41,900 130,000 268,000
984,142 77,500 85,000 4,130,000 3,900,000 ||
1,082,452 1,150,000 1,160,000 8,790,000 7,400,000
1,180,676 4,950,000 4,960,000 11,900,000 12,300,000
1,279,041 8,300,000 8,310,000 15,900,000 | 15,200,000

Table 5.13: Average Message Delay vs. Offered Loads for 1 KByte Messages.

16,000,000 -

14,000,000 -

12,000,000 -

10,000,000 -

8,000,000 A

Delay (TU)

6,000,000 A

4,000,000 -

2,000,000

0

—&—No Error (No Delay)
——No Error (With Delay)
—s—Error (No Delay)
Error (With Deiay)

0 J__I-J—(;\—-Iﬂ—ﬂ'—ﬁ—‘&‘—f 2 Y al
800,000 1,000,000 1,200,000 1,400,000

200,000 400,000

600,000

Load (B/s)

Figure 5.13: Average Message Delay vs. Offered Loads for 1 KByte Messages.

5.5 The Simulation Results

8 KByte (65,536 bits) Average Message Delay (TU)
Message Copy delay TU = Time Unit
21,559 Time Unit 1 second = 10,000,000 TU
Message Rate No Error Error
(B/s) No Delay Delay No Delay Delay
114,688 74,300 90,500 83,500 90,900
229,377 79,800 96,100 88,500 94,500
344,064 87,000 103,000 96,700 102,000
458,753 96,900 114,000 111,000 113,000
573,441 111,000 128,000 133,000 132,000
688,132 133,000 150,000 164,000 168,000
786,437 165,000 182,000 211,000 235,000
807,511 266,000 284,000 485,000 454,000
1,032,219 665,000 683,000 13,400,000 16,300,000
1,148,889 14,200,000 14,200,000 46,200,000 42,900,000
1,261,569 46,800,000 46,800,000 84,200,000 74,400,000
1,376,252 74,000,000 74,000,000 112,000,000 { 102,000,000
1,490,446 97,000,000 97,000,000 137,000,000 | 131,000,000

Table 5.14: Average Message Delay vs. Offered Loads for 8 KByte Messages.

140,000,000 - ‘
—&— No Error (No Delay) /
120,000,000 1 :
20,000,000 —&— No Error (With Delay))
100,000,000 - «— Error (No Delay)
Error (With Delay)
S A
= | 80,000,000 -
g
[:]
e 60,000,000
40,000,000 -
20,000,000
0- o T

800,000 1,000,000 1,200,000 1,400,000 1,600,000

0 200,000 400,000 600,000

Load (B/s)

Figure 5.14: Average Message Delay vs. Offered Loads for 8 KByte Messages.

6. XTP IN LOW ERROR RATE ENVIRONMENT

As we approach the year 2000, fiber optic transmission media are rapidly becoming
widely available for communication networks. The low bit error rates are a beneficial result
of the move toward fiber optic networks. It is now more realistic to assume that the physical

transmission of data is basically reliable.

In this chapter we will investigate the performance of XTP and the behavior of the
error control in XTP for bulk transferring in a highly reliable environment, i.e., the

environment with a very low bit error rate.
6.1 The XTP simulation plan in low error rate environment.
The XTP simulation is carried out on message size of IMB with a low bit error rate of

1/4,000,000 (each bit of a packet has 1/4,000,000 chance of getting corrupted).

6.2 XTP simulation results in low error rate environment.

Table 6.1 and Figure 6.1 show the throughput of XTP Simulation for IMB message
(with delay) with Error Control (Selective Retransmission), and with Error Rate of

1/4,000,000 and 1/1,000,000.

Table 6.2 and Figure 6.2 show the throughput of XTP Simulation for IMB message
(with delay) with Error Control (Go-Back-N), and with Error Rate of 1/4,000,000 and
1/1,000,000.

From the figure 6.1 to 6.2, we see that the performance of XTP in the low error rate of

environment (bit error rate of 1/4,000,000) is close to its performance in the environment

with no errors. We also see that the performance of XTP in low error rate environment,

86

6.2 XTP simulation results in a low error rate environment 87

with Go-Back-N error control, is improved more significantly, in the environment with low
error rate (bit error rate of 1/4,000,000), compared with the environment with higher error

rate (bit error rate of 1/1,000,000).

Similarly results can be obtained for XTP simulation for IMB messages (no delay).

With the bit error rates of fiber optic channels are on the order of 107
(1/1,000,000,000,000), we expect that the performance of XTP on fiber optic channels is very

close to its performance in a no error environment.

6.2 XTP simulation results in 2 low error rate environment

88

Message Length
1 MByte (1024 KByte)

Effective Throughput (B/s)

Message Rate (B/s) No Error Error (err rate = 1/4,000,000) |Error (err rate = 1/1,000,000)
114,688 137,000 110,000 102,000
196,608 168,000 259,000 250,000 |
327,680 367,000 266,000 355,000
{458,752 429,000 502,000 461,000
589,824 553,000 689,000 621,000
720,896 704,000 788,000 693,000 it
851,968 1,070,000 939,000 895,000 If
917,507 928,000 1,010,000 967,000 It
I} 1,048,576 1,120,000 1,070,000 955,000 "
1,179,648 1,110,000 1,070,000 1,100,000
{1,245 184 1,130,000 1,040,000 1,100,000 i
{t 1,310,720 1,130,000 1,120,000 1,090,000 It
F,tm,?gz 1,130,000 1,120,000 1,100,000 |
1,572,864 1,130,000 1,120,000 1,100,000
{{ 1,703,936 1,130,000 1,120,000 1,100,000
1,835,008 1,130,000 1,120,000 1,100,000

Table 6.1: Throughput vs. Offered loads for I MByte Messages (with delay) with error
control (Selective Retransmission), and different bit error rates.

1,200,000 -
Throughput {Bis)
1,000,000 -
800,000 -
600,000 -
~—<&—No Error
—8— Error (Bit err rate =
400,000 - 1/4,000,000)
—a— Error (Bit error rate =
1/1,000,000)
200,000 -
o L} ¥ L3 LS L] L
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000

Load (B/s)

Figure 6.1: Throughput vs. Offered loads for 1 MByte Messages (with delay) with error
control (Selective Retransmission), and different bit error rates.

6.2 XTP simulation results in a low error rate environment

89

" Message Length Effective Throughput (B/s)

Il 1 MByte (1024 KByte)

Message Rate (B/s) No Error Error (err rate = 1/4,000,000) |Error (err rate = 1/1,000,000)
114,688 137,000 97,400 118,000
196,608 168,000 195,000 259,000
327,680 367,000 338,000 328,000
458,752 429,000 428,000 441,000
589,824 553,000 590,000 530,000
720,896 704,000 792,000 679,000
851,968 1,070,000 843,000 746,000
917,507 928,000 929,000 947,000

1,048,576 1,120,000 974,000 907,000
1,179,648 1,110,000 1,080,000 954,000
1,245,184 1,130,000 1,080,000 949,000
1,310,720 1,130,000 1,080,000 976,000
1,441,792 1,130,000 1,060,000 982,000
1,572,864 1,130,000 1,080,000 983,000
1,703,936 1,130,000 1,080,000 973,000
1,835,008 1,130,000 1,080,000 981,000

Table 6.2: Throughput vs. Offered loads for | MByte Messages (with delay) with error

1,200,000 -

1,000,000 -

800,000

600,000 A

400,000 -

200,000 -

control (Go-Back-N), and different bit error rates.

Throughput (B/s)

—&—No Error

—®—Error (Bit err rate =
1/4,000,000)

——Error (Bit error rate =

1/1,000,000)

0

200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 4,600,000 1,800,000

T

Load (B/s)

T T

1

Figure 6.2: Throughput vs. Offered loads for | MByte Messages (with delay) with error
control (Go-Back-N), and different bit error rates.

6.3 The behavior of XTP’s error control in a low error rate environment 90

6.3 The behavior XTP’s error control in a low error rate environment

In this section we will study the behavior of XTP’s error control (selective

retransmission) in a low error rate environment.

We start this study by looking at a XTP simulation run for IMB messages (with delay)
with load number (message arriving rate) that is equal to 100% of the expected maximum

throughput (1,310,720 B/s).

At the simulation time of 8,101,571 (a time unit of a XTP simulation run is equal to
107 s), the data packet with sequence number of 868,500 is damaged when it is transmitted
by the Transmitter. As a result, the Receiver (which is expecting to receive the next data
packet with sequence number of 868,500) will not be able to receive this packet. When the
Receiver is receiving the next data packet with sequence number of 870,000, the Receiver
Error Control will recognize that the data packet with sequence number 868,500 has been

lost, and it will update the value of spans and the nspans from O to 1.

Upon receiving the data packet with the sequence number 871,500, with the DREQ bit
on, the Receiver will send back a CNTL packet that contains its current status (rseq, nspans,
spans, etc.) to the Transmitter. When the Transmitter receives this CNTL packet at
simulation time of 8,197,135, it will figure out that the data packet with the sequence number

868,500 has not been received by the Receiver, and the Transmitter will resend this packet.

Upon Receiving the data packet with the sequence number 868,500 the Receiver will

update the values of rseq, nspans, spans, etc.

At the simulation time of 8,313,042 the Transmitter receives the next CNTL packet
sent by the receiver. At this time, the Transmitter recognizes that the resent data packet
(with sequence number of 868,500) has been received by the receiver. The gap has been

filled (nspans = 0).

6.3 The behavior of XTP’s error control in a low error rate environment 91
The Transmitter continues to transmit a number of data packets before the next error
occurs (a data packet is damaged). When this happens, the whole error recovery process is

repeated again.

Figure 6.3 and 6.4 show the flow of data and CNTL packets discussed above.

6.3 The behavior of XTP’s error control in a low error rate environment 92

Transmitter Receiver

Data (Seq = 867,000 —‘ﬁ
\
Data (Seq = 868,500 ——\
Time = 8,101,571) 2(lost

Data (Seq = 870,000
Time = 8,105,414)

resq = 868,500

~——, rseq =868,500
nspans = | —_—
Time = 8,174,391

Data (Seq = 871,500
Time = 8,153,561
Dreq on) ~—~——

CNTL Packet

Data (Seq = 873,000

Time = 8,157,404)

Data (Seq = 874,500
Time = 8,161,248)

Recovery

Data (Seq = 876,000
Time

Time = 8,165,091)

Data (Seq = 877,500
Time = 8,168,934)

Data (Seq = 879,000
Time = 8,172,777)

Data (Seq = 880,500
Time = 8,193,293)

Data (Seq = 868,500
Time = 8,197,135)

rseq = 882,000

nspans =0

Time = 8,278,610

Data (Seq = 882,000 -—
Dreq on)

CNTL Packet

LDl T T

Data (Seq = 883,500
Time = 8,204,103)

J

Data (Seq = 885,000

Time = 8,208,666) —7

/

6.3 The behavior of XTP’s error control in a low error rate environment

Transmitter Receiver

Data (Seq = 886,500 N
Time = 8,212,509)

Data (Seq = 888,000 ,
Time = 8,297,668)
Data (Seq = 889,500
Time = 8,301,511)
Data (Seq = 891,000
Time = 8,309,197)
Data (Seq = 892,500
Time = 8,313,042)
Data (Seq = 894,000 _

Time = 8.,3 17,01 | \
Dreq on)
Data (Seq = 895,500 ——

N Y A DY Y B

Figure 6.3: Time diagram

6.3 The behavior of XTP’s error control in a low error rate environment

v v v
span[1]} = 882,000 span[0] = 870,000 rseq = 868,500
nspans = |

Lost Data packet arriving

. —

v v

869,999 868,500

v
rseq = 882,000
nspans =0

Figure 6.4: Receiver’s specification of errors.

6.4 The pattern of packets 95

Figure 6.3 shows that after transmitting the data packet (with sequence number of
868,500) that will be corrupted, the Transmitter will transmit 8 more data packets (sequence
number 870,000 to 880,500) before it receives the CNTL packet sent back by the Receiver, to
inform it that there was a data gap at the Receiver end. After resending the lost data packet
(with sequence number of 868,500), the Transmitter will transmit 8 more data packets before

it receives the next CNTL packet sent back by the Receiver to inform it that the data gap has
been filled.

6.4 The pattern of packets

We set up the XTP simulation runs with message size of IMB (delay and no delay),
with bit error rate of 1/4,000,000 and with different loads. We recorded the number of data
packets and CNTL packets sent and received by the Transmitter and Receiver, when a data
packet is damaged. Based on the results of these simulation runs, we come up to the

following pattern of data and CNTL packets sent and received by the Transmitter, after a data

packet is damaged:

DDD DDDDDDDDD CNILDDDDDDDDUDTCNILDD DD

lost packet resent

Data packet Receive Receive
is corrupted CNTL packet next CNTL packet

Figure 6.5: The pattern of data and CNTL packets sent and received by the Transmitter.

Figure 6.5 shows that on the average, when a data packet is damaged, the Transmitter
will transmit 8 more data packets before it receives a CNTL packet sent back by the receiver
to inform it that there was a data gap at the Receiver end. After resending the lost data

packet, the Transmitter will transmit an average of 8 more data packets before it receives the

6.4 The pattern of packets 96

next CNTL packet sent back by the Receiver to inform it that the data gap had been filled at
the Receiver end. With low bit error rate of 1/4,000,000, the Transmitter will continue to
transmit a number of data packets with no damaged packet for a period of time. When the

next data packet is damaged, the Transmitter will follow a similar pattern of packets described

in figure 6.5.

As described in chapter 5 (and in chapter 7), the number of collisions at a station of
XTP simulation runs with large message size (for example, IMB), will be significant higher
compared with XTP simulation runs with smaller message sizes, and with the same loads. A
CNTL packet sent back by the Receiver in XTP simulation runs with large message size of
IMB, will have higher chance of colliding with a data packet arriving at the Receiver. As a
result, in XTP simulation runs with large message size of IMB, it will take the Transmitter, on
the average, longer time to receive a CNTL packet sent back by the Receiver to inform it if

there was a gap at the Receiver end.

Table 6.3 shows all the patterns of packets for XTP simulation runs with message size

of IMB (with delay), with different loads, and with bit error rate of 1/4,000,000.

For similar XTP simulation runs with smaller message size (for example, 8KB), the

patterns of packets will be shorter, as expected.

6.5 The Recovery Time

Message Rate (B/s)

The number of data packets the Transmitter
continues to send after a data packet is
damaged, and before the Transmitter
receives the next CNTL packet.

The number of data packets the Transmitter |

continues to send after a damaged is
resent, and before the Transmitter
receives the next CNTL packet.

114,688

196,608

327,680

458,752

589,824

720,896

851,968

917,507

1,048,576

1,179,648

1,245,184

1,310,720

1.441,792

1,572,864

1,703,936

1,835,008

QO |00 oofw(w|w|ooio|o|oo|on]o|~if~

C{oo|oojoo|m|wiw|w]|w]o|oo|oo]|oo]oo]~i]~

Table 6.3: The patterns of data packets sent by the Transmitter after a
data packet is damaged.

6.5 The Recovery Time.

We also measure the average recovery time for the XTP simulation runs of table 6.3.
(as shown in figure 6.3, the recovery time is the time the Receiver takes to recover a lost data

packet). Table 6.4 shows the average recovery time for the XTP simulation runs of message

size IMB (delay and nodelay), with bit error rate of 1/4,000,000.

Figure 6.6 shows the distribution of the average recovery time for the XTP simulation

runs of 1MB message (with delay), and with bit error rate of 1/4,000,000.

6.5 The Recovery Time 98

‘Ll Average Recovery Time (ms) J
II'_Delax 18
[No Delay I 70

Table 6.4: Transmitter’s average recovery time for XTP simulation runs of
IMB messages (delay and no delay), with bit error rate of 1/ 4,000,000,
and with Selective Retransmission Error Control .

Recovery Time (ms)

-

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000

Load (B/s)

Figure 6.6: The distribution of Average Recovery Time of XTP simulation runs
of 1MB messages (with delay) with bit error rate of 1/ 4,000,000 and
Selective Retransmission Error Control.

6.5 The Recovery Time 99

In the next chapter, we will discuss an enhanced backoff algorithm, that can reduce the
number of collisions at a station during an XTP simulation run. This may lead to the
decreasing of the average recovery time at the Transmitter station, and the improvement of

the XTP throughput.

7. THE ETHERNET CAPTURE EFFECT

Ethernets have been in widespread use for over a decade now. It has been the core
technology enabling distributed computing, and network for the desktop, server and
backbone over the years. It has met the performance needs of applications and systems, and
has been a robust and inexpensive local area network so that computer systems have begun to
have an interface to it as a default. The algorithms for controlling access to the Ethernet
networks have been examined by a large number of researchers over the years. One of these
algorithms is the well known Binary Exponential Backoff (BEB) algorithm, which is used in

Ethernet/802.3 network, for collision resolution.

If two stations both detect an idle Ethernet and begin transmitting at the same time, a
collision will occur. After the first collision, each station waits either 0 or 1 slot time (a slot
time is 512 bit time, e.g., 51.2 useconds for 10 Mbps system, and 5.12 pseconds for 100
Mbps system) before trying again. If two stations collide and each picks the same random
number, they will collide again. After the second collision, each one picks either 0, 1, 2 or 3
at random and waits that number of slot times. If the third collision occurs (the probability of
this happening is 0.25), then the next time the number of slot times to wait is chosen at

random from the interval 0 to 23 - 1.

In general, after n collisions, a random number between O and 2" - 1 is chosen, and
that number of slot times is skipped. However, after 10 collisions have been reached, the
randomization interval is frozen at a maximum of 1023 time units (2'° - 1). After 16
collisions, the retransmission is aborted on any given packet. Further recovery is up to

higher layers.
The BEB algorithm was chosen to dynamically adapt to the number of stations trying

to send. If the randomization intervals for all collisions was 1023, the chance of the stations

colliding for a second time would be negligible, but the average wait after a collision would

100

7.1 The Ethernet Capture Effect 101

be hundreds of time units, introducing significant delay. By having the randomization interval
grow exponentially as more and more collisions occur, the BEB algorithm ensures a low
delay when only a few stations collide, but also ensures that the collision is resolved in a
reasonable interval when many stations collide. However, BEB algorithm can lead to the

problem of Ethernet Capture Effect, which is discussed in the next section.

7.1 The Ethernet Capture Effect

The Ethernet Capture Effect is the behavior wherein under high load, one station is able
to hold on to the channel to transmit packets consecutively, in spite of other station(s)
contending for access. This is particular acute in the case of a 2-node network, with one
station receiving an unfair share of the channel bandwidth over a transient period. The
number of packets consecutively transmitted by the node capturing the channel can
potentially be hundreds of packets or more, if the station has this large number of appropriate
size packets to transmit. The Capture Effect is due to the tramsient unfairness of the
standard BEB algorithm used in the Ethernet/802.3 network. The degree of transient
unfairness is severe for a small number of contending stations and it reduces quickly as the
number of active stations increases. It also has severe performance repercussions even with
protocols using window flow control with modest maximum window size of 32K or 64K.
The Capture Effect results in the channel being unnecessary idle, thus reducing the overall
throughput achieved by the applications. The transient unfairness also results in the access
latency seen by a station having substantially increased variability, which is bad for emerging

applications such as multimedia networking.

Ramakrishnan introduced the Capture Avoidance Binary Exponential Backoff
algorithm (CABEB) [Ramakrishnan94], which he states has all the properties needed to
overcome the performance degradation without violating in any way the spirit of the
Ethernet/802.3 standards for access to the network. The CABEB is an extension of the
standard BEB, where it uses the standard BEB for all cases of collision resolution except for

one. The CABEB for collision resolution minimizes the occurrence of capture by a station by

7.2 The CABEB Algorithm 102

using an enhanced backoff algorithm when a collision occurs. The CABEB algorithm is

discussed in the next section.

7.2 The CABEB Algorithm

The CABEB algorithm executes the standard BEB for all the collision cases except for
one special case. If a station transmits a first packet and begins to transmit a second packet
and the station has not received a collision or a packet between the first packet and the
beginning of the second packet, we call this an uninterrupted consecutive transmit. The
CABEB algorithm processes this uninterrupted consecutive transmit using an enhanced BEB
algorithm to solve the Capture Effect problem. The CABEB algorithm is compliant with the
Ethernet/802.3 standard.

There are several back to back cases of interest. The first case is the uninterrupted
consecutive transmit, where a station transmits a second packet after it has successfully
transmitted a first packet and there were no other stations contending for the channel prior to
the beginning of the second packet. In the uninterrupted consecutive transmit case, the
second packet could encounter a collision. So, the conditions required for this case are a
station successfully transmitting a first packet, the channel is idle (i.e., no packet is received,
or collision encountered) for an arbitrary period of time after the first packet, and the station

begins to transmit a second packet.

The second case of interest is where a station transmits a first packet, then it receives
one or more packets or collisions, and then the station transmits a second packet. We call
this case an interrupted consecutive transmit. For an interrupted consecutive transmit, the

station of interest (i.e., the one that just transmitted a packet) is not involved in the collision.

The third case of interest here is when the second packet of an uninterrupted
consecutive transmit is involved in a collision and the station wins the collision resolution to

complete the transmission of the second packet. An uninterrupted consecutive transmit is

7.2 The CABEB Algorithm 103

the first portion of a captured transmit, where the second packet of the uninterrupted
consecutive transmit is involved in a collision. We will call this case a captured transmit.
When a station does consecutive captured transmits for multiple packets, we say that the
station has captured the channel. A captured transmit occurs when the station winning the

collision resolution transmits the second packet. Figure 7.1 illustrates these cases.

1. Uninterrupted consecutive transmit

Time ——————»

S, Packet 1 S, Packet 2

2. Interrupted consecutive transmit

Tim¢ ——

S; Packet 1 . Collision or receive S Packet 2

. . e et em s e am -

Note: Station S; is not involved in the collision.

3. Captured transmit

Tim¢ ———

S, Packet 1 S; Packet 2 with Collision . S: Packet 2

E IR B A I SRR A S I S, 4 =

Note: Station S, is involved in the collision.
Figure 7.1: Examples of Transmit Cases.
The CABEB algorithm solves the Capture Effect problem by minimizing the

occurrence of captured transmits. This is archived by using an enhanced backoff algorithm

when a collision occurs on the second packet of an uninterrupted consecutive transmit. For

7.2 The CABEB Algorithm 104

an interrupted consecutive transmit, it uses the standard BEB algorithm for collision

resolution.

The enhanced backoff algorithm can be described as follows: When transmitting a
second packet of an uninterrupted consecutive transmit, the station takes a backoff of 2 slot
times on the first collision. If the other colliding station is transmitting a fresh packet (i.e.,
one that has not experiencing any collision), that station will draw a backoff of O or 1 slot

time (according to the BEB) and hence its packet is guaranteed to be transmitted.

The CABEB algorithm [Ramakrishnan94] is described in more detail on the next page.

7.2 The CABEB Algorithm 105

CABEB Algorithm [Ramakrishnan94}]

n = collision attempts (0-15)

r = standard BEB uniform distributed random number
k = BEB backoff range variable

backoff = the number of slot times to backoff

For collision resolution, the following procedure determines the backoff time for
CABEB algorithm:

For an uninterrupted consecutive transmission:
If n =1 then backoff = 2;
if n =2 then backoff = 0;
if n > 2 then backoff = r;
where 0 <= r< 2*, k = min (n,10)
For an interrupted consecutive transmission:

backoff =r; where 0 <= r< 2% k = min (n, 10)

7.2 The CABEB Algorithm 106

Thus, The CABEB algorithm guarantees that a capture transmit does not occur when
both the colliding packets are expecting their first collision. After the backoff of 2 slot times,
the station is ready to retransmit the packet. If the packet collides for the second time, the
station draws a backoff of 0 slot times. Thus, the station will retransmit immediately. The
selection of 0 slot time on a second collision allows the station to have a higher probability of
winning the second collision. If the same packet experiences a third or subsequent collision,

the station uses the standard BEB for collision resolution.

The CABEB algorithm is not meant to be effective when one of the packets involved in
the collision has advanced beyond its second collision attempt. In this case, the CABEB’s
backoff 2 slot times does not help because the other station may be backing off a random
number of slot times based on the collision attempt and the standard BEB. For those cases
where a collided packet has advanced beyond its second collision attempt, the CABEB
behavior is similar to that of the standard BEB. This is important as we would like the
performance of the CABEB algorithm to be no worse than the standard BEB algorithm when

the number of stations in the network is large.

7.3 The Performance of XTP with CABEB Algorithm

As discussed in section 5.5, the Ethernet Capture Effect has some impact on the
performance of XTP simulation, especially when the loads offered reaches a certain threshold
in XTP simulation runs with large message size of IMB. As a result, the backoff algorithn,
which is used when a collision has occurred, plays a large role in the performance of XTP

simulation [Chung93].

To overcome the Ethernet Capture Effect in XTP simulation, we implemented the
CABERB algorithm [Ramakrishnan94] in the XTP simulation program.

7.3 The Performance of XTP with CABEB Algorithm 107

In this section, we consider the comparison between the CABEB algorithm and the
BEB algorithm for XTP simulation with the message size of 1 MB (with delay), and with

errors present.

The graph in figure 7.2 shows the performance of XTP for 1 MB messages, with error
control (selective retransmission mechanism) using either the BEB algorithm, or the CABEB
algorithm. The graph in figure 7.3 shows the number of collisions at a station for the XTP

simulation in figure 7.2.

From figure 7.2, we find that the throughput of XTP has been increased between 2 -
10% (depend on the load numbers) with the CABEB algorithm. Figure 7.3 shows that the

number of collisions at a station of the simulation has been reduced between 12 - 20 %.

Similarly results can be obtained from figure 7.4 and figure 7.5, when using the Go-
Back-N mechanism for error control, instead of using the Selective Retransmission
mechanism. We observe that the XTP throughput (figure 7.4) using CABEB algorithm was
increased by more than 10% for the test cases with load numbers greater than 70% of the
maximum expected throughput. This can be explained by the large difference in number of
collisions between CABEB algorithm and BEB algorithm for test cases with high load

numbers.

Similarly results can be obtained for XTP simulation for IMB messages (no delay).

The CABEB enhanced the standard BEB algorithm by modifying the early stages of
collision resolution (i.e., the first and second collision of a packet). As a result, the enhanced
algorithm is most effective for a network with small number of stations, where the enhanced
algorithm avoids a given packet from advancing its number of collisions beyond two. This is
guaranteed for a two node case, as the algorithm allows the two stations to alternate their
transmit. In addition, the CABEB maintains the same mean as the standard BEB for the
retransmission backoff time for multiple collisions on any given packet. This allows the

algorithm to be compliant to the IEEE 802.3 standard. Another added advantage of

7.3 The Performance of XTP with CABEB Algorithm 108

maintaining the same mean value for multiple collisions is that the behavior of CABEB
converges to the standard BEB for network with a large number of stations, at high load

when all stations are active.

7.3 The Performance of XTP with CABEB Algorithm 109

1,200,000
Throughput (B/s)
1,000,000 -
800,000 -
600,000 -
—i&— CABEB Aigorithm
400,000 -
—&—BEB Algorithm
200,000 -
o L L] R 3 L] L] L] L L s
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 41,300,000

Load (B/s)

Figure 7.2: Throughput vs. Offered loads for 1 MB messages (with delay),
with Error Control (Selective Retransmission).

7.3 The Performance of XTP with CABEB Algorithm

40,000 -

Number of collisions

356,000 -

30,000 -

25,000 -

20,000 -

15,000 -

10,000 -

5,000

~&— CABEB Algorithm

—&—BEB Algorithm

0

T T T T T

200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,40

Load (B/s)

T T

110

0,000 1,600,000 1,800,000

Figure 7.3: The number of collisions vs. Offered loads for 1| MB messages (with delay),

with Error Control (Selective Retransmission).

7.3 The Performance of XTP with CABEB Algorithm 111

1,000,000 -

Throughput (B/s)

900,000 4

700,000

600,000

400,000 - —&— CABEB Algorithm

300,000 - —&—BEB Algorithm

200,000 -

100,000 -

0 L3 T T T T T T o

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,800,000

Load (B/s)

Figure 7.4: Throughput vs. Offered loads for | MB messages (with delay),
with Error Control (Go-Back-N).

7.3 The Performance of XTP with CABEB Algorithm

45,000 -

Number of collisions

40,000 -

35,000 -

30,000 4

25,000 -

20,000 -

16,000 4

10,000 -

6,000

—— CABEB Algorithm

—&—BEB Algorithm

112

T T

200,000 400,000

T

600,000

T T

800,000 1,000,000 1,200,000 1,400,000 1,600,000 1,80

Load (B/s)

1

Figure 7.5: The number of collisions vs. Offered loads for | MB messages (with delay),
with Error Control (Go-Back-N).

8. CONCLUSION

8.1 Thesis goals

The object of this thesis was to study the performance the XTP with error control,
using SMURPH as the simulation tool. We benefit from the works done by [Chen89] and
[Chung93], and the new formal specification of XTP [XTPForum95]. However, it still took
us a lot of time for implementing the XTP simulation in SMURPH. We hope that the new
versions of SMURPH in the future, will have better debugging tools. This may save a lot of
time. The simulation runs also consume a lot of time, for example, a typical XTP simulation

run for the message size of IMB will take at least 45 minutes to complete.

8.2 XTP Performance

From the XTP simulation runs with high bit error rates, we find that XTP with error
control is capable of providing excellent performance. In the environments with low bit error
rates, XTP has the performance that is very close to its performance in the no-error
environments. With bit error rates of fiber optic channels on the order of 1072
(1/1,000,000,000,000), we expect that the performance of XTP on fiber optic channels will

be excellent.

By carrying out many simulation runs with low bit error rates, the behavior of the XTP

error controls was also studied in more detail.

[Chen89] mentioned that the copy and checksum delays play an important role in the
performance of XTP. From the results of the XTP simulation runs with error control, we can
conclude that these delays are not as important as the performance of the underlying
Ethernet. Ethernet was found to be a bottleneck, limiting the transfer of data. The delay
resulting from the collisions occurring in the underlying network was, occasionally, 50 times
higher than the copy delay. A good backoff algorithm should be able to decrease the number

of collisions, and thus increase the performance of XTP.

113

8.2 XTP Performance 114

The CABEB algorithm (discussed in chapter 7) enhances the standard BEB algorithm,
and reduces the number of collisions in the underlying network. As a result the number of

times that the protocol entering the synchronizing handshake is also reduced.

The performance of XTP simulation runs, with error control, using the CABEB
algorithm, is improved significantly. For XTP simulation runs, using Go-Back-N error
control, and CABEB algorithm, at high load numbers, the number of collisions are reduced
by more than 30% and the performance of XTP is improved by more than 10%. The
CABEB algorithm solves the problem of Ethernet Capture Effect and it is compliant to the
IEEE 802.3 standard.

At a conclusion, we believe that XTP, which is designed to fix some deficiencies in
TCP, and to provide high efficiency in transport service, has an excellent performance, even
in the high error rate environment, and with large message sizes. The excellent performance

of XTP is due to the excellent design decisions made for the error control mechanisms.

8.3 Future work

The current XTP simulator in SMURPH can be extended by increasing the number of
stations using the channels. The expected decreasing in the performance of XTP should be
investigated. The performance of XTP with both CABER and BEB algorithms should also
be studied.

The next logical step is to study the performance of XTP with error control in a
multicast environment, since XTP multicasting is now formally specified in the XTP
specification, version 4.0 [XTPForum95]. The study of XTP performance in the multicast
environment is currently carried out by Mr. Kun Guo, a graduate student, under the

supervision of Dr. J.W. Atwood.

8.3 Future works 115

It would also be interesting to study the performance of XTP in other real-life network
configurations such as token ring, token bus, or FDDI. Simulation of XTP with FDDI
configuration in SMURPH may not be possible because the resources required might exceed
the ones available. More packets will be transmitted, and thus, more state information will

have to be kept at each station of the simulation.

The XTP simulation, with error control, is now implemented in SMURPH, which is an
object-oriented configurable simulator, and thus, make the design and implementation of

some of the works descried above, possible for the future.

[Chen89]

[Chung93]

[Danthine80]

[Gburzynski9la]

[Gburzynski91b]

[Holzmann91]

[Institut93]

[PEI92a]

[Ramakrishnan94]

[Stallings91]

REFERENCES

Chen, J. Design and Validation of an XTP Simulator. M.Comp.Sc
Thesis, Concordia University, Department of Computer Science,
1989.

Chung Kam Chung, G. Design and Validation of Error Control in an
XTP Simulator. M.Comp.Sc Major Technical Report, Concordia
University, Department of Computer Science, 1993.

Danthine, A. Protocol Representation with Finite-State Models.
IEEE Transactions on Communications, VOL. COM-28, NO.4,
April 1980, pages 632-643.

Gburzynski, P. and P. Rudnicki. LANSF: A Protocol Modeling
Environment and its Implementation. Software - Practice and
Experience, 21, 3, 51 - 76, 1991.

Gburzynski, P. and P. Rudnicki. An Overview of SMURPH: an
object oriented configurable simulator for low-level communication
protocols. University of Alberta, Department of Computer Science,
1992.

Holzmann, J. Design and Validation of Computer Protocols.
Prentice Hall, 1991.

Institut National des Telecommunications, Evry, France. Formal
specification, validation and performance evaluation of the Xpress
Transport Protocol (XTP), 1993.

Protocol Engines Incorporated. XTP Protocol Definition, Revision
3.6, 1992.

Ramakrishnan, K., and Yang, H The Ethernet Capture Effect:
Analysis and Solution. Digital Equipment Corporation, Littleton,

MA, 1994.

Stallings, W. Data and Computer Communications. Third edition,
Macmillan Publishing Company, 1991.

[Strayer92]

[Tanenbaum88]

[Whiten94]

[XTPForum95]

Strayer, W., Dempsey B, and Weaver, A. XTP: The Xpress
Transfer Protocol. Addison Wesley, 1992.

Tanenbaum, A. Computer Networks. Second edition, Prentice Hall
Inc., 1998.

Whiten, B., Steinberg, S., and Ferrari, D. The Packet Starvation
Effect in CSMA/CD LANs and a solution. University of California
at Berkley, 1994.

XTP Forum. Xpress Transport Protocol Specification,
Revision 4.0. 1995.

Iy, T o %
(«@Mw\@% /ﬁ\\ \\//\\///// RAS
%@\\ R 4 EYEN \A//\@// o
///\\\ %//\\ A/.\q \\//A/
/%/\\ \%/.\q N\
5 A
5 0ol
s 2333 ;) Hiy
BB E T Ozs mm m
4 rnt B B s |
- o = E7 Ul :
) 2l =f g a0 |
L = = = o g
> () - 0 0
— _l—l-”_ A
/@//v \\// \\A»%/ N\
R A 4 b\./\ \// \\///
SR TIRAN RN
,.MVoVMvV,.vV,y%, ///QMW/V\ lr.lr \\\9%/ . no.,@, \\W/
W\ 7 I 2
N R

72

