INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

Design and Evaluation of
Java Game Programming Environment

Ying Dong

A Major Report
in

The Department
of

Computer Science

Submitted in Partial Fulfillment of The Requirements
for The Degree of Master of Computer Science

February 2002

© Ying Dong, 2002

i+l

zlfanonal Library EUMM na
- N
iR S
Canada Canada Your e Votre rébirence
Our e Nowe néédverce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distnibute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’ auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72934-6

ABSTRACT!

This report is an exploration of basic principles of game programming with Java. In this
report, a basic framework is discussed and provided for programming Java games. Some
issues related to Java technology are also researched and placed forward. On the base of
the basic principles for Java game programming, an online game is designed and
implemented. As this is a project jointly with Ye Zhu, in this report the design of the
game is only briefly described.! Some common suggestions on writing Java programs are
also provided for making fast and efficient Java games. All in all, this report not only
covers knowledge on Java game programming, but also some concepts related Java

technology and object-oriented programming.

' For the detail of the design and implementation of this game, please refer to the collaborated work Ye
Zhu's report [13]. iii

Table of Contents

Chapter 1: INTOQUCHION ..o s s s |
Chapter 2: Introduction of Java and the reasons choose this topic................. 3
2.1 What is Java? rerreeeat ettt s n e eas s nnn 3
2.1.1 The History of Java.......ccceoeeieennceces eeeererenrearenenaraes 3
2.1.2 About the Java Technology ereeveenrsreeseenstnsessee et s e aane s be e ne e e 6

2.2 What Can Java Technology Do? ...ttt sere e s 11
2.3 Can Java be used for Games?o oot 13
2.4 Why choose this topic as a graduate level WOTK? ... 15
Chapter 3: Java Game Programming ... 17
3.1 GIAPRICS ...oceeecereere e ne ettt s s R s e 17
3.1.1 Creating a Graphics ENGINe........ooovemimeieieeieieittn ittt e 17
3.1.2 Movable ObJEct BIOCKS......c.ovvimruiiietrnrirtnteienst st sttt s st 18

3.2 Construction of @ Graphics ENINE ...t 20
3.3 Painting IMages from @ LIStocuruermruerieiiieiee et et 23
3.4 Installing the Graphics ENGINEoooumveieveieieirrieriet ettt s 24
3.5 IMPIOVEITICIILSeovoeeecueecseneaeesseneransass et sss bt st st b e s R eSSt 27
3.6 DOUDIE BUFTETINEcovevveeneeeeciiericiniarisie ettt st st b 31
3.7 Invisibility and Other Possible EXtENSIONS.ccooeiriiereriernnereescne ittt et 32
3.8 SOUNA EfTECL.......eeieeeeeeieeieriereerseesteee e e reessne s s st sara s s s e ra s ebe s sasn s sseateren s e st sasat s b bbbt 33
3.9 Java-Specific Game DeSIZN [SSUES......c.ovomrmreieeeeeie ettt ettt st 33
3.9, 1 USEE INEETFACEevveeeecemeereeeseeerests et eesssss s st s s bbb e b e b e s ass s sue st sron s e ban e as st bbbt 34
3.9.2 LIMItING FACLOIS c.veucerececnicuirmiietestete sttt sttt eb s sttt nes 37
Chapter 4: Case study -- CrazyRoad .0 (Online Game)ocooeroverrvccirrn 42
4.1 Brief DESCIIPHON.......cocvceceieirirircaeretste et rss s s ssss st sttt e sttt s e b et esnns 42
B.2 DESIEN c.oeeeeioeieeecusteneseeacseas s sae s s s b e RS e e 43
Chapter 5: Improvement and fallacies On Java ... 48
5.1 Some suggestions for Java game programming ... 48
5.2 Some fallacies OM JAVAocooccceerervomenenecccsesscammenneesseseeessssssssssssesssssssssessssssess s 51
5.3 Java's improvements over C and CHto.eerene 52
CRAPLEL 6: SUIMIMNATYoooorereerseersersossssssessesss s sss s sessnes s s nssns o one 56
REFEIENCES: ..o eeseeseeeseeeeeessssssssses e sessnens s sssssssess s s e 58

List of Figures

Figure 1. HOw Java program WOTKSccceueeureireeintsenininenesesnissssssssiscs e encsenacs 8
Figure 2. Java Virtual Machine JVM) eeeesteemtesteseesessetestesessesesteeesisentrasentaat et aa s e s es e a e s e enenrestsaben 9
Figure 3. A Java program running on the Java platform.........oo oo 10
Figure 4. Java 2 SDK ...t etreeiteteeeeaet et et et s an e st e e s sas s s sre e 13
Figure 5. The interface of the implemented game — CrazyRoad 1.0........ococeeemememnieiiiiienes 42
Figure 6. Class diagram for the implemented game — CrazyRoad 1.0....ememceiiiinaes 46

Chapter 1: Introduction

These days the word Internet is practically synonymous with the word computer. More
and more people are buying new computers just so they can surf the World Wide Web or
keep in touch with friends and family through e-mail. Increased connectivity among
users, as well as an exponential increase in the power of modern hardware and software,
has created a gray area between where the personal computer ends and the network
begins.

The cyber culture of the Internet has undoubtedly impacted our daily lives more than we
imagine. Most of the people who live with Internet browse the Web daily looking for
information and news. Some of us use the Internet for academic research. Some use it to
get some useful information such as road maps, ads or news etc. And for some, the magic
of the Web lies in the ability it affords one to play games online.

The video game industry is a multi-billion-dollar-per-year business. Most of this revenue
comes from games for home consoles or shrink-wrapped PC games. [1] This large market
affords anyone the perfect opportunity to develop more powerful and interesting
applications in computer gaming. Whether it is a fresh new gaming genre geared towards
online play or a new marketing scheme to help existing online games make money,
opportunity abounds. We can say that there is still plenty of room for people to make
their marks on the gaming industry. According to some statistics, Java games often
appeal to the 85% of computer users who are considered the real gamers [1], because
Java games are usually simple, fun games that require minimal hardware requirements
from the user. People can use this fact to spread their games to all types of gamers.

This report will show the basic principles to use Java language to create robust, flexible

1

gaming applications. It covers the fundamental ideas of creating games using Java with a
brief description of a case study (an online game implementation — CrazyRoad1.0). This

report also describes the work carried out in collaboration with YE Zhu [13].

(3]

Chapter 2: Introduction of Java and the reasons choose this topic
2.1 What is Java?

2.1.1 The History of Java

Essentially the Java story begins in about 1990 when a programmer at Sun Microsystems
(a computer company best known for the manufacture of powerful and expensive Unix
Workstations), Patrick Naughton told his boss Scott McNealy that he was quitting to join
a rival company (NeXT Computers). Being highly regarded, McNealy was not too happy
about this; therefore, he asked Naughton a favor - namely asking him to write a report on
what Sun was doing wrong.

Without going into too much detail, Naughton produced a document which was a series
of gripes boiling down to a plea for Sun to concentrate on less disparate activities. This
proposal was then circulated too much of the management of the company, producing
feverish statements of agreement, and ended up in Sun creating a small team to pursue
Naughton's ideas, shielded from the more cautious elements of the company who might
have been wondering where the money was going.

They decided to focus on consumer electronics applications first of all. And this led to a
demo to McNealy in 1992 where from a small hand held Psion type contraption, it was
made possible to program a video recorder all at the touch of a button. The idea was to
integrate the smallest electronic device with cyberspace using a standard language all of
their own that would have Internet connectivity at its very heart. At the beginning its code
name was "Oak". However, back then it was a bit far ahead of its time.

Consequently, there were a series of dispiriting false dawns. A possible team up with

Mitsubishi & French Telecom was floated but it never came to anything. In fact Sun

scrapped the team (by now named FirstPerson) in 1994, and just plugged away at their
traditional high-end server market. However very shortly after this, the Mosaic Web
Browser emerged (the first web browser to be able to view pictures) and the sudden
growth of the World Wide Web made the folk at Sun reconsider. Having seen the
potential of Mosaic, and its commercial elaboration by Netscape, a senior manager at
Sun, Bill Joy, took on the challenge of turning Java into an explicitly Internet language.
This indeed was the first real public incarnation of Java: as applets appearing on web
pages. An applet, as its name might suggest, is a mini application, a small entity of
interactivity that executes on our machine within a web browser. An experimental web
browser written in Java, called WebRunner and later renamed as HotJava, ready by the
end of 1994 was the host in which those applets "ran".

Although we are wizened now by the amount of interactive frivolity we have chanced
upon in our surfing, it is important not to underestimate how revolutionary the concept
seemed back then. Karl Jacob, CEO and chief technologist at Dimension X Inc, a San
Francisco company creating 3-D websites using Java said at the time: "Java allows us to
do the things that advertisers and studios are asking us to do...Until now, everything on
the Web was fizzling, not sizzling."

So what made Java suitable for the Internet then? A mixture of the following things:
o Simple and Familiar: that is to say, it looks quite similar to C and C++ for

programmers of those languages, but with many of the elements which sometimes
prove troublesome (pointers, memory de-allocation) removed
e Object-oriented: a program created in Java is essentially the weaving together of

various objects (mixtures of code and data) that are instantiations of various

"classes". However, Java is very strictly so.

Architecture-neutral: because it is an interpreted language, it requires only an
Interpreter or Just in Time Compiler otherwise known as VM (The Java Virtual
Machine) in order to run. So as long as we have the VM for the machine we want
to run it on, then all Java programs should theoretically run.

Portable: because of the above, in theory we should only have to write it once,
and it should work on all machines, though this is still not true in practice all the
time.

Distributed: a program can create objects from classes stored on different web
servers - and only download the ones appropriate for a particular group of actions
at a particular time.

Secure: a whole layer of Java's architecture is devoted to security, so that it
formalizes the way to deal with possible security problems (since we are allowing

a program to run on our machine from an internet site).

In fact Sun posted the first Internet ready version of Java on an obscure Internet server in

1994 and invited Netscape and some select others to look at it. Marc Andreeson, chief

luminary of Netscape was impressed and told the San Jose Mercury News: "What these

guys are doing is undeniably, absolutely new. It's great stuff." This was very auspicious:

indeed Kim Polese, who later went on to become CEO of the company Marimba, and

was at that time Senior Product Manager for Java said: "That quote was a blessing from

the god of the Internet”.

Suddenly everything was looking right. By May 95 Netscape had licensed Java from Sun

and built a version of it into Navigator 2.0. By the autumn of that year, the first books

5

about Java were being written and published. On Dec 4 1995 Business Week ran a cover
story on "Software Revolution --- The Web Changes Everything" and promoted Java as a
breakthrough force in the expanding the Web and the Internet. In the following week,
Silicon Graphics, IBM, Adobe, Macromedia and finally Microsoft adopted and licensed
Java from Sun.

In all of these things, Sun used a two pronged software strategy to increase interest in
Java. a) They produced their web browser written in Java called Hot Java b) The freely
distributed "Java Development Kits" JDKs which contained a standard compiler, an
applet viewer, all the documentation for code, and a documentation generator (Javadoc)
which produced documentation in one standard form.

The Java revolution first seemed to really solidify with the release of Netscape and
Internet Explorer 3.0, and also introduced some much needed competition in the realm of
Java virtual machines (since Microsoft's was very superior to Netscape's on the PC at
least). This version of Java was 1.0.x and became the standard for a while.

Not long after 1.0.x a new version then came out 1.1.x which has a number of significant
improvements: a more sophisticated support for User Interface components, together with
so-called Java Beans, things that behave rather like OLE objects on Windows (i.e.
applications that can host or reside in other applications - for example Equation Editor
inside Word) - however these would be totally cross platform objects. These years Java
improves very fast and several new versions have come out. These new versions include
Java 1.2, 1.3 and 1.4 and all of them improve significantly.

2.1.2 About the Java Technology

Java technology is both a programming language and a platform.

2.1.2.1 The Java Programming Language
According to Java’s language specification by Sun, the Java programming language is a

high-level language that can be characterized by the following words:

Simple, object-oriented, distributed, robust, secure, architecture neutral, portable, high
performance, multithreaded and dynamic.

Apart from those been described above, the other properties are:

e High performance: Performance is always a consideration. The Java platform
achieves superior performance by adopting a scheme by which the interpreter can
run at full speed without needing to check the run-time environment. The
automatic garbage collector runs as a low-priority background thread, ensuring a
high probability that memory is available when required, leading to better
performance. Applications requiring large amounts of compute power can be
designed such that compute-intensive sections can be rewritten in native machine
code as required and interfaced with the Java platform. In general, users perceive
that interactive applications respond quickly even though they're interpreted.

e Multithreaded and dynamic: The Java platform supports multithreading at the
language level with the addition of synchronization primitives: the language
library provides the Thread class, and the run-time system provides monitor and
condition lock primitives. At the library level, moreover, Java technology's high-
level system libraries have been written to be thread safe: the functionality
provided by the libraries is available without conflict to multiple concurrent
threads of execution. While the Java Compiler is strict in its compile-time static

checking, the language and run-time system are dynamic in their linking stages.

Classes are linked only as needed. New code modules can be linked in on demand
from a variety of sources, even from sources across a network. In the case of the
HotJava Browser and similar applications, interactive executable code can be
loaded from anywhere, which enables transparent updating of applications. The
result is on-line services that constantly evolve; they can remain innovative and
fresh, draw more customers, and spur the growth of electronic commerce on the
Internet.
With most programming languages, we either compile or interpret a program so that we
can run it on our computer. The Java programming language is unusual in that a program
is both compiled and interpreted. With the compiler, first we translate a program into an
intermediate language called Java bytecodes, the platform-independent codes interpreted
by the interpreter on the Java platform. The interpreter parses and runs each Java
bytecode instruction on the computer. Compilation happens just once; interpretation

occurs each time the program is executed. The following figure illustrates how this

works.

myProgram . java

myProgram.class

Figure 1. How Java program works

We can think of Java bytecodes as the machine code instructions for the Java Virtual

Machine. Every Java interpreter, whether it's a development tool or a Web browser that
can run applets, is an implementation of the Java VM.

Java bytecodes help make the saying by the sun people "write once, run anywhere"
possible. We can compile our program into bytecodes on any platform that has a Java
compiler. The bytecodes can then be run on any implementation of the Java VM. This
means that as long as a computer has a Java VM, the same program written in the Java

programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

~ e~~~ Ly

Win32 Solaris

Figure 2. Java Virtual Machine (JVM)

2.1.2.2 The Java platform

A platform is the hardware and software environment in which a program runs. We have
already mentioned some of the most popular platforms like Windows 2000, Linux,
Solaris, and MacOS. Most platforms can be described as a combination of the operating
system and hardware. The Java platform differs from most other platforms in that it is a
software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

e The Java Virtual Machine (Java VM)

e The Java Application Programming Interface (Java API)
Java VM is the base for the Java platform and is ported onto various hardware-based
platforms.
The Java APl is a large collection of ready-made software components that provide many
useful capabilities, such as graphical user interface (GUI) widgets. The Java API is
grouped into libraries of related classes and interfaces: these libraries are known as
packages.
The following figure depicts a program that is running on the Java platform. As the figure

shows, the Java API and the virtual machine insulate the program from the hardware.

myProgram.java

 Java Virtual Machine - - }Java Platform

Figure 3. A Java program running on the Java platform

Native code is the compiled machine code that runs on a specific hardware platform. As a
platform-independent environment, the Java platform can be a bit slower than native
code. However, smart compilers, well-tuned interpreters, and just-in-time bytecode

compilers can bring the performance close to that of native code without threatening

portability.

10

2.2 What Can Java Technology Do?

The most common types of programs written in the Java programming language are
applets and applications. An applet is a program that adheres to certain conventions that
allow it to run within a Java-enabled browser.
However, the Java programming language is not just for writing entertaining applets for
the Web. The general-purpose, high-level Java programming language is also a software
platform. Using the generous API, we can write many types of programs.
An application is a standalone program that runs directly on the Java platform. A special
kind of application known as a server serves and supports clients on a network. Examples
of servers are Web servers, proxy servers, mail servers, and print servers. Another
specialized program is a servlet. A servlet can almost be thought of as an applet that runs
on the server side. Java Servlets are a choice for building interactive web applications,
replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime
extensions of applications. Instead of working in browsers, though, servlets run within
Java Web servers, configuring or tailoring the server.
How does the API support all these kinds of programs? It does so with packages of
software components that provide a wide range of functionality. Every full
implementation of the Java platform gives us the following features:

e The essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.
e Applets: The set of conventions used by applets.
o Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram
Protocol) sockets, and IP (Internet Protocol) addresses.

11

¢ Internationalization: Help for writing programs that can be localized for users
worldwide. Programs can automatically adapt to specific locales and be displayed
in the appropriate language.

e Security: Both low level and high level, including electronic signatures, public
and private key management, access control, and certificates.

e Software components: Known as JavaBeans™, can plug into existing
component architectures.

e Object serialization: Allows lightweight persistence and communication via
Remote Method Invocation (RMI).

e Java Database Connectivity (JDBCT‘“): Provides uniform access to a wide

range of relational databases.
The Java platform also has APIs for 2D and 3D graphics, accessibility, servers,

collaboration, telephony, speech, animation, and more. The following figure depicts what

is included in the Java 2 SDK.

Figure 4. Java 2 SDK

{ R Java IDE)

SDK 1.3
£] wnejaqa

2.3 Can Java be used for Games?

Can Java be used to write games? As a language for games, it should have comparatively
large set of rich libraries and good ability to deal with graphics, and also from the modern
point of view, it better be object-oriented. We know that Java is object-oriented, and up to
now it has a large set of rich packages (libraries), and after its 2D and 3D packages came
to the world, now it has the necessary ability to deal with graphics. So Java has all the
necessary features for writing games. But we may still ask that why choose Java for
games. The decision whether to use Java over languages such as C or C++ is not always
clear. There are situations where people may want to use one language and situations
where another might be more appropriate. For instance, using Java to create today’s latest
and greatest first-person 3D shooter may not be such a wise choice — at least not until
more development tools are created. On the other hand, it can be guaranteed that object-
oriented programmers can get that 2D done faster and more efficiently with Java than

with practically any other language out there. So for the people who like to write their

13

2D games, Java is really a good choice. Following are some main reasons why people
might choose Java for a particular game:
¢ Platform Compatibility

Practically all Java programs written on one system will automatically run on any other
system that supports the Java platform. Therefore, the exact same code can be executed
on virtually any system, without any code changes needed. A game created with Java can
be sold to someone running Windows XP just as it can to someone running an older
vertion of Linux.

e Internet Capabilities

Much of the Java language is tailored for the Internet. Therefore, we can easily create and
run games for the Web using Java. This includes everything from downloading simple
games like checkers or black jack and running them directly through the web browsers to
playing multiplayer role-playing games online.

e The Java API
Java comes with a rather impressive number of data structures and other packages, saving
the programmer from having to perform many menial, low-level tasks. The Java Abstract
Window Toolkit (AWT), Java 2D and Java project Swing are just a few Java
technologies available to help people write better code faster. In short, the Java API
allows people to focus on the problem at hand, rather than worrying about many of the
underlying details.

e Object-Oriented Design
Object-oriented design makes programming faster and easier. Large tasks can be broken
down into smaller ones, and object-oriented programs are also generally easier to follow

14

and manage than the ones written using procedural languages.
e A Shallower Learning Curve

Game programming requires knowledge of mathematics, physics, graphics programming,
artificial intelligence, and so on. This can be quite difficult for many people who like to
write their own games. Using a language with so many built-in constructs (these
constructs can deal with the calculations, image processing or other computing which are
some critical required functionalities for game programming) allows newcomers to the
field of game programming to feel comfortable more quickly, allowing them to break

down the projects into small, manageable steps.

2.4 Why choose this topic as a graduate level work?

Since the occurrence of Java, Java has improved and spread so fast that nowadays more
and more software developers and programmers are using Java technology to design and
develop software programs. More and more companies are using Java to bind or
implement their products, especially in e-commerce business field. With every new
version or new product of Java, it often brings us new conception, new thinking and new
technologies. So to some degree catching Java technology make people not behind the
world of modern computer science. From the above description we can know that Java is
a high-level programming language that has a large set of packages, powerful
functionalities in many fields and a lot of good features, and game programming requires
so much knowledge of mathematics, physics, graphics programming, artificial
intelligence, especially good understanding of object-oriented concept and so on, so [

think this is quite a good choice for a graduate level work

15

In this project we designed a game programming environment in Java. This environment
has been evaluated by the collaborated work of Ye Zhu [13] by designing a Java game

applet for this environment.

16

Chapter 3: Java Game Programming

The technologies used when creating games with Java is a lot like creating games with
other languages. There are usually some basic components that consist a game, such as
movable objects, some backgrounds, friendly graphical user interface etc. In general,
dealing with graphics is the most important task in game programming, and modern
games are much more advanced and powerful than before, Sound is becoming the second
most important task in game programming. Usually almost in any kind of languages, the
basic idea for game programming is that we need to deal with the design of movable
objects since a game usually contains lot of movable objects in it, we need to deal with
the design of a graphic engine to keep track of the movable objects, that is, we need some
methods to control those movable objects, and we also need to deal with double buffering
to make the movement of the movable objects look smooth.

Fortunately Java takes care of a lot of the low level or tedious work we would have to do
if we were writing a game in another language. For example, Java provides built-in
support for transparent pixels, making it easier to write a graphics engine that can draw
nonrectangular objects. Java also has built-in support for allowing several different
processes or tasks to run at once - perfect for creating a word with a lot of creatures, each
with its own special methods for acting. And, the easy implementation of multi-threading

also makes Java a better way for game application.

3.1 Graphics
3.1.1 Creating a Graphics Engine

A graphics engine is essential to a well-designed game in Java. It is an object that is

17

given the duty of painting the screen. It keeps track of all the objects on the screen at one
time, the order in which to draw the objects and the background to be drawn. The most
important function of the graphics engine is to maintain the movable object blocks.

3.1.2 Movable Object Blocks

As we usually can see, there are a lot of movable object blocks in a game. These blocks
make our life infinitely easier if we are interested in creating a game that combines
graphics and user interaction, as most games do. To make the movable object blocks, we
have two alternative ways in Java. One is using some methods that are related to drawing
graphics in Java to draw those objects. This method is very tedious and usually can only
be used in simple animation programs. The other way, which we actually use in game
programming, is that we make the object as such an object which contains both a picture
that will be drawn on the screen and the information that tells us where the picture is to
be drawn on the screen. To make the object move, we simply tell the movable object
(more precisely, the graphics engine that contains the movable object) which way to be
drawn and we are done -- redrawing is automatically taken care of.

The basic method for making a movable object block (here after it is called MOB) in
Java is shown in Listing 1:

Listing 1. The code creating a movable object block (MOB).

import java.awt.*;
public class MOB
{
public intx=0;
public inty=0;
public Image picture;
public MOB (Image pic)
{
picture = pic;
}
}

18

As we can see from the above code, the movable object consists of an image and a set of
coordinates. The constructor takes an Image and stores it away to be drawn when needed.
After we have instantiated an MOB (that is, after we have called the constructor), we
have a movable object that we can move around the screen just by changing its x and y
values. The graphics engine will take care of redrawing the movable object in the new
position.

One thing to consider is the nature of the picture that is going to be drawn every time the
movable object is drawn. Consider the place in which the image probably will originate.
In all likelihood, the picture will either come from a GIF or JPEG file, which has one
very important consequence -- it will be rectangular. What does this mean? This means
that if the entire movable objects are rectangles, the characters would be drawn, but so
would their backgrounds. The chances are, we will want to have a background for the
entire game; it would be unacceptable if the unfilled space on character images covered
up our background just because the images were rectangular and the characters were of
another shape.

When programming games in other languages, this problem is often resolved by
examining each pixel in a character’s image before drawing it to see whether it is part of
the background [2]. If the pixel is not part of the background, it is drawn as normal. If
the pixel is part of the background, it is skipped and the rest of the pixels are tested.
Pixels that are not drawn usually are referred to as transparent pixels. Fortunately, Java
has built-in support for transparent colors in images, which simplifies our task

immensely. We do not have to check each pixel for transparency before it is drawn

19

because Java can do that automatically. Java even has built-in support for different levels
of transparency. For example, we can create pixels that are 20 percent transparent to give
our images a ghostlike appearance. Here we will deal only with fully transparent pixels.
Java’s capability to draw transparent pixels makes the task of painting movable objects
on the screen much easier. But how do we tell Java what pixels are transparent and what
pixels are not? Now we have two alternative ways to tell Java which pixels are
transparent and which are not. One way is to load the image and run it through a filter
that changes the ColorModel, but that would be a very hard way because firstly we have
to be very familiar with dealing images and secondly we have to pass a lot of information
related to the image filter to the image consumer in which way usually it requires lot of
coding. The other way is that because Java supports transparent G/F files, whenever a
transparent GIF file is loaded, all the transparency is preserved by Java. This means our
job got a lot easier. Now what we need to do is just use our favorite graphics package to
create a GIF file (or a picture in some other format that we can eventually convert to a
GIF file). Select a color that does not appear anywhere in the picture and fill all areas that
we want to be transparent with the selected color. Make a note of the RGB value of the
color we use to fill in the transparent places. Now we can use a program to convert our

GIF file into a transparent G/F file.

3.2 Construction of a Graphics Engine

When we have the movable objects that know where they are supposed to be and do not
eat up the background as they go there, we need to design something which keeps track

of the movable objects and draw them in the proper places when necessary. This is the

20

job of GraphicsEngine class. Listing 2 shows the bare bones of a graphics engine.

Listing 2. A bare-bones of graphics engine that tracks movable objects.

import java.awt.*;
import java.awt.image.*;
public class GraphicsEngine

{

Chain mobs = null;
public GraphicsEngine()

{}
public void AddMOB (MOB new_mob)

{
mobs = new Chain (new_mob, mobs);
}
public void paint (Graphics g, ImageObserver imob)
{

Chain temp_mobs = mobs;

MOB mob;
while (temp_mobs != null)

{

mob = temp_mobs.mob;
g.drawImage(mob.picture, mob.x, mob.y, imob);

temp_mobs = temp_mobs.rest;

}
}
}

class Chain

{
public MOB mob;

public Chain rest;
public Chain (MOB mob, Chain rest)

{
this.mob = mob;
this.rest = rest;
v
J

This is the minimum we need to handle multiple movable objects.

Before we detail how the GraphicsEngine class works, we first briefly describe the Chain
class. The Chain class is simply a data structure that holds two objects, which are called
item and rest in the above code. The power of the Chain structure — and those structures
like it -- is that it can be used as a building block to create a multitude of more
complicated structures. These structures include circular buffers, binary trees, weighted
digraphs and linked list etc. Here we actually use Chain class to create a linked list.

Our goal here is to keep a list of moveable objects that are to be drawn. A linked list suits
our purpose well because a linked list is a structure that is used to store a list of objects.
Each point in the list contains an object and a link to a list with the remaining objects.
Since linked list is the basic knowledge in computer science, [will not talk about it more
here.

Look at the method AddMOB() in Listing 2. Whenever we want to add another movable
object to the list of movable objects we are controlling, we simply make a new list of
movable objects that has the new movable object as the first item and the old Chain as
the rest of the list. Here the reason why we make a method called AddMOB(), which is
only one line long, is that if GraphicsEngine were subclassed in the future, it would be a
lot easier to add functionality if all we have to do is override one method as opposed to
changing every line of the code that calls AddMOB(). For example, if GraphicsEngine is
subclassed by some other classes, and if we want to sort all the movable objects by size,
with having the method AddMOB() we could just override AddMOB() so that it sorts all
the objects in a sorted order to begin with. Without 4ddMOB(), we usually have to

change every line of the code that possesses the similar functionalities to 4ddMOB() in

the subclasses.

o
~

3.3 Painting Images from a List

Since we already have a method for keeping a list of all the objects that have to be
painted, to use the list, the first thing we should be concerned about is how to add new
objects to the list of objects that have to be painted. We add a new object to the list by
using the method AddMOB() shown in Listing 2. As we can see that all the AddMOB(')
method does is to replace the old list of objects in mobs with a new list that contains the
new object and a link to the old list of objects.

When AddMOB() has been called for all the removable objects we want to handle, from
the method paint() we can see that the first thing to do is to copy the pointer (though
Java does not have explicit pointers, we can think it in this way) to mobs into a temporary
Chain called temp _mobs. Now temp_mobs contains a pointer to the list of all the
removable objects to be drawn. Then we should go through the list and draw each
movable object. The variable mob is used to keep track of each movable object as we get
to it. The variable temp_mobs represents the list of movable objects we have left to draw
(that’s why we started it from pointing to the whole list). When temp_mobs is null we can
know that all movable objects have been drawn because that will be just like saying that
the list of movable objects left to draw is empty. That’s why the main part of the code is
encapsulated in a while loop that terminates when temp_mobs is null. Simply speaking,
we draw the movable objects by traversing the whole list.

We can also notice that in the while loop of the paint() method, the first thing that is
done is to assign mob to the movable object at the beginning of the temp_mobs Chain so
that there is an actual movable object to deal with. Now it is the time to draw the movable

object. The g.drawimage() command draws the movable object in the proper place. The

23

variable mob.picture is the picture stored earlier when the movable object was created.
The variable mob.x and mob.y are the screen coordinates at which the movable object
should be drawn. We should notice that paint() looks at these two variables every time
the movable object is drawn. So changing one of these coordinates while the program is
running has the same effect as moving it on the screen. The final argument passed to
g.drawlmage() — imob, is an ImageObserver that is responsible for containing those
images that are to be drawn. The way we get an /mageObserver is that we will use the
GraphicsEngine class to draw inside a Component (or a subclass of Component such as
Applet), and in Java a Component implements the /mageObserver interface so that we
can just pass the Component to GraphicsEngine whenever we want to repaint. For
example, we can call paint() method of class GraphicsEngine in the way like paint(g,
myApplet), where g is an instance of Graphics and myApplet is an instance of Applet.

The final line inside the while loop shortens the list of movable objects that have to be
drawn. It points temp_mobs away from the Chain that it just drew a movable object off
the top of and points it to the Chain that contains the remainder of the MOBs. As we
continue to shorten the list of MOBs by pointing to the remainder, temp_mobs eventually

winds up as null, which ends the while loop with all the movable objects drawn.

3.4 Installing the Graphics Engine

The graphics engine in Listing 2 certainly had some important things left out, but it does
work. Having the GraphicsEngine class, we have to install it inside a Component to use

it. Listing 3 shows an example of how to install the GraphicsEngine in side a

Component:

Listing 3. A sample applet installing GraphicsEngine

import java.awt.*;
import java.applet.Applet;
import java.net.URL;
public class Game extends Applet
{
GraphicsEngine engine;
MOB picturel;
public void init()
{
try
{
engine = new GraphicsEngine().
Image imagel = getimage(new URL(getDocumentBase(),
"one.gif")):
picturel = new MOB(imagel);
engine. AddMOB(picturel);
}

catch (java.net.MalformedURLException €)
{
System.out.printin("Error while loading pictures...");
e.printStackTrace();
}
H

public void update(Graphics g)

{
paint(g);
}

public void paint (Graphics g)
{
engine.paint(g, this);
H
public boolean mouseMove (Event evt, int mx, int my)
{
picturel.x = mx;
picturel.y = my;
repaint();
return true;

The Component we are installing the GraphicsEngine in is an Applet. So we can view the
results with a web browser or with JDK’s appletviewer. In the above code, the instance of
GraphicsEngine is the variable engine. It controls all the movable objects we can deliver,
and picturel, a movable object that draws the chosen image. In the init() method, we
initialize engine by setting it equal to a new GraphicsEngine. Next, the image we chose is
loaded with a call to getImage(). This line creates the try and catch statements that
surround the rest of the code to catch any invalid URLs. After the image is loaded, it is
used to create a new MOB. And picturel is initialized to this new MOB. The work is
completed by adding the movable object to engine so that engine will draw it in the
future. The remaining lines are there to provide information about any errors that occur.
In the paint() method we can see that it actually calls the paint() method in the graphics
engine.

The update() method is used to avoid flickering. By default, applets use the update()
method to clear the window they live in before they repaint themselves with a call to their
paint() method. This can be a useful feature if we are changing the display only once in a
while, but with graphics intensive programs, this can create a lot of flicker because the
screen refreshes itself frequently. Because the screen refreshes itself so frequently, once
in a while, it catches the applet at a point at which it has just cleared its window and has
not yet had a chance to redraw itself. This is what causes flicker. So we have to rewrite
the update() method to solve this problem.

The flicker was eliminated here by leaving out the code that clears the window and going
straight to the paint() method. But here another problem arises. It is that the movable

object is leaving streaks. This is because this method only uses a single buffer to do the

26

redrawing. As now we don’t clear the window, the same object will be redrawn within
the same buffer but at different places with the moving of this object, so the streaks
happen here. Double buffering that will be talked about later can eliminate this.

As we can see, the Game.paint() method consists of one line: a call to the paint() method
in engine. It might seem like a waste of time going from update() to paint() to
engine.paint() just to draw one image. But if there are a dozen or more movable objects
on the screen at once, we can immediately find the simplicity of being able to add the
object in the init() method and then forget about it the rest of the time, letting the

engine.paint() method take care of everything.

3.5 Improvements

We can say that all the codes we have mentioned before provide the basic framework for
the game programming. On the basis of that, we can make some improvements. Lets start
with movable objects. When we want to write a game with a lot of movable objects, what
should be considered? It would be much easier to come up with some useful properties
that we want all our movable objects to have now so that we do not have to deal with
each movable object individually later.

One area that merits improvement is the order in which movable objects are painted.
Consider if we have a ball (represented by a movable object) that was bouncing along the
screen, and we wanted it to travel in front of a person (also represented by a movable
object), how could we make sure that the ball was drawn after the person every time, to
make it look like the ball was in front of the person? We could make sure that the ball is

the first movable object added to the engine, ensuring that it is always the last movable

27

object painted. However the approach can get hard if we have 10 or 20 movable objects
that all have to be in a specific order. Also, what if we wanted the same ball to bounce
back across the screen later on, but this time behind the person? The method of adding
movable objects in the order we want them drawn obviously wouldn’t work, because we
would be switching the drawing order in the middle of the program.

What we need is some sort of prioritization scheme to decide which object should be
drawn before other objects. So we can improve the graphics engine in the way that let it
implement a scheme in which each movable object has an integer that represents its
priority. The movable objects with the highest priority number are drawn last and thus
appear in front. Listing 4 shows the changes that have to be made to the MOB class to
implement prioritization and to GraphicsEngine class.

Listing 4. Improved code for MOB class and GraphicsEngine class

import java.awt.*;
public class MOB
{

public int x=0;

public int y=0;

public Image picture;
public int priority = 0;
public boolean visible = true;
public MOB (Image pic)

{

}

picture = pic;

}

import java.awt.*;
import java.awt.image.¥*;
public class GraphicsEngine
{

Chain mobs = null;

public Image background;

public Image buffer;

Graphics pad;
public GraphicsEngine (Component ¢)
{
buffer = c.createImage (c.size().width, c.size().height);
pad = buffer.getGraphics (),
'
public void AddMOB (MOB new_mob)

{

mobs = new Chain (new_mob, mobs);

}
public void paint (Graphics g, ImageObserver imob)

{
i £ (background != null)

{
pad.drawImage(background, 0, 0, ct.getSize().width, ct.getSize().height,
imob);
}
Chain temp_mobs = new Chain(mobs.mob, null);
Chain ordered = temp_mobs;
Chain unordered = mobs.rest;
MOB mob;
while (unordered '= null)
{
mob = unordered.mob;
unordered = unordered.rest;
ordered = temp_mobs;
while (ordered !'= null)
{
if (mob.priority < ordered.mob.priority)
{
ordered.rest = new Chain(ordered.mob, ordered.rest);
ordered.mob = mob;
ordered = null;

}

else if (ordered.rest = null)

{

ordered.rest = new Chain(mob, null);
ordered = null;
}
else ordered = ordered.rest;
}
}

while (temp_mobs != null)

{

mob = temp_mobs.mob;

if (mob.visible)

{
}

temp_mobs = temp_mobs.rest;

}
g.drawImage(buffer, 0, 0, imob);

pad.drawImage(mob.picture, mob.x, mob.y, imob);

}
}

class Chain

{
public MOB mob;
public Chain rest;
public Chain(MOB mob, Chain rest)
{

this.mob = mob;
this.rest = rest;

}
}

The prioritization scheme does not impose any restrictions on the priority of each object.
There is no need to give objects sequential priorities. We can also assign the same
priority to more than one object if we do not care which object is drawn on top.

The heart of the prioritization scheme lies in the new version of GraphicsEngine.paint()
method. The basic idea is that before any movable objects are drawn, the complete list of
movable objects has already been sorted by priority. The highest priority objects are put
at the end of the list so that they are drawn last and appear in the front; the lowest priority
objects are put at the beginning of the list so that they are drawn first and appear in back.
From the above code we can sce that a Bubble sort algorithm is used to sort the objects.
Bubble sort algorithms are usually slower than other algorithms, but they tend to be

easier to implement. In the case of having small number of movable objects, the extra

30

time taken by the bubble sort algorithm is relatively negligible because the majority of

the time within the graphics engine is spent on displaying the images.

3.6 Double Buffering

When we have images loaded and doing something the next topic on the agenda is
flicker. Although simplistic animations or slideshows run fairly well, as more drawing is
done to the viewing window in advanced applets, one can begin to see the screen refresh
causing a flicker.

We would say this is the bane of the animator or game developer because many solutions
exist on a variety of platforms to speed up rendering. So far the most common solution
for this problem is double buffering.

Double buffering is the process of storing a copy of the screen in a section of memory
and doing all drawing to this canvas as if it were the screen. Since all drawing is being
done off the screen, the only drawing onscreen is the actual copying of the buffer to the
screen that can be timed to avoid the refresh. For example, in the paint() method of class
GraphicsEngine in Listing 4, we use the variable buffer, which is an instance of image to
represent the off-screen. Then before updating the screen, we use the Graphics context
pad, which is gotten from buffer to draw all the images that consist of the next screen that
will be shown immediately after. When pad has finished its job, we pass buffer, which is
actually the updated screen to Graphics context g, which is gotten from the present
screen to do the update. So now the updated screen is shown to users without any flicker

or streaks.

Some systems or environments have automatic buffering that means little or no

31

programming. In Java it is really only a matter of redirection from what we've done so
far.

We already know that a good thing about G/F files is that we can make transparent G/Fs
quite easily using many paint programs and image utilities. This fact allows gif images
that are not rectangular to keep their fine shape and blend in with whatever background
we like.

From the improved code in Listing 4, we can find two big features that are double
buffering and addition of a background respectively. Notice the changes of
GraphicsEngine. The graphics engine now creates an image so that it can do off-screen
processing before it is ready to display the final image. The off-screen image is named
buffer, and the Graphics context that draws into that image is named pad. In the paint()
method in GraphicsEngine, we can see that until the end, all the drawing is done into the
Graphics context pad instead of the Graphics context g. The background is drawn into
pad at the beginning of the paint() method and then the movable objects are drawn into
pad after they have been sorted. Once everything is drawn into pad, the image buffer
contains exactly what we want the screen to look like, co we draw buffer to g, which
causes it to be displayed on the screen.

3.7 Invisibility and Other Possible Extensions

Another feature that was added to the extended version of the movable objects was the
capability to make the movable objects disappear when they are not wanted. This was
accomplished by giving MOB a flag called visible. In the GraphicsEngine.paint()
method in Listing 4 we can see how it works. This feature would come in handy if we

have an object that we want to show only part of the time. For example, we could make a

32

bullet as a movable object. Before the bullet is fired, it is in a gun and should not be
visible, so we set visible to false and the bullet is not shown. Once the gun is fired, the
bullet can be seen, so we set visible to true and the bullet is shown.

Apart from those new features we mentioned above, we can also add some other new
features like a centering feature for movable objects so that they are placed on the screen
based on their center rather than their edge — this can be done by calculating the size of
the movable objects to get the distance from their edges to their centers, or the addition of
velocity and acceleration parameters, or even a collision-detection method that would
allow us to tell when two movable objects have hit each other etc. Anyway, we can

extend the codes as needed to accommodate our needs.

3.8 Sound Effect

To make our games more appealing to users, we can add sounds to the games. The basic
way to make games have sound effect in Java is to get into java.applet.AudioClip
interface. There are only three methods: loop(), play() and stop() in this simple
interface. We can use Applet.getAudioClip() to load an AudioClip in the AU format and
then we have two choices: Use the play() method to play it at specific times or use the
loop() method to play it continuously. The applications for each are obvious. Use the
play() method for something that is going to happen once in a while, such as the firing of
a gun; use the /oop() method for something that should be heard all the time, such as

background music or the hum of a car engine.

3.9 Java-Specific Game Design Issues

33

There are some specific design issues we have to consider when we design our games in
Java. One of Java’s most appealing characteristics is that Java programs can be
downloaded through the web and run inside a browser. This networking aspect brings
several new considerations into play. Java is also meant to be a cross-platform language,
which has important ramifications in the design of the user interface and for games that

rely heavily on timing. More will be discussed in the following sections.

3.9.1 User Interface

When picking a user interface, there are several things we should keep in mind. Above
all, remember that our applet should be able to work on all platforms because Java is a
cross-platform language. This applet must be paid much more attention when we choose
to use mouse or keyboard as our input device. Alternatively, we can choose to use either
AWT components or Swing components to design and implement user interface. The
AWT components are those provided by the JDK 1.0 and 1.1 platforms. Java 2 Platform
still supports the AWT components. We can identify Swing components because their
names start with J. The AWT button class, for example, is named Button, while the
Swing button class is named JButton. Additionally, the AWT components are in the
java.awt package, while the Swing components are in the javax.swing package.

The biggest difference between the AWT components and Swing components is that the
Swing components are implemented with absolutely no native code. Since Swing
components are not restricted to the least common denominator -- the features that are
present on every platform -- they can have more functionality than AWT components.

Because the Swing components have no native code, they can be shipped as an add-on to

34

JDK 1.1, in addition to being part of the Java 2 Platform.

Even the simplest Swing components have capabilities far beyond what the AWT

components offer:

Swing buttons and labels can display images instead of, or in addition to, text.

We can easily add or change the borders drawn around most Swing components.
For example, it's easy to put a box around the outside of a container or label.

We can easily change the behavior or appearance of a Swing component by either
invoking methods on it or creating a subclass of it.

Swing components do not have to be rectangular. Buttons, for example, can be
round.

Assisted technologies such as screen readers can easily get information from

Swing components. For example, a tool can easily get the text that is displayed on

a button or label.

Swing lets us specify which look and feel our program's GUI uses. By contrast, AWT

components always have the look and feel of the native platform.

Another interesting feature is that Swing components with state use models to keep the

state. A JSlider, for instance, uses a BoundedRangeModel object to hold its current value

and range of legal values. Models are set up automatically, so we do not have to deal with

them unless we want to take advantage of the power they can give us.

If we are used to using AWT components, we need to be aware of a few things when

using Swing components:

Programs should not, as a rule, use "heavyweight" components alongside Swing
components. Heavyweight components include all the ready-to-use AWT

35

components (such as Menu and ScrollPane) and all components that inherit from
the AWT Canvas and Panel classes. This restriction exists because when Swing
components (and all other "lightweight" components) overlap with heavyweight
components, the heavyweight component is always painted on top.

Swing components are not thread safe. If we modify a visible Swing component --
invoking its setText method, for example -- from anywhere but an event handler,
then we need to take special steps to make the modification execute on the event-
dispatching thread. This is not an issue for many Swing programs, since
component-modifying code is typically in event handlers.

The containment hierarchy for any window or applet that contains Swing
components must have a Swing top-level container at the root of the hierarchy.
For example, a main window should be implemented as a JFrame instance rather
than as a Frame instance.

We do not add components directly to a top-level container such as a JFrame.
Instead, We add components to a container (called the content pane) that is itself

contained by the JFrame.

The implemented game for this project has both an A T version and a Swing version so

that we can make some comparison on them and meet different needs for the users using

different platforms.

If we use the keyboard as the input device when writing a game program, it is even more

critical to remember that although the underlying platforms might be vastly different,

Java is platform independent. This becomes a problem because the different machines

that Java can run on may interpret keystrokes differently when more than one key is held

36

down at once. For example, we may think that it is worthwhile to throw a supermove()
method in our game that knocks an opponent off the screen, activated by holding down
four secret keys at the same time. However, doing this might destroy the platform
independence of our program because some platforms may not be able to handle four
keystrokes at once. The same thing is true for the mouse. For example, we might want to
use two buttons in our game for the mouse but some platforms like Macintosh only has
one button. The best approach is to design a user interface that does not call into question
whether it is truly cross-platform. We just try to get by with only one key or one button at
a time, and stay away from control and function keys in general because they can be

interpreted as browser commands by different browsers in which the game applet runs.

3.9.2 Limiting Factors

As with any other programming language, Java has its advantages and its disadvantages.
It is good to know both so that we can exploit the advantages and clear the disadvantages.
Several issues arise when we are dealing with game design in Java — some of which are
the product of the inherent design of Java and some of which are the product of the

environment in which Java programs normally run.

3.9.2.1 Downloading

One of the main features of Java is that it can be downloaded and run across the net.
Because automatically downloading the Java program we want to run is so central to the
Java software model, the limitations imposed by using the net to get our Java bear some

investigation. First we have to keep in mind that most people with a network connection

37

are not on the fastest lines in the world. Although we may be ready to develop the coolest
animation ever for a Java game, remember that nobody will want to see it if it takes
forever to download. It is a good idea to avoid extra frills when they are going to be
costly in terms of downloading time.

One trick we can use to get around a lengthy download time is to download everything
we can in the background. For example, we can send level one of our game for
downloading, start the game, and while the user plays level one, level two and up are sent
for downloading in a background thread.

Suppose we want to download a series of images and then perform a number of image
enhancement operations on them. How can we be guaranteed that the image has finished
loading before applying the image operations? Implementing a delay mechanism might
work, but the value we use for our delay will most likely be longer or shorter than the
actual time needed to completely load in the image data. We need a way to tell exactly
when our images have completely loaded. Luckily this task is simplified considerably
with the java.awt.MediaTracker.

A common concern with applets is that images are sometimes referred to before they are
fully loaded, which has unpredictable results. [1] The MediaTracker class monitors the
status of media types, such as images, sounds, etc. MediaTracker can load data
asynchronously (in the background) or synchronously (waits for data to load first). Image
loading is sped up by threads that dedicate themselves to a group of images identified by
a selected ID. With the MediaTracker, we can track the process of the images we want to
load. To create a MediaTracker object, simply pass a Component object to it in its

constructor method (this will usually be a reference to our applet or frame window). The

38

passed Component represents the object onto which the images will eventually be drawn.
We can attach as many images as we like to a MediaTracker object and then retrieve the
loading status of a particular image or the status of all attached images collectively. We
can also attach ID numbers to distinguish image groups from one another. Lower
numbered IDs have a greater priority than higher numbered IDs. So if we wish to load a
group of images that we wish to enhance, we might assign a zero value to those images.
Immediately after images with priority zero finish loading, we can perform our image
enhancements while images with a lower priority continue to load.

An alternative way is store all our images, classes and other files in a JAR (JAR stands
for Java Archive. It’s a file format based on the popular ZIP file format and is used for
aggregating many files into one.) file and load them at one time to reduce the number of
connections of network.

Opening a network connection can take a significant amount of time. If we have 30 or 40
pictures to send for downloading, the time this takes can quickly add up. One trick that
can help decrease the number of network connections we have to open is to combine
several small pictures into one big picture. We can use a paint program or an image-
editing program to create a large image that is made up of our small images placed side
by side. We then send for downloading only the large image. This approach decreases the
number of network connections we need to open and can also decrease the total number
of bytes contained in the image data. Depending on the type of compression used, if the
smaller images that make up our large image are similar, we will probably achieve better
compression by combing them into one picture. Once the large picture has been loaded

from across the network, the smaller pictures can be extracted using the

39

Jjava.awt.image.CropImageFilter class to crop the image for each of the original smaller

images.

3.9.2.2 Execution Speed

Timing with applets is another important thing we have to keep in mind. Java is
remarkably fast for an interpreted language, but graphics handling usually leaves
something to be desired when it comes to rendering speed. Our applet probably will be
rendered inside a browser, which slows it down even more since users have to load some
other things other than the images. We may be developing our applets on a state-of-the-
art workstation, but a large number of people will be running them inside a web browser
on much slower PCs. When our applets are graphics intensive, it is always a good idea to
test them on slower machines to make sure that the performance is acceptable. If we find
that an unacceptable drop in performance occurs when we switch to a slower platform,
we can try shrinking the Component that our graphics engine draws into. We may also
want to try shrinking the images used inside our movable objects because the difference
in rendering time is most likely the cause of the drop in performance.

Another thing to watch out for is poor thread handling. A top-of-the-line workstation may
allow us to push our threads to the limit, but on a slow PC, computation time is often far
too precious. Improperly handled threading can lead to some bewildering results. For
example, we often make some threads sleep for a certain time to yield the processor to
other threads, if these threads don’t co-operate well, then one threads may use all the
processor’s time to lock up the running of other threads.

Admittedly, compared to natively compiled programs written in languages like C/C++ or

40

Pascal, Java programs are slow in some fields. However, this complaint has to be
weighed heavily against the inherently cross-platform nature of Java, which simply is not
possible with native programs such as those generated by C/C++ and Pascal compilers. In
an attempt to alleviate the inherent performance problems associated with processor-
independent Java executables, various companies are offering just-in-time (JIT) Java
compilers, which compile Java bytecode executables into native programs just before
execution. As we know that, when a Java program is compiled, it is compiled to be
executed under the Java Virtual Machine (VM). But the fact is that VM itself is highly
platform dependent. In other words, each different hardware platform or operating system
must have a unique VM implementation that routes the generic VM calls to appropriate
underlying native services. JIT compilers aiter the role of the VM a little by directly
compiling Java bytecode into native platform code, thereby relieving the VM of its need
to manually call underlying native system services. A basic JVM executes a small
subroutine for each Java bytecode. A JIT compiler takes the bytecode and translates them
into native machine code with respecting system calls so as not to violate security. JIT
compiles only bytecodes that are actually executed, whereas conventional compilers must
compile all of the source code. By compiling bytecode into native code, execution speed
can be greatly improved because the native code can be executed directly on the
underlying platform. This stands in sharp construct to the VM’s approach of interpreting
bytecodes and manuaily making calls to the underlying platform. In this way, the Java

programs can be run almost as fast as compiled languages such as C and C++-.

41

Chapter 4: Case study -- CrazyRoadl.0 (Online Game)
This chapter presents a summary of the Java game applet design and implementation by

Ye Zhu [13] to evaluate the game environment presented in the previous chapter.

4.1 Brief Description
CrazyRoadl.0 (hereafter called CrazyRoad) is a game, which is designed and

implemented with Java as a Java applet. Users can download it from web site and run it
on their local computer using a web browser. It is designed and implemented using all the
technologies we have mentioned before in this report with making some changes and

adding some new features. When we get into the game and ready to run it, it looks like

this:

-- Crazy Road 1.0 --

NewGame| Edt| Statcame| Pause| Restan| St Game| Help| @ Musicon € musicon

Figure 5. The interface of the implemented game — CrazyRoad1.0

42

The game is quite simple. From the above figure we can see that there are three lines on
the screen. These are the driving lines on the road. The road is separated into two ways
by the middle driving line. A car with red color and its head facing left is the playing car
(driven by the user) whose moving direction is to the left side in this game. The cars with
yellow color and their heads facing right are the obstacle cars whose moving directions
are to the right side. User just uses the space bar on the keyboard to control the position
of the playing car to avoid hitting by the obstacle cars whose moving directions are
conflict with that of the playing car. This program is designed in the way so that there are
only two possible positions for the playing car, which are up driving way or the down
driving way. At the beginning of the game, user is provided one playing car on the road
plus three backup playing cars in the garage shown on the right top of the screen. Once an
obstacle car hits the playing car, the number of the backup playing cars will be reduced
by one until no backup cars are stored in the garage. If the playing car on the road
collides with an obstacle car and at this time there are no more backup playing cars stored
in the garage, the game is over and the applet stops running. On the top of the screen,
user can check the message related to the level of the game user is reaching and the score
user has gained. At the bottom of the screen, there are some buttons from which user can

control the game or do some selections or get help. There are also some short-cut keys

that make user easy to control the game.

4.2 Design

The small example we mentioned before only has three classes, which are MOB,

GraphicsEngine and Game. While in this project, from the above figure we can see that

43

this game is made up of two areas: one is the playing area, and the other one is the control
area, which is the graphic user interface.

Firstly we should make sure that three classes must be involved in this program. MOB
class is required since every movable object has to be represented by it. GraphicsEngine
is required since we have to have such an engine to control the drawing of ail the
movable objects. Game class is also required since it is the entry point of program and
also it is the place we have to find to install the graphics engine.

But one thing, which is different from the above small example we should notice here, is
that this game has a graphic user interface. As the entry point of this game we will design
is an Applet. if we make the applet handle both the image drawing and the user interface,
it will be hard to implement and easy to cause problems. So we add a new class here to be
in charge of taking care of the drawing of the playing area, and it is also responsible for
the installation of the graphics engine. To reach this goal, the new added class must have
the feature of being drawn images on it. So making this new added class as a subclass of
Panel (A component of AWT: It is a container that can contain other components.) is an
obvious way. Now what we just need to do is to pack the playing area and user interface
area into the entry point class. Thus the image processing and the user interface are being
taken care of separately. This makes the program easy to be implemented and extended.
Finally, there are totally four classes making up of this program. Their names and main
functionalities are as follows:

MOB class:

MOB class is just the same as the extended MOB class in Listing 4. Its instance

represents a movable object. It incorporates the priority scheme to ensure that every

44

movable object has a priority number. The priority of every movable object is initialized
with the value of 0.

GameEngine class:

Instead of being called GraphicsEngine, We give the graphics engine a new name —
GameEngine for easy understanding. This engine is used to generate the movable objects
list and to take care of the drawing of all the movable objects. This class uses the basic
framework of class GraphicsEngine as in Listing 4 some changes. Some information
about the game such as the name of the game, the level of the game and the scoring of the
game etc. are controlled and displayed by this class. From the above figure, we can see
that there are several objects on the screen. These are the potential candidates that consist
of the movable objects list. Here we take the background, the playing car, the obstacle
cars, the backup playing car and the side bar, which consists of the driving ways, all as
the movable objects.

CrazyRoad class:

This is the new added class. It extends Panel class and implements Runnable interface.
The reason why we make it implement Runnable class is that any instances of this class
will be run as a thread.

This class is responsible for the installation of the GameEngine, and, actually the control
of the drawing of all the movable objects is achieved here. The main functionalities of
this game such as scoring, hitting, sound effect etc. are all implemented in this class.
Game class:

This is the entry point of this game. It is designed as an applet, which means this game

will be played using a web browser.

45

This class is also responsible for the packing of all the parts consisting of the game, like
the playing area and the user interface. Actually the user interface is controlled here.
After the compilation, the compiled file should be integrated into a HTML file in order to
make the user download it from some server and run it on the local computer.

The class diagram can be shown as follows:

Game

CrazyRoad

GameEngine

Chain < MOB

Figure 6. Class diagram for the implemented game — CrazyRoad1.0
46

To see more details of design and the detail of the implementation, please refer to the
collaborated work [13].

47

Chapter 5: Improvement and fallacies on Java

During the course of this collaborated project, I and Ye Zhu[13] made a few abstractions
on Java programming in general and Java game programming in particular. This chapter

presents a summary of these abstractions.

5.1 Some suggestions for Java game programming

In our programming endeavors using Java, we will come across instances where the code
we write can either optimize or hinder the output of our programs. The following are a
few brief points we should consider when writing Java code. Some of them detail
practices we should definitely incorporate into our code; others are things we should
definitely avoid. More details related to this topic, please refer to the collaborated work of
[13].

e Do code abstractly, but not too abstractly
The principle of abstraction is one of the cornerstones of object-oriented programming.
Since Java is nearly 100 percent object-oriented, knowing when to abstract become even
more important. For example, in our game we separate the classes according to different
functionalities each of which will perform so that we can generate objects with different
features freely and also can extend these objects freely. Thus we can notice that the
structure of our game is very clear. But we should remember to use abstraction only when
it will benefit or clarify our code.

¢ Do not use Java reflection classes
The java.lang.reflect package comtains classes that allow Java classes to obtain

information about them. Use of this package includes determining the run-time name of

48

an object, along with any methods it contains. These classes are commonly used in the
Java Virtual Machine itself, as well as external debuggers and profilers. If we come from
a C++ background, we have probably used function pointers in our code. Since Java does
not contain support for function (or method) pointers, it might seem temping to send a
Method object as a parameter to a function to simulate this functionality. Firstly,
programming with these classes can really reduce the throughput of our applications
since some of these classes such as Method are quite inconvenient, error prone and slow;
and as we know, speed is a critical component to any game.

e Do try to incorporate code that optimizes both speed and size of the

programs

This includes incorporating things such as image strips into the projects, as well as
eliminating the use of synchronization (since without cautious design and programming,
synchronization is error and deadlock prone) and exception handling when possible. Do
not, however, blindly eliminate all of the exception-handling code; if catching an
exception can save the program from completely crashing. by all means use it.
Excessive use of threading can trouble the programs as well. Using a few threads in the
games is usually necessary, but don't make the program have hundreds of objects, and
each of them use their own threads may cause the machine to spend all of its time
switching between threads, which will obviously slow things down way too much.

e Don’t use Swing classes for games
Thought as we discussed before, Swing has more advantages than AWT, and
programmatically Java Swing is a very clean and robust way to create applications,
during the practice we found that Swing is too bloated for game development. If we use

Swing just for the GUI in common application instead of game development, Swing is

49

really the preferable choice than AWT. But for game programming, the benefits that
Swing provides do not outweigh the speed hit that it makes on applications.

¢ Do think about minor code optimizations, but not too much
Techniques such as loop unrolling and using register variables (not in Java) used to be
very common among game programmers. However, with advances in processor speed,
such as seen with a lot of today’s popular games, minor optimizations have become less
important.

e Don’t use sun.* packages
Java packages such as those contained under java.*, javax.* and org.* are standard and
are supported across all platforms, but classes under the sun.* package are not. Classes
under sun.* packages are generally platform-specific and are known to change from
version to version.

¢ Don’t calculate values more than once if possible
It goes without saying that all program calculation take a finite processor time to execute.
Therefore, it is common sense for programmers that the fewer calculations the game code
makes, the faster it will run.

¢ Don’t attempt to optimize standard Java
Although one can sometimes find ways to rewrite standard C functions to perform faster
or better, we would not try to improve upon any standard Java class or method. Even if it
looks like making an optimization to native Java code would be appropriate, it might not

be due to considerations such as Java Virtual Machine issues or platform compatibility.

50

5.2 Some fallacies on Java

With the occurrence of Java and its development, people usually like to compare it with
some other popular programming languages like C, C++. We can find this kind of
comparison in a lot of books related to Java technology. We found that there are some
fallacies in these comparisons that may mislead readers. The purpose of this section is to
explain some commonly held misbelieves on Java.

Fzllacy 1: C is compiled; Java is interpreted.

This is wrong. Both C and (moder) Java VM's compile code. C compiles at build-time,
while Java VM compiles at run-time.

C/C++ compile to native machine code that executes only on the target machine. Java
compiles to bytecodes that run on any machine that has a JVM. Some advanced JVMs
further compile bytecodes to native machine code for the platform on which they are
running. As we have mentioned before, JIT is a technique that compiles during execution

(at run time) and consequently first slows down and then speeds up execution.

Fallacy 2: Build-time compilers produce faster programs.
This is wrong. Because:
e Run-time compilers can optimize somewhat better than build time compilers.[3]
¢ Run-time compilers know how one is using the code. [3]
e Run-time compilers can perform “dangerous™ optimizations because they can
recover. [3]
Fallacy 3: C is faster than Java.
This is wrong. As we know. C is really faster at something, for example like array access.

51

But Java is also faster at some things such as:
e Java has much better memory allocation that can result in speeding up execution.
e Java has better recursion and in lining. For example, standard fft in Java is almost
twice as fast as MSVC and gcc. (3]

e Over-all performance of C and Java is roughly equivalent today. [3]

Fallacy 4: Java programs port themselves.
This is wrong since:
e Pure Java programs will run on any Java VM, but will need to be qualified for
system specific behaviors and performance characteristics.
o 85% - 90% of a game will likely port itself, the critical sections for multithreading

will need to be tuned. [3]

5.3 Java's improvements over C and C++

C is a very popular systems programming language. It is concise, efficient and provides
close control over hardware. The language has several idiomatic expressions (such as
while(*p++ = *q++)) that at first appear very obscure; their effective use gives expert C
programmers a deep sense of mastery. C programs, however, are notoriously unreliable.
Indeed, the C idiom shown above will generally leave both pointers, p and q, pointing
outside the original data structures, and any use of their values will then lead to run-time
errors. In general C allows pointers to point to anywhere, and it provides type casts so
that whatever a pointer points at can be converted into something that can be
manipulated. In particular. C has an operator (&) that allows a program to obtain pointers

52

to anything. Such features are extremely useful for directly controlling hardware -- say, to
send bytes to a peripheral -- but unfortunately the same features ensure a C compiler
cannot provide any protection, as when a program makes accidental changes to itself in
arbitrary places.

Java overcomes these problems by two restrictions. Java simply has no pointers, so it is
not possible to access arbitrary parts of a program or to get 'inside’ private data structures,
whose actual structure may not quite be what the programmer planned. Secondly, Java
has much stricter type checking. For example, it is not possible to change the exponent of
a floating point number by treating it as an array of bytes -- whether deliberately or
accidentally.

Both C and Java have arrays. In C, arrays are defined to be equivalent to pointer
expressions, so they have exactly the same liabilities pointers do, perhaps with the added
danger that they look innocuous. The legal C assignment a[5]=6 looks perfectly
reasonable, but if a is a pointer to an array declared to have only four elements, then the
result of the assignment would be undefined. In fact, a is a pointer and could be pointing
anywhere (say, to a C function) when the attempted assignment occurs! Quite possibly
the assignment would change the C program's return stack, and cause the current function
to return to an arbitrary point in the program, and then anything could happen. In Java,
however, the subscript range is part of the array's type, and attempting to access an
element outside the appropriate range is an error that is always detected. In other words,
the common traps of C have been converted to explicit barriers in Java.

Despite these improvements, Java nevertheless remains very close to C. A simple C

program can be converted to Java more-or-less by just saying it is a class and fixing the

53

errors the Java compiler reports. Doing so will, in many cases, produce a much more
reliable program.

C++ is an object-oriented extension to C, and while introducing object oriented concepts,
it retains all the features of C that make it both efficient and unreliable, as described
above. C++ is a complex language, and Java effectively uses the 'core’ object oriented
features without many of C++'s complications, such as multiple inheritances. C++'s
design principles were not to create reliable or portable programs. instead it was designed
to be useful and enjoyable for serious programmers. C++ certainly succeeded, and Java
builds on that enthusiasm -- trading the fun of C++ with the fun of the Internet and the

opportunity to run Java programs world widely.

But at the same time we should also notice that Java still has some unfortunate and
avoidable weaknesses, these reside in its notation, its design issues, some of its features
like Strings and Arrays and some of its unnecessary confusion etc. For details of these
issues please see [14]. While generally we have to say that lots of Java features are still
under testing and discussing, it changes too fast so that those new versions or features
need time to be tested. But those features we have mentioned so far in this report are
really catching more and more developers’ attention. Here are some comments from
some software developers at what they think of Java:

Java programs are faster to write and less buggy.

Most of C/C++ engineers who have moved to Java have reported a 2 to 10 times
productivity increase. [3]

The design of Java prevents whole classes of “late detection™ bugs:

54

e No un-initialized variables

e No wild pointers

® No array over-runs or under-runs

55

Chapter 6: Summary

In this report, we introduced the basic idea of the game programming with Java as well as
briefly mentioned the history and technology of Java. We developed a basic graphics
engine that can be used for game creation. This graphics engine incorporated movable
objects with prioritization and visibility setting, double buffering and a background. This
is a good framework for Java game programming, even with other programming
languages since the principles for the game programming with different languages are
quite similar. This report also covers some of the design of a case study for the
implemented game whose details can be found in the collaborated work of Ye Zhu[13].
Here we can see that the design is on basis of the basic framework with some
improvement and extension. However the focus was on the construction of the tools
rather than the construction of the implemented game because the tools can be expanded
to produce a multitude of games.

This report also touched on issues we should keep in mind when developing games with
Java. It is important to remember that Java is a cross-platform language and therefore
runs on different platforms. When we develop our games, we should be aware that people
will want to run them on machines that may not be the same as our machines.

Some common suggestions on Java programming are also raised at the end of this report.
These are a few points we got during our practices. Actually there are hundreds of more
common suggestions that are applicable to Java programming. However for Java game
programming, those mentioned here are some key points to improve upon the code so
that the games will perform as quickly and efficiently as possible. At the end of this
report, we discussed some fallacies on Java in order to make the facts clear.

56

In general, as a new object-oriented programming language after C++, Java has the
necessary features for game programming. Being simple to use, fast improvement,
becoming more powerful than before and being used in more and more fields, are the
main reasons that made me to do some research on it. While we are happy to see those
powerful features of Java and using it more and more in so many fields, we should also
notice those avoidable weaknesses, confusing features and unnecessary inconvenience
etc. People are waiting for some revolution on modern computer science. When Java
came to the world, some people said the revolution is Java. But these days, few people
say so. Java did bring lot of new concepts and surprises to developers and programmers,
but it did not bring modern computer science with the kind of expected influence that a
revolution will do. Perhaps Harold Thimbleby's comments on Java will make us look at
Java from a different point of view “It looks simple yet is complicated enough to conceal

obvious deficiencies”.[14]

57

References:

[1]. Premier Press, Thomas Petchel, Java 2 game Programming

[2]. Java Unleashed, Second Edition http://www.informit.com

[3]. Java 2001, The year of games. Jeff kesseiman, Staff Engineer, Sun
Microsystems, VGEE specialist, co-Author Java platform performance

[4]. Java 1.2 Unleashed, http://www.Sams.net

[5]. SAMS, Steve Potts, The Waite Group's Java 1.2 How — To

[6]. SUN Microsystems Press, Peter van der Linden, Just Java 2 Fourth Edition

[7]. SUN Microsystems Press, Gay S. Horstmann, Gary Cornell. Core Java 2

[8]. SUN Microsystems Press, Gay S. Horstmann, Gary Cornell, Core Java 2
Volume 1

[9]. SUN Microsystems Press, David M. Geary, Graphic Java 1.2 Mastering the
JFC Volume I: AWT (3" edition)

[10]. SUN Microsystems Press, David M. Geary, Graphic Java 2 Mastering the
JFC Volume II: Swing (3" edition)

[11]. Paul Hudson, “Technology Overview™

http://www herts.ac.uk/Itdu/technology/
[12]. Sun Microsystems, Inc., “The Java Technology Phenomenon™
http://java.sun.com/docs/books/tutorial/getStarted/intro/

{13]. Game programming with Java : a case study . major report, Concordia University

2002, Ye Zhu

[14]. Harold Thimbleby, A critique of Java”

http://www.cs.mdx.ac.uk/harold/srf/javaspae.html

58

