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ABSTRACT
Handwritten word recognition —Application to Arabic cheque

processing

Yousef Al-Ohali, Ph.D.

Concordia University, 2002

This thesis presents a study to process Arabic handwritten cheques. It includes the
development of a unique set of databases that constitute a solid base for research in this
domain. The databases arc unique in terms of their source, domain and tags validation
process. First, they are originated from real-world bank cheques, which, to the best of
our knowledge, has never been reached in a university sctting. Second., it constitutes the
only databases in the domain of Arabic handwritten cheques so far. To the best of our
knowledge, there is no database that provides training and testing samples for Arabic
cheques. Third. it involved a unique tagging validation process that takes advantage of
the embedded redundancy in the format of the cheque to verify the tagging process. A
grammur to validate Arabic legal amounts and translate them to numerical values is also
included.

This work includes an efficient method to derive one-dimensional feature
scquence that preserves the dynamics of the original two-dimensional images. This is
very important to accommodate small variations while modeling two-dimensional
signals. The thesis provides a detailed description of an improved graph representation of

sub-word images, a more efficient method to extract dynamic information from two-



dimensional images and a clear positioning of the applicability of other curve-ordering
criteria, e.g. vision rules.

In addition, this thesis includes a significant improvement in the discrimination
power of HMM which allows the differentiation between short sub-words and longer
ones that share significant initial observation sequences. It also allows the HMM to
properly classify incomplete observation sequences. The improvement is achieved by
introducing a new parameter to the HMM called the termination probability.

Included in this work are tests that prove the applicability and efficiency of the
above contributions. At the time of this dissertation, our survey indicates that this work is
the only research in the literature which handles images of handwritten sub-words
extracted from Arabic cheques. The results of this study show a 94.36% sub-word
recognition rate on the top 10 choices. Error analysis indicates some errors caused by the

pre-processing (48% ), feature extraction (28%) and classification (24%) modules.
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CHAPTER 1

Introduction

Pattern Recognition is a vast field of research that intends to train the computer to
simulate some of the human abilities (e.g. hearing, vision) using artificial intelligence.
Although these abilities seem very trivial to humans, yet they have claimed many years
of research and development in the field of artificial intelligence. Nowadays it is unlikely
to build a unique system that simulates all human abilitics. Therefore, different human
abilities have generated different sub-areas of research.

Character Recognition is onc of the challenging arcas in pattern recognition that
have been decomposed into smaller sub-areas secking for a human equivalent
performance. It involves On-line Character Recognition. where the user needs to use an
electronic pen to write on a paper-like electronic plate. It also involves Off-line Character
Recognition, where the user has more freedom in selecting the writing material. Due to
the high complexity of some specific types of documents, special research works have
been initiated in collaboration with other research fields of study. Form processing has
helped the area of cheque processing among other applications of handwriting
recognition.

From the administrative point of view, cheque processing involves all the tasks a
bank officer may perform to process an incoming cheque for a client. This includes:
accessing account numbers, verifying names and signatures on the cheque, verifying the
date of the cheque, matching the legal amount with the courtesy amount and verifying the

credit of the cheque writer. However, from the technical point of view, cheque processing



(8]

could involve capturing the cheque image, separating the foreground of the cheque from
its background. extracting fields of interest, and recognizing each of them.

The goal of this study is to establish the research in recognition of legal amounts
extracted from Arabic cheques and to investigate the applicability of some of the
classification methods to this problem.

This work employs theories and mcthodologies from various fields in order to
achieve its objectives. First. Natural language processing is used to validate, translate and
interpret legal amounts. Second. theories and corollaries from the field of Graph Theory
are integrated to derive an efficient transformation of the feature map into 1-D domain.
Finally, Statistical classification methods are employed to achieve an improved
discrimination between various sub-word patterns.

The motivation of this work is not less than the motivation of the entire research
in artificial intelligence, which aims to carry out tedious routine processes, freeing time
and space for humans to perform tasks that require higher levels of intelligence. A major
advantage of this study is that it can be easily adjusted to serve more than 20 different
countries (all of them use Arabic as their first language). In addition, legal amounts are
widely found in documents other than bank cheques (e.g. business scll/purchase forms).
Therefore, this study will be applicable to a wide range of applications. Moreover, similar

languages (c.g. Urdo, Farisi) which use the same alphabet can benefit from this study.

1.1. Previous work

This section gives a general review of research in areas related to this work including
cheque processing, handwritten word recognition and Arabic character recognition.

Detailed review is not the goal of this section.



1.1.1. Databases

Duc to strict banking rules to protect their customers, it is extremely difficult to gain
access to real cheques. This led rescarchers to perform their research within financial
institutions [GL93], or to build artificial databases [GS98]. In [GS98], about 2600
English cheques, written by 800 writers with pre-set legal amounts, have been collected.
Another set of 1900 French cheques from 600 different writers has been collected too.
The legal amounts were set for the writers to reflect balanced word distribution.

In a different type of applications, a database of addresses has been developed in
[Hu94|. The database contains 5000 city names. 10,000 ZIP codes and 50,000
alphanumeric characters. The database was collected from real mail pieces. [MC98] has
collected an artificial set of handwritten Arabic city names. The database contains about
5900 city names, comprising a lexicon of 232 different cities.

It is noted that the accuracy of the labeling process highly depends on the
clarity/ease of the tool used for labelling, and on the person who uses the tool. None of
the above databases mention the use of redundant information to venfy the accuracy of
the labelling process.

In this thesis we develop new databases for research in Arabic legal amount and
courtesy amount recognition. A major characteristic of this work is that the underlying
data is extracted from real bank cheques, exposing real-life problems to research focus
points. Another significant characteristic of this work is that the labeling procedure is

validated by logical use of redundant information.



1.1.2. Pre-processing

Few research works were targeting a complete cheque processing system. In such

systems, pre-processing includes the following tasks:

L.

9

Foreground/background separation process. This task could be difficult in case of
complex background patterns. For this task. average filtering has been applied and
shown acceptable results [SL96].

Segmentation and extraction of useful fields from the cheque form. Locating fields of
interest is normally based on preliminary assumptions about their approximate
locations. Guidelines could then be detected and used to extract such fields {SLI6]
[LLGI7]. Minor skews arc taken into consideration during the guideline detection
process.

Removal of pre-printed lines that may overlap with useful handwritten data. Such
overlaps could be processed locally through heuristic rules [LLG97], or through
topological operations [SL96]. This task becomes more challenging in cases where
the background is darker than the guidelines.

Slant normalization. This process is generally applied to the overall legal amount
[SL96], [LLGI7], [KB0Oa], [GA99]. Methods used for slant computation are based
on the histogram of contour pixels [KB0Oa], Hough transform [AmOO], vertical
projections, and the average angle of near vertical strokes or chain codes [KF00].
Baseline detection. This process is frequently applied due to its noticeable importance

for further pre-processing steps and feature extraction modules [EG99] [CL98].



6. Segmentation of legal amounts into words. This is mostly done based on horizontal
spacing [LLG97]. To avoid the effect of artefacts, computation of horizontal spacing
could be constrained within the middle base line area [YS98].

7. Size normalization. This is an important step for some types of features. While the
object’s size could be set to pre-defined values for character sets of the same width
[AV00], relational size normalisation is more efficient for handwritten words. In such
a case, height and width should be dealt with independently. Width is normalized
based on approximation of number of letters [KB0Oa], while height could be
normalized based on the middle base line area [EG99] [KB0O0a). Stroke width
normalisation is useful for hand-printed characters [GW98].

In this thesis, we apply most of the above-mentioned steps, using suitable adjustments

of previously designed algorithms.

1.1.3. Segmentation

Segmentation takes place again here, and is meant to partition a word image into smaller
segments, possibly letters. This is essentially noticeable in handwritten words and in
cursive languages (e.g. Arabic). Segmentation allows word composition from basic
components, which enables the same lexicon domain as the underlying language.
However, segmentation errors are hardly recoverable in subsequent stages. Researchers
have taken different stands toward this process. Following are the main approaches
considered in this regard:
. Explicit segmentation uses some explicit measures to produce segmentation
hypotheses. Such measures could be structural or statistical measures extracted

from the input image, and are usually selected not to overlook any segmentation



i

points, resulting in what is called over-segmentation. The classifier builds its
decision based on features extracted from each segment, with the possibility of
Jjoining feature vectors of successive segments. Ordering of successive segments is
important in joining feature vectors [LLG97] [YS98] [EG99] (ZM99] [KA98]
[CB99] [BS99] [AKO1].
Implicit scgmentation delays the segmentation process until the classification phase.
Recognition confidence is used by the classifier to detect proper segmentation points
[KBOOa] [KK97]. In this approach, the classifier works under the assumption that
features have been extracted in a sequential manner that preserves the sequence of
symbols. Overlaps between features of successive symbols could mislead the
classifier.
Segmentation free approach avoids word scgmentation at all. Classification is
normally done based on global features extracted from the input word image as a
whole [Am00] [MG96]. This is also known as a wholestic approach. It is applicable
where the lexicon contains a limited (small) number of entries. Avoiding explicit
segmentation hypothesis that could form a basis for misclassification is the main

advantage of this approach.

In this thesis, we apply the third method in dealing with Arabic sub-words.

1.14. Feature Extraction

Both statistical and structural features were used to describe input word/character images.

Structural features are more commonly used to describe handwritten data due to their low

sensitivity to minor shape variations. Global features (e.g. ascender, descenders, loops ...

ctc.) were used in [SLI6] [LLG97) [CL98] [EG99] [PS97]. In [GS98] number and



position of these features were used to compose a weighted feature vector. Such features
are sensitive to slant and to handwriting artefacts that are frequently introduced at the
beginning and/or at the end of the writing. Geometrical features (e.g. horizontal and
vertical bars) were used in [HS97) [SL96] [PS97] [RP94] [LLY7] [AbIS]. These features
are also sensitive to slant. Contour features were used in [GS98] [EG99]. Contour based
features are more stable than skeleton based ones, but are severely affected by touching
and broken parts. Topological features were used in [HS97] [RP94] [LL97] [AY97].
These features are sensitive to artifacts and small noise that could affect the input image.
Junctions that involve more than three segments could mistakenly be regarded as two or
morc junction segments. Graphemes were used as features in [GA99] [KA98].
Characterization of graphemes is normally done by feeding a simpler set of features into
an NN or a KNN classifier. Other structural features include projection based features
[HS97] [CK98], cdge maps [CK98|. linguistic expressions {LM0O] and pen trajectory
clements [DF98].

Statistical features, on the other hand, describe the input image in terms of
relational statistics that are computed from the input image. They are generally casier and
faster to extract, but are more sensitive to small variations and require more effort on the
pre-processing stage. Statistical features have been used as stand alone descriptions for
handwritten images, or in complement to other structural features. They have been used
also with various types of classifiers including NN, HMM, KNN. Statistical features
could be based on pixel counts (KB0Oa] [LLG97], run-lengths [MG96] [AV00],
cigenvalues and eigenvectors [(GW98] or Fourier descriptors  [Ma94] [AN97].

Combinations of structural and statistical features are found in [EG99] [HP98].



In this thesis, we use both statistical and structural features to describe each input
image. The statistical features are defined to provide global information about the input
word, while the structural features provide analytical information. A major contribution
of this thesis is the design of an efficient algorithm to retrieve an approximation of the

pen trajectory.

1.L.5. Classification

Classification module in a pattern recognition system maps descriptions of input images
into object identities. Researchers have used various types of classifiers while seeking an
intelligent mapping process. Nearest neighbor classifier employs a direct comparison
between input feature vectors and pre-registered models. Different  distance
measurements have been used to compare feature vectors. Special filtering process need
to be applied during the training phase to exclude any misrepresenting patterns. This
could be a tedious task in cases of huge training data. A KNN classifier overcomes this
problem by defining a set of clusters. Each cluster is represented by the mean of all its
vectors, which minimizes the effect of extreme or misrepresenting samples [ZM99]
[SL96] [GS98] [LM0O].

Neural Networks (NN) use small computational engines, called neurons, to arrive
at a complex decision. Different types of NN differ in their structure (number and
connectivity of neurons), basic functionality of neurons and the decision making function
at each layer. NN is widely used because of its easy learming process and proven
generalization ability on some types of problems. However, it is used as a black box that
makes inference of the decision making process very difficult. In addition, the output

values of NN do not reflect confidence or probability. Among the most common types of



NN are the multi-layer perceptron (MLP) [CL98] [GW98] [Al95] and Radial Basis
Function (RBF) [CK98].

Hidden Markov Model (HMM) is a statistical classifier that employs both values
and order of feature vector elements to deduce a probabilistic recognition measure.
Features are presented to each model in a sequential manner, and the recognition is based
on model probabilities. Evaluation of the probability of a given model could be based on
one of the following criteria:

L. The probability of the best path travelled by the feature vector,

2. The probability of being in the last state of the model (by all possible paths) at the
end of the feature vector, or

3. The probability of being at any state in the model (by all possible paths) at the end
of the observation vector.

After its successful application to speech recognition, HMM has been widely
applied in the last few years to handwritten word recognition [LLG97] [KB00a] [GA99]
[EG99] [PL98] [MS98] [CK94] [MGI6] (KA98] [AV00] [GM93] [GS98] [MC98]
[BS99] [AY97]. The most common HMM structure used in the literature is left-to-right,
which enforces forward transitions throughout the states of cach model. Discrete HMM
expects discrete observation vectors. In cases where the feature vectors are not discrete, a
quantization process has to be performed, which usually introduces some amount of
error. A possible alternative is to use semi-continuous HMM, which works on some
assumptions regarding the distribution of the input feature vectors. While such

assumptions are normally not completely accurate, the amount of error introduced is less
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than those introduced by the quantization process. However, semi-continuous HMM
requires more resources in terms of memory and processing time.

Tree classifier is popular for its structural stage-wise nature. Its weakness arises in
cases of early erroneous decisions [Am00a). Other types of classifiers that are found in
the literature include matching algorithm [RP94] [DF98], machine learning algorithm
[AmOOb] and hash table [HS97].

In this thesis, we design an NN classifier based on global features and an HMM
classifier based on analytical features. A new criterion to evaluate the probability of a

given HMM model represents one of the contributions of this thesis.

1.1.6. Combination of multi-classifiers

Multi-classifiers are used by many researchers in the field of pattern recognition to
improve system performance and/or reliability. In general, combination methods could be
divided into two categories: sequential and parallel. Sequential methods apply one
classifier at a time, feeding the output of each classifier to the next one. This can be used
for lexicon reduction in stage-wise recognition approaches or to achieve higher accuracy
rates. In parallel methods, all classifiers are employed in parallel and the overall decision
is based on the classification results of each clussifier.

The authors in [SM98] proposed three combination functions for multiple
classifiers. The combination methods intend to improve word recognition results out of
character classifiers. The inputs of cach function are sorted lists of character classes and
confidence values produced by each classifier. The parameters of each function are

optimized using gradient descent method. In a vocabulary of 100 words, the optimized



11

sigmoid combination function improved the recognition results to 84.47%, about 10%
more than the better of the two classifiers used.

In [RK98]. the authors proposed an approach to combine the advantages of
discrete and continuous Markov models. In their approach, the probability density
functions of the continuous HMMs are estimated using a neural network.

Authors in [KA98] used an NN-HMM hybrid approach to recognize cursive
words. Input words are first scgmented into graphemes. Features are then extracted from
each grapheme and fed to a neural network to estimate the observation probabilities.
Transition probabilitics are estimated by the HMM. Training becomes more complicated.
Given a trained HMM., they applied Viterbi backtracking algorithm to provide the target
values for the NN. Thesc values are then used to perform supervised training to the NN.
Then the HMM s re-trained using the observation probabilities from the NN. This
process iterates for a number of times to ensure the stability of the system.

In this thesis, we apply a sequential combination method of the two classifiers
used in the classification phase. The NN classifier is first used for lexicon reduction
purposcs. The reduced lexicon is then fed, along with the unknown pattern, to the HMM

classifier for identification purposes.

1.1.7. Integration of legal amounts

In addition to word recognition, legal amount processing involves the task of finding the
most probable sequence of words that leads to a proper legal amount. Usually, syntax and
semantic rules of any language disallow certain combination of words. In (Gu96], an
English parser is defined and used to pick up sequences of words that lead to

syntactically and semantically correct legal amounts. Another parscr is used for French
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legal amount. In [KB98], a syntax-directed translation graph has been designed to parse
and translate German Iegal amounts into digit strings. The resulting digit strings are then
compared to the recognized courtesy amounts, and mismatches are localised for further
processing.

In this thesis, we have designed and implemented a parser for Arabic legal
amounts. The parser is used to validate a given sequence of words and to derive

numerical values from correct sequences.

1.2.  Brief description of legal and courtesy amounts written in
Arabic

Unlike Latin, Arabic is written from right to left in cursive script. Out of the 28 basic
Arabic letters, 22 are cursive letters while 6 are non-cursive. Within one word, a cursive
letter should be connected to the succeeding letter, while a non-cursive letter can not be
connected to any succeeding letter. Thus, an Arabic word may be decomposed into more
than one sub-word, each represents one or more connected letters with their
corresponding secondary components [AMI95][Am98].

[n addition, Arabic defines two types of secondary components: dot and Hamzah
(a zigzag-like shape). The number and position of secondary components play a role in
the identification of the letters of the alphabet. Moreover, Arabic allows the presence of
diacritics that control the pronunciation of words and possibly their meanings. However,
such diacritics are only used in highly formal documents or in cases of contextual
ambiguity [AM95]{Am98].

The shape of an Arabic letter may change significantly depending on its position

within a sub-word, identity of neighbouring letters, the writing font, and the way the
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writer connects successive letters [AM95][Am98]. Arabic handwritten letters differ in
height and width.

The vocabulary of Arabic legal amounts is larger than those found in Latin
languages. This is due to three major factors. First, Arabic has three different forms:

singular, double, and plural (Figure 1-1). This could affect both the number and the

GUT st vl |

Figure I-1: Singular, double and plural forms for the word "thousand”

all wlad] #] el

Figure 1-2: Four grammatical forms of the word (two thousand)

counted item (currency words in the context of legal amounts). Second, double and plural
nouns have up to four different forms according to their grammatical positions (Figure I-
2). Third, most numbers define two forms, one for feminine and one for masculine
countable things (Figure 1-3). Different forms of the same word share most letters and
possibly sub-words.

In addition, a few common spelling mistakes and/or colloquial occur in writing
some Arabic numbers (Figures 1-4,1-5). These factors affect the identity of letters and the
number of sub-words composing a word.

We found more different words than sub-words in the Arabic legal amount
lexicon. That was onc of the reasons to consider sub-word as the basic unit of Arabic

legal amounts.
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In principle, Arabic allows legal amounts to be written in any order, i.e. starting
from the most significant digit, from the least significant digit or even from the middle.

However, eloquence measurements and personal habits excluded most permutations.

qy ]~ wlly

Figure [-3: Feminine and masculine forms of the word "three"”

Arabic imposes certain constraints on numerical values. For instance, the word
hundred does not appear with numbers more than 9. Values larger than 999 should be
written in the forms of the word thousand instead of cases like twelve hundred in English.
In addition, since Arabic defines three different categories for single, double and plurals,
there are normally different constraints for the numbers one and two of each numerical

category (I, 2, 100, 200... etc).

iy Wi,

Figure 1-4: Two common forms for the word “hundred”

qx L, L dly

Figure 1-5: Secondary components of the last letter may be ignored, a

common mistake.
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With respect to courtesy amounts, there are no language constraints. Courtesy
amounts are written in either Arabic or Indian digits. Indian digits are more widely used
in eastern Arabian countries. Figure 1-6 shows the ten Arabic digits with the
corresponding Indian ones. Note that the zero is written as dot. The decimal point is
written as a large comma. There is no standard symbol to represent delimiters of courtesy
amounts (dollar signs), which are optional Arabic cheques. Whether Arabic or Indian

digits are used, courtesy amounts are written in the same order, putting the least

significant digit in the rightmost position.

Corresponding Indian digits

Figure [-6: Arabic digits and their corresponding Indian digits.

1.3. Proposal

We aim to establish the field of Arabic legal amount processing. To this aim, we propose
to investigate the applicability of global and analytical classification methods to
recognize Arabic sub-words. In addition, combination of the two methods will be

evaluated. Morcover, all necessary grammar and parsing algorithms will be developed.
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As it is a basic infrastructure that is necessary to develop and evaluate different
methodologies. we also propose to develop a database for Arabic legal amounts that
could be used to train and test recognition systems. Such a database should be realistic

and should be labelled in an accurate manner.

1.4. Contributions

Contributions of this thesis fall into three categories: databases development, recognition
system and natural language processing to translate and interpret legal amount system.

I This work establishes the research in Arabic legal and courtesy amount recognition
by providing databases for training and testing purposes. Major characteristics of
these databases are summarized below:

a. They were extracted from real bank cheques.

b. They went through a solid validation procedure to ensure the accuracy of the
tagging process. Redundant information (which are widely used in various
forms) have been employed to verify the correctness of the tags of cach of the
legal and courtesy amounts.

¢. To the best of our knowledge, they include the first and only database for
Arabic legal amounts and the first and only database for Indian digits.

2. This thesis makes initiative by investigating the difficulties and challenges of
Arabic legal amount recognition. Major contributions of the recognition
development part in this work include:

a. An cfficient method to derive one-dimensional feature sequences from two-
dimensional sub-word images. This involves an improved graph representation

of sub-word images, a more efficient transformation to traverse all edges in the
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graph and a clear identification of traversal alternatives where other curve-
ordering criteria (e.g. vision rules) can be applied.

b. An improved discrimination power of HMM has been achieved by introducing
ancw parameter to the model, the termination state probability. This allows for
the discrimination between short sub-words and longer ones that share
significant initial observation sequences. It also allows proper classification of
incomplete observation sequences. The introduction of the termination state
probability does not require additional inputs to the training system, but uses
some of the available (but unused data) to derive useful information.

3. This work includes the design and implementation of a parser to validate and
translate legal amounts into numerical values. The parser could be re-used for
future rescarch/applications in the ficld of Arabic legal amount recognition with

minor modifications.

1.5. Thesis organization

After this introduction, we provide detailed description of the database development
process, including data collection, labelling, and validation. Chapter three gives details of
the sub-word recognition systems and the decision making process. Chapter four provides
experimental results on sub-word recognition levels. Chapter five shows by example how
the sub-word recognition system can be employed to arrive at a legal amount processing
system. Finally, chapter six presents the conclusion of this thesis. Figure 1-7 shows a

graphical presentation of the thesis structure.
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Chapter 2

Database Development

Databases are essential infrastructure for the development of Arabic legal-amount
recognition systems. They could be used to train. validate and test legal amount
recognition  systems. In addition, common databases could provide a basis for
quantitative comparisons of different methodologies. This chapter describes the process
of constructing databases of Arabic legal amounts and Indian courtesy amounts. These
databases outperform other published databases for Latin based languages in terms of
reality and validation procedures with comparable sizes.

Using real data is very important to eliminate the bias involved in laboratory
environments [Hu94]. However, such data has its own drawbacks. This is observed from
the uneven distribution of sub-word classes in our sub-word database that may cause
some training problems. This is particularly true for those classes that are rarely used.
Training and testing of such classes become more difficult and may impose restrictions
on the types of classificrs.

Validation intends to verify the correctness of the labeling procedure, and is very
important in building a solid ground truth. The sizes of the databases make them good
candidates to be standard databases for a number of Arabic hand-written cheque

processing rescarch topics.

2.1. Data collection

The first step toward the development of a database is to find suitable sources of data.

Finding a source for real data becomes a problem when dealing with applications that
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carry sensitive or private information like bank cheques. Through collaboration with AJ
Rajhi Banking and Investment Corporation (one of the largest banking corporations in
Saudi Arabia), we were able to collect about 7000 real world grey-level cheque images.
The gathering process involved scanning the real cheques at the bank’s centre, and
removing all personal (private) information including names, account numbers, and
signatures. The cheques were scanned in grey level at 300 dpi, and were used as the core
of other databases throughout this project.

Cheques differ in the amount of external noise added by bank officers. Some
cheques contained a stamp covering part of the legal amount, making the automated
extraction and cleaning processes more difficult or impossible. In this thesis, we decided
to collect two sets of data: random data and filtered data. The first set contains cheques
that are randomly taken from whatever was available to us at the bank center. The second
sct contains only those cheques that have no stamps covering any part of the legal
amount. For database development, we decided to start with the filtered data set, which is

the focus of this thesis, leaving processing of the random data set for future work.

2.2. Pre-processing

The next step is to extract fields of interest from cheque images. We concentrated on the
legal and courtesy amounts, leaving the date field for future work. That was achieved by
localising the target fields on all kinds of cheque forms. In Saudi Arabia, there are only
two types of cheques, which share the same format (structure) but have different sizes,
and inter-field distances.

The next pre-processing step is to binarize and reduce existing noise in the

segmented fields. Such noise could result from the digitisation process, from the
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extraction process, by bank officers or by the client. Examples of such noise include
lines, borders. and pre-printed texts that may appear along with the extracted fields. This
step has becn achieved by adapting the tools available at CENPARMI (which were
designed for Canadian cheques) [CY99a] [CY99b). Figures 2-1, 2-2 and 2-3 show an

Arabic cheque and its corresponding segmented legal and courtesy amounts.
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Figure 2-1: A sample of the Arabic cheque database.
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Figure 2-2: Segmented legal amount (from figure 2-1).
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Figure 2-3: Segmented courtesy amount (from fi gure 2-1).

2.3. Tagging

Tagging intends to label each object in the cleaned legal and courtesy amounts. A tagging

tool has been prepared to tag Arabic sub-words and numerals. The tagging operator is



required to click at any point on each connected component of the target object and then
select a tag from a pre-defined vocabulary. The tool stores the Cartesian coordinates of
each point, adds a delimiter and stores the tag. It allows tagging of touching objects and
permits reverse action (undo).

While defining our vocabulary, we have accounted for most differences. even small
ones. For instance, two different tags were used to label objects that differ only in their
secondary components (Figure 1-5). This gives more choices for future analysis since
there is no cost to merge similar sub-classes (if such discrimination is not useful for a
particular method or application). We limited the vocabulary to amounts that are less than
one million. Larger amounts will mostly requirc manual manipulation by bank officer(s).
We also included in the lexicon other words that are frequently used in the collected data
(c.g. currency words).

For each cheque, the tagging tool produces four sets of tagged files:

I. Courtesy amount file: contains the image of the courtesy amount extracted from
the input cheque, along with a sequence of Cartesian coordinates and tags of cvery
object (component) in the courtesy amount. Objects may include Indian digits,
delimiters, commas, decimal points or noise. The coordinates provide an

unambiguous pointer to the object intended by each tag.

(3]

Indian digit files: each of these files contains the image of a single connected
component (digit) extracted from the courtesy amount of the cheque and its tag(s).
Each file contains also a reference to the originating cheque, followed by the tag of

the digit.
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3. Legal amount file: contains the image of the legal amount extracted from the input
cheque, along with a sequence of Cartesian coordinates and tags of every sub-word
(connected component). The coordinates provide an unambiguous pointer to the
sub-word intended by each tag.

4. Arabic sub-word files: each of these files contains image of a single connected
component (sub-word) extracted from the cheque and its tag(s). Each file contains
also a reference to the onginating cheque.

File naming of both the courtesy and legal amounts was made to refer to the original
cheque number from which these amounts were extracted. Sub-word and digit file names
were chosen in a sequential manner.

Tagging of legal and courtesy amounts were done independently. This was
intentionally made to minimise chances of complex human errors that may happen to

both the legal and courtesy amounts of the same cheque.

2.4. Validation

Although the tagging tool was designed to prevent or warn for possible errors in the
tagging process, yet there are still some traces of mistakes. This is particularly true when
dealing with large amounts of data. Therefore, a procedure to verify the truthfulness of
the tagging process is needed. In the following two sections, we describe two procedures

that were developed for this purpose.

2.4.1. Automatic validation procedure
We took an early advantage of the redundancy available in bank cheques by comparing

numerical values of the tags of legal and courtesy amounts of each cheque. A tagged
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cheque is approved if the numerical values obtained from the tags of its legal and
courtesy amounts match. Otherwise, further steps need to be taken to validate or correct
the tagged legal and/or courtesy amounts.

Comparing the two amounts requires translation and interpretation of cach
sequence of tags into its numerical value. While this looks trivial for courtesy amounts, it
involves a complex process in the case of legal amounts. First, cach tag should be
translated into the appropriate sub-word. Second, each proper sequence of sub-words
needs to be translated into a correct word. This requires special attention since some
words may appear as sub-words of a larger word (Figure 2-4). This was achieved by
means of a context sensitive grammar developed for this purpose. Third, the sequence of
words should be converted into a numerical value. Again, this requires special
manipulation since there are various orders to write an amount in Arabic (e.g. from high

order to low order).

A

u 3 fe =

Figure 2-4: The word ten (ri ght) appears as a sub-word in the word twenty.

As will be explained in the next section, the language of Arabic legal amounts is
ambiguous. Thus, a given legal amount may produce more than one possible numerical
value. In the automatic validation procedure, a tagged cheque is approved if any of the
numerical values generated from its legal amount matches the numerical value generated

from its courtesy amount.
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In the following section, we discuss the need for ambiguous grammar to define
Arabic legal amounts, then we provide an overview of the grammar used to parse and

translate Arabic legal amounts followed by a section on the structure of the grammar.

2.4.1.1 The language of Arabic legal amounts

Definition 2-1: A language is a group of mecaningful sentences that share similar

structures.

Definition 2-2: A grammar is a formal specification of structures allowable by a given

language. A grammar G is completely specified by four components:
{N,T.S, P} where:

N: the set of non-terminal symbols,

T: the set of terminal symbols,

S: the starting symbol (S € N), and

P: a set of production rules A -> B, where A A\ N # ¢.and Be TUN.

Definition 2-3: A language L is said to be ambiguous if it allows a sentence S € L to

have more than one interpretation.

Lemma 2-1: The language of Arabic legal amounts is ambiguous.

Proof of lemma 2-1: To prove Lemma |, we need to present a single example of such
ambiguity. Figure 2-5 shows a legal amount with two
grammatically correct interpretations.

Definition 2-4: A grammar G for a language L is said to be general if and only if

. G accepts all possibie sentences of L, and

3. G provides all possible interpretations of S,V S e L.
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Figure 2-5: One Arabic amount with two possible interpretations.

Grammars provide a formal way to specify and interpret languages. When
defining a grammar for a given language, it is essential to define a general grammar. At
the same time, it is important to define a selective grammar, one that rejects most ill
formed sentences.

Definition 2-5: An ambiguous grammar is one that allows more than one parse tree for
one or more sentences.
L.emma 2-2: To generally define an ambiguous language, an ambiguous grammar is
required.
Proof of lemma 2-2:
I. Assume that L is an ambiguous language, S € L, and S has two different

interpretations: S => I, and S =>],.

[£S]

Assume that G is 2 grammar that provides a general specification for L.
3. Since S => I;, and since G is general, there is a parse tree T, derived by G, that

leads to I,.
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4. Since S => I, and since G is general, there is a parse tree T, derived by G, that
leads to I,.
5. From 3&4 above, we see that G provides two parse trees T, & T- for the same

sentence S, which implies that G is an ambiguous grammar. ¢

2.4.1.2 Grammar overview
£2.1.0 Grammar overview

In this section we illustrate the grammar used to parse Arabic legal amounts. The
grammar rules are based on both the syntactic and grammatical rules of the Arabic legal
amount language. The set of terminals T is clearly chosen as the words that compose the
Arabic legal amount vocabulary, e.g. words that represent numbers and currency words.
In Arabic, as in some other languages, language rules insist different constraints for
varous groups of numerical words. For instance, the number 200 should be written as a
single word, rather than being composed of the number two and the number hundred.
This 1s not the case with numbers from 300-900. Duc to this reason, different non-
terminal symbols are used to produce each group of terminals that share some
characteristics. Production rules P, to P; below show examples of non-terminal symbols
used to overcome some of the aforementioned difficulties.

P;: NumWord -> any word that has a numerical value above 0.

P>: FewNumWord -> words that have values between 3 and 9

P;: LessThanTenWord -> words with values between | and 9.

Unit words (e.g. currency word) have various grammatical constraints too. P, to

Py are defined to produce each group of unit words.



Ps: Unit_1 -> 1

Ps: Unit_2 -> 10
Py: Unit_3 -> 100
P;: Unit_4 -> 1000

Py: unit_5 -> 0.01

2.4.1.3 Grammar structure
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An Arabic legal amount could be seen as a list of terms connected to each other

by a connector (and. 4 ) as shown in Py below. Each term contains a number phrase

followed by a unit, or simply a unit (P, Py,, P>, and Pi3). A number phrase could be a

simple number, a complete term, or two numbers connected together (Py4).

Py: S -> Term | Term Connector Term

Pio: Term -> Term3 | Term4

Pyy: Term3 -> Unitl | Unit5 | Term5

Pi>: Term4 -> NumPhrase Unitl | Numphrase Unit4

Pi3: Term$ -> FewNumWord  Unit3 | LessThanTenNumWord  Unit?

Pis: Numphrase -> NumWord | Term5 | NumPhrase Connector NumPhrase

To fucilitate the translation of legal amounts into numerical amounts, each

grammatical symbol is assigned a numerical value, Figure 2-6 shows the algorithm used

to translate Arabic legal amounts into numerical values.



I Extract the sequence of sub-words’ tags.

(%]

Form all correct sequences of words (using the context sensitive grammar).

3. Remove words that have no numerical value (e.g. only)

4. Find all possible parse trees for the legal amount.

5. For each term (a term contains value-word(s) followed by a unit)

6. Look for embedded terms within the current term. If any. then perform steps
5-6 to each of them.

7. Replace words (terms) by values, and evaluate the term by multiplying the

term value by the term unit.

8. Sum up values of all terms.

Figure 2-6: Algorithm used to translate Arabic legal amount into a numerical value

2.4.2. Manual validation procedure

For the set of cheques that could not be validated automatically (i.c. rejected by the
grammar or produced inconsistent numerical values), we have designed an interface to
facilitate the manual validation process. For cach legal amount, the operator may take one
of the following two decisions:

L. Mark the legal amount to be re-tagged.

2. Reject the legal amount.

The same procedure is performed for rejected courtesy amounts. Marked amounts are

fed back to the tagging tool, and then to the validation module.
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2.5. Strength of the validation process

Theoretically speaking, our validation process may fail to detect some tagging mistakes.

However, this is extremely rare in practice. We may make a point by describing what it

takes to approve incorrect tagged cheque C:

I.

2.

An error would occur while tagging the legal amount of C.

This error should create a different, yet correct sequence of sub-words that makes
a word.

The new sequence of words should be grammatically correct to generate a
corresponding numerical value.

Another error should occur while tagging the corresponding courtesy amount.

The two independent errors in the legal and courtesy amounts should produce

equivalent numerical values.

It is clear that such a sequence of events is hardly expected of a single cheque. Note

that legal and courtesy amounts are tagged independently at different instances.

A question may arise about the reasons that could prevent the approval of tags of a

particular cheque. Following are some of the reasons that led most unapproved-tagged

cheques to this category:

L.

2.

The extraction tool may have cut the legal amount (or the courtesy amount),
providing incomplete or incorrect data to the tagging tool.

The legal amount may have contained an unexpected spelling mistake that left the
relevant sub-word untagged (tagged as OTHER symbol), leaving a gap in the legal

amount.
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3. The legal amount may contain a word that is out of the range covered by this study
(c.g. million).

4. There may be missing sub-words (mainly letters) in the original legal amount.

5. The tagging operator may have produced some error.

Figure 2-7 shows an example of rejected cheques.

: - . L Dated? Y WU A B
, ,u:..w‘_.-,wwuw;(@) ALY RN
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Azuns 1% LA 1 onael
/ﬂlﬂlhn ()Idgrnl e S St b s s
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LA o N e T \ZoA:

The amaunt of Y , , —-\‘,_,‘ >, (’d' : (“,J/ | :.L.- SR x m
s
\
Fowd ot R ot 1a S|;|u—l;;:.'~-r —

Figure 2-7: Sumple of the rejected cheques duc to spelling mistake.

2.6. Structure and organization of the databases

The complete validation process approved about 83% of the 3000 tagged cheques, which
provided about 29.498 sub-words and 15,175 digits. Tables 2-1 and 2-2 show the
distribution of the validated sub-word/digit classes (cxcluding touching sub-words and
touching digits). Some classes are very rare, though they do exist in the lexicon of
handwritten Arabic legal amounts. Such classes should remain in the lexicon although
they are not very well represented. It is important to note that this validation process
guarantees the correctness of the tagged legal/courtesy amounts, and all Indian digits.

Figure 2-8 shows the structure of the validation module.



Table 2-1: Distribution of the digits data set

digit # of samples
0 5367
1 1086
2 770

3 506
4 440

5 912

6 390

7 342
8 344

9 268
Delimiter 4088
Comma 347
Total 14860

Tagging tool

Z

Tagged legal amount Tagged courtesy

ﬂ amount
\/

il \/

Tag interpretation

Retag
legal/courtesy
amount

Reject the <LN Il “> Accept
tagged the tagged

Figure 2-8: The validation process
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Table 2-2: Distribution of the sub-words data set
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This rescarch effort has produced a number of databases that can help researchers in
various topics. These databases include Arabic legal-amounts database (2,499 legal
amounts), Courtesy amounts database (2,499 courtesy amounts written in Indian digits),
Arabic sub-words database (29,498 sub-words within the domain of legal amount), and
Indian digits databuse (15,175 digits). In addition, this work produced a databasc of

complete (original) gray level cheques, which can be used for other rescarch purposes
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(c.g. date processing). Moreover, it is not difficult to derive a database of Arabic words.
This is achievable using the sub-words database. It is also possible to generate a database
of Arabic dates from the Arabic cheques database.

Each database mentioned above is divided into training and testing sets. The training
set includes 66% to 75% of the available data. That is true for legal amounts, courtesy
amounts, Indian digit classes and most sub-word classes. In few sub-word classes. this
condition could not be satisfied due to insufficient samples. This ratio was chosen to
provide enough training samples on one hand, and to give enough measurement of the
generality of recognition systems on the other hand. The division between training and
testing data was done randomly with restrictions to ensure the ratio mentioned above.

Training and testing data sets are further divided into two sets: touching amounts and
non-touching amounts. A courtesy amount is located in the touching set if it contains at
least one pair of touching components. The same can be said about the database of legal
amounts.

Data sets of the non-touching Indian digits and the sub-words are further divided
based on their class (i.e. each class is located in a separate directory). The number of
classes defined for Indian digits and Arabic sub-words were 11 and 87 respectively.

Training data of each of the legal amounts, courtesy amounts, Indian digits and
Arabic sub-words databases are extracted from the same set of cheques. Table 2-3 shows
the sizes of training and testing sets in each of the above four databases. The above
mentioned databases are all available in tiff format. Figure 2-9 shows structures and inter-
relation between the courtesy amount database and the digits database. Similar relation

ship applies to the legal amounts database and the sub-words database.
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Table 2-3: Distribution of databases between training and testing sets.

Sub-words Digits Legal amounts | Courtesy amount
(# of samples) | (# of samples) | (# of cheques) (# of cheques)

Training
. Touching 1066 2431 838 266
 Not touching 19813 10536 i 941 1513
Total 20879 10779 1779 1779

Testing
Touching M7 720 321 94
Not touching 8172 4324 399 626
Total 8619 4396 720 720

Quurtcs) amouD

Training set

PN

Touching amounts

Training set

N

Touching digits

Non-touching digits

Non-touching amounts

\

Testing set

amounts

Touching digits

PN

Touching

Non- touching amounts

Testing set

1 2

Non-touching digits

9

Figure 2-9: Structure of the courtesy amount and digits databases
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Chapter 3

Sub-word Recognition System

Recognizing connected components (letters, words or sub-words) is a major step towards
processing legal amounts. Significant research work has been recorded toward word
recognition in the context of legal amounts in Latin cheques. Guillevic and Suen [GS98]
used a combination of global feature scheme with an HMM to recognize Latin words.
Kaufmann and Bunke [KB0Oa] developed a complete system to read legal amounts
cxtracted from German cheques. Statistical features are extracted from each component
and are fed to an HMM classifier. Contextual information is used to post process the
classification results.

A number of attempts have already been made to process Arabic handwriting.
Miled, Cheriet and Olivier [MC98] applied global and analytical features in two HMM
levels to recognize Arabic city names. At one stage, HMM recognizes characters
composing the input word, while the second stage integrates sequential HMMs to
recognize a complete word. Abuhaiba et al. [AM94] converted the skelcton of Arabic
characters into a tree structure, and matched it with fuzzy constrained character graph
models. In Abuhaiba [Ab98], a thinned image is converted into straight-line
approximations. Tokens are then recognized using fuzzy sequential machines.

In this chapter, we give a detailed description of the system that has been
designed and implemented in this study to process Arabic sub-words within the context
of legal amounts. The system is based on global and analytical models. Two main

contributions are emphasized in this chapter: (1) a sequential algorithm to estimate the
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pen trajectory from off-line handwritten data, and (2) the introduction of termination state

probability in the design of our HMM models.

3.1. Design and Methodology

Recognition aims to map each input image into its proper code (tag). Note that the
current study is uniquely complex in a number of aspects. First, it is complex in terms of
the shapes of the patterns involved. Cursive writing (as the case of Arabic) is obviously
more complex than non-cursive writing. In addition, Handwriting is more complex than
printed text. Moreover. Arabic allows various shapes for characters based on their
location within words. Sccond, the current study involves real-world data captured from a
noisy cnvironment. Significant amounts of noise increases the difficulty level of the
recognition problem. Third. the number of classes involved in the current study exceeds
those involved in similar studies for English and French cheques. This increases the
ambiguity of the current recognition problem as well.

The aforementioned complexity of recognition problem of Arabic sub-words
imposes the use of a highly discriminative classification scheme. Such a scheme should
employ all useful information to determine the identity of the input sub-word. One way to
solve the recognition problem is to apply a stage-wise classification, where cach stage
provides a partial solution of the recognition problem. It would be advantageous to have
different classifiers, employing different types of features, in the stage-wise classification
process.

In this thesis, we used multiple classifiers with different sets of features. A global-
analytical reading model is designed to recognize sub-word patterns. First, a general

impression is drawn from the global shape of the input image. This step reduces the
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lexicon size. Second, an analytical model is used to detect and use analytical
characteristics to determine the exact identify of the input image.

The global model is designed to provide fast and reliable results. Pixel
distribution of the input image is used to define a broad basis for categorization. A neural
network is used at this level for its fast decision making process. A Kohonen neural
network is employed for its robustness in defining proper grouping (clustering) among
the input data.

The analytical model uses analytical features to identify the input image. Due to
its robust and transparent decision making process, HMM based classifier is used at this
level. The input image is described by the sequence of strokes that were used to draw it.
Though very expensive to estimate, this description provides an efficient sequential
description of the 2-D image.

Figure 3-1 shows a general view of the recognition model used in this study. The
input sub-word image is first passed to the global model to give 2 prediction of all
possible classes. These possible classes are then used by the analytical model. along with
the original input image, to achieve a sorted list of possibilities about the identity of the
input image. Thus, the global model reduces the ambiguity of the problem, and increases
the reliability of the analytical model. In the following few sections, we give a detailed

description of each of the recognition models.
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Figurce 3-1: Overview of the sub-word recognition system
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3.2. Global model

The global recognition model intends to provide fast and reliable lexicon reduction based
on global vision of the input sub-word. Images are first normalized to a fixed size
(120x200 pixels). Figure 3-2 shows a sample image before and after this operation.
Features are based on the global distribution of pixels within the input image. An NN
based classifier is used at this stage for its efficiency and simplicity. Due to the large
number of classes, it is impractical to expect direct recognition result from the NN.
Therefore, we designed an NN to provide a reduced lcxicon, which yields a faster and

more accurate recognition at the second stage. This was achieved using a Kohonen neural

network.
Before i%
L
|
After ’
|
Figure 3-2: Sub-word image before and after size normalization
3.2.1. Feature extraction

We used a set of features that reflect a general view of the input word in terms of pixel
distribution. The input image is partitioned into grids of size 10 x 10 (pixels). Pixel

densities are computed from each portion, producing feature vectors of dimension 240.
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Figure 3-3 shows the partitioning of the sample shown in Figure 3-2 above, and the

corresponding feature valucs.
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Figure 3-3: Features extracted from Figure 3-2 above, in the global model

Possible correlation among vectors in the feature space is climinated using the
principal component analysis transform. The covariance matrix is first computed, to
determine the cigenvectors. Input vectors are then multiplied by the matnx of
eigenvectors to produce un-correlated vectors.

Reduction of the feature space dimensions is very important for time and memory
concerns. Out of the un-correlated vectors, we have eliminated those with small variance.

This process resulted in feature vector of size 80.




3.2.2. Classification

We used a 3-layers Kohonen neural network to perform rough clustering of the input
data. The input layer consists of 80 neurons corresponding to the dimension of the feature
vectors. The second layer contains 20 competitive neurons (corresponding to 20 target
clusters). The number of clusters was determined experimentally to allow efficient and
reliable grouping of the training feature vectors. The output of the network is an integer
between | and 20 inclusively that corresponds to the winning competitive neuron. A

single neuron is used for that (Figure 3-4).

Input
wose £ OO OO

Weight .
Matrix Bias Vector

O \O O O Competitive
Layer

Output
Layer

Figure 3-4: NN Classifier
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3.2.2.1 The Learning phase

Unsupervised learning is applied to produce suitable clustering of the training
feature vectors. Input vectors are fed to the input layer in a sequential manner. Distances
between an input vector and weights of neurons in the competitive layer are computed

according to equation 3-1 below.

where D' is the distance between the input feature vector and the i™ neuron, @' is the
weight vector for the i neuron and X is the input feature vector.
A similarity measure is computed based on the distance vector D and the bias

vector (Eq 3-2) and is then fed to a compcetitive transfer function (Eq 3-3).

St =-plygi (3-2)

V = argmax(s’) (3-3)
Vi

where S'is the degree of similarity between the input vector and the i cluster, f§' is the
bias associated with the i neuron and V is the index of the winning neuron.
Weights of the winning neuron are then adjusted according to the Kohonen

learning rule (Eq 3-4).

’

Wyrory = W raX ~w] ) (3-4)

where, @' is the weights of the winning neuron and « is the leaming rate. Only weights

of the winning neuron are allowed to adjust toward the input vector. This adjustment
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makes the winning ncuron more likely to win a future input vector that is similar to the
 current input, and less likely to win a feature vector that is completely different from the
current one. As more input vectors are presented to the network, each neuron that is
closest to a group of inputs adjusts its weights vector toward this group.

The leaming rate affects the learning speed and its accuracy. Higher leaming rate
implies larger steps toward the optimal weight vector, which means faster learning.
However, larger steps may cause more adjustment than what is necessary, making the
learing process more vulnerable to miss the ideal weight values. The learning rate in this
study is choscn large enough to allow fast learning at the beginning of the learning phase.
and is adjusted to a smaller value toward the end of the training process to allow more
accurate converging steps [FS92].

The bias vector is used to balance the attraction power for all neurons during the
training phase. After each training pattern, the bias vector is adjusted to reflect a running

average of neurons” outputs as shown in equations 3-5 and 3-6 below.

Chew =(1~a, )Cpyy + e (3-5)

B =expll- log(CL,. ) (3-6)

where C is the conscience vector, o, is the bias learning rate and a is a vector of zeros for
the all neurons but the winning one. Equation 3-5 above computes the running average of
each neuron giving a constant extra weight (o, where o, € [0,1]) to the winning neuron.
The increase of the conscience value of the winning ncuron in Eq3-5 causes a decrease in

its bias value in Eq3-6, which in turn causes less support for the winning neuron in Eq3-2
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above. Neurons that responded to very few patterns on the other hand have their
conscience values reduced in equation 3-5, which gives them larger bias values in Eq 3-6,
allowing such neurons to come closer to some set of samples. By allowing all neurons to
participate in the clustering process, the bias vector encourages even distribution among
all neurons by assigning more neurons to densc areas of the feature space [Mw99].

The result from the training session of the Kohonen network is used as a basis to
define basic clustering of the problem based on global features. Input vectors are
surveyed to detect the classes contained in each cluster. The number of clusters was
chosen experimentally to reflect low error ratio on one hand, and to provide a significant
simplification to the recognition problem on the other hand. The average number of

classes per cluster was found to be 24.

3.2.2.2 The Testing phase

During the testing phase, feature vectors are fed to the input layer. The winning
neuron at the output layer, which corresponds to the nearest cluster, is determined by the
NN. The mapping is considered correct if the class of the input feature vector is found to
be one of the classes composing the nearest cluster. Detailed results are discussed in the

next chapter.

3.3. Analytical model

The analytical recognition model complements the global model with the purpose of
providing a sorted list of probable classes that match the input image, based on analytical

features. HMM is used to provide probabilistic similarity measures based on sequential
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observations. Sequential observations are detected from the input 2-D image based on an

estimation of the original writing sequence of strokes.

3.3.1. Pre-processing
To facilitate easier extraction of analytical features, skeletonization is applied to the input
sub-word image. A sequential iterative thinning algorithm is used for this purpose Figure

3-5 shows a sample image from the training data, and its skeleton [Mw99)].

Figure 3-5: A sample sub-word image and its skeleton

3.3.2. Feature extraction

The aim of this process is to generate 1-D descriptions out 2-D skeletons. A graph
representation of the skeleton is first built and then transformed to a tree. Tree
transformation is simpler and faster than Eulerian and Hamiltonian graph transformations
used in [AH94], [Ja96] and [KY00). Pen-trajectory is then estimated by finding the most
efficient traversal of all edges in the transformed tree. In the following, we give more

details about each of these steps.
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Graph representation is achieved by labeling the skeleton into feature points and
curve segments. Feature points include end points and junction segments. A junction
segment is a cluster of adjacent junction points. The labeled image is then transformed
into a weighted graph G=(V.E) where the set of vertices V includes all feature points and
the set of edges E includes all curve segments in the skeleton. The weight of each edge is
set equal to the length (in pixels) of its corresponding curve segment. This representation
requires much fewer vertices and therefore less amount of resources, than the one applied
in [AH94]. Pen trajectory can then be estimated by a proper traversal of all edges in G.

To reduce the time complexity of the estimation process. the graph G is
transformed into a tree by climinating all cycles. Cycles do not affect the scquence of
vertices in the most efficient traversal walk. There are two types of cycles that need to be
removed. Simple cycles include only one vertex, and their removal is quite an obvious
task. Complex cycles involve more than one vertex and arc a direct result of unneccssary
feature points in the skeleton of handwritten words. Removal of such a cycle can be
achieved by mapping all vertices involved in the cycle into a single vertex. This reduces
the cycle into a simple one that can be removed easily by removing the single edge that
connects the newly formed vertex to itself. The removed vertices and edges can be
retracted after we have determined the most efficient walk to traverse the resulting tree.

In a tree, the most efficient walk to traverse all edges should start and end at the
furthest two pendant vertices. This ensures the most savings in double-traced edges.
However, applications may incur additional rules to determine the start and end vertices.

Once these vertices are determined, re-ordering all other vertices does not affect the
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overall cost of the traversal process (as long as no edge is traversed unnecessarily).
Details of the traversal algorithm are given in the next section.

After determining the best walk in the tree, cycles can be restored based on other
factors, e.g. vision rules. The inclusion of such vertices and edges does not affect the
cfficiency of the best walk. This is one of the major advantages of our transformation
algorithm over a general minimum spanning tree algorithm. The algorithm was designed
for handwritten letters/words in the domain of Arabic legal amounts. However, it is
applicable to other domains with suitable adjustments.

Each scgment is then represented by a sequence of Freeman chain codes (Figure
3-6). Linear approximation is applied next to extract a shorter description of the chain
code list. The approximation process may result in breaking some segments into several
strokes based on direction variations. It may also allow points from consecutive segments
to be merged into one stroke. This minimizes the effect of unnecessary junctions. Each
stroke is then represented by two values: length and direction. Stroke length is
normalized to the length of the original skeleton. Figures 3-8 and 3-9 show tabulated

result of this operation and its graphical presentation.

56567677770777766554544444344444444444 3444444444
33 S A 3 4534544535445 44
45545545555455555555545445554-44544445 5443444

Figure 3-6: The chain code sequence (from left to right) extracted
from Figure 3-5

3271
4] o0
5067

Figure 3-7: The Freeman chain code
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Direction | Length Normalized
Length
5.33 3 0.0214
0.76 14 0.1000
4.24 123 0.8786

Figure 3-8: Liner approximation of the chain code sequence shown in Figure 3-6

Figure 3-9: Graphical presentation of Figure 3-8

3.3.3. Estimation of pen trajectory of hand-written sub-words

As mentioned earlier, the pen-trajectory is estimated by minimizing the traversal cost of
the input image. Curve segments of the lubeled skeleton are represented by a weighted
graph G = (V. E) where V is the set of vertices and E is the set of edges. In the current
application, the vertices represent end points and junction segments, while the edges
represent curve scgments. The weight of a given edge is defined as the length of its
corresponding curve segments. With such a representation, some of the good findings of
the graph theory become applicable. The pen trajectory can then be estimated by
minimum-cost path taken to traverse all edges in the graph G. Adjacency matrix is built
to retlect the neighborhood of cach feature point. Basic definitions about the graph theory
can be found in [ST80}. and are summarized in Appendix B.

Loops are temporarily removed from the graph. This ensures that the composed
graph becomes a tree, which makes subsequent processing steps more cfficient.

The minimum and maximum costs for traversing all edges in a graph G are given

by Crun and Cyy as shown below:
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Cmax = 2; El (3'8)

where C is the cost of traversal. The maximum cost is encountered by traversing each
edge twice (c.g. traversing a star starting from and ending at its center). The cost could be
made more efficient by minimizing the total length of edges that need to be traced twice
(double traces). It has been shown that, except for the first and last vertices, all vertices of
odd degree require some edges to be traced twice. In fact, it can be shown that, in a tree,
each internal vertex v would cause either d(v) or |d(v)-2| double traces, where d(v) is the
degree of the vertex v (see Theorem B-5 in Appendix B).

Selection of the starting vertex affects the overall traversal cost since it could
imposc unnecessary double traces. Therefore, the starting vertex is chosen based on its
degree and length of its cdges. Starting with a vertex of odd degree saves a single double
trace. The longer the first edge is, the more we save on the overall cost. In addition,
practical considerations impose a generally right-left traversal of Arabic sub-words.
Therefore, vertices that represent the rightmost feature points are more likely to be
selected as starting points.

Having the starting vertex determined, Algorithm 3-1 is applied to find the most
efficient traversal path of the composed graph. Since we now deal with a tree, visiting all
vertices ensures traversing all edges and vice versa.

Relocation of the removed loops is performed in an obvious manner. Traversal of

a loop edge at a given vertex v can be performed upon arrival to the vertex v. If the
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degree of v is more than 4, traversal could be delayed, but not to the end. Such a delay
could be necessary to account for other practical writing constraints. Delaying the loop
traversal does not affect the cost efficiency as long as it is not left as the last edge for the
vertex v (unless v is the last vertex to be traversed in the graph). Figure 3-10 shows the

result of applying Algorithm 3-1 to three different words.

Figure 3-10: Threc handwritten Arabic words
(only, seven and fifty) with their skeletons and the
estimated sequences of segments

Algorithm 3-1:

Objective: Find the shortest path to visit all the vertices in a given weighted graph G =
(V. E) starting from vertex v.. G must be a tree.
I. Find the furthest pendant vertex from vy, call it v, (the ending vertex).

2. Apply algorithm 3-2 below to find the best path in G from v, to v,.

Algorithm 3-2:
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Objective: Find the shortest path that visits all the vertices in a weighted graph G = (V,
E), starting from a given vertex v,, and ending at a given vertex v,. G must be
a tree.

I. Pick up an adjacent vertex to Ve, Vi, Where ¢,(v;, v,) € E.

[A°]

Eliminate ¢; and focus on the connected component G, = (V\, E) that does not
contain v,. Find the shortest path R, that traverses all vertices in G, and ends at v,
Traversal should start from vi unless v, € V|, in which case traversal should start
from v,.

3. Append v, to R, so that the new path will terminate in V,.

4. Ifv, € Vyand v, is the first adjacent vertex considered for v, then precede R, by v,

as the complete route would start from vy and pass through v, to R,.

5. Repeat steps I-3 for all adjacent neighbors of ..
Pseudo code for Algorithm 3-2
Function find_best_path(G, v, v,)

L. Initial Path=();

2. For i=l:degree(v,)
° Finde, = (v,, v,).
o Split G into two connected components by removing e..
° Construct sub graph G, = (V,, E,), the connected component that does not
contain v,.
[ ] [f Vy (S G[
P; = find_best_path(G, v,, v,);
Pi = (Piv Ve):
InitialPath = P;;
P=();
Else

P; = find_best_path(G, v,, V),
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P,' = (P,'. \’,)Z
Ifi=1
Pi=(v,.P.);
Endif
Endif

Endfor
3. Retum (InitialPath, Py, P>, ..., P) Where k = degree(v,).

Notes on algorithm 3-2
a) Correctness of the algorithm: Correctness of the above algorithm can be easily
proved by mathematical induction as follows:

I The algorithm works for a tree of 2 vertices, starting from any of the two vertices

and ending at any of them.

2. Assume that the algorithm works for all trees of n vertices for any starting vertex
vy and ending at any vertex v,.
3. The following is to prove that the algorithm works correctly for a treec T of n+/

vertices for a given starting vertex v,:

¢ Find the pendant vertex v, that is furthest from v, (note that a tree of more than
I vertex has at least two pendant vertices, see Appendix B).

® Name v, as the vertex adjacent to v,

¢ Now, eliminate v, from T, to get another tree T> of n vertices.

¢ From (2) above, we know that the algorithm works for T since it contains »
vertices. Thus we can use the algorithm to find the most efficient path P, to
traverse all vertices in T, starting from v, and ending at v,

® Construct P, by adding a single edge (v, v,) to P. P, traverses all vertices inT

starting from v, and ending at v,.
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Note that the minimum cost to traverse any tree can not go below the sum of all its
edges. By adding the cost of (vj, v;) only once, we are adding the minimum cost for
traversing an additional vertex and this guarantees the minimum cost of P. ¢
b) Complexity of the algorithm: Consider a tree of n vertices. Step 1 could be repeated
at most (n-1) times, as this is the maximum number of edges in such a graph. However, in
this case each sub-graph contains an isolated vertex that requires constant time to be
traversed. That is O(n). In the opposite case, step | could be repecated only once, to
process a tree of (n-1) vertices. On the average, step | would be repeated sqri(n) times
cach of which may process a tree of sqrt(n) vertices. That gives an O(n) complexity.
¢) Applicability of the good continuity rule: Internal paths do not affect the overall cost
of the most efficient route. This includes any path where the traversal of a sub-graph
starts and ends at the same intermediate vertex. Therefore, the good continuity rule can be
applicd there without any compromise. Examples of such a case include vs in Figure 3-

1.

3.34. Vector quantization

As we intend to use discrete HMM, observation vectors should be mapped into a discrete
domain. A codebock is used to map each pair of direction and length values to a single
observation. The optimum size of the codebook was computed experimentally, and found

to be 170, as will be explained in the next chapter.



The starting
vertex (v,)

The ending
vertex (v,)

O (g) )

Figure 3-11: Partial application of Algorithm 2 to a general graph

3.3.S. Clustering

Clustering is necded to overcome the within-class variations in human handwriting. The
goal of this process is to partition cach class into clusters that share similar feature
vectors. Clustering is performed on the extracted sequence of features.

The number of clusters per class is computed in two steps. First, [SODATA
algorithm is used to approximate the proper number of clusters for cach class using
unified threshold values. After that, the number of clusters for each class is manually

estimated, based on ISODATA approximation and on the prior knowledge of the
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variations of each sub-word. The total number of clusters used was 150, representing 67

different classes.

3.3.6. Classification

A left-to-right HMM is used to model cach cluster. The model of a cluster ), 1s noted A;
(N, m, A;, B,) where N; represents the number of states, 7, is the initial probability at each
state, A, is the matrix of transition probabilities and B; is the emission probabilities (the
priori probabilities). The number of possible observations, M. is shared for all models.
The number of states in each model is defined in relation to the number of letters within
cach sub-word, and therefore is unique for all models of the same class. This is used to
account for the variability in width and structural complexities of different sub-words.
Models are trained using the Baum-Welch algorithm. Each model is trained only to
feature vectors that belong to it. Therefore, cach model learns to produce high probability
to similar inputs, but does not learn to produce low probabilities to different inputs. This
is known as the Maximum Likelihood (ML) learning criterion.

Unlike the standard left-right HMM model, we perform re-estimation of T,
allowing (1) to be less than 1. In such a case, 1(i), for any i>1 could be above zero as
the summation of m should always be I. This is intended to account for missing

observation at the beginning of the observation sequence.

2

(a) b

Figure 3-12: Two different sub-words that share
their initial portions (starting from right to left)
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(83 S 82 ()

(b)
Figure 3-13: Pattern (b) from Figure 3-12
above, passed through both models (a) and (b)

Researchers used different criteria to evaluate the overall response Py of a given

model A. Some of which are as follows:
I. By adding the probabilities of being in each state of the model A, after presenting
the last observation of the input sequence. That is ¥, cer(i), V states i, where (i) is
the probability of being in state S, at time T, and T is the length of observation

vector O.

o

By considering the probability of being in the last state at the end of observation
vector O. That is «r(N), where N is the last state in the model AL

3. By adding the probability of being in cach state of the model, considering only the

best path taken by the observation vector, 81(i), V states Si..

The first and third criteria accounts for any partial similarity of the input feature vector
to the model A, while the second criterion accounts for complete similarities only. The
advantage of the second criterion is to discriminate between longer observation vectors
and short ones that share a significant part. However, the models become very sensitive

to small variations.
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HMM may show significant weakness in recognizing such patterns in applications
where these cases happen frequently. An example of partial similarity is shown in Figure
3-12 below. The initial part of pattern (b), the right most part of the pattern, is similar to
the initial part of pattern (a). Thus, pattern (b) will pass through the states of both model
(2) and (b) with high probabilities. If the system allows its models to terminate in any
state without penalizing improper termination states, pattern (b) may fall in the category
of model (a). This possibility is shown in Figure 3-13. On the other hand. a noisy sample
of pattern (a) that has lost the left most part of its shape can easily be mapped to class (b)
if the system allows the termination only in one particular state (the last state). Figure 3-

I4 shows another similar situation with two other patterns.

-~ ”~
(1) (b)

Figure 3-14: Two different sub-words that share
their initial portion (starting from right to left)

In this thesis. we proposed a new criterion that combines the above mentioned
advantages. To that aim, we introduced a new parameter ¢ that controls the termination
probability at each state. Thus, a model will be allowed to terminate at any state, but will
be evaluated based on where it terminates the observation sequence. The effects of the
new parameter on cach of the training and testing processes are given in the following
two sections. Details of the training procedure of general HMM models can be found in

[Ra89] and is described briefly in Appendix C.
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3.3.7. Effect of the termination probability on the training procedure

First, the following is a brief description of the terminology used in this section:

A: the HMM model. which includes model parameters (N, a, b, &, and ¢),

O: the observation sequence,

N: number of states.

T: length of the observation vector,

aj : the transition probability from state S, to state S;,

b, (0): the probability of observation o at state S.,

m,: the initial state probability of state S,,

a(i): the probability of the partial observation sequence Oy to Oy and state S, at
time ¢, given the observation sequence O and the model A,

B (i): the probability of the partial observation sequence Oy, to Oy and state S, at
time ¢, given the observation sequence O and the model A.

Y (i): the probability of being in state S; at time r, given the observation sequence
O and the model A,

€ (i.j): the probability of being in state S; at time ¢ and state Sj at time r+1/, given
the observation sequence O and the model A, and

@(i): the probability of being in state S; at the end of the observation sequence,
given the model A.

In this section, a hat (*) on top of a variable name indicates the newly estimated

variable (according to the modified training method).
The first eftect of the newly introduced termination probability @ will apply to the

backward procedure. In its original form the probability of being at state S; after the end
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of the observation sequence, (i), is initialized to 1 for all states, which assumes that the
observation sequence could terminate at each state equally. It would be more logical to

use the termination probabilities @ as initial values for Br. Thus, we get:

Br@=0(). I1<i<N (3-10)

This change is analogous to the initialization of ¢ in the forward phase (o is
initialized to values that consider the initial state probabilities, ).

The remaining of the backward procedure will be affected in the following

mannecr:

. N
/[(l) = .}: lal,jbj(O
j:

)ﬂ,+ t=T-LT-2,...1 1<i<N (3-11)

t+1 l

The above change should also be reflected on the computation of the overall probability
of the model A given an observation scquence, as follows:
P(OM)— Z «a (l)ﬂ (i) = Z « (l)(ﬂ(l) (3-12)
(=1 =1
The computation of the forward variable o is not affected by the introduction of

the termination probability. However, Y computation differs in the following way:

%GOG 1B, )

= "N (3-13)
£o14) EADYAY
j:
Note that
N_ N a(i)'(i) 1
2 }’,(l)= Y £ = X Z DB ()=1  (3-14)

=1 =1 N =l
Z a, (NP () ¥ a (DB )
J=
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Because the newly estimated value of f appears equivalently in both the
enumerator and denominator of equation 3-14 above, Y. maintains its probabilistic
property.

Similarly. {(i.j). the probability of being in state S; at time ¢ and in state S;at t+/

given the model and the observation sequence is affected as follows:

o (Dagb (0, B, ()

& F O OB D

Again, the newly estimated value of B as show in the above equation appears
equivalently in the enumecrator and denominator of the equation, maintaining the
probabilistic property .

The termination probability @ can be estimated analogously to the estimation of 1t

as follows:

T, = expected frequency is state S; at time (t=1) = Yi(i) (3-16)

¢ = expected frequency is state S; at time (t=T) = y(i) (3-17)

Note that the probabilistic property of y at all times 7 ensures the probabilistic

property for @.

3.3.8. Effect of the termination probability on the testing procedure

The evaluation of HMM response to a particular sequence of observations is augmented
by the termination probability. At the end of the observation sequence, the computed

forward probability is multiplied by the termination probability of each state. This is
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applied implicitly in the computation of y as shown in Equation 3-18. Substituting T for ¢

in Equation 3-13 above we get:

a0

Yr(i)= N R
jélar(j)ﬂr(j)

(3-18)
CYT(i)ﬂT(iW’(i)

N
jzzlar(j)ﬁr(j)rﬂ(i)

This increases the sensitivity of each of the evaluation methods mentioned in
section 2 using additional information from the training data by employing ¢. Note that
the original computations of P(OJX) uses oy instead of ¥t. This is due to the definition of
B to be one in traditional models, which makes the values of Yt identical to those of o.

This is not the case with 7, .

3.4. Combination of the global and analytical models

The two models mentioned above are combined in a sequential manner. First the global
model is applied for the sake of lexicon reduction. The reduced lexicon size is then fed to
the analytical model to provide an ordered list of possible sub-word classes. The global
model has two major contributions to the system: (1) reduced lexicon increases the speed
of the analytical model by reducing the number of models to be evaluated, and (2)
reduced lexicon implies less ambiguity fed to the analytical model, which means more
reliablitliy. However, a mistake in the global model is severe enough to imply wrong

decision by the sub-word recognition system. Therefore, decisions of the global model
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should be supported by high confidence. This was achieved by defining a relatively small

number of clusters. and by allowing each class to be scattered between clusters.



Chapter 4

Experimental Results

In this chapter, we present various evaluation results of each of the models involved in
the recognition system. We start by describing experiments on the global model in
scction 4.1, followed by the analytical model in section 4.2. and finally we describe

cxperiments on the combined sub-word recognition system in section 4.3.

4.1. Global model

As mentioned in Chapter 3, the global model uses a Kohonen network to perform a rough
clustering of the data. In a Kohonen network. the number of neurons in the competitive
layer represents the number of clusters. Section 4.1.1 describes the experiments and
factors that were considered while determining the network structure. Section 4.1.2

shows the performance of the global model using the various data sets.

4.1.1. Number of competitive neurons

A number of experiments were conducted to select an optimum number of clusters to be
used at the global level. Optimality is defined by two terms:

I Accuracy of the clustering process, which is measured by the number of correct
decisions made by the NN. Feature vectors of the validation set are fed to the NN, which
maps cach of the input vectors to one cluster. A correct decision about a sample s would
map the input feature vector of s to a cluster that contains the correct class of the sample

S.
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2. Significance of the lexicon reduction process, which is defined as the ratio of

reduced lexicon size to the original one. The average lexicon size is determined as the
weighted average of number of classes in each cluster.

Theoretically. the minimum number of clusters is one, in which case, the system
will make no errors. but makes no reduction in the lexicon. As the number of clusters
increases, so does the ambiguity of the grouping process. Thus, the accuracy is expected
to decrease as we increase the number of clusters. The maximum number of clusters
would be as much as the number of training samples, in which case the system reduces
the lexicon to one (which means identification of the input). However, the error rate is
cxpected to be high in this case. Figure 4-1 shows the accuracy rate for NNs versus
numbers of competitive neurons. The irregularities in the figure arc due to the
randomness of both the initialization step and the order of sample presentation during the

training phase of each network.
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Figure 4-1: Performance of the global model versus the number of clusters
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The significance of the lexicon reduction process is zero if we use only one
cluster, since such a cluster will contain all classes, making no lexicon reduction at all.
On the other hand, the significance would be optimal if the resulting cluster contains only
one class. In practice, the more reduction achieved at this level, the easier becomes the
identification process at the next level. Figure 4-2 shows the ratio of reduction achieved

against the number of clusters used.
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Figure 4-2: Significance of the global model versus the number of clusters

4.1.2. Performance of the global model

Based on the above two factors, and on the experiments mentioned above, we
have used 20 competitive neurons and hence the reduction in lexicon size is above 50%.
Training is allowed to iterate for a larger number of epochs than that of the experiment
described in section 4.1.1. Moreover, training is allowed to start from various
initialization points to reduce the effect of local equilibrium points. Table 4-1 shows the

performance of the global model on the validation and on the testing sets. The validation
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set was used during the training phase for verification purposes only, while the testing set
was used to evaluate the final model. Less than 1% of errors were reported on both the
validation and testing sets. While this can be referred to the performance of artificial
neural networks, it is partially due to the fuzziness allowed in this model. A cluster may
contain a number of classes. In average, there are 24 classes per cluster in this model. The
network does not provide any ordering of classes within each cluster.

Most crrors at the global level are due to severe noise existing in the sub-image.
Figurc 4-3 shows one of such problematic sub-words. Significant parts of the sub-word

shown in Figure 4-3 were eliminated during the binarization step.

Table 4-1: Performance of the global model

Data Set | Accuracy
(%)
Training 100
Validation 99.36
Testing 99.04

-~

bl

Figure 4-3: A sample that has been mis-categorized by the NN classifier
(Class number 3, code 1-9)
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4.2. Analytical model

As mentioned earlier, due to the complexity of the decision space., we have allowed more
than one model for classes that have shown considerable variations. During the
evaluation process, classification of a sample s from class c is considered correct if it is
mapped to any of the models that represent the class c. In scctions 4.2.1 to 4.2.3, we
describe the effect of various parameters on the analytical model. Section 4.2.4 describes

the performance of the analytical model.

4.2.1. Size of the code book

The vector quantization process affects the identity of the observations extracted, and
therefore the sensitivity of the classifier to feature variations. A large number of
categories implics higher sensitivity to variations, which could cause similar features o
be mapped into different categories, making it harder for the classifier to detect their
similarity. This would also require more resources as it increases the number of different
observations in the system. On the other hand, a small number of categories could map

different observations into the same category, making accurate classification impossible.
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Table 4-2 shows the performance of the HMM classifier in relation to the size of the

codebook used in the quantization process. The results shown in this experiment are

Table 4-2: Performance of the HMM classifier versus the codebook size. This
expeniment was performed on the validation set, with reestimation of 7 and using @

Numberof | Top Top Top Top
categorics I 3 5 10
(%) (%) (%) (%)
30 6290 | 74.55 | 82.07 | 92.64
45 65.79 | 7848 | 86.52 | 94.40
60 66.97 | 77.71 86.30 | 94.48
75 67.87 | 79.15 | 86.68 | 94.59
90 69.68 | 79.84 | 87.17 | 94.92
105 69.32 | 80.56 | 87.87 | 94.74
110 67.82 | 78.28 | 86.85 | 94.05
120 7093 | 8040 | 87.25 | 94.64
130 68.74 | 78.62 | 87.08 | 94.14
140 68.71 | 8047 | 87.73 | 94.64
150 70.61 | 7935 | 87.42 | 94.33
160 71.25 | 79.68 | 86.93 | 94.19
170 7203 | 79.84 | 86.65 | 94.04
180 7043 | 80.07 | 87.14 | 94.64
190 69.77 | 79.67 | 86.70 | 9431
205 7131 | 79.61 86.56 | 94.22
220 70.78 | 79.18 | 86.81 94.60
235 7117 | 78.21 86.07 | 93.50
250 70.17 | 7846 | 85.85 | 93.96
265 69.66 | 79.32 | 8592 | 93.59
280 6991 | 78.01 | 85.18 | 93.47

derived from the validation set. The training set results may show improvement while the

classifier overfit the training data, which affects the ability to generalize the classifier.

Based on this experiment, we have set the size of the codebook to 170 elements.
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4.2.2. Re-estimation of the initial probabilities

Lengths of observation vectors in the analytical model are based on the curvature of the
input image (see Chapter 3). Short observation vectors over-weigh small variations,
causing more rigid decisions. To avoid this effect, we tuned the lincar approximation
module to allow longer observation vectors. However, this did not help much with short
sub-words that could carry no curvature at all. In such cases the observation vector may
contain only one observation, making the HMM decision based on the initial probability
vector (1) and on the emission probabilities B. Without re-estimation of 1, decision on
such cases will be solely based on the emission probabilities B, which makes the decision
more vulnerable to errors. This led us to allow the initial probability to be re-estimated.
Table 4-3 shows the cffect of allowing the re-estimation of 7 on the performance of the
HMM classifier.

Table 4-3: Effect of the re-estimation of 7 on the performance of the HMM
classifier. This experiment was performed on the training set using ¢

Top 1 Top 3 Top 5 Top 10
(%) (%) (%) (%)
Fixed nt 62.41 76.06 84.84 94.42
Reestimated 1t 81.13 87.46 93.26 98.68
4.2.3. Termination probabilities

Partial similarity among different clusses was the source of some errors. Smaller sub-
words could be mapped to models of longer sub-words if they share similar initial parts
of their shapes. The termination probability was introduced to reduce such chances. Table
4-4 shows the effect of the introduction of the termination probability on the performance

of HMM.



Table 4-4: Effect of the introduction of ¢ on the performance of the HMM classifier.
This experiment was performed on the training set

Top 1 Top 3 Top S Top 10
(%) (%) (%) (%)
Without ¢ 70.18 79.78 87.67 96.17
With @ 81.13 87.46 93.26 98.68
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4.24. Performance of the analytical model

The overall performance of the analytical model is shown in Table 4-5. Images of classes
under consideration are shown in Table 4-6. Detailed recognition performance (on the
training data, first choice of the classifier) and confidence for each class are shown in
Table 4-7. The confidence of a given class ¢ is defined as the ratio of correct appearance
of class ¢ as the first choice to the total number of times the class ¢ has appeared as the

first choice by the classifier.

Table 4-5: Performance of the analytical model

DataSet| Top | Top 3 Top 5 Top 10
(%) (%) (%) (%)
Training | 81.13 87.46 93.26 98.68
Validation | 72.03 79.84 86.65 94.05
Testing |  69.85 78.60 85.89 93.28




Table 4-6: Sub-word images covered by the recognition system

Class Nn. | Image | Class Nn. ¥ Class No. | _Class No. | Image
1 ‘ 14 40 54 | ks,
2| 4 15 41 55 | allg
3 -2 16 42 56 | Bepay
4 g 17 43 57 | Lawa
51 18 44 58 | pyemd
6 I.I 19 46 59 | Lug
7 g 20 47 60 | ot
8 B 21 48 61 | Lo
ol 4 49| g, 62 | e

22
10 5 23 50 | gman 63 | Qune
» ‘E. 24 51 64 | |y
q
12
¢ 25 52 | pw ] 65 | s
- 26 53 l'l-““ 1 66 | Rt
13| 3 |
Lol 67 | v
4.2.5. Error analysis

Throughout the evaluation process, we encountered various sources of errors in the

analytical model. Following is a chronologically sorted list of these sources, with some

examples.
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Difficult handwriting or severe noise on the cheque document (Figure 4-4). We
estimate that this type of error caused 20% of all errors encountered in the
validation set. This type of error is the most difficult to overcome, because it
affects the source of the image, which makes correct classification merely

remotely visible. As a result, the correct class is mostly far away from the top

KN

¥

s ‘ R et

— =S — o _w”

I~

34 (3-22) 34 (3-22) 11 (2-03) 23 (3-04)

Figure 4-4: Samples of errors caused by difficult handwriting. The correct
class number (code) is shown below each image

choice of the classifier. On average. the correct class is estimated to be the top
1™ choice of the classifier in such cases. Rejection control could be used to
detect and avoid this type of error.

The extraction and/or binarization steps (Figure 4-5). Extraction of the legal
amount from the cheque image could leave out significant parts of some sub-
words. The same could result from the binarization process. In addition, the
binarization step could cut a sub-word image into two or more pieces. These
errors represent about 20% of all errors in the validation set. The effect on the
classifier depends on the significance of the damage caused to the sub-word. On
the average, the classifier puts images affected by this type of crror at the top 10"

choice.
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725 v {

35(3-23) 47 (4-12) 48 (4-13) 26 (3-08)

Figure 4-5: Samples of errors caused by the extraction and binarization
module. The correct class number (code) is shown below each image

3. Imperfect skeletonization (Figure 4-6). As perfect skeletonization is not visible,
imperfect skeletons could affect the sequence of strokes used to characterize the
input image. This type represents around 8% of the total errors on the validation
sct. In average, the classifier puts images affected by this type of error at the top

9" choice.

Feature Vector

Direction | Relative Size

Image with its skeleton 44444 3
° 5.5000 |
1.2500 |

2.6667 2

1.0000 |

22222 2

8.0000 7

Figure 4-6: An error caused by the skeletonization module

4. The feature extraction module (Figure 4-7). This type of error is not very
frequent, and is mainly due to errors in selecting the starting point.
Interchangeuble feature points (end points & junction points) could be traced in

the wrong direction, creating a reversed portion in the feature vector. This error
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represents about 4% of the total errors on the validation set. On the average, the

classifier puts images affected by this type of error at the top 12" choice.

Feature Vector

Direction | Relative Size

Image with its skeleton /___’{ 3.9286 2
1.5455 2

M 0.1429 L
, 4.1429 l

5.5455 2

4.0612 8

3.0000 1

4.0769 2

Figure 4-7: An error caused by the Feature Extraction module

5. The linear approximation process (Figure 4-8). This process is used to map the
sequence of pixels into line segments. Due to the static thresholds used for this
purpose. some significant shape variations could be overlooked causing a loss of
important characteristic. On the other hand, some minor variations could be over
emphasized causing unnecessary change in the feature vector. This error
represents about 24% of the total errors on the validation set. On the average, the
classifier puts images affected by this type of error at the top 6" choice.

6. The classification module (Figure 4-9). This type of error could be a result of the
small size of training data of particular classes, large similarity between classes or
large variations within the affected classes. This error represents about 24% of the
total errors on the validation set. On the average, the classifier puts images

affected by this type of crror at the top 3" choice.
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Image with its skeleton Feature Vector

Direction | Relative Size
6.1333 3
4.5070 9
Image with its skeleton Feature Vector

Direction | Relative Size

6.1429 3
5.0000 |
7.0000 1

9

4.9000

Figure 4-8: Samples of errors caused by the approximation procedure

Feature Vector

Direction | Relative Size
7.0000 2
4.2018 6
1.2250 3

Figure 4-9: An error caused by the classification module.

4.3. Combined Classifiers

As noticed from sections 4.1 and 4.2 above, the global model provides more accurate but
less precise results than the analytical model. The error involved in the global model does
not exceed 1%. On the other hand, the average number of classes per cluster is 24.
Moreover, the model provides no ordering between classes of a given cluster.

The sequential combination method improved the recognition rate of the

analytical model by 3.68%. Detail results of the combined classifiers are shown in Table
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4-8. While the above results are not ideal for a practical industrial system, they Lighlight
the strengths of both models in solving this problem, and exposc them to further
improvements.

The resulis shown in this chapter reflect the complexity of the recognition
problem under consideration, and the difficulty of the samples used in this study.
Appendix D shows some samples from the training data sets used in this study. Table 4-9
shows the results of the current study as compared to other studies found in the literature.
The table shows impressive results from [MC98] and [KG97] considering the lexicon
sizes involved in their studies. However, it is important to consider the type of data
(domain and quality) used to test each of the presented systems. While the domain of

each study is normaily stated, the quality of the data is not always reported in detail.



Table 4-7: Performance and confidence of cach class on the training data

Class | Numberof | Perf.
number| samples (%)

1 1226] 97.80

2 12} 75.83

3 17{ 97.06

4 1358] 87.30

5 369} 77.39

6 775! 87.23

7 622 77.66

8 158! 88.10

9 1248] 79.97
10 27, 77.78
L 624) 83.64
12 51 100.00
13 108] 83.33
14 95! 77.05
13 2]_70.00
16 1139 65,74
17 487 67.27
18 139} 72.52
19 813/ 89.54
20 9| 100.00
21 70; 83.57
22 13/ 100.00
23 103} 74.27
24 54] 8222
25 3| 100.00
20 2371 70.88
27 251 91.79
28 5 100.00
29 8 100.00
30 74| 73.78
31 40{ _70.00
32 16/ 87.50
33 309; 85.04
34 699 72.30

Class | Number of | Perf.
number | samples (%)
35 623 80.38
36 95 88.95
37 2 100.00
38 9 100.00
39 60 09.33
40 22 10.37
4] i) 66.18
42 5 96.00
43 45 64.00
44 28 74.28
45 | 100.00
46 l 100.00
47 183 71.92
48 102 63.73
49 55 71.27
50 45 59.11
51 59 67.12
52 4 100.00
53 37 94.06
54 22 7091
55 4 90.00
560 | 100.00
57 59 85.43
58 1 100.00
59 119 81.93
60 8 60.00
6l 51 76.86
62 1 100.00
63 L 100.00
L 3 100.00
65 | 100.00
06 | 100.00
67 | 100.00
Average 81.13

78



Table 4-8: Performance of the combined recognition system

Dataset | Top | Top 3 TopS | Top 10
(%) (%) (%) (%)
Training| 85.74 90.69 95.52 99.87
Validation| 76.36 82.74 89.33 95.37
Testing] 73.53 81.50 88.19 94.36

Table 4-9: Recognition results compared with other systems in the literature

Reference | Lexicon Top 1l | Top 10 | Top 20
size (%) (%) (o)
Current study} 67 73.53 94.36 97.70
[DFOL]| 198 65.05 90.83 95.00
(MC98]] 232 81.60 94.90
[GS98]] 30 86.70 99.90
(KG97]| 100 84.60 99.00
[AmOOb]| 28 89.65
[WFO01] 80.9
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Chapter 5

Legal amount processing

Processing legal amounts is an important step to achieve automated cheque processing
systems. Among the attempts to develop a complete legal amount processing system we
cite Kaufmann and Bunke [KBO0Oa], who developed a complete system to read legal
amounts extracted from German cheques. Statistical features are extracted from each
component and are fed to an HMM classifier. Contextual information is used to post
process the classification results. The correct legal amount was among the top 10 choices
in 88.8% of the cheques.

In this chapter, we describe how the previously built grammar and sub-word
recognition system could be employed to interpret the legal amount into a numerical
value. A detailed example is shown for the various steps in the interpretation process.
Further enhancements of the interpretation method are required to make it practical for

real world applications.

5.1.  Pre-processing

The input is assumed to be a gray level digitized image of a cheque. Figure 5-1 shows a
sample cheque and all the pre-processing steps applied to it. First, the legal amount is
statically segmented from the cheque form. Dynamic thresholding is then applied to
binarize the extracted legal amount. Basic filling and thinning operations are applied next
to enhance the image of the legal amount.

Bascline is an important factor that affects object orientation and noise removal

decisions. We determine the location of the baseline and its thickness using horizontal
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Figure 5-1: Segmentation and binarization of the legal amount

projections. Slant correction is then applied by computing the density of the baseline in
various angles. The minimum slant of the image will produce the maximum baseline
density.

[t is very common that undesirable objects occur in the extracted legal amount.
Such objects include external noise and intrusions (introduced by the cheque writer or
bank officers), portions of the upper (or lower) handwritten lines, or portions of the pre-
printed text. It is important to remove such objects as they may affect the recognition
results. Duc to the limited lexicon entries involved in the Current application, secondary
components (e.g. dots) are not critical in sub-word identification. Noise and secondary

components arc removed based on the following factors:
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1) Inter-component distances: small horizontal gaps arc normally used to separate
handwritten words. Larger gaps are indications of noise or unrelated objects.
Dynamic threshold is used to define the term *small gap”.

2) Vertical position of components: relevant components are normally written near the
baseline. Having an object above or below the baseline with significant distance is
an indication of unrelated components. Dynamic threshold is used to define the
term “significant distance™.

3) Size of each component: very small or very large objects are clear signs of noisy
components. Extreme aspect ratio is another indicator that is used to detect
undesirable objects.

4) Slant: slant of each component should be close enough to the overall slant of the
legal amount.

Different writers have different habits in terms of inter-component distances and
letter sizes. Dynamic thresholds are determined based on the mean and standard deviation
of the overall components in the legal amount. Location of an object is described in terms
of the bounding box and its center of gravity.

Each connected component is then extracted as a sub-word. Slant correction is
applied to each object to correct small slant variations between sub-words. Table 5-1
shows segmented sub-words from the binarized legal amount in Figure 5-1. Each sub-

word image is assigned a unique position number (index).

5.2. Legal amount interpretation

Given an ordered list of sub-word images, the sub-word recognizer is invoked to provide

a list of candidate sub-word codes for each sub-word image. Table 5-2 shows the top ten
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choices for each sub-word in Table 5-1. Legal amount (LA) interpretation intends to
translate proper sequences of sub-word codes into their equivalent numerical values. LA
interpretation is achieved at two levels: local and global. At the local level, we aim to
detect possible word from successive sub-word combinations. A word is encountered in a
given position p if all its composing sub-words are found in a sequence that ends at p.
This is casily performed using a dictionary lookup procedure. Due to the fact that some
words share sub-words, the sequence of words may not be unique (e.g. at a given position
P, sub-word w; could stand alone as a complete word. or could be concatenated with the
preceding sub-word at p-/ to form another word ). In such cases, all possible words are
passed to the global level. Table 5-3 shows the list of constructed words at each position
of the legal amount (deduced from Table 5-2). For each word, starting and ending
positions, as well as the probability, are passed to the global interpretation level to

determine the best combination of words.

Table 5-1: The sequence of sub-words segmented from Figure 5-1

Il 10 9 8 7 ) 5 4 3 2 l Position
«—
A Segmented
||| 7| 17 l © e sub-word

The search complexity in the first level is fairly limited duc to the fact that the
maximum number of consecutive sub-words that may compose a single word is found to
be 4 (for the current vocabulary). This search procedure would then be performed 4kn,
wherc £ is a constant defined in relation to the dictionary size, and n is the number of sub-

words in the extracted legal amount. Thus the complexity of this level is of O(n).
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The global level tries to find a complete and correct legal amount out of the list of
all possible words. A correct legal amount should satisfy two conditions:
1) It should make use of each sub-word exactly once. That is not to ignore any
sub-word in the legal amount, and not to use any sub-word more than once.
2) A correct legal amount should follow the grammatical rules of the Arabic
language.

Table 5-2: Results from the sub-word classifier Top 10 choices for each sub-word in Table 5-1 (The
correct choices are shaded)

ir [ 10 9 8 7 6 5 4 3 2 1 Position
<
1 < 1 o - L d 0 £ | hnad l
Gl d e d ] e S e
4 | b | o | les I w | Qs | | | qs 1| wl 3
eS| g G g | | g 4
Uey | w | 85| || b | W | u || Jd | | e 5
@ W | s e | | e | L | 6
d ) d | L] 4 u | ks bl d|w|w 7
L -~ wal | | Lad Lo dadt |, | e | g | A 8
L | 8a | | |08 = o | 22| 3 | m 9
RN S N R I 0 Y -0 S D L~ 10

These two conditions form the evaluation criteria of the global level. Details of the
grammar rules have already been described in Chapter 2.
To simplify the application of grammatical rules, all words that do not change the

numerical value of LA (c.g. the word “only”) are removed from the word list. If such
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words appear in the first position of the legal amount, LA is considered correct even if it
ignores the first position. The same can be said about the last position.

Depth first scarch is applied next to find all correct syntactic trees that satisfy the
above two conditions. Numerical values for each complete tree is computed based on
predefined correspondence between grammatical terms and mathematical operations (‘+'
and **" operations). Table 5-4 shows the induced numerical values with corresponding
probabilities. Only the top 10 choices are shown out of 34 produced values. Figure 5-2

provides parsing trees that were used to achieve the top five choices in Table 5-4.

5.3. Discussion and Conclusion

The goal of this chapter is to show how to interpret Arabic legal amounts, and
not to develop this part of the system. As a result, concept validation and implementation
efficiency considerations were avoided at this level. However, these two points constitute

a very important part of the future work.
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Table 5-3: Word reconstruction
words, dashed lines separate sub-words within a word)

(Solid lines separate

Position

ol

+ | "] ] e e ]

- 1793|3|199 Fh 33
© 33| ..ryu
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s 4|3
> E

-

I L

I

ol

1 L




Table 5-4: Top 10 numerical results with their probabilities
(The correct one is the top choice)

Value | Probability

(x 1.0e-06)
10000/0.3453
18/0.3013
2010/0.0006
3000/0.0003
11]0.0003
1010/0.0001
2005/0.0000
15000{0.0000
23/0.0000
1005/0.0000
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Figure 5-2: Grouping of candidate sub-words to produce the top five possible values in Table 5-4
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Chapter 6

Conclusion

This work has produced a significant infrastructure for research in Arabic Cheque
Processing by providing Training and Testing sets that can be used as a consistent
evaluation medium among various recognition methods. A parsing and translating
grammar for Arabic legal amounts is also included to verify and generate a numerical
value out of the list of words. The database has the potential to be standardized among
researchers in this field because it came from real-world source and because it provides
sufficiently large training and testing data.

Pen-trajectory has long been used for various objectives. Here, we propose a more
cfficient method for the estimation of pen-trajectory from off-line images. We have
applied this method to sub-word images from Arabic legal amounts. However, the
method is applicable as well to similar types of images. We also propose to use the pen-
trajectory to feed HMM with meaningful sequence of observations that resemble the
original occurrence of events.

In this work, we have developed a recognition system to recognize Arabic sub-
words based on global and analytical models. The global model is used to reduce the
lexicon based on global features, while the analytical model is used to produce a sorted
list of classes based on the pen-trajectory information. We have used the above
mentioned databases to train and test our system. The sub-word recognition rate recorded
was 73.53% on the top 1* choice and 94.36% on the top 10 choices of the testing data set.

It is to be noted that the database used to test this system came from real-life source,

which includes a greate difficulty in terms of style variations and noise.



90

In the remaining of this chapter we highlight the major contributions of this work

and list our future perspectives.

6.1. Summary of contributions

The first major contribution of this thesis is the development of a set of databases to assist
rescarchers in the ficld of Arabic cheque processing. This set is unique of its kind as it
has been created using real-world bank cheques. It is also uniquely characterized as it is
the only database (to the best of our knowledge) for Arabic handwritten cheques. The
vatidation algorithm introduced in this work is another unique characteristic of this work.
In the proposed validation algorithm, redundant information is employed to ensure the
accuracy of the tagging operation. In addition, this work introduced a parser for Arabic
legal amounts. This parser can be used to validate and translate legal amounts into
numerical values. Such translation is essential to the validation algorithm mentioned
above and to the processing of complete legal amounts as well.

Another important contribution of this work is the introduction of a new method
to estimate the pen-trajectory from handwritten data. Such estimation is an efficient way
to transform 2-D patterns to a 1-D sequence of observations. The input image is
skeletonized and then efficiently mapped to a graph representation. Rather than
transforming the resulting graph to an Eulerian or Hamilotanian graph, the proposed
method applies a simpler transformation into a tree. It is noticeable that the application of
this method can be extended to various types of problems where 1-D sequences nced to
be extracted from 2-D images or the pen trajectory has to be estimated.

Last but not least, the discriminatory power of the HMM classifier is improved by

the introduction of a new parameter. The new parameter, the termination probability,
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makes use of an additional piece of information to estimate the most probable state in the
model to terminate the observation process. It is to be noted that the parameter does not
require cxtra inputs to the system. Rather, the system uses extra information that is
normally created during the training phase. Such information is not used in traditional
HMM. The new parameter has improved recognition results by about 10% on the top 1™

choice.

6.2. Future perspectives

This work has instantiated a solid basis for the research in Arabic cheque processing.
However, the research work in this topic is far from over. Future work will concentrate
on the following items:
L. System improvements
® In our system, we used a stmple linear approximation to map the sequence of
pixels into a list of strokes. We see a chance of improvement to the recognition
system in this direction.
® In our system, we used a code-book quantization scheme. Using a more robust
quantization method could lead to improved results.
® Improving the sub-word classification rate using multiple classifiers.
2. System integration
® Implement the complete legal amount recognition system given an improved sub-
word classification rate.
* Define and implement a criterion to combine the results of the legal and courtesy

amount recognition systems.
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® Develop a complete system to extract and process both the legal and the courtesy
amounts.
3. Public research society
* Get the databases approved by all parties and ready for publications.
¢ Find ways to increase the training and testing data.

4. Industry

* Collaborate with the industry to perform on-line test of the complete system.
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Appendix A

Artificial Neural Networks

A.1. Introduction

Artificial Neural Network (ANN) is a collection of simple processing elements (neurons.
units) that are connected together in the form of a directed graph, and organized to leamn
and perform a more complex task. Units’ functionality does not exceed performing
simple operations, e.g. addition and multiplication. A unit’s output value is determined by
its input, its interconnection with other units in the same layer, some optional external
inputs (e.g. bias and momentum), and its activation function. ANN functionality is
determined by its structure, individual neuron functionality, its training method, and data
sct used in the training phase.

ANN is characterized by its massively distributed and parallel computations.
Ideally. cach unit in a given layer could be dedicated to perform a single useful task
toward the overall functionality of the ANN. All units in a given layer perform their
computations in parallel. ANN is also characterized by its learning abilities that could
replace any priori programmed knowledge. Thus, the same ANN could be used to
perform two different tasks provided that proper training data is used for each task. These
two characteristics represent the core computation innovation of ANN over the traditional
procedural programmed computing.

In the following sections of this appendix we provide a brief description of the
structure of ANN, main applications of ANN, categories of ANN, the major types of

ANN, and the limitations of ANN.
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A.2. Applications of ANN

ANN has been applied to numerous types of applications with significant success.
Some of the applications where ANN has been used include: Image processing, pattern
recognition, implementation of Boolean logic functions, solving classification problems,
functional approximation, non-linear transformation, control, filtering applications,
medicine and financial systems. In general, ANN is more applicable to problems that
pose high dimensionality, large complexity, and/or mathematically intractable interaction
between problem variables.

In addition to the application of ANN as a stand alone system, it also has been
used in combination with other modeling techniques. Hidden Markov Model (HMM) was
combined with ANN in numerous ways to improve accuracy and/or reduce risk.
Following are some of the methods used to combine ANN with HMM:

® Sequential combination method, where the output of thc ANN is used as a
scquence of observations for the HMM.

® ANN could be used to perform the quantization process in discrete HMM.

¢ ANN could be used to estimate the observation probabilities during the training
session of HMM.

In a similar way, the integration of ANN with fuzzy-systems yiclded the emerging of

fuzzy neural networks. Such integration has been defined in a number of ways, including:
® ANN were used to implement fuzzy systems and fuzzy logic.
® Fuzzy approaches may be used in the design and training of ANN.

® ANN could be used to train and tune fuzzy systems.
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A.3. ANN Structure

ANN structure is defined by the number of layers, interconnection within and
between layers, unit activation functions, and the number of neurons in each layer. At
least two layers exist in any ANN: an input layer and an output layer. The input layer
represents a holding site of the characteristics (features) that are fed to the ANN. These
inputs can be homogeneous or heterogeneous list of values. In the latter case, it is
essential to normalize the inputs to ensure a fair chance to all inputs to participate in the
decision process. The output layer could use a single unit for each possible output, or
may contain a single unit that outputs the identity (id number) of the winning unit. In
addition to the input and output layers, ANN may contain a number of hidden layers
composed of the core processing stage to give ANN the ability to perform non-linear
functionality. Figurc A-1 shows an example for a simple, yet useful ANN. Although
ANN may use more than one hidden layer, yet it is not proven that this extends the
functionality of ANN.

A connection between two units refers to a directed cdge from one unit to another,
in which the output of the unit at the beginning of the edge is fed to the unit at the end of
the edge. Successive layers are mostly fully connected. Partial connection is yet an
alternative that has been considered to impose certain constraints on the system or to
reduce its complexity. Connections between units within a single layer is a characteristic
of competitive networks.

The activation function refers to the operation or function that a unit performs to
produce its output. Typically, a unit accepts an input, compares it with the corresponding

weight, adds up external bias or momentum inputs and then performs the activation



105

function. Activation functions of hidden units are always chosen to be differentiable to
ensure gradient descent training that leads to a conversion in the training procedure to
local minima. The most commonly used activation functions for hidden units are sigmoid,
tan and Gaussian functions. The output tayer, on the other hand, may define a binary or a

continuous function depending on the desirable ANN output.

Xy
XAk

93 5
Figure A-1: A simple example of ANN of two layers. The input layer has two neurons and
functions to hold and pass the input to the succeeding layer. The output layer contains a
single neuron that accepts three inputs (two from the input layer and one is called the bias
value) along with a weight for each input. The output unit basically multiplics each weight
with the value of its corresponding input and add them together. The output unit then
applies a hard-limit function to its net input. The above ANN implements a logical “and”

operation between the two inputs. The straight line shown inside the output unit indicates

the use of hard limit activation function at that unit.

A.4. Categories of ANN

ANN may be categorized based on a number of factors. Based on their memorization
power, ANN may be categorized as either static or dynamic. ANN can be categorized
based on the training strategy into supervised training and unsupervised training.

Description of each of these categories is given below.
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A4.1. Static vs. Dynamic ANN

Static ANN employs no memory about the past inputs or outputs. Thus, the ANN reaches
a static state upon completion of its training phase. Examples of this type of ANN include
the multi-layer perceptron (MLP), the radial basis function (RBF) and self organizing
maps (SOM). Dynamic ANN on the other side, maintains memory about past inputs
and/or outputs. Examples of this type of ANN include time delay ANN (TDNN) and

Hopfield network.

A4.2. Supervised vs. unsupervised training

The nature of training data used to train ANN plays a role in the training strategy to be
employed. In a supervised trained ANN, the training procedure expects pairs of inputs
and their corresponding outputs. The ANN creates a mapping that matches the example
pairs as closely as possible. Examples of this type of ANN include the aforementioned
MLP, RBF and Hopfield network. On the other side, unsupervised trained ANN accepts
only input examples without any expectations of their corresponding output values. ANN
employs inhibitory connections between units to group the input patterns into a number
of clusters. Examples of this type of ANN include Kohonen's self-organizing feature map

(SOM) and the Adaptive Resonance Theory (ART).

A.5. Major ANN types

A.5.1. Multi-layer perceptron (MLP)

MLP represents one of the earliest attempts to extend the functionality of ANN beyond
linear operations. The introduction of the hidden layer(s) in MLP was regarded a

breakthrough in ANN as it proved (by example) the practicality of training hidden layers.
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One of the major shortcomings of MLP however, is the limited availability of training
algorithms, which reduces its applicability to small problems. Figure A-2 shows an MLP

with one hidden layer.

[nput Hidden Output
layer layer layer

Figure A-2: MLP with sigmoid transfer
function in the hidden layer

The net input of each hidden neuron is given in Eq. A-1 below.

net. = w.U .. -
i=fEWU ) (A-1)
where Uj; is the input element number j to neuron number /, and W, is the weight
associated with that input. The most activation function used for the hidden layer is the
sigmoid function. In Most cases, additional parameters are used to improve the

performance of MLP (e.g. bias vector and momentum).

A.5.2. Competitive ANN

Competitiveness constitute the core of unsupervised learming strategy. Units in
competitive ANN exhibit a competitive form of behavior. During the training process, the

winning unit contributes negative activation to the non-winners to reduce their sensitivity
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to particular pattern of inputs. During the testing phase, each unit matches its weights to
the incoming signal, and sends negative contribution to other units according to some
similarity measure. The winning unit will be the one that produces maximum similarity to
the incoming signal and receives the minimum negative contribution from other units.
Among the most commonly used competitive ANN are the self organizing maps (SOM)
and the adaptive resonance network (ART). Figure A-3 shows the interconnections

among hidden neurons in a competetive network.

[nput Competitive Output
layer layer layer
R ’
—»

~_/
Figure A-3: Competitive network

A.5.3. Radial Basis Function (RBF) Networks

RBF can be scen as an extension of MLP with a special activation function of the hidden
layer. The structure of RBF consists of three layers, input, hidden and output layers. The
hidden layer consists of locally sensitive units that are governed by radial basis
(commonly a Gaussian) activation function. The output layer consists of linear units.
RBF has been used in, control, speech processing, image processing, pattern recognition

and classification. Figure A-4 shows the basic structure of RBF.
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Input Hidden Output
layer layer layer

Figure A-4: The Radial Basis Function network

A.5.4. Recurrent (Hopfield) network

The major topological property of recurrent networks is the connection from the output
layer to the input layer. Such ANN is trained via storage prescription that forces local
minima points in the decision space to correspond to the stable representations (stages) of
the input templates. The testing phase starts by exposing the external signal to the input
layer. The network then enters into a recurrent loop where the output of the each stage
becomes input to the next one. The iteration process continues until the system reaches a
stable stage, which mostly correspond to one of the stored templates. This type of
network could be used to recall template image patterns, or to complete partially

specified patterns. Figure A-5 shows the archetecture of the Hopfield network.

A.6. Limitations of ANN

Like any other model, ANN has its own difficulties and limitations. First, achieving the
global minimum error during the training phase of ANN is not visible. Various methods

were invented to reduce the effect of local minima, but no algorithm can eliminate such
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effect yet. Second, the time complexity of the training procedure makes it a relatively
cxpensive option. A third important consideration related to ANN is to cnsure the
generality of the ANN after the training procedure. Various training and stopping criteria
were used to avoid over fitting the training data. A fourth issue of concern is how to
choose the proper network structure for a particular application. Finally, the inference
about the ANN decision making process is not visible. This is due to the use of ANN as a

black-box that does not facilitate such inference.

[nput Processing Output
layer units layer
s —»
T~
—>

Figure A-5: Hopfield network
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Appendix B

Graph Theory

The graph theory was founded by Euler with his solution to the Konigsberg bridge
problem in the 18" century. However, its first application in physical science came after
more than a century of its initial foundation. Over the past four decades, graph theory has
cvolved into an important mathematical tool in the solution of a wide variety of problems
in many areas, e.g. physics, and chemistry. In this appendix, we provide the basic
definitions that have been referred to throughout the text of the thesis. We also provide

some of the theorems of concem to the thesis along with the proof of each of them.

B.1. Basic Definitions

Graph: A graph G=(V, E) is a set of vertices V connected via a set of edges E (Figure B-
I). In cases where there is at most a unique edge between any two vertices, the
cdges may be labeled by its ending vertices. If there is more than one edge

between any two vertices in the graph, the edges have to carry distinct labels.

a b

d c

Figure B-1: A graph with four vertices (a.b,c.d) and four edges ((a,b),(a.c).(a.d),(b.c))
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Walk: A walk in a graph G, is a sequence of vertices and edges. In Figure B-1 above, the

sequence {a, (a.b), b. (b.c), c, (c,b)} is a walk. For simplicity, we may say that {a.b,c.b}

is a walk.

Trail: A walk is called a trail if all its edges are distinct. In Figure B-1 above, the
sequence {a.b.c,a} is a trail.

Path: A walk is called a path if all its vertices are distinct. In Figure B-1 above, the
sequence {a.b.c} is a path.

Closed Trail: A trail is called closed if its end vertices are identical.

Cycle: A cycle is a closed trail that has one or more edges. In Figure B-1 above, the trail
{a.b.c.a} forms a cycle.

Connected graph: A graph is connected if there is a walk between every pair of its

vertices. The graph shown in Figure B-1 is a connected graph.
Weighted graph: A weighted graph is a graph that assigns weight to each edge.
Degree of a vertex: The degree of a vertex v, denoted d(v), is the number of edges
connected to that vertex. In Figure B-1 above, d(a) =3.

Pendent vertex: A pendent vertex is a vertex with degrec of one.

Tree: A graph is called a tree if it is connected and has no cycles.

Start: A star is a connected graph of three or more vertices, in which all vertices are
pendent except one. Figure B-2 shows a start of S vertices.

Center of a start: The center of a star is the vertex that is not pendant. It connects all

other vertices to the graph. In Figure B-2, the vertex a is the center of

the star.
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Double-traced edge: Double-traced edge is an edge that must be traced more than once

lo traverse a given graph.

Euler trail: An Euler trail in a graph G is a trail that traces all the edges in G exactly
once. An Euler trail is said to be open if its end vertices are distict, and
is said to be closed otherwise. In figure B-1, the trail {d.ab,c.a} is an
open Euler trail. A graph that possess an Euler trails is called Eulerian
graph.

Neighbor (adjacent): Neighbors of a vertex v are all vertices that share an edge with v.

In Figure B-1 above, the neighbors of « are b, ¢ and d.

d

Figure B-2: A star

B.2. Theorems

Theorem B-1

Traversing all vertices in a tree T is equivalent to traversing all edges in T.

Proof:

This theorem can be proven in two parts. First we prove that traversing all edges in a tree
implics traversing all vertices. Second we proof that traversing all vertices in a tree

implies traversing all edges.
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I) Traversing all edges in a tree => traversing all vertices.

1

2

. Assume that T(V,E) is a tree where the above implication does not hold.

. =We are able to traverse all edges in T without visiting some vertex ve V.
. = The vertex v was not connected to any of the edges of T.

-= T is not a connected graph.

. The consequence achieved in (4) contradicts the assumption made in (1) above.

Note that T is a connected graph by definition. Therefore, such assumption can not

hold.

[T) Traversing all vertices in a tree => traversing all edges.

l.

[N

Assume that T(V,E) is a tree where the above implication does not hold.

- = We are able to visit all vertices in T without tracing an edge e(v,, v;) €E.
. = There is a walk w between v, to v that does not pass through c.
- = There is a cycle in T composed of (i, ¢).

- The consequence stated in (4) contradicts the assumption made in (1). Note the T

does not contain cycles by definition. Thercfore, such assumption can not hold.

From (I) and (II) above, we can conclude that traversing all vertices in a tree is equivalent

to traversing all edges in the tree.

Theorem B-2

For any tree of n vertices, there are exactly n-1 edges.

Proof:

L. This theorem applics clearly to any tree of 1 or two vertices (Figure B-3).

2. Assume that this theorem applies for all trees of n vertices or less.

3. We nced to prove that the theorem applies for all trees T=(V, E) of n+1{ vertices:
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a. Consider any edge ¢ € E. The edge e constitute the only link between its end
vertices.

b. Remove the edge ¢ from E, to break T into two distinct trees Ti=(V,, E) and
Tx=(V,, E;). Assume that n; is the number of vertices in T and n; is the
number of vertices in T».

c. Note that n; < n and 1> < n. Thus, the theorem applies to both T| and T, i.e. T,
has n;-1 edges and T, has n»-1/ edges.

d. Note also that the number of edges in T = (n; 1) + (n> —1) + L. This counts for
all edges T, in plus all edges in T plus the removed edge in step (b) above.

¢. From (c) and (d) above, we conclude that T has (m-1)+ (na-1)+ 1 =n; +n> -1
=n-1 edges.

f. Therefore, the theorem applies for all trees of n+/ vertices too.

From (1), (2) and (3) we conclude that the above theorem applies to all trees.

o *—o

Figure B-3: (a) The tree with single vertex has O edges, (b) the tree with 2-vertices has 1
edge
Theorem B-3

For any tree T (V, E), there are at least two pendant vertices.
Proof:
Suppose that T has n vertices.

= T has n-7 edges
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=> The sum of degrees in T = £d = 2(n-1). (Each edge is counted for two vertices)
Let us try to assign these degrees to all vertices in T.
The minimum degree that can be assigned to a vertex is | (because T is connected)
Therefore, we are left with (n-2) degrees to be assigned to n vertices.
= At lcast two vertices will not be assigned any of the (n-2) degrees.
Thus. at least two vertices will be pendent vertices in T.
Theorem B-4
The minimum cost for traversing all vertices in a tree G(V.E) is the sum of all its edges.
Proof
The proof can be easily shown using mathematical induction:
L. For tree two vertices, the minimum cost is clearly the cost of its unique edge (Figure
B-4). Thus, the theorem holds for a tree of two vertices.
2. Assume that the theorem holds for all trees with n vertices.
3. We need to prove that the theorem holds for any tree T(V.E) of n+/ vertices. Consider
the following:
a. Find a pendent vertex v e V.
b. Remove the vertex v and its connecting edge e, to get another trec T, (V2,E,) of n
vertices.
c. The theorem certainly applies to T because it has n vertices. Thus, the minimum
cost to traverse all vertices in T, is the YE.= Y E;-e.
d. Having all vertices in T, visited, the minimum additional cost to visit v can not be

less that the cost of the edge e.
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€. = The minimum cost to traverse all vertices in T can not be lower than YE, + e,
which is equal the YE.
f. = The theorem also applies to any tree of n+/ vertices.
From 1.2 and 3, we can conclude that the minimum cost to traverse all vertices in a tree is

the sum of its edges.

X
a@—@ b
Figure B-4: The minimum cost to visit the two vertices a and b is x

Theorem B-5
In the most efficient traversal walk of a tree T. cach vertex of degree d would involve

between |d-2

and d (inclusive) double-traced edges.

Proof

I) Let v be an intenal vertex in a traversal walk of T, i.e. v is not the starting nor the
ending vertex. The degree of v, d(v) can be either one or more than one. Let us
consider each of these cases:
1) d(v)=I
In this case. v is a pendant vertex that should be visited during the traversal walk.
Since there is only one edge e connecting v to the rest of the tree, ¢ has to be traced
twice: one to visit v and the other to connect back to the remainder of the tree to
continue the traversal process. Thus, visiting v requires | double-traced edge, which
1s equal to d.

2) d(v)>1
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Assume that the vertex v was reached through the edge (v, v). There are two
possibilities about the location of the ending vertex of the whole traversal process:

a) If the ending vertex lays toward v; then the traversal of v and its neighbors
should end at v;, which implies that all the edges of v are double traced d
double-traced edges).

b) If the ending vertex does not lay toward v; but lays toward another neighbor of
v. say v;, then the two edges (1, v) and (v, vj) do not need to be double traced.
However, all other edges (v, v) k& and k=j, need to be double traced since
after all neighbors &, we will need to take the edge (v, vj), which implies
taking the edge (v, v) first. Thus, exactly d-2 edges should be double traced.

From (1) and (2) we conclude that the theorem applies to all intcrnal vertices.
II) Let v, be the starting vertex and v be the ending vertex of a certain traversal of T.
There are only two possibilities about the identities of these two vertices.
ty v, =u,
In this case, all edges of v, should be double traced to ensurc ending at the same
vertex v,. Thus, ¢ edges are double-traced.
2) v, #v,
In this case, all but one (the one leading to v,) of the edges of v, should be double
traced. Thus, d-/ edges are double traced. The same can be said about v,.
From (1) and (2) above, we conclude that the theorem applies to the start and ending
vertices.

From (I) and (IT) we conclude that the theorem applies to all vertices in the tree T.
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Appendix C

HMM

C.1. Introduction

HMM is an extension of finite automaton machines (FAM). FAM tries to predict the
future step (state) or observation based on the past steps and observations. For example,
in the stochastic network shown in Figure C-1. if the current state is Sy, then there is 0.6
probability that the next state will be S, and 0.4 probability the next state will be S;.

Thus. one may conclude that S is most probably the next state.

0.3

Figure C-1: Example of a stochastic network with 5 states. Transition
probabilities are shown near their origin

In real world problems, there are other factors that affect the transition between
various states. One other factor that affects the identity of the next staic is the observation
probabilities. The observation probabilities are shown in Figure C-2, in which it is not

sufficient to look into the transition probabilities alone. If the current state is S|, and the
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bl
b2

bl |06
b2 {04

Figure C-2: Example of a statistical network with 3 states and their
observation probabilitics

next observation is by. then the probability of having S, as the next state is 0.18 (0.6 *
0.3), and the probability of having S3 as the next statc is 0.32 (0.4 * 0.8).

The process of state-prediction can be repeated more than once by multiplying
successive state probabilities. However, this will yield accurate results only if the
successive events (state transitions and observations) are statistically independent.
Statistical independence between any two cvents A and B means that the occurrence of A
does not influence the occurrence or absence of B and vice versa. This can be represented

mathematically by equation C-1 below:

P(A[B) = P(A) (C-1)

where P(A) is the probability of event A, and P(A[B) is the probability of event A given

that event B has occurred.
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This sequence of operations can be used to predict (infer) the system’s behavior.
Given a sequence of observations, how probable it is that it would pass (has passed)
through a specific scquence of states? This sequence of operations can also be used to test
the system ability to experience a particular sequence of events. Given a sequence of
observations, how probable is it that a particular system would use it to pass from the
initial state to the last state? In other words, how suitable is a given sequence of
observations to a particular system? In each of the above cases, the known sequence of
observations is used to detect the hidden sequence of states, hence the name Hidden
Model.

A Markov process is a stochastic system for which the identity of the next state is
assumed to be solely dependant on the immediately preceding state. Markov chain is
simply a chain of random Markov processes. Markov chain represents a very important
concept that incorporates a minimum amount of memory without being memoryiess.

The k™ order Hidden Model assumes that the next state is dependent on the past &
states. To reduce computation complexity. first order Hidden Model is often used. The
first order Hidden Model basically applies Markov assumption that the next state depends
only on the last state and on the current observation. This is what is called Hidden
Markov Model (HMM).

HMM has been used in various types of applications including voice recognition,
and handwriting recognition. The common ground between various applications of HMM
to pattern recognition problems is to define a model for each target class. Each model is
then trained to produce high probability (response) to the kind of observation sequences

that match its target class, and/or to produce a low probability to the kind of observation
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sequences that do not match the target class. The overall result of the HMM recognition
system will be the model that produces the highest probability for a given sequence of
observations.
An HMM is completely specified by the of parameters:

N: the number of states in the model,

M: the number of distinct observations that could be encountered by the system,

A the transition probabilities (the probability of passing from state S, to state S)).

B: the emission probabilities (the probability of having an observation o at state S).

m: the initial state probabilities.

C.2. Training an HMM

The objective of the training phasc is to optimize the model parameters so that it responds
properly to various patterns of observations. This is the most difficult part of HMM as it
involves maximization of complex parameters in order to increase the probability of
observing a sequence given the model. In fact, there js no known training algorithm that
would produce a global maximum of such paramcters. However, there are a number of
algorithms that aim to find a local maximum of such variables. In the following we
describe an iterative procedure that is commonly used to train HMM based on the Baum-
Welch method.

The Baum-Welch iterative procedure can be divided into two phases, computation
phase and probability adjustment phase. At each iteration, the model probabilities are
used to deduce an overall model probability (computation phase). These computed
probabilities are then used to adjust the model parameters in order to increase such a

probability at the next iteration.
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Of the two phases mentioned above. the computation phase is by far more
complex. The difficulty in the computation phase arise from the fact that, for a given
model A(N, M, 1, A, B), there are N(M+N+1) different values to be manipulated in order
to maximize the overall model probability. These values correspond to 7 (N items), A(N*
items) and B (N*M items). Obviously, such manipulation should maintain the stochastic
property for all the three parameters m, A and B.

The computation phase computes the probability of being in each state given the
training observation scquence as well as the model parameters. In other words, for a
given time step 7, these probabilities are dependent on the values obtained in the previous
time step +-/ and on the current values of the model parameters. This introduces the
notion of forward variable «, which is used to keep the values obtained in step r-/ to
avoid repeating these computations. At a certain time step ¢ and a given state S,, the
forward variable o holds the probability of partial observation sequence 04.0;....,0; and

state S, given the model A, or in mathematical notation:

a,(j)= P(0,0,..0,,q, = S, | A) (C-2)

The computation of the forward variable at a given time step ¢ is computed as follows:

Gy =13, ()a, 1b,(0,,,) (C-3)
=1
The above cquation can be represented graphically as shown in Figure C-3 below. The
interesting thing about the above equation is that the computation at a given time step r+/
is induced from a simple manipulation of the computations achieved at time step r. Thus,

climinating the huge computational load involved in re-evaluating each of the previous
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steps. The computation of the first step (time step 1) depends solely on the emission and

the initial state probabilities as follows:

a,(j)=7b,00,) (C4)

(i) U1 ())

Figure C-3: Graphical representation of the computation of the forward variable at
time step £+/ at state S;

In the same way the forward variable is defined, the backward variable, B, is the
probability of the partial observation sequence from t+/ to the end of the observation
sequence, given state S; at time  and the model A. The computation of f§ at time ¢ given

state S, is shown in Figure C-4, and is given by Equation C-5 below.

hi

ﬂ‘(i) = za'/b/(om )ﬁul(j) (C-5)

7=l
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)

Bi(i) Bei(j)

Figure C-4: Graphical representation of the computation of the backward variable
at time step ¢ at state S;

The initialization part of B at time T (the end of the observation vector) is defined
arbitrary to be 1 for all states.

The forward and backward variables are then used to compute the expected
relative frequencies (or probabilities) necessary to adjust the model parameters. The
probability of being in state S, at a particular time step ¢ given the model and the

observation sequence, (1), i1s computed as follows:

: a, ()P, (i)
r(i) = 20D (C-6)
Y 2, ()B.0)
7=l
This translates to the probability of reaching state S; at time ¢, times the
probability of leaving state S; right after ¢, divided by the probability of being in any state

in the model at time ¢. In addition, the probability of being in state S; at time  and state S;

at time ¢+/ given the model and the observation sequence, ((i.j), is computed as:
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.. a; (i)a,,b/ (Onl)ﬂnl(i)
Sl =5
. , (C-7)
Z z C(, (l)aqb/ (Ol'l )ﬂnl (')
=1 =1
This translates to the probability of reaching statc S; at time t, times the transition
probability from state S; to state S;. times the probability of observing O.; at state S,
times the probability of leaving state S; right after the next observation, divided by the
total transitions between all states in the model at time ¢,
Having the computation phase completed, the adjustment phase follows the basic
probabilistic rules. The initial probability of state S, ., is readjusted to reflect the relative

frequency that the model starts the observation process at state S,. This is shown in

Equation C-8 below:.

7 =y, ) (C-8)

The transition probability between state S, and state S,, a;, is defined as the
relative frequency of transitions between the two states to the number of transitions
initiated from the state S,. Equation C-9 gives the mathematical notation for this

computation.

r-1

ACY)
a, = (C-9)

A0

h

4

The emission probability of observation o at state S.. bi(o), is the relative
frequency of observing o in state Si relative to the number of times the model be in state

S.. This computation is shown mathematically in Equation C-10 below.
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;
PRAC
£=1
510,y (C-10)
b (k) =———
PNAQ
=1
To achieve a local maxima during the training process, the computation and
adjustment processes need to be repeated a number of times. The initial probabilities used
at the first computation process can be selected randomly or be defined to impose
desirable model properties. Note that a zero initialization of any probability prevents any

adjustment on that particular probability as its relative frequency will never exceed zero.

C.3. Types of HMM

As mentioned carlier, HMM can be catcgorized based on a number of variables. Based on
the type of observations, HMM s classified into discrete and continuous models. As
indicated by its name, a discrete model cxpects a discrete list of observations. Such a list
comes from a finite set of observable events. In cases where the original obscrvations are
continuous in nature, a quantization process is introduced. Quantization could be seen as
another layer after the feature extraction layer. It aims to reduce the dimensionality of the
classification problem by shrinking the number of characterizing tags that are available to
describe a sequence of observations. As any other layer in the recognition system, the
quantization process could be a source of some errors. Such error can be reduced by
using more efficient quantization methods, increasing the size of the finite set of
observable events (the domain of the mapping process).

Continuous HMM is an attempt to eliminate the error involved in the quantization

process using continuous density functions to characterize the observation probabilities.
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For practical considerations, these density functions are assumed to be known in their
general form (normal distribution is assumed in most cases). To permit more complex
decision boundaries, a combination of a finite number (M) of density functions
(mixtures) is assumed at each state. The emission probabilities are computed as a linear
combination of these functions as shown in Equation C-11 below.
M
/4(0)=Zlc,mn(0,u,m,u,m> C-11

where O is the observation vector to be modeled, Cim is the coefficient of the m™ mixture
in the j state, and [ is any log-concave or elliptically symmetric density function with
mean W;, and covariance Um. What need to be estimated in the training session of
continuous HMM are the parameters of the each mixture [T in each state (i.e. the mean
and covariance) and the coefficients of these mixtures.

Though the amount of error introduced with the assumptions made in continuous
HMM is theoretically less than those introduced by the quantization process, continuous
models require more resources than those required by the discrete HMM.

Another way to categorize HMM models is based on the structure used to model
patterns. The structure of a given model is defined in terms of the number and
connectivity of given states. Among the most widely used structures in pattern
recognition systems, the left-right model dictates a certain ordering of states in the model.
Model states are numbered and the process of presenting the observations start at the pre-
determined initial state. During this process, state transitions are only allowed toward the
last state in the model.

Other variations in the structure of HMM models include the following:
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® Null transitions. where some transitions are allowed without encountering any
observation. Such transitions allow the absence of some observations from the
characterizing observation sequence.

® Tied state probabilities, where two or more probabilities are sct to be equal in

value. This helps in modeling symmetrical events in the input patterns.

® Inclusion of state duration, where self-transitions are set to zero, and another

density function is defined to characterize the duration of each state. This
improves the model response in cases where therc is a large number of self
transitions in the system.

Optimization criterion refers to the learning method that is used during the training
process. Among the most common criteria, Maximum Likelihood (ML) criterion trains
cach model on its own samples to maximize the samples likelihood. Models arc not
presented with samples of other classes. An alternative to this method is to maximize the
discrimination power of each model using the maximum mutual information (MMI)
criterion. In MMI, the average mutual information between the observation vector of the
target model and the complete set of models is maximized. Another altermative criterion
is to minimize the discrimination information (DI) or the cross entropy between the set of

valid signal probability densitics (Q) and the set of HMM probability densities.

C.4. Extensions to HMM - level building algorithm

HMM has been successfully used to process complex signals that contain more
than one simple pattern. While the viterbi algorithm is used to re-track the optimal

sequence of states within a single model, level building algorithm can be used to re-track
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the optimal sequence of models contained in the complex signal. The algorithm works on
the assumption that each model is connected to every other model in the HMM classifier.

The level building algorithm is used to empower HMM with segmentation
capabilities. That is, although the complex signal may contain more than one simple
pattem, yet the level building algorithm allows HMM classifiers to detect the sequence of
simple patterns that composes the complex signal without pre-segmentation. Other
classifiers rely on external segmentation algorithms that make segmentation decisions
before the classification module. Thus, segmentation decisions are based on different
criteria than the identity of the simple patterns. Level building algorithm allows the
segmentation step to be embedded within the classification module and be based on the
identity of the simple patterns. This has a number of advantages. First, it avoids
premature errors that could apprehend the classifier. Second, it allows the determination
of simple patterns based on their identities. Third, it allows the determination of global
optimal sequence of simple patterns rather than optimizing the identity of cach individual
pattern.

On the other hand, level building algorithm employs a number of thresholds that
can limit its gencrality. Implementation considerations normally impose the use of a
maximum number of simple patterns that could be included in a single complex signal.
Any increase in this number causes an increase in the search time of various pattern
combinations. The search time is normally reduced by pruning based on various criteria,
€.g. minimum carried out probability, and minimum and maximum lengths of simple
patterns. Constraining the possible combinations of simple patterns can also be used to

reduce the time complexity of the search process when applications permit.
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Appendix D

Samples from the databases

It would be very useful to show the whole databases in this appendix. However, due to
the huge sizes of these databases. we can include only some typical samples of cach one.

Nevertheless, the complete databases are available at CENPARMIL
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D.3. Courtesy Amounts
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D.4. Sub-words

Machine Printed Handwritten Samples
Sub-word
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Machine Printed Handwritten Samples
Sub-word
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D.5. Indian Digits

Digit Samples
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