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ABSTRACT

Performance Analysis of Channel Assignment
Algorithms in Cellular Networks

Yihui Tang

Efficient allocation of radio spectrum becomes increasingly impor-
tant as the demand for wireless communication has been growing rapidly
over the past two decades. Several channel assignment algorithms for
increasing channel utilization have been studied. In Fixed Channel As-
signment (FCA), channels are permanently allocated to each cell for
its exclusive use, whereas in Dynamic Channel Assignment (DCA) the
channels are put in a shared pool and dynamically assigned upon re-
quest. One example of a DCA scheme is the so-called greedy strategy,
where all the channels are kept in a central ordered list and every node
uses the first channels which are available. In Fixed Preference Assign-
ment (FPA), each cell has a fixed preference list of all channels and
the first available channel in the list will be used to serve an incoming
call. In this thesis, we show upper bounds and lower bounds for the
competitive ratios of the greedy and FPA strategies for different values
of reuse distance. The average case performance analysis of these three
schemes is also conducted using computer simulation.
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Chapter 1

Introduction

In the past two decades. there has been a tremendous increase in the demand for
wireless telephony and wireless data services. Cellular wireless communication has
grown to be a significant part of the communication infrastructure. On the other
hand. the radio frequency spectrum allocated for the cellular mobile system has been
limited. As a result. the radio frequencies must be efficiently used to support the ever
increasing demands. In this thesis, we study the problem of channel assignment: how
to assign radio channels to calls in a cellular network. based on FDMA or TDMA

technology.

In the following sections, we provide a brief background on cellular networks, and

define the channel assignment problem in greater detail.

1.1 Cellular Concept

The tremendous growth of mobile communications could not have been achieved

without the use of the cellular concept. Before that, the approach to mobile commu-



nication was quite similar to radio or television broadcasting: the coverage of an area
was provided by setting up a single high-power transmitter on top of the highest point
in the area and sending out the signal to the whole coverage area. The available radio
spectrum was divided into a number of channels, each was dedicated to a specific user
and all the users talked to the same transmitter. The number of users was limited by
the number of available channels. which were locked up over the whole coverage area
by a small number of calls. For example, a wireless phone service provider serving ten
thousand customers would need ten thousand different channels to operate. although

only a small fraction of them would be in actual use at any given time.

The number of channels required can be reduced by temporal and spatial reuse of
radio channels. Temporal reuse, also called trunking. means using the same channels
for different users at different times. An end-device will be assigned a channel only
when it requests one for the call. Although trunking can use the radio spectrum
resource more efficiently. the system capacity is still rather limited. The number
of simultaneous calls is limited to the number of channels available. Since radio
spectrum has historically been a scarce resource. this limits the system capacity quite
severely. For example. the Bell mobile system in New York City in the 1970s, which
used trunking. could support only 12 simultaneous callers. The other approach of
using the radio channels more efficiently is spatial channel reuse. The users can use
the same channel at the same time in non-adjacent geographical areas. The spatial
reuse of channels is not possible in a centralized broadcasting network, but instead,

the network is restructured in a distributed fashion.

Spatial channel reuse is one of the kev concepts used by a cellular network, to
achieve efficiency in using spectral resources. The other two main features of cellular
networks are cell splitting to deal with increased demand, and handoff of calls moving
from one cell to another. We describe each of these features in greater detail in the

rest of this section.

(8]



Figure 1.1: Hexagonal cellular network

1.1.1 Channel Reuse in Cellular Networks

To achieve a higher efficiency in channel usage through spatial channel reuse, the
service area is divided into many adjacent regions. A cellis viewed as the approximate
coverage area of a particular geographic region. Each cell has its own transmitter
that is in wireless communication with mobile phones in its local area and is wired
to a central office. The cellular concept described above was first introduced by
MacDonald [21] using hexagonal cellular geometry to represent a cell as depicted in
Figure 1.1. The reason for a hexagonal cell structure is that among all the geometric
structures with the same radius that can cover a region without any gaps, a hexagon

has the maximum area.

Unlike the traditional broadcasting-like approaches, the cellular idea deals with
the coverage problem quite differently. Instead of covering a large area with just a
single high-power transmitter. a cellular network provides the coverage of the area by
using a lot of low-power transmitters. cach specially designed to serve only a small
area(cell) with radius as small as a few hundred meters. By dividing the coverage

area into a large number of small cells each with its own transmitter, it becomes
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possible(at least in theory) to reuse the same channels across the area in different

cells.

Small cells with channel reuse could increase traffic capacity substantially. To
understand how this works, imagine that there are 12 channels available in a city.
and that the city is covered by 100 cells. If all channels can be reused in every cell.
then with the same number of 12 channels, instead of 12 simultaneous calls in the
entire city, there would be 12 channels for every cell and there would be as many as

1.200 simultaneous calls in the city.

However, in reality, such extensive reuse is not possible. If the same channel
is used in two different cells that are geographically close to each other. there can
be radio interference that distorts the signals. This phenomenon. called co-channel
interference, may lower the signal to noise ratio (SNR) to such a level that the signal
is no longer distinguishable from the noise. when another user happens to be using
the same channel in the next cell. In order to achieve an acceptable SNR. the same
channel should not be reused in two different cells in the network. unless thev are

separated by a minimum distance . which is called the reuse distance o.

Although the reuse distance constraint makes it necessary to skip one or several
cells before reusing the same channel, the basic idea of channel reuse in the cellular
concept remains valid. The same channel could be used to support more than one
ongoing call in different parts of the city. This is possible because due to path loss
of radio propagation, the average power received from a transmitter varies according
to the inverse of the cube of the distance from the sender, or even a higher exponent
up to the fifth or sixth power depending on the physical environment. As a result, if

the inverse of the fourth power of distance is assumed, the SNR can be calculated as

IThe distance between two cells is the minimum number of cell boundaries that must be crossed

to go from one to the other.



Figure 1.2: Channel reuse

below:
Signal Power _ a(1/ds)! dy
Noise Power — o(l/dy)*  'ds

where dg(dy) is the distance between the signal (noise) source and the user. and o

SNR = (=) (1.1)

is the physical constant of the environment. As we can see from Equation 1.1. SNR
is determined not by the geographical distances ds and dy. but instead. the ratio
of them. This makes it possible to use a graph theoretical representation of reuse

distance constraints in cellular networks.

As shown in Fig 1.2, assume that every cell is of the same radius r. Then any user
in cell 4 is at distance at most r away from its transmitter. The distance between
cell A’s transmitter and another user in cell C is at least 3r. Therefore. if the power
of the cell A’s transmitter is at a level that is just adequate for evervone in cell 4
to hear the signal, the signal power received by any user in cell C will be (é)“ ~ 1%
of that. The noise from the transmitter in cell A can hardly cause any distortion to
communications in cell C. In modern systems. a reuse distance 2 or 3 may be enough
to guarantee that the signal received from the main transmitter dominates the noise

from the other transmitter using the same channel.

If reuse distance 2 is assumed, phones in adjacent cells are guaranteed to use
different sets of channels. Non-adjacent cells may, however, use the same channel.
For example, in Figure 1.2, cells A and B are adjacent, so they cannot use the same

channel. However, calls in cells A and C may use the same channel.

The fact that the effects of interference are not related to absolute distance. but

the ratio of the distance between cells to the radius of the cells makes the cellular idea

(1]



even more attractive. The cell radius is determined by the transmitter power and by
simply increasing or decreasing the transmitter’s power level. the system operators
can change the number of cells in the system and in turn. the number of calls that
would be supported through reuse. For example. if a reuse distance of 3 is necessary
for an acceptable signal to noise ratio and a grid of 10-mile-radius cells allowed reuse
of the frequencies in a cell at a distance of 30 miles. then a grid of 5-mile-radius cells
would allow reuse at 15 miles. and 1-mile-radius cells would allow reuse at 3 miles.
Without adding more channels. a system based on 1-mile-radius cells would support

one hundred times as many users as a system based on 10-mile-radius cells.

Of course. if we can indefinitely decrease the size of cells. the spectrum shortage
problem can be easily solved by simply installing unlimited number of ultra small
cells. However, the high cost of installation and maintenance and the increased control
complexity make this an unfavorable solution. It is important to better utilize the

resources in the existing svstem before changing to a smaller-cell system.

1.1.2 Cell Splitting

As the user population increases. there may no choice but to use more smaller cells
to support increased demand in some areas such as downtown area of a city. But it
would be too expensive to replace the entire cellular communication infrastructure
with an all small-radius cell system. It appeared. however, that by using a technique
called cellsplitting, large-radius cells could evolve gracefully into small-radius cells
over a period of time. When the traffic in a cell has reached the point such that the
existing allocation of channels in that cell is no longer able to support the increased
traffic. new transmitters with lower transmitter power are installed and each covers a
smaller area within the area of the former cell. By subdividing the cell into a number
of smaller cells, the same channels assigned to the former cell could be reused within

the original cell. Therefore, the number of supported users is effectively increased



without disrupting any other cells in the system. This cell-splitting process can be

repeated to support even more users as needed.

The flexibility in the dimensions of time and space has made cell-splitting an
appealing technique for increasing the capacity as the system grows. The system
can start with few cells and initial equipment investment could be very low. As the
number of revenue-generating customers increases. new cells and equipment can be
added. Morecover. the expenses of adding more smaller cells would only be necessary
in the areas with high traffic density. Otherwise. few large cells would suffice to
support the low traffic in the regions. Also. this expansion of the system can be done
without wasting the existing investment. when a large cell is divided into more small
cells. the transmitter of the formal cell will not be disbanded. but instead. it would

fit within the new scale by simply being powered down.

However. cell splitting also has its drawbacks which limit its wide use in practice.
The cost of setting up many small transmitters is high enough to make the network
operator use the existing equipment more efficiently before adding more cells than is
absolutely necessary. Besides the cost of more equipment. with more smaller cells in

the network. the system becomes much more difficult to manage.

1.1.3 Handoff

The complexity of system control increases with a smaller cell system. With the cells’
size scaled down to even a few hundred meters, it happens more and more frequently
that a mobile call can not be completed within the boundaries of a single cell. A user
in a moving car might cross several very small cells in a single conversation. Without
a communication link promptly set up between the user and the transmitter in the
new cell. the ongoing call would be annoyingly lost. To deal with this, a sophisti-

cated hand-off technique is used. The movement of an ongoing call is continuously

~1



monitored through measurements of signal strength received from the mobile phones.
The cellular system would be able to sense when a mobile with a call in progress was
passing from one cell to another. and to switch the call from the current cell to the

next cell without dropping or disrupting the call in progress.

1.2 Channel Assignment

Limited radio spectrum resources. and high cost and ccmplexity of small cells mo-
tivated the study on efficient use of radio channels in cellular networks. Generally
speaking. the channel assignment problem in a cellular network is the problem of
assigning frequency channels to communication sessions. in such a way as to avoid in-
terference. The objective is to use as few channels as possible to provide the maximum

possible number of users an acceptable quality of service.

In this thesis, we take a graph theoretical approach to the problem of channel as-
signment. A cellular network is represented by a graph. Nodes in the graph represent
the base stations and edges between cells represent interference constraints. At any
instant of time. each node has a set of calls that it is providing channels to. We study
both the offline or static version of the problem. where the set of calls remains fixed.
and the online version of the problem where the set of calls to be served changes dy-
namically with time. The objective of the channel assignment algorithm is to assign
channels to all calls. while respecting interference constraints, and to minimize the
total number of channels used. We measure the performance of channel assignment
algorithms using the standard vardsticks of performance ratio (for offline algorithms)
and competitive ratio (for online algorithms). An offline channel assignment algo-
rithm is said to have performance ratio k if it uses at most £ times the minimum
number of channels required. An online channel assignment algorithm has compet-

itive ratio c if uses at most ¢ times as many channels overall as the optimal offline



algorithm would.

In another version of the problem. the number of channels available is limited.
Therefore. all calls cannot be accepted. When a call is initiated but the channel
assignment algorithm fails to assign it a channel. the call will be blocked. In this case,
another performance metric can be used to evaluate the performance of the algorithm.
Given certain number of channels. the objective of the channel assignment algorithm
is to minimize the number of blocked calls. We also study other characteristics. such

as fairness, capacity and channel usage of such algorithms.

1.3 Contribution of this Thesis

In this thesis. we propose and analyze algorithms for channel assignment in cellular
networks. We study both the offline and online versions of the problem. Our main

results are summarized below.

e For reuse distance 2. we show a tight bound of 5/3 on the performance ratio
of the offline greedy algorithm. We also show a lower bound of 2.5 on the

competitive ratio of the online greedy algorithm (Chapter 3).

e For reuse distance 3, we show that the performance ratio of the offline greedy
algorithm lies between 7/3 and 23/8. \We prove that the competitive ratio of

the online greedy algorithm lies between 3 and 4 (Chapter 3).

e e show bounds on the performance ratio of the greedy algorithm as well as a

borrowing strategy for any arbitrary reuse distance r (Chapter 3).

e We propose a new online version of the previously proposed FPA algorithm
that does not perform reassignments and show a lower bound of 2.25 on its

competitive ratio (Chapter 4).



e We also ran extensive computer simulations of online versions of FCA, greedy
and FPA algorithms (Chapter 3). We studied the blocking probability, fairness
index. capacity. and channel usage of these algorithms. Our results show that
FCA has the lowest blocking probability when the traffic is light and even. while
FPA performs the best over a wide range of traffic loads. The greedy algorithm’s
advantage over the two other algorithms is the fact that the system capacity
remains relatively stable with variation in traffic loads. like the presence of hot
spots. In terms of channel usage. FPA is shown to have more in common with

FCA than DCA.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2. we present the
formal definition. and a survev of previous work on channel assignment algorithms. In
the next two chapters, we present the analytical results on the performance bound of
two channel assignment algorithms: Dynamic Channel Assignment (Chapter 3) and
Fixed Preference Assignment (Chapter 4). Chapter 5 contains the queuing models.
simulation results and comparison between the algorithms mentioned above and fixed
channel assignment, on aspects of blocking probability. system capacity, fairness, and
local channel usage. We conclude in Chapter 6 with a brief summary of our work and

some future directions for this research.
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Chapter 2

Channel Assignment-A Literature

Survey

The main challenge in the design of a wireless communication system is to meet the
large user demand with limited radio spectrum resources. The primary technique
used to increase the capacity of a cellular communication system is channel reuse.
However, channel reuse is limited by the phenomenon of co-channel interference and
the high cost associated with the smaller cell system. Effective channel assignment

strategies are essential to the efficiency of spectrum reuse.

In this chapter, we first give an overview of the channel assignment problem in
a cellular environment and then discuss three major categories of channel allocation

schemes. Details of different algorithms are provided for each category.

11



2.1 The Channel Assignment Problem

At any given time in a cellular network. a certain number of active call connections
are serviced by their nearest base station (transmitter). This service consists mainly
of assigning a radio channel to each client call in a manner that the radio interference
between two distinct calls in the network is below the acceptable level. The challenge
is to find channel assignment strategies that exploit the principle of maximal channel
reuse without violating the reuse constraints so that blocking is minimal. As discussed
in Section 1.2. the signal-to-noise ratio is related only to the ratio of the distance to
the signal source and the distance to the noise source. The co-channel interference
constraint therefore can be adequately abstracted as the reuse distance constraint in
a hexagon graph. This translation enables the graph theoretical approach to study

the channel assignment problem.

Cellular communication networks are modeled as planar graphs [2] with each
vertex representing a base station in a cell in the network and edges representing
geographical adjacency of cells. In particular. cellular networks are usually modeled
as heragon graphs, which can be defined as finite induced sub-graphs of the infinite

triangular lattice (see Figure 1.1).

Let G be a hexagon graph, and let the parameter r be the reuse distance. A
weighted graph is a pair (G, w) where w is a positive integral vector indexed by the
nodes of G. The component of w corresponding to node v is denoted w(v) and is
called the weight of v. The weight of a node represents the number of calls to be
served at that node. The channel assignment problem with interference constraints

can be modeled as a multi-coloring problem in graphs.

Given G = (V,E), where E C V' x 1", define E' = E,E¥ = {(u,v)|3w € V" :
(u,w) € E¥~' A (w,v) € E}. The graph G™ = (1, E') is defined by £’ = F U E? U

...UE™1! Thus any pair of nodes at distance ¢ < r in G is connected by an edge

12



in G". The problem of channel assignment in a weighted hexagon graph (G. w) with
reuse distance r can be directly translated to the problem of multi-coloring the graph
GT. In particular, we are interested in a minimum multi-coloring of G" that uses the

least number of colors.

A multi-coloring provides a useful abstraction of the essential interference con-
straints: each color represents a distinct channel and it is assumed that two calls may
use the same channel if and only if they originate in distinct cells that are not within

the distance of r.

We define the unweighted clique number of G™ to be the maximum size of any clique
in G", and is denoted w(G"). Similarly. the chromatic number of G". the minimum
number of colors needed to color G'. is denoted by \(G"). It is known {23, 32] that
\(G") = w(G"), and an optimal coloring can be computed in polynomial time. We

assume that such an optimal coloring of the graph G" is available: thus every node
g g

Given a weighted hexagon graph (G. w), we define D, (G. w) to be the maximum
total weight on any clique in G". When solving the channel assignment problem on
(G. w) with respect to reuse distance r. clearly D,(G.w) is a lower bound on the
number of channels required. In the sequel. we sometimes use D, when G and w are

clear from the context.

So far, we have described a graph-theoretical model for the offline channel assign-

ment problem. There are variations of this problem which have also been studied.

2.1.1 Offline vs. Online

Although the offline model serves as the foundation of the channel assignment prob-

lem, channel assignment is essentially an online problem [14]. At every time step,

13



each node has associated with it a set of calls. In successive time steps. new calls may
arrive. and old calls may be terminated. The algorithm must update the channel as-
signment accordingly. The online algorithm can also be implemented by running the
offline algorithm, i.e. the algorithm on a single set of weights assigned to each node.
at every step on the new weight vector [14]. Although this is a simple solution to the
online problem, it mayv require changes to the existing assignment at every step and
it is very uneconomical switching many ongoing calls to other channels especially in a
wireless environment. On the other hand. generally speaking. at the cost of frequent
reassignments. the offline approach can achieve more efficient channel reuse than an
online algorithm in which the channel assigned to a call shall not be changed until

the call is terminated.

We use standard vardsticks for measuring the efficiency of offline and online al-
gorithms. An offline channel assignment algorithm is said to have performance ratio
k if it uses at most k times the minimum number of channels required. An online
channel assignment algorithin has competitive ratio c if uses at most ¢ times as many

channels overall as the optimal offline algorithm would.

2.1.2 Limited Number of Channels

Tryving to satisfv all the calls using fewer channels may still result in using any number
of channels. But in a real system, the number of channels is limited to some number
C. This means not all calls can be necessarily accepted and a call will be blocked
if it is unable to acquire a channel. As the blocking of calls is unavoidable with the
limited number of channels. we are interested in algorithms that attempt to minimize

the number of blocked calls.

In the offline version of this problem, the calls are assumed to have infinite duration

and therefore, the call vectors are fixed. The objective of the algorithm is to find an
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assignment of the available channels to the call vectors and maximize the number of

calls accepted using the limited number of channels.

There has been a tremendous amount of effort in studving the online version of
this problem (also referred to as admission control problem [3]) using queuing theory
and computer simulation. In the online version of the problem. the call vectors keep
changing, which makes the admission control more difficult. The online version is of
more importance because it reflects the reality that the calls come and go and their
durations are not necessarily the same. When a new call arrives. it is the admission
control algorithm’s decision whether to accept the call and assign a channel to it. or to
reject it. Once a call is accepted. the channel assigned to the call cannot be changed.
The objective of admission control in a cellular network is to assign channels to calls
in such a way that the blocking probability is minimized. In this thesis. we also study
channel usage. capacity. and fairness of different algorithms. Details of these metrics

are given in Chapter 3.

2.2 Fixed Channel Assignment

In Fized Channel Assignment (FCA) [21], all the channels are divided into sets and
each base station is assigned one set of channels. The base station can only use
the channels from the fixed set assigned to it. The assignment is permanent and is

precomputed to avoid interference with neighbors.

FCA defines a definite relationship between each channel and each cell, in accor-
dance with co-channel constraints. The number of channel sets :V required to serve
the entire coverage area is decided by the reuse distance r as we need more channel
sets with larger reuse distance value. Figure 2.1 gives the allocation of channel sets

to cells for reuse distance two (\V = 3.r = 2) and three (.V =7, r = 3), respectively.



Figure 2.1: Reuse pattern @),V = 3: b).N =7

In the simple FCA strategy, each cell is allocated the same number of channels.
Without violating the constraint on the maximum clique weight, any node v could
have a maximum weight of D, where r is the reuse distance. In order to provide
enough channels to every node even in such extreme cases. the FCA algorithm has
to assign a set of D, channels to every node in such a way that no two nodes in a
clique will have the same set of channels. Therefore, the total number of channels
FCA needs is equal to x(G™) x D, and this number is the same under both offline

and online settings.

For example, as shown in Figure 2.1, the clique for reuse distance 2 consists
of x(G?*) = 3 nodes and each node is assigned D, channels for its permanent use.
Although every clique gets 3D, channels. at any moment, there are at most D,
channels are in use, therefore FCA has performance ratio 3. Similarly. when the

reuse distance is 3, each clique has 7 nodes and therefore the performance ratio of

FCAis 7.

A number of papers study the performance of online FCA for the situation when
the number of channels available is limited. A call request in a cell will be blocked if
all the channels allocated to that cell are being used. As we shall see in Chapter 5,

with the FCA strategy. the probability of a call being blocked in a cell is proportional
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to the ratio of traffic to the number of channels in that cell. Therefore, the uniform
channel distribution is efficient if the traffic distribution of the system is also uniform.
In that case, the blocking probability in a cell is the same everywhere in the network.
The overall average blocking probability of the system is the same as the call blocking
probability in a cell. On the other hand. if traffic in a cellular system is non-uniform.
a uniform allocation of channels to cells may result in high blocking in some cells
with more traffic. while many channels are rarelyv used in those cells with less traffic.
Intuitively. this poor channel utilization could be improved by allocating the channels
in a cell to match the load in it. Heavily loaded cells. for example. cells in the
downtown area. are assigned more channels than lightly loaded ones in the suburb

area.

In [35]. a nominal channel allocation algorithm called non-uniform compact pat-
tern allocation, is proposed for allocating channels to cells according to the traffic
distribution. The proposed technique attempts to allocate channels to the cells in
such a way that the average blocking probability in the entire system is minimized.
Let there be .V cells and M channels in the cellular system. The allocation of a
channel to a set of co-channel cells forms a pattern called allocation pattern. Without
violating the channel reuse constraint, there are sizable number of possible alloca-
tion patterns for each channel. A heuristic algorithm is developed for searching the

optimal allocation pattern to minimize the overall average blocking probability.

The A channels are allocated to the system one channel at a time. In order
to reduce the amount of search effort, an optimal allocation pattern is assumed for
every channel. The compact allocation pattern is defined as the allocation pattern with
minimum average distance between co-channel cells. Given the traffic load in each
cell in the system and all the possible compact allocation patterns for the channel, the
allocation pattern is chosen to minimize the blocking probability without changing

the allocation of the previous channels.



In [16]. a novel way of using an FCA strategy is presented. The cellular network is
partitioned into cliques or clusters. Instead of assigning sets of channels to individual
cells, they are assigned to a cluster of cells. The algorithm is called cluster partition-
ing. Every cluster is assigned D, channels for use, and nodes within the clique are
assigned channels in an arbitrary manner. The interesting fact is that for any value
of reuse distance, the cliques themselves can be {-colored, so that any two nodes in
cliques that have the same color are at distance at least r from each other. Thus
4D, channels suffice to complete the assignment; leading to a competitive ratio of 4
for this algorithm. In fact. for reuse distance 2. the cliques can be 3-colored, which

implies a competitive ratio of 3.

In this thesis. we run simulations of FCA to compare with other algorithms. No
prior knowledge of traffic distribution is assumed and the channels are divided into a
number of equal size sets. We use the standard version of FCA where all cells have

the same number of channels.

2.3 Dynamic Channel Assignment

Enormous efforts have been put on the performance analysis of various dynamic
channel assignment (DCA) algorithms, but most of the results are derived by using
simulation or probabilistic modeling. In this thesis, we study the worst-case perfor-
mance of a well-known DCA strategy, called greedy channel assignment in terms of
its competitive ratio, for the first time. In this section, we review the experimental

work done on DCA.

In contrast to the assumption used in the simple FCA strategy. the traffic distri-
bution is more often non-uniform in the dimensions of time and space. Although the
non-uniform allocation technique can be used in FCA to attain high channel efficiency

in the presence of spatial variations in traffic, no FCA strategies are able to deal with
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the temporal traffic variations in the cellular systems.

To overcome this. various DCA schemes have been proposed during the past 20
vears. Unlike FCA, there is no definite relationship between channels and cells in
DCA. All channels are kept in a central pool and available to every cell. Channels
are assigned dynamically to cells when new calls come in and in such a way that
co-channel interference is avoided [15. 26, 6. 27]. After a call is completed. its channel

is no longer owned by the cell and returned to the central pool.

A channel is eligible for use in any cell as long as the signal interference constraints
are satisfied. When a new call comes in a cell. there may be more than one channel
available to be assigned to that cell: how to select the assigned channel is the central
point of any DCA scheme [6]. The main idea is to evaluate the cost of using each
eligible channel, and select the one with the minimum cost. The choice of the cost

metric is what differentiates DCA schemes [6].

The cost metrics might be the future blocking probability in the vicinity of the cell.
the reuse distance, channel occupancy distribution under current traffic conditions.
radio interference measurements of each channel, or the average blocking probability
of the system [31]. Based on types of control information used for channel assignment.

DCA schemes could be classified either as centralized or distributed schemes.

Centralized DCA Schemes

In centralized DCA schemes, all the call requests are sent to a centralized controller,
which also holds the information of the channel usage in each cell. The central-
ized controller decides which channel from the central pool is assigned to a call for

temporary use.
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First Available (FA): The simplest of the DCA schemes is the FA strategy. All
the channels are indexed. When a cell makes a call request. the first available channel
within the reuse distance encountered during a channel searck is assigned to the call.
The FA strategy needs the minimum system computational time: and. as shown by
simulation in [6] for a linear cellular mobile system. it provides an increase of 20
percent in the total handled traffic compared to FCA for low and moderate traffic

loads.

Locally Optimized Dynamic Assignment (LODA): In the LODA strategy [35. 34]
the selected cost function is a measure on the future blocking probability in the

vicinity of the cell in which a call is initiated.

Distributed DCA Schemes

Micro-cellular systems have shown great potential for increasing capacity in high-
density communication networks [20. 8]. However. as the cell size becomes smaller.
propagation characteristics will be less predictable and network control more compli-
cated than in the present systems. The high cost of control overhead made distributed
schemes more attractive for implementation in micro-cellular systems. In distributed
DCA schemes, every cell has its own copy of local information and the channel assign-
ment decision is made based on the local information. Two types of local information
are used. In cell-based schemes [11, 26]. local information about the current channel
usage in the cell’s vicinity is used. The channel reuse pattern information is updated
by exchanging status information between base stations. When traffic is low or mod-
erate, the cell-based scheme is an appealing solution as it provides near-optimum
channel allocation. But when traffic is heavy, the expense of excessive exchange of
status information between base stations becomes unbearable. The need of inter-cell
communication is eliminated in the other distributed solutions which rely on signal

strength measurements [30]. A base station uses only local information in its own cov-
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erage area. Thus. the system is self-organizing, and channels can be placed or added
evervwhere. as needed, to increase capacity or improve signal quality in a distributed
fashion. At the expense of increased co-channel interference probability with respect
to ongoing calls in adjacent cells, these schemes allow fast real-time processing and

maximal channel reuse.

Greedy Strategy: The simplest scheme among the interference adaptation DCA
schemes is the greedy strategy (also called sequential channel search (SCS) strat-
egy [30]). where all mobile/base station pairs examine all the channels in the same
order and the first available channel is chosen. The same strategy for picking the
channel to use is also used in [27]. [t is expected that this approach will support
higher traffic load by packing stations using the same channel at the expense of lower

signal quality.

Minimum Signal-to-Noise Interference Ratio (MSIR): In MSIR [30]. signal-to-
noise information is used to improve system performance. A base station searches for
the channel with the minimum interference. Because it tries to assign the channel
with least interference to new calls. MSIR has a better signal quality: on the other
hand. it is more vulnerable to blocking than SCS. Simulation results have shown
that there is a trade-off between the goals of avoiding call blocking and minimizing

interference [30].

Dynamic Channel Selection (DCS): Based on the assumption that mobiles are able
to measure the amount of interference they experience in each channel, DCS (28] is a
fully distributed algorithm for sharing radio resources. Unlike MSIR in which the base
stations are responsible for assigning channels, in DCS, each mobile station chooses
the base station with the lowest interference probability. A number of parameters
are used to calculate the interference probability, such as the received signal power
from base stations, the availability of channels, and co-channel interference. In [10],

specific models are developed to calculate probabilities of channel availability, desired
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carrier power, and the CIR for constant traffic load.

Compared to FCA schemes. DCA schemes have more uncertainty involved in
channel allocation, which makes it difficult to achieve maximum channel reuse. As a
result, DCA schemes do not carry as much traffic at high load. In order to improve
the performance of DCA schemes in heavy traffic conditions. channel re-assignment
techniques have been suggested [6]. With channel re-assignment. it is possible to
switch calls already in process from the channels these calls are using to other chan-
nels, with the objective of keeping the distance between cells using the same channel
simultaneously to a minimum. Thus. channel reuse is more concentrated, and more
traffic can be carried per channel at the expense of more computation efforts put into

every allocation decision.

In this thesis. we study the version of DCA given in [27. 30]. We give upper and
lower bounds for the competitive (performance) ratio for the online (offline) version
of the problem for different values of reuse distance. We also run simulations and

study the performance of the algorithm when the number of channels is limited.

2.4 Fixed Preference Channel Assignment

In the Fired Preference Channel Assignment (FPA) strategy [29, 12]. each cell is
assigned a fixed preference list of all channels. An incoming call in the cell is served
by the available channel that comes first in the preference list of the cell. The FPA
strategy is a dynamic strategy in the sense that every channel is available for all
cells. But because of a cell’s preference as to which channels to be used, FPA has
less arbitrariness in the channel assignment. What is more, our simulation results in
Chapter 5 show that this preference leads to a very strong tendency in a cell using

channels from a fixed set of channels. In this sense, FPA is more like FCA.

(S
[A™)



The principle of FPA is the following. At an initial stage. a good base coloring
(using few colors) for the interference graph of the cellular network is found. Suppose
this base coloring uses k colors. and suppose there are n channels available to the
network. labeled by the numbers from one to n. FPA then uses an (n. k) preference

system R = {p;]1 < i < k}.

A preference list p of order n is a permutation of the numbers 1.2.. ... n. The rank
of a number j(1 < j < n) in the preference list p is defined as p~!(j). the position of
j in the list p. An (n. h) preference system R = {p;|1 < i < k} is a set of k preference

lists of order n.

The preference lists in R are assigned to the cells of the network according to the
base coloring of the interference graph. So for each t < k, the cells that correspond
to interference graph vertices of base color ¢ use preference list p, to assign incoming
calls. When a cell has a call to serve. the cell will use the first channel in its preference
list which is not being used by itself or any of its neighbors. If a channel is released
by a terminating call, the other call in the same cell using the last channel on the
preference list will be reassigned this channel in order to achieve maximum packing

of the channels being used.

The performance of FPA depends largely on the choice of preference system.
In [29], Raymond describes a method called Markov allocation. in which the preference
lists are chosen heuristically and separately for each case. J.Janssen et al. [12]

proposed an optimal preference system construction method based on Latin squares.

Even though the above FPA schemes are presented as online algorithms, they
allow reassignment of channels of existing calls in order to achieve maximum channel
reuse efficiency. In this thesis, we propose an FPA scheme that does not reassign
channels, and give a lower bound on its competitive ratio. We also run simulations

of the algorithm and study its performance empirically.



Chapter 3

Dynamic Channel Assignment

In this chapter. we study the worst-case performance of the greedy strategy described
in [28. 30]. Simply put. the greedy strategy uses the minimum numbered channel
among those eligible. In this chapter, we study both offline and online versions of the
greedy algorithm and give upper and lower bounds on its worst-case performance.
Although the greedy strategy is a very simple version of DCA. the results in this

chapter also apply to more complicated measurement-based DCA schemes.

3.1 Preliminaries

We define :V,(v) to be all neighbors of ¢ in G" that have a lower color than that of v.
For example, if v is a node with color 3 in G, then N, (v) consists of all neighbors of v
in G™ that have color 1 or 2. Given a weighted graph (G, w), for any node v, we define
H.(v) to be w(v) + Suen,(wyw(u). Given a (partial) assignment of channels to .V, (v),
RC,(v) is defined to be the number of channels assigned to more than one node in
Ny(v). Thus RC,(v) is a measure of the reuse of channels within N.(v). Finally, we

define N,(v) to be all neighbors of v in G, and H,(v) to be w(v) + SN (u).
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We are now ready to define the greedy algorithm in a more precise manner. Given
a weighted hexagon graph (G, w) and a reuse distance r, the algorithm is assumed to
have a coloring of G™ using \(G") colors available. The algorithm proceeds in y(G")
rounds. In round i, each node v with color : and weight w(v) assigns to itself the set
of w(v) channels with the lowest numbers that are not used in .V.(¢). Notice that
all nodes in N.(v) were assigned channels in previous rounds. This synchronization
scheme is given only for ease of analysis: it is not hard to see that the lower bounds
obtained for the above algorithm also apply to the greedy DCA algorithms in the

literature.

The algorithm described above is an offline algorithm. However. as mentioned
in Chapter 2. this can be implemented in an online fashion as follows. At step ¢,
every node v knows its weight w,(v). In every step. the algorithm proceeds in rounds.
and the nodes with color ¢ participate in round i. At every step. a node completely
recalculates the channels to be assigned to all its nodes. and the channel assigned to
an ongoing call can be changed from time to time. We call this algorithm G-R. the
greedy algorithm with reassignment. The second version of the greedy algorithm we
study is an online algorithm, called G-NR, which does not perform reassignments. At
step t, each node v knows the number of new call arrivals. say n,(v). The node v then
assigns to itself the set of n,(v) channels with the lowest numbers that are not used
at itself or in V,(v). Any synchronization mechanism (including the one described
above for the offline algorithm) could be used to prevent conflicts occurring during a

single time step.

3.2 Reuse Distance 2

In this section, we study the behavior of the greedy strategy when the reuse distance

is 2. We show a tight bound for the performance of the offline version of the greedy



algorithm. and a lower bound for the competitive ratio of G-NR. the online greedy

algorithm with no reassignments, that matches the upper bound of [3].

3.2.1 Offline Case

For this case, the best known algorithms {22, 25] have performance ratio /3. \We
show that the greedy strategy has performance ratio 5/3. This is a tight bound. as
there are weighted hexagon graphs where the greedy algorithm uses 3/3 times the

optimal number of channels required.

Let mc(v) be the highest channel used by the vertex v. The following lemma is

used frequently in subsequent sections.

Lemma 1 For the offline greedy algorithm, and for any node v. me(v) < min{H,(v)-
RC,(v). w(v) + maryen,yme(u)}.

Proof: The number of distinct channels used by nodes in .V, () is at most H,(v) —
w(v) — RC,(v). Therefore. v will never use a channel higher than H,(v) — RC,(v).
Also, if u is a node in N (v) that uses the highest channel in v's neighborhood, v will

never use more than the next w(v) channels. a

Theorem 1 For reuse distance 2. the performance ratio of the offline greedy algo-
rithm is 3.
Proof: Let (G.w) be a weighted hexagon graph, where every node is colored red,
blue, or green. We denote Dy(G, w) by D,. It is easy to see that all red and blue nodes
can be assigned channels using the first D, channels C[1,2, ..., D,|. In the third round

of the algorithm, we assign channels to the green nodes. For any green node v with
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Figure 3.1: Na2(v) U {v} is covered by 3 cliques.
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Figure 3.2: An example where the greedy algorithm uses 3D2(G. w)/3 channels.

w(v) > %- since .V,(v) and v can be covered by three cliques(as shown in Figure 3.1).

Hy(v) £ 3Dy -2w(v) < 3D, - ‘—[3)3 = %- Thus, by Lemma 1. me(v) < Hy(v) < %
If instead, w(v) < 222 since we can use the first D, colors C[1.2..... Dy} to color

the red and blue nodes. by Lemma 1. we have mc(v) < w(v) + maryey,.ymec(u)
< 2Dy/3+ Dy = %1. Since a green node can never use a channel higher than
5D,/3 and D, is a lower bound on the number of channels needed, the algorithm has

performance ratio at most 5/3.

We note that 5/3 is also a lower bound for the performance ratio of the greedy
algorithm. For example, in Figure 3.2, the reader can verifv that D, = 3k. and
that there is an optimal assignment using 3k channels, but the greedy algorithm will
use 5k channels. Thus, the greedy algorithm uses 5/3 times the optimal number of

channels required. )

[ 1141

Corollary 1 G-R, the greedy algorithm with reassignments, has competitive ratio

for reuse distance 2.
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3.2.2 Online Case

For the online case, a trivial upper bound of 3 for the competitive ratio of the greedy
algorithm follows from the fact that V,(v) U {v} can be covered with 3 cliques (see
Figure 3.1). We prove a lower bound of 2.5 for this case by constructing a hexagon

graph and a sequence of weight vectors.

Theorem 2 G-NR. the greedy algorithm with no reassignments. has competitive ratio

p where 2 < p < 3 for reuse distance 2.

ol

Proof: We provide a hexagon graph (see Figure 3.3) and a sequence of call arrivals
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Figure 3.3: Worst case for G-NR for reuse distance 2

and terminations on nodes in the graph so that the greedy algorithm is forced to use
20 channels, while the reader can verify that the optimal offline algorithm needs only

8 channels. Let the pair (a, i) represent:

{ new calls come intonodea ifi>0

{ calls finish at node a ifi<0

It is easy to see that the number of calls can easily be multiplied by any £ > 0 to
give arbitrarily large weight vectors. While in principle, the adversary can specify the

exact calls that finish, in our example, when reducing the weight, we always reduce it
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to zero. that is. all current calls terminate. Thus there is no need to specify the exact
calls that finish in a particular time step. Finally, many elements of the following
sequence could be done in parallel: we do not use this optimization for clarity and

ease of verification.

The adversary's objective is to make the node o use the channels C[19.20]. This
happens only if all the channels C[1.18] are currently in use in o's neighborhood.
Therefore the first goal of the adversary is to make such a situation occur. It is
intuitively clear that it is harder to make a neighbor of o use the high channels than
the low channels. Thus we work on the harder task first. We first force the node n
to use the channels C[16.18]. To do this. once again. we create a situation where
the 6 neighbors of n use all the channels C[1.15]. In particular. the nodes h.o and s
will have weight 2 each. and will use the higher channels C[10.15] and the remaining
neighbors of n have weight 3 each. and will use the channels C[1.9]. The value of

D;[G] never exceeds 8.

First we work on the node s. The sequence (E.2),(D.3).(E.-2).(¢t.2).(4,3).
(t.—=2).(D.-3) leads to A using the channels C[6, 10]. Next. the sequence (C.3).
(z.3),(C, =3), (A. =3) leads to z using the channels C[11.13]. Now, the sequence
(£.3).(y,3). (. =3). (£.3), (r.4). (y. =3). (€. —3) leads to r using the channels C[T7. 10].
Increasing the weight of n to 6 leads to n using the channels C[1.6] since n has no
neighbors of positive weight. Now. increasing the weight of s to 2 forces s to use the
channels C[14, 15]. The sequence (r, —1),(z. —3) ensures that the only nodes with

non-zero weight are s and n.

Next we work on the node 0. The sequence (w.3), (v, 3), (w,—3) leads to v using
the channels C[1,3]. Next, the sequence (k,3), (p.3),(k,—3), (v, =3), (0,2), (p. —3)
leads to the node o using the channels C[12,13]. At this point, o, s, and n are the
only nodes with non-zero weight. Next, to make node h use the channels C[10, 11},

we employ the sequence (a, 3), (b, 3), (a, —3), (d, 3), (¢, 3), (b, —3), (d, =3), (h, 2). Next,
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the sequence (n.—6). (c. —3) ensures that the only nodes with positive weight are h,

o. and s. and they are using the channels [10, 13].

Finally we make the other neighbors of n use the channels C[1.9]. The sequence
(y,3),(r.3), (y. —3).(g.3).(m.3). (9. —3).(r. —3) makes m use the channels C[7.9].
The sequence (i, 3). (4, 3). (¢.3). (4. —3) makes i use the channels C[1.3] and ¢ use the
channels C[4.6]. Then the sequence (n.3).(h. =2). (0. =2). (s. =2). (m. =3). (. =3).
(t. —3) leads to n using the channels C[16. 18] and being the only node of positive

weight in the graph.

Recall that the final goal is to make o use the channels C[19.20]. At this point. we
work on the other neighbors of o. First we make the node j use the channels C[13.153].
The sequence (w,4).(q.4). (w, =4). (f.4), (k. 4), (f, =4). (¢. —4) leads to k using the
channels C[9.12]. Next. (d.5). (e.3).(d. =3).(0.3).(J.3). (k. =4). (e. =3). (0. =3)
achieves the purpose of j using the channels C[13. 15]. Now. the sequence (k.2). (q.2).
(B.3),(¢.2),(p.3). (k. =2). (g.-2).(v,~2) leads to p getting the channels C[7.9].
At this point, (z.3).(¢.3).(z, =3).(i.3). (u.3).(B.=3).(0.2). leads to t getting the
channels C[4, 6], i getting the channels C[1.3], u getting the channels C[10.12], and

finally, o getting the channels C[19,20] as desired. The reader can verify that the

optimal offline algorithm can perform the assignment with 8 channels. ("

3.3 Reuse Distance 3

In this section, we study the case when the reuse distance r = 3. We show that for the
offline case, the greedy strategy has performance ratio at least that of the borrowing
strategy given in [7]. We also show that G-NR. the online greedy algorithm with no

reassignments, has competitive ratio at least 3.
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3.3.1 Offine Case

Feder and Shende have given a borrowing strategyv for this case that has performance
ratio 7/3 [7]. In particular, for any weighted hexagon graph (G. w). their algorithm
uses at most 7D3(G. w)/3 channels. We show in this section that there are situations
when the greedy algorithm performs worse than this. Also. we show an upper bound
on the performance ratio of the greedy algorithm: however. we were unable to prove

a tight bound for this case.

For reuse distance 3. the underlying unweighted graph G* can be colored with
7 colors. Let G be a weighted hexagon graph and let D; denote D3(G.uw). For
convenience. we refer to a node with color 1 as a 1-node. a node with color 2 as a
2-node and so on. We show bounds on the largest channel used by nodes of different
colors. and use this to show an upper bound on the performance ratio of the greedy

algorithm.

Lemma 2 All the I-nodes and 2-nodes can be assigned using the first D3 channel

Proof: Straightforward. a

Lemma 3 For v a 3-node, me(v) < min{D3 + w(v),3D; — 2w(v)} < %2,

Proof: For any 3-node v. the set {v} U N3(v) can be covered by three cliques.
and also. by Lemma 2. no element of .V3(v) can use a channel higher than D;. It
then follows from an argument similar to the proof for green nodes in Theorem 1 that

me(v) < min{D; + w(v),3D; — 2w(v)} < 2L, -

In fact, this is a tight bound, as shown by the example in Figure 3.4. The reader

can verify that D; = 3k, but the greedy algorithm will use 5k channels.
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Figure 3.4: An example showing that a 3-node can use 5D3/3 channels.

We prove the following general fact that will be useful later.

Fact 1 Let p be a 3-node in N3(v) where v is a 4-node. and let w(p) = D3 — w(v)—i.
Then H3(p) < D3 + 2i.

Proof: Since p is a 3-node. .V3(p) can be covered by three cliques. each consisting
of a pair of 1- and 2-nodes. Since two of these cliques are also sub-graphs of a clique
containing both v and p, their total weights are at most i/ each (see Figure 3.5 for one
such position of p with respect to v, the other positions can be verified by the reader).

The third clique in .N3(p) has weight at most w(v) +i. Thus, H3y(p) < D;+2i. O
Lemma 4 For v a 4-node, mc(v) < Q‘.Ql.

Proof: For any 4-node v, since {v}U.V3(v) can be covered by three cliques, H;(v) <
3D;3 — 2w(v). So if w(v) > %1, by Lemma 1, me(v) < H3(v) < 3D3 -8D3/7 = 1%1.
On the other hand, by Lemma 3. none of the nodes in :V3(v) can use channels higher

than 222 Therefore, if w(v) < 12, mc(v) < 322 + 403 = 303

It remains to show that me(v) < 13—721 when 47011 <w(v) < %1. Let w(v) = “—2‘211 + r,
where 0 < k < 87011. Then for any 3-node p in N3(v), w(p) < %1)1 — k. Let w(p) =

17D R - YX7 : 5D .
57+ —k —i. We claim that that me(p) < 232 — k.
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Figure 3.5: Deriving the bound on H3(p).
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Figure 3.6: An example showing that a 4-node can use 13D3/7 channels.

Ifi< Q.j*, by Fact 1, we have H3(p) < D3 +2i <9D3/7 < %1 — k. and therefore
by Lemma 1, mc(p) < 5—3’21 — k. If instead ¢ > 271, we have w(p) < % — k. Since
none of the 1- and 2-nodes in .N3(p) will use colors higher than Dj3. by Lemma 1,

me(p) < Dy + w(p) < 322 — .

Since no 3-node in N3(v) uses a channel higher than %—1 —k, and any 1- or 2-node

in N3(v) uses channels numbered at most D3 < %1 — k. by Lemma 1, mc(v) <
w(v) + 85 — < 1801, .

The bound in Lemma 4 is a tight bound, as shown by the example in Figure 3.6.
The reader can verify that D; = 7k but the greedy algorithm uses 13k = 13D;/7

channels in this case.
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Figure 3.7: An example showing that a 5-node can use 11D3/3 channels. Notice that N3(v) can be
covered by 3 cliques and node 1,. A similar cover using 3 cliques and node 1, can also be constructed.

Lemma 5 For v a §5-node. me(v) < %—’*

Proof: For any 5-node v. by Lemmas 2 to 4, since none of its neighbors will use

channels higher than 822 if w(v) < 221 by Lemma I, me(v) < B2 + w(v) = 12,

Consider two of the 1-nodes 1, and 1, in v's neighborhood (see Figure 3.7). If
w(ly) < w(ly), all of 1,'s channels will also be used by 1, and thus RC3(v) > w(l,). It
is easy to verify that H3(v) < 3D3+w(1l,)—2w(v ) and therefore by Lemma 1, mc(v) <
H3(v) — RC3(v) < 3D;3 —2w(v) < —w-l if w(v) > 222, Similarly. if w(lp) < w(lg), we

can also show that mc(v) < 3D3(v) — 2w(v) < 1=

It remains to show that me(v) < 123 when 222 < w(v) < 222 Let w(v) = 28 4 &,
3 35 3 335

where 0 < £ < 2—3%1. Then for any {-node u in v's neighborhood, w(u) < 2%)1 - k.

Claim 5.1 mc(u) < 222 — , where 0 < k < 222,
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Proof: Let w(u) = 3—%1 — k —i. Since N3(u) consists of 3 cliques. and all the
nodes in one of them are also neighbors of v, therefore Hy(u) < 821 k —i4+2(20a
k+i)+i= %‘*+k+2i. If w(u)> %1. we have k +1 < QT‘;‘ and H;(u) < %1 — k.
therefore by Lemma 1, mc(u) < 5%1 — k. If instead w(u) < 1‘% — k. by Lemmas 1.

2,and 3, mc(u) < 38 + w(u) = 1Dy _

Thus we only need to consider %f)ll -k <uw(u)< -2—3-1 Suppose w(u) = %ﬂl—

k + €. where £ < 2B 4 . Then for any 3-node p in N3(u). w(p) < 152 +k — €. Let
w(p) =Dy —w(v)—j= 1%1 +hk —€—j. Ifj—k > 271. then w(p) < 3?1 — ¢ and by
Lemma 3. mc(p) < ’—:,'Q-‘ — €. It then follows from Lemma 1 that mc(u) < % -+

%’ll —k+ €= 5’-’.21 — k as claimed.

Otherwise if j—k < 271 by Fact 1, H3(p) < D3+2j < g-"%-?k. Thus. by Lemma 1,
mc(p) < %1 + 2k. It then follows from Lemma 1 that mc(u) < @ + 2k + iﬁl -k

+€=§l—2?1+k+€<5%’521+‘2k<@1-k.asrequired. O

The above claim shows that for any 4-node in ¢’s neighborhood. rnc(u) < 1'—3791 —k.
Indeed, if u is 1, 2, or 3-node in ¢'s neighborhood, mec(u) < %1 < %1 — k. for all
values of k£ in the range 0 < £ < %031 It follows as a consequence of Lemma 1 that

me(v) < w(v) + 32 — =120 4 fp 4 B30 _ = UDa a

The above bound is tight, as there exists a hexagon graph for which D3 = 5k but

the greedy algorithm uses 11k = 11D3/5 channels (see Figure 3.7).
Lemma 6 For v a 6-node, me(v) < —l_,)l

Proof: Let v be a 6-node, and let u be the node in N3(v) using the maximum-
numbered channel. If u is a 1- or 2-node, then by Lemmas 2 and 1, mc(v) <
D3 + w(v) € 2D3. Otherwise, if u is a 3-node, then w(v) < D3 — w(u) and by

Lemmas 3 and 1, mc(v) < D3 + w(u) + w(v) < 2D;. If u is a 4-node, then mc(v) <
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Figure 3.9: Deriving the bound on Hz(u) when w(l,) > w(ls).

min{13D;3/7 + w(v).3D3(v) — 2w(v)} < 47D3/21 < 5D;/2 as claimed. We consider

below the case when u is a 5-node.

Claim 6.1 Let w(v) = r and w(u) = D3 — r — y where u is a 5-node.

1. me(v) <3D3 -2z +y.
2. me(v) < D3 + 2z + 2y.

3. me(v) < (19D;3 + = — 6y) /7.

Proof:  Notice that there are three 3-nodes in N3(v). In other words, the node u
can be in three different positions relative to the node v. One such position is shown
in Figures 3.8 and Figure 3.9. The case when w(1,) < w(1,) is shown in Figure 3.8.
[t can be seen that N3(v) U {v} can be covered by four cliques and the node 1,. Two

of these four cliques also include the node u. Furthermore, since w(1,) < w(1,), all
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channels used at 1, are also reused at node 1,, thus RC3(v) > w(l,). Therefore, by
Lemma 1. me(v) < H3(v) — RC3(v) < 4D3 + w(l,) =3z — (D3 —r —y) — RC3(v) <
3D3 — 2z + y. as claimed. A similar argument applies when w(l;) < w(l,): see
Figure 3.9. Finally, we can show the identical result for the remaining two positions

of u. This finishes the proof of (1).

To see (2). observe that .V3(u) consists of 3 cliques of 1-. 2-, 3-. and 4-nodes. in
addition to a 1-node. which can always be chosen to be the smaller of nodes 1, and 1,
in V3(u) (see Figure 3.7). Further. one of these cliques is such that all nodes in it are
neighbors of v. and thus has weight at most y. while the other two cliques have weight
at most r+y. Thus. using an argument similar to the one in the previous paragraph,
we can show that H3(u) < D3+ r+ 2y. and thus by Lemma 1, mc(u) < D3+ r +2y.

This implies in turn that mc(v) < D3 + 2r + 2y.

To show (3). we need to analyze more carefully the maximum channels used by
3 and 4-nodes. In particular. if r3 is a 3-node with a {-node neighbor ry. then
Hi(z3) < 3D;3 — 2w(x3) — 2w(xy). Therefore, me(x3) < 5D3/3 — 2ry/3. We take
this into account when analyzing a 4-node p with a 3-node neighbor u. In particular.
the maximum channel used by any neighbor of p is at most 5D3/3 — 2uw(p)/3. Also.,
H;(p) < 3D3—-2w(p)—w(u). It follows from Lemma 1 that me(p) < 13D3/7—w(u)/7.
Recalling that w(u) = D3 — r — y in this case, we obtain mc(u) < me(p) + w(u) <
(19D;3 — 6z — 6y)/7. and thus, by Lemma 1, mc(v) < (19D3 + £ — 6y)/T as claimed.
a

The following technical claim establishes a minimum value for the functions ob-

tained above.

Claim 6.2 min(3D; — 2z +y, D3 + 2z + 2y, (19D3 + x — 6y)/7) < 351,

Proof:  Assume the claim is not true at = a, y = b, that is, all three functions
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evaluate to greater than %1 for these values. This implies:

3D;—2a+b > 5Dy/2 (3.1)
D3 +2a+2 > 5D3/2 (3.2)
(19D3 +a — 6b)/7T > 3D3/2 (3.3)

Then (1)+(2) = b > 231 while (1) +(3)* 4= b < Z,_,—gl. which vields a contradiction.

a

Claims 6.1 and 6.2 together establish the lemma. a
Lemma 7 For v a 7-node, mc(v) < %Ql

Proof: For any 7T-node v. .N3(v) U {v} can be covered by four cliques. and so
Hi(v) < 4D3 - 3w(e). If w(v) > 1’82-1. by Lemma 1. me(v) < Hy(v) < 4D3 = 3uw(v) <
%1. On the other hand, by Lemmas 2 to 6, none of the nodes in :N3(v) can use
channels higher than %1 Soif w(v) < 3%1. by Lemma 1, me(v) < %—H—w(v) < %‘—)1.

a

It is possible to construct a weighted hexagon graph where the greedy algorithm
uses 7D3/3 channels, while an optimal assignment using D; channels exists, as shown
in Figure 3.10. In Figure 3.10, the 7-node at the center has to use channel C[7]
as channels C[1,2, ..., 6] are being used by its neighbors. The optimal assignment,
however. needs only 3 channels. Thus. the performance ratio of the greedy algorithm is
at least 7/3. However, there is a weighted hexagon graph (G, w) where D;(G, w) = 5k

and the greedy algorithm uses 12k = 12D3/5 channels, as shown in Figure 3.11'. The

reader can verify the assignment given by the greedy algorithm.

'"However, this graph does not appear to have an assignment with fewer than 6k channels.
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Gl =123 Opumal Assignment

Figure 3.10: An example showing that greedy algorithm uses 7 channels while optimal assignment
needs only 3 channels.

The following theorem is a consequence of Lemmas 2 to 7 and the discussion in

the paragraph above:

Theorem 3 For reuse distance 3:

1. The offline greedy algorithm has performance ratio p where % <p< “;—3

2. There is a weighted hexagon graph (G, w) such that the offline greedy algorithm

uses 12D5(G, w)/5 channels.

Corollary 2 G-R, the online greedy algorithm with reassignments, has competitive

ratio p where £ < p < £ for reuse distance 3.
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Figure 3.11: An example showing that a 7T-node can use 12D3/3 channels.

]

3.3.2 Online Case

For this case, a simple modification of the cluster partitioning strategy given in [16]
has competitive ratio 4. We show here that the greedy algorithm has competitive

ratio between 3 and 4.

Theorem 4 G-NR, the greedy algorithm with no reassignments, has competitive ratio

p where 3 < p < 4 for reuse distance 3.

Proof: The upper bound on p follows simply from the fact that for any node
v, N3(v) is covered by 4 cliques, each with weight at most D, which implies that

mc(v) < Hi(v) < 4D. To show the lower bound, we construct a hexagon graph and
a series of call arrivals and departures so that the algorithm is forced to use 9 channels
while the optimal offline algorithm needs only 3 channels. The proof is similar to that

of Theorem 2, but the sequence of call arrivals and terminations as well as the graph
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Figure 3.12: Graph in which nodes C and o are forced to use channels 7 and 8 respectively. See
Tables 3.1 and 3.2.

used are much larger. In what follows, we use (r, w,[c), c2]) to denote the arrival of w
new calls at node z, which increases the weight of node z to w from 0. This in turn
forces the greedy algorithm to use the contiguous channels ¢ to ¢, at node r. The
notation # denotes the removal of all calls at node x, thus reducing the weight to 0.
and causing the release of all channels currently being used at node z. We note that
many of the steps in this sequence can be performed in parallel, thus shortening the
sequence, as well as the number of steps required. We give this longer sequence here

for clarity and ease of verification.
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Since the number of nodes involved is quite large. we break up the sequence in
three sequences. given in Tables 3.1. 3.2 and 3.3. The first sequence. given in Table
3.1, is intended to make the node o use the channel 8. The corresponding graph is
given in Figure 3.12. In order to make this happen, we have to first make the neighbors
of o use all channels C[1.7]. These goals are listed in the first column on Table 3.1.
These in turn lead to other sub-goals listed in the second column. Similarly. Table 3.2
in conjunction with Figure 3.12 describes the sequence to force node C to use channel
7 given that node o is already using channel 8. Finally, Table 3.3 in conjunction with
Figure 3.13 gives the sequence to force node p to use channel 9 given that nodes o
and C are using channel C[8] and C[7]. The reader can also verify that the optimal

offline algorithm can perform the assignment with 3 channels. a

3.4 Arbitrary Reuse Distance

In this section. we consider the problem of channel assignment with respect to an
arbitrary reuse distance r. We show a lower bound on the performance of any algo-
rithm, and analyvze the worst-case performance of FCA. the greedy strategy as well

as a straightforward borrowing strategy.

3.4.1 Lower Bounds

Lemma 8 For any reuse distance r>3, there are heragon graphs G such that G™

contains a 5-cycle as an induced subgraph.

Proof: Ifrisodd, we choose vy, vs, ..., s, at coordinates (0,0), (r—1,0),(r—1,r—
1), (0, 5”2—‘3), and (—';—l, r—1) respectively. Otherwise, we choose them at coordinates
(0,0),(r—1,0),(r—1,r—1),(0,% - 2), and (=5.7 — 1) respectively. It can be easily
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Goal Sub-goal Sequence

(A, 1,(7]) generate node h’s neighborhood
(@2.(1.2]) | (e.1.{1D (f L[] (e L{2])s (0 2,[1,2])
(i.2.15.6]) | (o, 1, (3D, (¢, L1 (5.2,(2,3]). (4, 1. [4]). (1, 2. [5.6})
6.2.3.4) | (d 1,[1]).(a, 1,[2]).(6.2,(3.4))

clean up neighborhoods of i, b, and o
dd é&épfl ot

raise h's weight

(h.1.[7)

clean up h’s neighborhood

b ¢

(u, 1,{6]) generate node u's neighborhood

(A LBED | (2002 (HL[3]). & (v, 1 [1])
(N2 (L2 (0 LMD R L), (BL2.12.3]), (AL 1L (3])
(¢.2,(3.4) | (d. L.[1]). (G 1 [2]). (g, 2. [3.4])
(0,2,(1,2)) | (0.2,[1,2)

clean up neighborhoods of A, ¢, and o
dj. o H.LN, B A

raise u's weight

(u, 1,6])

clean up u's neighborhood

4.0

(k, 1,[3]) generate k's neighborhood

(.2.3,4) | (v, L1 (d. 1, (1]}, (0 1 {2)s(q. 2. {3, 4])
(0,2.11,2)) | (0.2.{1,2])

clean up neighborhoods of ¢ and o

4. 4. ]
raise k's weight
(k. 1.[3])
clean up k's neighborhood
4. ¢
(r LI4]) (D,2.(1.2]), (x, 1.3 (p 2. (1, 2]), (r, LL(H])
D, 4 »
(n, L,3]) (m,2,{1,2]),(n, 1, [3]),m
(p. 1.[2]) (o, L, {1D),(p, L [2]), &
(9. L,[1]) (.1, (1)
(0.1.[8)) (0. 1,(8])

Aot Bt B g

Table 3.1: Sequence of calls as a result of which node o uses channel 8. See Figure 3.12.
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Goal Sub-goal | Sequence
(J.2.5.6]) | (ML) | (R2.01.2).(Q. 1.[3]). (G. 2. [1.2]). (M. 1.[4])
(D.1.(3]) | (D.1.[3])
(P.1.2]) | (O.1.(1]).(P.1.[2))
(F.L.[1}) | (F.1.[1])
R.Q.Q.¢
(J.2.[5.6])
M. DR
(E.2.(3.4]) | (L.1.12]) | (O.1.[1}]). (L. 1.[2])
(w.1.[1]) | (w.1.[1])
(E.2.[3.4])
Q. 4. [
(y,2.[1.2)) (y.2.[1,2])
(€ 1.[7) (C.1.[7))
4.8 4

Table 3.2: Sequence of calls as a result of which node C uses channel 7, given that node o is already

using channel 8. See Figure 3.12.
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Goal Sub-goal | Sequence
L) | GoLHD) | (e2.[1.2). (d. 1. [3]). (5.2, [1.2]). (j. 1. [4])
(b.1.[2]) | (a.1.[1]), (6. 1.[2])
(c.1.[3]) | (c.1.[3])
(u.1.(3]) | (y.2.[1.2}]). (u. 1.[3])
(p. L[1]) | (p. 1.{1])
(i.1.[6])
¢ 4 J b ¢ d.pd.d 3
(103D | (m 1 2)) | (R L[1]). (. L [2]). &
(e.1.33]) | (A L[] (v. 1. [3])
(r. LM | (D.L2]) (x. LLHD. 4. D
(p- L[1]) | (p-1.[2])
(¢.1.(3])
U
(n L) | (f 11D | (f L))
L) | (L)
(e.1.[3]) | (= L.[1]). (v, 1.[3]).%
(n.1.[4))
.| f
(¢, 1.[3]) (r.2.(1.2]). (¢ 1.[3]).4
(w. 1.{2]) (B.1.[1]). (w, 1.[2]). B
(9. 1.[1]) (g-1.[1])
(p. 1.[9]) (p.1.[9])

Table 3.3: Sequence of calls as a result of which node p uses channel 9. given that nodes o and C
are already using channels 8 and 7 respectively. See Figure 3.13.
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Figure 3.13: Graph in which node p is forced to use channel 9, assuming that nodes o and C are
using channels 8 and 7 respectively. See Table 3.3.
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Figure 3.14: (a) 3-cycle for reuse distance 3. and (b) 5-cycle for reuse distance 4.

verified that for any two nodes (v;. ;). d(v,,v;) < rif and only if i = jmod 5 + 1.
For example, in Figure 3.14(a). given reuse distance 3. the 3-cycle consists of the five
nodes at (0,0).(2.0).(2,2).(0.3).(—=1.2). and in Figure 3.14(b). given reuse distance
4, the 53-cvcle consists of the five nodes at (0,0), (3,0).(3.3).(0.4).(-2.3). a

Theorem 5 For any reuse distance r > 3, there erists a weighted heragon graph
(G, w) such that any algorithm for channel assignment must use at least 5D,(G. w)/4

channels.

Proof: Let G be a hexagon graph that contains a 3-cycle as an induced subgraph
(its existence is confirmed by Lemma 8). We assign every node in the 3-cycle with
weight k. Then D.(G, w) = 2k. Further, since 5k calls need to be served. and each
channel can be used by at most 2 nodes, the optimal number of channels required is

%5 =5D,(G,w)/4. a

3.4.2 Offline Case

In this section, we analyze the performance of a simple borrowing strategy, along the
lines of the algorithm for reuse distance 3 in [7]. The following lemma was derived

independently in [23] and [32]. We give a simple construction below for convenience.
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A

Figure 3.15: Maximum-sized cliques of hexagon graph with reuse distance (a) 2 and (b) 4.

Lemma 9 ([23, 32]) Given G a heragon graph. and reuse distance r.

3r2

o ry — . ry _ 4

@G =\G) =] %
4

if r is even

otherwise

Let G be the infinite triangular lattice. We construct the maximum-sized clique
in G™ by finding nodes in G that are at distance at most r — 1 from each other. If r
is even, we build layers moving outwards from a triangle. The first layer consists of 3
nodes, the second layer consists of 9 nodes. and the ;5"' layer, which is the outermost
layer. consists of 3 + 6(5 — 1) = 3r — 3 nodes. It is easy to verify that this set of
nodes comprises a clique. and in fact, a maximum-sized clique. The total number of

2

nodes in the clique is 3+ 9+ ...+ (3+6(5 - 1)) = 3: . For example, Figure 3.15(a)

shows that w(G?) = 3. and Figure 3.15(b) shows that w(G*) = 12. It is also easy to
construct a tiling of the infinite triangular lattice using these cliques, thereby showing

that the chromatic number equals the clique number.

[f instead r is odd, in building the maximum-sized clique we move outwards from a
single node. The first layer consists of 1 node. the second layer consists of 6 nodes, the

. . th .
third layer consists of 12 nodes, and the %l layer consists of 3r — 3 nodes. Therefore

the total number of nodes in the clique is 3—’:‘“—1 For example, Figure 3.16(a) shows
that w(G®) = 7. and Figure 3.16(b) shows that w(G®) = 19. Once again. these cliques
can be used to tile the triangular lattice, showing that the chromatic number equals

the clique number.
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Figure 3.16: Maximum cliques of hexagon graph with reuse distance (a) 3 and (b)5.

Theorem 6 For any weighted heragon graph (G.w) and any reuse distance r > 1.

'S ; e rtin 1872 s pner 18r°+6
there is an algorithm that has performance ratio 3355 if r is even. and 3757 when

r 1s odd.

Proof: The algorithm uses €\(G") channels (where ¢ will be specified later).
and partitions them into \(G") sets of £ channels each. A node v is called heavy
if w(v) > € and light otherwise. Each node v of color ¢/ in G" assigns the smallest
min{w(v). €} channels from channel set 7. At this point, all light nodes have received
enough channels and drop out. Any remaining heavy node now borrows any channel

that is unused among its neighbors in G".

For any heavy node v. it is easy to see that H.(v) < w(v) + 6(D.(G.w) — w(v))
=6D,.(G,w) — dw(v). For ¢ = %l, since w(v) > €. H.(v) < 6D.(G.w) — 5t =
x{(G")¢. This means that v has sufficient channels to borrow and to complete its

assignment.

From Lemma 9, we know the v(G7) is - for even r and 3=*! for odd r, so
X 1 1

H.(v) < 222 D, (G.w) for even r and 828D (G, w) for odd r. It follows from

= 372420 3ri+21
Lemma 1 that mc(v) < H,(v) and thus the performance ratio is at most 3:;?:20 for
even r and 25 for odd r. O

3r¥yal

We note that this ratio is always lower than 6 for any bounded value of r. For the

particular reuse distances of 2, 3, and 4, this algorithm gives us performance ratios of
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2.25, 3.5. and 4.24 respectively. However. the cluster partitioning algorithm described
in [16] has a better performance ratio for all values of reuse distance greater than 3. in

addition to having the advantage of not requiring reassignment of calls in the online

case.

3.4.3 Online Case

The only previously known online algorithm for arbitrary reuse distance is the cluster
partitioning [16]. which has performance ratio 3 for reuse distance 2 and performance
ratio 4 for reuse distance > 3. In this section. we give straightforward bounds on
the competitive ratio of FCA and the greedy algorithm. for arbitrary values of reuse

distance r.

Theorem 7 For arbitrary reuse distance r > 3, the fired assignment algorithm has

performance ratio p where:

. 3% if r is even
p=xG) =3 , _
== otheruise

Proof: Follows from Lemma 9.

Theorem 8 For arbitrary reuse distance r > 3, the online greedy algorithm has per-

formance ratio p where:

REBGET
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o
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Proof: The online greedy algorithm needs no more than 6D, channels for its
use. For any node v. its neighborhood .V.(v) can be covered with at most 6 cliques.
therefore. the total number of calls in the v’s neighborhood is at most 6D,. When node
v has a new call come in. there are at most 6D, — 1 ongoing calls in ¢'s neighborhood.
The worst case happens when all the ongoing calls are using different channels, this
is, at most 6D, — 1 channels are being used. However. v can still find an unused

channel. The lower bound follows from Theorem 3. a
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Chapter 4

Fixed Preference Assignment

In this chapter. we study the worst-case performance of the FPA strategy described
in Section 2.4. In this strategy. the nodes are partitioned into different sets based
on their color in G,. and different nodes of different colors assign channels in order
from different preference lists. We briefly describe the previous results on the offline
version. We describe an online version and give a lower bound on its performance for

reuse distance 2. Straightforward bounds are also given for reuse distance 3.

4.1 Reuse Distance 2

In this section. we describe bounds on the performance of the offline and online

versions of FPA.
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4.1.1 OffHline Case

Theorem 9 [12] For reuse distance 2. the performance ratio of the offline FPA
algorithm 1s fz’

We give a proof here for completeness. Let the clique bound be D,. and the
number of channels available be 3D,/2. We argue that a valid assignment will be

made by FPA. Divide the available 3D,/2 channels C[1.2..... 3D,/3] into 3 equal
sized sets: red:C[1.2..... D, /2. blue:C[Da/2+1.Dy/2+2. . ... D). and green:C[D,+

from the first. and if it still needs more channels, takes blue channels starting from
the end. Similarly, blue nodes borrow from red if necessary, and green nodes borrow
from blue. Suppose this assignment of channels causes a conflict between a green
node and a red node that are neighbors. Then their combined weight must be greater
than D,, a contradiction. Thus. the assignment is conflict-free. and the algorithm

has performance ratio 3/2.

@ Node weighted k

Figure 4.1: Worst case for offline FPA for reuse distance 2

It can be shown that 3/2 is also the lower bound for the performance ratio of the
FPA algorithm. In Figure 4.1. FPA will use 3k channels while the optimal algorithm

uses only 2k channels.

4.1.2 Online Case

First, we describe an online version of FPA. A 3-cell reuse pattern is used (see Figure

2.1). Based on their base colors, all the cells are grouped into three sets: red, blue,
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and green. Also. all the available channels are numbered and equally divided into
sets. namely red. blue, and green. each assigned as the primary channels to the cells
with the same base color. When a red cell has a call come in. it will try to use the first
available channel from its primary channel set. If all its primary channels are being
used(either by itself or one of its six neighbors). it will borrow an idle channel from
blue neighbors. searching from the first blue channel to the last one. If the searching
in the blue set fails again. the red cell will go for the first available green channel. If
all the channels are being used. the call is blocked. Similarly. the blue cells and green
cells will search for available channels in all three channel sets. but following different
orders. Blue cells will follow the order of blue-green-red while green cells’ order is

green-red-blue.

For the online case. a upper bound of 3 for the performance ratio of the FPA follows
from the fact that the maximum weight of a node is D,, and with D, channels in every
primary channel set. every node’s demand will be satisfied with its primary channels.

In fact, the algorithm reduces to FCA when there are 3D channels available.

We prove a lower bound of 2.25 for this case by constructing a hexagon graph and

a sequence of weight vectors.

Theorem 10 The online FPA algorithm with no reassignments, has competitive ratio

p where p > 2.25 for reuse distance 2.

Proof: Assume there are 18 channels available, which are divided into three sets:
red: C[1,2...., 6]. blue: C[7.8,...,12], and green: C[13,14,...,18]. The adversary’s
objective is to make the node r; use the channels C[16, 18]. This happens only if all

the channels C[1, 15] are currently in use in r;'s neighborhood.

To achieve that, the adversary’s strategy is to assign the higher numbered channels

first and then the lower numbered channels to r;’s neighbors. Therefore, the adversary

34



AVAVAVAVAVAY
\VAVAVAVAVAV
IAVAVAVAVAVA

Figure 4.2: Worst case for online FPA for reuse distance 2

r8

rl3

first makes node bg use the channels [4.6]. b; use the channels [7.9]. This is achieved

by the sequence (rg. 7). (r12.8). (rg, =6). (ri2. =7). (b7. 7). (b7. =4). (bs.6). (bs, —3).

Next, the adversary makes g5 use the channels [14. 15]. gg use the channels [12. 13]
and g, use channels [10.12] by the sequence (ry.1).(gs.3). (g5. =3). (rs. —1). (gs.4).
(g8. —2). (94.5).(gs. —3).

Now, raise the weight of b3 to 3 and it will use the channels {1, 3].

Finally, raise the weight of r; to 3 and it has to use the channels [16. 18] while
the optimal offline algorithm will never need more than 8 channels during the whole

process. a

4.2 Reuse Distance 3

J.Janssen et al. [12] proposed an optimal offline FPA algorithm in which preference

lists are constructed using Latin squares. They prove the following:

Theorem 11 [12] For reuse distance 3, the offline FPA algorithm has performance



ratio p:

As reassignments are used in the offline FPA algorithm to allow maximum channel
reuse. its performance ratio serves as the lower bound of the competitive ratio of the
online FPA algorithm proposed in this thesis. which does not perform reassignment.
On the other hand, all FPA algorithins share the upper bound given by Lemma 9 in

Chapter 3. which is 7 for reuse distance 3.

Theorem 12 For reuse distance 3. the online FPA algorithm has competitive ratio

p where:



Chapter 5

Simulation Experiments and

Results

Besides the worst case analysis of the channel assignment algorithms, the average
case performance of the algorithms are also of interest. In this chapter. we study the

performance of the channel assignment algorithms under different traffic models.

5.1 Techniques of Performance Evaluation

In this section. we give a brief introduction to the commonly used techniques in

performance evaluation.

Measurement, analytical modeling, and simulation are three most commonly used
techniques for performance evaluation. The development stage of the system, cost.
accuracy and flexibility are among the most important factors to be considered when

choosing which evaluation technique to be used.

t
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Measurement

Measurements are possible if something similar to the proposed system is available.
for example, when designing an improved version of a product. Measurements are
best done in hardware although sometimes thev could also be done in software or
in a hybrid manner. It is the most costly technique as it requires real equipment.
instruments, and time. Unlike analytical modeling and simulation. which usually in-
volves many assumptions about the system being studied. measurements can be used
to evaluate the system performance in the real world, minimizing the risk of over-
simplification. Measurement's importance also lies in the fact that it provides the
basis for the many assumptions used in analytical modeling and simulation. To min-
imize the effects of uncontrolled/uncontrollable factors in a measurement. the data
collected from measurements must be analyzed using statistical techniques before
we can draw any meaningful conclusions. Careful design of a measurement is very
important because of several reasons. Firstly, measurement may not give accurate
results due to the uniqueness of environmental parameters such as system configu-
ration, characteristic of workload. and time of measurement. in every measurement
experiment. Secondly. the parameters used in the measurements may not represent
the full range of the variables. In order to capture the major effects at a lower cost.
one must carefully select which parameters are to be measured. how they should be

measured, and what input value combinations are used for the parameters.

Analytical Modeling

Analytical modeling can be used at any stage of the system development and usually
it has the lowest cost in terms of equipment and manpower requirements. There are
situations where the system is not available for measurement. For example, for a
proposed new concept, analytical modeling and simulation are the only choices for

performance evaluation. Analytical modeling can be used to study the system behav-
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ior at any desired level of detail by constructing a mathematical model and solving
it. Comparing different alternatives and finding the optimal parameter value are the
most important goals of every performance study. Although some simplifications
about the system are used in the model in order to make mathematical analysis pos-
sible. analytical models can still provide us good insight into the effects on the system
performance of various parameters and their interaction. Although a more complex
model as a result of fewer assumptions may provide more detailed information about
the system performance. a simple model is more desirable because it can be solved
ecasily and sometimes still provides accurate results. Also. simpler models are more
robust to changes in parameter values. easier to understand and modify. Unlike mea-
surement or simulation, in which the results of each experiment are different due to
the variance of parameter values and only characterize the system behavior for the
range of input parameters covered, analytical modeling provides more predictive re-
sults than those obtained from measurement or simulation. The main difficulty of the
analytical modeling is that the domain of tractable models is rather limited. When
the objective is to study the system behavior in great detail, the analytical model

will become too complex to be manageable.

Simulation Modeling

There is growing interest in using computer simulation to explore issues in science
and engineering. In addition to its use in verifving the correctness of system design,
simulation is also widely used as a tool of performance prediction and performance
optimization. Simulation is the mimicking of the operation of a real system, it involves
designing a model for the behavior of the system, represented by a computer program,
generating an appropriate abstraction of the workload driving it, as well as gathering

and analyzing the execution output.

The major advantage of simulation over the other two techniques is its flexibil-
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itv. almost any behavior of the system can be simulated. Simulation can be used
to study the system performance at any stage of the development. During the early
design stage. if the system to be investigated is not available. a simulation model
provides an easy way to predict the performance or compare several design alterna-
tives. Further, even if a system is available for measurement. a simulation model
may still be a preferred approach over measurement because it allows the alterna-
tives to be compared under a wider variety of environment parameter values. Unlike
analytical models. which often require many assumptions and are too restrictive for
most real-world systems. simulation modeling places few restrictions on the systems
under study. However, there are some important issues that must be considered in
simulation:

e [t must be decided at what level of detail the simulation is to be done. In general.
the simulation can be done at several levels of detail, depending on the objectives
of the study. A simulation with too little detail is easier to implement and verify.
but it can provide misleading or incorrect results. A more detailed model requires
more time to develop and the likelihood of errors increases. Adding more detail also
requires longer computer time to run.

e Analysis of the simulation output: Simulation generates much raw data. which must
be analyzed using statistical techniques before any conclusion can be made.

e Similar to measurements, a careful experiment design is essential to keep the sim-

ulation cost down.

For communication networks, developing a simulation program requires:
e Modeling user demands for network resources.
e Characterizing how the network resources are assigned for processing user demands.
e Estimating system performance based on output data generated by the simulation.
The stochastic nature of demands for network resources is modeled using pseudo-
random number generators. The operation of communication networks is described

by simulation programs.
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5.2 Discrete-Event Simulation

The kind of simulation of interest to us is discrete event simulation [13]. where the
state of the system is updated every time an event occurs. From a high-level per-
spective, telecommunication networks can be seen as consisting of users that generate
demands for network resources, and protocols that control the allocation of network
resources to satisfy those demands. The generation of user demands and their sat-
isfaction are encapsulated in simulation events. which are ordered by their time of
occurrence. The action of the protocols depends on the state of network at the time
the demand was issued. This event-based processing lends itself to a method known
as discrete-event simulation (DES). Most simulation tools for telecommunications
networks are based on DES. An important characteristic of DES models is that they
keep time via simulation clocks. which changes by random increments. The basic
executable unit in DES models is an event (a program that is executed at discrete

simulation times).

In DES. the state of the simulated system is stored in a set of system state vari-
ables. Event routines cause state variables to be modified. An event list is used to
control the execution sequence of these event routines: the list consists of events in
increasing chronological order. Event routines can add or delete items from the event
list, and pseudo-random number generators in the event routines provide the requisite

randomness for modifying and scheduling of future events.

Typical events in a communications network simulation include the arrival of
demands for network resources. A description of network resources, which is needed

to satisfy the demand, is associated with each arrival.

Traffic modeling is a key element in simulating communications networks. A clear
understanding of the nature of traffic in the target system and subsequent selection

of an appropriate random traffic model are critical to the success of the modeling
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enterprise.

5.3 System Model and Definitions

5.3.1 Fundamentals of Queuing Model

In cellular communication networks. many users share the network resources such
as radio spectrum. Since the radio spectrum is limited. some call requests may be
denied. For channel assignment algorithms. the most important performance metric
is the probability of a call request being blocked (blocking probability). For a given
algorithm. the blocking probability is solely decided by two factors: how frequently
the call requests are being made and for how long the calls will stay using the radio

channels.

The Poisson Process

The Poisson model is the most commonly used traffic model. A Poisson process can
be characterized in terms of the time interval between arrivals. If the call requests
occur at times Ty, To. .... T;_;. T,. the inter-arrival times , = T, — T,_, are identically
distributed random variables and are exponentially distributed with rate parameter
A [9]:

P{r <t} =1 - P{no call request in t seconds} = 1 — e™*

When we look at a very small time interval (¢,¢t + &), we have another definition of

the Poisson process [9]:

Py(8) = P{no call request in (¢t,t +4)} =1— Ad
P,(8) = P{exactly one call request in (¢,t +9)} = Ad
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P:(6) = P{more than one call request in (¢,t +3d)} =0

-

Equivalently, a Poisson process can be characterized by a counting process: the

average number of call requests in ¢ seconds is At and the probability of £ call requests

is given by:

: e~ M(At)k
P(k call requests in ¢ seconds) = —
and the numbers of call requests in disjoint intervals are independent random vari-

ables [9].

The call durations are modeled by an exponential process with a mean 1/4. The
probability of a call ending during time interval (T, T +4) is . We define the system
load as the average number of call arrivals divided by the maximum capacity of the

system.

Birth-Death Process

For a birth-death process, the state of a system can be represented by the number of
ongoing calls in the system. say n. Assume in an incremental time interval at most
one call arrival or call departure is possible. An arrival of a new call causes that
number to be changed to n + 1, which is called a birth. Similarly, the termination of
a call changes the state of system to n — 1. which is called a death.

The state transition flow diagram for a birth-death process is shown in Figure 5.1.
When the system is in state n. the rate of new arrivals is A, the rate of departure is

Un. Let P, be steady-state probability of a birth-death process [13]:
P, = Prob(Number of ongoing calls in the system = n) n=0,2---N (5.1)

In particular, P, represents the probability of that the system has no call going on.

P, is the probability of a new coming call being blocked as the system is already full.
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Figure 5.1: General state transition flow diagram for a birth-death process

The probability distribution of a steady state birth-death is:
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—

P, . n=12..-N (5.

where Py can be obtained using the requirement that all probabilities sum to 1 {13]:

n=.\
Po=01+)Y PJ! (5.3)

n=1

5.3.2 Simulation Environment

The simulated cellular network has 7 x 7 = 49 cells as shown in Figure 5.2. The cell
location is identified by an integer variable (0 < i < 48). The 7 x 7 network has been
used as in [12. 27] because it is big enough to show many details while small enough
to handle. A reuse distance of two is assumed. This implies that a channel should
not be used for more than one user at the same time in the same cell or in immediate
neighboring cells. For example, in Figure 3.2, if a channel is being used in cell 24, it

should not be used concurrently by another user iu cells 16, 17, 23. 24, 25, 31 and 32.

We choose to evaluate the channel assignment algorithms’ performance under two
environments, uniform and non-uniformm network traffic distribution. In the first
model. we assume each cell has the same traffic load.i.e. call arrival rate to a base
station is equal to A, and the average call duration is 1/u. However, in a non-uniform
model, the simulated cellular network has four isolated hot-spot cells 8,18 29 and
39. In the hot-spot cells, the traffic loads are higher than that of normal cells. To

investigate the algorithms’ adaptabilities to traffic variability, several scenarios, where
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Figure 5.2: A 7 x 7 grid cellular system.

the traffic loads in hot-spot cells are set to be 2. 3 or 4 times that in normal cells were

simulated.

In order to study the performance of channel assignment algorithms. we have de-
signed a discrete-state model to simulate the cellular network. All the radio channels
in the network are represented by a set of positive integers. Call events are generated
by a random number generator and stored in an ordered event list. Each call event is
represented by a event record containing the time and the place at which the event
should occur. Each base station has a channel occupancy list which contains the
information about which call sessions are going on within the cell and which channels
are being used. When a new call event is generated in a cell, the base station will
search for an available channel according to the channel assignment algorithm. When
a channel is found to be available for the new call, it will be assigned to the new
call and the channel occupancy list of the cell will be updated, then go to the next
earliest occurring event. The ongoing calls always have higher priorities than newly

generated calls and will never be dropped or reassigned other channels to make room
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@ Normal cell . Hot spot cell

Figure 5.3: A 7 x 7 grid cellular system with 4 hot-spot cells.

for new calls. If there is no channel available for the new call, the call is blocked
and will never return to the system. In our experiments, we have set the number of

channels to be 30.

5.3.3 Performance Metrics

In the literature, various attributes of the channel assignment algorithms have been
studied. These include the blocking probability [1, 18, 12, 19, 27, 3, 35], achicvable

system capacity [24], and number of messages [1, 27].

In this section. we define the performance evaluation metrics used in our simula-
tion. In particular, the blocking probability, system capacity, the fairness index and

the channel localization index were considered.
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Blocking Probability

Two parameters of importance are system load and blocking probability. Let A; be
the arrival rate and 1/p; be the mean call duration in cell C;. According to Little's
law, the average number of channels needed to support all arrived calls in a cell is
A/p. Assume that the total number of radio channels in the system is .V. The mean
number of channels allocated to each cell and therefore, the maximum mean number
of concurrent calls in a cell. is .N/3. Assume there are M cells C;.C5.....Cy; in the

system. \We define the system load as:

=M A

System load = =L 5 % 100
ystem loa %x.\[ X

For example, for a 49 cell. 30 channel system. if the call arrival rate is 0.1
call/cell/second and the mean duration of a call is 180 seconds in each cell. the

system load is equal to #X5UXI0 x 100 = 18%.
3

The blocking probability at load [ is defined as

Total number of blocked calls at load !

100.
Total number of call requests at load [ x 100

Blocking probability(l) =

System Capacity

One objective of cellular architecture is to increase the capacity of the system, i.e. how
many active or potentially active users the system can support. For any given system,
the capacity cannot be increased without compromising the blocking probability. The
more users in the system, the more likely a user’s call is to be blocked. Blocking

probability at a particular load can be used to determine the capacity of a scheme.

Usually cellular systems are required to have a blocking probability no more than
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2%: no more than 2% of all call requests shall be blocked even during the busiest
hour [4]. The maximum traffic load a system could provide without violating this
2% blocking standard can be used to evaluate the performance of channel assignment

algorithm. The formal definition of system capacity that we use is given bellow:

System Capacity = Max{l | Blocking probability(l) < 2%}

Fairness Index

Due to the fluctuation in the traffic and the geographic position in the network. the
users in different cells may experience different service quality. Fairness in service

quality is also of interest to us. We define the fairness inder as follows:

Mazimum Blocking Probability Over All Cells
Blocking Probability Averaged Over All Cells

Fairness Inder =

Note that the fairness index is always at least 1. The higher the fairness index
is, the more unfair the algorithm. A fairness index of one means an absolutely fair

channel assignment algorithm.

Channel Localization Index

In [17, 26], FCA has been shown to perform better than DCA when system load is
high and the reason is due to the trade-off between reusability and flexibility in using
channels. In FCA. all the red cells will always use the same set of red channels, all
the blue(green) will always use blue(green) channels. In DCA there is no limitation
on which channels to use. Any cell, no matter what the base color it has, can use
any channel as long as its not being used by its neighbors. In FPA, while all channels

are available to every cell in principle, different cells use channels in different orders.
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Therefore we can expect some kind of channel localization in practice. To study this

effect, we investigate patterns of locality in channel usage.

Because of the symmetry among different base colors, we investigated the channel
usage on red cells only and the results are expected to be similar to those on blue and

green cells. We define the channel localization index(CLI) of red cells as:

Number of Times Red Channels Have Been Used

100
Nurmber of Times Channels Have Been Used X

Channel Localization Inder =

A CLI of 100% means the algorithm never uses channels other than its own set of
channels. An algorithm with absolutely no preference on the channel’s color should

have a CLI of 33.3%.

5.3.4 Analytical Models

Despite considerable efforts [18. 33. 19. 29] in using analyvtical methods to analyze the
performance of some special classes of channel assignment algorithms. in general, it is
difficult to calculate the blocking probability directly from the above analytical models
for any reasonable size of system because of the large number of states. For example,
in a 30 channel, 49 cell system, there are 10*® different states and to calculate the
probability of each of these states becomes a formidable task. In this thesis we shall
construct queuing models of three channel assignment algorithms for a 3 cell cluster
as shown in Figure 5.4. and compare the analytical solutions with the simulation
results. The close match of the two data sets indicates that the simulation program

was working properly.

If the number of channels assigned to each cell is fixed, i.e. 10 channels per
cell, and every cell is subject to the same traffic pattern, it is enough to focus the

performance evaluation on only one cell.
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Figure 5.4: A three cell cluster
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Figure 5.5: State transition flow diagram—fixed channel assignment

The state transition flow diagram for fixed channel assignment is shown in Fig-
ure 5.5. New calls are coming in at rate A as long as the there are less than 10 calls in
the system. \When the system is full. arriving call requests are lost. The probability

of a call ending is proportional to the number of active calls in the system. These

can be expressed as:

\ A ifn < 10:
i 0 ifn>10.
npg if n < 10:
Hn =

10 if n > 10.

The solution can be obtained by substituting these coefficients into equations
( 5.2) and ( 5.3). Figure 5.6 shows the comparison of the analytical results derived

from the queuing model and the results of simulation carried out for all 3 cells in the

network.
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Figure 5.6: Fixed channel assignment:Simulation vs analytical

Dynamic Channel Assignment Algorithm

In the dynamic channel assignment algorithm. all the channels are put into a pool
and shared by all three cells. We can look at the three cell cluster as a single big
cell, as a call request in any of these three cells will be blocked if and only if all the
30 channels are being used by 30 calls in three cells. Similar to the case of fixed
channel assignment algorithm, we can model this system by a single queue in which

the coefficients can be described as follows:

3N if n < 30;
0 ifn>230.

np if n < 30;
30u if n > 30.

=
)
!

The state transition flow diagram for dynamic channel assignment is shown in
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Figure 5.7: State transition flow diagram—dynamic channel assignment

Figure 5.7.

Figure 5.8 shows the comparison of the analytical results derived from the queuing

model and the results of simulation carried out for all 3 cells in the network.
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Figure 5.8: Dynamic channel assignment:Simulation vs analytical

Fixed Preference Assignment Algorithm

Let the whole spectrum be divided into 3 subgroups Red, Blue and Green, each
consisting of 10 channels. When a new call request comes in, cell 1 searches for

available channel in all 3 subgroups following the order of Red-Blue-Green, cell 2
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Figure 5.9: State transition flow diagram—fixed preference channel assignment

follows the order of Blue-Green-Red. and cell 3 Green-Red-Blue.

Let ¢ be the number of red channels being used in all three cells. j be the number of
blue channels being used. and & be the number of green channels being used. The state
of the system therefore can be represented by a 3-tuple (i. j, k) where 0 < 7. j. & < 10.

The following coefficients describe the system:

A ifi<10.j <10k < 10:
2\ ifi<10,j < 10.k = 10; P_{iu if i < 10:
3\ ifi<10.j =10,k = 10; 10p ifi> 10:
0 ifi>10,j> 10.k> 10:

A ifi<10.j < 10,k < 10;

X ifi=10.j < 10.k < 10; jp o ifj < 10
3\ ifi=10,j < 10,k = 10; {10;1 if j > 10:
0 ifi>10,j> 10,k > 10;




r

A ifi<10.j<10.k < 10:

2\ ifi<10.j = 10.k < 10; ku  ifk < 10
P5=< P6=

3N ifi=10.j=10,k < 10: 10 if £ > 10;

0 ifi>10.5>10.k > 10:

\

Figure 5.10 shows the comparison of the analytical results derived from the queu-

ing model and the results of simulation carried out for all 3 cells in the network.
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Figure 5.10: Fixed preference channel assignment:Simulation vs analytical

As we can see from Figure 5.8 and Figure ??, in a 3-cell system, dynamic and fixed
preference channel assignment algorithms have exactly the same blocking probability
and both of them are better than fixed channel assignment algorithm. In fact, dy-
namic and fixed preference channel assignment algorithms are the optimal algorithms
because a call request is blocked if and only if all the channels are in use and no other

algorithm could do better in this situation.
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5.4 Experimental Results

5.4.1 Uniform Traffic

The comparison of performance of the three algorithms under uniform traffic in a
30 channel system has been done for system load increased from 10% to 100%. The

simulation is carried out for the 49 cell network and the results have been shown in

Figure 5.11.
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Figure 3.11: Blocking probability vs system load using uniform traffic model

As shown in Figure 5.11, all the algorithms have blocking probability of 0 until
the system load exceeds 30%. The FPA algorithm has the lowest blocking probability

among the three algorithms until system load reaches a very high level of 90%. When
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system load is above 90%. FCA has the lowest blocking probability while no algorithm
can achieve a blocking probability below 16%. which is considered to be too high for
phone services. Despite seeming to have the greatest flexibility in finding available
channels it has. the dynamic algorithm has only moderate performance when the
svstem load is below 35%, at which point it has a blocking probability of 3% and
after that it starts having higher blocking probability than other two algorithms by

2% to 5%.

System Capacity

As shown in Figure 5.11. at a blocking requirement of 2%. the FPA algorithm provides
the highest system load of about 61%. FCA and DCA have almost the same maximum

system load. which is about 10% lower than that of FPA.

Fairness

As we can see from Figure 5.12. under the uniform traffic pattern. FCA provides
the best fairness performance. This is of no surprise because every cell has the same
svstem load and same number of channels, the blocking probabilities are to be similar
over all cells in the system. The fairness performance of DCA and FPA are very poor
until the svstem load reaches 70%. \When system load level is above 70%. there is

very little difference among the three strategies.

Local Channel Usage

As we can see from Figure 5.13, the channel localization index (CLI) of FCA is always
100% as expected. The CLI of DCA drops from the initial 100% level rapidly as the

system load increases and finally stabilizes at about 40% level when system load
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Figure 5.12: Fairness index:Uniform traffic

exceeds 50%. The fact that DCA’s CLI is 40% shows that DCA is very close to the
expected behavior of an algorithm showing no preference between the channel sets.
which would have a CLI of 33%. A somewhat surprising observation is that the FPA
has shown a very strong locality in the use of channels. Despite its ability of using
any channel, FPA has a channel usage pattern that is very similar to FCA, in fact.
more than 98% of all channels it used are from its own set until the system load is
over 50%. After that, FPA still uses more than 80% from its own set of channels even

when the system load is approaching an extremely high level of 100%.
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Figure 5.13: Local channel usage

5.4.2 Non-Uniform Traffic

Blocking Probability

Under the non-uniform traffic pattern. while all the algorithms have higher blocking
probabilities, the existence of hot-spot cells has much more negative impact on the
FCA algorithm than other algorithms. The difference between FCA and other algo-
rithms becomes more obvious when the hot-spot cells have higher load compared to
normal cells. As we can see from Figures 5.14, 5.15, and 5.16, under the non-uniform
traffic pattern, the blocking probability of the three algorithms changes in a similar
manner as it does under the uniform traffic pattern. At low system load, FPA has the
lowest blocking probability while FCA's blocking probability is the highest. As the
system load increases, DCA’s blocking probability goes up at a higher speed than the

other two algorithms. However, despite the initial higher blocking probability, the
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Figure 5.14: Blocking probability vs system load using the non-uniform traffic model

increase of FCA's blocking probability is slower than other two algorithms and finally
becomes superior to other two algorithms. Although FCA will gradually outperform
DCA and FPA as the svstem load goes higher no matter how uneven the traffic is.
the speed of this changing process is greatly hampered by the variation in the traffic.
While FCA's blocking probability is the least sensitive to the increase of system load.
DCA and FPA have shown a better adaptability to the fluctuation in the traffic. In
particular, when hot-spot traffic is 4 times normal traffic load, FPA has the lowest

blocking probability for all loads.

System Capacity

When the blocking probability is set to be 2%, under the non-uniform traffic pattern,
the system capacity of FCA is much lower than other algorithms, especially compared

to FPA, the capacity of FCA is only about half of that of FPA. The comparison of
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Figure 5.15: Blocking probability vs system load using the non-uniform traffic model

svstem capacity under different traffic patterns is summarized in Table 5.1:

As we can see from Table 5.1. the system capacity of FCA drops dramatically
under the non-uniform traffic. When the load on a hot-spot cell is 4 times the load
on a normal cell. the system capacity of FCA drops for more than 30% from that
under the uniform traffic, which is much bigger than drops in DCA (13%) and FPA
(19%). If we want to keep the blocking probability at a relative low level (2%), FCA
no longer has the advantage it enjoys at high load level. FCA has the lowest system
capacity and the poorest adaptability to the fluctuation in the traffic. Although FPA
has always achieved the highest system capacity in our experiments, DCA’s system

capacity decreases the least with fluctuation in the traffic.
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Figure 5.16: Blocking probability vs system load using the non-uniform traffic model

Fairness

As we can see from Figure 5.17. 5.18, and 5.19. unlike under the uniform traffic. the
performance of FCA is no longer better than other algorithms when the traffic is
not uniform. Especially when the system load is higher than 50%. the fairness index
of FCA is higher than DCA by about 20 — 40%. The poor performance of FCA
is due to the fact that everyv cell gets the same number of channels and therefore
the blocking probability in hot-spot cells is much higher than that in normally loaded
cells. In DCA, a hot-spot cell gets more channels than any of its normal cell neighbors
because it has more calls competing for available channels. The flexibility in assigning

channels according to demands has contributed to the lowest fairness index of DCA.
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Traffic Pattern

System Capacity

Normal : Hot-spot || FCA | DCA | FPA
1:1 51% | 33% | 61%
1:2 1% | 50% | 60%
1:3 29% | 13% | 48%
1:4 20% | 40% | 42%

Table 5.1: System capacity under different traffic patterns

Local Channel Usage

As we can see from Figure 5.20. Figure 5.21. and Figure 5.22. the CLI of channel
assignment algorithms is not affected much by the fluctuation in the traffic distribu-
tion with one exception of FPA. Although the same as in the even traffic distribution
scenario, in terms of always using more than 80% from its own set of channels. FPA
starts to use channels outside its own set earlier. This can be explained as follows:
The higher demand in the hot spot cells makes such cells look for channels in its
neighborhood, i.e. outside its primary channel set. more frequently. When traffic is
low in the neighboring cells. this “borrowing” is more successful. However. when the
traffic load is high everywhere, a cell looking for a channel outside its primary set is

much less likely to be successful. In this way. a cell is ~“forced” to use only its primary

channels.
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Figure 5.20: Local channel usage
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Chapter 6

Conclusions and Future Work

In this thesis. we have shown upper and lower bounds for the competitive ratio of
a widely studied version of dynamic channel assignment. which we call the greedy
algorithm, for arbitrary reuse distance r. We studied both offline and online versions
of this algorithm. No channel reassignments are allowed in the online version. We
also proposed a new online algorithm for channel assignment, based on the concept

of preference lists. and proved a lower bound on its competitive ratio.

Our results show that for the offline case, the greedy algorithm is provably out-
performed by borrowing strategies for both reuse distance 2 and 3. For the online
case, there is a dearth of algorithms with proven bounds on the competitive ratio.
\While we showed bounds on the competitive ratio of the greedy algorithm without
channel reassignments for both reuse distance 2 and 3. these bounds are not tight.
Our results show that the greedy algorithm is at least as good as any other known
online algorithm without reassignments for reuse distance 2 and 3. Our results also
showed the fixed preference assignment algorithm to be a promising channel assign-

ment algorithm that does not perform reassignments.

It would be interesting to prove exact bounds on the competitive ratio of the online
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greedy algorithm without reassignment of channels for all values of reuse distance.
particularly r = 2 and 3. Finding other online algorithms that do not perform

reassignment is also an urgent area of research.

Our simulation experiments show that among three channel assignment algorithms
we studied, FA has the lowest blocking probability under heavy traffic load but the
highest under light traffic. FPA has a very low blocking probability except at a very
high level, while the greedy DCA algorithm never has the lowest blocking probability
for any traffic load. In terms of maximum system capacity at an acceptable level
of blocking probability. FPA has a great advantage over other two algorithmns. even
under extremely uneven traffic distributions. FCA has the lowest system capacity.
especially when the traffic distribution is uneven. The system capacity FCA provides
can be as low as less that half of that of FPA. While DCA provides moderate system
capacity, its advantage is that it has the best adaptability to variations in the traffic

load.

FCA's fairness index is the best onlyv under the unfair traffic pattern. which is to
be expected. DCA has the best fairness index, especially with uneven traffic and at
high loads. The difference between DCA’'s fairness index and other two algorithms
is not as big as expected and remains to be improved. One possible solution is to
incorporate a blocking probability feedback mechanism. \When a cell experiences a
high blocking probability. it can be scen as an indication of heavy traffic in the cell.
In order to get more channels to meet the demands, the heavy loaded cell will become
more aggressive in acquiring channels, which means the cell could reserve some unused
channels for future possible use. By the means of reservation, the hot-spot cells are
able to obtain more channels to use and therefore decrease their blocking probability
at the price of lower under-utilization of channels and increase in blocking probability

within surrounding moderately loaded cells.

The simulation results show that despite the ability to use any channel as in DCA,
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FPA has shown a very strong locality in channel use. Finding an analytical modeling

of this phenomenon would definitely help toward a theoretical analysis of FPA.
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