INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI

©
A Heat Exchanger by Using MFRD Transfer Heat from a Heat Source to a Heat Sink

Yuhua Huo

A Thesis
in
the Department
of
Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

March 2002

© Yuhua Huo, 2002
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
ABSTRACT

The dimensional and dimensionless model formulating the melting and freezing processes in the melting and freezing rotating device (MFRD) are presented. The heat transfer process between the two concentric cylinders with $D/r_0 < 0.01$ may be considered as that between two parallel plates with a distance of D between them. The theoretical analysis about solidification or melting of a slab at a constant boundary temperature, which is greater or lower than the melting point, is conducted. The theoretical and numerical analysis of the Quasi-Steady state with the moving phase boundaries of the melting and freezing processes in the dimensionless system are performed. Moreover, the properties in MFRD are analyzed. The use of MFRD in the aerospace is discussed.
ACKNOWLEDGEMENTS

The Master thesis “A Heat Exchanger by Using MFRD Transfer Heat from a Heat Source to a Heat Sink” is supervised by Dr. Sui Lin and co-supervised by Dr. Georgios H. Vatistas and is completed by Yuhua Huo.

I would first like to express my sincere gratitude to my supervisor Prof. Lin Sui for his advice, constant guidance and support throughout my graduate studies and for providing the opportunity, the environment and the resources to carry out this research. Without his supervision and support, I couldn’t finish this thesis. I also would like to sincerely thank my supervisor Prof. Georgios H. Vatistas for his guidance and his help.

Many thanks to Dr. Tzu-Fang Chen in the Dept. of Mechanical & Industrial Engineering for his technical discussion concerns my thesis.
TABLE OF CONTENT

LIST OF FIGURES---viii
NOMENCLATURES---ix

CHAPTER 1
Introduction of MFRD

1.1 Literature Survey --1
1.2 Introduction of Solid-Liquid Phase-Change Heat Transfer -------------------2
1.3 Introduction of the melting and freezing rotating device (MFRD) --------- 3
1.3.1 The reasons to develop the MFRD --3
1.3.2 Introduction of MFRD ---4
CHAPTER 2
The Mathematical Analysis of Melting-Freezing Rotating Device

2.1 Mathematical Formulation of the Melting-Freezing Rotating Device 7

2.2 Dimensional Mathematical Equations Describing the Melting\Freezing Process
8

2.3 Solution for the Case of Very Small Value D/r_o 11

2.4 Determination of Design Parameters 18

2.5 Dimensionless Mathematical Equations Describing the Melting\Freezing Process 23

CHAPTER 3
The Analysis of Properties in MFRD

3.1 The Analysis of Dimensionless Heat Transfer W 31

3.1.1 The Definition of Dimensionless Heat Transfer W 31

3.1.2 The Analysis of the results 33

3.2 The Extreme Value Analysis of the Phase Front Velocity 38

3.3 Theoretical Results Shown in the Diagram in the MFRD 40

3.4 Numerical Results Shown in the Diagram in the MFRD 45
LIST OF FIGURES

Fig.1.1 Schematic diagram of a melting-freezing rotating device 6

Fig 2.1 Schematic diagram of a melting process between two concentric cylinders without rotation and between two corresponding parallel plates. R(t) and S(t) represent the locations of the phase boundary 21

Fig 2.2 Dimensionless constants Pm and Pf as the function of Stefan number 22

Fig 3.1a Schematic diagram of the relationship between W and r^* 36

Fig 3.1b Schematic diagram of the relationship between W and r^* 37

Fig.3.2 The relationship of $\frac{dR^*}{dt}$ with R^* 39

Fig.3.3a Schematic diagram of melting-freezing fronts with inner radius of 0.3679 49

Fig. 3.3b The MFRD with the inner radius of 0.3679 42

Fig 3.4a Schematic diagram of melting-freezing fronts with the inner radius of zero 43

Fig 3.4b The MFRD of melting-freezing fronts with the inner radius of zero 44

Fig 3.5 Schematic diagram of melting-freezing fronts with the inner radius of 0.3679 46

Fig 3.6 Schematic diagram of melting-freezing fronts with the inner radius of zero 47
NOMENCLATURES

MFRD Melting – freezing rotating device
PCM The phase change material
erf() Error function
L The latent heat of solidification (J/Kg)
c The specific heat of the PCM (J/Kg K)
α Rotating angle of MFRD
θ Region of the melting process
n Angular velocity n of melting-freezing rotating device (MFRD)
 (rps / sec)
r_i The radii of inner cylinder (m)
r_o The radii of outer cylinder (m)
r Cylindrical coordinate (m)
x orthogonal coordinate for plate case (m)
t Time (s)
Th The temperatures of heat source of MFRD (°C)
Tc The temperatures of heat sink of MFRD (°C)
Ts The temperature of solidification of phase change material (°C)
R(t) Position of the phase front (m)
$S(t)$ Position of phase front in plate case (m)

D The distance between two parallel plates (m)

S_T Stefan number defined by equation

L_m The effective latent heats for the melting process (J/Kg)

c_m The specific heat of the PCM in melting phase (J/Kg K)

a_m Thermal diffusivity of melting phase $a_m = \frac{K_m}{\rho_m C_m}$ (m2/s)

K_m Thermal conductivity of PCM in melting phase (W/K-m)

T_m The temperature of PCM in melting phase (K)

ρ_m The density of PCM in melting phase (Kg/m3)

S_{Tm} Stefan number for the melting process defined by equation

$r_m(t)$ Position of melting front (m)

P_m Dimensionless constant defined by equation (2.36)

L_f The effective latent heats for the freezing process (J/Kg)

c_f The specific heat of the PCM in freezing phase (J/Kg K)

a_f Thermal diffusivity of freezing phase $a_f = \frac{K_f}{\rho_f C_f}$ (m2/s)

K_f Thermal conductivity of PCM in freezing phase (W/K-m)

T_f The temperature of PCM in freezing phase (K)

ρ_f The density of PCM in freezing phase (Kg/m3)

S_{Tf} Stefan number for the melting process defined by equation

$r_f(t)$ Position of freezing front (m)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_f</td>
<td>Dimensionless constant defined by equation (2.41)</td>
</tr>
<tr>
<td>W</td>
<td>The dimensionless heat transfer per unit time per unit length in longitudinal direction</td>
</tr>
<tr>
<td>Q</td>
<td>The heat transfer per unit length in the longitudinal direction (J/m)</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction of the melting and freezing rotating device (MFRD)

1.1 Literature Survey

Condensation of vapors and the evaporation and boiling of liquids are commonplace in power and process engineering. Condensation processes require that the enthalpy of phase change be removed to a coolant, and evaporation and boiling processes require that this enthalpy be supplied from an energy source. Since the enthalpy of phase change is relatively large, the associated heat transfer rates are also usually large. In most industrial processes, the vapor and liquid phases both flow through a heat exchanger [1]. Thus, the heat transfer to the phase interface is essentially a convective process, but it is often complicated by an irregular interface, for example, bubbles or drops [2].

Melting of solids and freezing of liquids are not used in industrial heat transfer processes, because the solid phase cannot flow through a heat exchanger. However, thermal energy storage systems use liquid-solid phase change for its ease of implementation. For example, a phase-change material (PCM) can be incorporated into
the walls of an outdoor telecommunication enclosure. The PCM absorbs excess thermal energy during the peak solar heating period by changing the solid phase to the liquid phase, and discharges the excess heat at the other time. The alternating absorbing and discharging of heat is the characteristic of the thermal energy storage system.

Recent research works in the phase change energy storage systems were conducted, for example, they are listed in References [3] to [20]. It appears that no research work is available in the literature for a heat exchanger utilizing melting and freezing of a PCM to transfer heat continuously from a heat source to a heat sink.

1.2 Introduction of Solid-Liquid Phase-Change Heat Transfer

Solid-Liquid Phase-Change (melting or solidification) heat transfer phenomena are accompanied by a phase transformation of the medium and by either absorption or release of thermal energy in the active zone. The energy absorbed or released from the surrounding system is commonly transferred by conduction or convection. The essential and common features of systems undergoing solid-liquid phase-change heat transfer are that an interface exists separating two regions of differing thermophysical properties and that a moving surface exists which separates the two phases and at which energy is absorbed or liberated.

One of the largest applications for phase-change materials (PCMs) is in passive
solar building, requiring a material melting at or just above room temperature. It also is used in metal casting, welding, coating [21].

1.3 Introduction of MFRD

1.3.1 The reasons to develop the MFRD

In aerospace, some design problems still exist by using normal thermal design method. These problems are:

1) Small satellites don’t have enough areas in the outer panels to release the extra heat because of the decline of solar absorptivity at the end of life of the satellites (EOL).

2) Normal thermal design methods are difficult to deal with the instruments with irregular, instant and large heat generations.

3) It is not flexible to handle the changeable heat generations.

MFRD is developed to solve these problems easily.

Also by using normal thermal design methods in aerospace, it is very complicated. For example, we have to know the view factor of direct solar heating, albedo and planet radiations. We have to know the precise heat generations and thermal properties for every instrument. We have to finish thermal calculation according to the precise conditions. It is time consuming. However, MFRD can simplify the thermal design. The most important part for MFRD application is choosing the suitable PCM material according to the
precise conditions.

1.3.2 Introduction of MFRD

Recently, Dr. Lin and Dr. Chen developed a physical model describing the melting
and freezing processes taking place in the melting and freezing rotating device (MFRD)
[1]. The present study is based on the model presented in [1].

The principle of MFRD is based on the Solid-Liquid Phase-Change Heat Transfer.

Heat transfer using melting and freezing of a phase change material is usually
applied to stationary energy storage systems. For example, PCMs may be incorporated in
the building envelope to achieve latent heat storage. The PCM absorbs excess thermal
energy during the peak solar heating period, by changing the solid phase to the liquid
phase, and discharges the excess heat at the other time. However, it appears that no
research work is available in the literature for a heat exchanger utilizing melting and
freezing of a PCM to transfer heat continuously from a heat source to a heat sink. The
PCMs have been little used in the space technology, specifically, in the thermal control
subsystem of satellites.

In order to utilize melting and freezing of a PCM to transfer heat continuously from
a heat source to a heat sink, a Melting-Freezing Rotating Device (MFRD) is proposed. The
device consists of two concentric cylinders with a PCM filled between them. It rotates
between the heat source and the heat sink. The PCM absorbs heat from the heat source, by
changing the solid phase to the liquid phase, and discharges the heat to the heat sink, by
changing the liquid phase to the solid phase. The cyclic melting and freezing processes transfer heat continuously from the heat source to the heat sink. Thus, the MFRD can be used in the spinning satellites to keep the temperature of modules in the limited variation.

The advantage of the MFRD is that the PCM in the device has a large latent heat of solidification, which allows for a small size of the device with a high heat transfer capacity. It will be shown later that the device possesses a good capability of maintaining the design condition by regulating the rotating speed of the device when the amount of heat to be transferred from the heat source varies.

From the literature survey, we can see that the MFRD is the first device utilizing melting and freezing of a PCM to transfer heat continuously from a heat source to a heat sink.

Figure 1.1 shows a schematic diagram of the MFRD. During the rotation of the device, the outer cylinder is in contacts with the heat source with a rotating angle of \(\alpha \) between 0 and \(\theta \), \(0<\alpha<\theta \). Further assumptions are made that the surface temperature of the outer cylinder in this region is equal to the temperature of the heat source, \(T_h \), which is higher than the solidification temperature of the phase change material, \(T_s \). Therefore, a melting process takes place in the region of \(0<\alpha<\theta \). The outer cylinder is also in contacts with a coolant in the region of \(\theta<\alpha<2\pi \), and its surface temperature is equal to the coolant temperature, \(T_c \), which is lower than \(T_s \). As a result, the freezing process takes place in the region of \(\theta<\alpha<2\pi \).
Fig 1.1 Schematic diagram of a melting-freezing rotating device
CHAPTER 2

The Mathematical Analysis of Melting-Freezing Rotating Device

2.1 Mathematical Formulation of the Melting-Freezing Rotating Device

The MFRD used to transfer heat from a heat source to a heat sink consists of two concentric cylinders with a PCM filled between them. Figure 1.1 shows a schematic diagram of the MFRD. The inner and outer cylinders have radii of r_i and r_o, respectively. The device rotates with a rotating speed of n rps. The cylinder walls are considered to be very thin and their thermal conductivities are very large, therefore, for thermal analysis, the wall thickness may be neglected.

In order to simplify the analysis, the concept of the effective latent heats, L_m and L_f, for the melting and freezing processes, respectively, is introduced. The effective latent heat includes the latent heat and the sensible heat below or above the solidification temperature of the phase change material for the melting or freezing process, respectively, as follows:
\[L_m = L + c_f (T_s - T_c) / 2 \] \hspace{1cm} (2.1)

\[L_f = L + c_m (T_h - T_s) / 2 \] \hspace{1cm} (2.2)

Where \(L \) is the latent heat of solidification and \(c \) is the specific heat of the phase change material. The subscripts, \(m \) and \(f \), refer to the melting and freezing processes, respectively.

The introduction of the effective latent heats, \(L_m \) and \(L_f \), simplifies the temperature distribution at the beginning of the melting or freezing process with a constant solidification temperature, \(T_s \). Further assumption is made that, during the melting or freezing process, the thermal properties of the phase change material, in each phase, are constant, that advection is absent (i.e., the liquid is quiescent) and there is no density change across the phase boundary.

2.2 Dimensional Mathematical Equations Describing the Melting \Freezing Process

The formulation of the melting and freezing processes starts with a time transformation,

\[t = \frac{\alpha}{(2\pi n)} \] \hspace{1cm} (2.3)
For example, if $\theta = \pi$, then the times required for the complete melting and freezing processes per rotation of the device are:

$$t_m = \frac{\theta}{2\pi n} = \frac{1}{2n}$$ \hspace{1cm} (2.4)

and

$$t_\beta = \frac{2\pi - \theta}{2\pi n} = \frac{1}{2n}$$ \hspace{1cm} (2.5)

The governing equation describing the melting/freezing process between the two cylinders is:

$$\frac{1}{a} \frac{\partial T(r,t)}{\partial t} = \frac{\partial^3 T}{\partial r^3} + \frac{1}{r} \frac{\partial T}{\partial r}$$ \hspace{1cm} (2.6a)

For the melting process, it can be written:

$$\frac{\partial T_m(r,t)}{\partial t} = \frac{a_m}{r} \frac{\partial}{\partial r} \left[r \frac{\partial T_m(r,t)}{\partial r} \right] \quad R_m(t) < r < r_0, \hspace{1cm} (2.6b)$$

Where the subscript m refers to the melting process, a_m is the thermal diffusivity of the melting phase, and $R_m(t)$ is the location of the phase front. The boundary conditions and the energy balance at the phase front $R_m(t)$ can be expressed as:
\[T_m(r_o, t) = T_h \] \hspace{1cm} (2.7)

\[T_m(R_m(t), t) = T_s \] \hspace{1cm} (2.8)

and

\[-k_m \frac{\partial T_m(R_m(t), t)}{\partial r} = \rho L_m \left(\frac{dR_m(t)}{dt} \right) \] \hspace{1cm} (2.9)

Where \(k_m \) is the thermal conductivity of the melting phase and \(\rho \) is the density. The initial conditions for the temperature and the location of the phase boundary can be written as:

\[T_m(r, 0) = T_s \] \hspace{1cm} (2.10)

and

\[R_m(t=0) = r_o \] \hspace{1cm} (2.11)

The freezing process starts from the angle of \(\theta \) and ends at the angle of \(2\pi \), as shown in Figure 1.1. The system of equations describes the freezing process similar to that of the melting process presented through equations (2.6b) to (2.11) as follows:

\[\frac{1}{a_f} \frac{\partial T_f(r, t)}{\partial t} = \frac{\partial T_f^2}{\partial r^2} + \frac{1}{r} \frac{\partial T_f}{\partial r} \]
\[
\frac{\partial T_f(r,t)}{\partial t} = \frac{a_f}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T_f(r,t)}{\partial t} \right) \quad R_f(t) < r < r_0
\]

(2.12)

and

\[
T_f(r_0,t) = T_c
\]

(2.13)

\[
T_f(R_f(t),t) = T_i
\]

(2.14)

\[
k_f \frac{\partial T_f(R_f(t),t)}{\partial r} = \rho_f L_f \left(\frac{dR_f(t)}{dt} \right)
\]

(2.15)

\[
T_f(r,t=0) = T_i
\]

(2.16)

\[
R_f(t=0) = r_0
\]

(2.17)

However, no exact analytical solutions exist for the equations (2.6b) – (2.11) or (2.12) – (2.17).

2.3 Solution for the Case of Very Small Value D/r_o

If the space between the two cylinders, \(D = r_o - r_i\), is very small in comparison with the radius \(r_o\), the melting and freezing processes taking place between the two concentric cylinders of the MFRD can be presented as those taking place between the two plates. This
problem becomes the issue of solidification or melting of a slab at a constant boundary temperature, which is greater or lower than the melting point. It simplifies the thermal model and the theoretical solution can be obtained.

In this section, the effect of the very small geometrical ratio D/r_0 on the heat conduction equation in the orthogonal coordinate is considered. For the purpose of simplicity, it is assumed that the boundary condition at the inner cylinder wall is insulated.

For the purpose of comparing the magnitudes of the two terms on the right-hand side of equation (2.6a), the method of scale analysis [22] is used. The first term represents the curvature of the temperature distribution in the r direction. The curvature represents the change in the slope,

$$\frac{\partial^2 T}{\partial r^2} \sim \frac{\left(\frac{\partial T}{\partial r}\right)_{r=r_0} - \left(\frac{\partial T}{\partial r}\right)_{r=r_i}}{r_0 - r_i}$$

(2.18)

in which the sign \sim means "is of the same order of magnitude as". With

$$\left(\frac{\partial T}{\partial r}\right)_{r=r_0} \sim \frac{\Delta T}{r_0 - r_i}.$$

(2.19)

and

$$\left(\frac{\partial T}{\partial r}\right)_{r=r_i} = 0 \qquad r_0 - r_i = D$$

(2.20)
the curvature becomes:

\[\frac{\partial^2 T}{\partial r^2} \sim \frac{\Delta T}{D^2} \]

(2.21)

The second term can be expressed as:

\[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\partial T}{\partial r} \right) \sim \frac{\Delta T}{r_o D} \]

(2.22)

The ratio of equation (2.22) to equation (2.21) yields

\[\frac{\frac{1}{r} \frac{\partial T}{\partial r}}{\frac{\partial^2 T}{\partial r^2}} \sim \frac{D}{r_o} \]

(2.23)

A very small value of \(D/r_o \), for example, \(D/r_o < 0.01 \), means that the second term is negligible small in comparison with the first term. Equation (2.6a) then becomes:

\[\frac{1}{a} \frac{\partial T(r,t)}{\partial t} = \frac{\partial^3 T}{\partial r^2} \]

(2.24)
It can be seen that the heat transfer process between the two concentric cylinders with $D/r_0 < 0.01$ may be considered as that between two parallel plates with a distance of D between them.

The previous equations can be easily transformed into the orthogonal coordinate. Figure 2.1 shows a schematic diagram of a melting process between the two corresponding parallel plates. $S(t)$ represents the locations of the phrase boundary at which the temperature is equal to the solidification temperature T_s.

A space coordinate transformation is as follows:

\begin{equation}
 x = r_0 - r
\end{equation}

\begin{equation}
 x = 0 \quad \text{at} \quad r = r_0
\end{equation}

\begin{equation}
 x = D \quad \text{at} \quad r = r_i
\end{equation}

\begin{equation}
 x = S(t) \quad \text{at} \quad r = R(t)
\end{equation}

$S(t)$ is the location of the phase front corresponding to $R(t)$.

The problem now is that in which the region $x > 0$ is initially solid at temperature T_s, and for which $t > 0$ the plane $x = 0$ is maintained at constant temperature $T_h > T_s$.

For the melting phrase, the equation (2.24) can be written as:

\begin{equation}
 \frac{1}{a_m} \frac{\partial T_m(x,t)}{\partial t} = \frac{\partial^2 T_m(x,t)}{\partial x^2} \quad 0 < x < S(t)
\end{equation}
The boundary conditions and the energy balance at the phase front can be expressed as:

\[T_m(0,t) = T_h \] \hspace{1cm} (2.30)

\[T_m(S(t),t) = T_s \] \hspace{1cm} (2.31)

\[-k_m \frac{\partial T_m(S(t),t)}{\partial x} = \rho c_p \frac{dS(t)}{dt} \] \hspace{1cm} (2.32)

The initial conditions for the temperature and location of the phase boundary can be written as:

\[T_m(x,0) = T_i \] \hspace{1cm} (2.33)

\[S(t = 0) = 0 \] \hspace{1cm} (2.34)

The exact solution of the above system of equations (2.29) to (2.34) is the well known Neumann’s solution [23] which can be expressed as:
\[T_m(x,t) = T_h - \frac{(T_h - T_c)}{\text{erf}(P_m)} \text{erf}\left(\frac{x}{\sqrt{4a_m t}}\right) \]

(2.35)

Where \text{erf}(\cdot) is the error function and \(p_m \) is a numerical constant defined by

\[S_m(t) = P_m \sqrt{4a_m t} \]

(2.36)

The constant of \(p_m \) is determined from equation (2.32) as follows:

\[\sqrt{\pi} P_m \exp(P_m^2) \text{erf}(P_m) = S_{tm} \]

(2.37)

Where \(S_{tm} \) is the Stefan number for the melting process defined by:

\[S_{tm} = \frac{C_m}{L_m} (T_h - T_c) \]

(2.38)

The maximum location of the moving phase front is the space \(D \) between the two concentric cylinders. The time required for \(R_m(tmD) = r_c \) in the melting process is given from equation (2.36) as follows:

\[t_{mi} = \frac{D^2}{4a_m P_m^2} \]

(2.39)
The freezing process starts from the angle of θ and ends at the angle of 2π, as shown in Figure 1.1. The system of equations describes the freezing process is the same as that describes the melting process, except that no minus sign in equation (2.32), that the subscript \(m \) is replaced by \(f \) referring to the solid phase in the freezing process, and that the heat source temperature, \(T_h \), in equation (2.30) is changed to the coolant temperature, \(T_c \).

The exact Neumann’s solution for the freezing process is:

\[
T_f(x,t) = T_c + \frac{(T_s - T_c)}{\text{erf}(P_f)} \text{erf}\left(\frac{x}{\sqrt{4a_f t}}\right)
\]

(2.40)

\(P_r \) is a dimensionless constant defined by

\[
S_f(t) = P_r \sqrt{4a_f t}
\]

(2.41)

The value of \(P_r \) is determined from equation (2.32) with the change of the subscript \(m \) to \(s \) and without the minus sign.

\[
\sqrt{\pi} P_f \exp(P_f^2) \text{erf}(P_f) = S_{hf}
\]

(2.42)

Where \(S_{hf} \) is the Stefan number for the freezing process defined by:
\[S_{\eta} = \frac{C_l}{L_f} (T_i - T_c) \quad (2.43) \]

The maximum location of the moving phase front is the space between the two concentric cylinders, D. The time required for \(S(t_{\eta}) = D \) in the freezing process is given from equation (2.41).

\[t_{\eta} = \frac{D^2}{4a_f P_f^2} \quad (2.44) \]

Obviously, equation (2.37) and (2.42) are identical, except the subscripts. So the two equations can be plotted together in one diagram as shown in Figure 2.2.

2.4 Determination of Design Parameters

The design parameters involve in the MFRD are the rotating speed of the device, n, the radius of the outer cylinder, \(r_o \), the space between the two concentric cylinders, D, and the contact angle between the outer cylinder and the heat source during the melting process, \(\theta \). These parameters need to be determined from the analysis.

The design parameters, \(\theta \), D, n, and \(r_o \), are determined as follows:

Step 1. Determination of \(p_w \) and \(p_f \).
Calculate the Stefan numbers, $S\tilde{m}$ and $S\tilde{n}$, from equations (2.38) and (2.43), respectively, and determine the dimensionless constants, p_f and p_m, from Figure 2.2.

Step 2. Determination of θ:

Eliminating D from equations (2.39) and (2.44) gives:

$$\frac{t_{ml}}{t_{fl}} = \frac{\alpha_f P_f^2}{\alpha_m P_m^2}$$ \hspace{1cm} (2.45)

From geometrical point of view, as shown in Figure 1.1, the time ratio presented in equation (2.45) can also be expressed as:

$$\frac{t_{ml}}{t_{fl}} = \frac{\theta}{2\pi - \theta}$$ \hspace{1cm} (2.46)

Eliminating the time ratio from equations (2.45) and (2.46), the angle, θ, representing the region of the melting process, is obtained as:

$$\theta = \frac{2\pi}{1 + \frac{a_m}{a_f} \left(\frac{P_m}{P_f}\right)^2}$$ \hspace{1cm} (2.47)

Step 3. Determination of $D^2 n$

The rotating time of the device for the melting process can be calculated by:
\[t_{mn} = \frac{\theta}{2\pi n} \] \hspace{2cm} (2.48)

Elimination of the time, \(t_{mn} \), from equations (2.39) and (2.48), gives the combination of the two design parameters, \(D \) and \(n \).

\[D^2 n = \frac{2a_m P_m^2 \theta}{\pi} \] \hspace{2cm} (2.49)

Step 4. Determination of \(D/r_0 \):
The radius of the outer cylinder, \(r_0 \), is determined from the amount of the heat to be transferred from the heat source to heat sink as follows.

\[r_0 = \frac{q}{\rho L_m \theta D n} \] \hspace{2cm} (2.50)

Eliminating the rotating speed of the device, \(n \), from equations (2.49) and (2.50), yields the geometric ratio of the device,

\[\frac{D}{r_0} = 2a_m P_m^2 \rho L_m \theta^2 / (\pi q) \] \hspace{2cm} (2.51)
Figure 2.1 Schematic diagram of a melting process between two concentric cylinders without rotation and between two corresponding parallel plates. $R(t)$ and $S(t)$ represent the locations of the phase boundary.
Fig 2.2 Dimensionless constants P_m and P_f as the function of Stefan number [1]
2.5 Dimensionless Mathematical Equations Describing the Melting \ Freezing Process

The equations formulating the melting and freezing processes in the MFRD are also transformed to a dimensionless form. In this section, the dimensionless parameters governing the phase-change heat transfer are presented. The dimensionless parameters, which delineate the heat transfer regimes, evolve from the transformation of the basic equations to a dimensionless form.

In the dimensionless form, variables are organized into groups, which can be considered as new variables. These new variables will be fewer in number because of their grouping. Therefore, fewer data are needed to determine relationships, and the problem of data presentation is simplified. This is the advantage of the dimensionless analysis. In order to obtain an analytical solution of the dimensionless equations, the quasi-steady approximation is utilized.

For the purpose of simplifying the analysis, the following dimensionless parameters are introduced:

\[
T_{m}^{*} = \frac{T_{m} - T_{s}}{T_{h} - T_{s}},
\]

(2.52)
\[T_j^* = \frac{T_{f} - T_s}{T_c - T_s} \] \hfill (2.53)

\[\tau^* = \frac{a_m \tau}{r_0^2} \] \hfill (2.54)

\[n^* = \frac{nr_0^2}{a_m} \] \hfill (2.55)

\[r^* = \frac{r}{r_0} \] \hfill (2.56)

\[r_i^* = \frac{r_i}{r_0} \] \hfill (2.57)

and

\[r_0^* = 1 \] \hfill (2.58)

\[R_m^*(\tau^*) = \frac{R_m(t)}{r_0} \] \hfill (2.59)

\[R_j^*(\tau^*) = \frac{R_j(t)}{r_0} \] \hfill (2.60)
\[S_{T_m} = \frac{C_m}{L_m} (T_h - T_i) \]
(2.61)

\[S_{\eta^*} = \frac{a_f C_f}{a_m L_f} (T_i - T_c) \]
(2.62)

Where \(S_{T_m} \) and \(S_{\eta^*} \) are the Stefan number. With the relations of equations (2.54) and (2.55), equations (2.3) to (2.5) can be written as:

\[t^* = \frac{\alpha}{2 \eta^*} \]
(2.63a)

and if \(\theta = \pi \):

\[t_i^* = t_{mu}^* = t_{fi}^* = \frac{1}{2 \eta^*} \]
(2.63b)

With the above dimensionless parameters, equations (2.6b) to (2.11) for the melting process and equations (2.12) to (2.17) for the freezing process become dimensionless as follows:

The melting process:

\[\frac{\partial T_m^*}{\partial t^*} = \frac{1}{r^*} \frac{\partial}{\partial r^*} \left(r^* \frac{\partial T_m^*}{\partial r^*} \right) \]
(2.64)

\[T_m^*(1, t^*) = 1 \]
(2.65)
\[T_m^*(R_m^*(t^*), t^*) = 0 \] (2.66)

and

\[-S_{\eta m} \frac{\partial T_m^*(R_m^*(t^*), t^*)}{\partial r^*} = \frac{dR_m^*(t^*)}{dt^*} \] (2.67)

\[T_m^*(r^*, t^*) = 0 \] (2.68)

\[R_m^*(t^*) = 0 \] (2.69)

The freezing process:

\[\frac{\partial T_f^*}{\partial t^*} = a_f \frac{1}{a_m} \frac{\partial}{\partial r^*} (r^* \frac{\partial T_f^*}{\partial r^*}) \] (2.70)

and

\[T_f^*(1, t^*) = 0 \] (2.71)

\[T_f^*(R_f^*(t^*), t^*) = 1 \] (2.72)

\[-S_{\eta f} \frac{\partial T_f^*(R_f^*(t^*), t^*)}{\partial r^*} = \frac{dR_f(t^*)}{dt^*} \] (2.73)
\[T_f^* (r^*, t^* = 0) = 1 \] \hspace{1cm} (2.74)

\[R_f^* (r^* = 0) = 1 \] \hspace{1cm} (2.75)

Since the phase front moves relatively slowly, an assumption can be made that the moving phase front does not have a major inference on the temperature distribution during a short period of time. Thus, the quasi-steady approximation may be applied for equations (2.64) and (2.70) to yield:

for the melting process:

\[\frac{\partial}{\partial r^*} (r^* \frac{\partial T_m^* (r^*, t^*)}{\partial r^*}) = 0 \] \hspace{1cm} (2.76)

and for the freezing process:

\[\frac{\partial}{\partial r^*} (r^* \frac{\partial T_f^* (r^*, t^*)}{\partial r^*}) = 0 \] \hspace{1cm} (2.77)

The solution of equation (2.76) with the boundary conditions, equations (2.65) and (2.66), is:
\[T_m^* = 1 - \frac{\ln r^*}{\ln R_m^*} \quad (2.78) \]

Substitution of equation (2.78) into equation (2.67) gives:

\[\frac{dR_m^*}{dt^*} = \frac{S_m}{R_m^* \ln R_m^*} \quad (2.79) \]

Integration of equation (2.79) with initial condition, equation (2.69), yields:

\[R_m^{*2} \ln R_m^* - \frac{1}{2} (R_m^{*2} - 1) = 2S_{fm} t^* \quad (2.80) \]

At the end of the melting process, \(R_m = r_i \), the time required is equal to \(t_i \).

Equation (2.80) becomes:

\[r_i^{*2} \ln r_i^* - \frac{1}{2} (r_i^{*2} - 1) = 2S_{fm} t_i^* \quad (2.81) \]

The solution of equation (2.77) with the boundary conditions, equations (2.71) and (2.72), is:

\[T_j^* = \frac{\ln(r_j^*)}{\ln(R_j^*)} \quad (2.82) \]
Substitution equation (2.82) into equation (2.73) gives:

\[
\frac{dR^*_f}{dt^*} = S \frac{R^*}{R^*_f \ln R^*_f}
\]

(2.83)

Integration of equation (2.83) with initial condition, equation (2.75) yields:

\[
R^*_f \ln R^*_f - \frac{1}{2} (R^*_f^2 - 1) = 2 S \tau^* t^*
\]

(2.84)

At the end of the freezing process, \(R^*_f = r^*_f \), the time required is equal to be \(t^* \).

Equation (2.84) becomes:

\[
r^*_f \ln r^*_f - \frac{1}{2} (r^*_f^2 - 1) = 2 S \tau^* t^*_f
\]

(2.85)

If \(\theta = \pi \), comparison of equation (2.81) with equation (2.85) indicates:

\[
S_{Tm} = S_{Tf}
\]

(2.86)

Comparing the equation (2.80) and equation (2.84) gives:
It can be seen that equations (2.80) to (2.81) are identical to equations (2.84) to (2.85). This means that the moving phase boundaries of the melting and freezing process taking place in the MFRD are identical to each other. The only exception is that the melting process starts at $\alpha = 0$ and ends at $\alpha = \pi$, and that the freezing process starts at $\alpha = \pi$ and ends at $\alpha = 2\pi$. Therefore, the subscripts m and f are omitted in the equations of the following discussion.
CHAPTER 3

The Analysis of Properties in MFRD

3.1 The Analysis of Dimensionless Heat Transfer W

3.1.1 The Definition of Dimensionless Heat Transfer W

In this section, the contact angle of heat source or heat sink $\theta = \pi$ and the unit length in the longitudinal direction are assumed.

The heat transfer per unit length in the longitudinal direction is:

$$Q = \frac{\pi}{2} (r_0^2 - r_i^2) \times 1 \times \rho L$$ \hspace{1cm} (3.1)

The expression $\left(\frac{\pi}{2} (r_0^2 - r_i^2) \times 1 \right)$ means the volume of the PCM melting or freezing phrase.

The time required for $R = r_i$ in melting/freezing process as shown in the equations (2.81) or (2.85).
\[r_i^{*2} \ln r_i^{*} - \frac{1}{2} (r_i^{*2} - 1) = 2S_t t_i^{*} \]

For the melting process, it can be written as follows:

\[r_i^{*2} \ln r_i^{*} - \frac{1}{2} (r_i^{*2} - 1) = 2S_{rm} \frac{a_m f_i}{r_0^2} \tag{3.2} \]

It can also be written for the melting process as follows:

\[t_i = \frac{r_i^{*2} \ln r_i^{*} - \frac{1}{2} (r_i^{*2} - 1)}{2a_m \times c_m (T_h - T_s) / L_m} \times r_0^2 \tag{3.3} \]

Define the dimensionless heat transfer per unit time per unit length in the longitudinal direction as \(W \).

\[W = \frac{Q}{t \times k_m \times (T_h - T_s)} \tag{3.4} \]

By using equation (3.1) and (3.3), equation (3.4) becomes:
\[W = \frac{\pi (1 - r_i^{*2})}{r_i^{*2} \times \ln r_i^* + \frac{1}{2} (1 - r_i^{*2})} \]

(3.5)

Figure 3.1a and Figure 3.1b illustrate the relationship between \(W \) and \(r_i^* \).

3.1.2 The Analysis of the results

Figure 3.1a and Figure 3.1b illustrate some properties.

1) The \(W \) of MFRD is constant while \(r_i^* \) is infinitesimal

When \(r_i^* \to 0 \), we have:

\[
\lim_{\varepsilon \to 0} (r_i^{*2} \times \ln r_i^*) = \lim_{\varepsilon \to 0} \left(\frac{\ln r_i^*}{r_i^{*2}} \right)
\]

\[
= \lim_{\varepsilon \to 0} \left(\frac{1}{2r_i} \right)
\]

\[
= \lim_{\varepsilon \to 0} \left(\frac{1}{r_i^{*2}} \right)
\]

\[
= 0
\]

(3.6)

Thus, from equation (3.5) and by using equation (3.6), the equation (3.7) can be obtained:

\[
\lim_{r_i \to 0} W = 2\pi
\]

(3.7)

33
This shows W is always a constant number in the cylinder ($r_i^* \approx 0$).

Fig 3.1a illustrates this character very clearly. The constant number is 2π.

2) The velocity of W with the changing of r_i^*

Take the limit of the reciprocal of w with $r_i^* \to 1$, it shows:

$$\lim_{r_i^* \to 1} \frac{1}{W} = \lim_{r_i^* \to 1} \left(\frac{r_i^{*2} \times \ln r_i^* + \frac{1}{2} (1 - r_i^{*2})}{\pi (1 - r_i^{*2})} \right)$$

$$= \lim_{r_i^* \to 1} \frac{\ln r_i^*}{-\pi}$$

$$= 0 \quad (3.8)$$

Base on the equation (3.5), we can explain this phenomena from a mathematical point of view.

The velocity of the term $(r_i^{*2} \ln r_i^*) \to 0$ in the denominator of the equation (3.5) is faster than the term $(1 - r_i^{*2}) \to 0$ in the numerator of the equation (3.5). This makes $W \to \infty$, when $r_i^* \to 1$.

The physical meaning is that when the distance D between two concentric cylinders is very small, the heat flux Q released or absorbed in the melting/freezing process is also very small. However, in this situation, the time required for $R^* = r_i^*$ in
the melting/freezing process is smaller than the Q. These results produced in the heat transfer per unit time are much bigger.

Referring to Fig 3.1b, we can see when \(r_i^* > 0.9 \) approximately, \(W \) increases dramatically when the distance \(D \) between two concentric cylinders decreases. However, when \(r_i^* < 0.9 \), the \(W \) increases very slowly when the distance \(D \) between two concentric cylinders decreases.

For the freezing process, the same results will be obtained as for the melting process.
Fig 3.1a Schematic diagram of the relationship between W and r_i^*.

r_i^*
Fig 3.1b Schematic diagram of the relationship between W and r_i^*
3.2 The Extreme Value Analysis of the Phase Front Velocity

The phase front velocity, presented in equation (2.79) or (2.83), is presented in this section. Figure 3.2 show that the phase front velocity has a maximum value. The location of the maximum value can be determined by differentiating equation (2.79) or (2.83) with respect to \(R^* \) and then equating the result to zero.

\[
R^* = \frac{1}{e} = 0.3679 \tag{3.9}
\]

Substitution of equation (3.9) into equation (2.79) gives:

\[
\left(\frac{dR^*}{dt^*} \right)_{\text{max}} = -2.718S_r \tag{3.10}
\]

This means maximum value of \(\frac{dR^*}{dt^*} \) exists at the location \(R^* = 0.3679 \).
Fig. 3.2 The relationship of $\frac{dR^*}{dt^*} \cdot \frac{1}{S_T}$ with R^*.
3.3 Theoretical Results Shown in the Diagram in the MFRD

In this section, the angle θ is also considered to be equal to π.

Figure 3.3a shows the melting and freezing fronts in the MFRD with the inner radius of $r_1^* = 0.3679$. This Figure is based on the calculation from equations (2.80), (2.84) and utilizing equations (2.63a), (2.63b) with the angle α rotating counter clockwise. Figure 3.3b shows the MFRD corresponding to Figure 3.3a.

The next consideration is the MFRD with the inner radius $r_1^* = 0$ as shown in Figure 3.4a. This Figure is calculated from equations (2.80), (2.84), (2.63a) and (2.63b) with the angle α rotating clockwise. Figure 3.4b shows the MFRD corresponding to Figure 4.5a.
Fig. 3.3a Schematic diagram of melting-freezing fronts with the inner radius of 0.3679
Fig. 3.3b The MFRD with the inner radius of 0.3679
Fig 3.4a Schematic diagram of melting-freezing fronts with the inner radius of zero
Fig 3.4b The MFRD of melting-freezing fronts with the inner radius of zero
3.4 Numerical Results Shown in the Diagram in the MFRD

The numerical solution is calculated from the differential equations (2.76), (2.65) to (2.69) and for equations (2.77), (2.71) to (2.75) with finite differences.

Figure 3.5 shows the melting and freezing fronts in the MFRD with the inner radius of $r_1^* = 0.3679$. The finite difference thermal network model consists of sixteen hundred nodes along the tangential direction and nine nodes along the axial direction in the melting/freezing phase. The Figure is based on the numerical solution from the discretizing equations with the α angle-rotating counter clockwise.

Figure 3.6 shows the melting and freezing fronts in the MFRD with the inner radius of $r_2^* = 0$. The finite difference thermal network model consists of twenty nine hundred nodes along the tangential direction and nine nodes along the axial direction in the melting/freezing phase. The Figure is based on the numerical solution from the discretizing equations with the angle α rotating clockwise.
Fig 3.5 Schematic diagram of melting-freezing fronts with the inner radius of 0.3679
Fig 3.6 Schematic diagram of melting-freezing fronts with the inner radius of zero
CHAPTER 4

Discussion

4.1 The Example of Application

The most important character of the use of PCMs is the thermal storage process occurring at a nearly constant temperature, which is typically desirable in aerospace. Therefore, the MFRD can be used as a new thermal design technique in the satellites, specifically, in a small spinning satellite.

Now in the aerospace technology, the methods of thermal design in the thermal control subsystem are as follows:

1) OSR (Optical Solar Reflector, which is low absorptivity and high emissivity ε)
2) MLI (Multi-Layers Insulation Materials, which is low absorptivity and low emissivity ε)
3) Coating
4) Heat pipes
5) Thermal dissipate panels
6) Cu-KCu (copper-constantan) heating sheets
PCMs have been little used as the thermal design in aerospace. From the previous study, MFRD can replace OSR and the coating, which are used in the outer panels of satellites. Because for the small capacity satellite, the decline of α of the coating or the OSR will make the thermal design more complicated. For example, at the end of the life of the small satellite, the solar absorptivity α in the outer panels increases. This also results in an increase of the solar heating of small satellites. The surface of area is not great enough to release the heat flux into outer space. The use of the MFRD can solve this problem very well by using a large latent of solidification of the PCM. Furthermore, the device can maintain the temperature of modules in the satellites at or near the solidification temperature of the PCM in the MFRD.

Of course, there is still a lot of work to be done in the application of MFRD for spacecraft. For example, the thermal vacuum, thermal equilibrium experiments and environmental, ambient noise experiments, vibration experiment should be performed with the MFRD.
CHAPTER 5

Summary

5.1 Summary

Based on the exact solutions, the design parameters, θ, D, n and D/r_0 are determined. The most important design parameter is the dimensionless geometric ratio, D/r_0 in industrial use. In order to determine the geometric dimensions of D and r_0 individually from the ratio of D/r_0, the radius of the outer cylinder, r_0, should be set first. Then the value of D can be determined from the ratio D/r_0. After the determination of D and r_0, the rotating speed of the device, n, can be obtained from equation (2.50).

After the MFRD is built, the ratio D/r_0 cannot be changed anymore. However, with a fixed geometric ratio, D/r_0, the rotating speed of the device, n, can be regulated. by using equation (2.50), to reach the designed performance when the amount of the heat to be transferred from the heat source varies. Therefore, the MFRD has a good capability of maintaining the design condition, when the amount of heat transferred from the heat source changes.
From the above discussion, the MFRD can be used as a heat exchanger to transfer continuously heat from a heat source to a heat sink. Especially, it can be used in the spinning small satellite to solve some thermal design difficulties. Thus, its future use in aerospace is good.
CHAPTER 6

Future Work

6.1 Recommendations of Future Work

The intended Future work is given in the following directions:

1. Numerical simulation of the melting and freezing processes taking place in the MFRD, formulated by the system of equations (2.6b) to (2.17).

2. Theoretical and numerical analysis with the temperature variation of the heat source and the heat sink in the direction along the rotating angle α.

3. Considering the boundary surface of the heat source/heat sink subjected to heat fluxes and to radiation into ambient.

4. Investigating the stability of the thermal proprieties of PCMs in MFRD in some rigorous condition after a few years.

5. Analyzing the one dimensional or multidimensional phase-change problems with natural convection present at the interface.
REFERENCES

13. Lacroix, M. and Duong, T., “Experimental improvements of heat transfer in a latent heat thermal energy storage unit with embedded heat sources”, Energy Conversion and

