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ABSTRACT

The dimensional and dimensionless model formulating the melting and freezing
processes in the melting and freezing rotating device (MFRD) are presented. The heat
transfer process between the two concentric cylinders with D/ro <0.01 may be considered
as that between two parallel plates with a distance of D between them. The theoretical
analysis about solidification or melting of a slab at a constant boundary temperature, which
is greater or lower than the melting point, is conducted. The theoretical and numerical
analysis of the Quasi-Steady state with the moving phase boundaries of the melting and
freezing processes in the dimensionless system are performed. Moreover. the properties

in MFRD are analyzed. The use of MFRD in the aerospace is discussed.
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CHAPTER 1

Introduction of the melting and freezing
rotating device (MFRD)

1.1 Literature Survey

Condensation of vapors and the evaporation and boiling of liquids are commonplace
in power and process engineering. Condensation processes require that the enthalpy of
phase change be removed to a coolant. and evaporation and boiling processes require that
this enthalpy be supplied from an energy source. Since the enthalpy of phase change is
relatively large, the associated heat transfer rates are also usually large. In most industrial
processes, the vapor and liquid phases both flow through a heat exchanger [1]. Thus. the
heat transfer to the phase interface is essentially a convective process. but it is often
complicated by an irregular interface, for example, bubbles or drops [2].

Melting of solids and freezing of liquids are not used in industral heat transfer
processes, because the solid phase cannot flow through a heat exchanger. However,
thermal energy storage systems use liquid-solid phase change for its ease of

implementation. For example, a phase-change material (PCM) can be incorporated into



the walls of an outdoor telecommunication enclosure. The PCM absorbs excess thermal
energy during the peak solar heating period. by changing the solid phase to the liquid
phase. and discharges the excess heat at the other time. The alternating absorbing and
discharging of heat is the characteristic of the thermal energy storage system.

Recent research works in the phase change energy storage systems were conducted.
for example. they are listed in References [3] to [20]. It appears that no research work is
available in the literature for a heat exchanger utilizing melting and freezing of a PCM to

transfer heat continuously from a heat source to a heat sink.

1.2 Introduction of Solid-Liquid Phase-Change Heat

Transfer

Solid-Liquid Phase-Change (melting or solidification) heat transfer phenomena are
accompanied by a phase transformation of the medium and by either absorption or
release of thermal energy in the active zone. The energy absorbed or released from the
surrounding system is commonly transferred by conduction or convection. The essential
and common features of systems undergoing solid-liquid phase-change heat transfer are
that an interface exists separating two regions of differing thermophysical properties and
that a moving surface exists which separates the two phases and at which energy is
absorbed or liberated.

One of the largest applications for phase-change materials (PCMs) is in passive
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solar building. requiring a material melting at or just above room temperature. It also is

used in metal casting. welding, coating [21].

1.3 Introduction of MFRD

1.3.1 The reasons to develop the MFRD

In aerospace. some design problems still exist by using normal thermal design
method. These problems are:

1) Small satellites don’t have enough areas in the outer panels to release the extra
heat because of the decline of solar absorptivity at the end of life of the satellites (EOL).

2) Normal thermal design methods are difficult to deal with the instruments with
irregular, instant and large heat generations.

3) It is not flexible to handle the changeable heat generations.

MFRD is developed to solve these problems easily.

Also by using normal thermal design methods in aerospace, it is very complicated.

For example, we have to know the view factor of direct solar heating, albedo and planet
radiations. We have to know the precise heat generations and thermal properties for every
instrument. We have to finish thermal calculation according to the precise conditions. It is
time consuming. However, MFRD can simplify the thermal design. The most important

part for MFRD application is choosing the suitable PCM material according to the
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precise conditions.

1.3.2 Introduction of MFRD

Recently. Dr.Lin and Dr. Chen developed a physical model describing the melting
and freezing processes taking place in the melting and freezing rotating device (MFRD)
[1]. The present study is based on the model presented in [1].

The principle of MFRD is based on the Solid-Liquid Phase-Change Heat Transfer.

Heat transfer using melting and freezing of a phase change material is usually
applied to stationary energy storage systems. For example, PCMs may be incorporated in
the building envelope to achieve latent heat storage. The PCM absorbs excess thermal
energy during the peak solar heating period, by changing the solid phase to the liquid
phase. and discharges the excess heat at the other time. However. it appears that no
research work is available in the literature for a heat exchanger utilizing melting and
freezing of a PCM to transfer heat continuously from a heat source to a heat sink. The
PCMs have been little used in the space technology, specifically. in the thermal control
subsystem of satellites.

In order to utilize melting and freezing of a PCM to transfer heat continuously from
a heat source to a heat sink, a Melting-Freezing Rotating Device (MFRD) is proposed. The
device consists of two concentric cylinders with a PCM filled between them. It rotates
between the heat source and the heat sink. The PCM absorbs heat from the heat source, by

changing the solid phase to the liquid phase, and discharges the heat to the heat sink. by
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changing the liquid phase to the solid phase. The cyclic melting and freezing processes
transfer heat continuously from the heat source to the heat sink. Thus, the MFRD can be
used in the spinning satellites to keep the temperature of modules in the limited variation.

The advantage of the MFRD is that the PCM in the device has a large latent heat of
solidification. which allows for a small size of the device with a high heat transfer capacity.
[t will be shown later that the device possesses a good capability of maintaining the design
condition by regulating the rotating speed of the device when the amount of heat to be
transferred from the heat source varies.

From the literature survey, we can see that the MFRD is the first device utilizing
melting and freezing of a PCM to transfer heat continuously from a heat source to a heat
sink.

Figure 1.1 shows a schematic diagram of the MFRD. During the rotation of the
device, the outer cylinder is in contacts with the heat source with a rotating angle of
a between 0 and 0, (0<a<6). Further assumptions are made that the surface temperature of
the outer cylinder in this region is equal to the temperature of the heat source, Th, which is
higher than the solidification temperature of the phase change material, Ts. Therefore. a
melting process takes place in the region of 0<a<8. The outer cylinder is also in contacts
with a coolant in the region of 0<a<2r, and its surface temperature is equal to the coolant
temperature, Tc, which is lower than Ts. As a result, the freezing process takes place in the

region of O<a<2m.



Freezing Front

Fig 1.1 Schematic diagram of a melting-freezing rotating device



CHAPTER 2

The Mathematical Analysis of
Melting-Freezing Rotating Device

2.1 Mathematical Formulation of the Melting-Freezing

Rotating Device

The MFRD used to transfer heat from a heat source to a heat sink consists of two
concentric cylinders with a PCM filled between them. Figure 1.1 shows a schematic
diagram of the MFRD. The inner and outer cylinders have radii of » and r,.
respectively. The device rotates with a rotating speed of n rps. The cylinder walls are
considered to be very thin and their thermal conductivities are very large, therefore, for
thermal analysis, the wall thickness may be neglected.

In order to simplify the analysis, the concept of the effective latent heats, L, and
L, for the melting and freezing processes, respectively, is introduced. The effective latent
heat includes the latent heat and the sensible heat below or above the solidification
temperature of the phase change material for the melting or freezing process, respectively,

as follows:



Le =L+cm(Th=Ts)/2 2.2)

Where L is the latent heat of solidification and c is the specific heat of the phase
change material. The subscripts, m and f, refer to the melting and freezing processes,
respectively.

The introduction of the effective latent heats, L, and Ly simplifies the
temperature distribution at the beginning of the melting or freezing process with a
constant solidification temperature, Ts. Further assumption is made that, during the
melting or freezing process, the thermal properties of the phase change material, in each
phase, are constant, that advection is absent (i.e., the liquid is quiescent) and there is no

density change across the phase boundary.

2.2 Dimensional Mathematical Equations Describing the

Melting \Freezing Process

The formulation of the melting and freezing processes starts with a time

transformation,

t= a/(2nn) (2.3)



For example, if &=, then the times required for the complete melting and

freezing processes per rotation of the device are:

fyy = 0= 2.4)
2m  2n
and
2r-60 1 -
fn = 2m Z (2.5)

The governing equation describing the melting/freezing process between the two

cylinders is:

oT (r,t) &8°T oT
1awn or |1 (2.6)
a ot or: r or

For the melting process, it can be written:

oT (r.t) _a_i[r or, (r.t)

ot r or or

] Rn()<r<r,, (2.6b)

Where the subscript m refers to the melting process, a,, is the thermal diffusivity of the
melting phase, and R, (2) is the location of the phase tront. The boundary conditions and the

energy balance at the phase front R,(?) can be expressed as:



T, (r,.t)=T, 2.7

T, (R, (t),t)=T, (2.8)
and
aT, (R, (1)) dR_ (t)
ky IS = pl, (<2 (2.9)

Where kq, is the thermal conductivity of the melting phase and p is the density. The initial

conditions for the temperature and the location of the phase boundary can be written as:

Tm(r. 0) = T; (2.10)
and

Rn(1=0)=r, 2.11)

The freezing process starts from the angle of 8 and ends at the angle of 2m, as
shown in Figure l.1. The system of equations describes the freezing process similar to

that of the melting process presented through equations (2.6b) to (2.11) as follows:

1 8T, (r.t) oT,* T,
R = + —
a, Ot or* r or

10



oT ,(r,t1) _a; 9 ( orT (r,1)

o r Py ) R, (1)<r<r (2.12)
and
T,(ry,t)=T, (2.13)
T,(R,(),1)=T, (2.14)

‘ aT,(R,(t),t)= [ dR (1)

-
B Pl (—) (2.15)
T,(r,t=0)=T, (2.16)
R, (t=0)=r, Q.17

However, no exact analytical solutions exist for the equations (2.6b) — (2.11) or

(2.12) - 2.17).

2.3 Solution for the Case of Very Small Value D/r,

If the space between the two cylinders, D = ro—ri, is very small in comparison with
the radius ro. the melting and freezing processes taking place between the two concentric

cylinders of the MFRD can be presented as those taking place between the two plates. This

11



problem becomes the issue of solidification or melting of a slab at a constant boundary
temperature, which is greater or lower than the melting point. It simplifies the thermal
model and the theoretical solution can be obtained.

In this section, the effect of the very small geometrical ratio D/ro on the heat
conduction equation in the orthogonal coordinate is considered. For the purpose of
simplicity, it is assumed that the boundary condition at the inner cylinder wall is insulated.

For the purpose of comparing the magnitudes of the two terms on the right-hand
side of equation (2.6a), the method of scale analysis [22] is used. The first term represents
the curvature of the temperature distribution in the r direction. The curvature represents the

change in the slope,

oT oT

2 G = ()
or e Or (2.18)
or? r,—r,
in which the sign ~ means “is of the same order of magnitude as™. With
G, AT 2.19)
o " -,
oT
(=)=, =0 r,-r.=D (2.20)



the curvature becomes:

o'T AT

The second term can be expressed as:

197 14T (2.22)
r or r, D
The ratio of equation (2.22) to equation (2.21) yields
Lor
ror_ D (2.23)
o°’T 1,
or’

A very small value of D/ro, for example, D/ro<0.01, means that the second term is

negligible small in comparison with the first term. Equation (2.6a) then becomes:

| OT (r,1) _ o'T

2.24)
a ot or’ (

13



It can be seen that the heat transfer process between the two concentric cylinders
with D/ro <0.01 may be considered as that between two parallel plates with a distance of D
between them.

The previous equations can be easily transformed into the orthogonal coordinate.
Figure 2.1 shows a schematic diagram of a melting process between the two
corresponding parallel plates. S(t) represents the locations of the phrase boundary at
which the temperature is equal to the solidification temperature Ts.

A space coordinate transformation is as follows:

xX=r,-r (2.25)
x=0 at r=rp (2.26)
x=D at r=r; 2.27)
x=5() at r=R(t) (2.28)

S(t) is the location of the phase front corresponding to R(t).
The problem now is that in which the region x >0 is initially solid at temperature
Ts, and for which t >0 the plane x = 0 is maintained at constant temperature Ty, > Ti.

For the melting phrase, the equation (2.24) can be written as:

1 9T, (x,0) _ 3T, (x.2)
a ot ox®

m

O<x<S@) (2.29)

14



The boundary conditions and the energy balance at the phase front can be

expressed as:

T (0.0)=T, (2.30)

T (S(t).t)=Ts 2.31)

or, (S(@),
LSOD _ - 0

—k,
Ox dt

) (2.32)

The initial conditions for the temperature and location of the phase boundary can

be written as;

T (x0)=T, (2.33)

St=0)=0 (2.34)

The exact solution of the above system of equations (2.29) to (2.34) is the well

known Nenmann'’s solution [23] which can be expressed as:



_(T,,—-T‘) X 5 s
erf(P,,,)erf( s 1) (2.33)

m

T,(x.0)=T,

Where erf( ) is the error function and pm is a numerical constant defined by
S,(t)=P, J4a,t (2.36)
The constant of pm is determined from equation (2.32) as follows:
JxP, exp(Pl)erf(P,) = Sy, (2.37)

Where Stm is the Stefan number for the melting process defined by:

Sy = i—"(rh -T) (2.38)

The maximum location of the moving phase front is the space D between the two

concentric cylinders. The time required for Rm(tmD) = r, in the melting process is given

from equation (2.36) as follows:

16



The freezing process starts from the angle of 6 and ends at the angle of 27, as shown
in Figure L.1. The system of equations describes the freezing process is the same as that
describes the melting process. except that no minus sign in equation (2.32), that the
subscript m is replaced by freferring to the solid phase in the freezing process. and that the
heat source temperature, Tk in equation (2.30) is changed to the coolant temperature, 7.

The exact Neumann's solution for the freezing process is:

T,(x.l):Tt+(T‘_T“)erf( L (2.40)

erf(P,) J4a,t
Pr is a dimensionless constant defined by
S, (t)=P, j4at (2.41)

The value of pris determined from equation (2.32) with the change of the subscript m to s

and without the minus sign.
VP, exp(Plerf(P,) =S, (2.42)

Where S1r is the Stefan number for the freezing process defined by:



Sy =—=(T, -T,) (2.43)

The maximum location of the moving phase front is the space between the two

concentric cylinders. D. The time required for S(¢,;,) = D in the freezing process is given

from equation (2.41).

l, = Dz
m 4a,Pf

(2.44)

Obviously, equation (2.37) and (2.42) are identical. except the subscripts. So the

two equations can be plotted together in one diagram as shown in Figure 2.2.

2.4 Determination of Design Parameters

The design parameters involve in the MFRD are the rotating speed of the device, n,
the radius of the outer cylinder, r,, the space between the two concentric cylinders, D, and
the contact angle between the outer cylinder and the heat source during the melting
process, 6. These parameters need to be determined from the analysis.

The design parameters, 0. D, n, and ro, are determined as follows:

Step 1. Determination of pmand pr.

18



Calculate the Stefan numbers. Stm and S7; from equations (2.38) and (2.43).
respectively, and determine the dimensionless constants, prand pm. from Figure 2.2.
Step 2. Determination of 6:

Eliminating D from equations (2.39) and (2.44) gives:

t

ml)

[ﬂ) am Pn:

a, P}
=Ll (2.45)

From geometrical point of view. as shown in Figure 1.1, the time ratio presented in

equation (2.45) can also be expressed as:

= (2.46)

Eliminating the time ratio from equations (2.45) and (2.46). the angle,8 . representing the

region of the melting process, is obtained as:

g=— T (2.47)

Step 3. Determination of D’n

The rotating time of the device for the melting process can be calculated by:

19



lop = — (2.48)

Elimination of the time, tmp, from equations (2.39) and (2.48). gives the combination of the

two design parameters, D and n.

Din =Zmm (2.49)

Step 4. Determination of D/ro:

The radius of the outer cylinder, ro, is determined from the amount of the heat to be

transferred from the heat source to heat sink as follows.

__ 49 5 <
r, = 2.50
®  pL,6Dn (230)

Eliminating the rotating speed of the device, n, from equations (2.49) and (2.50), yields the

geometric ratio of the device,

(8]

b_ 2a,P; pL 6° () (2.51)

ry
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Figure 2.1 Schematic diagram of a melting process between two concentric cylinders
without rotation and between two corresponding parallel plates. R(t) and S(t) represent the

locations of the phase boundary.
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Fig 2.2 Dimensionless constants Pm and Pf as the function of Stefan number [1]



2.5 Dimensionless Mathematical Equations Describing the

Melting \ Freezing Process

The equations formulating the melting and freezing processes in the MFRD are
also transformed to a dimensionless form. In this section. the dimensionless parameters
governing the phase-change heat transfer are presented. The dimensionless parameters,
which delineate the heat transfer regimes, evolve from the transformation of the basic
equations to a dimensionless form.

In the dimensionless form. variables are organized into groups. which can be
considered as new variables. These new variables will be fewer in number because of
their grouping. Therefore. fewer data are needed to determine relationships. and the
problem of data presentation is simplified. This is the advantage of the dimensionless
analysis. In order to obtain an analytical solution of the dimensionless equations, the
quasi-steady approximation is utilized.

For the purpose of simplifying the analysis. the following dimensionless

parameters are introduced:




and

l'o‘:=l

R, (1)
R.(t)=

R, (1)
R;(f.) =

(2.60)



C
Sim = —Ll(Th -T,) (2.61)

s, =250 1) (2.62)
a, L

Where S, and S,/‘ are the Stefan number. With the relations of equations (2.54) and

(2.55). equations (2.3) to (2.5) can be written as:

=2 (2.63a)
2m
and if 6 = n:
. . . l -
t, =t, =t =7 (2.63b)

With the above dimensionless parameters. equations (2.6b) to (2.11) for the
melting process and equations (2.12) to (2.17) for the freezing process become
dimensionless as follows:

The melting process:

or, 1 & , .07,

’."= — < r ':' 2.64
> r =) (2.64)
T.(1,t')=1 (2.65)

[ 88
(¥4



and

The freezing process:

and

T.(R.(t).t)=0

- STm

OT. (R, (t').t") _ dR = (t")

or

T.(r'.t"=0)=0

R.(t"=0)=1
o, a1 8

T,(L,t')=0

T/ (R, (£).t7) =1

g oT, (R, (£°),1") _ dR,(t")

r ar

dt

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)



Tt =0)=1 (2.74)

R (' =0)=1 (2.75)

Since the phase front moves relatively slowly. an assumption can be made that the
moving phase front does not have a major inference on the temperature distribution
during a short period of time. Thus. the quasi-steady approximation may be applied for
equations (2.64) and (2.70) to yield:

for the melting process:

i.(r' iTL(r—."—)) =0 (2.76)
or or

and for the freezing process:

i.(r‘ ____an (r.'t )) =0 .77
or or

The solution of equation (2.76) with the boundary conditions, equations (2.65)

and (2.66), is:



Inr

T.=1- . 2.78
" InR, 79
Substitution of equation (2.78) into equation (2.67) gives:
dR, S. (2.79)

' R InR.
Integration of equation (2.79) with initial condition. equation (2.69). yields:
R}InR, ——l—(R,:f -1)=2S,1 (2.80)

At the end of the melting process. Rp* = r;* . the time required is equal to t;*.

Equation (2.80) becomes:

) Inr; —%(r,‘2 -1)=28,1’ (2.81)

The solution of equation (2.77) with the boundary conditions, equations (2.71)

and (2.72), is:




Substitution equation (2.82) into equation (2.73) gives:

dR; S
s (2.83)
dt R, InR,
Integration of equation (2.83) with initial condition, equation (2.75) vields:
R’ InR; —%(R}Z —-1)=28,t (2.84)

At the end of the freezing process. R = r,". the time required is equal to be ¢,

Equation (2.84) becomes:
.Y . l [ h) . -
r,”Inr, -5 —1) =28, (2.85)
If@ = 7 . comparison of equation (2.81) with equation (2.85) indicates:

Stm = S1r (2.86)

Comparing the equation (2.80) and equation (2.84) gives:
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Ram* =Re* (2.87)

[t can be seen that equations (2.80) to (2.81) are identical to equations (2.84) to
(2.85). This means that the moving phase boundaries of the melting and freezing process
taking place in the MFRD are identical to each other. The only exception is that the
melting process starts at o = 0 and ends at o« = 7. and that the freezing process starts at «
= m and ends at a = 27. Therefore. the subscripts m and f arc omitted in the equations of

the following discussion.



CHAPTER 3

The Analysis of Properties in MFRD

3.1 The Analysis of Dimensionless Heat Transfer W

3.1.1 The Definition of Dimensionless Heat Transfer W

In this section, the contact angle of heat source or heat sink & =7 and the unit
length in the longitudinal direction are assumed.

The heat transfer per unit length in the longitudinal direction is:
T 3 3
0 =2(r5 -r’)xlxpl (3.1)

The expression (%(r,,2 -r’)x1) means the volume of the PCM melting or freezing

phrase.

The time required for R =r, in melting/freezing process as shown in the

equations (2.81) or (2.85).
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For the melting process, it can be written as follows:

rinr -%(r,.‘2 -1)=25,, a";" (3.2)

"o

[t can also be written for the melting process as follows:

r*Inr —l(r,'2 -1
t,= - 2 xr (3.3)
2a, x L"’ 7,-T,)

m

Define the dimensionless heat transfer per unit time per unit length in the longitudinal

direction as W.

- 0 (3.4)
kam X(Th _rv)

By using equation (3.1) and (3.3), equation (3.4) becomes:



We z(1-r")

- 1 3.5)
r?xlnr, +5(1—rl'3)

Figure 3.1a and Figure 3.1b illustrate the relationship between W and r".

3.1.2 The Analysis of the results

Figure 3.1a and Figure 3.1b illustrate some proprieties.

1) The W of MFRD is constant while r, is infinitesimal

When ' — 0, we have:

lim. (7% xInr’)= lim, ()

2

[
3
~~

L

=0 (3.6)
Thus, from equation (3.5) and by using equation (3.6), the equation (3.7) can be

obtained:

limr'._’0 W =2 3.7
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This shows W is always a constant number in the cylinder (r” = 0).

Fig 3.1a illustrates this character very clearly. The constant number is 2.

2)  The velocity of W with the changing of

Take the limit of the reciprocal of w with r~ — 1. it shows:

=0 (3.8)

Base on the equation (3.5), we can explain this phenomena from a mathematical
point of view.

The velocity of the term (7 Inr,) = 0 in the denominator of the equation (3.5)
is faster than the term(1—r"*) - 0 in the numerator of the equation (3.5). This makes
W —,when r' > 1.

The physical meaning is that when the distance D between two concentric
cylinders is very small, the heat flux Q released or absorbed in the melting/freezing

process is also very small. However, in this situation, the time required for R" =r  in
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the melting/freezing process is smaller than the Q. These results produced in the heat

transfer per unit time are much bigger.

Referring to Fig 3.1b, we can see when r’ > 0.9approximately, W increases

dramatically when the distance D between two concentric cylinders decreases. However,

when r’ <0.9, the W increases very slowly when the distance D between two

concentric cylinders decreases.

For the freezing process, the same results will be obtained as for the melting

process.
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Fig 3.1a Schematic diagram of the relationship between W and r’
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3.2 The Extreme Value Analysis of the Phase Front Velocity

The phase front velocity, presented in equation (2.79) or (2.83), is presented in
this section. Figure 3.2 show that the phase front velocity has a maximum value. The
location of the maximum value can be determined by differentiating equation (2.79) or

(2.83) with respect to R* and then equating the result to zero,

=0.3679 (3.9)

Substitution of equation (3.9) into equation (2.79) gives:

R
(dT)m“ =-2.718S, (3.10)

dR .
This means maximum value of (—d—,) exists at the location R =0.3679.
t
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3.3 Theoretical Results Shown in the Diagram in the MFRD

In this section, the angle 6 is also considered to be equal to m.

Figure 3.3a shows the melting and freezing fronts in the MFRD with the inner
radius of r" =0.3679. This Figure is based on the calculation from equations (2.80),
(2.84) and utilizing equations (2.63a), (2.63b) with the angle a rotating counter clockwise.
Figure 3.3b shows the MFRD corresponding to Figure 3.3a.

The next consideration is the MFRD with the inner radiusr,” = 0 as shown in
Figure 3.4a. This Figure is calculated from equations (2.80), (2.84), (2.63a) and (2.63b)
with the angle o rotating clockwise. Figure 3.4b shows the MFRD corresponding to

Figure 4.5a.
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Freezing Front

Fig. 3.3a Schematic diagram of melting-freezing fronts with the inner radius of 0.3679
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Fig. 3.3b The MFRD with the inner radius of 0.3679
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Fig 3.4a Schematic diagram of melting-freezing fronts with the inner radius of zero



Freezing Front
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Fig 3.4b The MFRD of melting-freezing fronts with the inner radius of zer0
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3.4 Numerical Results Shown in the Diagram in the MFRD

The numerical solution is calculated from the differential equations (2.76), (2.65)
to (2.69) and for equations (2.77). (2.71) to (2.75) with finite differences.

Figure 3.5 shows the melting and freezing fronts in the MFRD with the inner
radius of r, " =0.3679 . The finite difference thermal network model consists of sixteen
hundred nodes along the tangential direction and nine nodes along the axial direction in
the melting/freezing phase. The Figure is based on the numerical solution from the
discretizing equations with the o angle- rotating counter clockwise

Figure 3.6 shows the melting and freezing fronts in the MFRD with the inner
radius of r’ =0. The finite difference thermal network model consists of twenty nine
hundred nodes along the tangential direction and nine nodes along the axial direction in
the melting/freezing phase. The Figure is based on the numerical solution from the

discretizing equations with the angle a rotating clockwise.
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Fig 3.5 Schematic diagram of melting-freezing fronts with the inner radius of 0.3679
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CHAPTER 4

Discussion

4.1 The Example of Application

The most important character of the use of PCMs is the thermal storage process

occurring at a nearly constant temperature. which is typically desirable in aerospace.

Therefore. the MFRD can be used as a new thermal design technique in the satellites.

specifically. in a small spinning satellite.

Now in the aerospace technology, the methods of thermal design in the thermal

control subsystem are as follows:

1)

OSR (Optical Solar Reflector. which is low absorptivity and high emissivity € )
MLI (Multi-Layers Insulation Materials, which is low absorptivity and low
emissivity €)

Coating

Heat pipes

Thermal dissipate panels

Cu-KCu (copper-constantan) heating sheets
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PCMs have been little used as the thermal design in aerospace. From the previous
study. MFRD can replace OSR and the coating. which are used in the outer panels of
satellites. because for the small capacity satellite. the decline of a of the coating or the
OSR will make the thermal design more complicated. For example, at the end of the life
of the small satellite. the solar absorptivity a in the outer panels increases. This also
results in an increase of the solar heating of small satellites. The surface of area is not
great enough to release the heat flux into outer space. The use of the MFRD can solve
this problem very well by using a large latent of solidification of the PCM. Furthermore.
the device can maintain the temperature of modules in the satellites at or near the
solidification temperature of the PCM in the MFRD.

Of course. there is still a lot of work to be done in the application of MFRD for
spacecraft. For example, the thermal vacuum. thermal equilibrium experiments and
environmental. ambient noise experiments, vibration experiment should be performed with

the MFRD.
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CHAPTER 5

Summary

S.1 Summary

Based on the exact solutions. the design parameters. 6. D.n and D/ro are determined.
The most important design parameter is the dimensionless geometric ratio. D/ro in
industrial use. In order to determine the geometric dimensions of D and ro individually
from the ratio of D/ro. the radius of the outer cylinder. ro. should be set first. Then the value
of D can be determined from the ratio D/ro. After the determination of D and ro. the rotating
speed of the device. n. can be obtained from equation (2.50).

After the MFRD is built, the ratio D/ro cannot be changed anymore. However. with
a fixed geometric ratio. D/ro, the rotating speed of the device. n, can be regulated. by using
equation (2.50), to reach the designed performance when the amount of the heat to be
transferred from the heat source varies. Therefore. the MFRD has a good capability of
maintaining the design condition. when the amount of heat transferred from the heat source

changes.



From the above discussion. the MFRD can be used as a heat exchanger to transfer
continuously heat from a heat source to a heat sink. Especially, it can be used in the
spinning small satellite to solve some thermal design difficulties. Thus, its future use in

aerospace is good.



6.1

CHAPTER 6

Future Work

Recommendations of Future Work

The intended Future work is given in the following directions:

1.

88

1)

Numerical simulation of the melting and freezing processes taking place in the
MFRD, formulated by the system of equations (2.6b) to (2.17).

Theoretical and numerical analysis with the temperature variation of the heat
source and the heat sink in the direction along the rotating angle a.
Considering the boundary surface of the heat source/heat sink subjected to
heat fluxes and to radiation into ambient.

Investigating the stability of the thermal proprieties of PCMs in MFRD in
some rigorous condition after a few years.

. Analyzing the one dimensional or multidimensional phase-change problems

with natural convection present at the interface.

W
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