INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Aiso, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

PORTING THE AUTOMATIC SEMANTIC HEADER
GENERATOR TO THE WEB

ZHAN ZHANG

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2002

© ZHAN ZHANG, 2002

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquigitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your fle Votre néfdrence
Cur e Nowe réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72951-6

Canada

Abstract

Porting The Automatic Semantic Header Generator To The Web

Zhan ZHANG

The Concordia INdexing and DlIscovery system (CINDI) is an indexing system. It
enables a user to index and discover information resources from the CINDI virtual
library. The information resource is described by using a meta-data called a Semantic
Header. Automatic Semantic Header Generator (ASHG) is an automatic tool for the
extraction and storage of some of the meta- information in a Semantic Header and an
automatic text classification scheme.

This major report describes how to port the ASHG to web server on Linux. It is
part of the work to develop a Web-based CINDI system. In the web based ASHG system,
MySQL is employed for storing the ASHG's thesaurus. Apache is used as web server.
The PHP script language is also used to create the user interface. All functions of ASHG
are developed by using C++ and Perl.

The functions of the extraction of the meta-data from the existing ASHG are
ported and the main algorithms of ASHG are adapted to the web-based system. We
redesigned and implemented the ASHG’s architecture, the web-based user interface, the
ASHG's thesaurus, the programs used to build and maintain the thesaurus and all
interfaces between main algorithms and database in the web based ASHG system.

Finally, the ASHG system has been integrated with Web-based CINDI system.

iit

Acknowledgements

I would like to thank my supervisor, Dr. Bipin C. Desai, for his patience and valuable
guidance over a period of one and half years. Without his enthusiastic technical support

in the system environment, this work would not have been possible.

I would like to sincerely thank Dr. J. William Atwood for his guidance and help.

I am sincerely grateful to Yuhui Wang, Wen Tian, and Xiaomei Yang who, as part of the

CINDI project, suggested many ideas to me during our valuable discussions.

Thanks also should go to Sami Samir Haddad and Abdelbaset Ali who were the previous

developers for this project and some functions are based on their development.

Finally, I would like to dedicate this work to my wife, Min Huang and my two lovely

daughters, for their understanding, continuous support and encouragement.

Contents

1 Introduction 1
[.1 Information retrieval SYSIEML..........coccevrnuiiiiniciiiiciiiinec et s ses e e e 1
L2 CINDIL...oeeeee ettt et e se st et st e sr s s s sm s e ssre s b e sbb s b b s s e b esassaannans 2
L3 MEta-ata.....coeeeeieeciecececeteteer e e e e e s te s b st e r e s a s s an e e s s et enne 3
1.4 The aim Of this PTOJECE......couucremiiiiiiiitncteiene et er e b s e sne e sennne 4

2 The Analysis of ASHG .5
2.1 Web-based CINDI and ASHGcoooiooriieeeeieceeeeerestcsstsstesss it s ss s e nanas 5

2.1.1 Overview of the CINDI ..ottt see e ceeneessase s s e ansse s senens 5
2.1.2 Web-based CINDI ...ttt s e st besane b es s e s 6
213 7 1) 5 (6 2O R UOR TN 8
2.2 The problems Of POTLINGcccoeiiiiiiinriieenenntct et s sanas 9
2.3 Porting the ASHG to the Web........c..cccciiimiiiii et 10
2.3.1 User requirements of web-based ASHG ... 10
232 POrting reqUITEMENESc.c.eoreeieiiiniiieic ettt sttt b s b sn s st esesnesisesies 10

3 ASHG New Environment 12
3.1 New working platform.........ocecrceiiiriiccci s 12
3.2 LanUAEES....ccooiiiriiiiniieiiittec ettt s s a e et en et 13
3.3 Dal@DASES...ccoreeeeeeeie ettt e a e a e 14
3.4 INEEITACEcovevieeeteeeeeeeetee et et st e st e et et s et e b e s as s s e s et annans 15
3.5 ATCRITECIUTE ..ottt e s et s s s b n e v e san e sneat 17

4 Porting ASHG's Thesaurus 19
4.1 The Thesaurus for ASHG........c.occovercemiriiiiiiiiecre ettt vssse e 19
4.2 The Subject HIErarchies........cooeuviivcrceinciiciiiiciiicticsie e 19
4.3 The Controlled TEIMc.coveverurrierierreciercerieteireicst et s s s s s ese s nr e sae s 20
4.4 The Control Term Subject ASSOCIAtIONcocvriririiiniiiiiieiiecieetre e meneseeae 21
4.5 The implementation of the TheSAUIUSoovovimmiiiiiir e 22

45.1 The subject headings.....c..cueuvemeimiiiiiiec e e s e 22
452 The Control Term S ClaSScooceerecreeeerti ettt e sabe s n e cene 25
453 KEYWOTA CASS c..evveeeeceneniceienc ettt et rs e s st 27
454 The table schemas of the ThESAUIUS “....cccovimiiininiciemieiiecteee ettt 28
455 Physical implementation of the tables.........ooiiie e 30
4.6 Programs used to maintain the Thesaurus ... 32

S Porting ASHG 34
S8 INIOUCHION ..ttt s e e a s e en e e s s e s amesas e et 34
5.2 Document Type RECOZNItION.......c.coeciviiiitiinietinnicict ettt reesersn e s e 35
5.3 Applying ASHG'S EXIIACOLS.......ccoveiiriiiiiriiinniiiictseecs s sss s s seneneen 38
5.4 ASHG's Document Subject Headings Classification schemeccccoooiineiniieneniicnnens 40
5.5 Semantic Header Validation.........c.cocceoeeviriniimiiniiniicicecneecicneeisasssssns e sesnsnasees 41

6 Integrating and Testing 4

6.1 INEEEIALING. ..ottt ettt et sretss et ssbesas sasss e b s b b s b et e bea e s e s e nnase 44

6.1.1 Multiple Users vs. File Name and Type.....cocoeemmnneee et
6.1.2 INtermediate tabIESoou it et
6.1.3 SECUMILY «.eveneeaenereireeincei et ssseai et se s ee s re s eeemereaaeienetnacsasnes
6.2 TESURESUILS ..ottt sttt s e bbb e bbb n b snsbssannnns
6.3 The analysis Of TeSt RESUILSuviimimircreeee e
6.4 Sample RESULLSc.oomiiiiiiiie ettt bt

7 Conclusion and Future Work

Tl CONCIUSIONS «eeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeemteesosssessessessssesssssssessssssessseeesssseesssssssessnseesassssnsens
7.2 FULEE WOTK e eeereceeeeeeeeeee e eeeeeeeeeeeeeeeeeeesteeessssnsesesrssssssosssstassssssesssssesessssssssnssseressssnsrssssssen

Appendix

References

vi

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

The architecture of the ASHG SYStemccccevmeeiiiiiiiiiiiniccncecteeeeeeeeneens 18

The classes of three level subject headings ..o, 23
The classes Of CONLIOL LEIMSoueuieeeeieercriiiticc e 25
The class of KeYWOTd ..ottt 28
UPLoading Page.........ceovevememireiteteree ettt s 36
File type confirmation pPage...........cceuvueinimvierminnieeinieieee e 38
Semantic Header Validationcccooveeiiimiiniiniiniinecctctne e 42
Subject Heading Validation...........coemireeininieeee 43

vii

List of Tables

Table 1:HTML tESE TESUILS ..uveiiveeineeieeeeerieeeeetereeeesreaeeeseeseeeesaeeesssaesessneeesssesssassnsesneesas 49
Table 2:LateX tESE TESUILS......coovieeieiereceeeeeeeeeeeteeetenreeeenssnsesseeeesessennaseseesannseesassssenseessnnne 50
Table 3:TeXE LSt TESULILS ..cooeeeeeereieieeieierreecerereeiresseeerieseseesessesseseraeessnsnsssnnseesessassasessessnenes 51
Table 4:RTF LESLTESUILS .ooeeeeeeeiireerereereeerereeeeeeeeeeesese s s s s ssee e s snnmnncanraeaseesaasenassansans 52

viii

Chapter 1

Introduction

1.1 Information retrieval system

Information Retrieval (IR) is concerned with the representation, storage, organization and
access of information [S]. The primary goal of an IR system is to retrieve all the
documents, which are relevant to a query while retrieving as few non-relevant documents
as possible.

An IR system always deals with natural language text, which is not always well
structured and could be semantically ambiguous, and has to understand the contents of
the information resource. This understanding of document content involves extracting
syntactic and semantic information from the document text and using this information to
match the query. The difficulty is not only knowing how to extract this information but
also knowing how to use it to decide relevance.

A typical IR system should have three components: input, processor and output. Firstly,
the main problem of input side is to obtain a representation of each document and query
suitable for a computer to use. Most IR systems store only a representation of the
documents, which means that the text of a document is lost once it has been processed to
generate its corresponding representation. A document representation could, for example,
be a list of extracted words considered significant. Instead of having computer process

natural language, an alternative approach is to employ an artificial language to formulate

all queries and documents, which could be more likely effective provided that the user is
willing to express his information with the language. The best representation should
avoid problems caused by different semantics and incomplete or incorrect data
cataloguing. Secondly, the processor of the retrieval system is concermned with the
retrieval process, which may involve structuring the information in some appropriate
ways, such as classifying it. It will also involve performing the actual retrieval function,
i.e., executing the search strategy in response to a query. Finally, the IR system output
generates a set of displays or document numbers.

Generally, database, documents representation, and retrieval process are key technical
points in an information retrieval system. The notion of relevance is at the center of

information retrieval.

1.2 CINDI

The CINDI is an information retrieval and index system, proposed by Dr. Desai [6]. The
objective of the project is to build a system that enables any resource contributor to
catalog his/her own resource and any user to search for hypermedia documents using
typical search criteria such as Author, Title, Subject, etc. The system will offer a
bibliographic database that provides information about documents available on the
Internet. It will provide a mechanism to register, search and manage the meta-data. A
standardized index scheme (Semantic Header) will be used to ensure homogeneity of the
syntax and semantics of such an index. These index entries are stored in a database
system called the Semantic Header Database System. In addition the catalog for subjects

will provide help information when the user catalogs his/her index.

[$8]

1.3 Meta-data

In simplistic terms, meta-data is data about data. Meta-data allows us to identify the
meaning, context and validity of data. Meta-data provides a set of facts about the
structure, organization and behavior of a given set of data.

Meta-data can be defined as additional data associated with some file or document.
While the meta-data might appear within the document itself (such as a list of keywords),
the idea is that the meta-data can be considered separately from the parent document.

The term meta-data has different connotations depending on the field of application.
From an information management perspective, meta-data may refer to the attribute
descriptors applied from standards such as XML schemas. On the other hand, meta-data,
may refer to attributes required for data integration and transfer activities involved in a
data warehouse project.

By semantic meta-data we denote additional information that is used to describe the
meaning of information. In the CINDI system, we use meta-data called the Semantic
Header to describe the semantic contents of the information resource.

There are two kinds of tools to handle meta-data in information retrieval system:
automatic meta-data generation and manual input meta-data tools. Some of the meta-
information can be generated automatically for collections of text documents (date, size
and type of file). Some of the meta-data are difficult or impossible to extract

automatically, such as quality of the resource, especially from collections of multimedia.

1.4 The aim of this project

As part of the CINDI system, the ASHG is an automatic tool for the extraction and
storage of some of the meta-data in a Semantic Header and an automatic text
classification scheme. The Semantic Header is stored in the CINDI system. This meta-
data could be entered either by the information resource provider or by the ASHG. The
ASHG generates and extracts part of the meta-data (Semantic Header) of the submitted
document, assists the user in this process, and classifies the resource under a list of
subject headings. It will help the provider to verify and correct the Semantic Header
entry.

The existing ASHG has been implemented under the Unix system using the Motif toolkit,
Perl, C programming language. Object Database and Environment (ODE) is the database
system used for the ASHG's thesaurus.

This major report describes the work and effort of porting the ASHG to web server on
Linux, which is part of the work to develop a Web-based CINDI system. In the web-
based ASHG system, MySQL is employed for storing the ASHG's thesaurus and Apache
is used as web server. The PHP script language is also used to create the user interface.
All of functions of the ASHG are developed in C++ and Perl.

The functions of the extraction of the meta-data from the existing ASHG are ported; the
main algorithms of the ASHG are adapted to the web-based system. We have redesigned
and implemented the ASHG’s architecture, the web-based user interface, the ASHG's
thesaurus, the programs used to build and maintain the thesaurus and all interfaces

between main algorithms and database in the web-based ASHG system.

Chapter 2

The Analysis of ASHG

The ASHG has been developed by Haddad under the Unix system, and the user interface
has been implemented using the Motif toolkit and C language [8]. We will call this

ASHG the Motif-based ASHG, the new ASHG as the web-based ASHG.

2.1 Web-based CINDI and ASHG

The web-based ASHG will be integrated with the web-based CINDI system.

2.1.1 Overview of the CINDI

The Internet provides much more than access to electronic mail. A major scope of the
Internet is information retrieval. Thousands of host institutions have made their material
electronically accessible to interested users. A variety of different data and formats was
used by different host.

The IR system will be needed for easy search for and access to resources available on the
Internet, and will be distributed information system. Even though under control of a
single administrative unit, it may have multiple problems typically caused by differences
in semantics and representation, and incomplete and incorrect data dictionaries. Building
a standard index structure and a bibliographic system using standardized control

definitions and terms can solve these problems and lead to a fast, efficient and easy

access to the documents. Such definitions could be built into the knowledge base of
expert system based index entry and search interfaces [2].

The problem with the indices of many existing search systems is that their selectivity of
documents is often poor [2]. Because of poor choice of search terms, there is a big chance
of getting correct document but missing relevant information. In addition, the user is
required to access the actual resource, based just on the title and author information as
provided through a library catalog, and decide whether the resource meets the needs.
These problems are addressed by the CINDI. The CINDI uses an index entry called
Semantic Header, which includes items such as title, abstract, keywords, and subject, and
provides a mechanism to register, manage and search the bibliography.

The overall CINDI system uses knowledge bases and expert sub-systems to help the user
in the register and search process. The expert system will help the user in entering those
attributes required for indexing or updating a Semantic Header. The CINDI standardizes
the terms. The index generation and maintenance sub-system uses CINDI’s thesaurus to
help the provider of the resource select correct terms for items such as subject, sub-
subject and keywords. Similarly, another expert sub-system is used to help the user in the

search for appropriate information resources [1].

2.1.2 Web-based CINDI

The original CINDI system was designed as a client/server application system under the
Unix system. It is a traditional two-tier model. This type of architecture is suitable for
deployment to a small group of users, but has many problems in a large-scale application

system.

The CINDI system was designed to require two important sub-systems. A registering
system is required to register the Semantic Header into the distributed Semantic Header
database (SHDDB), and a search system is required to allow users to enter a query based
on multiple fields. The register and search sub-systems are to be carried out on the
WWW.
The web-based CINDI system is designed for the web environment. It would have the
following functions:
e A standardized metadata (Semantic Header) to describe each information
resource.
e A Semantic Header Database that stores the Semantic Headers.
e A Semantic Header registering system.
e A search system that allows querying entry.
e An annotation system.
e Subject tables that store information about subjects classified using a standard
cataloging scheme.
e ASHG subsystem to generate the Semantic Header.
e ASHG’s Thesaurus.
e Security Control sub-system.
e Uploading resource.

e Web-based user interfaces.

2.1.3 ASHG

The Motif-based ASHG was also designed as a client/server application system under the
Unix system. It was designed to require two sub-systems. ASHG's thesaurus is required
to store the three level subject headings and a set of control terms. An automatic tool
allows users to extract and store some of the meta-data in a Semantic Header and classify
the document into a set of subject headings. The user interface was implemented using
Motif and C language as client side. The main functions of the ASHG and ASHG's
thesaurus were developed as server side by using Perl language, the O++ database
programming language, and The Object Database and Environment (ODE). The
thesaurus is defined, queried and manipulated using O++, an extension of C++. A few
facilities have been added to C++ to make it suitable for database applications. O++
provides facilities for creating persistent objects, which are stored in the database and for
querying the database. The thesaurus, itself, is also based on the client-server
architecture. Communication between the client and server has been implemented using
the TCP/IP protocol.
For web-based ASHG, we need to develop the following functions:

e ASHG subsystem to generate the Semantic Header.

e ASHG’s Thesaurus.

e Uploading resource.

e Web-based user interfaces.

e Integrating the web-based ASHG with the web-based CINDI.

2.2 The problems of porting

Actually, this project is about porting an application from Unix (Solaris) to Linux.
Generally, if an application has been implemented with standard programming interfaces,
the porting process is supposed to be quite simple. Because Solaris is a certified Unix
implementation, it has passed the conformance tests of the Unix copyright holders. Linux
is also designed with conformance to the Unix standard. If we use only the set of
interfaces covered by the Unix standard, we can reuse the code without any changes.
The ASHG is composed of several programs and database. We not only need to port the
programs but also change the architecture of the ASHG. The porting problems that we
can expect occur in several different areas:
1. The tools used on the different platforms are different. This can introduce
additional problems beyond the differences in the use of the tools. The languages

the compilers accept are slightly different.

o

The programming interfaces are heterogeneous. While both operating systems are
designed to follow the respective standards, the differences in a variety of the
system implementations are unavoidable. The programming environment is
regulated by a common standard, but there is still room for differences and
extensions.

3. The architectures are distinct. The Motif-based ASHG was designed as a
client/server application system, whereas the web-based ASHG was a three-tier

web application, known as presentation layer, business layer and database layer.

4. The users of the Web-based system have different permissions compared to
regular users of the system. Some system functions may not be used in the
application.

According on these differences, we need to find all available problems for porting in

detail and give suitable solutions in new environment.

2.3 Porting the ASHG to the web

2.3.1 User requirements of web-based ASHG

To use the web-based ASHG, the user can use web browsers to access the ASHG. First
the user is asked to upload the document from their local machine to the web server, and
then the web-based ASHG will recognize the type of the document uploaded. The type
result will be showed to the user. The next step is the user applies the extraction function
of the ASHG on the document to generate the Semantic Header, which includes a list of
subject headings depending on the ASHG's thesaurus. Finally, user will confirm, verify
and modify this Semantic Header. If satisfied, the user will register it to the Semantic

Header database of the CINDIL.

2.3.2 Porting requirements

The uploading function is a new function that we want to add to the web-based ASHG.
We need to redesign the architecture of the Motif-based ASHG to fit the web server on
Linux and the ASHG’s thesaurus. For the Motif-ASHG, the functions of the extraction

of the meta-data that were implemented in Perl script language are adapted to the web-

10

based ASHG, but some system functions will be changed in Perl programs. The main
algorithms of the Motif-based ASHG are used to the web-based ASHG, but will be
implemented using C++ to replace O++. The programs used to build and maintain the
thesaurus are rewritten in C/C++. All interfaces involved defining, manipulating and
querying the database are also rewritten in C++. O++ and ODE used in the Motif-based
ASHG will be replaced in the web-based ASHG by MySQL and the new user interfaces

use web pages.

11

Chapter 3

ASHG New Environment

3.1 New working platform

The user of the CINDI and ASHG will use web browsers (Internet Explorer or Netscape)
as user interface on any operating system, such as Mac OS, Windows, Unix or Linux. For
the server side we choose Linux as the platform of the ASHG system because it is free
and its compatibility with the implementation of the Motif-based ASHG in Unix. This
server should have high security and reliability. In the case of Linux, it has reliability and
security that comes with UNIX.

Since this is a web-based application, a dedicated web server will be needed. For the web
server security reason, we adopt Apache as the web server since is a powerful, flexible,
HTTP/1.1 compliant web server.

The ASHG is a multiple-user application and also has a thesaurus. The database server
will be needed. MySQL is used as database server in this application because it is free
and is suitable for middle size application.

The user interface of this application will be web pages, and uploading users’ resource
from client side to server side also will be implemented on web pages. In the web pages,
it includes not only HTML page but also dynamic HTML format. So a server-side
HTML-embedded scripting language will be needed.

PHP can do anything any other CGI program can do, such as collecting form data,

generating dynamic page content, or sending and receiving cookies. PHP provides an

12

&

easy way to upload documents also. PHP has support for talking to other services using
protocols such as IMAP, SNMP, NNTP, POP3, HTTP and countless others.
Finally we use HTML and PHP to build web pages. It is so easy to write dynamic web

pages using PHP. By the way, it is pretty easy to connect MySQL with PHP.

3.2 Languages

The ASHG uses four languages, Perl, C/C++, PHP, HTML. PHP and HTML were used
to build web pages. Perl language was used to handle information resource. C/C++
language was used to represent subject headings, store Semantic Header into database
and maintain database.

PHP is a kind of server side script language, and is commonly said to be faster and more
efficient for complex programming tasks. We use it just for the user interface of web
pages. PHP is also needed to connect to MySQL: this connection is between the user
interface and database, and it always is needed when the user interface requires to the
database of Semantic Header.

Perl is a high-level, multi-purpose public domain language that has established itself as
the scripting language of choice - replacing facilities such as the shell, sed and awk. Perl
has powerful text-manipulation functions. It eclectically combines features and purposes
of many command languages. Perl has enjoyed recent popularity for programming World
Wide Web electronic forms and generally as a gateway between systems, databases, and
users. It has been used with good success for systems administration tasks on Unix

systems.

13

Perl is used for many diverse tasks. But in this application, it was not used for systems
administration tasks in Linux or as CGI programming and web pages script language. It
is a programming language, which excels at handling textual information and good at
using the Linux system utilities. All functions that extract meta-information from
information resource were written in Perl.

For C/C++ language, we do want to use the Object Oriented features of C++. The
ASHG's Thesaurus is composed of a three level subject hierarchies. We can represent the
subject hierarchy using Object Oriented programming with C++. All the interface APIs
that are between ASHG extraction functions and MySQL database were written in
C\C++. The different function modules of ASHG and other programs of CINDI were

integrated using C\C++ also.

3.3 Databases

For this web application, a dedicated database server is needed. MySQL is a compact
database server. In addition to supporting standard SQL, it compiles on a number of
platforms and has multithreading abilities on Unix servers, making it achieve better
performance from the underlying system.

MySQL database server is a true multi-user, multi-threaded SQL database server, freely
available, open-source, actively maintained, and a client/server implementation that
consists of a server daemon mysqld and many different client programs and libraries.

In web application, MySQL supports many simultaneous users; each MySQL client gets

a dedicated thread in the MySQL server, which allows different users to access the same

14

tables at the same time. All MySQL operations are atomic: no other users can change the
result for a running query.

MySQL server is fast, reliable, and easy to usc. MySQL also has a very practical set of
features developed in close cooperation with users.

The MySQL server is coded mainly by a single person with many years of coding
experience, very little redundant code is in it. Most of the basic algorithms also come
from an era of slow CPUs and small amounts of memory. The algorithms have mostly
been extended to use larger caches if there is available memory. As a result, MySQL has
a compact fast design, the code size of the server is less than IMB on an i386, which
normally uses very little memory, but can be configured to take advantage of large
amounts of memory.

Though under constant development, today MySQL offers a rich and very useful set of
functions. The connectivity, speed, and security make MySQL highly suited for accessing
databases on the Internet.

MySQL database is a very popular Open Source database, and it uses SQL92, a milestone
in database query language, as a standard. MySQL has robust interfaces for C/C++, Perl

and PHP.

3.4 Interface

The user of the ASHG uses web pages as user interface through the Browser. Dynamic
HTML page technology is used in this application. The other function to be added is the

ability to upload information resource by users. The ASHG allows the users to upload a

15

file from client side to server side. After uploading the file to server side, the ASHG will
automatically recognize the document type and generate the Semantic Header of this file.
File uploading is a process of sending an arbitrary file from a client machine to the
server. For uploading file, web-based file upload is vastly superior altemnative to other
means of transferring files to a server over the Internet protocols.

FTP has been the standard mechanism for sending files to a server since the earliest days
of TCP/IP. It is reliable, can take into account text vs. binary files across platforms.
However, with FTP uploads you must either manage many user accounts or allow
anonymous access. Some organizations do not allow FTP for security and intellectual
property reasons.

With a web application, you can limit the size of the uploaded file dynamically every
time it is invoked. You could even change the size depending on information contained in
the form. Additionally, you can flush upload that do match certain criteria, such as wrong
file type or file contents. A pleasing web page can offer instructions, advise, on-line help.
This is not possible with batch based FTP. More importantly, when errors occur, you can
provide immediate feedback to the user and offer corrective action.

Web-based uploading is performed via an HTML form with the attribute
ENCTYPE="multipart/form-data". This form must also contain one or more <INPUT
TYPE=FILE> items with which the user specifies local files to be uploaded. The data
posted by a form with the ENCTYPE="multipart/form-data” attribute must be parsed by
a server-side process to extract the uploaded files and other non-file items.

In this application, the form action points to a PHP script, and that script is a server-side

process. PHP script checks that a file was sent, and then takes that file name (which is

16

associated with the file sitting in the temp directory) and executes a copy command, thus
moving the file from the temp directory to a real live directory on the server. PHP script

lets the user know that the file made it to its destination and all is well.

3.5 Architecture

The ASHG is a three-tier web application. It includes presentation layer, business layer
and database layer. It is built by Linux, Apache, PHP, Perl, C/C++ and MySQL, is shown
in figure 1.

The following is a brief explanation of this architecture.

Presentation layer includes all the user interface pages; it will call the functions of the
ASHG and store in or retrieve Semantic Headers from the database of Semantic Headers
depending on users’ request.

Business layer is an ASHG sub-system. It extracts Semantic Header for HTML, Latex,
Text and RTF documents. It provides the document'’s contributor an initial set of subject
classifications and a number of components of the Semantic Header for the document.
Database layer involves two databases, ASHG's Thesaurus and Semantic Headers
database. All initial subject headings, control terms associated with the subject headings
and subject classifications are stored in the Thesaurus. All information including
Semantic Headers, contributors/users personal information and user’s annotation, etc. are

stored in the Semantic Header database.

17

User’s
Internet Web
<€ Browser
Y
Web —>» PHP —» MySQL

Server «—{ Engine |g———— Engine
Apache

A

Pages
Scripts

Figure 1: The architecture of the ASHG system

18

Chapter 4
Porting ASHG's Thesaurus

4.1 The Thesaurus for ASHG

The Thesaurus is a set of items (phrases or words) plus a set of relations between these
items. The ASHG's Thesaurus is used to store the standardized subject headings, control
terms and the control term subject association.

The ASHG's Thesaurus contains a three level subject hierarchy and a set of control terms
associated with the subject headings found in the subject hierarchies. The Thesaurus used
by ASHG consists of four object classes: Level_0 represents the general subject of the
subject hierarchy, Level_I represents the sub-subject of the general subject and is derived
from Level_0; Level_2 represents the sub-subject of the Level_I subject and is derived
from Level I, and finally control term which contains the root terms that are derived
from the subject headings. A root term is the origin of all possible terms that can be

generated from it by adding the suffixes and prefixes [8].

4.2 The Subject Hierarchies

For registering and searching the Semantic Header, the standardization of subject
headings will be needed. Since different subject headings may be used to convey the
same subject, and since different people may have different perspectives on the same

single subject, controlled subject headings have been derived. The ASHG system focuses

19

on the standardization of subject headings. This database helps the provider of the
information resource in selecting the correct subjects and sub-subjects’ headings for the
semantic header entry.

ASHG's subject hierarchy was based on classification scheme used by Association for
Computing Machinery (ACM) and the Information Service for Physics, Electronics and
Computing (INSPEC) initially, and refined using Library of Congress Subject Headings
(LCSH). The resulting subject hierarchy was formed a three level hierarchy with one
additional level. This last level contains terms used as control terms associated with the
third level subject headings. ASHG's subject hierarchy is made up of three levels, where
Level_O contains the general subject heading. Currently we have included only two
general subject headings: Computer Science and Electrical Engineering. Level_I contains
all the subjects that fall under Level_0 subjects, like Software Engineering, and similarly
Level_2 will contain more precise subjects that fall under Level_! subjects, like Cost

Estimation Management [8].

4.3 The Controlled Term

Some form of standardization of terms is also needed to avoid chaos introduced by
differences in perception of different users. For each subject heading found in ASHG’s
subject hierarchy and the additional terms, we used their constituent English non noise
words as their corresponding controlled terms. The subject headings found in ASHG’s
Level_0, Level_1I and Level_2 will be used as the basis for finding the controlled terms. In
addition, the additional terms associated with ASHG’s Level_2 subject headings are

mapped into controlled terms.

Mapping ASHG’s subject headings terms into some controlled terms is discussed below:
1. English stop words are removed from ASHG's subject hierarchy headings and the

additional terms associated with ASHG's Level_2 subject headings.

o

Applying ASHG's stemming process to the remaining list of words in order to get
their root, which will be stored in the list of controlled terms.
3. Generating a list of words to be added to the ADDED_WORDS_LIST file. These

words are found in the subject headings but not in the spell check dictionary.

4.4 The Control Term Subject Association

The Control Term Subject association is an association between the controlled terms and
their corresponding subject headings. The main reason behind the Control Term Subject
association is to extract or classify the information resource under a number of subject
headings by comparing the significant list of words contained in the document with the
list of controlled terms.

Each controlled term is associated with one or more subject headings. It has three lists of
subject headings attached to it. The three lists correspond to the general subject headings,
sub-subject Level_1 subject headings, and Level_2 subject headings [8].

The association between the subject headings and the controlled terms is constructed by
comparing the root words found in these subject headings with the ASHG's controlled
term. A document often covers a number of subject or domains. ASHG uses the words in
a document to classify it under a list of subject headings. This list of words from the
document is matched against the controlled terms. If a match is found, then this subject

heading is associated with the controlled term. The reason for building such an

association is that ASHG will generate a suggested list of subject headings using the
words found in the document by consulting the Control Term Subject association. This

process is represented below:

1. Split each subject heading and the terms associated with ASHG’s Level_2 subject

headings into words they are made up of.

™

English noise words found in the list of words are removed.

3. Words are checked using the spell command.

4. Remove words neither in spell dictionary nor in the ADDED_WORDS_LIST file.
5. Apply the stemming process to generate the root-controlled terms from the words.
6. Each root-controlled term will be associated with the subject headings that

contain it.

4.5 The implementation of the Thesaurus

In this application, C++ will be used to implement the logic of subject hierarchy and

control terms. The classes will be represented using UML.
4.5.1 The subject headings

Since the three subject headings classes have similar characteristics, we will only
describe the operation of the Level_2 class. The operation print() prints Level_2 object
into the result file. The operation print_all() prints Level_2 object as well as parent
objects Level_I and Level_0. The operation isLevel_2 return a Level_2 object whose

value is ‘str’, otherwise it return O or L. The operation listz_all_level_2 prints into the

result file all Level_2 objects where their Level_0 and Level_1 subject values correspond

to ‘lev_0’ and ‘lev_1". The operation get_lev_2 and get_subject return a pointer to the

Level O
llev_U[max] : char

$®get_lev_00 : char ™

$ccvirtual>> get_subject() : char *
®isLevel_O(str : char *) : int
®jevel_O(lv_ 0 : char ™
Siist_ali_level_0Q

Sccvirtual>> printQ

7

Level_1
—QLev_ﬂmax] : char
& subject_O[max] : char

S®get_lev_10 : char*

$c<virtual>> get_subject() : char *
®get_lev_10 : char*
®isLevel_1(str: char) : int
®jevel_1(lv_1: char*, Iv_0 : char ™
$ist_all_level_1(lev_0 : char *)
Sc<virtual>> print()

S ccvirtual>> print_all()
®get_subject_0O(str : char®) : char®
S®Retrievelevel_1(lv_1 : char®

T

Level_2

tLev_Z[max] : char
&subject_1[max] : char

S®get_lev_2(: char*

®c<virtual>> get_subject(} : char ™

®get_lev_20 : char

®isLevel_2(str : char) : int

S evel_2(le_2 : char*, Iv_1: char*, Iv_0 : char®)
®list_all_level_2(lev_0 : char®)

®ccvirtual>> print()

®ccvirtual>> print_all()

ORetrievelLevel_2(lv_2 : char)
®get_subject_1(str : char®) : char”

Figure 2: The classes of three level subject headings
Level_2 subject of the current object. Both are used in document classification. The

operation get_subject_1 returns a pointer to the Level_I object, which is the parent of a

Level_2 object whose value is the string ‘str’. The constructor Level_2 initializes
Level_2’s and its parents’ values. When a new object of class Level_2 is created, it is an
empty object. The operation RetrieveLevel _2() is similar to the constructor, but fills the
Level_2’s and its parents’ values to be obtained from the database. Its definition follows:

void Level_2::RetrievelLevel_2(char *lv_2)
{
if (isLevel_2(Iv_2))
{
char mysqlstr[200];
strcpy(mysqlstr, "SELECT LOQ.items, L1.items FROM level_0 LO, level_1 L1, level_2
L2 WHERE LO.levelO=L1.level0 AND Ll.levell=L2.levell AND L2.items=LCASE(");
strcat(mysgqlstr, lv_2); strcat(mysqlstr, "*)");

res = mysql_query(&my_connection, mysqlstr);
if (res) {
printf("SELECT error: %s in Level_2 constructor\n”, mysql_error (
&my_connection));
} else
{
result = mysql_store_result(&my_connection);
if (result) {
/* begin */
/* only fetch the first row if there are more than one rows.*/
if (row = mysql_fetch_row(result))
{
strcpy(lev_0, row[0]);
strcpy(lev_1, row[1]);
}
mysql_free_result(result);
/* end */
} else {
if (mysql_ermo(&my_connection)) {
fprintf(stderr, "Retrieve error: %s\n",mysql_error(&my_connection));
}
} 7* end if (result) */
} 7* end if (res) */
} /* end of isLevel_2(lv_2) */
}

24

4.5.2 The Control Term ’s class

There are three similar classes for stack_array for the three subject headings levels. We

only describe the stack_array_0 class. The operation isempty checks if array is empty.

Sprint()

$Getsubject() : char*

@ SubjectPtrWrapper(const wrap : _SubjectPtrWrapper<T>4)
Smatch{const wrap _SubjectPtrWrapper<T>4&) : int

stack_array 0

Eze . int
&num : int
& Stackptr : Level_0_wrap*

Sstack_array_O(int)

_SubjectPtrWrapper Spush(Level_07)
oinfo . T Sisempty() : int
®isfull() : int
®_SubjectPtiWrapper(Sget_ptr) : Level 0_wrap”
® SubjectPtrwrapper(info : T get_num() : int

get_size() : int
$search(Level 07 : int
$remove(Level_0)
Sprint_all()
get_all(char)
®store_all{char)

N

stack_array_2

—Ssize sint
Qnum sint
&Stackptr : Level_2_wrap®

stack_array _1
(@size : int

&num : int

&Stackptr : Level_1_wrap*

$stack_array_2(int)

$get_ptr() : Level 2 wrap®
$get_num() : int
Oget_size() : int
$search(Level_2*) : int
$remove(Level 2%
Sprint_all)

$get_all(char ")
Sstore_all(char %)

$stack_array_1(int)

Soush(Level 27 Spush(Level_17)
Sisempty() : int $isempty() : int
$isfull() : int isfull() - int

Oget ptr() : Level_1_wrap™
$get_num() : int
Oget_size() : int
®search(Level_17) : int
Sremove(Level_1%)
Sprint_all)

$get_ali(char ™

Ostare_all(char ™)

Figure 3: The classes of control terms

The operations ger_ptr, get_num, and get_size are defined in the class description. The
operation push adds a pointer to a subject heading into the array. If the array is full, then a
new array of a bigger size is created, the old one is copied into the new one and the new
pointer is then added to the array. The operation isfull checks if the array is full. The
operation search looks for a pointer to a subject heading in the array. The remove
operation removes a pointer to a subject heading from the array. The operation print_all
prints all the subject headings pointed by in the array. The operation get_all(s) gets all the
control term subjects pointed by the array of subject wrappers from the Thesaurus. Its
definition follows:

void stack_array_0::get_all(char * s)
{
Level_O *ptr;
char querystr[300];
strcpy(querystr, "SELECT l.items FROM key_class k, lev_0_list | WHERE ");
strcat(querystr, "k.idkey=l.idkey AND k.keyword=LCASE("");
strcat(querystr, s); strcat(querystr, ")");
res=mysql_query(&my_connection, querystr);
if (res) {
cout << "Get a error when select items from key_class and lev_0_list for: " <<s <<
endl;
exit(l);
}
result = mysql_store_result(&my_connection);
if (result) {
while(row = mysql_fetch_row(result)){
ptr = new Level_O(row[0]);
push(ptr);
}
} else {
if (mysql_ermo(&my_connection)) {
cout << "Retrive error: in stack_array_0::get_all()" << endl;
mysql_free_result(result);
exit(l);
}
} 7* end if (result) */
mysql_free_result(result);

The operation store_all(s) stores all the control term subjects pointed by the array of
subject wrappers into Thesaurus. Its definition follows:

void stack_array_0::store_all(char * s)
{
char querystr[300];
char id[20];
strcpy(querystr, "SELECT idkey FROM key_class WHERE keyword=LCASE(");
strcat(querystr, s); strcat(querystr, ")");
res=mysql_query(&my_connection, querystr),
if (res) {
cout << "Get a error when select idkey from key_class for: " <<'s << endl;
exit(1);
}
result = mysql_store_result(&my_connection);
if (result) {
row = mysql_fetch_row(result);
strepy(id,row[0]);
} else {
if (mysql_ermo(&my_connection)) {
cout << "Retrive error: in stack_array_0::store_all()" << end];
mysql_free_result(result);
exit(l);
}
} 7* end if (result) */
mysql_free_result(result);
for (int i=0; i<size; i++)
if (Stackptrf{i].info '="\0"){
strepy(querystr,"INSERT INTO lev_0_list(idkey, items) VALUES(™);
strcat(querystr, id); strcat(querystr, "',");
strcat(querystr, Stackptr{i].Getsubject()); strcat(querystr,”’)");
res=mysql_query(&my_connection, querystr);
if (res) {
cout << "Insert lev_0_list items: " << Stackptr(i].Getsubject() << " error !" <<
endl;
}
}

4.5.3 Keyword class

The keyword class can be used as control terms to subject association class. It represents

the association between terms and subject headings. It has three friend functions, which

will be used in the subject extraction process. It also has four private data members: The
Key, which holds the value of the keyword, and three pointers pointing to stack_array_0,
stack_array_l and stack_array_2 respectively. It contains redundant functions as

mentioned in figure 4. The operation isKey checks if the string ‘str’ is a keyword. The

Keyword

&Key[max] : char

ev_0_list : stack_array_O
&lLev_1_list : stack_array_1
&Lev_2_list : stack_array_2

SKeyword(s : char®)

$<<friend>> trace_list_O(Keyword *, SNODE *, int)
$c<friend>> trace_list_1(Keyword *, SNODE *, int)
®<<friend>> trace_list_2(Keyword *, SNODE *, int)
$pysh_0(t : Level_07)

®pPysh_1(t : Level_17

®pysh_2(t : Level_2%)

SFind_O(t : Level 0% : int

SFind_1(t : Level_17) : int

SFind_2(t : Level 2% : int

SRemove_0(t : Level_07)

SRemove_1(t : Level_17)

SRemove_2(t : Level 27

$print_0Q

$Print_10

®print_2()

$Get_Lev 00 : stack_array_0*

$Get_Lev_10 : stack_array_1*

®Get_Lev_2(: stack_array_2*

Sc<virtual>> print()

$Getkeyword() : char”

®iskey(str : char® : int

$getfromdb()

®storetodb()

Figure 4: The class of Keyword
operation getfromdb() is to get the private data of the keyword class from the Thesaurus.

The operation storetodb() is to store the private data of keyword class to the Thesaurus.

4.5.4 The table schemas of the Thesaurus

The Thesaurus database in this application is called ashg. There are in total seven tables.

The following are these tables and their schemas.

Level 0

Column Name Description
LevelO Primary key for this table
Items SubjectO (general subject)

“Level_0" table keeps all information about subject0.

Level 1

Column Name

Description

LevelO
Levell

Items

Foreign key for Level_0 table
Key of this table
Subject! (is derived from subject0)

“Level _I" table stores subject] and the relation between subjectO and subjectl. LevelO

and Levell are primary key, which represents the items is the subject of the general

subject.

Level 2

Column Name

Description

Levell
Level2

Items

Foreign key for Level_I table
Key of this table

Subject?2 (is derived from subjectl)

“Level_2" table stores all information for subject2. Levell and Level2 are primary key,

which represents the items is the subject of the Level_I subject.

key_class

Column Name Description

Idkey Primary key of this table
Keyword Keyword (Control Term)

“kay_class”™ table keeps all keywords

lev_0_list

Column Name

Description

Idkey
Id0

Items

Foreign key for key_calss table
Key of this table
Subjects (subject0)

“lev_0_list” table keeps the controlled term subject association between control terms and

subjectO.

lev_I_list

Column Name Description

Idkey Foreign key for key_calss table
Id1 Key of this table

Items Subjects (subjectl)

“lev_1I_list” table stores the controlled term subject association between control terms

and subjectl.

lev_2 _list

Column Name Description

Idkey Foreign key for key_calss table
Id2 Key of this table

Items Subjects (subject2)

“lev_2_list” table is used to store the controlled term subject association between control

terms and subject2.

4.5.5 Physical implementation of the tables

Here are the commands in MySQL to be used to create the tables:

create table level _0 (
levelO int unsigned not null auto_increment primary key,
items varchar(200));

create table level_1 (

levelO int unsigned not null,
levell int unsigned not null auto_increment,

30

items varchar(200),
primary key(levelO, levell),
foreign key(levelO) references level_O(levelO)

)

create table level_2 (
levell int unsigned not null,
level2 int unsigned not null auto_increment,
items varchar(200),
primary key(levell, level2),
foreign key(levell) references level_l(levell)

)

create table key_class (
idkey int unsigned not null auto_increment primary key,
keyword varchar(100));

create table lev_0_list (
idkey int unsigned not null,
id0 int unsigned not null auto_increment,
items varchar(200),
primary key(idkey, id0),
foreign key(idkey) references key_class(idkey)
);

create table lev_1_list (
idkey int unsigned not null,
idl int unsigned not null auto_increment,
items varchar(200),
primary key(idkey, idl),
foreign key(idkey) references key_class(idkey)
);

create table lev_2_list (
idkey int unsigned not null,
id2 int unsigned not null auto_increment,
items varchar(200),
primary key(idkey, id2),
foreign key(idkey) references key_class(idkey)

31

4.6 Programs used to maintain the Thesaurus

Haddad [8] has created the subject hierarchy manually for Computer Science and
Electrical Engineering, which is stored in files COMPUTER_HIERARCHY and
ELECTRICAL_HIERARCHY. Haddad also provide some programs to maintain the
Thesaurus.
Perl script build_sub2: This function will generate or distribute the Level I subject to
Level_2 subject headings. Applying this program on the file that contains the subject
headings will generate another file having _sub2 as an extension. This file contains the
subject headings in a different format.
new-subject-build.cpp: This program can be applied on the file having _sub2 as an
extension to produce the three level subject headings hierarchy in the Thesaurus.
For example: new_subject_build COMPUTER_HIERARCHY _sub2.
Perl script generating_added_words: This function generates the new words not in spell
dictionary. It passes the files that contains the subject hierarchies as inputs into some
files:
1. A file called ADDED_WORDS_LIST, which contains the new added words list.
2. SUB_JECT_O_I_HEADINGS, which contains Level_0 and Level_l subjects.
3. SUBJECT_2_HEADINGS, which contains Level_2 subjects and the keywords
that are associated to them.
Perl script stemming: This function will take the three files mentioned above to generate a
file, SUBJECT_HEADINGS_STEM_sub, which contains the root words and their

corresponding subject headings. This function will call the three following functions:

Perl script subject_words: will divide each subject heading into its words.

Perl script find_root: will generate the root of the words.

Perl script keyword_subject: will associate the root words to their subject headings.
build_keyword_db.cpp: This program will construct the controlled term subject
association by reading the files that contain a list of root controlled terms and each is
followed by the subject heading where it was found.

For example: build_keyword_db SUBJECT_HEADINGS_STEM_sub.

33

Chapter 5
Porting ASHG

S.1 Introduction

The design goal of ASHG is to automatically build a reliable draft Semantic Header for
HTML, Latex, Text and RTF documents; draft Semantic Header includes classifying a
document under a list of subject headings. The ASHG provides an initial set of subject
classifications and a number of components of the Semantic Header for the document.
ASHG’s scheme is measuring both the occurrence frequency and positional weight of
keywords found in the document. Based on the selected document’s keywords, the
ASHG assigns a list of subject headings by matching those keywords with the controlled
terms found in the controlled term subject association [8].

When a user uploads a document to the system, the ASHG extracts some fields such as
document’s title, abstract, keywords, dates, author, author’s information, size and type
from the document. Using frequency occurrence and positional schemes, the ASHG
measures the significance of the words found in the previously mentioned list. Word
stemming is used in order to generate a base form for each word. The system tries to
match the base forms of the words with the controlled terms found in the controlled term
subject association. If a match is found, the subject associated with the controlled terms

are extracted and ranked accordingly.

34

The functions are described as follows:

1. Upload the document: The users submit a document to the system.

[

Recognizing Document Type: Currently, ASHG can process HTML, Latex, Text

and RTF documents.

3. File Type Validation: The user validates the file type as determined by ASHG.

4. Applying ASHG's Extractor: The extraction program corresponding to the type of
document is applied to the input document.

S. Classifying ASHG’s Document: The corresponding subject headings are assigned
to the document.

6. Output Semantic Header: The generated Semantic Headers are parsed and stored
to the temporary database tables.

7. Validating Semantic Header: The Semantic Headers generated by ASHG is

presented to the user for validation and/or modification.

5.2 Document Type Recognition

After a document is uploaded to the system, the system tries to recognize the type of the
document. The file naming convention is used by the system to assist in recognition of
document type. If this does not work, the system will then examine the contents. If the
document type remains unrecognized, the user is informed by the system, and is asked to
either choose a document type or generate the Semantic Header manually.

After successful uploading, the document is passed to the Perl scrpt

FILE_TYPE_RECOGNITION. This file was ported from the Motif-based ASHG. Inside

35

FILE_TYPE_RECOGNITION will call a function byname. This function checks the

document's name extension. If the extension of the file indicates that it is an HTML,

Figure 5: Uploading page

Latex, Text or RTF then the function user_verify is called. If the naming convention fails
in recognizing the document type, the function bycontent is called.

if (document.extension == .html or HTML or .htm) then
{

The file is an htmi file.

Call function user_verify.

}

else if (document.extension == .tex or .TEX) then

{

The file is a latex file.
Call function user_verify.

}

else if (document.extension == .rtf or .RTF) then

{
The file is a rtf file.

Call function user_verify.

}

36

else if (document.extension == .doc, or .txt
or .info or .ascii) then
{
The file is a text file
Call function user_verify.

}

else {

Examine the document contents by calling the function bycontent.

}

In the function bycontent, the semantics of the HTML, Latex and RTF content is

exploited when attempting to recognize the file type.

If (the file contents match the html file semantics, such as the
existence of the <HTML> tag) then

{
the file is of html type
call function user_verify

}

else if (the file contents match the latex semantics, such as the
existence of the \begin{...} tag) then

{
the file is of latex type
call function user_verify

}

else if (the file contents match the rtf semantics, such as the
existence of the \rtf tag) then

{
the file is of rtf type
call function user_verify

}

else

{

Unrecognized file type, the user should select a type.

}

If the file type is not HTML, Latex, Text, or RTF, it remains unrecognized, and ASHG

extracts the size of the file and the date of creation.

In user_verify, the system redirects to a confirm web page. The user either confirms or

rejects the result of this page. If the user rejects the result, he should choose a type from a

list that is displayed. If the user confirms the document's type as recognized, ASHG

37

Figure 6: File type confirmation page

applies the extractor corresponding to the type confirmed by the user. Otherwise, he

should choose a type and then apply ASHG.

5.3 Applying ASHG's Extractors

After the document type recognition step, ASHG applies an extraction procedure. ASHG
uses its understanding of HTML, Latex, text and RTF syntax documents to extract the
document's meta-information. There are five kinds of extracting programs in the system.
They are HTML _extractor, LATEX_extractor, TEXT_extractor, RTF_extractor and
UNKNOWN_extractor. These programs are written in Perl. They create and delete a

number of temporary files while running. The original version of the extracting program

38

also has the function of reading the directory where there is no permission for the web
user. We modified each extracting program to run on the web environment.
The other problem concerns stemming process. The original stemming process used the
spell Sun Solaris command to extract the root of a word. The spell Sun Solaris command
can output all the plausible derivations from the words in the spelling list. But the spell
Linux command is different from Sun Solaris. There is no -x option to display every
plausible stem in Linux. We used Porter’s stemming algorithm instead of applying the
spell Sun Solaris command with the -x option. Porter’s stemming algorithm removes
suffix of words to generate the root. Applying spell Sun Solaris command with -x option
removes both prefix and suffix of words to output all available plausible stems. The
original stemming process [8] was modified in the web-based ASHG.
The steps of the original stemming process are:

1. Using the sort command, sort the input words.

2. Apply the uniqg command filter out duplicate words.

3. Apply the spell command with —x option. Thus, all the plausible stems are stored

in an output file.
4. Apply the spell command with —v option. All words not found in the spelling list
are in an output file.

5. Create a file, which contains the words found in step 3 and step 4.

The steps of the web-based ASHG stemming process are:

1. Using the sorr command, sort the input words.

(S8

. Apply the uniq command filter out duplicate words.

w

Apply the Porter’s stemming algorithm

39

4. Apply the spell command. All words not found in the spelling list are in an output
file.

5. Apply Perl script checker to check if the words not found in the spelling list are in
the file ADDED_WORDS_LIST.

6. Create a file, which contains the words found in step 4 and step 5.

The file ADDED_WORDS_LIST stores all the new words not found in system’s

dictionary.

5.4 ASHG's Document Subject Headings Classification
scheine

An important step in constructing the semantic header is to automatically assign subject
headings to the documents. Sub_ext.cpp is an important program for classifying
information resource. The corresponding subject headings are assigned to the document
after running sub_ext. It was rewritten using C++ and MySQL to replace O++ and ODE,
the interfaces between C++, MySQL and O++, ODE are different, and its algorithm was
kept.

To assign the subject headings, the ASHG uses the resulting list of significant words
generated from the previous extraction programs and CINDI's controlled term subject
association. The subject heading classification scheme relies on passing weights from the
significant terms to their associated subjects, and selecting the highest weighted subject

headings (8].

The Algorithm

40

Having the keywords, title words, abstract words and other tagged words, will help us

select the most appropriate subjects for a given document. The following algorithm is

used.

L.

o

3.5

Three lists of subject headings are to be constructed. The list of Level_0 subject
headings, the list of Level_I subject headings and the list of Level_2 subject
headings.

For each term found in both CINDI's controlled terms and the generated list of
words, the system traces the controlled term's attached list of subject headings
(list of level_0, level_I and level_2), and adds the subject headings to their
corresponding list of possible subject headings.

Weights are also assigned to the subject hierarchies. The weight for a subject is
given according to where the term matching its controlled term was found. A
subject heading having a term or set of terms occurring in both title and abstract,

for instance, gets a weight of seven. The matched terms' weights are passed to
their subject headings.

The system extracts Level 2, Level_I and Level_0 subject headings having the
highest weights from the three lists of possible subject headings.

After building the three lists for the three level subject headings, the system:
1) Selects the subjects using the bottom-up scheme.

2) Having selected the highest weighted level_2 subject headings, the system
derives their level_I parent subject headings.

3) An intersection is made between the derived level_I subject headings and
the list of the highest weighted level_I subject headings. The common
level_1 subjects are the document's level_I subject headings.

4) The system uses the same procedure in selecting level_0 subject headings.

Semantic Header Validation

Once the process of extracting the meta-information is completed, the ASHG displays to

a web page with the generated semantic header is displayed for the information resource

provider to modify, add or remove some of the attributes. An example is given in figure 7

41

and 8. Once the provider finishes, the semantic header can be stored in the CINDI

database.

ataloguinig

— A Tt

wiisize=30

Existing search

systems exhibit uneven selectivity when used in seeking

information resources on the Internet. This problem has prompted a
number of researchers

to turn their attention to the development and implementation

of meta-data models for use 1n indexing and searching on

the WWUW and Internet. In this paper, we present cur results

of a simple query on a number of existing search systems and

then discuss a proposed meta-data structure. Modelling the expertise
of

librarians for cataloguing, user entry and search using a rule-based

Figure 7: Semantic Header Validation

st

IE#M-W-W

o,

'

Computer Science
Processor arch

0 e N

EEPT P S

Figure 8: Subject Heading Validation

43

Chapter 6

Integrating and Testing

6.1 Integrating

The ASHG sub-system is the part of CINDI system. To integrate it with the CINDI, we

need to consider some situations:

6.1.1 Multiple Users vs. File Name and Type

File upload function is a multi-user function. There is a possibility that two users are
using a same file name. A more complex case is two users are uploading the files with the
same name and at the same time. To avoid the file being overwritten in case, we use a
synchronized mechanism to generate a number for each file. The different files with the
same name are assigned different numbers. This number is unique inside web server. It
will be held as a session variable when a user accesses the system.

After uploading the document, the web user interface of the ASHG will call the Perl
script function to recognize document type. Multiple users can call this function at the
same time through the web. How does it return the result of document type to the web
page? We store the document type to a temporary database table. When the Perl function
terminates, the web page will query the document type from the temporary table by the
name of the document, which is unique and is held in the session.

Here is the implementation of the temporary table in MySQL. It has two columns.

create table filetype (
filename varchar(255) NOT NULL,
type varchar(10) NOT NULL,

primary key(filename));

6.1.2 Intermediate tables

After applying extraction program on the information resource, ASHG will generate all
the Semantic Headers information to describe the document. This result will be stored in
the file having same name with the document and _semantic_header as an extension.

To integrate ASHG with the CINDI system, we need some intermediate tables between
ASHG subsystem and resource registration subsystem [16]. These tables are used to
temporarily store Semantic Header information that is automatically generated by ASHG.
The Semantic Header information generated by the ASHG is only a draft. The user needs
to check and confirm it. This information cannot be directly stored in the Semantic
Header database, because this will give the database false information and render the
Semantic Header database useless. The main information, such as title, keyword, subject,
created_date and abstract, etc., is stored in the table sh. The author’s information of the
resource is stored in the sh_author table. All available subject headings are stored in
sh_subject. Information about coverage, identifier, system requirements and classification
is stored in the sh_covearage table, the sh_indentifier table, the sh_system_req table and
the sh_classification table correspondingly. The implementation of these tables is given
in reference [16].

We give C program, called readsh.c, to store Semantic Headers to these intermediate
tables. The temporary semantic header tables are to integrate the ASHG with the CINDI,

readsh.c also. This function reads a Semantic Header file, parses the Semantic Header’s

45

schema and stores the information in these temporary Semantic Header tables, and is
called after the Semantic Header file to be generated by the ASHG. In Motif-based

ASHG there is a similar function, which parses the Semantic Header to display it on user

interface.

6.1.3 Security

For a web application, there are two kinds of security. One is system level security and
another is application level security. The system level security is more concerned with
locking server resource and only allowing permitted users to access. The application level
security means that the application program controls the security. For example, the
application uses user name and password for the system. The CINDI system uses
application level security. The ASHG uses system level security since ASHG always run
at the back end. We give read and execute permissions to other users for all Perl script
programs, and give execute permission to other users for all C/C++ executable programs.
For the directory where we store the uploading documents, we give read and write
permissions. There are five extraction programs in ASHG. They create a lot temporary
files when they are running. So we give the directory where the ASHG web default is
read and write permission for other users. This is a weaken security. We tried to use
wrappers and sudo, but failed, it does not work. Maybe we did wrong way.

In this application, there are a lot function calls using *“system” command between C/C++
and Perl, PHP and Perl, PHP and C/C++. We use the absolute path to call the executable

program since it is not easy to give relative path to the web defauit directory.

46

6.2 Test Results

We apply the ASHG on a set of four type documents; the titles of these documents can be
viewed in the appendix. The generated index fields such as title, keywords, abstract and
author are compared with those that are found in the document.

The experiments were conducted on eighteen documents to test the accuracy of the
generated index and the subject heading classification results. The ASHG was able to
extract all the explicitly stated fields such as title, abstract, keywords and author'’s
information with a hundred percent accuracy. If the abstract was not explicitly stated, the
ASHG was able to automatically generate an abstract that would describe the paper.
However, ASHG's implicit keyword extraction generated a list of words that included
some words that are insignificant. These insignificant words in turn lead to the diversion
in subject classification [8].

We have tested eighteen documents in two platforms: web-based ASHG and Motif based
ASHG. The ASHG’s automatic subject heading classification results are compared in
detail. We show the generated subject headings in four tables.

We have compared the results for HTML_extractor for HTML documents,
Latex_extractor for Latex documnets, Text_extractor for text documents and
RTF_extractor for RTF documents with the result for the same documents in original
Motif ASHG.

The results showed two systems are same in extracting the explicitly stated fields such as
the title, abstract, author and keywords. And hence we have not included these. We only

show the result of subject headings for the web-based ASHG and Motif-based ASHG.

47

The difference was because of the stemming process, since we changed the stemming
process. The stemming process is also used to create the controlled term association, so
we need to create this association manually again.

We believe that the Motif-based ASHG is more accurate. The stemming is important for
the performance of the system. It is better stemming process to apply spell Sun Solaris
command with -x option. Stemming process affects extracting key words from
information resource and classifying the document. It is too complicated to give some
specific examples in this report and we will discuss the reason in 6.3 the analysis of
testing results.

The response of the web-based ASHG is better then Motif-based ASHG, but it is not fast
enough. To improve the response, we can remove all displaying information for
debugging, and it is a good idea using RAM disk and reading or writing the files to it
instead of hard disk.

For uploading file, there is a limit on the size of file transferred in the web-based ASHG.
The limit came from the configuration of PHP script engine. Its default value is two Meg

to allow user upload file, but it can be set to a different value in the PHP.ini file.

48

Number of Number of
Subject Subject Number of Number of
HTML Headings Headings same Subject different
Document generated by generated by Headings Subject
Web-based Motif-based Headings
ASHG ASHG

D1 9 6 5 5

D2 4 9 3 7

D3 5 6 4 3

D4 1 4 1 3

D5 3 6 3 3

D6 5 6 4 3

D7 4 3 2 3

D8 3 5 2 4

D9 19 5 4 16
D10 5 7 5 2
DIl 8 4 2 8
D12 5 5 2 6
D13 8 5 2 8
D14 7 4 3 4
D15 8 26 2 30
D16 4 26 3 24
D17 3 9 1 10
D18 4 3 2 3

Table 1:HTML test resuits

49

Number of Number of
Subject Subject Number of Number of
LATEX Headings Headings same Subject different
Document generated by generated by Headings Subject
Web-based Motif-based Headings
ASHG ASHG

Dl 5 5 5 0

D2 4 11 3 9

D3 4 6 4 2

D4 1 4 1 3

D5 3 6 2 5

D6 7 5 5 2

D7 4 5 4 1

D8 3 S l 6

D9 4 6 3 4
D10 5 5 5 0
D11 3 3 3 0
D12 7 2 1 7
D13 7 4 3 5
D14 9 7 7 2
D15 5 24 2 25
D16 4 25 2 25
D17 3 5 2 4
D18 4 4 2 4

Table 2:Latex test results

50

Number of Number of
Subject Subject Number of Number of
TEXT Headings Headings same Subject different
Document generated by generated by Headings Subject
Web-based Motif-based Headings
ASHG ASHG

Dl 5 5 5 0

D2 26 12 2 26

D3 5 6 5 1

D4 4 10 2 10

DS 1 3 0 4

D6 16 7 2 18

D7 4 4 1 6

D8 6 4 4 2

D9 6 3 1 7
DI0 3 9 0 12
D11 5 7 2 8
D12 7 31 2 34
D13 7 27 3 28
D14 5 3 2 4
D15 3 4 2 3
D16 5 6 2 7
D17 3 3 2 2
D18 8 14 4 14

Table 3:Text test results

51

Number of Number of
Subject Subject Number of Number of
RTF Headings Headings same Subject different
Document generated by generated by Headings Subject
Web-based Motif-based Headings
ASHG ASHG

Dl 7 5 5 2

D2 6 8 5 4

D3 4 5 4 1

D4 1 3 1 2

D5 12 3 3 9
D6 3 5 2 4

D7 3 4 2 3

D8 11 6 6 5

D9 5 5 4 2
D10 9 5 5 2
Dl1 4 3 2 2
D12 6 4 1 7
D13 2 4 2 0
D14 7 8 6 3
D15 7 8 1 13
D16 4 15 2 15
D17 3 3 1 4
D18 4 5 2 5

52

Table 4:RTF test results

6.3 The analysis of Test Results

It seems that the subject headings generated by the web-based ASHG are very different
from the Motif-based ASHG. We can analyze this difference.

The Motif-based ASHG consists of thesaurus programs, extractors, stemming process,
document type recognition, subject heading classification programs and user interface
programs. We use the thesaurus programs to create and maintain ASHG Thesaurus. The
extractors are used to extract Semantic Header from input document. It will use stemming
process to find the root of the word extracted from document. The subject heading
classification can be used to generate subject headings according on ASHG's Thesaurus
and the keywords extracted by the extractors.

In web-based ASHG, the document type recognition program is the same as the Motif-
based ASHG’s. The extractors are modified. The thesaurus programs, stemming process,
subject heading classification programs and user interface are rewritten.

We only made one change in the extractors for security reason. The function of listing all
contents in one directory, which is not allowed in web environment, is changed to search
for the four files named ABSTRACT_WORDS, KEYWORDS_WORDS,
OTHER_WORDS, and TITLE_WORDS from the directory. So the extractors are exactly
the same as in the Motif-based ASHG.

We find that there is one bug in Motif-based ASHG’s thesaurus programs. The bug is that
there is a trailing space in subject headings of the Motif-based ASHG and no trim
function in thesaurus programs; due to this extra space, the Motif-based ASHG’s

thesaurus is not correct. For example, “science” is keyword and has an association with

“computer science” in level_0. Actually, “computer science_*, where _ is used to indicate
a space, is stored in Motif-based ASHG’s thesaurus instead of “computer science”. So
this association is lost. The “use” is also a key word and associates with “user interfaces”,
but there are two associations stored in Motif-based ASHG’s thesaurus. One is “user
interfaces”. The other one is “user interfaces_*. There are lots of subject headings and
keywords include space at the end of them in Motif-based ASHG’s thesaurus. This means
that controlled term associations is not correct in old system. In the Motif-based ASHG,
we fixed this bug for the version made by Ali [7].

We tested and debugged the web-based ASHG module by module and compared with
Modif-based ASHG, and found some API functions of MySQL automatically remove
trailing space from string, but the trailing space was kept in O++ and ODE.

We have ensured that the functions of subject heading classification program (sub_ext)
in web-based ASHG are the same as in Motif-based ASHG. We use the same input file
(WORDS_TO_SUBIJECT) containing the available keywords and its weight to test
subject heading classification programs in web-based and Motif-based ASHG. They
generate the same subject headings.

Here is a sample for one document:

The file WORDS_TO_SUBJECT generated by the Motif-based ASHG’s extractor
contains the available keywords and its weight as follows:

call 2

client 6
computation 6
constraint 2
database 6
efficient 2
extend 2
implement 2
involve 6
limit 6

54

linear 2
numeric 6
package 6
paper 2
pay 6
problem 6
product 2
project 2
query 2
select 2
send 6
solution 2
table 6
time 5
use 2
weight 6

After running sub_ext in web-based and Motif-based ASHG, the same result was

generated for both sub_exts as follows:

option 1:
Computer Science
Software
Computer programs and softwares

option 2:
Computer Science
Analysts of algorithms and problem complexity
Geometrical problems and nonnumerical computations

option 3:
Computer Science
Programming languages
Computer program language

option 4:
Computer Science
Analysis of algorithms and problem complexity
Numerical computation of transforms

option 5:
Computer Science
Analysis of algorithms and problem complexity
Fast fourier numerical computation of transforms

option 6:
Computer Science
Analysis of algorithms and problem complexity
Numerical computations in finite fields

option 7:
Computer Science
Analysis of algorithms and problem complexity

55

Numerical computations or matrices

option 8:
Computer Science
Analysis of algorithms and problem complexity
Numerical computations on polynomials

option 9:
Computer Science
Analysis of algorithms and problem complexity
Number-theoretic numerical computations

option 10:
Computer Science
Analysis of algorithms and problem complexity
Number-theoretic numerical computations: factoring

option 11:
Computer Science
Analysis of algorithms and problem complexity
Number-theoretic numerical computations: primality testing

option 12:
Computer Science
Analysis of algorithms and problem complexity
Computations on nonnumerical discrete structures

option 13:
Computer Science
Analysis of algorithms and problem complexity
Numerical algorithms and problems

option 14:
Computer Science
Analysis of algorithms and problem complexity
Nonnumerical algorithms and problems

We did this test for eighteen documents. Both sub_ext generated the same results.

The stemming process is different in the two systems. Stemming process in web-based

ASHG, Porter’s stemming algorithm, removes suffix of words to generate the root.

Motif-based ASHG stemming, applying spell Sun Solans command with —x option,

removes both prefix and suffix of words to output all available plausible stems. Changing

stemming process will affect the result file of the extractors. It also affects all available

keywords stered in Thesaurus, which are extracted from subject headings using

corresponding stemming process.

56

The reasons mentioned above make the subject headings generated by two systems

different, as shown in the sample results below.

6.4 Sample Results

In this section, we will show some of indexes generated for document DI by two

systems.

Sample 1: generated by the Motif-based ASHG.

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Resource Discovery: Modelling, Cataloguing and Searching <titleE>
<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<sublevel | B> Information storage and retrieval <sublevellE>

<sublevel2B> Information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel | B> Information storage and retrieval <sublevel I[E>

<sublevel2B> Query formulation in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel B> Information storage and retrieval <sublevel I[E>

<sublevel2B> Relevance feedback in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel1 B> Information storage and retrieval <sublevel IE>

<sublevel2B> Retrieval models in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel 1B> Information storage and retrieval <sublevel1[E>

<sublevel2B> Information search and retrieval process <sublevel2E>

<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> Bipin C. DESAI, ~~ ~~Rajjan SHINGHAL <anameE>

<aorgB> <aorgE>

<aaddressB> Department of Computer Science, Concordia University, Montreal, H3G IM8, CANADA
<aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> <aemailE>

<authorE>

<keywordB> Information retrieval , Modelling , meta-data , cataloguing searching , discovery ,
information resources , WWW | Internet , resource discovery <keywordE>
<identifierB>

57

<domain3B> FTP <domain3E>

<value3B> <value3E>

<identifierE>

<datesB>

<createdB> 2001/7/3 <createdE>

<expiryB> <expiryE>

<datesE>

<versionB> <versionE>

<spversionB> <spversionE>

<classificationB>

<domaindB> <domaindE>

<valuedB> <valuedE>

<classificationE>

<coverageB>

<domainSB> <domainSE>

<value5B> <valueSE>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 42301 <sizeE>

<genreE>

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifierE>
<source-referenceE>

<costB> <costE>

<abstractB>

Existing search

systems exhibit uneven selectivity when used in seeking
information resources on the Internet. This problem has prompted a
number of researchers

to turn their attention to the development and implementation
of meta-data models for use in indexing and searching on

the WWW and Internet. In this paper, we present our re-sults
of a simple query on a number of existing search systems and
then discuss a pro-posed meta-data structure. Modelling the expertise of
librarians for cataloguing, user entry and search using a rule-based system
is also discussed.

<abstractE>

<annotationB>

<annotationE>

<semhdrE>

<EOF>

Sample 2: generated by the web-based ASHG.

<semhdrB>

<useridB> <useridE>

<passwordB> <passwordE>

<titleB> Resource Discovery: Modelling, Cataloguing and Searching <titleE>
<alttitleB> <alttitleE>

58

<subjectB>

<generalB> Computer Science <generalE>

<sublevel B> Information storage and retrieval <sublevel IE>

<sublevel2B> information search and retrieval <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel 1B> Information storage and retrieval <sublevel I[E>

<sublevel2B> query formulation in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel IB> Information storage and retrieval <sublevel IE>

<sublevel2B> relevance feedback in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel 1 B> Information storage and retrieval <sublevelIE>

<sublevel2B> retrieval models in information search and retrieval <sublevel2E>
<generalB> Computer Science <generalE>

<sublevel | B> Information storage and retrieval <sublevel [E>

<sublevel2B> information search and retrieval process <sublevel2E>
<subjectE>

<languageB> English <languageE>

<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE><anameB> Bipin C. DESAI, ~~ ~~Rajjan SHINGHAL <anameE>
<aorgB> <aorgE>

<aaddressB> Department of Computer Science, Concordia University, Montreal, H3G IM8, CANADA
<aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> <aemailE>

<authorE>

<keywordB> Information retrieval , Modelling , meta-data , cataloguing searching , discovery ,
information resources , WWW | Internet , resource discovery <keywordE>
<identifierB>

<domain3B> FTP <domain3E>

<value3B> <value3E>

<identifierE>

<datesB>

<createdB> 2002/9/16 <createdE>

<expiryB> <expiryE>

<datesE>

<versionB> <versionE>

<spversionB> <spversionE>

<classificationB>

<domaindB> <domaindE>

<value4B> <value4E>

<classificationE>

<coverageB>

<domainSB> <domainSE>

<value5B> <valueSE>

<coverageE>

<system-requirementsB>

<componentB> <componentE>

<exiganceB> <exiganceE>

<system-requirementsE>

<genreB>

<formB> <formE>

<sizeB> 42301 <sizeE>

<genreE>

59

<source-referenceB>

<relationB> <relationE>

<domain-identifierB> <domain-identifierE>

<source-referenceE>

<costB> <costE>

<abstract3>

Existing search

systems exhibit uneven selectivity when used in seeking

information resources on the Internet. This problem has prompted a
number of researchers

to turn their attention to the development and implementation

of meta-data models for use in indexing and searching on

the WWW and Internet. In this paper. we present our re-sults

of a simple query on a number of existing search systems and

then discuss a pro-posed meta-data structure. Modelling the expertise of

librarians for cataloguing, user entry and search using a rule-based system
is also discussed.

<abstractE>
<annotationB>
<annotationE>
<semhdrE>
<EOQF>

60

Chapter 7
Conclusion and Future Work

7.1 Conclusions

The Internet is quickly evolving from today's Web sites that just deliver user interface
pages to browsers to a next generation of programmable Web sites that directly link
organizations, applications, services, and devices with one another. There has been much
interest recently in moving data from the WWW into database. The ASHG is a useful
application, a kind of service. We presented the porting a software package of generating
a Semantic Header to the web. The web-based ASHG presents a way of porting the
application in Motif, TCP/IP based system to web environment. It implemented a totally
free, robust and secure web service.

We have integrated the ASHG sub-system with the CINDI system. The result shows that
PHP-MySQL-Apache-Linux is a good, robust and secure combination for porting an
application to web.

In this project, the Thesaurus database was redesigned and implemented in the web
server. The subject headings extract module based on MySQL was implemented. Data
manipulation software for the Thesaurus was provided. We changed the stemming
process; and a controlled term subject heading association was improved. Four extraction
programs; HTML _extractor for HTML documents, Latex_extractor for Latex documnets,

Text_extractor for text documents and RTF_extractor for RTF documents were integrated

61

with the ASHG. Web-based user interface was implemented and easily integrated with
the CINDI. A new ability of uploading document was added.
Lastly, we applied ASHG to a collection of four types of testing documents and

compared the results to the Motif-based ASHG in Unix.

7.2 Future Work

In the future work, some new functions could be built and some existing functions could
be improved.

The semantic level language processing should be handled by ASHG. Since ASHG was
only based on the frequency and location of words in a document to determine the
document’s keywords and subject headings and subject classification, it has missed the
importance of the word senses and the relationship between words in a sentence.

More subject hierarchies, such as Civil Engineering, and Mechanical Engineering should
be built.

The extractor for PDF document to improve the performance could be added in the
ASHG to understand PDF type document. The ASHG can currently handle PDF type
document by converting it into text type documents.

For security reasons, the four extraction programs will be modified. They will not be able
to create temporary files in web default directory during their running. If they have to
store temporary data, a database can be used. In this way, we can only grant read

permission to web default directory for common users.

Besides, we may separate the database server from the web server now that we only use
one server to act as both web server and DB server. It is always good to set a DB server

standalone.

63

Appendix

Papers Used in Testing ASHG

The following is the list of papers used in testing ASHG for RTF_extractor

D1 Desai B. C., and Shinghal R., Resource Discovery: Modelling, Cataloguing and
Searching, Department of Computer Science, Concordia University, Montreal, Canada.

D2 Grogono P., Designing for Change, Department of Computer Science, Concordia
University, Montreal, Canada.

D3 Grogono P., Designing a class library, Department of Computer Science, Concordia
University, Montreal, Canada.

D4 Grogono P., A Code Generator for Dee, Department of Computer Science, Concordia
University, Montreal, Canada.

DS Butler G., Grogono P., Shinghal R., and Tjandra L., Retrieving Information from Data
Flow Diagrams, Department of Computer Science, Concordia University, Montreal,
Canada.

D6 Grogono P. and Santas P., Equality in Object Oriented Languages, Department of
Computer Science, Concordia University, Montreal, Canada and Institute of Scientific
Computation, ETH Zurich, Switzerland.

D7 Grogono P. and Gargul M., A Computational Model for Object Oriented
Programming, Department of Computer Science, Concordia University, Montreal,
Canada.

D8 Grogono P. and Gargul M., A Graph Model for Object Oriented Programming,
Department of Computer Science, Concordia University, Montreal, Canada.

D9 Grogono P. and Gargul M., Graph Semantics for Object Oriented Programming,
Department of Computer Science, Concordia University, Montreal, Canada.

D10 Grogono P., Issues in the Design of an Object Oriented Programming Language,
Department of Computer Science, Concordia University, Montreal, Canada.

D11 Paknys R. and Raschkowan L. R., Moment Method Surface Patch and Wire Grid
Accuracy in the Computation of Near Fields, Department of Electrical and Computer
Engineering, Concordia University, Montreal, Canada.

D12 Paknys R., On the Accuracy of the UTD for the Scattering by a Cylinder,
Department of Electrical and Computer Engineering, Concordia University, Montreal,
Canada.

D13 Davis D., Paknys R., and Kubina S. J., The Basic Scattering Code Viewer A GUI for
the NEC Basic Scattering Code, Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada.

D14 Ounis L., Pasca M., An Extended Inverted File Approach for Information Retrieval,
Grenoble, France.

D15 Ludwig A., Becker P. and Guntzer U., Interfacing Online Bibliographic Databases
with Z39.50, University of Tubingen, Germany.

D16 Cho E. S., Han S. Y., Kim H. J. and Thor M. Y., A New Data Abstraction Layer
Required For OODBMS, Department of Computer Science and Computer Engineering,
Seoul National University, Seoul, Korea.

D17 Ehikioya S. A., A Formal Specification Strategy for Electronic Commerce,
Department of Computer Science University of Manitoba, Winnipeg, Manitoba, Canada.

D18 Revesz P. Z. and Li Y., MLPQ: A Linear Constraint Database System with
Aggregate Operators, Dept. of Computer Science and Engineering, Lincoln, USA.

65

References

[1] Desai B. C., Cover page aka Semantic Header,
http://www.cs.concordia.ca/~faculty/bcdesai/semantic-header.html, July 1994,

revised version, August 1994.

[2] Desai B. C., The Semantic Header Indexing and Searching on the internet, February
1995. http://www.cs.concordia.ca/ faculty/bcdesai/cindi-system-1.1.html

(3] Desai, B. C., An Introduction to Database Systems, West, St. Paul, MN 1990.

[4] Edmundson H. P. and Wyllys R. E., Automatic Abstracting and Indexing Survey and
Recommendations, Communications of ACM, 4:5, pp. 226-234, May 1961.

[5] Fung R. and Del Favero B. Applying Bayesian Networks to Information Retrieval,
Communications of the ACM, Vol 38, No. 3, pp. 42-57, March 1995

(6] Bipin C. Desai, Shinghal Rajjan, A System for Seamless Search of Distributed
Information Sources, May 1994. http://www.cs.concordia.ca/~faculty/bcdesai

[7] Abdelbaset Ali, Extraction of Semantic Header from RTF Document. Major Report,
Department of Computer Science, Concordia University, Montreal, Canada, 1999.

[8] Haddad S., ASHG: Automatic Semantic Header Generator. Master’s thesis,
Department of Computer Science, Concordia University, Montreal, Canada, 1998.

[9] Shayan N., CINDI: Concordia INdexing and Discovery system. Master’s thesis, Department
of Computer Science, Concordia University, Montreal. Canada, 1997.

(10] Youquan Zhou, CINDI: The virtual Library Graphical User Interface. Master’s
thesis, Department of Computer Science, Concordia University, Montreal, Canada, 1997.

[11] Kurt Wall, Linux Programming (ISBN 0-7897-2215-1), QUE, 1999
[12] Bill Ball, David Pitts, Red Hat Linux 7 (ISBN 0-672-31985-3), SAMS, 2000

[13] MySQL 3.23.29a-gamma Reference

[14] UNIX Learning Perl Second Edition 1997 By Randal L. Schwartz and Tom Christianse.

[15] PHP Documents, http://www.php.net/docs.php

[16)Yuhui Wang, Enhanced Web Based CINDI System. Major Report, Department of
Computer Science, Concordia University, Montreal, Canada, 2002.

66

