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ABSTRACT

Neural network schemes are applied in this thesis to a temperature control system
problem. The electrothermal furnace is a very popular instrument for applications in
material testing area. In this work feedforward neural networks are trained for both
identification and control problems of the electrothermal furnace system.

The thesis demonstrates that neural networks can be used effectively for this
application problem. which is a highly nonlinear dynamical system. The first emphasis is
on the electrothermal furnace model identification and the second emphasis is on the
design of neural network based PID and internal model control strategies. Both static and
dynamic back-propagation methods are discussed. In the electrothermal furnace models
that are introduced. multi-laver feedforward networks are interconnected in novel
configurations.

A novel technique based on the internal mode! control for nonlinear systems using
neural networks is proposed. The control structure proposed directly incorporates a model
of the plant that was identified by a neural network and its inverse as part of the control
strategy. The potential utilizations of the proposed methods are illustrated through

experimental and numerical simulations of an electrothermal furnace system.
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Chapter 1

INTRODUCTION

The field of Artificial Neural Networks (ANN) has been originated from and inspired
by the biological neuron networks in human brain. It has brought about fundamental
changes in several application areas such as pattern recognition. control. signal
processing. to just name a few. It is hard to deny that new and challenging concepts arise

constantly in this emerging field.

1.1 A biological neuron

The basic anatomical unit responsible for the processing of information in the
nervous system is a cell known as the neuron. A developing neuron is synonymous with a

plastic brain: Plasticity permits the developing nervous system to adapt to its surrounding



environment. In an adult brain. plasticity may be accounted for by two mechanisms: the
creation of new synaptic connections between neurons. and the modification of existing
synapses. Axons are the transmission lines and dendrites are the receptive zones. Neurons
come in a wide variety of shapes and sizes in different parts of the brain. Fig. 1.1
illustrates the shape of a pyramidal cell, which is one of the most common types of
cortical neurons. Like many other types of neurons. it receives most of its inputs through
dendritic spines. The neuron itself is imbedded in an aqueous solution of ions. and its
selective permeability to these ions establishes a potential gradient responsible for
transmitting information. Neurons receive electrochemical input signals from other
neurons to which they are connected at sites on their surface. The input signals are
combined in various ways. triggering the generation of an output signal by a special

region near the cell body.

9
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1.2 The neural networks

Neural networks (NN). or artificial neural networks to be more precise. represents a

technology that has found significant interest in many domains. The networks are

endowed with certain unique attributes: universal approximation (input-output mapping).

the ability to learn from and adapt to their environment. and the ability to invoke or

require weak assumptions about the underlying physical phenomena responsible for the

generation of the input-output data.

l.

19

Application of neural networks offers the following useful properties and capabilities:
Nonlinearity. A neuron is basically a nonlinear device. Consequently. a neural
network. made up of an interconnection of neurons. itself is a nonlinear operator.
Moreover. the nonlinearity introduced is of a special architecture. in the sense that it
is distributed throughout the network. Nonlinearity is a highly important property.
particularly if the underlying physical mechanism responsible for the generation of an
input-output data is inherently nonlinear itself.

Input-Output Mapping. A popular paradigm in learning theory is known as supervised
learning. which involves the modification of the synaptic weights of the neural
network by applving a set of labeled training samples or task examples. Each example
consists of a unique input signal and the corresponding desired response. The network
is presented by an example picked at random from the set. and the synaptic weights of’
the network are modified so as to minimize the difference between the desired
response and the actual response of the network produced by the input signal in

accordance with an approriate statistical criterion.



(8}

Adaptability. Neural networks have a built-in capability to adapt their synaptic
weights to changes in the surrounding environment. In particular. a neural network
trained to operate in a specific environment can be easily retrained to deal with minor
changes in the operating environmental conditions. Moreover. when it is operating in
a nonstationary environment. a neural network can be designed to change its synaptic
weights in real-time and on-line. The specific architecture of a neural network for
pattern classification. signal processing. and control applications. coupled with the
adaptive capability of the network. make it an ideal tool for use in adaptive pattern
classification. adaptive signal processing. and adaptive control. As a general rule. it
may be said that the more adaptive a system is made in a properly designed fashion.
that is by assuming that the adaptive system is guaranteed to be stable. the more
robust its performance will likely be when the system is required to operate in a
nonstationary environment. It should be emphasized that adaptability does not always
automatically lead to robustness: indeed. it may do the very opposite.

Contextual Information. Information is represented and stored by the very structure
and activation state of a neural network. Every neuron in the network is potentially
aftected by the global activity of all the other neurons in the network. Consequently.
contextual information is dealt with naturally and in a distributed manner by the

neural network.

VLSI Implementability. The massively parallel nature of a neural network makes it
potentially efficient and rapid for certain tasks. This same feature makes a neural
network ideally suitable for implementation using very-large-scale-integrated (VLSI)

technology. The particular advantages of VLSI are that it provides a means for

n



capturing truly complex behavior in a highly hierarchical fashion. and makes it
possible to use a neural network as a tool for real-time applications involving pattern

recognition. signal processing. and control problems. to just name a few.

6. Uniformity of Analysis and Design. Strictly speaking. neural networks enjoy
universality as information processors. This is stated in the sense that similar
architectures or paradigms are used with some minor modifications in many domains
involving the application of neural networks.

7. Neurobiological Analogy. The design of a neural network is motivated by strong
correlations with the nervous system and brain operation. which is a living proof that
fault-tolerant parallel processing is not only physically possible but also could be tast
and computationally efficient and powerful. Neurobiologists look to artificial neural
networks as a research tool for the interpretation and alternative means tfor

understanding neurobiological phenomena.

1.3 Historical perspectives on ANN

In 1949, Hebb first proposed a learning rule that has become the starting point for
development of artificial neural networks training algorithms. Twenty vears later. a group
of scientists tried to combine the biological and psychological insights into electronic
circuits [2]. [3]. which were later converted into more flexible medium such as computer

simulations. Early successes produced a burst of activity and optimism in this domain.



Marvin Minsky. Frank Rosenblatt. Bemard Widrow and others developed various neural
networks that consist of a single layer of artificial neurons.

In 1986 the development of the back-propagation algorithm was reported by
Rumelhart. Hinton. and Williams [9]. In that same year. the two-volume books. by
Rumelhart and McClelland. was published [1]. This latter book has been a major
influence in the adoption and use of back-propagation learning algorithm, which has
emerged as one the most popular learning algorithms in neural network area. for the
training of multi-layer perceptrons. In fact. back-propagation learning was discovered
independently by two other researcheres about the same time [42]. After the development
of the back- propagation algorithm in the mid-1980s. it became known that the algorithm
had already been described earlier by Werbos in his Ph.D. thesis in 1974 [1]. That thesis
was the first documented description of an efficient reverse-mode gradient computation
that was applied to a general network model with neural networks being merely a special
application case. It is most unfortunate that Werbos's work remained almost unknown in
the scientitic community for over a decade.

In the 1980s. the neural network field became the centre of extensive research focus
and interest. This was partly due to the development of multi-layer learning algorithms
that enabled the networks to learn (using a more complex structures) difficult problems
that perceptrons could not solve (represent and learn).

Back-propagation (BP) is without a doubt one of the most well-known algorithms that
has been used in the neural networks applications [3]. Numerous successful applications
of BP have been reported in areas such as pattern recognition [3]. image processing [6].

biomedical engineering [7]. [8]. and control [9]. [10]. to just name a tew. However. BP



has some limitations. One of the important drawbacks is its fixed network structure. In

most practical problems the fixed network structure could either fail to solve a complex

problem or become too redundant. Three difterent approaches can be used to address this

problem:

1.

1o

)

Trial and error: Start with a fixed structure. If the learning process of the selected
network does not lead to the desired accuracy. then design a new structure by
adding or pruning neurons. Clearly. this is not an efficient approach because no
knowledge can be gained from the previous design.

Choose a large number ot neurons in the hidden layer: Two difficulties will arise in
using this approach. First. there may be redundant neurons for representing the
given function. and thus the computational overhead can become excessive.
Furthermore. more neurons in the hidden layver will result in a cost tunction with
additional local minimum points. consequently resulting in a higher probability of
getting trapped in a local minimum.

Adaptive structure: The network has the ability to adapt its structure according to
the statistics of the training set. When the inputs of the network change. the
network structure adapts to compensate for these variations. This is accomplished
provided that the time used for weight adjustment is much faster than the dynamics
of the training set. Thus the network structure adaptation provides more flexibility

to the input training set.

This thesis is focused on the use of artificial neural networks for identification and

control of a class nonlinear dvnamic systems with application to electrothermal

furnace system. The capabilities of neural networks to represent complicated nonlinear



maps has motivated researchers to use networks directly in a model-based control
strategy. The idea proposed here is based on the possibility of training neural networks
to learn both the system’s input/output relationship and its corresponding inverse
relationship. A suitable control strategy that also directly incorporates the plant model
is provided by the internal model control (IMC) [15]. [16]. The applicability of IMC to
control nonlinear systems has been demonstrated by Economou and Morari [17]. The
inverse of the nonlinear operator modelling the plant was shown to play a crucial role
in the implementation of a nonlinear IMC. The authors have studied analytical and
provided numerical methods for determining the necessary construction of the
nonlinear inverse operators. In this thesis artificial neural networks are used for the
construction of plant models and their inverses. and it is intended that they be used
directly within the IMC control structure.

The idea of using neural networks for nonlinear IMC was also considered by Bhat
and McAvoy [22]. However. they did not investigate the invertibility conditions
associated with the nonlinear dynamic system and have not proposed learning
algorithms for constructing the inverse model. Furthermore. they have not applied and
implemented the neural network-based nonlinear IMC controller to our application

problem.



1.4 Motivation for this thesis

An application of a neural network-based strategy in temperature control system is
presented in this thesis. The electrothermal furnace is a popular instrument widely used in
material testing area. A feedforward neural network is trained to identify and control the
electrothermal turnace system.

The main objectives here are 1o demonstrate and illustrate that the identification and
control of a neural network-based scheme in an electrothermal furnace temperature
control system — a highly nonlinear dynamic system proposed in the literature -- is
feasible and its pertormance is superior to traditional methods such as the standard PID

control scheme.

1.5 Figure of merits of the thesis

This thesis focuses on the use of artificial neural networks for the identification and
control of nonlinear dvnamic systems. Artificial neural networks provide a distinctive
computational paradigm and have proved effective for a range of practical problems
where conventional model-based and computation techniques have not been quite
successful.

An artificial neural network consists of many simple processing elements each having a
number of inputs and a single output. The output of each element is determined as a
nonlinear function of a weighted sum of its inputs. A large variety of activation functions

can be used. however. in this thesis we consider Gaussian activation functions because of
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their functional representational properties. The basic processing elements are
interconnected using adjustable strength links. or weights. The strengths of the individual
links determine the overall behaviour of the network [7. 24]. The weights of a particular
network are to be selected to achieve a desired input-output relationship. The weights are
to be adjusted during a training process when the network is presented with a range of
input patterns and its output is compared to the desired output each time. The aim is to
successively drive the weights to values. which make the network output equal or very
close to the target output.

In this thesis. we are primarily concerned with the use of artificial neural networks for
dvnamical systems control. Various characteristics of neural networks suggest that they
may be useful in certain classes of control problems. In particular. the ability of neural
networks to represent arbitrary nonlinear mappings encourages the study of neural
networks for complex nonlinear control problems. Relevant features ot neural networks
in the control context are

(i) the ability to represent arbitrary nonlinear relationships

(i) adaptation and learning in uncertain systems provided through both off-line and

online weight adaptations
(iii) information contained in input-output data is transformed to internal representations
allowing data tusion using both quantitative and qualitative signals
(iv) parallel distributed processing architecture allowing fast processing for large-scale

dvnamical systems

(v) architecture providing a degree ot robustness through fault tolerance and graceful

degradation

11



The ability of neural networks to represent nonlinear relationships leads one to the idea of
using networks directly in a model-based control strategy. The idea proposed in this thesis
is based on the possibility of training networks to learn both the system’s input/output
relationship and the corresponding inverse relationship. A suitable control strategy. which
directly incorporates the plant model. is provided by the internal model control (IMC).
The inverse of the nonlinear operator modelling the plant was shown to play a crucial role

in the implementation of nonlinear IMC.

1.6 Contributions of the thesis

The contributions of this thesis are in demonstrating that backpropagation neural network
can be used effectively in identifving and controlling an electrothermal turnace system.
First a three-laver neural network is developed for the identification of the electrothermal
furnace system. This network is subsequently used in a neural network-based IMC control
strategy. Furthermore. a neural network-based PID control strategy is also proposed and

these results are compared to a conventional PID control scheme.

1.7 Outline of the thesis

The thesis is organized as follows: In Chapter 2. a typical neural network topology and its
basic principles are introduced. Specifically. the activation functions. supervised learning.

back-propagation network and back-propagation training are all described and reviewed

in details.
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In Chapter 3. a physical electrothermal furnace system is described and its computer
control svstem structure and a neural network-based model for the electrothermal furnace
system are introduced.

In Chapter 4. a neural network-based PID and a neural network-based internal model
control strategies are proposed. The details regarding the learning algorithms. internal
model principle and nonlinear internal model control scheme are also presented.

In Chapter 3. the experimental results of the proposed identification scheme as well as the
neural network-based PID and neural network-based nonlinear internal model control
strategies applied to our electrothermal furnace system are presented.

In Chapter 6. a summary of the thesis contributions is presented with a brief discussion on
the future work in this area.

The contribution of this thesis is in demonstrating that neural networks can be used
eftectively for identification and control of electrothermal furnace systems — a highly

nonlinear dynamical svstem.



Chapter 2

NEURAL NETWORK TOPOLOGIES AND

PRINCIPLES OF OPERATION

2.1 The artificial neuron

The artificial neuron was developed to mimic the first-order characteristics of a
biological neuron [1]. As a fundamental building block. a neuron is the basic operating
processor in a neural network. Each neuron receives several inputs through its
connections. known as synapses. The inputs are the activations of the other neurons
multiplied by the weights of the synapses. Each neuron has one output. which is generally
related to the state of the neuron and which generally fans out to several other neurons.

An abstract model of a neuron is shown in Figure 2.1.
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Input
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Figure 2.1 Nonlinear model of a neuron
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A neuron is an information-processing unit that is fundamental to the operation of' a

neural network. Figure 2.1 shows the model of a neuron. As stated before. one may

identify three basic elements associated with a neuron description. as discussed below:

1. A set of synapses or connecting links. each characterized by a weight or strength of

its own. Specifically. a signal x, at the input of synapse j connected to neuron & is

multiplied by the synaptic weight w, . It is important to make a note of the manner

in which the subscripts of the synaptic weight w, are written.
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An adder for summing the input signals. which are weighted by the respective
synapses of the neuron. Note that the operations described so far constitute a linear

combiner.

(V8]

An activation function for simply limiting the amplitude of the output of a neuron.
The activation function is also referred to in the literature as a squashing function in
that it squashes (limits) the permissible amplitude range of the output signal to a
certain finite value.

The model of the neuron shown in Figure 2.1 also includes an externally applied
threshold 6, that has the effect of modifyving the net input to the activation function.
Using mathematical notations. we may describe the processing operation of a neuron 4 by

the following pair of equations:

14
Net, =u, =Zw‘,.\'l (2.1
1 =1
and
O, = f(Ner, -0, (2.2)

where x...x,are the input signals: w;,....w, are the synaptic weights of neuron & :
Net, or u, is the linear combiner output: 6, is the neuron threshold: f(-) is the neuron
activation function: and O, is the output signal of the neuron.

In particular. depending on whether the threshold 6, is positive or negative. the
relationship between the effective internal activity level (v, =u, =8, ) [1] or activation

potential of neuron & and the linear combiner output u, is moditied in the manner



illustrated in Figure 2.2. Note that as a result of this affine transformation. the graph of v,

versus u, no longer passes through the origin.

Threshold
Total 6, <0
internal
activity 0, =0
level . 6, >0

3 .

Linear combiner’s
output. u.

Figure 2.2 Affine transformation produced by a threshold



2.1.2 Types of activation functions

The activation function. denoted by f.). defines and characterizes the output ot a neuron
in terms of the activity level at its input. We may identify three basic types of activation

functions:

1. Threshold Function. For this type of activation function. depicted in Figure 2.3(a).

we have

A 1 ifv20 o a
Sy = 0 if v <0 (2.3)

Correspondingly. the output of neuron k& employving such a threshold function is expressed
as

(1 ifv,20

24
1o ifv, <0 (=)

where v, is the internal activity level of the neuron: that is.
v,= Z w.x, -6 (2.5)

In this model. the output of a neuron takes on the value of 1 if the total internal activity

level of that neuron is nonnegative and 0 otherwise.
2. Piecewise-Linear Function. For the piecewise-linear function. shown in Fig. 2.3(b)

we have

18
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(2.6)
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| =19 —

where the amplification factor inside the linear region of operation is assumed to be unity.

This form of an activation tunction may be viewed as an approximation to a nonlinear

amplifier.

S)

A J

Figure 2.3 Basic activation functions (a)
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3. Sigmoidal Function. The sigmoid function is by tar the most common form of

activation function used in artificial neural networks. It is defined as a



monotonically increasing function that exhibits useful smoothness and asymptotic

properties. An example of a sigmoidal function is the logistic function. defined by

Jv) (2.7

- I + exp(—av)

where a is the slope parameter of the sigmoid function. By varying the parameter a. we
obtain sigmoid function of different slopes. as illustrated in Figure 2.3( ¢ ). In fact. the
slope at the origin is @ 4. In the limit. as the slope parameter approaches infinity. the
sigmoidal function becomes simply a threshold function. Whereas a threshold function
assumes the value of 0 or 1. a sigmoidal function assumes a continuous range of values
from 0 to 1. Alternatively. the sigmoid may also be selected as the hyperbolic tangent

function. detined by

. v | —exp(-v
_/(\')=lanh(:)=—9——) (2.8
2 1 +exp(—v)

2.2.1 Alternative activation functions

As mentioned earlier. the range of an activation function should be appropriate
according to the range of target values of a particular problem. The binary sigmoidal

function presented in Section 2.1.2. and described by

. 1
flvy=———— (2.9)
I +exp(-ar)



with

L =af()[1- (V)]

(2.10)

can be modified to cover any desired range. to be centered at any desired value of v.

and to have any desired slope at its center.

The binary sigmoidal function can have its range expanded and shifted so that it maps

the real numbers into the interval [b. c] for any b and c. To do so. give an interval [b.

c]. we first define the parameters

Then the sigmoidal function may be defined as

gy =7 (v -n=——="——-q
1 +expl—uav)

(2.1

(2.12)

which has now the desired property. namely. its range is (b. c). Furthermore. its

derivative also can be expressed conveniently in terms of the original tunction

according to

4]
g'(v)=;[n+g(v)][:/ -n-g(v)]

(2.14)

The logistic sigmoidal function (or any other function) can be translated to the right or

left by the use of an additive constant on the independent variable. However. this is not

necessary. since the trainable bias serves the same role [21].

9



2.1.4 Gaussian Units

Units that employ a Gaussian activation function are used primarily in applications where
it is desirable to classify input patterns into one of several predefined classes. Like the
other network units that we have already investigated. Gaussian units convert their input
activation into an output signal by applving an activation function to the input. Unlike the
other types of units that we have studied. Gaussian units are not necessarily output
limited.

Let us now consider the form of a typical Gaussian activation function

vo-1

foy=e” (2.13)

where. as before. v, represents the net input to the unit. and the term o is a smoothing
parameter. The form of this tunction is shown in Figure 3.4 tor values of v in the range
between -1 and 1.

We can observe from the graph of the Gaussian activation function that there is a very
narrow range ot input values that will allow the unit to generate an active output. In this
manner. the Gaussian unit acts like a filter. allowing only input patterns that produce
activations within a very narrow range to pass. while effectively attenuating all other
inputs.

Consider the behavior of this unit in a neural network. Since each unit in a given hidden
or output layer is typicallv excited by a number of connections coming from another
layer. the pattern contained in the input connections to the unit act as a tuner. When the
layer feeding the Gaussian unit produces an output pattern that matches the pattern

contained in the input connections to the Gaussian. the Gaussian detects the match and



generates a signal indicating that the match occurred. Conversely. when the output pattern
from the layer feeding the Gaussian is significantly different from the pattern contained in
the input connection weights. the Gaussian produces no output. indicating the input was

not successfully matched {41].

/ 7

Figure 2.4 A Gaussian activation function

2.1.5 Network architecture

The principle characteristics of any network are defined by both the particular nonlinear
activation functions of its processing elements and by the way in which these elements
are interconnected.

The simplest basic processing element comprises of weighted linear combination of
inputs that are processed through a certain nonlinear function. known as the activation

function. Some of the most frequently used activation functions are shown in Fig. 2.5. As

24



briefly indicated earlier each representation of the basic unit has certain advantages and

disadvantages. The choice of a specific activation function depends on the particular

problem being studied.

v

& sauration b. sgmoid . gaussian

Fig. 2.5 Frequently used activation functions

The basic processing elements by themselves are not very powertul in terms of
computational capabilities or representability. but their interconnection allow encoding
relationships between the variables. resulting in powertul processing capabilities. For
example. the connection of three layers. as shown in Fig. 2.6. provides the possibility of
nonlinear mappings between the inputs and the outputs. This capability can be used to

represent and learn complex nonlinear mappings among the inputs and outputs of a

system.

]
W



Output laver

Hidden layer

O fan in-out units

Input layer

Fig. 2.6 A Multi-layer neural network

The structure depicted in Fig. 2.6 with one hidden layer having sigmoidal activation
functions has been shown in the literature to be capable of producing an arbitrary
mapping between the input and output variables. The standard approach to training the
weights of this type of network is the back-propagation algorithm as described in details
in later chapters. However. this method is known to have drawbacks in terms of speed of
convergence and in obtaining a unique global solution to the optimization problem. These
problems arise mainly due to the nature of the nonlinear optimisation problem having
local minima.

The use of Gaussian units. on the other hand. has the advantage of simplifying the
problem. because in a natural way it produces a partition of the input space [43]. There is

a theoretical support [43] for representation capabilities as well as consistent results



achieved with these networks. It has been stated that this network has the best
“approximation” property [4+4] as a nonlinear mapping network.

In this thesis we also consider Gaussian networks consisting of many inputs and outputs.
as shown in Fig 2.7. The number of network input units n, corresponds to the dimension
of the input vector. denoted by x e R"™ . The linear output unit is fully connected to the

hidden units: the network output y (a nonlinear function, g(.), of the input vector x) is a

weighted sum of the activation levels of the N hidden units:
_1'=g(x)=2c:k (2.16)

where ¢ denotes the connection weight between hidden unit 7 and the network output.
and £ is the output of the hidden unit 1.

The activation level of a hidden unit in a Gaussian network depends only on the distance
between the input vector and the centre of the Gaussian function of that unit. The centre
of the hidden unit i is denotes by x € 3" . More precisely. the activation level & of the
hidden unit i/ is detined as

k=i (2.17)



Fig. 2.7 A basic Gaussian neural network

where the distance function « for the hidden unit i represents the distance between the
centre of the function / for that unit and the input vector x. namely

d(x.x.A)=(x—-x) Alx=-x,) 2.18)
The matrix A represents the bandwidth of the hidden unit function. We consider a
constant diagonal matrix A whose diagonal entries are selected identically. Having such

a A constrains the representation but simplifies the learning algorithm. We refer to such
a network as a regular Gaussian network.

Gaussian network is a kind of a Radial-Basis Function (RBF) networks. The RBF
networks and multi-layer perceptrons are examples of nonlinear feedforward neural
networks. The linear characteristics of the output layer of the RBF network implies that

such a network is more closely related to the Rosenblatt’s perceptron than a multi-layer



perceptron. However. the RBF network differs from the perceptron in that it is capable of

implementing arbitrary nonlinear transformations of the input space [1].

2.1.6 Learning

Learning is the most important property associated with a neural network. It is defined
as a change in connection weight values to capture the information contained in the
training data. Leaming involves adjusting the weights of the network so that the
application of a set of inputs produces the correct outputs. The weight adjustment scheme
is known as the learning law. All learning methods can be classified into two main
categories: supervised learning and unsupervised learning.

1. Supervised Learning

Supervised learning involves the association of a target vector representing the desired
output values with each input vector. After the output of the network for a given input
vector is computed and compared to its target. the difference (error) is fed back so that the
network weights are adjusted according to an algorithm that tends to minimize this error.
The vectors of the learning (training) set are applied sequentially and the learning

procedure is repeated until the error for the entire training set reaches an acceptable low
level [20].

2. Unsupervised Learning

Unsupervised learning requires no target vectors for the output. and hence no comparison

to a set of predetermined output responses. The learning set consists solely of input

vectors. and the learning algorithm modifies network weights so as to produce consistent



outputs. The learning process in essence extracts the statistical properties of the learning

set and group similar vectors into classes.

2.2 The backpropagation network

The so-called back-propagation network is simply a multi-layer nonlinear mapping
network. with a feedforward contiguration. The use of the term “"mapping” in describing a
network implies that the network is capable of implementing approximations to a variety
of functions from an m-dimensional space R™ to an I-dimensional space R'. Certain
backpropagation networks are used for binary input and output vectors mappings (that is.
each of the components of the input or the output vector is either 0 or 1)
Backpropagation networks are typically trained using the generalized delta rule.
application ot which involves the calculation of the network output. a comparison of this
output with the desired output. the calculation of an “error™ and a backward propagation
of this error in order to “correct™ future outputs. In this process. each neuron updates the
weights of its input connections in such a way that the error associated with its own

output activation is decreased.

2.2.1 Multi-layer static neural networks

The main architecture and operation of a multi-layer neural network consists of the

following attributes:



1.

19

(U9

A typical backpropagation neural network structure consists of input. hidden. and
output lavers. Hidden layers may consist of more than one layer. It has not yet been
resolved in the neural network literature as to how many hidden layers are
necessary for a particular application. The amount of computation taking place at
the input layer is quite minimal. The number of neurons in the input layer is equal
to the number of input vector components (measured data values). During learning
(training). the input layer sends out (fan out) input information to the first hidden
layer. as shown in Figure 2.8(a).

The last hidden neurons broadcast their results to all the neurons in the output
laver. Each output neuron calculates a weighted sum and subtracts its actual results
(actual response) from its desired results (targeted output) to produce an error
signal (output error). The connections active at this stage ot operation and learning
are shown with thick arrows in Figure 2.8(b).

The output nodes calculate the partial derivatives of the error vector components
with respect to the weights. and pass these derivatives back to the hidden layers.
The computation during this learning stage is what gives the algorithm its name:
the backpropagation. Each hidden neuron calculates the sum of the error

derivatives to find its contribution to the output error. The backpropagation of error

to a hidden layer is shown in Figure 2.8(c).
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Figure 2.8 (a) and (b) Backpropagation network
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Figure 2.8 ( ¢ ) Backpropagation network

2.2.2 Backpropagation training procedure

(8]

L)

. Initialize the weights and biases.

Set all the weights and node biases to small random values in the interval [-1. 1].

. It the stopping condition specitied a priori by the user is not satisfied. then proceed

to steps 3 tol0. otherwise stop.

. For each training pair follow steps 4 t0 9.

. Feedforward operation: Present the input vector x, =(x,.x,...x,,) and specify the

desired output D = (d,.d,...d, ) ( defining the training set ). If the net is used as a

classifier then all desired outputs are typically set to zero except for that

(¥3)
(¥3)



corresponding to the class the input is trom. That desired output is set to 1. The
input values could be new on each trial or samples from a training set could be
presented cyclically until weights stabilize.

5. Backpropagation of error:

The cost function E, associated with the network is defined as the output error
corresponding to each pattern p and is giver: by

2

(d = 0,) (2.19)

ik
where O, and d, are the actual and desired outputs of the kth output neuron for pth
pattern. respectively. Each output unit 3, =(y,.y,...}, ) receives a target pattern
corresponding to the input training pattern and computes its associated error to be
propagated to pervious hidden layers as follows

S, =(d. -0 /. (Net )y=0,(1-0,Xd, = 0O,) (2.20)
in order to calculate the weight adjustment according to

cE
ow

Aw, =-n

where n is the learning rate. n > 0. we have

Aw, =18,0, =n(d, —0,)f(Net )0, =n0,(1-0, Wd, -0,)0,
(‘7 ‘7‘))

- ——

Note that the derivation of the above term is as follow. From

GE  GE  éNel,

~ T oo - 2.23)
oy, CcNet, ow,



o
and from the output layer. we have Ner , = Z w0,
7=1

so that.

cNet ¢ <
— = (Z Wk O/ )O/
I

(71"/;‘ ow T
Defining§, as
cE cE O
5, = —— =——. "‘ (2.24)
CNet, c0, CNet,
with
cE co,
—==(d, -0 — = f (Nt
0, tel. ) cNet, fet)
We obtain
S, =(d, — O (Net )= 0, (1-0, )d, - O,) (2.25)

and. the weight adjustment term for each output layer neuron becomes:
Apw, =nfi(Net Wd,, —0,)0, =1n0,(1-0,0d, -0, )0, (2.26)
Associated with each hidden unit Z, =(Z,.Z,...Z,). the previous delta terms are

combined as (from units in the output layer above)

- = w
- LIRS
co, O

The above is then multiplied by the derivative of the corresponding activation function to

calculate the “equivalent™ tracking error signal
5 = f.(Ner )Z O w, (2.27)
V=l

The weight adjustment for the hidden layer neurons is then achieved according to

[#9)
(¥



Aw =1d 0O (2.28)

The derivation of the above expressions is as follows.

We have
A cE GE  ENet, CE 0 = n( EE 0, \
W = — = - . = - = — =
YT A T T aNer, Ay, Naver, TN O, éNer,
= n(-— )f(/Vet )0, =1n9,0, (2.29)

where ¢E / ¢0, may be computed according to

“E — CE  ENet, ¢ °F
E Ly S s S0
O, T cNet, O T C\er, (“() =

—Z - )u ZO W

Hence. we have

!
S = fUNet )Y Sw, =0(-0)) 8w, (2.30)

and consequently the hidden layer neuron weight adjustment becomes
! I
Aw, =nf(Net WD 8,w,)0, =10, (1-0 XD_8,w,)0, (231
&=l k=1

6. Update and adjust weights and biases:

Each unit updates its bias and weights using a recursive algorithm according to

19
b)

w i n+h=w (n)+no0



where w, (n) is the weight from hidden node j or from an input to node j at time n. O, is
either the output of node j or is an input. n is the learning gain. and 6, is an error term

for node . If node j is an output node. then

5,=0,(1-0,)d, -0, (

19
(U3
w)
e’

Where d, is the desired output of node j and O, is the actual output. If node j is an

internal hidden node. then

3
5, =0(1-0,)) 8w, (2.34)

k=1
Where k& is over all the nodes in the laver above node j. Internal node thresholds are
adapted in a similar manner by assuming that there are connection weights on links from
auxiliary constant valued inputs. Convergence is sometime faster if @ momentum term is
added and the weight adaptation is smoothed according to

wn+h)y=w (n)+nd O +alw, (n)—w, (n-1)] (2

(9]
[9%)
h
-

where O<a < 1.

7. Stopping criterion:
lterate the above calculations and operations by presenting new epochs of training
examples to the network until the free parameters of the network stabilize their values and
the average squared error computed over the entire training set is at a minimum or
acceptably small value. The order of presentation of training examples should be
randomized from epoch to epoch. The momentum and the learning rate parameters are

tvpically adjusted as the number of training iterations increases.



2.2.3 Conjugate gradient backpropagation

To apply the conjugate gradient method to a backpropagation network. we first view
backpropagation learning as an unconstrained nonlinear optimization problem. Thus. we
require a vector of independent variables. x. and an objective function. /. defined on the
vector space of x which is 1o be minimized. We must be able to evaluate f (x) and its
gradient g(x)= V/(x) at any point x. Recall that the goal of training the network is to
modify the weights in such a manner that the network output for each pattern match the
desired output. Therefore. the weights will be the vector of independent variables.
Although. each weight is associated with a layer in the network and a particular neuron
within that layer. for the purposes of the conjugate gradient optimization the weight is
considered to be a single one-dimensional vector. The weights are ordered in a vector by
laver and then by neuron and number within the neuron. The normalized sum of the
output errors over the training set will be the objective function to be optimized. More

formally. we define
f(x)=2l—pZE, (2.36)

where p is the number of patterns in the training set and E . is the output error for each

pattern p. Specifically. £ is defined as
1 .
E.==2(d, -0, (x) (2.37)
=

where O, (x) and ‘[rr are the actual and desired outputs of the jth output neuron

associated with the pth pattern. respectively. We have denoted O, as a function of x to



indicate the dependency of the network outputs on the weight vector x. Thus. the

objective function is
. 1 hl -~
f<x)=;;ZZ(dp, -0, (x)) (2.38)

A single function evaluation requires that the entire training set be passed through the
network. the errors be calculated for each pattern and the results summed and normalized.
As the size of the weight vector and the number of patterns in the training set increase.
the cost of computing f(x) also increases.

To compute the gradient of the objective function. Vf'(x). we differentiate (2.36)

with respect to x. which gives
] -
g(.\'):;ZVEr(.\') (2.39)
r

The derivation of VE (x) is nearly identical to the derivation of (cE, /¢éw )in
Rumelhart [9] and is summarized briefly here. The vector VE (x)is composed of
elements (CE, /A& ,). where x is the neuron weight connecting the ith to the jth
neuron. We write the derivative as a product of two parts

cE cE .C'.\'el .

I 7

&, et &

"

(2.40)

u

where (CE, /ENet ) represents the change in £, due to a change in the input of the jth
neuron and (&Ner,, / éx ) represents the change in the input of the jth neuron due to a

change in the weight x . The input to the jth neuron. Ner . is defined as

Ner | = Zx”Or,(.\’) (2.41)



where O, (x) is the output of the ith neuron (O, (x) is the ith input when i/ is an input

neuron ). Using (2.38). it can be shown that

—==0,,(x) (2.42)

We now define

cEr

cNet F,

(2.43)

r

Note that this differs from the§, of Rumelhart [9] by a minus sign. Thus.

¢E,
—£=5,0,(x) (244)
= =95

X,
Using this definition of §_, and following the same arguments as in Rumelhart [9]. we
arrive at the following relationships: For the output neurons
3., =-d, =0 (x)f (Net,) (2.43)
where f (et ) is the derivative of the semi-linear activation or squashing function. and
for the hidden laver neurons
5. = fi(Net )Y 8,.x,, (2.46)
A
Therefore. evaluating the gradient requires forward propagation of each pattern in the

training set through the network to generate the neuron outputs followed by propagating

the values of &, backwards through the network. The final gradient is computed by
summing VE (x) over all the patterns. Since the conjugate gradient method requires

evaluating both the function and the gradient values. the calculations should be pertormed

together to maximize efficiency.
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2.3 Conclusions

Differences among various topologies and operations of NN exists. but the
neurons fundamentally operate in much the same manner. Different activation functions
will affect the training results. The backpropagation (BPN) training algorithm allows
experimental acquisition of input/output mapping knowledge by using muiti-layered
networks. Once an input pattern is applied to the input layer nodes of a three layer
network. the information is processed and propagated to the hidden layer and on through
to the output laver to generate an output pattern. This output pattern is then compared to
the desired output pattern in generating an error signal. This error signal is then used to
generate appropriately scaled error signal at each layer. The weights on the output layer
are adapted using this error information. The error signal is then modified and then
employed to adapt the hidden layer weights. This process of comparison of output and
target values is continued until all patterns in the data set are learned to within some
specified error bounds. The classical algorithm known as the generalized delta rule
suffers from the fact that most of the parameters governing it such as learning rate.

momentum. slope bias etc. should be fixed initially and thus are not adjusted during the

learning process.
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Chapter 3

ELECTROTHERMAL FURNACE
SYSTEM AND NEURAL NETWORK-

BASED IDENTIFICATION & CONTROL

3.1 Description of an electrothermal furnace system and
its computer control system

The electrothermal furnace system is widely used for mechanics performance tests on

variety of metal samples under high-temperature (200 °C ~1200 °C). There are two sets

of resistors (upper and lower) to heat the furnace to more than one thousand degrees. The

block diagram is shown in Figure 3.1.
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(a) Section diagram
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Figure 3.1 Electrothermal furnace system diagram



The system requirements are as follows:

i. The temperature of the electrothermal furnace varies in the range of 200 °C ~1200

°C.

9

The temperature of a given sample which is to be tested should be risen from an

indoor temperature to the proper temperature setting as quickly as possible.

(¥}

with =4 °C.

4. The temperature differential on the sample cannot be over £3 °C between upper

and lower sections.

The computer control system for a typical electrothermal furnace system is shown in

Figure 3.2 and Table 3.1.

f—>
Print Computer

Furnace temperature should be stabilized and regulated to the setting temperature

Power

regulator

Furnace

A'D

Figure 3.2 The computer control system

‘_@._

Transverter
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Name Equipment Model
Computer ICS Advent 7520p-A4 (Pentium)
A/D Card CS14100

Power Regulator TKDGB-20
Transverter PDK-40
D/A Card CSM14-2
Furnace FMTB-10-j-72-k *
Control Software ONSPEC control software for PC **

Table 3.1 A typical components for the electrothermal system

Table 3.1 shows a typical components for the electrothermal system. The system is

composed of the following principle items:

* The furnace is made by Shanghai Material Test Equipment Co.

** ONSPEC is an advanced supervisory control and monitoring solution designed to
work with plant-floor automation systems to provide real-time data acquisition and
control to any plant environment. ONSPEC product offerings provide graphics. data
acquisition. trending and alarming. spreadsheet manipulation and other functionalities
used to perform command [/O. status. review and analysis. It is made by ONSPEC

Automation Solutions. Rancho Cordova. CA.

The schematic of electrothermal furnace system is shown in Fig. 3.3.
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Fig. 3.3 The schematic of the electrothermal furnace system

The thermocouples measure the temperature ( 3, and v, ) of the electrothermal furnace
and pass the temperature signals in millivolts to transverter. The transverter transmits
the millivolts to a linear 4~20 mA signals. The I/V converters change the 4~20 mA
signals to linear 0~2.5 V standard signals and send it to A/D boards. The computer
process the data from A/D boards and generate an analog control signals through the
D/A boards to the power regulators. The power regulators drive the electrothermal
furnace (3, and y,). This process is then repeated again. The Fig 3.4 is a picture of a

real electrothermal furnace system. the left picture is the electrothermal furnace and the

right picture is its computer control system.
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Fig. 3.4 Picture of the real electrothermal furnace system

The temperature of the electrothermal furnace system is controlled by two sets of
resistive heaters (upper and lower). The temperature field is distributed and time-
variant inside the furnace system. This implies that the temperature is a function of
time and space.

Formally. the electrothermal furnace system may be described as a multivariable. non-
linear. and a time-variant system. It is generally quite difficult to obtain an accurate
model. Based on practical and real-life experience from the electrothemal furnace
system. it can be stated that the system can be decomposed into two sub-systems. The
mathematical model of each sub-system can be described in two parts. The first part is

a pure sluggish inertial system close to an operating point. The other part is a
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measurable coupling that is interacting between the upper resistive heater set and the
lower resistive heater set. The input-output model of the plant may be considered to be

described by

v+ =a,vi(K)+a,yv(k=1)+ B uk)+ Bu (k=1 +7v, sin{C,, [y, (k) +

+y,(k=D]}+7,, cosiZ  [u (k) +u,(k=-1)]}

yitk+D =ay, v (k) +an v, (k=1 + Bu, (k) + Bty (k=1 +yysin{C, [y, (k) +

+ vk =D]} + 7. cosiS - [u (k) +u (k= D]] (3.1

3.2 A neural network-based model for the electro-
thermal furnace
The backpropagation neural network is a multi-layer mapping network that has a
feedforward architecture. The use of the term “mapping” in describing a network
implies that the network is capable of implementing an approximation to a variety of
functions from an m-dimensional space R™ to an /-dimensional space R’ [6. 12. 14].
A typical multi-laver backpropagation network with an input layer. an output layer.
and two hidden layers is shown in Figure 3.5. For convenience and simplicity we can
also depict this in block diagram form as shown in Figure 3.6 with three weight

(3

matrices w'"”.w'~'. w'" and a diagonal nonlinear operators F'’ with identical
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sigmoidal activation functions F following each of the weight matrices. Each layer of

the network can then be represented by the expression
N (Net )= F"'[w"'(Ner )] (3.2)

where Ner is the input vector to the network. so that the input-output mapping of the

multi-layer network can then be represented by

v=Nx) = FUA T EO T Y (e 0]) = VOV, N (x) (3.3)

The weights of the network w'"'.w'*" and w'"" are adjusted as described previously so

as to mininize a suitable function of the error ¢ between the output v of the network

and a desired output v . This is then leading to realizing the mapping function N1x) by

the network. mapping any input signal into a corresponding output domain.

Figure 3.5 A three layer feedforward neural network
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Figure 3.6 An equivalent block diagram representation of a three
layer neural network

If the activation function (F) of the backpropagation network is taken as a linear

operator. then

V= F'_:.,lw.t,F(21[“,<2)F(l)(“_«l)x)]} - “,(.’w“,(lh“,(hx = wx (34)

so that the backpropagation network is now equivalent to a linear network representing

a linear mapping.

3.3 Dynamic system identification architectures

Conventional identification schemes may be categorized into two models. namely
parallel model and the series-parallel model. These paradigms are shown in Figure 3.7.
In Figure 3.7. the input is now denoted by w. the plant output by 1. and the estimate of

the plant output by ¥ .
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Figure 3.7 Two types of model for identification

The backpropagation network in the series-parallel configuration utilizes the system input
u and the output signal y from the plant for its inputs and it uses the output error signal e
for the network weight adjustments. The backpropagation network in the parallel
configuration. on the other hand. utilizes only the system input « for its input. [t also uses
the output error signal e for the network weight adjustments.

For linear time-invariant systems with unknown parameters. development of
identification models are quite well known. Specifically. for a single-input single- output

(SISO) controllable and observable plant. the dvnamic equation can be written as



n-1

m-1
yolk+) =2 ay (k=i)+ D bu(k-j) (3.5)

=0 7=0
where a, and b, are constant but unknown parameters. A similar representation is also

possible for the multi-input multi-output (MIMO) system. The above expression implies
that the output at time k+1 is a linear combination of the past values of both the input and
the output signals. Equation (3.5) motivates the choice of the following auto regressive

moving average (ARMA) identification models:

n-1 m-~|
Pkl =2 a5 (k=i)+ D butk - j) (3.6)
Pty ;=0

( Parallel model)

n-i

m-1
ksl =D ay (k=i)+ 2 butk - ) (3.7

i=i) =0

( Series-parallel model)

where a (i =0.l....n-1) and 5,(j = 0.l.....m —1) are adjustable parameters. The output

of the parallel identification model (3.6) at time k+1 is ¥y, (k+1) and is a linear

combination of its past values as well as those of the input. In the series-parallel model.

¥.(k+1) is a linear combination of the past values of the input and output of the plant.

For developing stable and robust adaptive laws. the series-parallel model is found to be

preferable. Further details may be found at [30].



Based on practical experiences and results reported in the literature. the mathematical
model of an electrothermal furnace system may be approximated quite reasonably well by
a linear system near an operating point. The electrothermal furnace system has two inputs
and two outputs. We therefore decompose the system into two sub-systems.

Based on the above discussion. we consider the relationship between the input and the
output variables of the sub-systems as a linear model. and represent the coupling
interaction and activities between the two sub-systems as nonlinear functions.
Consequently. the identification model of each sub-system includes both linear and

nonlinear parts. Specifically. the input-output expressions for the electrothermal furnace

system can be written as

vk + 1) = a3 (k) + a v (k=1 + by (k) + b (k= 1) +

+ NN vt v (k=D (k) (k= 1) (3.8)

Vok )y =a, v (k) vy (k=D + by (k) + by (k=1 +

+ NV L[y ey (k=D (k) (k= 1)) (3.9)

The above identification models of the electrothermal furnace system will be used in our

experimental results reported later in Chapter 3.

m
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3.4 Conclusions

The electrothermal furnace system is widely used for mechanical performance tests on
variety of metal samples under high-temperatures. The electrothermal furnace system is a
MIMO nonlinar system. The mathematical representation of the system may be expressed
into two sub-systems. The first sub-system is a pure sluggish inertial system when the
system is close to its operating point. and the other sub-system is a nonlinear system
representing coupling and disturbances effects.

In this chapter. a three-layer feedforword neural network is proposed to be used for the
electrothermal furnace system. Two possible identification configurations are presented.

[t is proposed that the series-parallel configuration will be used subsequently for our

electrothermal furnace system.
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Chapter 4

NEURAL NETWORK-BASED

CONTROLLERS

4.1 A neural network-based PID controller

The conventional PID controller is widely used in practice due to its simple structure
and ease of implementation. However. in certain time-variant systems the PID parameters
cannot be easily adjusted online. Consequently. it is necessary to design a neural network

PID controller strategy to cope with these uncertainties and system parameter variations.



4.1.1 A discrete-time PID control

The expression for a continuous-time PID controller is quite well-known and is given
by

!

. 1 de(r) ,
u(t) = K [e(r) +}— je(()dt +T, 7—] CHY

10
where K, denotes the proportional gain. 7, denotes the integral time constant and
T, denotes the derivative gain.

When the sampling period is sufficiently small. the PID controller in discrete-time

representation becomes

T, T, . ) ] -
Autk) = K [deth)+ eth) + T"A'c(k)] = K,e(k)+ K, Ae(k) + K, Ae(k) (+.2)
where T, is the sampling period. A, is the integral coefficient given by
A‘ rfo . - o . - K"TII
K, = T K,, is the derivative coetficient given by K, = —}—_—-
i 0]
and A’ is given by A =1-2:"427

4.1.2 A PID neural controller and learning algorithms

A schematic of a PID neural controller applied to a control system is shown in Figure
4.1. where v, (k) is reference output setting. )(k) is plant output. and x,. x, and x, are

neural network state variables defined as x (k) = e(k).x,(k) = Ae(k).
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x;(k)=e(k)-2e(k -1)+ etk - 2)and =(k) =y, (k) - v(k) =e(k) is the tracking error.

Specifically. we have

w(k) = uk 1)+ K w,.(k)x, (k) (4.3)

=1
where w (k) is the weight coefficient associated with x (k). K is the proportional
coefficient of the neuron. with K >0.
The neural network PID controller achieves process control through adjustment of the
weight coefficients. The adjustment of these weights is accomplished according to the

cost or performance function (2.13). which depends on the tracking error of the neural

network.
In other words. the adjustment of the weights are governed by

wik+1D) =(-c)w(k)+ny, (k) (+.4)
where

v, (k)= z(k)u(k)x, (k) (4.3)

With 7, (k) denotes the incremental training signal. n denotes the learning rate. n>0:
z(k) denotes the output error tracking signal.  z(k) = v, (k) - y(k):

¢ denotes the weight adiustment constant. ¢ >0.

Consequently.

Aw (k)= —c[w,(k)-—n-:(k)u(k)x,(k)] (4.6)
C



where

Aw (k)= w,(k+1)=—w (k)

If we define a function f,(w, (k).z(k).u(k).x,(k)). such that

&t

o (k) =Ly (k) k). x, (k) (4.7)
. "

1

Y

3

then (4.6) can be rewritten as

cf.()
ow (k)

Aw (k)= -c (4.8)

When ¢ is sufficiently small. then w (k) can converge to its static equilibrium value W,

To summarize the above derivations. the neural network-based PID controller is

expressed as follow:

u(k)=uk =1+ K w, (k)x, (k)
=1

where
w (k)= -“_(l‘)_
D, (6)
=1
w (k+1)=w, (k) +n,z(k)u(k)x, (k)
wy (k +1) = 1wy (k) +1, 2(k)u(k)x, (k)
wi(k+1) = w, (k) +n,2(k)u(k)x (k)
with

n
oo



x (k) =e(k):
xy(k) = Ae(k):

xi(k) = Ne(k) = e(k) = 2e(k—1) +e(k-2)

n,.n,- N, denote the integral. proportion and derivative learning rates.

—"r '\.} f All
u v
K

. \b< ) Plant
Filter X, I >
/

Figure 4.1 A single neuron PID controller

4.2 A neural network-based IMC controller
architecture

The internal model control (IMC) structure provides a direct method for the design of
nonlinear feedback controllers {16]. [17]. According to the properties described below. if
a good model of the plant is available. the closed-loop system will achieve satisfactory

set-point tracking despite uncertainties and disturbances acting on the plant [22].



4.2.1 The internal model principle

We shall consider an error-driven control system as shown in Fig. 4.2. When an output

disturbance d(t) is acting on the system. one is then led to the structure shown in Fig. 4.3.

Yy Tracking error ety u(t) vt)

Controller Plant I
H (z) G (2)

Fig.4.2 Error-driven architecture of a linear control system

Disturbance d(t)

+ Error e(t) Input u(t)
P Plant

Controller Output V(1)
— ¥ G(2) >

H (2)

Desired outpu

Fig.4.3 Error-drive architecture of a linear system with external
disturbance
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For a system expressed in the discrete-time domain and using the z-transform. the output
Y(z) can be expressed in terms of the transform of the set-point sequence, Y*(z). and of

the disturbance. D(z). as follows (refer to Figure 4.3)

N G(2)H(2) er o 1
7 ! (')+1+G(:)H(:)D

T 1+ G(2)H(2) (=)

The corresponding frequency response of the output is obtained by setting = = e’ . that is.

Gle™ YH(e™) . 1
= )* ™ D ™
1+Gle™ YH(e™) te )+l+G(e’“)H(e’“) ()

Yie™)

Thus. we see that the output will faithfully reproduce the desired output. provided that the
loop gain. [G(e™)H(e™)]. is sufficiently large over the range of frequencies dominant in
both F*(e™)and D(e™).

In fact. the loop gain can be made infinite at a set of frequencies by placing the

corresponding modes in the characteristic polynomial of the controller. H(z). In the case
of a constant disturbance or a constant desired output. the frequency of interest is zero.
and thus one should include (1 -¢ ") in the controller. This clearly gives integral action as
commonly employed in practical control system design [15].

The IMC structure is quite well-know and has been extensively studied in the literature.

Furthermore. it has been shown to cover and characterize a number of other control
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design techniques of apparently different origin. in addition to having a number of
desirable properties.

The nonlinear IMC structure is shown in Fig. 4.4.

r‘."' -
M -——K‘ 5

Fig. 4.4 Nonlinear IMC architecture

The nonlinear operators denoted by P. M and C represent the plant. the plant model. and
the controller. respectively. The operator F denotes a filter. which is to be discussed
subsequently.

The important characteristics of the above IMC architecture are summarized as following
[36]:

Property 1: Assume that the plant and the controller are input-output stable and that the

model is an ideal representation of the plant. Then. the closed-loop system is input-output

stable.



Properny 2: Assume that (i) the inverse of the operator describing the plant model exists.
(ii) that this inverse is used as the controller. and (iii) that the closed-loop system is input-
output stable with this controller. Then. the design performance specification can be
satisfied with proper selection of the system parameters.

Property 3: Assume that (i) the inverse of the steady state model! of the operator exists.
(ii) that the steady state controller operator is equal to this. and (iii) that the closed-loop
system is input-output stable with this controller. Then, offset free control performance is
attained for asymptotically constant inputs.

The IMC structure above provides a direct method for the design of nonlinear feedback
controllers. According to the above properties. if a good model of the plant is available.
the closed-loop system will achieve exact set-point tracking despite unmeasured
disturbances acting on the plant.

Discussion so far has considered only the idealized case of a perfect model. leading to a
so-called perfect control. In practice. however. a perfect model can never be obtained. In
addition. the infinite gain required by the control law would lead to sensitivity problems
under model uncertainty. To overcome and address some of these issues the filter F is
introduced in the forward path. By suitable design. the filter can be selected to reduce the
feedback gain system. thereby deviating from a perfect controller. This introduces
robustness into the IMC structure. A full treatment on robustness and filter design issues
for IMC are given by Morari and Zafiriou [16]. The second role of the filter F is to project
the error signal e into an appropriate input space for the controller.

The IMC architecture presented above is critical because the stability and robustness

properties of the structure can be analyzed and manipulated in a transparent manner. even



for a nonlinear system. Thus IMC provides a general framework for nonlinear system

control. Such generality is not apparent in other approaches available to nonlinear control.

4.2.2 Nonlinear IMC using neural networks

We propose a two steps procedure for using neural networks directly within the IMC
structure. The first step involves training a network to represent the plant model. This
network is then used as the plant model operator M in the control structure shown in

Fig. 4.4. The schematic shown in Fig. 4.5 provides the methodology for training the
network to represent or model the plant. Here. the error signal used to adjust the network
weights is the difference between the plant output and the network output. Thus. the

network is forced. in a sense. to copy the plant dynamics.

LS
u Ll

3| Plant ' > >

—»% 1\; ‘,ﬂ)"

learning «—
algorithm

Fig. 4.5 Neural network-based modelling of the plant
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Following standard IMC practice we select the controller as the plant inverse model. The
next step in the procedure is to train a second network to represent the inverse of the

plant. To do this we use the architecture shown in Fig. 4.6. For reasons to be explained
later. we employ the plant model output ™ in inverse learning architecture rather than

the plant output ' itself. For inverse modelling. the error signal used to adjust the

network weights is defined as the difference between the network input and the plant

model output. This tends to force the map between the reference input r and the plant
model output 37 into a unity map. Once the inverse model is obtained. the network is

used as the controller block C in the control structure of Fig. 4.4. The final IMC

architecture incorporating the trained networks is shown in Fig. 4.7.

v

r u v
»| Plant L (Y p

- 3 C

v
- P>
learning

algorithm M

Fig. 4.6 Specialized IMC learning structure
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Fig. 4.7 General IMC neural network-based architecture

4.2.3 Invertibility of discrete-time nonlinear system

The inversion of nonlinear operators plays a central role in the development of nonlinear
IMC. In this subsection we briefly explore and study the invertibility of nonlinear
dvnamical systems. Consider a general analytic system I governed by the following

nonlinear difference equation

Sy k1) = fOT R ¥ k=0 WKk =m)).  y7 eRueR (4.9)

where n is the order of the system. with m < n. For simplicity we consider single-input

single-output systems. although the approach can also be generalized to multivariable

systems.
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The system I is defined to be invertible at [y7(k).....v"(k—n). u(k=1).....u(k - m))
if there is a subset A  of  R™"',  such  that for
[y (k) 3y k=) k=), ... u(hk—m)]) e A.
TPk o v k=)t (k). ok =m)) = (37K T (k= n)a (K)o u(k = m))
for any distinct inputs u'(k)y.u’tk)e R.
The system I is singular if for any [y7(k).....y (k=n).u(k = 1).....u(k — m)]’ € 4 and
for any distinct inputs u'(k).u" (k). the resulting outputs are equal:

FOM ) v =y (i = m)) = (3P (R 3T (k= 0t (k). itk — m))
This follow from the observation that if /(37 (k).....»" (k = n)u(k).....utk —m)) is
monotonic and u'(k) > 1 (k) then for the same point

(37 ) =k =)tk =

Therefore. if f(37 (k).....y7 (k = n):u(k).....u(k —m)) is monotonic with respect to u(k)

then the system is invertible at [ 37 (k)..... ¥* (k = n).u(k = D.....u(k —m)]" .

67



4.2.4 Learning algorithms

The architectures used for plant modelling and plant inverse modelling were described in
previous sections. The learning laws used for training these networks are now considered
below.

The plant is to be modelled using a network that may be described by the following input-

output representations

N
vk +1)y= D clk” (4.10)
i=1
where
[\"’" = exp( —d:"'(xm(k).x,m.Am)) (4.1

Here. the m superscript designates a variable that is related with the plant model. The
structure of the plant model is chosen to be the same as that of the plant. where the model
output is a nonlinear function of the present and past plant outputs 7 (k).....»"(k = n).
and the present and past plant inputs u(k).....u(k —m). The neural network model input
vector x"(k) is thus given as

X"(k)y =37 (kYo ¥ (k= n)ou(k)....u(k — m))’

We denote the centre of the Gaussian function of the hidden unit i as

The parameters x"and A" are fixed to meet the representation (interpolation) conditions.

The parameters ¢"is adjusted to minimize the mean square error between the real plant

and the model according to the following rule
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cMk+Dy=c"(K+ak(y(k+1)-y"(k+1)) (4.12)

where 0 <a <1 is a gain parameter. Fig. 4.5 depicts the structure to be used. Using
standard systems theory it can be shown [45] that if the plant can be modelled by (4.10).
the least mean square solution can be found that satisfies (4.12) [45].

If the plant (or equivalently its model) is invertible then the inverse of the plant can be
approximated by using the similar approach as that used for the plant. This inverse model
is now used as the controller. For robustners reasons we choose to use the plant model
inverse rather than the inverse of the actual plant. We utilize the second network

responsible for inverse modelling of the plant dynamics according to the following
expression

\

wk)y= Y ¢k (4.13)

=1

where
ki =exp(~d (x"(k).x;.A")) (4.14)
where the C superscript designates a variable that is related with the controller. The
inverse of the function f in (4.9) depends on the future plant output value y”(k +1). In
order to obtain an implementable approximation. we replace this value by the controller
input value r. Finally. since we need to approximate the inverse of the plant model. we
select the controller network input vector x“(k)as
X (k)= k) ey (k= n)r(k + 1)tk = 1),k = m)]'

where r(k+1) is determined at the time k by a suitable definition of the IMC filter F. The

centre of the Gaussian function of the hidden unit / is given by
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The detailed descriptions for the learning rules are descried below. Both iterative and
non-iterative methods are considered.

(i) Non-iterative method: To adjust ¢ in (4.13). the architecture shown in Fig. 4.6 is
used. This architecture is similar to the specialized learning architecture presented by
Psaltis [24]. The parameters ¢: are adjusted to minimize the mean square error between
the output of the model and the input of the controller. This leads to the following
learning algorithm [24]:

cy"(k+1)

ck+h=c(ky+ak (rtk+1)=y"(k+1))——
cu(k)

(4.13)

Note that if the actual plant output was used in the control architecture. then in the
learning algorithm & v(k + 1)/ ¢ u(k) would have been required to be calculated. This can
be achieved approximately by using a first-order difference changes of each input to the
plant and by measuring the resulting changes at the output. On the hand. by using the
plant model output. the corresponding derivative &" /&u can be calculated explicitly.

Specifically. from (4.10) one obtains

cymk+ly A
= DA™Y c™k™ - 4.16
) A ;L' kT (uCk)~u, ) ( )

Another possible approach involves the use of a synthetic signal [47]. This lead to the so-
called general learning architecture as shown in Fig. 4.8. In this case the adaptation law
for the weight adjustments does not depend explicitly on the derivative of the plant

output. namely we have

c(k+D)y=c(k)y+ak (s, —u(k)) 4.17)

70



where s, is the svnthetic signal [47].

Ss

‘<

Leamning < |
algorithm

Fig. 4.8 Use of the synthetic signal leading to the general learning

structure

(ii) Iterative method: This method uses the plant model to obtain its inverse. A recursive
method is used to find the inverse of the model at each operating point. This method can
also be used for singular systems which only satisfv the invertibility conditions described
earlier locally (that is invertibility conditions are not satisfied in the whole operating
space). This approach can also be used when it is necessary to have “small” networks due
to computational memory or processing limitations and constraints. In this case the

restricted accuracy of the trained network can be enhanced by using the network to
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provide stored initial values for the iterative method. establishing a compromise between
speed of convergence and storage capacities.

At time k, the objective is to find an input u which will produce a model output
y™(k+1) equal to r(k+I). It can be shown that is possible to use the method of

successive substitution [27] as described below

W kY= (kY +y (rtk+ 1) = y"(k+ 1)

where 7 is a weight to be chosen by trial and error or other heuristic methods .

4.3 Conclusions

In this chapter. two neural network-based controllers (PID and IMC) are proposed. Both
of these architectures will be used in experimental and simulation results ovtained for the
electrothermal furnace system.

It is feasible in theory to use neural network learning laws to adjust the PID parameters
online. The thesis instead proposed a neural network-based PID controller architecture.
The use of artificial neural networks for nonlinear IMC has also been explored. We
studied the invertibility of a class of nonlinear dynamical systems and derived an
invertibility characterization. We proposed architectures and algorithms for training

networks to represent nonlinear dynamic maps along with the inverse of these systems.



Chapter 5

IDENTIFICATION AND CONTROL

RESULTS

The electrothermal furnace system is now used as an application system for our study. As
discussed in previous chapters the electrothermal turnace is used for mechanical
performance tests of variety of metal samples under high temperatures (200°c ~ 1200°¢ ).
Based on practical and field experiences. the mathematical model of an electrothermal
furnace system is believed to be approximated quite reasonably accurately as a linear
svstem near an operating point. The electrothermal furnace has two inputs and two
outputs. representing a multivariable system. We separate the process into two sub-
systems. According to the previous discussions and results in earlier chapters. we
consider the relationship between the input and output variables of each sub-system as a

linear model. and treat the coupling factors between the two sub-systems as a nonlinear
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measurable influence. Hence. the identification model for each sub-system includes both
linear and nonlinear parts. The mathematical representation of the above discussion may

be written as

Jlk+1)=a, v (k)+a,y (k=1)+ b u(k)+b.u(k-1)+

+ NN, [ (k). y (k=)o (k)ouy (k= 1))

P (k+ D) =a, v.(k)+dyny.(k=1)+ byu, (k) + byu, (k= 1) +

+ NN LK)y (k= Doy (k) (k= 1)] (3.1

5.1 Experimental BP-based architecture for system
identification

The series-parallel configuration is chosen for our electrothermal furnace system
identification purpose. The series-parallel identification architecture is depicted in Fig.
5.1. Note the past values of the input and the output signals of the plant are achieved
though Tapped Delay Line (TDL) operators to form the input vector to the back-

propagation neural network. whose output signal j'p(k) corresponds to and is to

represent an estimate of the plant output y, at the instant of time 4.
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TDL TDL e (k)
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y,H
-1
gy » Z |
y“(k +1)

Fig. 5.1 Identification of the nonlinear system using BP network

The backpropagation training procedure is an iterative gradient decent based algorithm
designed to minimize the mean square error between the actual output of a multi-layer
feedforward network and the desired output. It requires usage of a continuously
differentiable nonlinear activation function. In the following section we assume to employ

a sigmoidal logistic nonlinearity where the activation function is as shown in Figure 5.2.

~J
n



0.5

Fig. 5.2 Sigmoidal activation function

. Cn- 1 -
/(t) =j('\eli)= N 8 ) 0, (32)
[+e :

where 0, is the threshold of the jth neuron.

5.2 The neural network-based identification results

We utilized the series-parallel identification architecture discussed in the previous
section for our nonlinear electrothermal furnace system. A network with 13 neurons in
the hidden layer is selected for the identification of the nonlinear part of the process.

The selected architecture is shown in Fig. 5.3
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Fig. 5.3 Structure of the BP neural network identifier for the furnace system

(A) identification of the first output 3,
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(B)
Fig. 5.3 Structure of the BP neural network identifier for the furnace system

(B) identification of the second output 3.,

Note that the following specific information is used in the above neural network-based

identifier

Sigmoidal function: y=( 180. —12):
I+e™""

Learmning rate: 1 =0.025. a=0

Sampling period: T =90 sec.
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The experimental results after 537 epochs for our system identification are shown in

Fig. 5.4 and Fig. 5.5. The desired error requirement is set a priori to 0.2.

Square
error

o

(o] 50 100 150 200 250 300 350 400 450 500

epochs

Fig. 5.4 The sum-squared error for the first output Y1
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The partial mathematical representation for the estimate of the first output y; may now be

expressed as follows:

P, (k+1)=0.770142y, (k) +0.069923y, (k — 1) + 0.052985u, (k) + 0.044987u,(k—1) +

+ NN Dva (k) vtk = Dowa (k) uy (k= 1] (5.4)
Scuarss 2me”
elie] sy i
[ 1
'r -
x xx 0 40 S00
srochs
Fig. 5.5 The sum-squared error for the second output Y2
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The output y, . however did not achieve the error specification of 0.2. After 537 epochs
it reached the value of 0.285 as shown in Fig. 5.5. Since it is sufficiently close to the
desired error specification. we will use this result for characterizing the output y,. to

obtain

7, (k +1) = 0.768243y, (k) + 0.075334 3, (k = 1) +0.059652u, (k) + 0.042035u, (k ~ 1) +

£ NN L o). vy (k= Dy (k gy (k = 1) (5.5)

Note that in equations (5.4) and (5.5). AN, and NV, are the corresponding neural
networks that are trained to identify the nonlinear dynamics of the process. The
experimental results obtained above are satisfactory as the parameters are reasonably
similar to the actual experimental data. Furthermore. note that the linear model estimates

fory, and y, are quite similar to each other based on our estimation technique.

5.3 The experimental results for a neural PID controller

In the previous chapter we have discussed the structure of our proposed PID neural
network controller (refer to section 4.1.2). For sake of convenience the expressions are

provided again below:
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wky=u(k-1)+ KZ w, (k)x, (k)

=1

w’(/\—) = M_

b (k)

w (k+ 1) =w, (k) +n,z(k)u(k)x, (k)
w,(k +1) = w. (k) +n,z(k)u(k)x, (k)

w,(k+1) =w(k)+n,z(ku(k)x;(k)
where
x,(k)=e(k):

X, (k)= Aelk):

x.(k)=Ae(k)=e(k)-2e(k-1)+e(k~2)

andn,.n,.n.,, are learning rates associated with the integral. proportion and derivative

terms.
For the experimental results the training rates are selected as n, = 180. n,, = 5000. n,, =

22. with K = 0.05. The closed-loop results for both a conventional PID controller as well

as our proposed neural network PID controller are shown in Figures 5.6 and 5.7.
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Fig. 5.7 Comparison between PID and neural network-based PID
control strategies (. )

From the above figures we can conclude that the neural network-based PID controller has
better transient as well as steady state performance behaviour compared to the traditional
PID controller when applied to the electrothermal furnace system.

Below we now summarize our findings on the performance of the neural network-based
PID controller:

Remark 1: The K parameter has to be selected carefully. If K is too large. it may cause
instability in the system and if K is too small it will slow down the transient response of

the system.
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Remark 2: If the output behaves with a large overshoot and appears oscillating
excessively. the value of K should be decreased while keeping the values of n,.1,.n,
unchanged.

Remark 3: By adjusting the value of 1, it will be also possible to modify the transient
response of the system. When the transient response of the system is too fast and the
overshoot is too big. the value ofn, should be decreased.

Remark 4: Initially n,, is selected to be small. while the values of K.n,.n, have to be
adjusted in order to achieve suitable response. After that we can keep the values of K.
n,.n, and slowly increase n,, for the best resulr.

Remark 3: By selecting different values for n,,.n,..n,. the performance of electrothermal

furnace system can be varied as shown in Fig. 5.8.
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Fig. 5.8 Comparison between different values of n,.n,.n, and identical
n,.n,.n, values for the neural network-based PID control strategies
(Legend: PID 1 has different n,.n,.n, values whereas PID 2 has the
same 1,.n,.n., values)

5.4 Nonlinear internal model control

The IMC structure was discussed briefly in previous chapters. As stated earlier the IMC
scheme has been shown to encompass a number of different control design techniques
developed in the literature. One of the main motivations for employing IMC control
strategy is due to its number of desirable properties that were outlined in previous

chapters. The proposed IMC architecture and design procedure are presented in the next

section.
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5.4.1 Neural network internal model control

Based on the mathematical expressions (5.1) and (3.1). the neural network internal model

control structure is now constructed below. The proposed configuration is shown in Fig.

5.9.
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Fig. 5.9 Neural Network IMC Structure

The nonlinear plant to be considered is assumed to be described by

yolk+)= fi )+ [Lu)+ f;00)+ fi(u,)
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where for our MIMO electrothermal furnace. we have
v (k+ )=, y(k)+a, vk =1+ Bulk)+ Bultk =) +v,, sin{C,[v. (k) +

+y, (k=D}} +v,, cos{S . [u, (k) +u,(k = D]}

and
V. (k+)=ay,vik)+a, vk =1)+ Bulk)+ B u(k —1)+v,, sin{C [y, (k) +
+ 3, (k=1)]} + 74, cos{S s [1, (k) +u (kK =D]}
Based on the identification results for the a and B parameters of the identified model of
the plant as in Section 5.2. we obtained for VN |
¥k +1)=0.770142y (k) +0.069923y, (k — 1) + 0.052985u, (k) + 0.044987u,(k - 1) +

+ NN (R va(k = Dows (k) (k= 1)

and
yhk +1)=0.7682431, (k) +0.075334y,(k = 1) +0.059652u, (k) + 0.042035u, (k - 1) +
+ NN LDy (k=D (k) (k= 1]

The control input to the plant is now given by the neural networks architecture shown in

Fig. 5.3 such that
u(k)=NN, (0, .u,.y,)
where Yo =3,-G,le)
with y, denoting the desired setting value. The G, (e,) is chosenas G ;(e,) =0.9¢,.

The H, ischosenas H =1.
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5.4.2 Performance results for the IMC control applied
to the electrohermal furnace system

The proposed neural network internal model control architecture was presented in the
previous section. The following specific information is now used for the neural network-

based IMC controller. The MV, neural controller’s architecture is identical to that shown
in Fig. 5.3. The Gaussion activation function is used for the NN, neural controllers.

The simulation results are shown in Fig. 5.10. The accuracy is +/- 2 "C for an operating
point of 750 “C . In steady state the temperature differential between the samples is less
than 2°C which is better than standard system design requirements. The transient
overshoot is about 3.4%. Also. note that both outputs », and y. behave very close to

each other.
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Fig. 5.10 Simulation results of the neural network-based IMC control
on electrothermal furnace system

5.5 Conclusions

Both experimental and simulation results are presented in this Chapter to demonstrate
that feedforward backpropagation networks may be designed and implemented for a
nonlinear electrothermal furnace system. The system model is first identified by two
three-layer backpropagation neural networks. The experimental and simulation results
also show that the neural network-based PID controller as well as neural network-based

IMC controller offer stable response and satisfactory output regulation of the
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electrothermal furnace system. Finally. the neural network-based controllers offer fast
dynamic response and can potentially improve the control performance and accuracy of

the electrothermal furnace system over a conventional PID controller.
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Chapter 6

CONCLUSION AND FURTHER WORK

The objectives of this thesis are to demonstrate an application of a neural network-based
strategy for identification and control of an electrothermal furnace temperature control
svstem — which is a highly nonlinear system and is widely used in material testing area —
and to illustrate the feasibility and superiority of the proposed scheme as compared to a

conventional PID and internal model control techniques.

6.1 Contributions

The thesis demonstrates that neural networks can be used effectively in identifying and
controlling an electrothermal furnace system. The methodology in the thesis is based on
the electrothermal furnace model identified by using a backpropagation based network
combined with both neural network-based PID and internal model based control
strategies. Both static and dynamic back-propagation methods are discussed.

The main contributions of the thesis are as follows:



e Three-layer neural networks are developed for the identification of the
electrothermal furnace system.

e An experimental electrothermal furnace computer control system is considered.

e A neural network-based PID control strategy is proposed and compared with a
convention PID controller experimentally for the electrothermal furnace system.

e A neural network-based IMC control strategy is developed and used for the

electrothermal furnace system simulation.

6.2 Conclusions

An application of a neural network-based strategy to temperature control system
is presented in this thesis. The electrothermal furnace is a popular instrument widely used
in material testing area.

Backpropagation neural networks are trained to identify and control the
electrothermal furnace system. The experimental results are quite satisfactory. There is
every reason to believe that the same methods can also be used successfully for the
identification and control of other multivariable nonlinear system.

Two types of neural network-based controllers (PID and IMC) are proposed. Both
of these architectures are used in experimentation and simulation for the electrothermal
furnace system.

It is quite feasible to implement the neural network adjustment laws to adapt the PID
parameters online. We have also studied invertibility conditions of a class of nonlinear

dvnamical systems and derived invertibility specification for these systems. We also



proposed architectures and algorithms for training networks to represent both
feedforward nonlinear dynamic maps and the inverses of these maps.

The outline of the thesis is as follows:

In Chapter 1, a general introduction about biological neuron. neural networks. ANN
history and motivation. and outline of the thesis are presented. In Chapter 2. a standard
feedforward neural network topology and its principles are reviewed. Attributes such as
activation functions. supervised learning, backpropagation network and backpropagation
training are discussed. In Chapter 3. the physical electrothermal furnace system. its
computer control system and a neural network model for the electrothermal furnace are
introduced. In Chapter 4. a neural network-based PID control system and a neural
network-based nonlinear internal model control system (IMC) are introduced. The details
regarding network learning algorithms. internal model principle and nonlinear internal
model control are presented. A novel technique for directly using a neural network in the
internal model control of a nonlinear system is proposed. The ability of neural networks
to model nonlinear functions and their inverses is exploited. In Chapter 5. a
backpropagation identification neural network. PID neural network control and neural
network nonlinear internal model control schemes for the electrothermal furnace system

are developed and results are presented. In Chapter 6. future work and conclusions are

discussed.
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6.3 Suggestions for Future Work

Future work could focus on the extension of the proposed approach to other muitivariable
nonlinear systems. analysis of the robustness of the controller and stability analysis for

the closed-loop control system.
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