INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600






GRAPH DRAWING WITH SPRING ALGORITHM

SiXin Cheng

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science at
Concordia University
Montreal. Quebec. Canada

July 2002

€ SiXin Cheng. 2002



l*l National Library ;l::mg:e nationale

of Canada
afblqi%g.wra:hnsicasngrvices gwlmizlgraphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K 1A ON4
Canads Caneds
Your fie Vowe réldrence
Our fls Notre réidvence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-72930-3

Canadi



ABSTRACT

Graph Drawing with Spring Algorithm
SiXin Cheng

Graph drawing research investigates the automatic methods for visual
representation of graph. The spring algorithm draws graph layout by simulating physical
model. It is easy to understand and implement. and it generally produces a pleasing
layout. A spring algorithm with new termination method is introduced in this report. The
spring algorithm is applicable to undirected. connected simple graphs. It can be used to
produce graph layout with uniform length of edge and evenly distributed vertices. The
algorithm starts trom random initial configuration. Then. it iteratively minimizes the
force acting on a vertex until it reaches the upper bound of the force. Finally. the

algorithm stops when the remaining force is under the lower bound ot the force.

1ii



Acknowledgements

The author is extremely thankful to his supervisor Dr. Peter Grogono for his
professional supervision. intellectual guidance. and patience. through this study. It was a
pleasure working with him.

This report is dedicated to the author's wite ChunHua Zhang. father and mother.
sister. sister in law for their help. lover and encouragement to achieve excellence.

Without them this would not have been possible.



Lo INEROQUCHION «.cue e e 1
[.I. Information viSUaliZation ...........co.oovevieviee e 1
120 CONIIBULIONS ...ttt es oo ee e 2
1.3, Outline 0f the TEPOTT .......c.euiiieeieeeereeeeeeeee e eeeee e 3

2. BACKEIOUNM ...t 4
2.1 GIraPh ..o 4
2.2, Three approaches in Graph Drawing .............ccooooeeuimeemeeeeeeeeeeeeeeeeee, 4

221 Topology-shape approach .............c.oveviiveiieiieeeeeeeeeeeeeeeeeeeeeeeeen. 5
2.2.2. The hierarchical approach ............c.ccooooioiiiioeeeeeeeeeeeeeeeeeeee 6
2.2.3. Force-directed approach...........cououiiiiiiiiiieeeeee e, 7
230 3D Graph LayOUl. .o oo 9
2l SUMMAIY et ee et e e ee s s e es e e s e 10

3. The 3D Spring AIZOMRM ..o, Il

310 BacK@IOUN ..o et 11
311 Eades™ Spring AlgOrithm. ..o It
3.1.2 FROAIZOMAMI .o 12
313 GEM AIZOTIERM ..o 14
1.4 Modeling Graph Theoretic Distances: KK....c...ocooooiviveiieieeeeeeeeenn 15
3.1.5 Tunkelang AlLOMAM ..o, 16
3.1.6. Simulated Annealing: DH .......co.oooooviiieeeeeeeeeee 18

3.2 Spring Algorithm in the RepPOrt......coououiiiieiieeieeeeeeeeeeee e, 20
3.201 Input @raph dati.......cccoeiimiveieieieeceeeeeeee e 20
322 Formulating the mechanical Model....... ..o 20
323 Mapping input to Mechanical Model ..., 23

3.3 SUMMMATY ettt ettt e e s esese e ese e s 28

4 IMPIEMENIATION. ...ttt ee e an e 29
4.1.  MFC dialog-based application .............co.ccueuieieieiieieeecceeeeee e 29
420 VerteX QUALITY ettt 30
4.3, Graph Layout QUAlItIES c.c.cevvvereuiecececicccececeeee ettt e s eneeaa 31
4.4, Measunng quality with upper and lower bound of force..........cccovvveveereenen.. 31
4.5.  Reducing Computation using step function ...........cceevveerureieereeeeemeeeeeeeeeeenene 32

4.5.1.  Minimizing total number of iteration ..........cceceeverereeerreeeeereerereeieee e, 33

F.6. SUMIMATY (oot st et s et men e seoneseeneeae 33

5. EXperimental RESUILS ....c.o.ooiiiiiiii et en 36
5.1. Outline of the EXPErMENLS ....c.coovoviiiieeeeeeeeeeeecee et 36
5.20 CONIGUIAON «...ouvviiiecetie ettt st eee et s e eeeeeee et eenann 36

5.2.1. Hardware Configuration...........ccocooueuieueeeeeceeeeeeteeeee et 36



5.2.2 Sottware CONfiZUIAtON .....c.cveveeervrereeieeeeee e e s s s s 37

530 EXperiment Data ...t ene e 37
34 Initial CONfIGUIAION . ...c.ouieitiete e 37
3.5, Graph layout with more than 20 VErtices ..........coeoevememeeveeeeeeeeeeeeeeeeeeeereeeeren, 40
5.6.  The advantage of 3D graph drawing............c.ooouvmeeemeeemoeeeeeeeeeeeeeeeeeeeeereen, 42
5.7.  Auractive factor K_and Repulsive factor K, ......cccooviveimienerieeeeeeeeee 42
S8 SUMIMEIY et et e e et e e 46
6. Conclusions and Future Works ........ccooueuivouiieeeeeieee e 47
6.1, CONTIDULIONS ...ttt ee e 47
6.2, CONCIUSION. ...ttt ettt 47
6.3, FUIUFE WOTKS.....oiieee ettt e e 48
RCICTCIICC ettt ettt et eeneeee e 49

Vi



1. Introduction

A picture is worth of a thousand words
1.1. Information visualization

The visualization of abstract. complex conceptual. and large structures is the most
important component of support tools for many applications in science and engineering.
The representation exploits human visual processing to reduce the cognitive load of many
tasks that require understanding of overall global structure or local detail contents.

Graph made up by vertices and edges are abstraction that can model objects and
some interesting information among those objects. It is very important in computer
science domain. It has been applied in most segments of software industry to represented
information. In addition to Object Oriented Analysis Design. modeling networks of
chemical reactions. etc.. the animation of sorting algorithm and neural-network
simulation are efticient ways in training and education. Graph has rich theoretical support
1s another reason that make it usetul.

Information visualization involves drawing an easy to read and understand layvout
in either 2D or 3D space. In information visualization applications. the usefulness of a
layout depends on its readability. that is, the capability of conveying the meaning of the
diagram quickly and clearly. Various graphic standards have been proposed for drawing
graphs. depending on the application. Usually. the vertices are represented by circles. and
the edges are represented by a simple open curve between the vertices. Both vertices and

edges can be stereotypes. A straight-line drawing maps each edge into a straight-line



segment. A polyline drawing represents the edge by a polygonal chain. Figure 1
represents a class diagram.

The quality of a layout is a subject matter. but several aesthetics are generally
accepted. A fundamental and classical aesthetic is the minimization of crossings between
edges. Symmetry is another most important aesthetics for delivering an easily
understandable graph layout. Minimizing the number of bends in the edges and
minimizing variance edge length are specific aesthetics for certain approaches. such as

orthogonal drawing.

Abm
Dynamic Crystal
Ag'm Agm

Figure 1. A class diagram
There are three approaches in graph drawing. Orthogonal. hierarchy and Force-
directed approach. Spring algorithm. which falls into the category ot Force-directed
approach. is easy to understand and implement. It gives graph layout with high qualities

such as uniform edge length. evenly distributed nodes [1] and symmetry [2].
1.2. Contributions

The major contribution of this report is to apply spring algorithm to draw quality graph
layout in three-dimensions space and introduce a new termination method that uses upper
and lower bound of estimate the quality and terminating the algorithm. The algorithm is

able to generate quality graph layout with more than 40 vertices and 60 edges within 10

(9]



seconds. Other contributions include parameter analysis and studies and minimizing the

numbers of iteration.
1.3. Outline of the report

The organization of this report is as follows: in Chapter 2. we review the three
approaches on the graph drawing. Chapter 3 describes the various spring algorithms and
presents the spring algorithm used in this report. Chapter 4 covers the problem and the
solution for the spring algorithm. Chapter 5 presents the experimental results of the graph
layout created by the spring algorithm. Finally, Chapter 6 presents the conclusion of the

report and the future work on searching solutions on large graph drawing.



2. Background

The purpose of the graph drawing research field is to investigate automatic methods for

visual representation of graph.
2.1. Graph

An undirected graph is a pair of G =(I".£). where I” is a finite and non-empty set of
elements call vertices (or node) of G. and E is a finite set of elements called edge (or
arcs) of G. An edge ¢e E is an unordered pair {u.v} of vertices of G : vertices u and v
are called end-vertices of ¢. or simpler vertices of .

An edge of graph G is self-loop if its end vertices coincide. A graph G contains
multiple edges if it has two or more edges with the same end-vertices. A graph G is
simple is it has neither self-loop nor multiple edges.

A path p between two vertices v, to v,. £ 21. of a graph G is an alternating
sequence V.. ¢,. V. €. .... v,. ¢, of vertices and edges of G. where e, = (v _,.v).
(/ =1.....v,). A connected graph is a graph where any two vertices are joined by a path.
A sub-graph G of a graph G=(I",E) is a graph G =(}".E )such that I" < and

E ckE.
2.2. Three approaches in Graph Drawing

Topology-shape approach, hierarchical approach. and the force-directed approach are the
most commonly approaches to 2D graph layout. In the first two approaches. potential
contlicts between drawing aesthetics are handled by decomposing the drawing procedure

into a sequence of steps. Each step produces a refinement of drawing while satisfying one



of more of the drawing aesthetics. In the force-oriented approach. the satisfaction of the

drawing aesthetics is transferred to optimizing forces in a physical model.

2.2.1. Topology-shape approach

Topology-shape approach constructs orthogonal drawing. An orthogonal drawing is a
polyline drawing that maps each edge into a chain of horizontal and vertical segments.
Many applications. such as circuit layout. software engineering case tools use or

orthogonal drawing. An orthogonal drawing is shown in the following figure:

Figure 2.1: An orthogonal drawing
Topology and shape are properties of orthogonal drawings which establish equivalence
classes in orthogonal drawings of the same graph: two orthogonal drawings have the
same topology if one can derived from other by continuous deformation which does not
alter the sequence of edges around closed loops in the drawing. and two orthogonal
drawings have the same shape if they have the same topology. and are related by changes

of edges in length.



There are planar orthogonal drawing and non-planar orthogonal drawing. A
planar orthogonal drawing of a planar graph requires minimizing number of bends. or
minimizing area. Tamassia uses network flow techniques to give a polynomial-time
algorithm for minimizing bends when the graph and fixed embedding are given as input
(3]. Lower bounds for planar orthogonal drawings of graphs are described in [4]. On the
other hand. a linear-time heuristic algorithm for bend minimization is presented in [5]. A
non-planar orthogonal drawing requires minimization of drawing area and low number of

bends. Investigation on non-planar orthogonal drawing are documented in [6] and [7].

2.2.2. The hierarchical approach

The hierarchical approach is particularly suited to acyclic directed graphs. The vertices of
an acyclic directed graph can always be distributed among a sequence of ordered lavers
so that all edges can be drawn with a downward (or upward) component. The
arrangement generally gives a much clearer display of the relational information
represented by the graph with arbitrary edge orientations.

The basic approach is to partition the graph into vertex-disjointed sets. which are
assigned to ditterent layers in the drawing. The vertex partition is chosen so that all edges
in the drawing have the same orientation when the layers are arranged as parallel equal
spaced line on the page. The four aesthetic constraints that hierarchical layout algorithm
should satisfy are:

e Edges should be oriented in the same general orientation.

e Vertices should be assigned to same layers corresponding to parallel. equal-

spaced lines.

o Edge crossing should be avoided. and



» Edges should be as straight as possible.

An example of hierarchical drawing style for directed graph is in figure 3:

2.2.3. Force-directed approach

Force-directed approach generates a mathematical description of a physical model of the
graph. The drawing aesthetics are indirectly expressed as properties of. and constraints on
the physical model. At the state of equilibrium. the model approximately satisfies the
readability and understandability. The force-oriented approach has a venerable place in
the graph layout. It is easy to understand and implement. and it generally produces
pleasing layout. However. this approach typically takes a long time to converge to
equilibrium.

Eades presented the first spring embedder in [1]. Since then several authors have
presented variations of the original technique. The most recent techniques have appeared
in [4] and [8]. Another technique that seems to produce nice drawings is simulated

anncaling.

2.2.3.1. Spring and Electrical Force

Spring and Electrical Force is simplest and most popular force-directed method. Edges of
the graph are springs that connect the nodes. and nodes are charged particles. The force
defined on a node is defined as follows:

AUEDWACHECASE X /() e

tuvr £ 10 TR m

) @)




Where d,, is the distance between « and v.and f(the attractive factor) and f , (the

repulsive factor) are based on the Hooke's law and electrical repulsive respectively which

are defined as follows

f(d Y=k'"(d

Ja 1 n 0"

=1.) (2.2)

()

fd, )= 2.3)
fd, === (

Hy

where /, is the natural length of the spring between « and v. k! is the stiffness of the
spring between « and v.and &7 indicates the strength of the repulsive force between

u and v.

The spring force between u and v makes length of the edge equal to /. The

repulsive electrical forces keep nodes that are not connected directly far from each other.

2.2.3.2. Barycenter Method

Similar to the “Spring and Electrical Force™ method. Barycenter Method introduced by
Tutte [9]. does not have electrical charge. the stiffness ot each spring is set to one. and the

length of each spring is set to zero. Therefore. the force acting on the vertex v is given by

F(v)= Z(u—v) (2.4)

nak
Equation 2.4 results in an undesirable equilibrium state where all the nodes are located at
the origin. To solve this. a set of at least three vertices is fixed at the corners of a convex

polygon. The rest of the vertices are free to move. The algorithm is an iterative. In each



iteration. a new location is computed for each free vertex using equation 2.4. The

algorithm terminates when equilibrium reached.
2.3. 3D Graph Layout

Most research in graph layout to date has been directed towards the problem of drawing
graphs in two dimensions. An indication of the interest in 2D graph layout during the last
decade is more than 300 papers in Annotated Bibliography on Graph drawing [10].
Although the most research attention has focused on 2D lavout. there are good reasons
that making use of 3D for graph layout can offer benefits in visualizing information.
Three-dimension display adds more freedom in placing vertices compare to 2D graph
layout. In addition. some information may be more naturally represented in three-
dimension. For examples in Figure 4. the same graph displays in two different ways.
Figure 1.4(b) presented the graph in three dimensions. The with symmetric and equal
length edges graph is a better presentation of a cube comparing to 2D drawing in the
Figure 1.4(a).

Experimental studies in [11] and [12] indicated that the error rate in identifving
connectivity between vertices using 3D picture of a random graph is roughly linearly
proportional to the number of vertices. Compare to the 2D picture. the error rate is
reduced by a factor of about three times by displaying the graph in 3D. Also. graphs with
three times number of vertices can be displayed at about the same error rate by using 3D.

Viewpoint rotations form a set of transformations for understanding a structure in
3D. It is a simple way for user-controlled placement of a designated vertex. Finally.
display devices and hardware supporting 3D graphical display are becoming more

common.



2.4. Summary

This chapter presents the three approaches for graph drawing. It lists some reasons why
drawing graph in 3D is attractive. In next chapter. we first give the literature review on

spring algorithm. Then we present the spring algorithm using in this report.



3. The 3D Spring Algorithm

The spring algorithm has an important place in the relatively short history of the graph
drawing. It is easy to understand and implement, and it generally produce a pleasing
layout. which display uniform length of edge and the symmetries of the graph [2].
Although spring embedder algorithms introduced by [1] in 1984 is proposed for the 2D
graph layout of general undirected graphs. various spring algorithm has been introduced
and applied to the 3D graph layout [2]. [13] and [14].

The spring algorithm draws graph layout by simulating a physical model. The
physical model is mapped to the input graph. and the drawing of the graph layout
becomes a problem of finding equilibrium of the physical model.

Discussed in chapter 2. the aesthetics of the graph layout can be implemented as
mechanical constraints. It is suggested in [15] that constraining the vertices to lie on
simple 3D surfaces can improve the readability of the graph layout.

The outline for this chapter is as follows. In section 3.1. we present the literature
review on various spring algorithms. In Section 3.2. we introduce an extended spring

algorithm. which is an extension of Eades [1] on drawing 3D graph layout.
3.1. Background
This section gives a literature reviews on various spring algorithms.

3.1.1. Eades’ Spring Algorithm

Eades introduce the first spring algorithm for graph drawing with electrical forces [1].
The algorithm is proposed for 2D graph layout. In this algorithm, Eades used logarithmic

strength springs in place of Hooke's law. and inverse square law for repulsive forces. In

11



addition. there is repulsive force only for non-adjacent vertices. The following is Eades's

algorithm detail as stated in [1].
Algerizhm SPRINGI(G:graph)
Place vertices of G in Random locations;
Repeat M times
Calculatze the force on each vertex:
Move the vertex C4+(Zforce on vertex:
Zné . Repeat
Draw graph
End SPRING
Where C4=0.1 and M =100. This algorithm is the base for subsequent spring
algorithm. The major drawbacks of this algorithm are the high cost of computing the
attractive and repulsive factors. and the absence of repulsive forces between adjacent
nodes. which can result in concentration of a number of adjacent nodes in a small area.
Further more. this algorithm uses simple stop methods for stopping and for choosing the

amount of displacement of nodes. which are non-adaptable to the graph and node

qualities [16].

3.1.2. FR Algorithm

Fruchterman and Reingold extended Eades’ work by introducing new attractive.
repulsive factors. a temperature and a cooling schedule in an algorithm that is known as
FR [13]. In this algonthm. the force acting on a vertex v is computed using Equation 2.1.
However, FR uses the following attractive and repulsive factors. which can produce

results similar to Eades” layouts but are more efficient to compute



d
f.d )=% (3.1)

m

-k
od y=—F
1.d,) = (

1

(V3]
38
~—

Within each iteration of FR. forces on all nodes are computed. and then all the nodes are
moved at once. The algorithm limits the maximum displacement to a temperature ¢
where ¢ is computed by a cooling function tor all nodes at the end of each iteration.
Starting from an initial value. the temperature decrease in an inverse linear fashion. It is
notice that a better cooling schedule can dramatically change resulting layouts and reduce
the number of iterations required to find the graph layvout. To speed up their algorithm.
they use gnid-variant algorithm where drawing area is divided into grids. The
computation of attractive forces remains the same. but for each vertex the repulsive force
is only computed between the vertex and the nodes in its close-by cells ot the grid. This
method has not been very popular mainly due to its dependency on the distribution of
nodes within the grid. the overhead of placing nodes in grid cells in each iteration, and
the compromised layout quality that it produces in some cases.

FR terminates after a maximum number of iterations is exhausted. Since the
number of the iterations for different types of graphs is uncertain. this stopping scheme
may terminate too early or too late depending on the graph. Graphlet [17] extends FR by
introducing new terminating conditions: the maximum overall force magnitude of all
nodes falls below 3 or if the maximum number of iterations is reached. The experimental
results in [16] show Graphlet's method of stopping works only for the graph with less

than 50 nodes. In addition, FR makes use of a drawing frame that limits the nodes'



displacements. However. most algorithms including the Graphlet version of FR do not

add this extra restriction on the displacement of nodes. and use rescaling to draw the final

layout in a frame of a fixed size.

3.1.3. GEM Algorithm

GEM [15]. a short form for graph embedder. is a Spring algorithm based on Eades'
algorithm. and is the first one that uses the history of a node's movement to choose the
temperature for the current displacement of the node. Unlike FR. this algorithm moves

the nodes one at a time in each iteration. The following is an outline of this algorithm:

-l

WHILZ T-glcobal > T-min and s=r
Ting 3 rangom permutation of vertices:
FOF eacn verzTex V Ircm the randorm permuzatien

Fancor disturbance -

Repulsive Iorces - Attractive Icrces:
Update V'S posizion limized by its individual
cemperasure;

Cpdate V'S temperature;

END GEX

where T-min is the minimum global temperature. R-max is the maximum number of
rounds. and T-global is defined as the average of the local temperatures of all vertices.

The local temperature for each vertex is computed based on the old local temperature and

14



the likelihood that the vertex is oscillating or rotating. GEM determines whether a node is
oscillating. rotating. or moving towards its final destination based on the directions of
movements in the previous displacements of the node. In case of oscillation or rotation.
the local temperature of the node is decreased. and otherwise is raised. The experimental
results in [16] show that for all of our test graphs GEM fails to stop before R-max is
reached. In addition starting from random graph layouts. GEM finds drawings with many
edge crossings for large planar graphs. We must note that GEM introduces an initial
layout algorithm named insert that inserts the vertices one-by-one in an initial round. The
layouts of some types of graphs such as binary trees and grids generated by GEM may

benetit from an initial layout produced by this insert algorithm.

3.1.4. Modeling Graph Theoretic Distances: KK

Kamada and Kawai introduced an algorithm based on Graph-Euclidean and graph-
theoretic distances (the shortest distance) between pairs of vertices. The algorithm has
been referred to as the KK algorithm [18]. In this algorithm. the graph nodes are
considered as particles that are all connected by springs whose ideal lengths are equal to
the graph-theoretic distances between their two end-point particles multiplied by the
desirable length of one edge. The goal of the KK algorithm is to find a balanced spring

system. The energy of KK's spring system is defined by

15="2l Z%A d. -1,y (3.3)

=i g=rele

where / corresponds to the desirable distance between v and v,. and k  is the

strength of the spring between these two vertices. KK computes a local minimum of £

and it solves the minimization problem using the Newton-Raphson method. The graph



theoretic distance between the nodes v, and v in a graph G is the length of a shortest

path between these two nodes in the graph. As a result. they define E . the energy of a

rode v, . using the partial derivatives of Equation 2.7 by x, and v . The following is an

outline of this algorithm

where

et v, be the particle satisiving E_ =MAX(E <2-r l<i<n)
wEIlE B > €2
Cempuze Glisplacerment c¢f Vv, oy solwving a svs-er cof

"

partial cdifferentiel eguazions

nis the number of nodes. The major drawback of this method is its high

computational cost due to the work in solving a system of partial difterential equations in

the inner while-loop of the algorithm. Graphlet [1] version of KK uses a maximum of

10x n iterations of the inner loop. Although. this modification speeds up the algorithm

and generates good quality layouts for small graphs. for large graphs it generates layout

of planar graphs with many edge crossings.

3.1.5. Tunkelang Algorithm

Tunkelang has presented two ditferent algorithms for graph drawing [19]. [20]. In this

section we outline these two approaches.

16



A Practical Approach to Drawing Undirected Graphs

The first algorithm introduced by Tunkelang [19]. referred as Tu. is an incremental
algorithm. This algorithm has three stages. In the first stage. a permutation of the nodes
of a given graph is constructed from a minimal height breadth-first spanning tree of the
graph. In the second stage. for each node in the order computed in the first stage. the area
surrounding the already positioned neighbors of the node is sampled and examined for an
approximate best position. and the node is placed at this position. [n the second stage.
when the local optimization procedure improves a vertex's position. it recursively
pertorms the process on the already placed adjacent nodes of the vertex. Finally. in the
last stage. the algorithm performs the local optimization process at every node for fine-
tuning.

This algorithm generates layouts that are different from those of FR. KK. and GEM.
Specifically. it does not capture graph symmetries. In addition. the algorithm takes a
quality parameter where a large value results in better quality of graph lavouts. However
as reported by Himsolt et al. [8]. this quality parameter is estimated to have an

exponential eftect on the running time ot the algorithm.

Efficient Computation of Forces and The Optimization Process

The second graph drawing algorithm produced by Tunkelang [20] is based on the FR
algonithm. This algorithm differs from FR in its computation of repulsive forces, in its
optimization process. and in stopping the algorithm. Similar to the "grid variant” in FR.
this algorithm approximates the computation of repulsive forces on a node. Here. this is
done using a Bamnes-Hut tree-code [8]. FR's optimization process uses force laws that in

eftect compute the negative gradient of an implicit objective function. However. this

17



algorithm uses the conjugate gradient method on a non-quadratic objective function using
an approximate line search. In addition. this algorithm uses the average of the square of
the displacement distances of nodes for stopping the algorithm. It terminates when this
value is less than 0.01.

We must note that there are not enough details in [20]. particularly. in explaining the
optimization process. However the time measurements by Tunkelang on square grids.
complete binary trees. and hyper-cubes show that the optimization process speeds up the
algorithm in comparison with FR. On the other hand. the overhead of Barnes-Hut
approximation of the repulsive forces slows down the algorithm for graphs with
approximately less than 150 nodes. and speeds up the algorithm for graphs larger than
that. In addition. he reports that the method of stopping the algorithm is a conservative

one and in many cases the algorithm could be stopped much sooner

3.1.6. Simulated Annealing: DH

Davidson and Harel [21] use the simulated annealing approach [22] to graph drawing.
Their algorithm is often referred to as DH. In the context ot simulated annealing tor
graph drawing. a configuration is the assignment of unique grid points to nodes of a given
graph. The algorithm tries to find an optimal configuration according to a cost function.
In DH. the rule for generating a new configuration is by moving one node to a randomly
picked point on a circle around the vertex with radius T. only if the new configuration is a
better one according to a cost function described below. Radius T is initially large and
decreases in each round of the algorithm. This decreasing radius (i.e. the decreasing

neighborhood in simulated annealing terms) makes this algorithm difterent from the



simulated annealing process in which a constant rule for generating new configurations is

used. For a layout L of graph G . the cost tunction of DH as defined in [21] and [23] is
IAED WRATIA (3.4)

where 4 is the weight of £ (L).and
f(L) =z S (1/d; ) where d_ is the distance between « and v. This is to

prevent nodes from being too close to one another.

FALY =Y L W/ + ) +(1/)+(1/B])) where r,. [,. 1, and b, are the
distances of u from the right. left. top. and bottom borders of the drawing
respectively. This is to prevent nodes from positioning too close to the
borderlines.

1)y = z .....-d: This component is to avoid edges from being too long.

f.(L)= The number of edge crossings in L.

f(L)y= z TR | I/gtu.e)’ ). where g(u.v) is the minimal distance between

vertex u and edge e. This penalizes the node and edges that are too close to one

another.
The weights on the components of the cost function of Equation 3.8 can be adjusted to
obtain drawings with difterent aesthetics. For instance. a high value of A, results in

drawings with few crossings. The computational intensity of the simulated annealing

approach to graph drawing makes this algorithm not suitable for interactive applications.

19



3.2. Spring Algorithm in the Report

The objective of spring algorithm is to find high quality graph lavout. The quality is
closely related to the initial configuration. parameter setting and terminating algorithm. In
Section 3.1. we present a literature review on spring algorithms. In this Section. we give
an introduction on the spring aigorithm designed and implemented in this report. The
introduction includes the initialization. formulating physical model. iterating and

movement. and terminating method using upper and lower bound forces.

3.2.1. Input graph data

The input data of the spring algorithm is a graph G with vertex set I” and edge set £.
The graphs are not required to have any properties bevond connectedness. The vertices
v € I'can have ditterent weight. or the edges ¢ € E can be of ditterent length. The weight
property can be used to adjust the length of the directed linked edge. In spring algorithm.
graph with weight in vertex and variant length of edges can be modeled using springs of
different length.

In this report. the input graphs have uniform length of edge. and the vertices have
equal weight. But the algorithm can be extended to drawing the graph with non-uniform

length of edge. and variant weight of vertices.

3.2.2. Formulating the mechanical Model

Hinge and springs
The spring algorithm uses the input graph data to define a mechanical system where

frictionless hinges are connected by springs. A hinge represents a vertex in the graph.



There are two types of springs in the system. “Type [” spring and “Type II” spring. A
“Type I spring places between a pair of vertices that are connected, and a “Type II”
spring places between vertices that are not connected. “Type I" spring has specified
natural. unstressed length. It can generate either attractive or repulsive force on the end-

vertices. “Type II” spring can generate only repulsive force.

Aesthetics
Spring algorithm is used to find approximately equilibrium state of the mechanical
system. and the relative positions of vertices are used to draw the graph lavout. Eades [1]
pointed out that at the equilibrium. “Type [" springs. representing edges. tend to equalize
in length. and “Type II” springs tend to separate vertices that are not connected by an
edge. thus approximately satistving two important drawing aesthetics:

1) All edges of the graph should be drawn with the same length. and

2) Vertices. which do not have an edge between them. should not be drawn close

together.

A fturther valuable property of the algorithm is that symmetries in the graph tend to be

displayed in equilibrium configuration [2].

Force Law
The precise form of the force law has impact on the final layout. The classical ideal force
linear spring law may be too strong in attraction region. and Eades has suggested a

logarithmic law as the following:



K (L-s) linear
F (s) =/ (3.5)

K. ln(£ logarithmic

\s

Where
s 1s the spring length
L is the unstrained spring length

F,(s) “Type I" force is magnitude of the force developed when the spring has

length 5 . and
K is a constant

A repulsive force is also applied between all vertices not directly connected by an edge.

This is implemented as “type II" a spring. computed using the following equation:

| (3.6)

F”(S)— }

L)
?
where K, is a constant.

Force Minimization

An equilibrium configuration of the mechanical system can be characterized by two
equivalent conditions: at equilibrium, the forces acting on each vertex exactly cancel. and
the potential energy stored in the springs is stationary with respect to the vertex positions.
These conditions suggest the two main techniques for finding equilibrium, given an
arbitrary initial configuration. The two techniques are “force-minimization™ method and
“energy-minimization” method in [15]. The “force-minimization™ method tries to find

configuration in which total force on each vertex is zero. The “‘energy-minimization™

9
o



method seeks a configuration minimizing the stored spring energy or some generalization
of it.

“Force-minimization™ methods proceed by initially placing the vertices in an arbitrary
configuration and then numerically simulating the relaxation of the mechanical system
towards equilibrium. The residual force acting on each vertex is used to compute an
incremental modification of the vertex positions. In this report. the “force-minimization™

method is used to find the equilibrium configuration.

3.2.3. Mapping input to Mechanical Model

Given a graph G with vertex set 1" and edge set E. a mechanical model is defined by
introducing and ideal hinge to represent each vertex ve I". The position of a hinge in the

model is taken to be the position of the corresponding vertex in the lavout.

O...._.. : .9 :..:.'u
Re
(a) (b)
- Edge

Type I spring
Type II spning

Figure 3.1: (2) Input graph, and (b) spring model

The edges e€ E are represented by springs. These springs ~ “type I are usually
identical for all edges and have some natural, unstrained length. The intention is to apply

an attractive force when spring length is greater than the natural spring length. and a

23



repulsive force when the spring length is smaller than the natural spring length. The
spring “force law™ is the relationship between the magnitude of the force and the spring
length. At the natural length of the spring, the force is zero. Figure 3.1 shows an input

graph and its corresponding virtual mechanical model.

Initialization
The initialization of the spring algorithm randomly assigns a coordinator to every vertex
in 3D space. In this report. the initialization process starts from a defined spring length
L . The logical 3D space is cube L *. and its edge length is defined as follow:
L =nxL (3.7)
where 1 is number of vertices. After defining the 3D space. vertex coordinator is
randomly generated one by one. but the coordinator is bounded by (0.0.0) ~ (L L L).
This initialization proposes nothing on drawing graph within a predefined 3D
space. but to defines only the logical coordinator of vertex. However. limiting the logical
coordinator tends to give a good initial configuration without incurring a lot of extra
computation.
After tuning by the spring algorithm. the forces may settle down a vertex or more
outside the boundary logical 3D space. These are actually coordinators that map to the

displaving screen.

Attractive vs. Repuisive forces

At the equilibrium. “Type I" force acts as attractive force. and “Type II" force is
repulsive force. Attractive forces settle the edges to the spring length. Repulsive forces

separate the every pair of vertices at distance at one or more spring lengths.

24



Attractive force must be significant compare to the repulsive force. It tends to be
zero at the natural spring length. If a small among attractive force cannot subtract
repulsive forces. edge length cannot be close to the spring length. Repulsive force must
not be too weak compare to attractive force. The vertices may concentrate to a small area.
if repulsive force is ignorable weak. The relationship between attraction and repulsion

determines by the two constants k. in Equation (3.5) and k, in Equation 3.10. The
experimental results in chapter 5 indicate that the 4_:k, =1000:1 leads to quality graph

layout.

Iteration and Node Movement

In FR algorithm. the forces on all vertices are computed. and then the vertices are move
at once. But GEM algorithm uses the history of the vertex movement to choose the
temperature for the displacement of the vertex. It moves the vertices one at a time in each
iteration. In this report. the forces on the vertices are computed first similar to FR. but
only those nodes that are not at local equilibrium are moving in each iteration.

Depending on the total force acting on a vertex. it can be in one of the three states.
coarse state. tuning state. or local equilibrium. At coarse state. the force acting on the
vertex is strong. and the vertex stays far distance to the local equilibrium. At tuning state.
the vertex is very close to the local equilibrium. Small step movement leads the vertex
towards the local equilibrium in number of iterations, while large step may force the
vertex back to coarse state. If a vertex is at its local equilibrium. it does not move in next
iteration. But it may active again. depending on the change of the force acting on the

node.



The three states quantified by predefined forces. The algorithm with the value of
torces using in this report is as the following:
IF F(v)>0.05 THEN

P.,=P.. L,

curr curr

ELSE IF F(v)>0.0001 THEN

P..=P, ~L

curr curr s

END IF

Where the total force acting on a vertex is computed as follow

Fov= Y F-YF, (3.8)

taam £ tn s

Equation (3.8) indicates that only non-connected pair of vertices generates repulsive

torce.

Termination method with Upper and Lower Bound forces
The termination method is an import part of the spring algorithm. Since it gives the final
contiguration for drawing the graph. Eades’ spring algorithm and FR algorithm are
terminated by a predefined number of iterations. Although an extra terminating condition
has been introduced. all tests reported by [16] indicate that GEM terminates by number of
iterations. The drawback is that number of iteration to generate quality layout is
unpredictable for ditterent size of input. So this report presents quality oriented
terminating method that stops the algorithm by upper and lower bound forces.

The force acting on each vertex and the overall force acting on the system are
very important factors for graph layout quality. The local force affects the equal edge

aesthetic. while the overall force affect the distribution of vertices and the symmetry



aesthetic. The upper bound defines the local equilibrium force acting on vertex. Once the
remaining local force on a vertex decreases under the upper bound. we stop moving this
vertex. the effect shift more on those vertices with high remaining local force. The lower
bound defines the smallest overall force. The algorithm terminates once after the overall
force decrease under the lower bound.

The upper and lower bound forces achieve the quality of the graph layout by
forcing the local force of each vertex closer to lower bound. As the experiment results
shown in Chapter 5. the maximum and average difference between the edge length and

the natural spring length are very small.

Spring algorithm
The detail algorithm uses in this report is as following:
INITIAL(v for l<i<n)

ALGORITHY_SPRING(G)

FOR ExCE v : l<i<n
coupuTz () F)
END FOR
1r NOT EeqQuiniBritk (G)
FOR EACH Vv : I<i<n
MOVE_VERTEX(V, ) ;

END FOR



END IF
END WHEILE

SHOW_LAYOUT(G)
3.3. Summary

This chapter gives a literature review on the spring algorithm. It introduces the spring
algorithm designed in this report. In next chapter. we discuss the problem on solving
graph layout problem using spring algorithm. and also discuss the impact of parameter on

the readability of final layout as well as simplifving computation.



4. Implementation

This chapter has three Sections. Section | discusses the MFC dialog-based application
that implements the spring algorithm. Section 2 talks about the quality measurement of
the graph layout. It also discuss how upper and local bound of the force guardant the
preserving of the quality. Finally in Section 3. we discuss how to reduce the computation

through the step function.

4.1. MFC dialog-based application

The 3D software is a MFC dialog-based application. The dialog shows all the user-
accessed controls. and a view window. The view window is a CWnd-derived class that
encapsulates all the graphing functionality. [t displays the 3D graph layout generated by
spring algorithm. The user controls allow user to switch between the initial graph
configuration and the final configuration by spring algorithm. The user can rotate the
view from any angle with the mouse. Also. the use can set up parameters used for spring

algorithm and the size of the vertex to be displayed.

The input graph data is stored in a database. and loaded by the application
program through Microsoft Jet Engine. The database has two tables, “Edge™ and “Node™
table. The basic data in these tables are vertices and edges. But the weight of the edge and
vertex color can be added to “Edge™ and “*Node™ table. respectively. There is an interface
between the database and the application. The interface defines a load-data function. By

using this interface, the application is easier to deal the changes. such as adding



proprieties to the graph. replacing data format. such as interchange between file and

database.

The application and the spring algorithm are communicated through
implementation of strategy pattern. The input to the spring algorithm is a graph represent
by adjacency matrix. By using strategy pattern. the coupling between the application and
the spring algorithm has been removed. In other word. the application provides a
platform that can be used to test various spring algorithms and other 3D algorithms. The
only requirement for those algorithms is to accept graph data represented by adjacency

matrix.

4.2. Vertex Quality

Each graph-drawing algorithm aims to optimizing certain aesthetic criteria. The quality of
the graph layout is an evaluation of the extent to which the drawing meets objective
aesthetic criteria. The possible measure for the graph layout can be the uniform of the
edge or the force acting on the vertex.

At the equilibrium. the spring algorithm configures the vertices to the position
where the force acting on the vertex is approximately zero. When all the edges are at the
natural spring length. the attractive force in the system is zero. The remaining force
acting on the system is the repulsive force. To be able to balance with repulsive force.

some edge has to settle down with length L =L+ AL, where 1<i < n, nis the number

of vertices. The variant length AL gives the attractive force that balances the repulsive

torce. thus leads the system to the equilibrium.

30



In this paper the quality of the graph layout is measured using the maximum and
average difference length of the edge to the natural spring length. The maximum

difference L . and the average difference L,,, are defined as the follow:

L. =Max(AL) (4.1)
L,, = 2.\L, i 4.2)
i=1
where
AL =|L -]

Here L, and L, is used to measure the quality of the final lavout.

4.3. Graph Lavout Qualities

In this report. the desired aesthetics are the uniform edge length and the distribution of
the vertices. The distribution that vertex should be arrange in a way that non-adjacent
vertices are far from each other. This can be measured using the distance between non-
adjacent vertices or the remaining force in the system.

The distance between non-adjacent vertices can be a static measurement for the
tinal graph layout. While the remaining force in the system implemented in this paper can

be used as a dynamic measurement.
4.4. Measuring quality with upper and lower bound of force

In the execution of a spring algorithm. the criterion to measure the quality of the layout
configuration can be used for:

¢ Controlling the quantity of the step for one movement in each iteration

31



e Activating or stopping the local movements of the a vertex once in each iteration
o Stopping the algorithm
The spring algorithm starts form a random configuration of the vertices. Measuring the
quality of a graph layout allows for automatic selection of the best graph layout among
the number of different layout of the same graph. This is the case where the graph layout
is choosing by some cost functions. for example, the temperature in Simulation anneal.
In this report, the two dynamic measures using in each iteration are “lower bound

torce™ F. and “upper bound force™ F, . F, is the local equilibrium defined for measuring

a vertex quality. It is called upper bound force because one a vertex reached the local

equilibrium. the vertex will no be tuned turther. F, is global equilibdum defined for

measuring the system quality. It is called lower bound force because the algorithm will
not terminate until the total force in the system is under this value.

The lower and upper bound make it possible that algorithm tuning more on the
non-local equilibrium vertex and save the computation on tuning the equilibrium one.
The bounds lead small variant remaining forces on the vertices. thus generate layout with

the uniform edge.
4.5. Reducing Computation using step function

Spring algorithm starts form random initial and ends to the equilibrium of the mechanical
system. The algorithm is an iteration process. After each iteration the total forces acting
on every vertex decreases, due to the replacement of the vertex moves toward the
direction of the force. The running time of the algorithm depends on the total number of

iterations and the computations within each iteration.



The time (7, ) spent on compute the force on every vertex is a constant. The Total
time on the on force computation is n, xT,. where n, is the total number of iterations.

So decreasing #, decreases the running time of the algorithm. In one iteration. the time
T . stands for replacement time. is the time to find out the new coordinator for a vertex.
The total time in one iteration is n, xT,. where n_ are vertices that have not reached it

equilibrium. So the more the vertices are equilibrium the less the running time spends for
an iteration. The total running time is defined as the follow:

To..=n,x(T, +n xT) (4.3)

wra!

Equation 4.3 indicates that #, is the key factor to speedup the algorithm.

4.5.1.Minimizing total number of iteration

There are two approaches to minimize the total number of iteration. tuning initial layout
or replacing vertices efticient. Tuning initial layout is a process that tries to replace those
springs that are much longer than the natural length without computing any forces on
vertex. Graph traversal can be used to implement the initial tuning. The algorithm shall
be simple and computational efficient. The turned layout has most of edges closer to the
spring length. It is easier to converge once the vertices have been well distributed in 3D
space.

Replacing vertices efficient requires selecting efticient steps. The important
factors tor defining the step are the force acting on the vertex. the spring length. historical
forces and corresponding steps are very useful data too. The rule of the thumb is that

when the force is large. a large step is used. Otherwise a smaller step is taken.



Historical force and its corresponding step can be used to calculate next step. The
step is calculated based on a predefined initial step or the last step. the change of the torce

and the remaining force. The following equation can be used:

,iF.-l -F

d_ =[x 'lxD (4.4)

-1 .
' F

Where

d ., is the next step
F is the force in last iteration
F,_, is the remaining force
D is either a predefined step or it is last stepd . and
f is afactor. O0< f <1
The steps are automatically defined and controlled by the algorithm. User does not need

to adjust number of parameters because of the changing in the input graph.

In this report. the algorithm uses a small step and a large step rather than using the
historical force and step. The small step is d, =0.00005L. while the large step is
d, =0.005L . The force F, =0.05 is used to select a step. If F(v,)> F,.the nextstep is a

large step. otherwise the next step is smaller step.
The large step is designed to make every vertex ready to start tuning as soon as
possible. The small step is introduced to tuning the vertex as closer as possible toward the

equilibrium to produce high quality graph layout.

34



4.6. Summary

In this chapter. first we discuss the vertex quality - Maximum and average difference of
the edge to the spring length. graph layout quality - Remaining force. Then. we introduce
the new termination of the spring algorithm using the lower bound force and upper bound
force. Finally. we analyze how the step function can be used to minimize the
computation. In chapter 5. we run 4 sets of experiment that demonstrate the different

aspects of the spring algorithm and the multi-view angle advantage of the 3D graph

drawing.

(V3]
U



S. Experimental Results

3.1. Outline of the Experiments

There are four sets of experiments in report. The first set experiment is to test how
different initial layouts affect spring algorithm. when we are using the same configure of
the algorithm. The second one is to test capability of the algorithm on processing more
than 20 vertices. The layout is displayed and the quality values are collected. The third
test demonstrates that the multiple view angles enhance the readability of the 3D graph.
Also the algorithm can draw quality graph with more than 40 vertices and 60 edges
within 10 seconds. Finally. the last test is to find the better range of the repulsive factor
given the attractive factor of 2.0).

The quality measurements tor the experiments are the maximum and average difterences
of the spring length to the natural spring length. Most of the parameters are the same in
all of the tests. except the upper bound force — global equilibrium that depends on the

number of the vertices.

5.2. Configuration

5.2.1.Hardware Configuration

All of our experiments are performed on IBM compatible PC with single AMD 800

processor and 256 megabytes of RAM.

36



5.2.2.Software Configuration

The operating system that is used in our experiments is Window 2000. The application is

developed using Microsoft Visual Studio. Visual C++ 6.0.
5.3. Experiment Data

There are four sets of input data used in the experiment. Table 5.1 shows the number of

the vertices and edges in the put graphs for our experiments.

Number of vertices Number of edges
Set | 7 10
Set 2 21 27
Set 3 24 40
Set 4 41 61

Table 5.1: The statistic of 4 sets of test data
5.4. Initial configuration

The design of this experiment is to show the affection of the various initial configurations
on the spring algorithm. This test uses the set | as input data. The natural spring length

isL =10. The attractive factor is £ =2.0 and the repuisive factor is £, =0.002. The
upper bound force is the local equilibrium force F, =0.000! and the upper bound is the
global equilibrium force F, =0.001. The smaller step is 0.00005L and the large step is

0.005L . If the force acting on the vertex is greater than F, =0.01. the next step is the

large one. otherwise using smaller step.

37



0.012

0.01 OW
W ,
e ]
g .
g 0.006
Q 0.004 —
—e— Maximum difference
0.002 —a— Awerage difference
0

Chart 6.1: The maximum and average difference of the length to the natural spring length

25000

20000 -

15000

10000 |

# of iteration

5000

—o—#of terations " |

1 2 3 4 5 6 7 8 9 10
Test #

Chart 6.2: The number of iteration on different test

The average edge difterence to the natural spring length. the max variant of the spring
length and the number of the iteration are the collected from 10 tests. The results are

plotted in chart 6.1 and 6.2. The X-Axis in both charts is the test number from test 1 to

38



the test 10. Each of these tests starts from the different initial configuration. The top
curve in chart 6.1 is the maximum difference of the spring length compare to the natural
spring length. The bottom curve in chart 6.1 displays the average difference. The curve in
chart 6.2 is number of the iteration used for each tests. The Figure 6.1 (a) and (b) show

two equal quality graph layouts.

(taj {b)

Figure 6.1 (a) and (b): two tinal layouts from the different initial configuration

The two layouts in Figure 6.1 (a) and (b) are just a shift and little bit rotation of
one graph to another. In chart 6.1. the maximum difference shows very small difference.
The maximum variant is test 7 and test 4. (T7-74). L =0.000!. in other word. the
maximum difterence is less than 0.01 percent of the spring length. The curve of average
difference is approximately straight line. In chart 6.2. the number of the iteration of
different test varies dramatically. The number of the iteration of the test 6 is almost the 4

times as the test 1.

39



The conclusion of this test is that the different initializations affect almost nothing
on the final layout quality. But it has strong influence on the number of iterations. As we
know the iteration number is directly link to the running time of the algorithm for certain

size of the input data.
5.5. Graph layout with more than 20 vertices

This experiment run two tests with set 2 and set 3 as input data. This test intends to show
the capability of the algorithm in processing more than 20 vertices of both sparse and
dense graph.

The natural spring length. the attractive factor. the repulsive factor and the upper
bound force etc.. are the same as it is in Section 4. But the upper bound differs to the one

used in Section 4 due to the increasing number of vertices. The upper bound value for the

two tests are the same F. =0.003.

Figure 6.2 contains 21 vertices and 27 edges. The Maximum spring length has
0.467991 longer than the natural spring length. The average ditference is 0.261766.
Although both values are little bit large. but the small difference between average and
maximum difterence indicates that the uniform edge length is preserved. Figure 6.3
contains 24 vertices and 40 edges. Set 3 is a dense graph compare to set 2. The Maximum
difference spring length is 0.578694. The average difference is 0.432412. So it has
similar quality as the graph layout in Figure 6.2. The number of iteration is 24156 and

10163 with respect Figure 6.2 and 6.3. The running time is less than 2 second for both.

40



Figure 6.3: Graph layout with 24 vertices and 40 edges

41



5.6. The advantage of 3D graph drawing

One of the advantages of 3D drawing is that it given batch of view points to facility the
understanding of the graph layout. This experiment intends to show how the rotation
function increases the readability of the graph lavout. Set 4 is input data. It has 40
vertices and 61 edges. One layout is generated with all the parameter the same as it used
in Section 5. upper bound value is F, =0.005. because there are more vertices in the
graph. The maximum difference of the spring length is 1.61134. The average difference
is 0.510877. The simulation runs for 25718 iterations and the running time is 10 seconds.
In Figure 6.4. the two graph layouts are viewed from the different angles. From
the Figure 6.4 (a) one can easily get the idea what are the shapes of the three cluster in the
left. But it is difficult to understand the largest cluster in the right. By rotating the view
angle to the Figure 6.4 (b). one can get more information or understand the shape of the

largest cluster completely.

5.7. Attractive factor £ and Repulsive factor &,

The attractive force and the repulsive force scales by the attractive factor A, and the
repulsive factor K, . At equilibrium. the spring length must be slightly longer than the

spring length. This length difference generates attractive force that balances the repulsive

force from the non-adjacent ve:tices.



(b)

Figure 6.4: One graph layout display from different view angles.



The length different should not affect the uniform spring length. This means that
an edge with large number of neighbors sitting around should not be too longer compare

to the edge with fewer neighbors. To satisfy these. A, should be smaller enough
compare to A’ . On the other hand. vertices that are not connected directly should be far
tfrom each other. This indicates that the repulsive forces should be enough to carry away
the vertices from the strong attraction.

This experiment designs to find best range of K, when K =2.0. Set 2 data is
the test data. We execute five tests. The A ={0.2. 0.02. 0.002. 0.0002. 0.00002:. Chart
6.3 shows the edge quality of the five tests. Test | used K :K =10:1. The result

indicates that the force is too large. and one of the edge is 35 percent longer than it
natural length at equilibrium. The number in chart 6.3 implies that test 2 to test 5 have the
uniform edge length property. The graph layout is drawn in Figure 6.5. Figure 6.5 (a). (b)
and (c) show that the vertices are well separated. But in Figure 6.5 (d) vou observe that

some vertices edge in between are closer to each other. This indicates that
K K, =100000:1 cannot give enough repulsive force.

This experiment designs to find best range of K, when K =2.0. Set 2 data is
the test data. We execute five tests. The K, ={0.2. 0.02. 0.002. 0.0002. 0.00002!. Chart
6.3 shows the edge quality of the five tests. Test | used A :K, =10:1. The result

indicates that the force is too large. and one of the edge is 35 percent longer than it

natural length at equilibrium. The number in chart 6.3 implies that test 2 to test 5 have the

44



(a)

<

(c)

i

. ; :
|
v N . B N
. \ x . f
s ; TN v v .
)
. . i .
. i +
‘ .
H . .
: . : :
H . . .
.
. .
: N
[} N .

(d)

Figure 6.5: graph layout with the different repulsive factors

uniform edge length property. The graph layvout is drawn in Figure 6.5. Figure 6.5 (a). (b)

and (c) show that the vertices are well separated. But in Figure 6.5 (d) you observe that



some vertices edge in between are closer to each other. This indicates that

K, :K, =100000:1 cannot give enough repulsive force.
4
35 '—_\ .
3 - —e—Maximum difference,
25 L. \-,__ _ —8—Average difference .
£ \ -
g 2
L]
Sl NN

| ANAN
05 \

1 2 3
ku start from 0.2 to 0.00002

&H
[44]

Chart 6.3: The maximum and average difterence of the length to the natural spring length

As a conclusion, the range of the K : A, =10000:1 to 100:1. Among the layout

in Figure 6.5. Figure 6.5 (b) shows that A' : K, =1000:1 can be the best choose.

5.8. Summary

From the four experiments in this chapter. we observed that the initial lavout has greater
impact on the total number of iteration, but has no impact on the layout quality with the
same parameters. The result indicates that improve initial layout is a way to speed up the
algorithm. We can also see that the algorithm is able to draw graph layout with more than
40 vertices and 60 edges within 10 seconds. And the lower bound of the force and the
upper bound force enable the algorithm to generate quality layout. Finally. among the

parameters used in spring algorithm. K, : A, is important. since it aftect both edge length

and the distribution of the vertices in the final graph layout.

46



6. Conclusions and Future Works

6.1. Contributions

In this report. we apply spring algorithm to draw graph layout in 3D space and. introduce
a new terminating method that uses the upper and lower bound force to terminate the
algorithm. A simpie step function is designed to minimize the total number of iteration
and the quality measurement to automatically detect the finding of a quality layout. The
step function defines coarse-tuning and fine-tuning phases for every vertex in the graph.
The step function is one of the important parts of the spring algorithm to dealing with the
large graph. The quality measurements are local equilibrium force and global equilibrium
force. In addition to above. we developed a dialog-based application that include
implementing spring algorithm and OpenGL 3D graph. The application is implemented
with intertace that decouples the data model. algorithm and user control. so that it is

tlexible to adopt in doing testing of other 3D algorithm.
6.2. Conclusion

Spring algorithm is very important for graph drawing. It is easy to understand and
implement. It is applicable to undirected graph. and can be used for generating 3D graph
layout. Experiments show some advantages of 3D graph layout compare to 2D layout.
The graph without edge crossing is easier to understand. The rotation feature enhances
the readability by providing different view angles. It is very help for identifying the shape
in case of edge crossing.

Observations from difterent experiments show that upper bound and lower bound

forces ensure the uniform edge and evenly distributed aesthetics. Also the designed

47



spring algorithm can produce high graph lavout that has 40 vertices and 60 edges with in

seconds.
6.3. Future works

The spring algorithm is easy to implement and understanding. However. it tvpically takes
a long time to converge. In additional to the tuning algorithm. the most important works
remain to be done is finding new approaches to solve very large graph with spring
algorithm. The possible approaches are

* Appling parallel design patterns. for example. divide and conquer. master and
slaves. etc.. to solve large graph. In this approach. a graph is divided into small
graphs. and every sub-graph may be divided further. Each small graph is
computed using spring algorithm. and then merging back to form the final graph
layout. The parallel system and parallel algorithm is necessary for this approach.

* Appling pre-computed simple graph patterns to improve the initial configuration.
The spring algorithm tends to produce the layout with edges that equal to natural
spring length. Also. it has been proved that the better initial configuration. the
faster the final graph layout converges.

A pre-computed pattern defines the logical coordinators of a simple graph.
such as an equilateral triangle or a square. After defining the spring length. and
obtaining coordinator of any vertices of the simple graph. the coordinators of the
rest vertices in the simple graph are computable. This leads to initial graph with
most of the edges already settle down at the spring length. and has high level
symmetric. Pre-computed patterns are reusable. and will benefit spring

algorithms. which depends on the initial configuration.

48



Reference:

[1] P. Eades. A heunistic for graph drawing. Congress Numerantium. 42:149-160. 1984
[2] Xuemin Lin and P. Eades. Spring algorithms and Symmetry. To appear

[3] Tamassia. R.. 1987. On Embedding a Graph in the Grid with the Minimum Number
of Bends. S/4MJ. Computing, vol 16. no. 3. pp. 421-444

[4] Tamassia R. and Toillis I.G. Editors. 1995. Graph Drawing: Proceeding of GD '94.
Lecture Note in Computer Science 894, Springer-Verlag

[5] Tamassia. R. and Toillis I.G. Vitter. J.S.. 1991. Lower Bounds for Plannar Orthogonal
Drawings of Graphs. Information Processing Letters. vol. 39. pp 35-40

[6]. Biedl. T and Kant. G. 1994. A Better Heunistic for Orthogonal Graph Drawings
Proceeding of FS-+4 '94. Lecture Note in Computer Science 853, Springer-Verlag. pp 124-

1

1,0
h

[7]. Papakostas. A.. and Tollis. I.G.. 1997. A Pairing Technique for Area-Efticient
Orthogona! Drawings. Graph Drawing: Proceedings of GD '96. Lecture Note in
Computer Science. North. S.. Editor. Springer-Verlag

[8] F. J. Brandenburg. M. Himsolt. and C. Rohrer. An experimental comparison of torce-
directed and randomized graph drawing algorithms. Graph Drawing: Proceedings of
GD 95, Pages 76-87. Springer-Verlag. 1996.

(9] W.T. Tutte. Convex representations of graphs. In Proceedings London Mathematical
Socien. volume 10. pages 304-320, 1960

[10] Di Battista. G.. Eades. P.. Tamassia. R.. and Tollis. .G.. 1994. Algorithms for
Drawing Graphs: an Annotated Bibliography. Computational Geometry: Theory and

Applications. vol. 4 no. 5. pp. 235-282.

49



[11] Colin Ware. David Hui. and Glenn Franck. Visualizing O-O software in three
dimensions. In Proceedings of CASCON '93. Toronto. Canada. 1993.

[12] Colin Ware and Glenn Franck. Visualizing information nets in three dimensions. In
TOG info. Net. 1is. '94, Toronto. Canada. Auguest 15, 1994.

(13] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Sofrware — Practice and Experience. 21(11):1129-1164. 1991.

[14] B. Monien. F. Ramme, and H. Salmen. A parallel simulated annealing algorithm for
generating 3D lavouts of undirected graphs. Graph Drawing: Proceedings of '95. volumn
1027 of lecture Notes in Computer Science. page 396-408. Berlin. 1996. Springer-Verlag.
[15] Diethelm Ironi Ostry. “Some Three-Dimensional Graph Drawing Algorithms™.
Master Thesis. Department of computer Science and Sottware Engineering. University of
Newecastle

(16] Lila Behzadi. “An Improved Spring-based Graph Embedding Algorithm and
LayoutShow: a Java Environment for Graph Drawing™. Master Thesis. York University.
[17] M. Himsolt. The Graphlet system. Graph Drawing: Proceedings of '96. page 233-
240. Springer-Verlag. 1997.

[18] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information processing letters, 31:7-15, 1989.

[19] D. Tunlelang. A practical approach to drawing undirected graphs. Technical report,
Camegie Mellon University, School of Computer Science1994.

[20] D. Tunlelang. JIGGLE:Java interactive graph layout environment. /n proceedings of

graph Drawing '98. pages 413-422. Springer-Verlag. 1999.



[21] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on graphics. 15:301-331. 1996

(22] S. Kirkpartrick. C. D. Gelatt. and M. P. Vecchi. Optimization by simulation
annealing. Science. 220:671-680. 1983.

(23] G. D. Battista. P. Eades. R. Tamassia. and I. G. Tollis. Graph Drawing Algorithms

for the Visualization of Graph. Prentice Hall. New Jersey. 1999

N
—





