INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, M 48106-1346 USA
800-521-0600

BIBTX Server

Man Bao

A Major Report
in
Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal. Quebec. Canada

April 2002

© Man Bao. 2002

i+l

National Library

Bibliothéque nationale

of Canada du Canada
- s el
a%limicagwices ::qrv‘:ces bibl:agraphiques
Qv ON K1A 004 Otwe ON K14 004
Canada Canada
Your fils Vowe rélirerce
Our @ Nowe rélivence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72927-3

Canadi

Abstract

BIBT:X Server

Man Bao

BIBTeX is a program that creates correctly formatted citations. It is widely used in the
scientific community. A bib database is needed for BIBTeX to construct a citation. The
bib database traditionally consists of files with a bib extension containing bibliographic
entries. [n recent years. an XML representation of BIBTgX data has been reported. When
the bib database gets large. an efficient scarch mechanism for bibliographic information
is needed. Two Kinds of scarch systems have been developed, command line based and
web based. The former doesn’t tend to be easy-to-use. and the most web based search
systems use CGI technology that doesn't meet the requirement of scarch etficiency. In
this project, we developed a web based scarch system using Java servlet technology. An
XML presentation of BIBTgX data is used. and the original data is Kept in the format of
BIBTeX which gives the database administration more flexibility. The search efficiency
goal is achieved by using the JDOM API to manipulate the XML presentaiion of data.
General scarch and advanced search are provided with a web interface. The search result
can be saved to local disk or sent by email. Furthermore, we present methods for adding
BIBTeX data entries through the Intemet or manually to the bib database in a secure

mechanism.

i

Acknowledgement

I'd like to take this opportunity to express my appreciation to my supervisor, Professor

Peter Grogono, for his patience and constant guidance.

[am grateful to the professors and staff in Computer Sciences department at Concordia
for the wonderful courses and services. I would especially like to say thanks to Ms.

Halina Monkiewicz, who was always friendly and prompt in providing assistance.

Table of Contents

L INtrodUCHIONooooooooeeeeeeeeeeee e I
1.1 The background of BIBTEX ... L
1.1.1 The content of bib file...............ocooiviiiii e |
1.1.2 The format of bib file..............c.cocooioieeee 3

1.2 BiBTeX database and query ... 4
1.3 The goal of this Project ..., 6

2 DESIGN oo e 8
2.1 Architecture deSi@Ncooooiivveooeeeeee e 8
2.1.1 Desig@n rationale......coocooooiiiviiiieieiie ettt 8
2.1.2 System deSIZN ... e 15
2.1.3 System tools and environment..............ccocoeeeveerrieereiicnererrieeeeeeaans 23

2.2 Module interface desig@n.............oc.ccooovvveevevoereooeeeeecceeeeeeeeee e 24
3 Implementation ... 29
3.1 System enVIFONMEN............cooooivieerereeeeeea e 29
3.2 Function implementation ... 29
3.2.1 Search ProCeSsS ..o 30
322 AdA 1€COTA ... 53

4 Discussion and future work ... 56
4.1 Search effiCIeNCYcoooirivooeeeeee 56
4.2 Scalabilityoooccoooiioeeeee e 57
4.3 POrtability ..o 58
4.4 FUture WOrKoooocooioveeeeeeeeeee e, 58
S CONCIUSIONS.......ooooooeeeeeeeeee e 60
6 REFEIENCES.........ooooooeeeeeeeeeeeeeee e 61
T APPENALX ..o 63
7.1 Installation GUIAE ..., 63
7.1.1 Install and Configure Apache Web Server 1.3.22 ..o, 63
7.1.2 Install and Configure Tomcat 3.3 ... 63
7.1.3 Deploy bib web application..............ccooooveeieiiieiiecece, 64
7.1.4. Startup tomcat. Start apache..............coooovoreiiiiiiieeeceee e, 64

72 UserManual ..o
7.3 SourceCode ...

7.3.1 General search source code....

7.3.2 Advanced search source code

Vi

1. Introduction

1.1 The background of BiBT¢X

BiTeX is a program and file format designed by Oren Patashnik and Leslic Lamport in
1985 (1) for the LaTeX document preparation system. The format is entirely characters
based plain text, so BsTgX can be used by any program. It is tag based and the BibTgX
program will ignore unknown fields. so it is expandable. The purpose of this BiTgX
program includes: letting the style file worry about formatting the bibliogruéhy. avoiding
retyping the same references for the next paper (even if it is for a journal with a

completely different bibliography style), and being efticient and easy to use.

To use BisTeX, three steps are involved: 1. Create a database (.bib) file that describes
the articles that you want to reference: 2. Specify the style and location of the

bibliography in your LaTeX document; 3. Run LaTeX and BibTgX.

This project is related to the first step, updating the bib file and searching the interesting
entries in the bib file. With the search results, the user can reference the entries in the bib
file. For the purposes of this project, the explanation of the content of bib file and the

format of the bib file are needed.

1.1.1 The content of bib file

A bib file contains two kinds of entries: abbreviations and bibliographic entries.

1.1.1.1 Abbreviations

Abbreviations are used to reduce the amount of writing that a user has to do. For
example, the abbreviation @string { cacm = "Communications of the ACM" } allows

the user to write journal=cacm instead of journal="Communications of the ACM".

[t can maintain abbreviations in a database server, like Network Bibliography (2), using a
set of semi-standard abbreviations. Usually. it is predefined according to the domain of
project, such as names of commonly referenced journals. In our project, we provide the
most commonly used set of abbreviations, these are the names of months: bibliographic

entries typically contain fields like month=dec which expands to “December”.

1.1.1.2 Bibliographic entries

A bibliographic entry has an entry rype followed by a key and a list of fields. Each ficld

has a tag and a value.

The entry types are: article, book, booklet, conference, inbook. incollection,
inproceedings, manual, mastersthesis, misc, phdthesis, proceedings, techreport, and
unpublished. Database entries of different types have different required fields and

optional fields.

Normally, the format of the key is chosen by users. Valid keys include: hoare94,

Hoare1994 etc. The key must be unique. BisTgX allows tags to have any value, provided

o

that they do not contain punctuation marks, quotes. or brackets. The following are
recognized tags: address, chapter. howpublished, month, pages, title, annote, crossref,
institution, note, publisher, type, author, edition, journal, number. school, volume,
booktitle, editor, key. organization, series, and year. Other user-defined tags will be

ignored by BisTgX.

1.1.2 The format of bib file

There are various ways of formatting Bibtex entries. Here we describe only the most

common format.

The start of an entry is indicated by a “@”. A .bib file may contain comments and other
text. but Bibtex looks for “@" before doing anything. The “@" must be followed by an
entry type. Bibtex is not case-sensitive and recognizes, for cxample, @book, @Book, and
@BOOK, all of which introduce an entry for a book. The entry itself is enclosed between

n{'v and ..}vy'

The first item after “{" is the key which is followed by a number of ficlds, separated by
commas. Each field consists of a tag, an “=", and a value. The value must belong to one
of the following categories:

l.A number. Example: 1997.

2.An abbreviation. Examples: cacm, dec.

3.A string enclosed in quotes. Example: “Donald Knuth”.

4.A string enclosed in braces. Example: {Bill Gates}.

1.2 BisT:X database and query

A bib database is needed to create a citation by the BibTgX program. The bib database
traditionally consists of files with a bib extension. The bib file contains the bibliographic
cntries. As Extensible Markup Language (XML) has emerged in recent years. some
rescarchers have developed the XML representation of Bibtex data (3. 4. and 3). Since
there arc powerful tools and methods for XML, such as XML parsers, it is easy (o
manipulate the database. The Bibtex data format can be converted back from XML when
nceded. However, these researchers didn’t keep the original data in Bibtex format. This
gives some challenge to bib database administrators who may not know XML and may

be more comfortable with the traditional Bibtex format.

Updating and scarching the bib database is necessary. Jonas Bjomerstedt's BibEdit
project (6) 1s an example of a program for updating a bib database. The main idea of
BibEdit is to make navigation and editing simple. BibEdit has two views: list view and
record view. In the list view, cach record is a row in the list. In record view, one record is
displayed for editing. Double-clicking on a record in list view also changes to record
view. The current version of BibEdit has a rather primitive search feature. In record view,
it starts searching for the next record containing the text. In list view it selects all records
containing the text. BibEdit searches the contents of all fields to sec if they contain the
text. If the user searches the string “Test”, the search engine will return all entries that
include “Test™ in any field of the entry. Therefore, BibEdit is more useful for editing the

bib file than for searching.

For searching Bibtex bibliography files, BibScarch is developed by Nelson Beebe (7).
This software uses the mgquery database search engine to provide super fast searching in
a collection of Bibtex bibliography database files. The database is generally updated
nightly. and on startup. bibsearch displays the date of the last update. plus some statistics
on the size of the collection. It also gives some helpful hints about common-used
commands. By default, bibsearch uses query-ranked searching: you type several words,
and the scarch engine responds with a sorted list of bibliography entries that contain one
or more of those words, in order of decreasing number of matches. Searches always
ignore letter case. Partial word matches are not usually accepted: if you search for “tex".
neither ““text” nor ““texture” will match. This software doesn't provide a user interface, so

the user needs to use the command line to perform scarch.

Gerd Herzog and Clemens Huwig's Literature Information and Documentation System
(LIDOS) (8) offers a large bibliographic database. This bibliography covers mainly
rescarch in Artificial Intelligence and related fields. LIDOS aims to provide casier access
to bibliographic data and associated on-line information. It provides a web based search
interface. The bib files are organized by category. This system uses CGI technology on
the server side. They only provide for general search by author, title word(s). or biblook
query format. Query processing may require up to one minute. This application is not

designed for updating the bib database.

1.3 The goal of this project

By reviewing the previous work about the Bibtex scarch, we want to develop a web
application to process the Bibtex search. This web application will have an easy-to-use
interface and provide users with a high speed and advanced search engine and a facility
to add entrics to a bib file through the Internet. Also this server provides some convenient
functions for the users to save the search results to local disk or email the search results to

others. The capabilities of this application include:

e Searching: the user enters information about onc or more fields and the server
responds with a list of matching entries. The user can modify the initial search
result .

e Scurching options: match case. whole words. and whole field.

e Control buttons: “Search™ button triggers the scarch process. “Stop™ button stops
the search process.

e Bibliographic data: the user sclects one or more entries provided after a search
request and can obtain full citation information for those entries in the Bibtex
format.

¢ The search result can be displayed on the screen.

e The search result can be saved to local disk.

e The search result can be sent by email.

e Allow users to “batch™ entries and have all of the information displayed or sent at

once.

Update: prnivileged users can add bibliographic information to the server's
database manually or through the Intemet. A privileged user can access the

database by secure means. for example by entering the user name and password.

2 Design

2.1 Architecture design

2.1.1 Design rationale

According to the project requirements. the objective of this project is to enable a user to
search bibliographic information through internet. The data sits on the server side. and
the client uses the web browser to search information from the server side. The client-
server communication uses the HTTP protocol. Due to these facts. we are building this
project as a typical web application. For implementing this system. we have to make the
decision to choose the appropriate technology. We particularly paid attention to some
issues such as how we should process the data, how we can make the search process

efticient. how we can muke the application portable. and so on.

2.1.1.1 Use Java servlet technology as server side implementation

The common existing technologies for dynamic content generation on the server are
Common Gateway Interfuce (CGI). Active Server Pages (ASP) from Microsoft. and

Servlet from Sun.

Java serviets are more efficient. easier to use, more powerful than traditional CGI. With
CGl, a new process is started for each HTTP request (9, 10). If the CGI program itself is

relatively short, the overhead of starting the process can dominate the execute time. With

serviets. the Java Virtual Machine (JVM) stays running and handles each request using a
lightweight Java thread. not a heavyweight operating system process. Similarly, in
traditional CGIL. if there are N simultaneous requests to the same CGI program, the code
for the CGI program is loaded into memory N times. With servlets, however. there would
be N threads but only a single copy of the servlet class. Servlets can also maintain
information from request to request. simplifying techniques like session tracking and

caching of previous computations.

ASP also supports the creation of dynamic web pages. Compared to Java servlets, ASP is
platform dependent. It only runs on Microsoft IIS or PWS web server. So. serviets are
more portable than ASP. They are wrtten in the Java language and follow a standard
APL. Consequently. servlets can run on most web servers. When servlets are exported to

another web server. there is no need to change the code.

2.1.1.2 Use XML as data storage

There are at least three ways in which the server might store bibliographic data: Bibtex
format. database tables. or the Extensible Markup Language (XML). Even though a
relational database can store a large amount of data, there are two limitations for using
relational database system to store Bibtex information. First, there are about twenty-four
tags that Bibtex can recognize. Each record in Bibtex format doesn’t need to have all the
tags and values. The space will be wasted in a table with one column for each tag,

because most columns in a typical entry will be empty for a record with just a few tags.

Second, and most seriously. Bibtex allows arbitrary tags, but the structure of a database
table is fixed when the relational database is designed. If we change the Bibtex tags. we
have to change the database tables. For these reasons. using a relational database to store

the Bibtex information is not appropriate.

Bibtex maintains the data as plain text in files. It has its own strict syntax. As we
discussed in the introduction part, the Bibtex data can be manipulated by using some
available tools, and an XML representation of the Bibtex data has been developed. The
advantage of the XML representation over BisTgX ‘s native syntax is that it can be casily
managed using standard XML tools (XML parser. XSLT style sheets, etc.), while native
Bibtex data can only be manipulated using specialized tools (11). XML is the Extensible
Markup Language that specifies neither the tag set nor the grammar for that language (12,
[3). User can define any tag in XML. This tlexibility of XML makes it the most
appropriate way to store the Bibtex data. For this project. our solution is to convert the
Bibtex plain text file to an XML file. then parse the XML file into a document tree. In
this way, the original Bibtex file is kept. It provides the data administrator more
flexibility to maintain the data in its original format. The administrator doesn't need to
know XML. Also it provides a very efficient way to search information, because the data
stays in the memory after parsing the XML file into a document tree. When a user makes
a request, the data will be fetched from the memory on the server side without the need of

getting data from secondary storage.

10

Since the data is stored in the memory. this would require a very large space. In our
project. the Bibtex information is not very large-scale data. More precisely. we pay much
more attention on searching speed than the space the Bibtex data needs. For a large bib
database. the solution could be to classify the bib files according to their category. This is
going to be the future work. We discuss it in the “Discussion and future work™. on page
55. Balancing the space and efficiency needs for this particular problem domain in this

project. we use XML to store data.

2.1.1.3 Use JDOM API to parse XML

To parse an XML file. we need an XML parser. There are two kinds of XML parsers: one
implements the Simple API for XML (SAX). and another one implements the Document

Object Model (DOM).

SAX presents a view of the document as a sequence of events (14). It parses a document
incrementally. It reads the XML document and raises events for the different elements it
encounters. With defined callback functions. some tasks can be processed at the different
stages of parsing. The advantage of SAX is that it doesn't need large memory. However.
the sequential model that SAX provides does not allow for random access to the XML
document. It is difficult to compare different elements by going back and forth.

Basically. SAX is the better choice for quick. less-intense parsing and processing.

11

DOM represents a document tree held fully in random memory. It is a large API designed
to perform almost every conceivable XML task. DOM also requires lots of processing
power and memory. but it provides an easy-to-use. clean interface to data in desirable

format. and provides fast access to entire data.

JDOM is a Java-based "document object model” for XML files (15). It is not an XML
parser. rather a document object model that uses XML parsers to build documents. Itis a
sort of hybnd approach between DOM and SAX. The IDOM API lets vou use either
DOM or SAX parser under the hood. The JDOM API's SAXBui lder class is probably
the best for parsing a very large XML document since it uses the SAX API for parsing
and allows you to modify the document at the same time. Also, JDOM is a complete Java
2-based API. taking advantage of the Java collection classes. For our project. we choose

the JDOM API to build the data document.

2.1.1.4 Data processing

When a user makes a search request or when the administrator adds a new record, the
application will access the parsed XML data. Upon each request. we convert the Bibtex
file to XML format, and then parse the generated XML file. Since all the users access to
the same data. we can maintain only one data structure in the server side. This means we
convert the Bibtext file and parse the XML file once for all requests. Further, we can
process the converting and parsing on server startup so that the document tree is ready to

use before any request coming. One class StartUp is designed to accomplish this task.

When the server starts up, an object of this class will be created. For each request. we use
this object to access the data structure. Using the Singleton pattern (16), we can make
sure only a single instance of this class can be created. enforced through the use of a
private constructor. The instance will be retrieved through a static method that checks if
there is already an object allocated. returning it if there is one and allocating and

returning a new object if not.

In this project. the administrator can add a new record through the Intemnet or directly to
the Bibtex file manually. To do this, it requires that the added record should be visible to
all users when they are searching. We decided to convert the Bibtext file to an XML file
and parse the generated XML file at regular time intervals. We can accomplish this by
making StartUp class to be a thread. [t will pertorm the converting and parsing at
regular time intervals or as needed. When a record is added to the Bibtex file manually.
the result can be obtained after the ume interval. When a record is added through
Internet, the added record can be queried immediately by notifving the thread to do its

task.

Concurrent data access issue needs to be addressed. When a user is searching
information, the application reads data from the parsed XML file. After the administrator
add a record. the application will write to the Bibtex file, convert the Bibtex to an XML
file, and parse the generated XML file. We have to guarantee the data consistency. This

can be accomplished by using the Java synchronization mechanism.

13

2.1.1.5 Application portability

Portability is a major advantage of Java language (17). Java code is compiled to bvte
code. and then interpreted into machine language on different platforms by the JVM.
*Write once run anywhere” is the policy of the Java language. Our data is in the plain text
format of Bibtext and XML. Compared to the relational database. the plain text data is
completely platform independent. Java language plus XML really makes sense for

portability.

Despite of the Java language and text data portability. sometimes the application cannot
be completely portable. For example. we need a mail host to send mail. If we coded the
mail host in the code. the code has to be changed if we want to use a different mail host at
a later time. In this project, a configuration file will be used to store the needed
information, such as which mailhost is going to be used. which Bibtext file is going to be
converted, which XML filc will be parsed after converting. and how long the time
interval for processing data will be. This information will be used by the application at
run time. We can change the parameters without changing the application code. Doing

this makes the application more flexible and portable.

14

2.1.2 System design

2.1.2.1 Package view

According to their usage. all classes are separated into two packages: “bibsearch”™ and

“bibupdate™. The relationship between two packages and environment packages is shown

in Figure 3.
javax.mail
' I ca.concordia.cs
javaxmailintern. .bibsearch
et - -
java.io
java.lang o
L _ca.concordia.cs
> 7 - --.. Dbibupdate
- I N

java.util ‘ :

Figure 3: Package view

‘ org.jdom.input

org.jdom

S

ja\axééMet.hn ‘
p

—_

~—

javax.sendet

2.1.2.2 Class relationships

The relationships between the classes in two packages are shown in Figure 4. Most of
classes extend the HttpServlet class. The Converter class is used to convert a
Bibtext file to an XML file. The StartUp class extends Java Thread class. It uses the
Converter class to generate an XML file. and uses the JDOM API to parse the XML

file into an JDOM Document.

16

AdvancedSearch

. MlcoGet()

BlidoPost()
Blicompare()
BcompareYear)
Wpricu()
Httb Se;\;el-_ N litSendet)
A | Sl
CheckLogin AdcSecord
'5&7 ,oGei - EdoGen)
t
ldoPos(t)() BSaoPost)
B aicatel) B nntPagey)

fBcuider SA@uider
1S doc Document

QSSERU;: StanUp

@nme long

@pmitie Sming

E8domDocument)
{ScoParse()
£89eDocument;
ESgeunstancer)

£8run()

@sSuanupi) s

Logout

pe . - Sawe

B9doGet()
‘f.ooPost()

— 7§a\.eResun—
Search —

oy) WccGet)

oGet() BaoPost)

BdoPost() Bsendaraio

Bpontg) Baiotay)
ST .“f“M'M)

o sanup

£8coGe)
EaoPosti)

 MalAgent
@marinest Stnng
R Address Stnng

essageBody Stnng ToDrsk
EQsendEmait) Bdispiay)
- - B - filidoGer)
E8doPost)
Converter et
file Stng ’ - Helper I
ut FileQuipuiStream T '
@pmifie Sting liminateChar(;
. MetRecord()
convert() N sDigiaal()
- nvertToXmi() £8:5DigCronthy)
QescapeCharn) E®shontng)
i) ¥secerates
?@rocessoneﬁea)rc{; ®econzi)
Q- rocessTag) A
&repiacer
Corfirn
EooGet()
BdoPost()

Figure 4: Class diagram

17

2.1.2.3 Sequence diagrams

There are two kinds of users for this application. One is the administrator who can add

record to the data storage through the Internet or manually. The Figure 5 shows the time-

ordering of messages when the administrator adds a record through the I[nternet.

admiﬂ.ﬂiﬁ_; Wﬁ('_:heckLoqin AddRecord . Confim Sawe StartUp:stantUp
doPost()
T _;\alidate()
- <
— doPost()
U, >
_printPage()
. Zjﬁf;
doPost()
—_— _— .>..
doPost()
>

getinstance()

startUp
<<

dpParse()

Figure 5: Sequence diagram for adding a record

18

Another kind of user can just search the Bibtex information through the general search
and advanced search html pages. They do not have to be authenticated to access this
system. When a user inputs the search query and the process begins searching, the
application will create a session object in the server side. By using a session object. the
information can be passed among different pages. The server will maintain a unique

session object for each user. The search process is showed in Figure 6.

search html Search:search | StartUp HitpSession se SaweResultsav Tobisk MarlAgent mail
Sendet ssion eResultSeret toDiskSendet Agent

doPost()
- - >
. getDocument()

Y ment
‘For achanced search, " . docu
they will be
acancedSearch. himi search trom document
and AdvancedSearch -
.respectively <

putsearch result (regisiry) on session

pnntresult

<
doPost()

rpodnfy result
<
' dlplay on screen
<
;sendw-l()

< sendEmail()

doPost()
>

Figure 6: Search process sequence diagram

19

2.1.2.4 Page navigation

This project 1s a web application. All interfaces will be static or dynamically generated
html pages. We design to make it easy for users to navigate different pages when they are
processing their tasks. For example, when searching information. the user can go back to
the general search and advanced search pages at any time. For searching process. the

page navigation is described as in Figure 7.

|
®» searchhtm! 4 - » advanced htmi <«

|

g A A s

|

|

i ‘ .

? l—«“"—*} ’—"_"“"“‘T
! : ; AdvancedSearch. .
| l Search.java ‘ ava !
o |
l ;

' Moddy es ult

!

! _

| — o

{ :

e : N
," " [7 Y s '
Emai result) , Display on screen
_/’/ ~ '
/ /‘\ o
/ , Stanc htmi page
{ ToDisk.java ! -
| / .
\ . ! Dynamically generated page by serviet
_/ L~

"/\J Serviet,but doesn't generate html page

Figure 7: Page navigation for search process

For adding records. we have to take care of security issues. Only the authorized users can
add records to data storage. In each page. we need to check if there is a user logged in.
This can be done by taking advantage of the session object. When a user logs in, we can
put the user object on the session. In every page. we check if the session has the user
object. If it doesn’t. we send the user to the login page. When the user logs out. we
remove the user object from the session. In this way, unauthorized users cannot add
records even though the user can type the address of the servlet into the browser directly.
The page navigation for adding record is shown in Figure 8. At every stage. the user can

log out.

The http is a stateless protocol. It can’t remember the client state. For example, if the
authornized user goes back to the confirmation page (Confirm. java as in Figure 8) by
clicking browser’s back button after saving the record. the user might click the “save”
link again. In this case. we have to make sure the same record can’t be added twice. From
the confirmation page to the save page (Save. java as in Figure §8). the record s passed
by session. After saving the record. the record is removed from session. In this way, the
same record won’t be saved more than once. The user can click on any link when

navigating the pages.

|
—_— admin htm! -
i t¢—

N

tai [CheckLogin i :
' va | ’ ,

. i
\ /

S

c— e e T vahdate>-
T~ e
S

sucess

r‘"‘—l—

!
-— - -p AddRecord.java -

R
.~ Check~. _

~- sessiop ” 1

ok

S __v__,; //!\\

.+ Confim java » Logoutjava r - -

. ~__
&

- '\\
Check™~.
Sess10p

~
no
L . Check~ _
~ e
; SRS

Static html page
"] bynamicaily generated page by servlet
eed.

} Serviet.but doesn't generate html page

Figure 8: Page navigation for adding a record

I
~J

2.1.3 System tools and environment

We use Apache (version 1.3.23) (18) as the web server. It is open source. Apache has
been the most popular web server on the Internet since April of 1996 (19). The January
2002 Netcraft Web Server Survey found that 56% of the web sites on the Internet are
using Apache. thus making it more widely used than all other web servers combined. We
usec Tomcat (version 3.3) (20) as the servlet engine. Tomcat is an open source tool from
Apache group. It implements the Servlet 2.2 and JSP 1.l specifications. Even though
Tomcat itsell can be a web server, the web server Apache is much more stable, and it is
faster when handling static html documents. As Figure 9 shows, if the client requests
static html pages. Apache web server sends the page back to user directly. If the client
requests a page which is a servlet, Apache web server then passes the request to Tomcat
servlet engine which in tum gets the data from JDOM document and sends back a

dynamically generated page.

(8]
w

Tomcat . JOOM
I Serviet 4——® docume
! Engine | nt

Co
i
—HTTP Request—f—b:

Apache
Web
! Server

HTTP Response -~ +-- :
Bibtex i

chent .
in local

N disk

¢

,. '
-« . Static page .

Web Application Server

Figure 9: System tools and environment

2.2 Module interface design

As the Figure 2 shows, most of our classes extend the HttpServlet class. Their
interfaces are quite simple and have doGet (), doPost () and a few helper functions.
In this part, we describe the responsibility for cach class, but will only show the

interfaces of class StartUp, Converter and Helper.

The Class StartUp (Figure 10) is a subclass of the Thread class. When the server
starts up, an object of StartUp will be created and keep running as a thread. By using
Singleton pattern, only one object of StartUp will be maintained. At a time interval which

can be read from configuration file (default value is twenty four hours as the value of data

member time), this thread converts the Bibtex file to an XML file and parses the XML
file to a JDOM document tree which stays in the server's memory. This thread can be
notified after a record is added to keep the data updated. For concurrent access to the
document tree, the methods domDocument(), doParse(), and

getDocument () are synchronized.

public class StartUp extends Thread{
private org.jdom.input.SAXBuilder ;
private static Document doc;
privatc String path;
private long time = 1000¥60*60*24;
private static StartUp startUp:
private String xmlfile = "info.xml";

private StartUp(String path);

public static StartUp getInstance(String path):

public static StartUp getInstance();

public void run();

public synchronized void doParse();

public synchronized void domDocument(File file):
public synchronized static Document getDocument();

Figure 10: Intertace of class StartUp

The class Converter interfuce is shown in Figure | 1. The responsibility of this class is
to convert the Bibtex file to an XML file. It reads the Bibtex file line by line, and writes
to an XML file when finished getting one record. In XML, some characters are reserved
such as *&’, *<’, *>. In converting process, they are replaced by “&”, “&It;”, and

“>”. Otherwise, there will be parsing errors. In the Bibtex file, sometimes the text in a

field must be protected. This is done by enclosed the text in braces. When converting to

8]
[}

public class Convert {
private FileOutputStream out;
private PrintWriter writer;
private String path;
private String xmilfile = "info.xml";
private String bibfile = "text.bib":

public Convert(String path);

public void init(String path);

public synchronized void convertToXml():

public String escapeChar(String str);

public String replace(String str. char ¢, String replacement);
public void processOneRecord(String record):

public void processTag(String tagAndValue);

Figure 11: Interface of class Converter

an XML file, we will leave it as it is to present the original format to the users. In this
class, concurrently access to the Bibtex and XML files will be protected by using the Java

synchronization mechanism.

The Helper class (Figure 12) provides some utility functions for other classes. All the

methods are static so that they can be called on the class directly.

public class Helper {
public static String eleminateChar(String str);
public static boolean isDigital(String str);
public static boolean isMonth(String value);
public static Vector seperate(String str, String sign);
public static Vector vectorize(String str, String delim);
public static String getRecord(Element e);
public static boolean isDigOrMonth(String value);

Figure 12: Interface of class Helper

26

The class InitServlet creates an object of type StartUp, and starts this thread.
This class will be loaded upon server startup. This will be specified in the web.xml file of

the web application.

The class Search processes a general scarch. It gets input from the user, and searches
the information from the JDOM document fetched from the object of the class
StartUp. Then it puts the initial search results on the session object. The initial search
results will be printed out in the browser and lets the user to choose the interested ones

that will be passed to the class SaveResult.

The class AdvancedSearch processes an advanced scarch. It does the same thing as

Search does, but searches the information with a different algorithm.

The SaveResult servlet will get the results in which the user is interested by the
request object. Then modify the initial search results in the session object. This class can
modify the results for the user, can print the result details in the BisTgX format in the
browser to cnable the user to copy and paste. can email the result details, and can send

the request to the ToDisk class to save the results on local disk.

The ToDisk class will be responsible for saving the search results to local disk.

The CheckLogin class will validate the user. If the user is authenticated, it will send
the user to the page generated by the AddRecord servlet and put the user on the

session object, otherwise back to the login page.

The AddRecord servlet will generate the page with html form and pass the form fields

to the Confirm servlet.

The class Confirm will get the form fields by the request object and validate them. If
the key is empty, the key is not unique. or some fields are not in required format, it will
send the user back to the previous page with a specific error message. If the validation

passes, this class will print the record in Bibtex format in the browser for confirmation.

The Save servlet will get the added record from the session object and append it to the
BisTeX file, and notify the StartUp thread. After saving, it will remove the record from

the session object.

The class Logout will remove the user object from session, invalidate the session

object, and sends the user to the login page.

3 Implementation

3.1 System environment

Windows 98/NT/2000 is needed for installing this system. We use Apache 1.3.22 as the
web server. and use Tomcat 3.3 as the servlet engine. Apache and Tomcat are open
source tools and can be downloaded from Apache web site (18. 20). They arc easy to

install according to the installation guide (See Appendix).
3.2 Function implementation

This is two-group members’ project. One member is I, and another member is Mr. Aimin
Han who s a master graduate student at Computer Science Department of Concordia
University. The project is designed by both of us. The functionalities of this project
include the search process and adding records to the database. The search process in turn
contains the general search and the advanced search. We developed the search algorithms
together. I mainly implemented the search process. Mr. Aimin Han put a lot of work in
implementing the StartUp and Converter classes and the functions for adding
records to the database. However, we always discussed the problems we encountered.
There are a lot of overlaps between our works. I will mainly describe the scarch detail
implementation. For other functions, Mr. Aimin Han will provide the detailed

implementation in his major report.

3.2.1 Search Process

3.2.1.1 Convert the Bibtex file to an XML file

This function is processed in the class Converter. The Bibtex file is read in line by
line. In the Bibtex file. each record is labeled with “@™ in the beginning of each record.
Once we read a record, we process it in the function processOneRecord. To

demonstrate the conversion process, we will give an example of a Bibtex record:

@book{abel94, author="Martha L. Abell and James P. Braselton",
ticle="The Maple Vv Handbook", publisher=academic, vyear=1994,

note="{\callnum{QA 76.95 aA213 1994}}"}

To find the record type and key. we find the first character of *{". then we know the word
between “@" and the first “{" will be the type. The word between the first **{" and the
first comma ~.” will be the key. The phrase between the first comma and the last *}” will
be the tags and values. Once we get the tag phrase, we then call the processTag

function. For the above example, the tag phrase will be:

author="Martha L. Abell and James P. Braselton-",
title="The Maple V Handbook", publisher=academic, year=1994,

note="{\callnum(QA 76.95 A213 1994}}"

We can get the first tag easily by finding the position of the first equation “=". There are

two cases for the first character after the first equation. It could be a double quotation or

30

not. If it is, we need to find another double quotation matching with it. We sequentially
find the double quotation which is not prefixed with character “\”. In this way, the value
for the first tag will be found. We will call the processTag function recursively for

the rest part:

title="The Maple V Handbook", publisher=academic, year=1994,

note="{\cailnum{Qa 76.95 A213 1994}}"

After finishing processing one record, the XML output will be:

<book>
<key>abel94</key>
<author>Marrthna L. abell and James P. Braselton<sauthor>
<title>The Maple V Handbook<. title>
<publisher>academic< publisher>
<year>1994<. /year>
<note>{\callnum{ga 76.95 2213 1994)}< noce>

</book>

The sample code for the functions processOneRecord and processTag is given

below:

public void processOneRecord(String record} {
int firstBrace = record.indexOf('{');
String type = record.substring(l, firstBrace);

int firstComma = record.indexQf (', ');

31

String key="";

if(firstComma < 0)
key = record.substring(firstBrace+l, record.length()-1);
writer.println{("\t<" + type + ">");
writer.println(®"\tit<key>" + key.trim() + "</key>"):

writer.println(*\t</" + type + ">");

}
else(
key = record.substring(firstBrace+1, firstComma);
String tagandvalue = (record.substring(firstComma+1l,
record. length()-1)).czrim(};

writer.println("it<" « type + ">");
writer.println{"\t .t<key>" + Kkey.trim() » "</key>");

processTag(tagand/aluel ;

writer.printin(" <. " - type - ">");
I

——

——

public void processTag(String tagand/alue) {

String rest="";

if(tagandvalue.length() == 0 || tagandValue.equals("") ||
tagandvValue == null)
return;
else(
int firstEg = tagandvalue.indexQOf('="'):

if(firstEq >= 0){
String tag = tagAndvalue.substring(0, firstEq);
String tempValue = (tagandValue.substring(firstEg+l1,

tagandvalue.length())).trim():;

|93]
(RS]

char ¢ = tempValue.charaAt(0):

int secondQt = tempValue.indexQf(' "', 1);

int temp = secondQt:

while(tempValue.charat(temp-1) == "3 \'){
secondQt = tempValue.indexOf(' "', temp+l);

temp = secondQt:

}
String value = (tempValue.substring(l, secondQt)).trim();
int comma = tempValue.:indexQf(',', secondQt):

1f(comma >= 0)
rest =(tempYalue.substring(comma-i,

tempValue.length())) .crim();

writer.println("iciec<" « tag « ">" « valye - "< " + zTag ¢ ">");
1
else(
int secondEq = tagandvaliue.indexOf('=', firstZqg+l):
String value="";
if (secondEqg >= 0){
int coma = tagAndValue.lastIndexOf(',', secondEq);
value = (tagAndvValue.substring(firstEg+l, coma)}.tcrim();
rest = (tagAndvValue.substring{coma-l,
tagandValue. length())) .crim();
}
else(

value = (tagandvalue.substring(firsctEg+1l,

tagandvValue.length())) .trim();

33

1
bl

writer.println{("\tit<" + tag + ">" « wvalue + "</" + tag + ">");

}

processTag(rest.trim());

There is one thing we have to pay attention to. In the Bibtex record. the tag value may
contain characters “&", "< or ">". those characters have to be replaced by “&:”.

“<:”, and “>:”. Otherwise. there will be parsing errors when parsing the XML file.

3.2.1.2 Parse the XML file

By using the JDOM API, parsing an XML file is easily done. This process is done in the

class StartUp. Sample code is given below:

SaxXBuilder builder = new SAX3uilder()
File file = new File{xmlfile);

Document doc = builder.buiid(file);

The doc object represents the parsing tree. We can tind information from the tree. Here
we use the SAXBuilder instead of the DOMBuilder. The difterence is that the

DOMBuilder builds the whole tree at once. and the SAXBuilder doesn't load the

34

entire document. Rather, it will let you get an element, and then iterate over the element’s

children. It is better for parsing large XML files (14).

3.2.1.3 The startUp thread

For search efficiency. we want to convert the Bibtex file and parse the generated XML
filc on the server startup. Also. we want the Bibtex information to keep updated. This is

can be done by implementing a thread which only will be maintained as one copy.

We use the Singleton design pattern to create this thread. The class StartUp has a
private constructor. and a static method getInstance. The client only can get an
object of StartUp by calling the getInstance method. This StartUp object is a
static data member. which means only one copy will be obtained. In the getInstance
method. it checks if the static data member 1s null. If it is null. it will call the private
constructor to create a new object and return it. otherwise will return the one existed. The

snippet of code shows the approach:

publiic static StartUp getinstance(String path){
if(startUp == null)
startUp = new StartUpipath);

return startUp;

In the run method of the class StartUp. convert the Bibtex file to an XML file. and
parse this XML file by calling the domDocument method. Then wait for an time
interval. The new information will be visible after this time interval or being notified. The
sample code is given below:
public void run(){
whilettrue) !

Convert convert = new Convertipath);

convert.convertToXmi () ;

domDocument (new File(path +« wmlfile));

try

syncnronized(thnis) ¢

waiti{zime);

lcatch(Incerruptedzxception el

An InitServlet class is implemented. This servlet will be loaded on server startup.

In the init method. it creates the StartUp thread. and starts it.

public void iniz(){
String path = getServietContext().getRealPath(",/") + "files'\";
StartUp startlUp = StartUp.getlnstance(path);

startlUp.starci);

36

This path is the location in which the configuration file stays.

3.2.1.4 General search

The general scarch is basic and important part of this project. users use general search
frequently. We discuss the algorithm carefully, in order to achieve high search
performance. In general search. the user can only search by one catalog. namely, one of
author, title. booktitle. published after a year. published before a year. and journal. Three
search options. namely, match case, and/or match words. and/or match whole field are
provided for each scarch catalog. The algorithm and implement are as below:
Stepl. Get the search type by the request object.

String searchType = (request.getParameter(“search_type™)).trim();
Step2. Get the search key word by the request object.

String searchName =(request.getParameter("name”)).trim():
Step3. Get the scarch options and decide which search condition case it belongs to. There

are five cases by combining the search options.

boolean matchCase = ((request.getParameter("case”)) '= null);

boolean matchWord = ((request.getParameter(“word")) != null):

boolcan matchField = ((request.getParameter("field")) '= null);

int searchCondition;

if((matchCase == false) && (matchWord == false) && (matchField == false))

searchCondition = 0;

else if((matchCase == true) && (matchWord == false) && (matchField == false))

37

searchCondition = 1;
else if((matchCase == false) & & (matchWord == true) && (matchField == false))
searchCondition = 2;
else if(((matchCase == false) && (matchWord == false) && (matchField == true))
[[((matchCase == false) && (matchWord == true) && (matchField ==
true)))
searchCondition = 3;
else if((matchCase == true) && (matchWord == true) && (matchField == talse))
searchCondition = 4;
else

searchCondition = 5;

if(scarchName.equals("") |j searchName.length() == 0 || scarchName == null){
response.sendRedirect("index.html”):
return;
}
Step 4: Get the JDOM document which refers to the Document tree.
Document doc = StartUp.getDocument():
Step 5: Initialize list of element nodes.
Element root = doc.getRootElement():

List nodes = null;

38

Step 6: If the search type is booktitle, fill the list with the conference nodes. If the search
type is journal. fill the list with the article nodes. Otherwise fill the list with all
nodes.

if(secarchType.equals("booktitle™)){
nodes = root.getChildren("book"):
List nodesTwo = root.getChildren("conference”);
nodes.addAll(nodesTwo);
}
clse if(searchType.equals("journal”))
nodes = root.getChildren("article"):
else
nodes = root.getChildren():
Step 7: For each node in the list:
-- Get the key from the node.
Listlterator iter = nodes.listlterator();
while(iter.hasNext()){
Element element = (Element)(iter.next());

String key = element.getChildText("key"):

}

-- Get the corresponding value from the node according to the search type.
There are five cases here. [only give an example of search by author:

if(searchT ype.equals("author”)){

39

String author = Helper.cleminateChar(element.getChildText("author™)):
if(author == null)
author = Helper.cleminateChar(element.getChildText("editor")):
-- Compare the search key word with the value from the node with constraints of
the search condition case and the search type.
Example of search by author. match case:
if((author '= null && author.indexOf(searchName) >=0)){
registry.put(key, element):
-- It the comparison result is true, then put the key and the element node into a
Hashtable which represents the initial search result.
See above.

3.2.1.5 Advanced search

For an advanced search. the user can input scarch values for author. utle. from year. to
year, and journal name. The user doesn’t have to input all fields. The application will

combine the input values as the search criteria for the filled fields.

The algorithm and implement are as below:
Step 1: Get the form input names and values. Add them to input vector. They are author.
title, from year. to year. and journal.
Here, check input error of year too.
Vector paras = new Vector():

Vector type = new Vector();

40

String author = (request.getParameter("author")).trim():
paras.addElement(author):
tvpe.addElement("author");
String title =(request.getParameter("title”)).trim():
paras.addElement(title):
type.addElement("title”):
String from = (request.getParameter("from")).trim():
paras.addElement(from):
type.addElement("from");
String to =(request.getParameter("to")).trim():
paras.addElement(to);
type.addElement("to"):
boolean isDigit = true:
String tromTo = from + to:
if(!Helper.isDigital(fromTo)){
out.printin("<htmi[>"):
out.printin("<head>"):
out.printin("<title>" + "result” + "</title>"):
out.println("</head>"):
out.prnintln("<body bgcolor=\"white\">"):
out.printin("<body>");
out.println("<p align=\"center\">Input format error, you must input number " +

“in text field of from year or to year.</p>"):

41

out.printin("<p align=\"center\">Go to
search</p>"):

out.printin("<p align=\"center\">Go to
search</p>"):

out.printin("</body>").

out.println("</htmi>"):

isDigit = false:

return:

String journal =(request.getParameter("journal™)).trim():
paras.addElement(journal):
type.addElement("journal”):
Step 2: Get the JDOM document that refers to the Document tree.
See step 2 of general search.
Step 3: Create a list filled with all element nodes from the Document tree.
Element root = doc.getRootElement():
List nodes = root.getChildren():
Step 4: Outer loop: get next node from the node list.
-- Get the key from the node.
outter:while(iterator.hasNext()){
Element element = (Element)(iterator.next());

String key = element.getChildText("key"):

genreal

advanced

-- Inner loop: get the next element of input vector
inner:for(int 1=0; i<paras.size(): i++){

String para = (String)paras.elementAt(i):

-- if the input value is empty. continue the inner loop.
if(para == null || para.length() == 0 || para.equals(""))
continue inner:
-- get the corresponding value from the node.
Example of search by author:
if(type Value.equals("author”)){
nodeValue = element.getChildText("author”);
if(nodeValue == null)

nodeValue = element.getChildText("editor”):

-- if the value from the node is null, continue the outer loop.

if(nodeValue == null){

continue outter:

-- compare the input value with the corresponding value from the node
with the constrains of the search type and the search option case.

This part is complicated. not only because there are a lot of cases, but also

because advanced search allows the user to search by more than one

43

author, and also by as many key words as he/she wish in the title. If the
user searches by more than one author, this part checks the tree node
satisfied all authors and put this node in the Hashtable named registry. If
the user searches by many key words in the title, this part checks the tree
node satisfied all key words and put this node in the Hashtable registry
and put other nodes satisfied partial key words in the Hashtable named
titleOr.

boolean allTrueFlag = false:

boolean tlagForOrTitle = false:

boolean flag = false:
if(type Value.equals("author”)){
Vector andVector = Helper.seperate(para. " and "):
boolean(] andFlag = new boolean{and Vector.size()]:
for(int j = 0: j<andVector.size(): j++){
String filledAuthor = (String)and Vector.elementAt(j):
andFlag(j|=compare(request. filledAuthor.
Helper.eleminateChar(nodeValue), tvpeValue);
}
for(int t = 0; t<andVector.size(); t++){
if(andFlag([t] == false)
break;

if(t == (andVector.size()-1)){

flag = true:
allTrueFlag = true:

}

}
else if(typeValue.equals(“title")){
allTrueFlag = false:
Vector titleVector = Helper.vectorize(para. " *):
boolean(] titleFlag = new boolean(title Vector.size()]:
for(int) = 0; j<title Vector.size(): j++){
String filledTitle = (String)title Vector.clementAt(j):
titleFlag[j]=compare(request, filledTitle.
Helper.eleminateChar(node Value). type Value):
!
for(int t = 0; t<titleVector.size(): t++)|
if titleFlag[t] == talse)
break:
if(t == (tileVector.size()-1)){
allTrueFlag = true:
flag = true;
}
!

for(int t = 0; t<title Vector.size(); t++){

if(titleFlag[t] == true){
flag = true;
flagForOrTitle = true:

break;

-- if the compare result is false, continue the outer loop.
if(flag == false) {

flagForOrTitle = false:

continue outter:

-- after inner loop. indicates the node matches the input criteria. then add the key
and the node into a Hashtable representing the initial scarch result.

if(allTrueFlag == true)

registry.put(key, element);
if(flagForOrTitle == true)
titleOr.put(key, element):

-- finishing the outer loop, all satisfied nodes are added to the initial search result
Hashtable. Remove one copy in Hashtable titleOr if nodes duplicated in two
Hashtable.

session.sctAttribute("titleOr”, titleOr);

session.setAttribute("result”, registry);

46

Enumeration v1 = titleOr.keys();
while(vl.hasMoreElements()){
String s1 =(String)v1.nextElement():
Enumeration v2 = registry.keys();
while(v2.hasMoreElements()){
String s2 =(String)v2.nextElement();
if(s1.equals(s2)){
titleOr.remove(sl);

break;

3.2.1.6 Modify the search result

After scarching, the initial search results are printed in a table with a check box for each
record. Each record will be represented with the authors and the title. The user can check
the check box and list the checked records. In this way, the user can choose the records

they are interested in.

The initial search results are stored in a Hashtable with the key and the element node
pairs. This Hashtable in turn is stored in the session object. The initial scarch results are
printed in an html form with check boxes. Each check box has a name and value. The
name is given in the form “check” + counter, and the value is the actual key. An

example is shown here:

47

<form method = "post" action="/bib/SaveResult">

<input type="checkbox" name="checkl" value="glas94" >

<input type="checkbox" name="check2" value="glas9l" >

<input type="checkbox" name="check3" value="glas98" >

<input type="submit" name="submit" value="Check and Save Record">

</form>

This form will be sent to the SaveResult servlet. The SaveResult serviet will get
the initial search results from session, and get checked records which are keys by the
request object. The checked record elements will be found from the initial search
results by keys, and will be printed. The process is mainly done in the modi fy function.

The code snippet is:

registry = (Hashtable)session.getAttribute(“result");
for(int 1 = 1; 1 <= registry.size(); 1+¢+)(
counter ++;
String key = request.getParameter(“check" +counter);
if(key !'= null){
Element element = (Element)registry.get(key);
String author =
Helper.eleminateChar (element.getChildText ("author®)) :
if(author == null)
author =
Helper.eleminateChar (element.getChildText ("editor")) ;
String titcle =

Helper.eleminateChar (element.getChildText("title"));

48

print(out, author, title, key, counter);

The user can modify the search results further in the SaveResult scrviet. The

mechantsm is the same.

3.2.1.7 Display the search result on the screen

When the user clicks on “Display on Screen™ button, the form will be sent to the
SaveResult servilet. The SaveResult serviet will get the checked record keys by
the request object. find the element nodes from the initial result Hashtable by keys.
Convert the nodes into record string by calling the getRecord function of the Helper
class. This will display the record string of BisTgX format in the browser. The following

snippet of code shows how to convert a node to a record string:

public static String getRecord(Element e)
String oneRecord = "@*;
String type = e.getName();
oneRecord = oneRecord + type + "{";
List tagandValue = e.getChildren();
int count = 0;
ListIterator iter = tagandValue.listIterator();
while(iter.hasNext ()) {

count++;

49

Element tag = (Element) (iter.next()):
String tagName = tag.getName();
List valueList = tag.getContent():;
ListIterator rator = valuelList.listIterator(}:
String tagValue = (String) (rator.next()};
if(tagName.equals("key"))
oneRecord = oneRecord + tagValue + ", ":
else(
if(isDigOrMonth(tagvalue))
oneRecord = oneRecord + tagName + "=" + tagValue;

else

oneRecord = oneRecord + taglame + "=."" + tagValue +"."";
1f(count == tagandvalue.size())
oneRecord += "}";

else

oneRecord += ", ";

return oneRecord;

3.2.1.8 Saving the search result on local disk

When the user clicks on “Save to Local Disk™ button, the form will be sent to the

SaveResult servlet. The SaveResult servlet will get the checked record keys by

the request object, and store the keys in a keys vector. It will then put the vector on the

session object and send the request to the ToDisk servlet.

In the ToDisk servlet, get the initial result and keys vector from the session object.
Get the elements from the initial result Hashtable by keys. Then it will convert the

clements to a string and save it to disk.

To prompt a save file dialog box. the header must be set by the response object. The

following code shows the process:

QutputStream out = response.getOutputStream(};
response.setContentType("application/octet-stream") ;
response.setieader ("Content-Disposition”, "attachment; filename=" =+
"bibtext" + ";"};
response.setHeader("Cache-Control", "no-cache");
.......... */To get the record string named content
response.setContentLength(content.length());
out.write(content.getBytes())};

out.flush();:

When this response is sent to the browser, a save file dialog box will pop up to prompt

the user to download and save the file.

3.2.1.9 Send the search result by email

When the user inputs an email address and clicks the “E-mail result to” button, the search
result will be sent to the email address. The mailhost and sender e-mail are read from the
configuration file. We use the Java Mail API (21) to perform this function. Sending an
email message involves getting a session, creating and filling a message, and sending
it. We specify the SMTP server by setting the “mail.smtp.host” property for the
Properties object passed when getting the Session. The following snippet of code

shows the process:

String host . eos

String from

String to = ...;

/! Get system properties

Properties props = System.getProperties();

// Setup mail server

props.put("mail . smtp.host", host);

// Get session

Session session = Session.getDefaultlInstance(props, null);

// Define message
MimeMessage message = new MimeMessage(session);

message.setFrom(new InternetAddress(from));

W
[}

message.addRecipient (Message.RecipientType.TO,
new InternetAddress(to)):
message.setSubject("bibtex mail");

message.setText (content) ; //content is the result string

// Send message

Transport.send(message) ;

The code is placed in a try-catch block, as setting up the message and sending it can

throw exceptions.

3.2.2 Add record

The privileged user can add a record through the Intemet or manually. I only briefly
introduce functions for cach part, detail explanations is reported in Aimin Han's major

report.

3.2.2.1 Login

The user has to be authenticated for security reasons. The privileged user and password

are stored in the users.txt file. In the CheckLogin servlet, get the input user name and

password by the request object, and then check them in the validate tunction

53

3.2.2.2 Check key for input record

For the Bibtex records, the key can’t be empty and must be unique. When a user fills the
input form and clicks the submit button. the form will be sent to the Confirm servlet to

check key’s property.

3.2.2.3 Check field format

Some fields such as chapter, year, number. and volume must be input as digital numbers.
When the input values for these fields are obtained. call the isDigital function of the

Helper class to check input format.

3.2.2.4 Display error message

It the user input key is empty or is not unique, or some field values are not in the correct

format, an error message will be displayed, and the user will be sent to the previous page

— the add record page.

3.2.2.5 Save record

In the Save servlet, get the added record from the session object:

String record = (String)session.getAttribute("record"):

54

Read the configuration file to get the output Bibtex file name and append the record to

this file. Also write the additional information such the time of addition and the user who

added the record.

3.2.2.6 Logout

In the Logouct servlet. invalidate the session object.

3.2.2.7 Add records manually

The privileged user can add records to the Bibtex file manually. The added records will

be searchable after a time interval which is the StartUp thread wait time.

W
w

4 Discussion and future work

4.1 Search efficiency

For searching the bib database. the search efficiency is important. There are three aspects
involved the searching efficiency: the time of converting the bib file to an XML file, the
time of parsing the generated XML file, the actual searching time in server and the

request and response time through the network.

When the server starts up. the bib file will be converted to an XML file. and the
generated XML file will be parsed to a JDOM document tree. This also happens in a time
interval of thread waiting and when a record is added through the Intemet. This process
won't affect the search time significantly. Using a computer with Pentium 266 processor
and 256M SDROM for a bib file of size 1060KB. the average conversion time is 56358

ms, and the average parsing time is 782 Ims.

When a user makes a search request, the server searches the information from the JDOM
document tree. Since the tree stays in the server memory, the search process is very fast
compared to fetching data from a secondary storage. For the general search, if the search
type is booktitle or journal, only the conference node or article nodes will be searched.
For searching by other type or the advanced search, all the nodes will be scanned. The

worst case is when all fields are filled in the advanced search. Using a computer with

56

Pentium 266 processor and 256M SDROM for the server, for a bib file of size 1060KB,

the average scarch time for advanced search is 1521ms when all the fields are filled.

The data transport time from the server to the client through the Internet depends on the
bandwidth of the network. It is outside the scope of this project, so we don’t discuss it

here.

4.2 Scalability

Scalability is an important requirement of software development. One aspect is about the
number of users. When the number of users is getting large. the concurrent access to the

data is protected. This application can be accessed by large number of users.

Another aspect about the scalability is of the database. The bib database is the bib file in
the server side. This is going to be converted to an XML file and be parsed to a JDOM
document tree that stays in the server random memory. This raises the question: can the

memory accommodate the whole data if the database becomes huge?

The reason we use the XML data presentation in this project instead of using a relational
database management system is discussed in the design part. The tag extensibility of the
bib file entry excludes the use of a relational database. For a large bib database, the
solution could be to classify the bib files according to their category. In this way, the
huge bib file is split to parts. When searching information from the database, the

application will process them one by one. This is going to be future work.

4.3 Portability

As we discussed in the design part. the combination of the Java language and the plain
text file format of bib file and the XML file makes the application portable on difterent
platform. The vanables that the application uses are stored in a configuration file. The
application can rcad them in at run time. Changing the variable values in configuration
file doesn’t nced to change the application code. This increases the portability of the

application.

Using the Java servlet technology. we can specify the varables in the web.xml file of the
web application. This ts an alternative way to configure the application. However if we
change any variable in the web.xml file. we have to restart the server. In this application,
we use a configuration file to store the vanable information instead. For example. we can
change the email host in the configuration file when the application 1s running. and the

change will be in effect immediately.

4.4 Future Work

When we finished this project, we found there are some aspects we could improve.

I. In advanced search, implement the support of AND, OR, NOT for title key words.

2. When the bib database is too large, split the bib file into parts, and manage bib files by
category. In searching process, process the bib files one by one according to the searching

category. Improve the application to enable it to pertorm this task.

3. Enable privileged user to modify entries in bib database.
4. The tag extensibility is a feature of Bibtex record. Enable the privileged user to add

more tags and values for a record when adding a record online.

S Conclusions

The implementation of BibTgX server shows that it is a good choice to use the Java
servlet technology, to use the XML presentation of data and to use the JDOM APIL. High
search efficiency is achieved. This application is totally portable. independent of

platforms.

The functionality of this application was accomplished according to the requirements.

60

6 References

1. Leslie Lamport. “LaTeX: A Document Preparation System™. Addison-Wesley. 1986.

2. Henning Schulzrinne. Columbia University. “Network Bibliography™.
htp://www cs.colubia.edu/~hgs/netbib/

3. Enk Wilde. “BibTeXML: An XML Representation of BibTeX Data”. Internationales
Congress Centrum (ICC). Berlin, German. 21-25 May 2001.

4. Robin Cover. “BiblioML - XML for UNIMARC Bibliographic Records™.
http://www.oasis-open.org/cover/biblioML.html.

5. "BiblioML Project”, http://www_culture.fr/BiblioML/en/index.html.

6. Jonas Bjmerstedt, “BibEdit Version 1.1 beta™,
http://www.iui.se/staff/jonasb/bibedit/readme.pdf.

7. Nelson H. F. Beebe. "BIBSEARCH | Version [.017,
http://www.math.utah.edu/~beebe/software/bibscarch/bibscarch.html

8. Gerd Herzog and Clemens Huwig. “LIDOS: Literature Information and
Documentation System™. http://www.dfki.uni-sb.de/imedia/lidos.

9. Marty Hall, "Core Serviets and Java Server Pages™. Prentice Hall PT. 2000.
10. Karl Avedal. Danny Ayers, et al., “Professional JSP”, Wrox Press. 2000.

L1. Robin Cover, “BiblioML - XML for UNIMARC Bibliographic Records™.
http://www.oasis-open.org/cover/biblioML.html

12. Brett McLaughlin, “Java and XML", O'Reilly. 2000.
13. “Extensible Markup Language (XML) 1.0 (Second Edition)”. http://www.xml.org.
14. Jason Hunter and Brett McLaughlin. “Easy Java/XML integration with JDOM, Part
I: Learn about a new open source API for working with XML,
http://www javaworld.com/javaworld/jw-05-2000/jw-0518-jdom.html.
15. JDOM specifications, http://www.jdom.org.

16. James W. Cooper, “Java Design Patterns: A Tutorial”, Addison-Wesley, 2000.

17. Cay S. Horstmann and Gary Cornell, “Core Java, Volume [- Fundamentals™. Sun,
1999.

61

18. “Apache HTTP Server Version 1.37. http://httpd.apache.org/docs
19. “Netcraft Web Server Survey™. http://www.netcraft.com/survey

20. “Tomcat Documentation™. http://jakarta.apache.org/tomcat/tomcat-3.3
doc/index.html

21. JAVAMAIL™ APIL http://java.sun.com/products/javamail

7 Appendix

7.1 Installation Guide

Windows NT/2000 is needed for installing this system.

7.1.1 Install and Configure Apache Web Server 1.3.22

Double click apache_1.3.22-win32-x86.exe file. It will install apache
automatically.

Copy mod_jk.dll to {apache installation directory Papache\modules.

Edit http.conf file in {apache installation directory Napache\conf: Add a the
following line to the end of this file:

Include {tomcat3.3 installation directory }\conf\auto\mod_jk.conf

7.1.2 Install and Configure Tomcat 3.3

Unzip jakarta-tomcat-3.3.zip to a directory.
Edit {tomcat3.3 installation directory }\conf\server.xml file: Change the “noRoot”
option to “false” in the <ApacheConfig noRoot= “true">
Edit {tomcat3.3 installation directory }\conf\jk\workers.properties file: Change the
value of tomcat-home to { tomcat3.3 installation directory}, and change the value
of java-home to { jdk1.3.1 installation directory}.
Add system environment variables:

o Rightclick “my computer™ icon in desktop. Choose “properties”. Click the

“advanced” tab. Click “Environment vanables...” button.

63

o Under “system variables™. click “new™ button.
o Add TOMCAT_HOME variable. Set value to {tomcat3.3 installation
directory}.
o Add JAVA_HOME variable. Set value to { jdk1.3.1 installation directory}
e In DOS window. go to {tomcat3.3 installation directory}\bin. Start tomcat by
typing command: startup —jkcont. This doesn't really start tomcat. It is

configuration only. After this. close this window.

7.1.3 Deploy bib web application

Drop the bib.war file to {tomcat3.3 installation directory }\webapps.

7.1.4. Startup tomcat. Start apache

Go to {tomcat3.3 installation directory }\bin and double click the “startup.bat” file to start
tomcat. In the computer start menu. find the apache HTTP server in the programs and

start the Apache server. In the browser. point the address to: http://localhost/bib

64

7.2 User Manual

1. Search
1.1 General search

For general search. user can scarch by author. title. booktitle, after vear. before vear, and
journal (Figure 13). User can cancel the search by clicking the “stop™ button.

Bib Search Engine

Search by Iuthqr E | !

title
booktitle
after year
befare year
journal

Advanced Search

e Search by author: in this general search, you only can search by one author. The
mnput key word could be part or all of the author's or editor's name. If you want to
search by combimng authors, please use the advanced search.

e Secarch by title: you can type the keyword. the search engine will search the record
that its title contams the key word you mput. The title could be the title of a book, a j
article, and so on. If you want to search by more key words, please use the
advanced search.

e Search by bookhtle: you can input a keyword. The key word could be part or all
of the ttle of the conference book.

e Search by journal mnput one key word. The search engine will search the journal

name. The key word you mput could be part or all of a journal name.

Figure 13: General search

1.2 Advanced search

For advanced search, user can input any fields in the form (Figure 14). The search engine
will search information by combining the criteria input by the user. The user does not
have to input information for all fields.

3 General Search - Microsoft Internet Explbrer

ETan S

Bib Search Engine

Author: [Aimin Han J '

Title: [bibtex server |
From Year [1998 ~ To Year |
Journal 1 E

¥ Match cases [~ Match words [Match whole feld

Jeneral Search

e You can nput any of these fields. The search engine will combine your mputs
¢ and search the records. §
e In author field, you can combine two or more authors by "and".
e o In title field, you can mnput several key words. The search engine will search |

"and" of them first, then search "or" of them. '
BT L T T I e -—L_L_J @L LT ’

Figure 14: Advanced search

1.3 Modify research results

66

The search result will be printed with author or editor and item title. If the user is
interested in some of them, the search result can be modified by checking the candidate
records and click the “Check and Save Record” button (Figure 15).

3 result - Microsoft Internet Explorer

Number of records found. 3 » l
fl Search time: 40 mullis - ’

IE‘ IRobert L Glass lThe Soﬂ:ware Research Cnsis
Software Conflict Essays on the Art and Science of
Software Engineenng

7 Robert L. Glass

[- [Robert L Glass En the Beginning: Recollechons of Software Pioneers

‘3o to genreal search

o te advanced search

R

Figure 15: Search result

1.4 Final result and display options

At this point, the user still can modify the result. If the user doesn’t need some records,
uncheck the record that is going to be filtered, and click “Save Checked Record™ button
(Figure 16).

There are three options for displaying the final result. Clicking “Display on Screen”, the
record details will be displayed in browser to enable user to copy and paste (Figure 17).
Clicking “Save to Disk™ will prompt user to save the search result to local disk (Figure
18).

67

I ’Robert L Glassl e Software-Research Cnisis
& Robert L. Glass Software Conflict: Essays on the Art and Science of

Software Engineenng

o

E-mail address: [ahan@cs concordia cdl !

@article {glas94, author="Robert L Glass", title="The Software-Research Cnsis",
jounal="soft", volume=11, number=6, month=nov, year=1994, pages="42-47"}

@book {glas91, author="Robert L. Glass", title="Software Conflict: Essays on the Art

and Science of Software Engineering”, publisher="Yourdon/Prentice Hall', year=1991,
note="{(\callnum{QA 76.758 G53 31} }")

B el e
& IDCo

Figure 17: Display on screen

68

Fresult - Microsoft Internet Exploi'er

[

’ ~ |Robert L. Glass {The Software-Research Cnisis
Software Conflict: Essays on the Art and Science of Software
Engineenng

|7 Robert L. Glass

Figure 18: Save the result to local disk

o

. Add record (administrator only)

(S8

.1 login

For security, only authorized user can add record. The login page prompts the user to
input user name and password (Figure 19).

69

3 New Page l Mn(rosofl lnternet Explorer

T L T Y IR

Address |'m D http://localhost:8080/bib/admin.htmi] P |UNG

Please Login

User Name: [aimin
Password: fro
Login | Reset I
=]
[@]) Done . [[BBtocalintranet 4

Figure 19: Log in
2.2 Add record

If login step is successful, the user can add record (Figure 20). Any error will be showed
in the up-right comer of the table. To add a record, the key field has to be input. Also the
key has to be unique. If a duplicate key is typed. the error message will show up, and all
the similar keys will be printed to give the user information.

The fields labeled with * can’t be input character type. They require input as number

format. The month field has to be input in appropriate format. The instructions are in the
right side of the table. The error message will appear if the format is not correct.

70

‘3 Add Record - Microsoft Internet Explorer

' e e ————— e - e e ——————— —

C:\Documents and SettingstAimin Han\DesktopiAdd Record.htm

Entry Type: article Entry Key: Iaham 2 i Ths key exsted
Please choose
Address: L :

i another one
Title: { | HINT: The
followang keys
Author: [Aimin Hen | already exsted

Bookttle: I ; ahan ahani2

Chapter:
Crossref: |
Editon: ':
Editor: [

Howpublished: |

Institution: |

~*These fields must
be numbers
** Month 15 the
form of

. abbrevation: jan,
S feb,

Volume:

Organizaton: |

Pages: |
Publisher:

N

Figure 20: Add record
2.3 Confirm and Save
Before saving the record, there is a confirmation page, which enables user to make sure
the record is correct (Figure 21). If the record is not correct, the user can go back to

change it. If there is no error in the record, the user can click “save™ link to save the
record. After saving, a confirmation will be showed (Figure 22).

71

‘3 http:/ /localhost:8080/bib/Confirm - Microsoft IntemetE:q?lorer

IR

RN €] htp: flocalhost:8080/bib/Confirm I el

I
} Please check the new record:
|
|
|

@article {ahan14, utle="BibTeX server", author="Aimin Han", mstitubon="Concordia
Unwversity®, journal="Home Edition”, year=2002, month=mar)

15
j]
e
O
tx

Lack

|

The followang record 1s saved.

@article (ahan14, ntle="BibTeX server", author="Aimin Han", instituhon="Concordia
University”, journal="Home Edition", year=2002, month=mar}

Ldd another record

i
|
i
|
i
|

Loz out

= _ i = o el i i i = ikl el i

Figure 22: Confirmation of saving a record

7.3 Source Code

7.3.1 General search source code

7.3.2 Advanced search source code

73

Printed by Bao Man

Page 1 of 6

.

3

‘e
.

.
-
.
.
.
.

-«

lpackage ca.concordia .cs.bibsearch;

import javax.serviet .
import javax.serviet . http.*:
import javda.i10.°%;

amport java.ut:il.®;

import org.jdem.*;

import orqg. jdom.input .f;
import org.jdom.output .*;

1mport Jdvd.ldnqg.Character ;

Jee
* This class processes generdal search. [t gets input from the user, and sedarch
' the intormaticn trom “he JDOM document fetched from class StartUp. Then put
* the initial search result on session object. The intit:ial search result will
* be printed out 1n the browser and let the user to choose the interested ones
* which will ke passed to {(8link ca.concordia.cs.bibsearch.SaveResutir
* SavePResult} ~lass. -p-

* Title: Bibtex search-/p- -p-

.

* Description: Search bibtex information from bibtex tii=-/p- -p

.

* Copyright: Zopyright ¢ 2902 /p- -p-

.

* Company: Depdrrment St Computer SCience, Concordia 'niveritys Jp -
.

*@author Man Bac mbaofos.consardia.cdl, Aimin Han (ahandos.concsoriia, a
*dcreated sJeptember 11, J900

*@version P.0

public class OSedrch extends tHttpSorvlet

.
Get the user 1nput 4nd search intormation from JDOM Document pie tr
tetched trom {@link Ca.concordida.cs.bibsearch.StarttUp StartUpr class. (o
the JLOM Document object, edch record 1s represented as an element node.
[f the user 135 searching by toottitle, it will search from the -Intrenc.
~lements. It the user 1s sedarching by journal, 1t will search trom arrp e
element . Otherwise, 1t will search all elements. According T2 tns options

"mateh case”, "match werd”, and "match whole tield”, rthers wiil be ti1ve

cases. This method will search the information corresponding to the .Case.

The 1nitail search result will be stored 1n a hashtable which holds the

key and the element paris. This hashtable wiil be put on s2ss3i12n so that

next pdage can yget 1t. The initial result will print out 16 4 table with
author or editor and title.

@param request

@param response

@throws IQException
Rthrows ServletException
/

public voad doPost (HttpServletRequest request, HttpServletResponse re2s3ponss

throws I[OException, ServletException |
Hashtable reglstry = new Hashtable ();
//hold key and element

response .setContentType ("text/html”);

PrintWriter cut = response .getWriter ();

Hrtpsession session = request .getSession (true);

string searchType = trequest .getParameter ("search _type”)).trmi);

String searchName = (request .getParameter ("name”)).trim();

boolean isDigit = true;

if (searchType .equals ("after year") || searchType .equals ("before year");

if (!'Helper .isDigital (searchName }) (

'

{

Printed by Bao Man

Page 2 of 6

Dut.println ("<html>")
out.println ("<head»");
out .println (- trtle>”
cut.println ("< /head>")
out.println ("<body bgcolor=\"white\"»
Jut.println i"<body ") ;

i"<p align=\"center\">Input format error,
</p-"

+ ¢ "a/titlex"

"result”

LI

out .println yOu must input number oo

" tield of atter year or pefore yea
out.grintln

4

Ie

out .println (" p align=\"center\"»<a href=\"advanced.html\" :Go to 4dvansad sear.
cut.println ("< /body-" 1
cut .println "</ html-"};
1sDigit = false:
return;
}
}
boolean matchCase = {:request .getParameter (“case™)) !'= null.:
boolean matchWord = i({request .getParameter ("word"™i) !'= null:;
boolean marchField - ((request .getParameter ("field” ' ; 's null.:
int searchfondition s
1f - imat-hlase -:- false:) ass :matcnWord == false 4 matchFi=ld - false: H
sear.nlondition Q;
}
else 1f «imatchcase -- true) i& imatchWord == false) &ss ‘ma~chii-id -- false t
sedrchiondition 1:
t
else if . mar_ hCase - false: 45 ‘matonWord -- true: &4: ‘matchiield false -
sedar-ch-lsndizion a2
'
else 1f . marchiase -- false, &5 matchWord :- false W 4& mat ‘nbi-i1 true
[tmatchCase - false, 44 i‘matchWord -- true: 44 matonFieid true .
searchliondition - 35
}
else 1f . matchlase - true! au matchWord ¢ true. 4u mat chEleld false
searchoondition 4
1)
else .
seqrchoondition b
}
1f searchlame cequals ™" |} sedarchlame . langth - U i sear nlame null -
response (sendRediract c"indes.niml” 0
return;
}

request .getPdrameter :"search™ ' ;
request .getParameter i"stop”).

String search
String stop

if (search =- null & stop.equals ("stop™:) |
response .sendRedirect {"index.html”);
return;

//get document
Document doc

StartUp .getDocument {);
//search

Element root
List nodes -=
1f

doc.getRootElement (i

null;
(searchType .equals ("bocktitle™) {

nodes root .getChildren ("book”);

List nodesTwo root .getChildren ("conference” ;.

nodes .addAll (nodesTwo) ;

}
else if
nodes

{searchType .equals ("journal”)} |{
root .getChildren ("article™);

}
else |

i"-p align=\"center\">va href=\"1ndex.ntml\"-Go tc jenreal seoar-h , 6 a-

Pt .

B ;

e

Printed by Bao Man

Page 3 of 6

nodes = root.getChildren ()
b
Listlterator i1ter = nodes.listlterator (!;
while (i1ter.haslext (1! (

Element element = Element ! (1ter.next (1};

]

String key = element .getChildText ("key™);

1f (searchType .equals . "after vear™ 1 {
String typeString = element .getChildText ("year”:;

//GO to arror page 1 f number format error
1f 1s5Dig1t =:- true &i& typeString '= null &6
({tinteger .parselnt (typeString): »= Inteqger .parsein® (searchlame 1 |
raglLstry Lput (key, olement ;;

}
else 1f (searchType .equals ("befcre year™ ! |
String typestring - =2lement .getChildText ("year” .
J0Ge n2 erroar page 1t number formdt error
if 1s501git == true 45 rypeString '= null s
cvInteger .parselnt (typeString) <= Inteqger.parsaIlnt searchlame {
registry .put vkey, element)
b
b
else
swaitch rscarchCondition @
case i:
1f o searcnType coquals "autnhor”™ o
String iuthor = Helper .oleminatechar alemens . perohiiaTows “agrh-o” :
1f fgquthor - nullc
uthor @ Hejper . elemindatechar o lement o gt ThoL3Text "odirnoe”
,
1f - cauthor ' aull s
fauthor ctelowerlase)L indexot searonlame (L werlase

re3lstry Lput ckey, element oo

b
else
String typestring - Helpar ieleminateZhar =lement

St ihiidTexr o searzhTyps

1f .typestringy ! null s
ftypeString . talowerCase (1 . indexOt i searchliame (toLowserlase -+ - 3y
regrstry .put (key, element;

r
break :
case l:
1f (searchType .equals ("author™ 1) |
String duthor = Helper.eleminateChar ielement (gorchildText “author™
1f author == null: |
author - Helper .eleminateChar (el2ment .32t hildText "edrtoe”™ i;
b
1f {tauthor '= null §§ author.indexOt searchlame) »= 0;, |
registry .put (key, element);
}
}
else |
String typeString =< Helper.eleminateChar i2lement .g2tChildText (searchType »:;
if (typeString '= null §§ typeString .indexOf rsedarchMame) -»= 0 |
regLstry .put (key, element);
}
b
break ;

case 2:

Printed by Bao Man Page 4 of 6

1f isearchType .equals {"author™) {

//eleminate \ ' " |}
String authcor = Helper .eleminateChar (»lement .getChildText “author” . . ;
1€ iauthor -= aull: |

author = Helper .eleminateChar ielement .getZhyidText ."adiror”™ ;. ;

}
1f author '= null.
Aauthor = authcr . tolcwerlase

//seperale ndames
Vector authorVec = Helper .seperate iauthor, " and "i:
1f rauthorVec .contains (searchlame .tolLowerase . {

£eg1stry .put « K< =lement 1 ;

13
b
else |
String typestring - Helper . eleminatelhdr 'w=.le :
1f rypaString ‘= null '
typ=3toing oo typeldtring tolowerCase g
b
e tor weo = Helper . vectirize ctypestringy, 7 ¢
rf vec.oontdins cs2archtiame L tolowercase o {
£2J1stry Lgut - key, <loment o
¢
b
break:
case 1:
1f searonType Joquals - "aunhor” o
3tring author = Heiper . elaminatelhar celemens 32tChiidText "author™
1f . author null
autnor - Helper.oleminatelhar alement | jes hiidTesn Todioo” H
,
tf cauthoor ' onull s atnor Lt SLower Tase Lo AL sear cnliame L L iweer T
T2 3lsUTY L DUt o key, e lement g

Helper .eleminatolhdr element

null .4

‘typedtring L toloweria .= quals csearcnlane (L LowWer e :
regl3nIy Lput ckey, element
1

H

break
case i:

J/same as case . without tolowerCase !

1f searchType .equals «"author™ .

//eleminate \ " i

lper .2ieminatelnar (2lement . gotChildText "duthcr™

String author = He £
1f duthor == null}i ¢
author =+ Helper.=leminateChar ‘element .getZhilaText "editor™ 7

//seperate names

Vector autnorVec = Helper.seperate ‘guthcr, " and "
1f (authorVec .contains :searchName ;) |
reglstry .put ikey, =lement;
i
}
else |
String typeString = Helper.eleminateChar .element .getZhildText (sear-nType s
Vector wvec = Helper.vectorize (type3tring, " "1
if (vec .contalins isearchName) |

regLstry .put (key, =lement;

break ;

Printed by Bao Man Page 5 of 6

case 5S:
1f {searchType .equals ("author”)) |
String author = Helper.eleminateChar (element .getChildTexr “author® . ;
1f (author == null) |
author - Helper .eleminateChar (ejement .getChildText ("aditor™ . ;

b
1f .author !'s null $& author.equals :searchhame 1
reqLstoy .put (key, element ;;

b
else
String typeString = Helper.elemxnatechar{element.qetCthdTex(|5edr:hTyp~--:
1f (rypeString !'= null && typeString .egquals (searchMame i: |
reqrstry .put key, element);

}
break ;
default :
]
1]
}
session L s5etArttribute ("result”, registry o
Session CSetAttribute ("titieZr™, new Hashtable ')

out.printin.”™ htmi " . ;

out .priatlin " headg " :
Dut.prinTin "o tinie s e Mrasylnt o

out .printin " Jhead " g

cut.printin " body ©3Tolor Mwhite' " " g
out .printin . " pody "
1f registry s I
Qut Lprintin Abigns "oentern " cHumber of records tound: 7 -
Teeqlutry szizeos e "obpr "
mr.printin "otorm method - V"postt ™ action- "/bib/SaveResult et
utLprintin e table algncn"oenter " porder s Mo :
wt.priatin "ore pgcolor UUSPEALGON" "
out.printlpn "o otheCheck - tncAuthor or BEditor crheTotle Sty " :
print oregustoy, sutag
cut.println " /taole "
our Lprintln T center "o
out.priatin " 1nput Type-\"submit\" name-=\"submit\"
¢ " value=\"Check and Sdave Record\">»" ;;
aJut.println " Jcenter " 1
out .println "« /turm-");
}
else |
cut.printin."-o align-\“center\">No record matches the Search criterian.: /p-* vy
}
cut.printin. "<p align=\"center\"-~a href=\"1ndax.html " " 4

"GO to genreai search-~/a»</p»");

out .println«"<p align-\"center\" <1 href=\"advanced.ntml\">" .
"Go to advanced search</a»/p>" i

out.printin "< /bady ")

out .printin ("<’html-"1;

* This method will print cut the initial result i1n a table with author or
* eidtor and title.

*@param registry hashtable holding the key and the element node pairs.
*@param out
v/

public void print (Hashtable reqgistry, PrintWriter out) |

Printed by Bao Man

Page 6 of 6

List keys - new ArrdyList (registry .keySet ());
Listlterator 1%ter = keys.listlterator ():
int counter = U3

while (i1ter . haslext (1) |

counter ¢+
String key = [(String; Lter.next o
Element element = (Eiement: registry.get(key:;
String author = Helper.eleminateChar (element .getThildTe=t «"author™ ',
1f rauthor == nully

author = Helper.eleminateChar :element .getChildText i"editor™ i
]
String title = Helper.oleminateChar :element .getThiidText ("title™)
1f ‘rauthor == pull |

quthor "ot
t
1f 'title -- null. !

Sitie -ty
i
sut .println "otz o
sut .orintin " td -« 1nput type=i"checkbox\" name=""che-k" .

¢ value T e key e M\ L ede” g

out.priatln "td-" o« author ¢« "< /tds" g
out Lpraintin Merg T e title o "o trdsT
out.printin "o/ g

* Pass o the o odde sreguests Jocde s oand o code craesponses Joode s

¢ sdobost cHrtplerverPequest, HutplervietRespeonse 1:Posn

dparam oreguest

*Rparam Iespe nse

rdrnr oW L
tHINT Wy Servlert s ception
-
public void 4ot HItpServietReguest request, HEtpiervietdesgonse

H
throws (. bx - wpticn, Servietf=ceptlon o

LoP st e pieest , renpo N3 o)

Printed by Bac Man Page 1 of 7

[package ca.concordia .cs.bibsearch;

import jdvax.servleat . *;
import javax.serwvlet htip.*:
import java.io.*;

import i4avd.utii.®s

import or..idom. s
import Gta. jdoem.input ot
import :ra.;dcm.cutput .oty

* This -lass processes advanced search. [t gets input from the user, and search
* the antormatiton from the JDOM document fetched from class StartUp. Then put

* the 1nitial search result on session object. The initial search result will

* be printed ut 1n the browser and let the user te choose fthe interested ones
* which wil!l ce passed tc Class <code-SaveResulrt./code:,

* p-Title: Bibtex search-/p-

* -priescription: Search bibtex infcrmation Irom bibtex file</p.

cpyright: Jopyright o) l00l-/p-

* cpelompany: Department of Computer 3
* QGauthcr Man bac mbaodcos.oconcordia. zal
¢ daythor Aimin Han -ahan@cs. toncordia. s

ey
B

ence, <Concordaira Univeritye /po-

* dversion

* This method processes the advanced search o [t gets the user tnput frem

e 3uest U]ect, Compines the search

‘riteria oand sedarch foom JDOM document tetchedt from ococde f3tartllpe Cocde s
¢ thread.

CoMpazam Ieplest

CHpDAIAm TesnLnse

s odnnee

Codrnr wWs o e

.
public wvoid inFost CHrtpldervletPequest fegquest, HUnpservlenfesponss rasponse
throws [“:E-ception, se2rvletBExcoeption .
Hinmab, re sty - new Hashtanle @i ./ hold key ina eloment
Hasntaole it le0r - new Hashtablie ;' nold key oand element
e Ut palan - new Jector o
Yectlrotope - onew Velttro g

response csevtlontentType ("text/html™ ¢)

PrintWrin=r ut - re3ponsse . J2tNriter @y
HITPSesSS.1on session - request .gets2ssion (true: ;s
String author - .rejuest.getParameter ("author”™ :i.trim.:!;

paras.addElement (authori;
type . addilemant «"author”,;
String t:itle =irequest . getParameter "title”oromoss
paras .addElement (titie;;
type . aadElement - "title”
striny trom irequest .getParameter "
pdaras . addElement (trom);
type .addElement ("trom”™)
String t3 =irequest .getParameter ("o
piras .addElement . to:;
type .addElement «"to™);
boolean :1s5Digit = true:
String tromTo = from + toq
1f: 'Helper .i1sDrgital (fromTo;) {
out .println ("<htmi>");
out.println ("<head>»");
out.println ("<titlex»" +» "result"™ ¢« "</titlex"
out.println ("</head>");
out.println ("<body bgcolor=\"whrte\">");

Printed by Ba

out .println

o Man Page 2 of 7
out .printla ("<body>");
out .printin("<p align=\"center\">[nput format errcr, you must input aumber .
"in text field of from year or to year.-/g»"
<"+p align-\"center\">«a href=\"index.html\"-Go tc genreal search- 'a« 'p-" s
'"-p alian=\"center\"><a href:\"advanced.html\":Ge t¢ advanced sear-n- ,a-.g-" i

out.printlin
out .println

T /bedy "o

surt .println ™ Jhtml "

1sCigt

t - false;

return;

3tring

ournal -/regquest .getParameter ("journal™ ;. tzimi);

paras . addElement «journal s
type . addElement " joutnal®

String path = getServletdontext) .getBealPath ("/"0 v "rilesiam
if . cauther .e2quals 7" o author .length i+ == 3 1} author == null: 4%
itrtincequals ("7 | title.length¢: == 3 | ritle == null: s
citrem.egqudls "7y) from.length ol == G 5! from -- aull: 54
StILeZuals " 4 rollengthied o =- g 10 ro == aulls g
crlournatl Lequdls "™ (| journati .length s == § ! journal == null . |
[2SPChise L sendRedirect "advanced.ntml”™
return;
)
String search - reqgquest . jetParamater "search” g
String srop rejuest g2t Farameter c"stop” g
1f searh null . LBeequals Tsnop” o
reespoense 5endfeairect CTadvanced. htmi” g

return

Saovtdmennt

o SF T Startlp L gerfocument o

Joltogenerdated xml o tile nas greblem, the 120 Wil pe null

Element

List onas

EAALEI

Elemer

Lot s doss L 3etEsotElenent g
=% 0 rost g hildren o0
Listiterator aterator = nodes . listiterator oo
hile :iterator (nastes |
t element - Element) Lterat [
w2y = oelement o getlhrldTexs

String =lementautnor 2lement . 32tcChildText ("author™ ;
1f ielementauthor -- null:

elementAutnor - element .getChilaText ("editor”™
string <lementTitle - «lement .3etChildText ("title™ :;
String elementyear = element .getChildText ("year™:;
Srraing 2lementfournal = element .getZhildText ("journal” .
boolean aliTrueflag = false:

boolean flagForlrTitle = false:

inner:iforiant 1-U0; L-paras .SLI2 (7 Ler) |

String pdra = (String)paras.elementAt (1}

1f ‘para == null (| para.length:i) == 0 || para.equals (""",
continue :(nner;

else|
String nodeValue = "";
String typeValu2 = iString)type.elementAt (117
1f . typeValue .equals «"from™ ! || typeValue .equals {"to™i:{

nodevalue = element .getChildText ("year™);

b
else

1f (typeValue .equals i "author™ }i{
nodeValue = element .getChildText ("author™);
if (nodevalue == null)
nodevValue = element .getChildText ("editor™;;
t

else

Printed by Bao Man

Page 3 of 7

nodeYalue = element .getChildText (typeValue:;

null;{
continue outter;

1f inodevaiue ==

!
else .

boolean fiag = false:

1f typeValue .equals ("Tauthor™ |
Vectcr andVector = Helper.seperate 'para, and *
boolean {| andFlag = new boolean [andvector .size 17
foriint) = J; j-andvector .sizei; jrecd

.StringrandVector .elementAt]
filiedAuthcr ,

Srtring filledauthor =
arndtlag {;, -compars (request,
typeValue g
for (1nt G
1f andFlag(t
break :
£ = ==

P,
tlagy -

[

t-andVector .s1ze iy neerd
: false:

true:
2 1Trueflag =

Typevaiue Jequals Ttitle”™ |

Helper .vectyrize
new boolean {~:7.

TrTieFlay -

boolean | ;

for wnt 1 = I; j-titlevecteor isize -
Jtriny rilieatTitla String ftitle .-
cltleflay i) soimpare creguest, filledTitle,

for int - = u; o titlelector .size .y T
: ! == true; |

tlag = true:
flag3ForlrTitlie = true;

*

",

(3]

A

i (typeValue .eguais
Helper .eleminat=Char

ngparas.=alem2ntat L 7

else 1f . :sl:qit ==

e = .Str

»e

1f .checkTitie == null || checkTitle .lenjth. =2 C 1|
a.lTrueflag = true.
;
b
else!
flag = ccmpare (request, para, Helper.elem:inatelhar .noa
Inring checkTitle = .Stringiparas.elementat 1,7
1€ flagd
1f . checkTitle null (| checkTitle .lengzh ¢} =- 2
ailTruerlag = true:
]
'
1f flag == false, |
tlagfcrorTitle = false:
continue ocutter;

1o 3 -
typ2value .aguals "to”
2, typelVaelue g
ThelkTitle iequals 7
2Value +, typeValue

CheokTitle eguals

‘h

Pranted by Bao Man

Page 4 of 7

}

!
i//2nd of inner
1f . aliTrueFlag ==

reistry .put fkey,

1f 'tlagForOrTitle =

Ti1tiedr .put tkey,

true;
element) ;
= true)

element) ;

i //end ot sutter
5255100 . 3etAttricute ("ti1tleOr”, titliledr):
52SS10N .SeTAttribute «"result”, registry):

Enumeration vl = titieOr . keys i
while vl.hasMareEiements ()
String 51 =:stringiwvl.nextElement o
Enumeration vI = registry .keys..;
while v .hasMor=2Elements
String so o sc5tringiwl.onextElement -

L8 JSH

[

cut.grintin” heml " ;
Sur Lprint in " hegye [

sut.pratlna "o rgrge s "resuylt” o« "o title "
Sut .printin ™ Shead " o

ar.priartln "body bgoolor-iTwhitert "o
ut.printin "roudy ot

titlelr.osize o

wroprintin "opoalign: Moonteri T oNumber ot recura
CregLrstry Lsite v v titielr
CutLprintin "-torm method = L "posti” actions, - H
cntlprintin i table align=\"tenter " boraer .
it Lprintin " tr bgoolsr-\"#EFACOON" 2" g
st oLpoiatin "o rhCheck - thcAuthor or Editor cetnaTitle nre” H
ant Counter soog
print registry, cut, counters
print o titledr, out, registry . 5120
out .printlini” /table-";
out .grintin ("<center>");
" 1nput type=\"submit\" name=\"sucmit\" vaiue:='"Check an2 Save Peosra." "

out.printin
cut.printin "< /center>"
out.grintln "</fcrm»")

b

else
Qut.printin

"<p align=\"center\">No record matches the search .riterion.- /g~ s

out.printin (" p align=\"center\">G> to genreal search-.a.p-

out .printin
cuz.printin "
Jut.println s "</html-");

s /body " g

* ¥param para 3tring representdtion of year which 1s input by user.

* dparam nodevalue String representation of year which i1s from record

* dparam type From or Before

* @return The <code>boolean</code> value of comparing the <code>para</code> with <code:-
* nodevalue</code>» according to the type.

*/

public boolean compareYear {String para, String nodeValue, String type} {

"<p align=\"center\" :Go to advanced search: /a- .p-

Printed by Bao Man Page 5 of 7

/7TODC: parse orror
1f (type . equals «"from™ .
return Integer.gparselnt (parda: <= (nteger .pdrselnt

else
return Integer .parselnt 'para; -»= l[nteger .pazselnt noaevilu2

* lompare the user input valu2 with the cocresponding
* ACCoraing to match case, match werd, and match wh
* cdases. Each record 15 represented as 4 node in the JICOM zcocument
* The user input wvalue wiil be compared To the Corresponalng 2iement vilue
* of the noas. The comparison 1s prcocessed 4accorging %o the 1ifterent ~ases.

* dparam rejuest HitpServletRegquest
* dparam rara Farameter Which 1s the user 1nput value.
* 4param nodeValue 2

Ele =
* dparam typevVaeiue The search type such as authcr, titl-e, y=2ar, ind
a 2 [s)

v Y s
* dreturn The -~coderbrolean~,Tode - value Of zZomparing °f pary ing acdeValue.
Ny
public boolean ,oStrmin: nideVacae, Otroin: .
typevalue . =
boolean result false:
boolean matcnlas=e < reguest .getParameter " iase” ‘= null o
boolean matc-hWord = request .jetfarameter ("word” ‘= null
booclean matcnField = request . getParameter "field” ' null
nt searchtonditicon s
1f . mat nlase =- false: sy matchWword =- false: &» nmatonFiell = false
searchoosndioien = 27
else 1f mat-hldse = true. as -= false x4 miThFle] - - false
searoniltngiticn = L
else 1f ma® “hlase == false: i true 44 Tat nFie. 1 - false
searonlondition - I
else 1f mat - false i == false uu Tal nEi-ld true
2= - true) Tt P true
Searchelondirion - 1
else 1f = true »4 TMatconWord == true s s M2t SnEleld false
Sedr TndTnalticn B
else
Searohlongition - Sg
switch searchonarnion
case :
1f . nidevalue .tolowersdase E
resuil = true:
break ;
case [:
1f nodevaiue . indexCt .para: >= O,
result = true:;
break ;
case (:

1f typeValue eguals "author™ iy
seperate names
authcrVec = Helper .seperate 'nodevalue, " and "
1f rauthorvec .contains igara . tolowerCase - 1
25

result = true:
4
else |
Vector wec = Helper .vectcrize incdeValue, " "y
1f (vec.contalns (para.tolowerlase (1
result = true;
!
break ;
case :
1f . nodevalue .tolLowerCase i} .equals para.tolowerCase v/ i

result = true;
break ;
case :
//same as case . without tolLowerCase()

Prainted by Bao Man Page 6 of 7

1f [typevalue .equals ("author™)} {
/,/seperate names

veotsr authorvVec = Helper .seperdte .ncdeValue, ™ and °
Lf authcrvec .contains (para !
result = true;
3
else !
Yector vec = Helper.vectcrize ncdeValiue, " "

1f ves.Contalns paras
result = true:

1
break:
case °:

1f
result = true:s
break ;
default:
3
return results

ardeValue Lequals para .

* Print “ne wnitial search resu
Y osomenimas Text 10 tne field must be
*in braces. Here we «leminate the 2§
* €param 215t ry Hdashtabel, Fey 1s ®
* Rparam Lut

* Aparam Tounter

1f suthoor - null
aur N vow.
1f Lt == null
titie "
Sut.printin Tetr T
sut.orintln "<rateinput type=-."checkbox\” name=."cheok” soIsuntern -
"Nt values\TT e key "N T g
dut.printin "o wd" v aunhor - T tdaT g
sut.printin (taede” e nitle . "</ed>" g

public void pr:int Element element, PrintWriter out, String key, int cJount=ar .o«

String author = Helper .eleminateChar ielement .getChildText :"authcr™ 7

1f (aguthor == null:
authcr = Helper.e

Striny t:itle - Helper.eleminateChar (element .getChildText

Cr

1f autnzr = null,
authzr = " ";

1f:t:itle == null:
Title = " "

cut.printin «"wtr>":;

out.println{”<td>“input type=\"checkbox\" names\"check” » counter -
"\" value=\"" + key +"\" ></td>":;

out.printla "<td>" + author +» "</td>");

out.println ("<td>" + title + "</td>");

Printed by Bac Man Page 7 of 7

out .printin "/ rce®y

* Pass the <oode rrequest- /code> and “cedevresponse: s oude s to
* t@link 4doPost HttpServlietRequest, HttpSerwvletPesponse; doPcos%) methad.
¢ Bparam reguest
* dparam response
* dthrows IJExSeptian
* Athrows JervietExcepticn
.
public wvoid acGet (HttpServletRequest reguest, HtiplervletFRespanse respense .
throws :[CException, ServletException i
doPcst rreguest, respcnse

