INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

FPGA Design and Implementation of Systolic
Array-Based Viterbi Decoders

Man Guo

A Thesis
in
the Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

September 2002

©Man Guo, 2002

i+l

National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services services bibliographiques

395 Wellington Street 395, e

Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4

Canads Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Your s Vote rédirence

Our e Nowre nitdvence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése mi des extraits substantiels
de celle~ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72909-5

Canadi

ABSTRACT

FPGA Design and Implementation of Systolic
Array-Based Viterbi Decoders

Man Guo

The Viterbi algorithm is known to provide an efficient method for the maximum like-

lihood decoding of convolutional codes. The algorithm can be formulated by employing a
matrix-vector computation and it can be implemented in hardware based on a systolic
array architecture. It has been shown that in this implementation, the strongly-connected
trellis decoding method can be used to improve the efficiency of the hardware utilization
and the throughput of the decoding. However, the employment of the strongly-connected
trellis decoding method results in an excessive amount of ACS (addition, comparison and
selection) computations in the decoding process as the constraint length becomes large.
Further, in the systolic array architecture, the hardware complexity increases exponentially
with the constraint length of the code. This makes the adoption of the systolic array archi-
tecture not feasible in the design of the Viterbi decoder for decoding a convolutional code

with a large constraint length.

In this thesis, a design and FPGA implementation of a Viterbi decoder with a constraint
length of 9 and code rate of 1/2 is presented. In this design, a novel systolic array architec-
ture with time multiplexing, arithmetic pipelining and clock-to-data skews tolerance is
developed. Further, by modifying this Viterbi algorithm, an adaptive Viterbi algorithm that

is based on strongly-connected trellis decoding is proposed.

Using the proposed adaptive algorithm, a design and FPGA implementation of a low-
power adaptive Viterbi decoder with a constraint length of 9 and code rate of 1/2 is pre-
sented. The systolic array-based architecture used in this adaptive Viterbi decoder is a
modified version of the architecture used for the non-adaptive Viterbi decoder in that the
latter is modified to include the modules, which are needed for generating the survivor
information and for eliminating the spurious toggles in the adaptive Viterbi decoding pro-
cess. It is shown that the proposed algorithm can reduce up to 70% the average number of
ACS (addition, comparison, and selection) computations over that by using the non-adap-
tive Viterbi algorithm, without a degradation in the error performance. This results in low-
ering the switching activities of the logic cells, with a consequent reduction in the dynamic
power. Further, it is shown that the total power consumption in the implementation of the
proposed algorithm can be reduced by up to 43% compared to that in the implementation

of the non-adaptive Viterbi algorithm, with a negligible increase in the hardware.

-V -

ACKNOWLEGEMENTS

First and foremost, I would like to thank my supervisors, Dr. Omair Ahmad and Dr.
M.N.S. Swamy, for giving me the opportunity to work on this thesis project. Their insight,
valuable advice and guidance throughout this study have contributed significantly to this
research. Moreover, without the financial support from my supervisors, it would have been
extremely difticult to accomplish this investigation. I gratefully acknowledge the support
of Micronet, a National Network of Centres of Excellence, through a research grant
awarded to Drs. Ahmad and Swamy.

[am greatly indebted to my parents for their love and care, and for their constant sup-
port and encouragement throughout my education.

[am very grateful to my husband, Jiyao, and my son, Yiran, for their love and sacrifices,
and for providing me encouragement and inspiration during my graduate study at Concor-
dia University.

I would like to specially thank Ted Obuchowicz and Wojciech Galuszka for providing
me the help and technical support in the VLSI lab. I would also like to express my fond
appreciation to Yi Yang, Wei Wang, and many other friends and colleagues for support

and encouragement during my graduate study at Concordia University.

TABLE OF CONTENTS

LIST OF FIGURESttt iteee oot eesass s s sa e s e sab st s s a e s s s s s s s s ix
LIST OF TABLES. ..ottt eteeveeseestesseaessasers e ba e s sn s s sa s s n s s s ss s mn s s s sn e xi
LIST OF ACRONYMS ...t ceeetteeteseserieeesnssesaas s s s sss b s s s s s s s b st xii
LIST OF SYMBOLSot ertraesveseeesta st esse e s sane s n et b st a s sen s n s e s an e xiii
CHAPTER |. INTRODUCTION.......coottiteerceeiintinreerene et nns s s ssasnsassssenes 1
Y I (110 Yo LU Ta14 10] ¢ FOUUUUO U OO U OO POOOP PP IR ISR T LY 1
1.2 Architectures for Implementation of aViterbi DECOURT......oomiriiriiecniceirimesieeeens 2
1.2.1 Butterfly ArCRItECIUTEocovrimiereiinreisteteecniern sttt 2
1.2.2 Systolic Array ArCRIIECIUTE.oveiceritriicicicicinst et 5
1.3 Approaches to Reduce Power CONSUMPLON........cooeeeecimsmiinninisnsssnnencnsassecnseess 8
1.4 Scope Of the THESIS.....cvririiecieieeeie ettt e 9
1.5 Organization of TRESIS. oo 11
CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED
TRELLIS DECODING.......ccoiieirertereeeennesnrssstssesstsnssassssssnsssssssnsssnces 13
IR I (17000 6 (1o 4 10 s TOUUUUUT OO OO P T LA s 13
2.2 Encoding of Convolutional Codes..........ceremrinnmeciimsisisssscceniniinsisinnses e 14
2.3 Viterbi Decoding ProCess.......coviiiiiiieienrinec ittt et 18
2.4 Strongly-Connected Trellis Decoding Method........cooircvceniiiiiiiiininincesninene 20

2.5 Reformulation of the Conventional Viterbi Algorithm for the strongly

connected trellis dECOAING.c.oveeiiiiiiieeerei ettt 21
2.5.1 Generation of Composite Branch MEtriCcccoouiriimimiinnniniinnnninsnsineanecs 21
2.5.2 Updating of Path MEITICS.......coveueiimemiininnisnsesesssssiisss s 25

-vi-

TABLE OF CONTENTS

2.5.3 Modulo Arithmetic fOr ACSottt st 26
2.5.4 Radix-2X"! Trellis Trace-Back UPdAte.cvuveuercumcmrcrmernrssnesesissssssesnsiaens 27
2.6 SUIMMMIAIY ... eeceteetecnmcnciecscae s ns s s e bR a e e s bttt s s 29
CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER.......... 31
3] TOEOAUCTION e .eeeeeeiieeiieeeeeerteeeeeeeeesrteeseesstesrneerse e s asns s s e s e s ae e s e nn e s n st e sssntsstaansennns 31
3.2 Systolic Array Architecture for ACS COMPULAtIONS........coevveecmcmsimsimnemsnisnaseneneses 33
3.2.1Adjacency Matrix Partitioning and Time MultipleXing........ccococoeuriunniesanscseenee 33
3.2.2 Arithmetic-Pipelining Technique and Array Processors.......cooceeoeceinincnsacnnnen. 36
3.2.3 Clock-to-Data Skew and a Scheme for its Avoidance.........ccocoviemeeiiecnccinnnnns 40
3.3 Trace-Back Strategy and Trace-Back Uniti....cooiiiniiiiniinie 45
3.3.1 Trace-Back SIrale@Y......ccoveieiimmineteeeeeeseectt et 46
3.3.2 Trace-Back UnNile....ooouioiirieeeenirrcentcnieine s ess s e aass s ssas s s s an sl 49
3.4 Input Buffer and One-Stage Branch Metric Generation.........c.coocurevesusmmssssscncensnees 50
3.5 Testability Of the Design......coiiereiiii e 53
3.7 Performance ANAIYSIS......ooeeeeeeiiimrmiinnieee sttt 54
3.7 1 SPEEM. c.eniiceiciiiicrc et s 54
3.7 POWET . eeeeeeeeeeeeeeteeteeeseesseaeeasss e st eesesess s s e e b e e s e e s ab s e st st a b s e RS e n eSS sss 55
3.7.3 FPGA Resources UtHZation.ccceccerriiiiiinrinieiinnsreecannienensninsstssssn s aannans 60
3.8 SUMIMUAIY ..cveueueueeremmruecuseuetara e s sttt s s RS 60
CHAPTER 4. AN ADPTIVE VITERBI DECODING ALGORITHM.......coovvimiinnnnenec. 63
A1 TNEOAUCHION e eeeeiieeeeieecreeenemeeeesreesarssesns e e e s e s s et e st esaas s s a b r e s s s e st s sttt st st st n s 63
4.2 Formulation of the Proposed Adaptive Viterbi Algorithm......ccoovivccciniieiiinnns 65
4.3 Comparisons with the Non-Adaptive Viterbi AlZOrithim...co.vvrvriciinenininsieeneenes 69
A4 SUMMANY. e cuveueveremetiiiecssiisrarasss s sttt e bttt 74
CHAPTER 5. DESIGN AND IMPLEMENTATION OF
AN ADAPTIVE VITERBI DECODER.........ccoooiiiiiiiinencentiienenes 76
S 1 TNIEOAUCHION. o eeeeeeeeieeeeeeeeeeieveeeseseesseeeseessseassassenasssase s s as e e st e s sesbaas s s st e usnnsanssntsces 76
5.2 Systolic Array-based Architecture and Spurious Toggle Reduction...........coceeeveenee. 78

5.3 Performance Analysis and Comparison with the Non-Adaptive Viterbi Decodier...80

- vil -

TABLE OF CONTENTS

5.3.1 SPEEU. et e 81
.3 P OWT e eeeeeeeeeeeeeeeeeseseseeeaeassaneeseeesrattes bt e e n s s e ae e a e s e et e s s b s s sttt 81
5.3.3 FPGA Resources UtIIZatiON.ococeeemmiiiiiiiirenesesecsssnnicsnnessssesse s cnssneceeenes 84

5.4 SUIMMAIY.....ouimiiecrireccaesete st se et b s st s 85
CHAPTER 6. CONCLUSION ... oo eeeeeessseesssoessssses e sessmsssoesassssss s 87
6.1 Summary and ConCIUSIONS......cvrrireeerrteinet ittt 87
6.2 Suggestions for Future INVeSHGations. ... 91
AP PEIN DX oottt eeteeteeeeeeae e ers s e s aesaeesesess s e s b s e s b e ra s ae st S e st 93
REFERENCES. ..o eeeeeeeeeeeeeeeeeutessssaesessesoeemscsamasessanasssestaane e sassaann s ta st s e st st sttt 94

- viii -

LIST OF FIGURES

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9

A trellis diagram (K=3) and two butterfly pairs.......ccoeeieeeiiinccnsiniscnececsnne: 3
Butterfly structure of an ACS module.....c.cocviiminineiicinncinniscneecee 4
A strongly-connected trellis diagram.. ..o 5
A systolic architecture for a Viterbi decoder with K=3eeereeeeecennnnees 6
A (3, 1, 2) binary convolutional encoder......ccoovviimimeniieniiiiiinneee 15
State diagram fOr AN €NCOET......coveerreeeescncinins et 16
Trellis diagram for a (3, 1, 2) code with LS eeeeeeeeeeeemneatssaeeneserssssanesrenes 17

Convolutional coded system on an additive white gaussian

NOISE CRANNEL ..c.viiiieeieree e eetee e ete e ae s st s s sttt s e n s 18
Systolic array architecture for path metric update.....ooovvecvmniimnernnisinseeees 34
Architecture of a pair Of SyStoliC aAITaYS.....ccvcriirmenirscniitniaseee 34
Arithmetic pipelining processor for a BM_d.....ocooeciiiiiiieeenen: 37
Arithmetic pipelining processor for @ ACS_d.......ooreereicmciscicnnimniniceeees 39
Trace length mismatches causing clock-to-data sKeW......cccccevneennnen. [41
Timing diagram without clock-to-data Skew toleranCe...coovciinininneirenene 43
Clock OULPULS CRATACTETISTICS ..evureruesesescucremnmersnsnnsssss sttt 44
Timing diagram with clock-to-data Skew tOlerance........coeuvririiinmsericnsceseses 45
Organization of the memory for storing the SUrvivor paths........oeeveeeeiceeenes 46

-1X -

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

LIST OF FIGURES

Trace-DaCK SUALEEY..oovecrvrueuiicierereeses ettt 48
SUVIVOr path MEMOTY SITUCIUTE.....c.cuecuimrirerinisssssssissssnssinssissans s sseoee 49
Architecture of the trace-back Unit.........oovirinieininiii e 50
Input buffer for the tWO SOt INPULS....veveimriiriiisier s 51
Eight one-stage branch metrics generation UMit... .o veveeumccmmiisnesiscaneens 52
Architecture of the built-in testbench. ... 53
Error performance for coded and uncoded binary data....cocoeeeeiiiieiienene 70
Performance of the bit-error (BER) as a function of Ep/Ng.coovevuinviiinieneee 71

An expanded form of Figure 4.2 in range of Ey/N,
from 2.9 dB t0 3.05 dB.. et e 72

An expanded form of Figure 4.2 in range of Ey/N,

FFOM 3.8 AB 10 5 ABiniieeeeeeeeeeeeeee ettt 72
Average number of ACS computations per stage over | ST/ PN 73
Block diagram of the adaptive Viterbi deCOder.....ccouemcurmiiinnnnnisinerencees 77
Systolic array-based architecture for an adaptive Viterbi decoder................. 79

LIST OF TABLES

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Relationship of phase-shifted output clock to period shift........ccoeieeeeccnincnncns 44
One-stage branch metric evaluation.........ccoviiriiiiii s, 52
Device quiescent power estimator FESUlL.........cooiiiiiicenti e, 57
CLB logic power eStimator FeSUIS ..ot 57
Block selectRAM power estimator reSUILS...oo. vttt 58
DCM power eStMAtOr TESUIL.......cevemeuereeiicciintn sttt 59
Input/output power eStimator FESUlle. ... 59
PoOWwer eStMAtOr TESUILS.........vceuerrieereeemiiiiiteeire ettt e ne s sesn b s s n s ssananss 59
CLB logic power estimator results for the adaptive Viterbi decoder................. 82
Power and average toggle rate in CLB logic for the conventional and

adaptive VIterDi deCOUers...........ovovmmrcerncininiii s 83

Power consumption for the conventional and adaptive
VHETDT ACCOURTS e eeieeeeeeeeeeseeeeeeeeeeevrennsesemeemeeseeessessssesssssansennnassnsasssssssssssorsnnranses 84
FPGA resources utilization for the conventional and

adaptive VIterbi deCOTers........ourmruemcenmmciitiints s 85

- Xi -

LIST OF ACRONYMS

ASIC:

AWGN:

ACS:

BER:

BPSK:

CDMA:

DFF:

FPGA:

FEC:

FIFO:

LUT:

LIFO:

ROM:

Application Specific Integrated Circuit
Additional White Gaussian Noise
Addition, Comparison, and Selection.
Bit Error Rate
Binary Phase Shift Key
Code Division Multiple Access
D-type flip-flop
Field Programmable Gate Array
Forward Error Correction.
First-In First-Out
Look-Up Table

Last-In First-Out

: Random Access Memory

Read Only Memory

- xit -

LIST OF SYMBOLS

LIST OF SYMBOLS

Bq:

Adjacency matrix in the matrix-vector ACS computation
(i, j): The composite branch metric from state i of stage g-I to state j of stage q

of the strongly-connected trellis diagram

Ci: The codeword sequence corresponding to the composite branch
C,-j[kl: The k-th element of Cij

Cio: The codeword sequences with zero input sequence

Coj: The codeword sequences with zerp encoder state

CouTavg: The average load capacitance
4" : The minimum distance of all the survivor paths

dS

.. The survivor decision of state S,

d

wn.l: The composite 2-bit radix-4 decision

dy p.i..nqk-2; Thecomposite (K-1)-bit radix-2%-D decision
Fpmax: Clock frequency

K: Constraint length of a convolutional code

k: The number of inputs in a convolutional encoder

Kp: A constant whose value depends on the family of FPGA

- xiil -

LIST OF SYMBOLS

m: The number of stages in the shift register used for a convolutional encoder

min’!: The operation of finding the state number in the (q-1)-th stage that yields the
minimum distance of the paths at state j of state g

min: The operation of taking the minimum distance of the paths at state jof state q

n: The number of outputs in a convolutional encoder

N: The number of states in a trellis diagram

Nic: The number of the logic cells used by the application, Fpqax the clock frequency

Nour: The number of outputs in the design

Py: Path metric row vector in the matrix-vector ACS computation

pq): The partial path metric from the initial state 0 to state j of stage q of the trellis
diagram
Pgrar: Static power consumption resulting from leakage current by an inactive device

connected to the power supply

Piny: Internal power dissipation caused by the charging and discharging the capacitance

on any internal nodes that are switched
Pio: Input and output power dissipation resulting from the charging and discharging of
the external load capacitors connected to device pins, and the pull-ups used on the
inputs
r: Code rate of a convolutional code

Sur(j): The survivor at state j of stage ¢

Vce: Supply voltage

- Xiv -

LIST OF SYMBOLS

Vv Output swing voltage

swing-
S,: An arbitrary state of stage n
Sq(j): The survivor information at the g-th stage

Tog;: Average toggling rate at each clock

Togoy: Average toggling rate of the output at each clock

*®’: The ACS operation according to the likelihood criterion

a. : The maximum dynamic range of path metric in the conventional Viterbi algorithm

max

»_: The maximum branch metric.

max

r,,: The worldiength of a path metric

- XV -

CHAPTER 1

INTRODUCTION

1.1 Introduction

Convolutional codes are a type of basic error correction codes whose encoding process
can be viewed as convolving the message stream with the impulse response of the code.
The Viterbi algorithm [1] is known to be an efficient method for maximum likelihood
decoding of convolutional codes over a memoryless noise channel. Convolutional codes
and the Viterbi algorithm provide a strong forward error correction (FEC) scheme, which
has been widely utilized in digital communication applications. It has been shown that the
larger the constraint length K used in a convolutional encoding process, the more powerful
the code produced. Thus, a convolutional code with a relatively large constraint length of
K = 9 is used for the IS-95 code-division multiple access (CDMA) wireless communica-
tion standard [2]. The use of a large constraint-length convolutional code, on one hand,
can provide a better error correction performance. On the other hand, the complexity of
the Viterbi decoding process, both in terms of computations and mcmory requirements,

increases exponentially with the constraint length K of the code. As a result, it would be

CHAPTER 1. INTRODUCTION

difficult to have a hardware implementation of a Viterbi decoder with a large constraint
length, such as K= 9, to meet the requirements of the power, speed and area. In recent
year, Viterbi decoders have been mostly used in mobile systems that require portable bat-
tery operations, thus making the power consumption a critical concern to the designers.
The focus of this thesis is on a study of low-power design of a Viterbi decoder. In this
chapter, first the currently available architectures for a Viterbi decoder are first reviewed,
and then the challenges by employing these architecture to design and implement a large
constraint-length Viterbi decoder are discussed. Next, the existing approaches for low-
power design of the Viterbi decoders with K=9 are analyzed. Finally, the scope and organ-

ization of the thesis are presented.

1.2 Architectures for Implementation of a Viterbi Decoder

Designing an appropriate architecture plays a major role in achieving an efficient hard-
ware implementation of a Viterbi decoder. In this section, two types of Viterbi decoder
architectures, namely, the butterfly architecture and the systolic array architecture, are

reviewed and discussed in order to propose a novel Viterbi decoder architecture in a later

chapter.

1.2.1 Butterfly Architecture
Viterbi algorithm can be viewed as a process which finds the shortest path in a trellis
diagram [3] to match the received sequence by a dynamic programming technique {4]. A

trellis diagram is obtained by expanding the state diagram of a convolutional encoder in

tJ
.

CHAPTER 1. INTRODUCTION

time, and it can be decomposed into butterfly state-pairs in which each pair of its origin
and destination states are interconnected together. Figure 1.1 shows an example of a trellis
diagram with K=3 and its decomposed butterfly state-pairs. Decomposing a trellis into
butterfly state-pairs is straightforward, and it does not change the interconnections of the
trellis. Therefore, the commonly used Viterbi decoders are designed based on the butterfly

architecture in which each butterfly state-pair in a trellis is processed by a module that per-
forms three operations: addition, comparison, and selection (ACS). This module is usually

called ACS butterfly module, shown in Figure 1.2 [5, 6]. In this module, each of the four

stage -1 state stage q- 1 state q

Figure 1.1 A trellis diagram (K =3) and two butterfly pairs

adders is used to compute one of the four path metrics at stage q+1 by adding the branch
metric corresponding to one of the four butterfly interconnected branches to the corre-
sponding path metric at stage q. Then, each of the two comparators is used to make a com-
parison between the two computed path metrics at the state of stage q+1. Finally, each of

the two selectors is used to select the path metric with the shortest distance (Euclidean or

CHAPTER 1. INTRODUCTION

Hamming distance) at the state of stage q+! depending on the comparison result by the

corresponding comparator.

PM(Si) — :
BM(Si. Sp _-: :lr\Dl)[.kll
PM(Sm)

BM(Sm, §j)

BM(Si, Snm) —-—_:m}
h (‘()Ml’:\kA‘l'(il——b SELECTOR =% PM(Sn)
BM(Sm, Sn)—m -

BM(Si. Sj). BM(Sm. Sj). BM(Si. Sn) and BM(Sm. Sn) : Branch Metric

II:I COMPARATOR J-rb SELECTOR —® PM(Sj)

T]ADDF.RII

b DM(5j)

> DM(Sm)

v

PM(S1) , PM(Sm): Path Metric of state Si and state Sm

DM(Sj), DM(Sm): Decisions of state Sj and state Sn
Figure 1.2 Butterfly structure of an ACS module

The butterfly architecture-based Viterbi decoders can be categorized into two classes;
serial and parallel. A serial Viterbi decoder sequentially processes the ACS computations
at each trellis stage by iteratively using one ACS butterfly module. On the other hand, in a
parallel Viterbi decoder, ACS butterfly modules corresponding to all butterfly state-pairs
in a trellis diagram are designed to process ihe ACS computations simultaneously. Obvi-
ously, a serial Viterbi decoder can be advantageous from the viewpoint of power dissipa-
tion and hardware complexity. However, the number of states per trellis stage increases
exponentially with the constraint length K of a code. If a serial architecture is used to
implement a large constraint-length Viterbi decoder, there will be a large number of itera-
tions for the ACS computations at each trellis stage. As a result, the speed of a serial Vit-

erbi decoder will be greatly slowed down. On the contrary, a parallel Viterbi decoder is no

CHAPTER [. INTRODUCTION

doubt able to achieve a high-speed decoding due to its parallel computations. However, for
decoding a convolutional code with a large K, a large number of components should be
involved to process ACS computations, and the interconnections between components will
become very complex. Consequently, the amount of power dissipation and hardware

resources (area) would increase exponentially.

1.2.2 Systolic Array Architecture

Unlike the serial and parallel architectures that are designed by decomposing states in a
conventional low-connectivity trellis diagram into butterfly pairs, a systolic array architec-
ture suggested by Chang and Yao [7] is derived by formulating the Viterbi algorithm
employing matrix-vector multiplication. Since the adjacency matrix in this formulation is
very sparse, the utilization of the array processors in this systolic architecture is rather
poor. In order to resolve this problem, Chang and Yao also proposed the strongly-con-

nected trellis decoding in [7]. As shown in Figure 1.3,a strongly-connected trellis diagram

stage -1 state q state q+1 stage q-1 state q+1

Figure 1.3 A strongly-connected trellis diagram

CHAPTER 1. INTRODUCTION

is obtained by merging the stages in each group of (K-1) stages in the original low-connec-
tivity trellis, in such a way that every state in the (K-1)-th stage of the group is reachable
from the states of the preceding (K-2) stages of the group. Obviously, by using strongly-
connected trellis decoding method, the adjacency matrix in the matrix-vector formulation
is no longer sparse. As a result, the utilization of systolic array processors as well as the

throughput of the decoding can be enhanced

Yy —t _— >
! Coo Ca Co2 Co

h(3.0) by D32 [by(3.3)
b,(0.0) by(0.1) by(0.2) by(0.3)

—a{ R (0) |—a] Ry(1) |—of R (2) =0 Ry(3)

¥

PATH METRIC MEMORY
Pyt(O. o, Pei3) |

Figure 1.4 A systolic architecture for a Viterbi decoder with K=3

Figure 1.4 shows the systolic array architecture for a Viterbi decoder with K=3 presented
in [7). This is derived by employing the systolic array architecture for processing a matrx-
vector multiplication [8]. The modification carried out in this architecture is that array pro-
cessors do not perform multiplications, but process ACS computations in order to find the
shortest path in a trellis diagram. The matrix-vector ACS computation in [7] is given as

P,=P, _,®B, , where P, represents the path metric row vector of the g-th stage, whose J-

th element is denoted by P(j), and B the adjacency matrix whose ij-th element is denoted

by b(i, j). This matrix-vector ACS computation is processed by two interconnected linear

CHAPTER 1. INTRODUCTION

systolic arrays. In the upper systolic array, the composite branch metric b.(i, j) is gener-
ated by calculating the Euclidean distance between the codeword Cj; and the received data

Vg Where €, = C,®C,), and i, j = 0...., 3 [7]. The codeword Cy; stays inside each proces-

sor, and C; moves to the right. In the lower systolic array, the path metric P(j) of stage q
is computed. The intermediate ACS result denoted by R ()) stays inside the j-th processor,
whereas P, /() of stage q-1 moves to the right. All data movements in the two systolic

arrays are synchronized. This design can thus be viewed as a “result stay” systolic array

architecture.

It is seen that the systolic array architecture presented in [7] is a class of pipelined array
architectures that feature the properties of modularity, regularity, local interconnectivity, a
high degree of pipelining, and highly synchronized multiprocessing. It can provide for dif-
ferent convolutional code structures, a general and local interconnection. However, the
numbers of components and pipeline stages in the systolic array architecture presented in
[7] increase exponentially with K. As a result, the design will be excessively hardware-
resource and power consuming, and at the same time, clock-to-data skews caused by the
deep pipelining will become critical for a proper functioning of the system. In addition,
the processing times of the two operations, namely, the composite branch metric genera-
tion and the path metric update, will differ significantly as K becomes large. Conse-
quently, it is a challenging task to ensure that the two types of processors with different
processing times can be synchronized, without slowing down the clock-rate. Moreover,
the employment of strongly-connected trellis decoding method carries a drawback that the

amount of ACS computations becomes excessive as the constraint length K becomes

CHAPTER 1. INTRODUCTION

large. Consequently, this excessive amount of ACS computations will result in a large

amount of power consumption in its hardware implementation.

1.3 Approaches to Reduce Power Consumption

In recent years, some attempts have been made for low-power design of Viterbi decod-
ers with K=9. In this section, we discuss several features of such schemes.

The latest cffort in the design of low power bit-serial Viterbi decoder, proposed by
Chang, Suzuki and Parhi [9], is based on a parallel butterfly architecture with bit-serial
arithmetic. In this design, the employment of bit-serial arithmetic for the ACS computa-
tions is the key in reducing the power consumption. By using the bit-serial arithmetic, the
number of components and the complexity of the interconnections between components in
the Viterbi decoder is reduced over that using a parallel butterfly architecture with parallel
arithmetic. As a result, the power dissipation is reduced. A disadvantage for using bit-
serial arithmetic technique is that extra memory elements are required to store intermedi-
ate results of the ACS computations. Since this design is targeted for application specific
integrated circuit (ASIC) technology, this problem is solved at the circuit level by develop-
ing an area-efficient storage unit for the state metric, which is based on the first-in first-out
(FTFO) architecture. In addition, since there are less switching activities generated in a
FIFO register than in a conventional shift register, the use of the FIFO registers instead of
the conventional shift registers in an ACS unit makes the design of the ACS unit power

efficient.

CHAPTER 1. INTRODUCTION

The another low-power ASIC design of the Viterbi decoder has been proposed by Kang
and Willson [10]. In this design, the power efficient serial butterfly architecture is obtained
by combining a butterfly ACS unit with a flipped butterfly ACS unit. Furthermore, the
gated-control scheme was employed to reduce spurious transitions on high-capacitance
bus lines, and Gray code was used to reduce the number of transitions in path-memory
addressing [10].

Beside the two low-power Viterbi decoders based on ASIC technology discussed above,
two Viterbi decoders with a large constraint-length K=9 targeted for FPGA implementa-
tions have been proposed by Pandita [5] and by Park and Rho [6]. These two designs sim-

ply use a serial butterfly architecture, without using any other power reduction technique.

1.4 Scope of the Thesis

From the discussion above, it is clear that most low-power Viterbi decoders with K=9
are designed based on the serial butterfly architecture with little provision for high speed.
There exists just one Viterbi decoder implementation based on the parallel butterfly archi-
tecture in which the employment of bit-serial arithmetic technique plays the role of mod-
erately reducing the hardware complexity in order to provide a low-power design. At
present, there is no implementation for a large constraint-length, for instance for K=9, Vit-
erbi decoder using the systolic array architecture suggested by Chang and Yao [7]. The
systolic array architecture in [7] can provide a moderate speed over the serial and parallel
architectures due to its high degree of pipelining and multiprocessing. It can also provide,

for different convolutional code structures, a general method for a simple adjacent cell

CHAPTER 1. INTRODUCTION

interconnection. It can be naturally mapped into an FPGA device, since (a) there are a
large number of D-type flip-flops (DFFs) available in most commercial FPGA devices,
such as the Xilinx VirtexII series, and (b) the primitive logic cells of FPGA devices are
organized as an array. However, to design the Viterbi decoder for decoding a convolutional
code with a large value of K, say, K=9 and a code rate of r=1/2, the complexity of the
computations will render the adoption of the systolic array architecture in [7] not to be fea-
sible.

In this thesis, first the conventional Viterbi algorithm is reformulated for the strongly-
connected trellis decoding. Then, a design and implementation of the reformulated Viterbi
algorithm for decoding the convolutional code with K=9 and r=1/2 using the Xilinx Vir-
texI1-XC2V 1000-4FG256 chip is presented. In this design, a novel systolic array-based
architecture with arithmetic pipelining, time multiplexing and clock-to-data skews toler-
ance is developed. Further, an adaptive Viterbi algorithm that is based on strongly-con-
nected trellis decoding is proposed by modifying the adaptive Viterbi algorithm based on
low-connectivity trellis decoding. The objective of this proposed algorithm is to reduce the
excessive amount of ACS computations resulting from the strongly-connected trellis
decoding. By using this algorithm, the design and implementation of an adaptive Viterbi
decoder for decoding the convolutional code with K=9 and r=1/2 using the Xilinx Vir-
texI[-XC2V 1000-4FG256 chip is presented. In this design, the proposed systolic array-
based architecture for the Viterbi decoder is modified for the implementation of this adap-
tive algorithm. A process of spurious toggle reduction is developed to reduce power con-

sumption in the design. Simulation results show that the proposed adaptive Viterbi

-10-

CHAPTER 1. INTRODUCTION

algorithm can reduce the large amount of ACS computations significantly while maintain-
ing almost the same error performance as that of the non-adaptive Viterbi algorithm. This
reduction in the amount of computations results in a substantial reduction in overall power

consumption compared to the implementation of the non-adaptive Viterbi algorithm.

1.5 Organization of the Thesis

This thesis presents a study on low-power designs and implementations of systolic
array-based Viterbi and adaptive Viterbi decoders. The thesis is organized as follows.

In Chapter 2, a review of the convolutional encoding process, the Viterbi decoding pro-
cess, and the strongly-connected trellis decoding method is given. This is followed by the
formulation of the Viterbi algorithm based on strongly-connected trellis decoding. In
Chapter 3, a design and implementation of the Viterbi decoder for decoding the convolu-
tional code with a constraint length of 9, and a code rate of 1/2 using the Xilinx VirtexII-
XC2V1000-4FG256 chip is presented. A performance analysis of the decoder in terms of
speed, power and FPGA resource utilization is carried out based on implementation
results and estimation results by the VirtexII power estimator. In Chapter 4, an adaptive
Viterbi algorithm that is based on strongly-connected trellis decoding is proposed, and a
formulation of the proposed algorithm for hardware implementation of an adaptive Viterbi
decoder is presented. A comparison between the proposed algorithm and the non-adaptive
Viterbi algorithm in terms of the error performance and the amount of ACS computations
based on the simulation results is presented. In Chapter 5, a design and implementation of

a low-power adaptive Viterbi decoder with a constraint length of 9 and code rate of 1/2

o1 -

CHAPTER 1. INTRODUCTION

using the Xilinx VirtexII-XC2V 1000-4FG256 chip is presented. A performance analysis
of this design in terms of speed, power and FPGA resource utilization is carried out, and
the results of comparison with the Viterhi decoder are presented. Chapter 6 concludes the
thesis by highlighting the findings of the investigation undertaken and by suggesting some

possible future work in this area.

CHAPTER 2

A VITERBI ALGORITHM FOR THE
STRONGLY-CONNECTED TRELLIS
DECODING

2.1 Introduction

As noted in Chapter 1, convolutional codes and the Viterbi algorithm are widely used in
digital communication systems as a forward error-correction scheme. Convolutional codes
were first introduced by Elias [11] in 1955 as an alternative to block codes. Shortly there-
after, Wozencraft [12] proposed sequential decoding as an efficient decoding scheme for
covolutional codes, and experimental studies soon began to appear. In 1963, Massey [13]
proposed a less efficient but simpler-to-implement decoding method called threshold
decoding. In 1967, Viterbi [14] introduced a decoding algorithm that was relatively easy
to implement for convolutional codes with constraint length K not larger than 9, and has
since become to be known as the Viterbi algorithm. Later, Omura [4] showed that the Vit-
erbi algorithm was equivalent to a dynamic programming solution to the problem of find-

ing the shortest path through a weighted graph. In 1973, Forney [1,3] recognized that it

-13-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

was in fact a maximum likelihood decoding algorithm for convolutional codes, that is, the
decoder output selected is always the codeword that gives the largest value of the log-like-
lihood function. Often, the process of Viterbi decoding has considered in the literature as
equivalent to the solving the shortest path problem in a trellis diagram. In 1989, Chang and
Yao showed that the Viterbi decoding process of finding the shortest path in a trellis dia-
gram can be formulated by employing a general matrix-vector multiplication [7], and it
can be realized by a systolic array. At the same time, they also presented a strongly-con-
nected trellis decoding method in order to increase the throughput of the decoding and to
improve the efficiency of the hardware utilization.

This chapter begins with describing the convolutional encoding and the process of the
Viterbi decoding for finding the shortest path in a trellis. Then, the strongly-connected
trellis decoding method is described. The processes of generating the composite branch

metrics and updating the path metrics, ACS computations using modulo arithmetic, and

radix-2%! trellis trace-back updating in the Viterbi decoding are formulated for the pur-

pose of hardware implementation of a Viterbi decoder.

2.2 Encoding of Convolutional Codes

A convolutional code differs from block codes in that the encoder contains memory, and
the encoder outputs at any given time depend not only on the inputs at that time unit but
also on the previous input blocks. A convolutional code that is defined as (n, k, m) can be
generated by an encoder with a k-input, n-output linear sequential circuit including m-

stage shift registers. Each information bit remains in the encoder for up to m+1 time units,

S14-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

and during each time unit can affect any of the n encoder outputs depending on the m-
stage shift registers connections. Generally, K=m+1 is defined as the constraint length of a
code, and k/n as the code rate of a code. In addition, connections from the m-stage shift
register and the current inputs to each output is represented by a sequence called generator
sequence. For example, an encoder for a (2, I, 3) convolutional code is shown in Figure
7 1. Note that the encoder consists of a 3-stage shift register together with 2 modulo-2
adders and a multiplexer for serializing the encoder output. The three generator sequences
in this encoder are G = (1 1 D, G(H =(1 1 1), and G(2)=(1 1 0). G(0) represents that
there are three connections to the bit-v0 output from the current input u, the first stage,
and the second stage of the shift register. G(1) represents that there are three connections
to the bit-vl output from the current input u, and the first and the second stages of the
shift register. G(2) represents that there are only two connections to the bit-v3 output from

the current input u and the first stage of the shift register.

v0

-

Figure 2.1 A (3,1, 2) binary convolutional encoder

vl

v2

Al

-15-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

A generator sequence can be viewed as an impulse response of the encoder. Therefore, it
follows that a convolutional code can be obtained by convolving the input sequence with
the impulse response of the encoder. The number of stages m in the shift register and the
generator sequences to be used affect the minimum Hamming distance of a code that
determines the maximal number of correctable bits of a code. The use of a large constraint
length K means that m has to be large. As a consequence, a convolutional code with a bet-

ter error correction capability is produced.

Figure 2.2 State diagram for an encoder

Since a convolutional encoder is a kind of sequential circuit, a convolutional encoding
process can be described by a state diagram, in which the binary bits of its shift register
represent a state of the encoder. Figure 2.2 shows a state diagram for a (3, 1, 2) code. As
mentioned in Chapter 1, the state diagram of an encoder can be expanded in time, and
resulting structure is called a trellis diagram. A trellis diagram for a (3, 1, 2) code with an

information sequence of length L=5 is shown in Figure 2.3. In this case, the encoder

-16-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

always starts from state Sy and retums to state Sg. This is done by adding a reset sequence

consisting of m bits of zeros to the information bits. In the first m (=2) time units the

encoder departs from state Sy, and in the last m (=2) time units the encoder returns to state
So. It is seen that not all the states can be reachable in the first m (=2) or the last m time

units. However, in the central part of the

I//

©

=

0 I 2 3 4 5
= TIME UNILS i

Figure 2.3 Trellis diagram for a (3, 1, 2) code withL =5 [15]

trellis, all the states are reachable, and a trellis at each time unit represents a replica of the

state diagram. There are 2K(=2!=2) branches leaving and entering each state. At each time
unit (or stage), the upper branch leaving each state represents the input ‘1°, while the lower

branch represents the input ‘0’. Each branch is labeled with n (=3) corresponding outputs

-17-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

called codeword, and each of the oL (= 32) codewords of length N=n(L+m)=21 corre-

sponds to a unique path through the trellis. In the general case of an (n, k, m) code and an
information sequence of length kL, there are 2K branches leaving and entering each state,

and 2K distinct paths through the trellis corresponding to the 2K code words.

2.3 Viterbi Decoding Process

The Viterbi algorithm is a maximum likelihood (ML) method for decoding of convolu-
tional codes over an additive white Gaussian noise (AWGN) channel. Figure 2.4 shows a
convolutional coded system on an AWGN channel [15]. At the transmitter end, the output

of a convolutional encoder (v) is modulated into signal symbols to be transmitted through

Discrete memoryless channel

F————————— = = - = 1
! |
- Convolu- | v s(t)
| u . L
[,)lg“‘a —»| tional +—1 Modulator l
source
encader [I
I 1 |
| [
l n(t) ——s] AWON |
channel
| |
[Demodulator r(t) I
I r——— - - - = - - - — 1 |
R] | | L J - i |
Digital | Y Viterbi [,y 1| Q-level __°'7< Mg:f:re b
sink | decoder I | quantizer I
I ‘ detector | | |
| O o o o o 2 |
L e e e e e o e e - 4

Figure 2.4 Convolutional coded system on an additive white gaussian noise channel
the AWGN channel. At the receiver end, the received signal symbols are demodulated and
are quantized into several levels depending on using the hard decision or the soft decision.

In the hard decision case, the received signal is quantized into two levels, either zero or

-18 -

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

one, whereas in the soft decision case, it is quantized into more than two levels. The Vit-
erbi decoder generates the estimate @ of the information sequence « by ML method. In
this method, all the codewords are assumed to be transmitted equally likely, and P(r | v)
that represents the probability of the received sequence r over the codeword sequence v to

be transmitted is maximized. Further, if logP(r|v) is maximized, P(r | v) is maximized.

N-1
Thus, logP(r|v) is called log-likelihood function, and expressed as logP(r|v) = Y logP(r,|v,)
t=0

This can be interpreted with a trellis diagram. The log-likelihood function legP(r{v) is
called metric associated with the path with the codeword sequence v in a trellis, whereas

the term logP(r,|v,) is called metric corresponding to the i-th branch with codeword v; along

the path. It has been proved that if the Hamming distance or the Euclidean distance
between the received sequence r and the codeword sequence v is minimized, logP(r|v) is
maximized [15]. This distance can be obtained by accumulating the branch metrics that
are represented by the Hamming or Euclidean distance between the received word r; and
the codeword v; (i = 0, 1,..., N-1). Whether to compute the Hamming distance or the
Euclidean distance in a ML method depends on whether hard demodulator decisions or
soft demodulator decisions are made. The Hamming distance is computed with hard
demodulator decisions, whereas the Euclidean distance is computed with soft demodulator
decisions. Therefore, it is understandable that the ML decoding of convolutional codes can
be viewed as a process of finding the shortest path in a trellis diagram.

In general, the Viterbi decoding process of finding the shortest path in a trellis can be

divided into three parts: generation of the branch metrics, updating the path metrics and

_19-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

making decisions for the survived paths, and the trace-back operation. Generation of the
branch metrics computes the distance between two adjacent nodes (states) in a trellis dia-
gram. Updating path metrics and making decisions for survived paths process the ACS
computations at each state. At a given stage, all the path metrics entering a given state are
computed by adding the branch metrics entering that state to the corresponding path met-
rics at the preceding stage, and then the computed path metrics of the state are compared
and the shortest one selected to update the path metric of that state. At the same time, the
survivor is decided corresponding to the path with the shortest distance at the state. In the
trace-back operation, the decoded output sequence is produced by tracing the survivor
decisions that are stored at each trellis stage. If a reset sequence is appended after each
information sequence, the trace-back operation is performed from the initial state at stage
m+L back to the initial state at stage 0. However, if a reset sequence is not used, the trace-
back length should be at least 5K stages starting from any state of the current stage ina

truncated trellis diagram.

2.4 Strongly-Connected Trellis Decoding Method

The strongly-connected trellis decoding means that the process of the Viterbi decoding
is performed based on a strongly-connected trellis diagram. It has been shown in [7] that
for a convolutional code of rate /i and constraint length K, groups each containing a min-
imum of K-/ stages are needed to obtain a strongly-connected trellis diagram from the
original low-connectivity trellis diagram. As described in Chapter 1, a strongly-connected

trellis diagram can be obtained by organizing the original low-connectivity trellis in

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

groups of (K-1) contiguous stages and merging the stages in each group. It means that, in a
strongly-connected trellis diagram, every state in the (K-1)-th stage of the group is reach-
able from any state of the preceding (K-2) stages of the group. As a result, the adjacency
matrix based on a strongly-connected trellis diagram will have no empty entry. As shown
in Figure 1.3, in each group of (K-1) stages of the original low-connectivity trellis dia-
gram, there is only one path between any state of the (K-1)-th stage of the group and any
state of the preceding (K-2) stages of the group. This means that a strongly-connected trel-
lis diagram contains all the possible paths corresponding to its original low-connectivity
trellis diagram. Thus, when the Viterbi algorithm is used to find the shortest path in a
strongly-connected trellis diagram, the feature of the maximum likelihood decoding can
not be changed. This maintains the error correction capability of the low-connectivity trel-
lis decoding in the strongly-connected trellis decoding. However, the computations in the
strongly-connected trellis decoding process are somewhat different from those required in
the low-connectivity trellis decoding process. In the next section, we will reformulate the
conventional Viterbi algorithm based on the low-connectivity trellis decoding for strongly-

connected trellis decoding.

2.5 Reformulation of the Conventional Viterbi Algorithm for the Strongly
Connected Trellis Decoding
2.5.1 Generation of Composite Branch Metrics
Let K be the constraint length and r=1/n be the code rate of the given low connectivity

trellis diagram. By combining (K-1) branches of the low-connectivity trellis diagram into

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

one single branch, we can convert it into a strongly-connected trellis diagram; the single

branch in the latter is called a composite branch [7]. Let b (i, j) represent the composite

branch metric from state i of stage ¢-/ to state j of stage q of the strongly-connected trellis

diagram, and C;; a binary vector of n(K-1) elements, representing the codeword sequence
corresponding to the composite branch. Let y, be a quantized vector of n(K-1) elements,

representing the received real-valued sequence at stage q. It has been shown in [7] that

under the maximum likelihood criterion the evaluation of b,(i,j) can be expressed as

b (i) = f(y,.Cy)) 2.1)

where fis the likelihood function of y, and C;. For example, fevaluates the Euclidean dis-
tance between Cj; and y, with soft demodulator decisions, and computes the Hamming
distance between Cj; and y, with hard demodulator decisions. [n this study, binary phase

shift keying (BPSK) modulation and soft demodulator decisions are assumed. Under the
BPSK modulation, the minimum and maximum amplitude values -a and a can be used to

respectively represent the symbol values ‘1’ and ‘0" of a binary bit of Cy;. The codeword

symbol x[k] can then be expressed as

x[kl= {2C;[k]-1}a, k=0.1..., n(K-1)-1 (2.2)
where Cy;[k] represents the & th element of Cj;. In this case, (2.1) can be written as
.. 2 2
bq(z, = (_vq[O]—(?.C,-j[O] - 1Da) +(_vq[l]—(2C,-j[l] -Da) +...

+(r [n(K=1)= 1= Cyn(K - 1) = 11=1)a)’ (2.3)

e o

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS NECODING

This is equivalent to the Euclidean distance between the codeword symbols and the
received symbols corresponding to the (K-/) branches in the original low-connectivity
trellis diagram. Similar to the low-connectivity trellis decoding, in the strongly-connected
trellis decoding, comparisons between the path metrics are required to determine the sur-
vivor path. Thus, the differences between the path metrics rather than the actual value of
the path metrics are of concern. That is, one can arbitrarily add a constant to all the path
metrics without changing the comparison result. This constant can be viewed as the one to
be added to the composite branch metrics, since the path metrics are made up of the accu-

mulated composite branch metrics. In (2.3), the received sequence y, is used to generate

the composite branch metrics of stage q so that each composite branch metric of stage q
includes the constant _vq[O]2 + yq[|]2 ey + _vq[n(K-l)]z. Therefore, if this constant is sub-
tracted from b,[i.j], the comparison result between the path metrics at stage q will not be
changed. Furthermore, in (2.3) includes the term [(2C,01-Dal’+ [QC;[1]-Dal* ...+
[(.’ZCij[n(K-Z)]-l)a]Z. which equals to n(k-1) a’ corresponding to Cij[k] =‘0" or ‘1", k=0,
l,..., n(K-1). Likewise, the constant n(k-l)a2 can be subtracted from bq[i,ﬂ and the result-
ing value divided by 2a without altering the result of comparison between the path metrics
of stage . Therefore, (2.3) can be further simplified as
bolin jl = =(2C101= 1)y [01-(2C,[11= Dy 11 - .

—(2Cij[n(K—l)—ll—l)_vq[n(K—l)—l] 24)

-23.

CHAPTER 2. A VITERBIT ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

Thus, the computation of the Euclidean distance for a composite branch is simplified into

signed additions depending on whether C;j[k] = ‘0" or *I”, in the same way as presented in

[9]. Note that the simplification could result in the value of the composite branch metric

given by 2.4 to be positive or negative. As a result, the hardware implementation would

become simple.

From (2.4), it is clear that before the composite branch metric bq[i,f] is evaluated, the
codeword sequence C;; should be generated. As noted in [7], a convolutional encoder can

be viewed as a linear time-invariant system in which the total response can be decomposed
into two parts, the zero-input response and the zero-state response. Thus, the codeword

sequence Cj; with the initial encoder state { and the input sequence j, can be expressed as
- 7
Cij=Cyp®Cy; (2.5)

where C;g represents all the codeword sequences corresponding to i = 0,1...., 2%-L.1) with
zero input sequence, Cy; represents all the codeword sequences corresponding toj=0,1....,

(2%-1-1) with zero encoder state, and the symbol @ represents bitwise modulo 2 addition.

Obviously, if all the codeword sequences C,-j with i, j=0,1,..., (2K"-l) are stored, it will

need a huge memory space of N-n(K-1) bits. In view of (2.5), only the minimum sets of
the codeword sequences Cp and Cy; with i, j = 0,1...., (2%-L_1) are required to be known

and stored, and the other codeword sequences can simply be derived from these Cjy and

Co-

.04

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

2.5.2 Updating of Path Metrics

It is known that finding the shortest path in a trellis can be realized mainly by process-
ing the ACS computation for the path metric at each state of each trellis stage. According
to [7], the ACS computation corresponding to all the states of a trellis stage can be formu-

lated into a matrix-vector computation. Given an (n, 1, m) convolutional code, the total
number of states N= 2". Let P, be a Ix N row vector, whose jth element is denoted by
p4() representing the partial path metric from the initial state O to state j of stage g of the
trellis diagram. Let B, be an N x N adjacency matrix, whose ij-th element is denoted by
b,(i, j) representing the branch metric from state i of stage ¢-1 to state j of stage g of the

trellis diagram. Then, the viterbi algorithm can be formulated as
P, =P,_®B, (2.6)

where the operator ® denotes the ACS operation according to the likelihood criterion
measured by the distance between the received data sequence and the codeword sequence.

For example, the path metric at state j of stage ¢ can be expressed as
pq(j) = min{pq_l(O) + bq(O, i [’,,_l(l) +bq(L) ...,
Pa\(N=D+b(N-1)}, 2.7
and the survivor at state j of stage ¢ can be expressed as

. . -1 . .
SIll‘q(_]) = min {pq_ (0) + bq(O, i Pq- (1) +bq(l, J)eees

Pyt (N= 1) +b(N=1,)} (2.8)

_25.

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

where min represents the operation of taking the minimum distance of the paths at state j

of stage g, and min’' represents the operation of finding the state number in the (¢-1)-th
stage that yields the minimum distance of the paths at state j of stage q.

Obviously, the adjacency matrix in the matrix-vector ACS computation can provide all
the metrics corresponding to the branches from any state of stage g-1 to any state of stage

g at a trellis stage. In the formulation based on the low-connectivity trellis decoding, there
are only 2% (i.e k=) nonempty entries in each row or each column of the adjacency

matrix, whereas its other 2% entries arc empty and do not appear in a regular form, such
as a band matrix. As a result, the adjacency matrix is very sparse, and a hardware utiliza-
tion of a corresponding systolic array is poor. However, by adopting the strongly-con-
nected trellis decoding method, there is no empty entry in the adjacency matrix B,
Therefore, the efficiency of hardware utilization can be improved and the throughput of

the decoding can be increased.

2.5.3 Modulo Arithmetic for ACS

According to (2.7), the recursive path metric update at each state of a stage results in
unbounded word growth due to the accumulations by a branch metric of the stage. To
avoid normalization, which costs additional circuits in hardware implementation and
increases the processing time, the modulo arithmetic approach [16, 17] is adopted here. It
is known that for the original radix-2 trellis, the Viterbi algorithm inherently bounds the

maximum dynamic range a,,,, of the path metric at each state as

-26-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

e € MnaclOZaN (2.9)

max — " "max

where N is the number of states and %, is the maximum branch metric. In the Viterbi
decoding process, any two updated path metrics at a state of stage q, P,[i,j] and P[1,j], are

compared using subtraction. [t has been shown in [16, 1 7] that if [P [i, j1 =PIl jI| <An the

comparison can be evaluated as (P[i, jl - P,[L jlimod24,,. Without any ambiguity. Hence,
the updated path metrics at a state of a stage can be computed modulo 24, . In this case,

the wordlength of the path metric can be evaluated by

Cpie = log-A, .+ 1 (2.10)
The strongly-connected trellis can be viewed as a radix-2%-D trellis obtained from the
original radix-2 low-connectivity trellis. In the strongly-connected trellis decoding, the
dynamic range of the path metric increases, since a (K-/)-stage composite branch metric is

added at each strongly connected stage. The wordlength of the strongly connected path

metric can be deduced as

Fpi = log (8, + (K- DA+ 1 (2.11)

2.5.4 Radix-2%"! Trellis Trace-Back Update
The trace-back update can be viewed as a process to generate decoded outputs through

tracing back the survivor decisions made according to the path metrics comparison result

of each state at a stage, and stored along the trellis stages. The radix-2(&1 trellis trace-

.27-

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

back update can be deduced starting from the trace-back update with the original radix-2
trellis [17].
Given a radix-2 trellis, let n represent the trace-back starting stage, S, an arbitrary state
of stage n, and « ,,S the survivor decision of state S,,. The state of the previous stage S,_;
from which the survived path at state S, results is given by
S, =d,5S,>> D, (2.12)
where §,>>1 represents the right shifting the constant of S, by one bit. Hence, the state

S,.; can be traced back by right shifting out the state §,, one bit at one end of a state regis-

ter. Meanwhile the decision d,° is shifted in at the other end. If two trellis stages are
merged together, an equivalent radix-4 trellis is derived. In such a case, the trace-back iter-

ations from n-th stage to (n-2)-th stage can be expressed as

Su-l’ = ([II-/S(SII-I >> 1)
=d,. 555, >> 1)>> 1)
=d, .10 (S>> 2), (2.13)

where d,, ,,_; is the composite 2-bit radix-4 decision. Similarly, if (K-1) trellis stages are
merged together, the strongly connected radix-2%"Y trellis is obtained. In this case, the
trace-back iterations from n-th to (n-(K-1))-th stage can be expressed as

Spik-1) =y net....nk-2) (S>> (K-1)) (2.14)
where d,, ;. n(k-2) is the composite (K-1)-bit radix-2(K-1) decision. Obviously, instead

of decoding only one bit per trace-back iteration in the original radix-2 low-connectivity

trellis Viterbi decoding, (K-1) bits can be decoded per trace-back iteration in the trace-

.28 -

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

back decoding process based on the strongly connected radix-2®D trellis. Thus, the
strongly-connected trellis decoding can increase the throughput by a factor of (K-7) com-

pared to that of using the original low connectivity trellis decoding. Since any state of the

radix-2K- trellis diagram can be represented by (K-1) binary bits, (2.14) shows that the

decision.

2.6 Summary

[n this chapter, the convolutional encoding, the process of Viterbi decoding, as well as
the strongly-connected trellis decoding methods have been reviewed. Then, we have refor-
mulated the conventional Viterbi algorithm, which is based on low-connectivity trellis
decoding, for the case of a strongly-connected trellis decoding. The processes of generat-

ing of the composite branch metrics and updating of the path metrics, ACS computations

using modulo arithmetic, and radix-2%"! trellis trace-back updating in the Viterbi decod-
ing have been formulated for the purpose of hardware implementation of a Viterbi
decoder. It has been shown that a composite branch metric can be generated by evaluating
the Euclidean distance between the codeword symbols and the received symbols when a
soft demodulator decision is made. The evaluation for generating a composite branch met-
ric has been simplified to process only signed additions instead of multiplications and
additions under BPSK modulation. As a consequence, the complexity of the hardware
implementation of the composite branch metrics can be reduced. In addition, the use of the

modulo arithmetic for the ACS computations has avoided the process of normalization in

-29.

CHAPTER 2. A VITERBI ALGORITHM FOR THE STRONGLY CONNECTED TRELLIS DECODING

updating the path metrics, resulting in savings of the hardware and the processing time
overhead. Since a strongly-connected trellis decoding increases the throughput of the

decoding by a factor of (K-1) compared to that using the conventional low-connectivity
trellis decoding, the process of trace-back updating of a radix-’.ZK'lstrongly-connected trel-

lis trace-back has been derived from that of radix-2 low-connectivity trellis.

-30-

CHAPTER 3

DESIGN AND IMPLEMENTATION OF
A VITERBI DECODER

3.1 Introduction

In the previous chapter, we presented a formulation of the Viterbi algorithm based on
the strongly-connected trellis diagram. As mentioned in Chapter 1, the systolic array
architecture of the Viterbi decoder presented in [7] can be advantageous in hardware
implementation due to its modularity, regularity, local and general interconnections, high
degree of pipelining, and highly synchronized multiprocessing. However, the number of
pipeline stages (and hence the number of array processors) in the architecture presented in
[7] increases exponentially with K. For instance, for decoding a convolutional code with
K=9 and r=1/2, there should be 256 processors in the corresponding 256 pipeline stages in
both the systolic array for generating the composite branch metrics and the systolic array
for processing the path metrics. As a result, the design will be excessively hardware-

resource extensive and power consuming, and at the same time, clock-to-data skews

-3t -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

caused by the deep pipelining will become critical for proper functioning of the system. In
addition, the processing times of the two operations, namely the composite branch metric
generation and the path metric update, will differ significantly as K becomes large. For
example, with K=9, the eight Euclidean or Hamming distances corresponding to the eight
branches in the original low- connectivity trellis diagram should be computed and added
together for generating a composite branch metric, whereas there are only three operations
(ACS) in updating a path metric. Consequently, it is a challenging task to ensure that the
two types of processors with different processing times can be synchronized, without
slowing down the clock-rate.

In this chapter, the design and implementation of the Viterbi decoder for decoding a
convolutional code with a constraint length of 9 and code rate of 1/2 using the Xilinx Vir-
texI[-XC2V 100-4FG256 chip is presented [18]. In this design, a novel systolic array archi-
tecture with arithmetic pipelining and time multiplexing is developed for updating the path
metrics. In addition, a scheme for avoiding large clock-to-data skews and for providing a
tolerance to low clock-to-data skews is devised to ensure that timings in the design are not
violated. Moreover, the trace-back strategy and trace-back unit, the input buffer and one-
stage branch metric generation, and the built-in testbench are designed to realize the com-
plete functionality of the system. Finally, the performance analysis in terms of speed,
power and FPGA resources utilization is presented hased on the implementation results
provided by the Xilinx implementation tool and estimation results by the Virtex-IT power

estimator.

.32

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

3.2 Systolic Array Architecture for ACS Computations
This section presents a novel systolic array architecture for processing ACS computa-

tions for each stage, by exploiting the time multiplexing and arithmetic pipelining tec-

niques.

3.2.1 Adjacency Matrix Partitioning and Time Multiplexing

As shown in Chapter 2, updating of the path metrics at a given stage in the Viterbi
decoding process can be formulated as a matrix-vector multiplication for ACS computa-
tion. For K=9, the matrix-vector ACS computation can be processed by the 256x256 adja-

cency matrix B, and the [x256 path metric vector P,_;. In order to process such a large

matrix-vector ACS computation with limited hardware resources, we employed an idea
that the solution of a large problem can be achieved by partitioning the problem into sev-
eral smaller subproblems and then solving these sequentially. In this design, the adjacency

matrix B, is partitioned into four 256 x 64 sub-matrices, and the four submatrices along
with the path metric vector P,,_; are used in (2.6) to update the corresponding 256 (= 4x64)

path metrics of a given stage. This is achieved by the four pairs of interconnected linear
systolic arrays shown in Figure 3.1. Each pair of the linear systolic arrays is formed as
suggested in [7] and is shown in Figure 3.2. There are four processors in each of the top
systolic array BM_4 and the bottom systolic array ACS_4. In each pair of systolic array,
BM_4 is used to process the composite branch metrics given by (2.4) and (2.5), whereas
ACS_4 is used to update the corresponding subset of the path metrics of a given stage

according to (2.7) and make decisions on the survivor paths for the corresponding subset

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

a pair of ROMO ROMI ['RoM2 ROM3
systokc arrays ‘
Yq ‘ .
4 — — —
f \‘r—H']lr‘& i X 1+ X
BM_4 BM_4 BMs || BM_4
roM| | il M] Ml [y |
g g ey B
| acse || acse || acss || Acsa |
OQREP—TREE: o —YHEF- JEFIEEE: CIRIR-PRIM-
Y A 4 A A

MUX_P/AMUXS MUX_P/AMUX.S MUX_P/AMUX_S
Sur Sur Sur

RAMI RAM2 RAM3
BUS_MUX
Pq-I(O)' Pq-l“) ,Pq_|(255) ‘;

Figure 3.1 Systolic array architecture for path metrics update

Yg—o i i o>
4 Coo Coi Co2 Cos
Cyp o Cop —etio — —o >
Pq(;;_o; _nq(S.l) ?q(3.2) ?q(3.3)
by(0.0) by(0.1) by(0.2) by(0.3)
— Ry(0) —o{ Ry(1) [—o{ R(2) [Rq(3)
PO, o+ Py (3)

RON X (VIR GRS X€)

Figure 3.2 Architecture of a pair of systolic arrays

of the path metrics of the stage according to (2.8). For computing the corresponding four

subsets of B, at each stage, the codeword vector Cy; is divided into four 1x64 subvectors to
be stored in four ROMs, ROMO to ROM3, and the codeword vector Cjg stored in ROM.

The updated path metric vectors from the four pairs of systolic arrays are selected by the

-34-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

four multiplexers (MUX_P), and then written into the corresponding four RAMs, RAM1
to RAM3. At same time, the path metric vectors in the previous stage are read out from the
four RAMs and time multiplexed to the inputs of the arrays by the multiplexer
BUS_MUX. In this FPGA implementation, the ROMs and the RAMs are implemented by
using the block RAMs provided by the FPGA chip. Globally, the four submatrix-vector
ACS computations are carried out simultaneously by the corresponding four pairs of sys-
tolic arrays in Figure 3.1. Locally, inside each pair of the systolic arrays, the correspond-
ing submatrix-vector ACS computation is time multiplexed. In this way, the large matrix-
vector ACS computation can be implemented with four pairs of systolic arrays, each con-
sisting of 8 processors. On the other hand, the architecture would require 512 processors,
if the time multiplexing technique is not employed.

As mentioned in Section 3.1, in the systolic array architecture presented in [7], the num-
ber of pipeline stages increases with the constraint length K of a code, and for K=9, there
are 256 pipeline stages. Even though it is possible to implement this large design with 256
array processors hy using a large cnough FPGA chip, the deep pipelining causes large
clock-to-data skews, violating the timing constraint of the design. Therefore, the decoder
would not function properly. On the contrary, in the proposed design, the four pairs of sys-
tolic arrays, with each array having 4 processors, are used to process the matrix-vector
ACS computation, and only 4 pipeline stages are needed for each of the systolic array
pairs. However, since only 4 systolic array pairs are used due to the limitation on the size
of the FPGA chip, the time-multiplexing iterations are needed to process the large matrix-

vector ACS computation. In general, the number of the pipeline stages does not change

-35-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

with the constraint length K of a code. Even though in our implementation, the number of
the time-multiplexing iterations increase exponentially with K, it has the flexibility to
trade off the number of iteration with the number of the systolic array pairs. In our design

of 4 systolic array pairs, there are only 16 time-multiplexing iterations.

3.2.2 Arithmetic-Pipelining Technique and Array Processors
It is seen from (2.4) that to generate a composite branch metric, one needs to process

fifteen signed additions, whereas to compute a path metric only three ACS operations are
needed. Usually, the global clock period has to be the higher of these two computational
times, plus some safety margin so as to achieve the synchronization of the whole system.
That is obviously undesirable from the point of view of speed. Fortunately, the use of a
smaller clock period could be a solution not only to allow different operations in the array
network take different time periods but also to speed up the design. Since one composite
branch metric computation and one path metric computation consist of a number of arith-
meltic steps, the processors corresponding to the two types of computation can be designed
with arithmetic-pipelining in which each arithmetic step is treated as a pipeline stage by
adding appropriate registers. This implies that each pair of systolic arrays can be realized
with a two-level pipelining, pipelining at the global array level from processor to proces-
sor and pipelining within a processor.

The arithmetic-pipelining processor for a BM_4 is shown as Figure 3.3. A composite
branch metric can be viewed as the summation of the K-1=8 corresponding one-stage

branch metrics in the original low-connectivity trellis decoding. Therefore, these one-

-36-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

stage branch metrics can be generated before the corresponding composite branch metric

is computed. In this design, the computation involved in (2.4) is divided into two parts, the

“

]
1
-_—g =M

iy
Jis

Adder

e
N
3

L

Adder

s yaueiq

HiEHiE i

Adder .
@

Eopuiay

i

-

e

.

Reg)

Crs

Adder

A

L

=
o
Lol

=
n
Ll

_H

Adder

Com
hranchprgclric

Reg

-
“H

-

ﬂ

—F.‘ Adder
ﬂ

site

Figure 3.3 Arithmetic pipelining processor for a BM_4

computation of the eight one-stage branch metrics and the computation of the summation

of those one-stage branch metrics. A module placed outside the arrays is designed to gen-

erate, by using a two-bit codeword, all the possible values for each of the eight one-stage

branch metrics corresponding to a composite branch metric at a given stage. At a given

stage, the array processors in a BM_4 first select, according to the codeword sequence, the

eight computed one-stage branch metrics, and then perform seven signed additions to

obtain the corresponding composite branch metric. Thus, the word length corresponding

to the maximum composite branch metric can be 7 bits. In this way, an array processor for

a BM_4 can be less complex compared to an array processor with fifteen signed additions

-37-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

implemented by fifteen pipeline stages. As a result, in an FPGA implementation, the

resource utilization will be reduced.

Path metric update processes the ACS computations with the composite branch metrics
of the current stage and the path metrics of the previous stage. In general, a feedback is
needed in path metric updating, since the path metrics of the previous stage should be fed
back to the input of an ACS processor for updating the path metric at the current stage. In
the butterfly architecture-based Viterbi decoders [5]-[10], ACS computations cannot be
pipelined because of the feedhack that would occur between the pipeline stages. However,
in the proposed systolic array-based architecture, the ACS computations can be carried out
in pipeline. In this design, each path metric update of the qth stage processes 256 ACS
computations with 256 corresponding composite branch metrics of the qth stage and 256
path metrics of the (g-1)th stage. In view of this large number of inputs to be processed at
a given stage, the proposed architecture is very suitable. Furthermore, the path metrics of
the qth stage are fed back to the input of the corresponding processor at the same time as
the corresponding composite branch metrics of the (q+1)th stage are generated. More
importantly, since a latency of outcome exits in a pipelined design, during the 16th (final)
iteration while updating the path metrics for the qth stage, the updating of the path metrics
for the (q+1)th stage has already commenced. However, a two-level pipelining can ensure
that there is no conflict between the updatings of the path metrics for the qth and the

(q+1)th stages.

The arithmetic-pipelining processor for an ACS_4 is shown in Figure 3.4. This proces-
sor is implemented with two pipeline stages. The adder in the first pipeline stage is used to

compute the 256 path metrics at any of the corresponding 16 states of a given stage,

.38-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

whereas the adder in the second pipeline stage is used to make comparisons amongst the

256 path metrics computed by the first pipeline stage. According to (2.14) and (2.16), the

Enable R L
o Keg t
Counter Reg Decision bits
—- (or Sur)
~
Composite sien
hrungl? metric
. Path metric
Adder Reg Adder Reg
Path metrnc ———e
|4 I‘q _—
CLK

Figure 3.4. Arithmetic pipelining processor for a ACS-4

length of the adders in the two pipeline stages should be 10 bits in order to perform mod-
ulo arithmetic. In the second pipeline stage, the comparison between the path metrics
computed at the current and previous clock cycles at the state of a given stage are carried
out by adding the path metric at the current clock cycle to the compliment of the path met-
ric at the previous clock cycle increased by unity. In this way, as presented in [16}], the
sign-bit of the adder can represent the result of the comparison between the two path met-
rics. If the sign-bit is ‘1", the path metric at the current clock cycle is smaller than the path
metric at the previous clock cycle. If the sign-bit is ‘0’, then the former is larger than the
latter. In the meantime, the path metric with the shorter distance at the state of a given

stage is selected by the multiplexer (Mux!) and sent to Register. In addition, the 8-bit

-39 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

counter in the second pipeline stage is used to represent the 256 possible states of the pre-
vious stages from which the paths originate and terminate at various states of the present
stage. One of these 256 paths would be the survivor path depending on the sign bit of the
adder in the second pipeline stage, and is selected by the multiplexer (Mux2) at each clock
cycle. Thus, at a given stage, the path metric and the survivor corresponding to any of the
16 states can be updated through 256 clock cycles.

If T is the cycle time, the processing times corresponding to the computations in

ACS_4 and BM_4 are 7t and 21, respectively. Once an arithmetic-pipelining processor is
full of data a new result is produced at every cycle instead of every 7 or 2 clock cycles,
with an ordinary processor if no pipelining is involved. Therefore, employing the arith-
metic-pipelinings in ACS_4 and BM_4 improves the throughput of the design. In addition,
the synchronization between ACS_4 and BM_4 can be achieved by simply designing a
timing scheme that makes them start at different time instants. This means that at a given
stage the processors in an ACS_4 will not start their computations until the results from
the processors in the corresponding BM_4 have been generated. In this way, throughput of
the design will not be changed, but a latency between ACS_4 and BM_4 is introduced.

This is in fact the latency of any processor in BM_4.

3.2.3 Clock-to-Data Skew and a Scheme for its Avoidance

The systolic array architecture described above provides a highly synchronized Viterbi
decoder in which a source-synchronous clocking is used, and the clock frequency deter-
mines the rate of the decoding. Although the source-synchronous clocking can achieve

signal integrity in the design, clock-to-data skew remains a problem to be solved. In an

-40-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

FPGA implementation-based design, clock-to-data skew is caused by threshold and delay
mismatch of driver output cells. edge-rate mismatch between the clock and the data output

cells, and trace length mismatches between the clock and the data paths. Usually, in a

Transmitter skew Error in data sample due to skew

l Unmatched trace length skew /

Transmitter ‘ ‘/ Receiver

il

| DX X
L | o

i

| | f | | | - Source Clock

Figure 3.5 Trace length mismatches causing clock-to-data skew

synchronous design, data is transferred by the registers that are triggered by one or multi-
ple clocks. For a register which is triggered by the rising or falling edge of the clock, data
should be stable in a time phase before the rising edge or falling edge of a clock and in a
time phase after the rising edge or falling edge of a clock. The former time phase is called
setup time, while the latter time phase called hold time. Figure 3.5 shows an example of a
trace length mismatch that causes a clock-to-data skew. It is seen that this clock-to-data
skew violates the setup time so that at the rising edge of the clock, the receiver will obtain
the indeterminate data. This is obviously undesirable. In this design, a scheme is proposed

to avoid large clock-to-data skews and to provide a tolerance for small clock-to-data

skews.

- 41 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

Because of the use of four pairs of systolic arrays with each array having 4 processors,
instead of a pair of systolic arrays with each array having 16 processors, to process the
large matrix-vector ACS computations, large clock-to-data skews have been avoided.
Clock-to-data skews caused by delay mismatch between clock and data increases with the
size of systolic array. The larger the systolic array, the more the pipeline stages involved,
and thus the larger the clock-to-data skews generated. Therefore, clock-to-data skews
caused by a delay mismatch between the clock and the data in a 16-processor systolic
array can be larger than in a 4-processor systolic array. Thus, the use of four pairs of sys-
tolic arrays with each array having 4 processors is optimal in avoiding large clock-to-data
skews.

A scheme for avoiding large clock-to-data skews is devised by using a 4-input look up
table (LUT) provided in the FPGA device to implement the array processor for a BM_4,
shown in Figure 3.3, In this array processor, there are seven pipeline stages, and each of
the eight one-stage branch metrics is transferred and computed through the eight registers.
If the clock skew registers of this array processor are implemented by using the conven-
tional D flip-flops (DFFs) provided in the XC2V 1000-4FG256 chip, a trace length from
one DFF to another can be different depending on the placement and routing procedure in
the FPGA implementation. As a result, there can be large clock-to-data skews caused by
trace length mismatches between the clock and data paths in the design. However, the Xil-
inx VirtexIl XC2V1000-4FG256 chip provides a large number of 4-input LUTs, that can
be used to build a variable-tap shift register. Once the LUT-based variable-tap shift register

is used to implement the clock skew registers in the array processor, a uniform trace length

42

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

from register to register through the pipeline stages can be attained. Thus, large clock-to-
data skews caused by the trace length mismatches between the clock and data paths can be
avoided.

On the other hand, since clock-to-data skews are inevitable in synchronous designs,
there should be a scheme to provide a tolerance to the clock-to-data skews so that the tim-
ing violations caused by the clock-to-data skews can be avoided. Simulation studies have
shown that once the design is implemented, the trace length mismatch between the clock
and data paths is a crucial factor to cause clock-to-data skews. If each pair of the systolic
arrays is triggered by a unique clock, the design for the four synchronized pipeline stages

will not be tolerant to clock-to-data skews, as shown in Figure 3.6. As a result, once there

DATA i
CLK .\'
DATA
CLK]
h ,

DATA
CLK] 1. :

\ wifd 5
DATA %=1 4

bl

CLK __J sl T

Figure 3.6 Timing diagram without clock-to-data skew tolerance

are trace length mismatches between the clock and data paths in the implementation, the

setup time or hold time of the DFFs used in the pipeline register can be violated by the

-43 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

clock-to-data skews, and the outputs corresponding to these mismatches between the

clock and data paths at a pipeline stage will be indeterminate.

Fortunately, the digital clock manager (DCM) in VirtexII XC2V 1000 provides multiple

phases of the source clock, CLK0, CLK90, CLK 180, and CLK270, which make it possi-

ble to exploit a timing scheme with four phase-shifted clocks to provide a tolerance to

clock-to-data skews in the design. The relationship of the phase-shifted output clock to

the period shift is shown in Table 3.1, and Figure 3.7 illustrates the characteristics of the

CLKO

CLK90

CLK180

CLK270

Figure 3.7 Clock outputs characteristics

Table 3.1 Relationship of phase-shifted output clock to period shift

Phase (degrees) % Period Shift
0 0%
920 25%
180 50%
270 75%

clock outputs. The timing diagram with the four phase-shifted clocks is shown in Figure

3.8. CLK270 with the largest phase lag from the source clock is used to drive the first

-4

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

pipeline stage, and CLKO with zero phase lag is used to drive the last pipeline stage. Like-

wise, CLK90 is used to drive the second pipeline stage and CLK 180 is used to drive the

third pipe stage. Clearly, the four phase-shifted clocks can provide a 25% clock period

safety margin for the data to be stable so that it can be retrieved at each pipeline stage

when the clock is delayed, while they can provide almost a 75% clock period safety mar-

gin when the data is delayed. Thus, the four phase shifted clocks can compensate the

clock-to-data skews at each pipeline stage, if a clock-to-data skew appears.

DATA
CLK270

DATA
CLKI180

DATA
CLK90

DATA
CLKO

) &

Figure 3.8 Timing diagram with clock-to-data skew tolerance

3.3. Trace-Back Strategy and Trace-Back Unit

In addition to the updating of the path metrics, described in the previous section, the

trace-back updates should be carried out in the Viterbi decoder for retrieving the decoded

data. In this section, a trace-back strategy used in the hardware implementation of a Vit-

-45-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

erbi decoder is first introduced. Then, the trace-back unit designed for the Viterbi decoder

is described.

3.3.1 Trace-Back Strategy

In the Viterbi decoding process, the decisions for the survivor paths are made and stored
at each state of each stage. the decoded sequence can be retrieved from the storage of the
survivor paths by trace-back operations. As explained in [1], when received data bits are
very long or infinite, the survivor sequences can be truncated into a manageable length D.
I the truncation depth D is chosen large enough, such as more than 5k to 6K trellis stages,
all the survivors at the trellis stage & will merge to the same path with a high probability
when the trace-back operation reaches the (k-D)-th trellis stage, and the path which those
survivors merged to is the segment of the maximum-likelihood path. The decoding proce-
dure based on this principle is called the truncated trace-back method. In this way, the

decoded sequences can be retrieved with the fixed-size memory for the survivor paths.The

Decode block Survivor path merge block Write block
0 T
|
|
|
|
|
i
255
erte hase
D%Cégi(e read ;,)hasc Trac%lz)z:[c]k rcDad phase depth 2 p BiS

Figure 3.9 Organization of the memory for storing the survivor paths

.46 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

memory for the survivor paths can be logically organized as shown in Figure 3.9. There
are three operation phases in the management of the memory, Write New Data(WR), Tra-
ceback Read(TB), and Decode Read (DC). These three operations access the three logical
blocks of the memory, respectively, by using 2D-circular memory addressing scheme
[91,[19]. At WR phase, the survivor decisions made by the ACS computations at all the
states of a given stage are written into the memory block that is just freed by the DR oper-
ation. The write pointer advances forward from stage to stage in the trellis. At TB phase,
the decisions stored in the merge block of the memory are retrieved by the read pointer. It
is noted from (2.14) that the retrieved data after each read operation can be treated as a
pointer to indicate the corresponding state number of the previous stage. After tracing
back D stages, all the survivor paths will be converged and the actual (iecoding takes
place. At the DC phase, the decoded sequence is retrieved in the same way as the trace-
back read operation, and the location of the corresponding memory block is determined by
the pointer value at the end of the TB phase. These retrieved data in the DC phase should
then be rearranged in its original order.

The circular addressing can be realized by adopting the efficient method presented in
[9] and [19] in which the traceback read and the decode read operations are performed by
using one pointer instead of multiple ones, and the read operation rate should be three
times that of the write operation. In this way, the two read-phases and one write- phase can
be performed simultaneously within the same time period, as shown in Figure 3.10. At
each traceback iteration, the decode memory block is overwritten after it has been

retrieved, and the traceback operation starts from the memory block in which the new data

-47-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

R
WRITE
cee

TRACE
BACK

——
DECODE

RAM column address

Time
Figure 3.10 Trace-back strategy

has just been written. The logical memory block corresponding to the write operation
phase is addressed circularly in the forward direction, whereas the logical memory blocks
corresponding to the two read operation phases are addressed circularly in the backward
direction. At the beginning of each iteration, the read pointer will meet the write pointer,
and then they move towards to the opposite direction for next iteration.

In the FPGA based implementation, the memory for storing the survivor paths is
divided into four memory banks, each of which stores 64 survivor paths. The four memory
banks are implemented by using four block RAMs provided by the FPGA chip. The survi-
vor path memory is organized as shown in Figure 3.11. The traceback depth of the design
is chosen as D = 8. According to (2.14), at each strongly-connected trellis decoding, there
are 8-bit binary data to be decoded in this design. Thus, the traceback depth of 8 is equiva-
lent to the traceback depth of 8(K-1) = 64, K being the constraint length of the code in the

original low connectivity trellis decoding. This is large enough to ensure the convergence

.48 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

of the suvivor paths. The depth of each memory should be equal to 64 x 2D = 1024, and its

word length should be 8 bits.

I Decode block ! Traceback phase t Write phase |
| depth=Dr2 | depth =D | depth=Dr2 |
[1] | | 14
8/) l |
oM | |
RAMI1024
63 ' l |
b [[1d
8 I |
64 (4 t }
| | RAM1024 |
{) . L 16
8 ' J
128 ! l
| l RAMI1024 |
19111 |] |
0 | | 14
8/ | [
192 | i
| : RAM1024 | l
255
T v 1 |

Figure 3.11 Survivor path memory structure

3.3.2 Trace-Back Unit

The architecture of the trace-back unit is shown in Figure 3.12. At each stage, the survi-
vor decisions made by the four pairs of the systolic arrays in Figure 3.1 are written into the
four corresponding memory banks, RAMI1024s. At each traceback read, the previous
retrieved data points to the current data to be read. The most significant two bits, s7 and sg_
of the previous retrieved data in the register are connected to the 2/4 Decoder and
BUS_MUX, are used to select the memory bank to be accessed and to have its stored data

retrieved. The least significant 6 bits, s5 to sg_of the previous retrieved data in the register

-40.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

are used to address the 64 decisions in one of the memory banks selected at each read
operation. In other words, at every trace back operation, one of the 256 decisions (corre-

sponding to the 256 survivor paths) stored in the four memory banks can be read by using

Sur Sur Sur Sur
en0 enl en2 en3
.
l v l l l
RAMI024 RAMI1024 RAMI024 RAMI1024
,__)\ BUS MUX ;
]
2/ 4 Decoder s7|s6 S5 - Sg
1 l l l 6 hits address for each RAM bank
0 2 end o
end enl en2 en 8-bit shift register

decoder output
- 32-bit FILO register

Figure 3.12. Architecture of the trace-back unit

the previous retrieved data as a pointer. After D tracebacks, corresponding to the eight
strongly-connected trellis stages, the decoded data is loaded into the 8-bit shift register and
then shifted to the first-in last-out register FILO. Finally, the decoded data is sent out in the

reverse order from the FILO register.

3.4 Input Buffer and One-Stage Branch Metric Generation
The two inputs of the Viterbi decoder are eight-level quantized with soft demodulator

decisions, and they can be represented by 3-bit binary data. The input buffer is designed to

-50-

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

gather the two soft input sequences corresponding to a given strongly-connected trellis
stage so that the composite branch metrics of the stage can be generated. As shown in Fig-

ure 3.13. the two soft inputs are sent to the corresponding 3-bit registers depending on the

eNn_deC e

3/8 decoder

NERREEN

en7 en6 en5 end en3 en2 enl en0

3-bit soft input2

CLK 3-bit soft input!
en7 en6 enS cnd en3]| en2 enl end en7 en6 en5 end en3| en2 enl enO
3-bit] B-bit] [3-bit] [3-bit] |3-bit] |3-bit] |3-bit] [3-bit] P-bat] B-bit] |3-big] J3-bit} 13-bit] |3-bit] {3-bit] |3-bit
reg reg || g |res regpjreg jfreg | |reg reg reg (fregpreg|reg|regjjreg | | reg
TT 1 T %7 19 § 11 1 — 1] 3 mall)| I ¥
(] L] L] L) Y !] [] L [] \J Y \J Y 1] [] ‘
—e 24-bit reg 24-bit reg
ol bbb e b
3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit
inl_7 inl_6 inl_5 inl_4inl_3 inl_2 nl_I inl_0 in2_7in2_6 in2_5 in2_4in2_3 in2_2 in2_1 in2_0

Figure 3.13. Input buffer for the two soft inputs

enable signal generated by the 3/8 decoder. The 3/8 decoder outputs the eight enable sig-
nals in a circular way so that the two soft input sequences corresponding to a strongly-con-
nected trellis stage are loaded into the 3-bit registers. The sequences are then buffered into
two 24-bit registers and used to compute the corresponding eight one-stage branch met-
rics.

As mentioned in Section 3.2.2, the eight one-stage branch metrics used to compute the

correponding composite branch metric can be generated by a module placed outside the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

array processors. Each of the eight one-stage branch metric has four possible results
depending on the corresponding two-bit codeword. Table 3.2 summarizes the computation
of a one-stage branch metric under the four possible values of the two-bit codeword,
where inl and in2 represent the two soft inputs of the low-connectivity trellis stage. The
eight one-stage branch metrics corresponding to a composite branch metric are computed
by the unit shown in Figure 3.14, in which each one-stage branch metric is computed
under the four possible values of the two-bit codeword, and is output to the array proces-

sors in BM_4s of Figure 3.1.

Table 3.2. One-stage branch metric evaluation

Code word C;; One-stage branch metric
00 inl +in2
01 inl - in2
10 -inl +in2
11 -inl -in2

3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit
in2_7 inl_7 in2_6in]_6 in2_5 inl_5 in2_4 inl_4 in2_3 inl_3 in2_2 in1_2 in2_1 inl_{ in2_0 inl_0

| T I Tt

one-stage | | one-stage one-stage | | one-stage one-stage | | one-stage | | one-stage | § one-stage
branch branch branch branch branch branch branch branch
metric metric metric metric metric metric metric metric

IRy

branch metrics

Figure 3.14 Eight one-stage branch metrics generation unit

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

3.5. Testability of the Design

In order to test the functionality of the Viterbi decoder offline, a testbench as shown in
Figure 3.15 is built inside the system. The linear feedback shift register (LFSR) is used to
generate a 32-bit random input sequence. The convolutional encoder is used to encode the
random input sequence generated by the LFSR. The two soft-bit generators are used to

convert the two codeword sequences generated by the encoder into the two 3-bit soft input

Soft_input_online CLK1
Soft_input_online
en_encode
oy
L Decoded output
test_mode L ™1 Soft-bit gencrator switch Viterbi
CLK Convol- | decoder
T 1y
en_Ifsr] Soft-bit generator en_test
CLK l
] Test result
32-hit FIFO Comparator{—e-
CeN_{1f0 ——

Figure 3.15. Architecture of the built-in testbench

sequences to be sclected by the switch as the inputs to the Viterbi decoder. The 32-bit first-
in first-out (FIFO) is used to buffer the 32-bit sequence generated by LFSR so that they
can be used to make comparisons with the corresponding decoded 32 bits. In this way, the
functionality of the Viterbi decoder can be tested. The system can work in either the test
mode or the online mode controlled by the signal ‘test_mode’. When ‘test_mode’ is ‘I’,
the system works in test mode. In this case, all the units used in this testbench are active,

and two soft inputs from two soft-bit generators are transferred to the Viterbi decoder. On

-53-

CHAPTER 3. DESIGN AND IMPL.LEMENTATION OF A VITERBI DECODER

the other hand, when ‘test_mode’ is ‘0, the system works in online mode. In this case,
only the Viterbi decoder is active, and the two soft inputs from the channel are sent to the
Viterbi decoder.
3.7 Performance Analysis

The design of the Viterbi decoder has been simulated, synthesized, and implemented
based on the VHDL modeling (see Appendix). In this section, the performance analysis of
the proposed systolic array-based Viterbi decoder in terms of speed, power, and FPGA
resource utilization is carried out.
3.7.1 Speed

In general, speed of a Viterbi decoder is limited by the ACS computations in the pro-

cess of updating path metrics. In this novel systolic array architecture, on one hand, the
employment of time multiplexing technique slows down the speed of the decoder by 16
times, since there should be 16 time multiplexing iterations to process each submatrix-
vector ACS computation at a given stage. On the other hand, the smaller clock period pro-
vided by arithmetic pipelining and the increased throughput by employing the strongly-
connected trellis decoding can compensate the speed loss by time-multiplexing opera-
tions. In addition, the two-level pipelining that includes a pipelining from processor to
processor and an arithmetic pipelining inside each processor, can avoid the use of an addi-
tional synchronization period to initialize the systolic arrays at the beginning of each time
multiplexing iteration. Thus, a speed loss that could occur due to the initialization is
avoided. The implementation result shows that the speed of the decoder is about 78 Kbps.

Furthermore, this novel systolic array architecture-based design can be easily developed

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

further by involving more systolic array pairs to process the matrix-vector ACS computa-
tions. In this way, the number of time multiplexing iterations can be reduced, there by
increasing the speed of decoding. For example, if the eight pairs of systolic arrays are used

to implement the design, the speed of decoding can be doubled.

3.7.2 Power
Power consumption models for Virtex and Virtex-II series have not been published by
Xilinx™ However, the power consumption model for the XC4000XL/EX/E FPGAs can
be found in [20], and it has been shown in [21] that the power consumption for Virtex
FPGAs can be estimated based on the same model as the one for the XC4000 series by
assigning an appropriate technology-dependent parameter. Since Virtex-II series provides
a significant structural similarity to Virtex series, the performance of the design, namely
the conventional Viterbi decoder, can be analyzed based on the model presented in [20].
According to this model, the total power consumption (Pygr) is the sum of three compo-
nents, as given by
Pror = Pstar + Pint + Pro, (3.H
where Py is the static power consumption resulting from leakage current by an inactive
device connected to the power supply, Pyy is the intemal power dissipation caused by the
charging and discharging the capacitance on any internal nodes that are switched, and Pig
is the input and output power dissipation resulting from the charging and discharging of

the external load capacitors connected to device pins, and the pull-ups used on the inputs.

-55-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

The internal power dissipation Pyt may be approximated as given by [20]

Pint = Vee X Kp X Fyax x Nic xTogi c. (3.2)
where Vcc is the supply voltage (V), Ny ¢ the number of the logic cells used by the appli-
cation, Fpgax the clock frequency (Hz), Tog ¢ the average toggling rate at each clock,
and Kp a constant whose vialue (in Coulomb) depends on the family of FPGA.

The output power dissipation Por depends on the capacitive load on each output as well
as the frequency at which each output switches, and it can be evaluated as [20]

Pout = 03 X Coutave X Fatax X Togout X NouT X V2 swing: (3.3)
where Coyavg 1S the average load capacitance (F), Fyax the maximum clock frequency

(Hz), Togor the average toggling rate of the output at each clock, Noyr the number of

outputs in the design, and V ¢;q. the output swing voltage (V).

It is seen that the average toggle rate at each clock, which represents as to how often the
switching activities are generated in the internal or external nodes of the system, can affect
the dynamic power consumption.

The power consumption of the design is evaluated using the tool Virtex-IT Power Esti-
mator provided by Xilinx™. This tool allows the estimation the power consumed by Con-
figurable Logic Blocks (LUT, DFF and CLB configured as RAM cell), embedded RAM
cells, PLLs blocks and I/O cells. In this power estimation, all the data corresponding to the
utilization of the FPGA resource are based on the implementation results provided by the

Xilinx implementation tool. The average toggle rate at each clock for a module is obtained

-56-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

by the simulation results and by referring to the data provided by Xilinx Virtex-IT Power

Estimator.
Table 3.3 Device quiescent power estimator result
Veeint Subtotal Veeaux Subtotal
(mW) (mW)
150 33
Table 3.4 CLB logic power estimator results
LUT
Average| _ Veeint
Module |Frequency| CLB | Fiip/Flop | shift Toggle A°“"“9 Subtotal
{MH2) Slices | or Latches| Register | SelectRAM| Rate o mount (mW)
acsPEx16 40 448 608 0 0 50% High 114
acsCNTx16 40 64 128 0 0 25% | Medium 6
brcPEx16 40 1488 832 480 0 50% High 417
brcREGx16 40 32 64 0 0 55% High 9
testPKG 40 48 56 2 0 50% High 12
conLOGIC 40 206 165 0 0 50% High 51
recBUF 40 220 256 0 0 12% High 16
decOUT 40 20 40 0 0 12% | Medium 1
MUX_Ps
& 40 16 0 0 0 2% High 0
MUX_Ss
Total 629

Table 3.3 shows the results provided by the Power Estimatior regarding the static power
consumed in this design. Table 3.4 shows the corresponding results for the CLB logic used
in this design. It is seen that the average toggle rate at each clock for the multiplexers,

MUX_Ps and MUX_Ss, used in the systolic array architecture shown in Figure 3.1, are

-57-

CHAPTER 3. DESIGN AND IMPLLEMENTATION OF A VITERBI DECODER

only about 2%. The dynamic power dissipation in these multiplexers are ignored by the
tool. This is because these multiplexers are active under the enable signal generated only

at the end of each time-multiplexing iteration. In this way, the intermediate results from

Table 3.5 Block selectRAM power estimator results

Block RAM PortA Port 8 Voo
Module Cells | Frea. | wiaih Read | Write | Freq. Width Read | Write (Sr::a:c;tal
(MHz2) Rg:’e Rg{t,e (MHz)[V! Ri\/:e Reﬁt,e

ROM256 1 40 18 | 100% | 0% 0 0 0% 0% 2
ROM64_0 1 40 18 2% 0% 0 0 0% 0% 0
ROMS64_1 1 40 18 2% 0% 0 0 0% 0% 0
ROM64_2 1 40 18 2% 0% 0 0 0% 0% 0
ROM®B4_3 1 40 18 2% 0% 0 0 0% 0% 0
RAM128_0 1 40 18 0% 2% 40 18 100% | 0% 2
RAM128_1 1 40 18 0% 2% 40 18 | 100% | 0% 2
RAM128_2 1 40 18 0% 2% 40 18 100% | 0% 2
RAM128_3 1 40 18 0% 2% 40 18 | 100% | 0% 2
RAM1024_0 1 40 9 0% 2% 40 9 6% 0% 0
RAM1024_1 1 40 9 0% 2% 40 9 6% 0% 0
RAM1024_2 1 40 9 0% 2% 40 9 6% 0% 0]
RAM1024_3 1 40 9 0% 2% 40 9 6% 0% 0

Total 15

array processors cannot propagate through these multiplexers to generate switching activi-
ties, and thus the power dissipation is negligible. Table 3.5 shows the results given by the
Power Estimator in block RAMs used in this decoder. Since the time-multiplexing compu-
tation results in a very low read rate on the four 64-depth ROMs and a very low write rate
on the eight RAMs used in this decoder, there is little amount of the power dissipated in

these memory units. In addition, Table 3.6 and Table 3.7 show the estimator results from

.58 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

the DCM and the 1/O cells. It is seen that the amount of power dissipation in the I/O cells
and the DCM are only about 2 mW and | mW, respectively. Finally, the total power esti-
mator results is shown in Table 3.8. The total power consumption is 830 mW, including 2

mW power consumption from I/O supply voltage Vcco, 33 mW power consumption from

Table 3.6 DCM power estimator resuit

Clock Input DCM Vegint
Module Frequency Frequency Mode subtotal
(MHZ2) {mW)
DCM 40 Low 1
Table 3.7 Input/output power estimator result
170 Average | Average | Vecimt | Veco
F
Module r(iz:eza?cy Standard| Inputs | Outputs | Output Toggle| Qutput |Subtotal |Subtotal
Type Rate (%) |Load (pF)| (mwW) | (mW)
allPKG 40 LVTTL_12| 4 3 50% 50 0 2
Table 3.8 Power estimator results
Target Device Estimated Design Power Values (mW)
Device Package Total Power Veeint 1.5V Vecaux 33V | Veco 3.3V
XC2Vv1000 FG256 830 795 33 2

auxiliary circuits whose supply voltage is Vecgux. and 795 mW power consumption from
the supply voltage Vccin- The power consumption from the core supply voltage Vecin

includes a static power consumption of 150 mW and a dynamic power consumption of

-59.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

645 mW. Clearly, the dynamic power consumption is dominant in the design and it mainly
results from the array processors. From Table 3.4, it is seen that the array processors
denoted by acsPEx 16 and brcPEx 16 are mainly power consuming modules in this design,
since they utilize a relatively large amount of FPGA hardware resource, and the switching
activities in this decoder occur mainly in these modules. In order to reduce the amount of
switching activities in the array processors and, therefore, to reduce the power consump-
tion, an adaptive Viterbi algorithm and a low-power adaptive Viterbi decoder using this

algorithm are presented in Chapters 4 and 5.

3.7.3 FPGA Resource Utilization

According to the implementation results provided by the Xilinx implementation tool,
this design takes 2793 slices that is 54% of the total FPGA slices, 17 blockRAMs and one
DCM. From Table 3.7.2, it is seen that the array processors used to generate composite
branch metrics (brcPEX16) consume the largest part of the FPGA resources although
these array processor have been simplified by processing the eight one-stage branch met-
rics for a composite branch metric using a module placed outside these array processors.

This constitutes a drawback of the present design.

3.8 Summary

In this chapter, the design and an FPGA implementation of the Viterbi decoder with a
constraint length of 9 and code rate of 1/2 has been presented. In this design, a novel sys-

tolic array-based architecture with time multiplexing and arithmetic pipelining has been

-60 -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

exploited. A large 256x256 matrix-vector ACS computation is partitioned into 4 subma-
trix-vector ACS computations, and they are processed by four pairs of systolic arrays with
4x2x4 processors rather than by one pair of systolic arrays with 1x2x256 processors. Glo-
bally, the four pairs of systolic arrays process the four submatrix-vector ACS computa-
tions simultaneously, whereas from the local point of view, each pair of systolic arrays
processes the corresponding submatrix-vector ACS computation in time multiplexing.
Partitioning the large systolic array pair into four pairs of systolic arrays provides benefits
of minimizing clock-to-data skews as well as latencies of pipelinings. It also makes it pos-
sible to drive each systolic array pair by using the four-phase-shifted clocks provided by
the DCM in XC2V1000-FG256. This provides a tolerance to low clock-to-data skews so
that the timing violations can be avoided within a certain safety margin. The employment
of time multiplexing technique has greatly reduced the FPGA resources utilization in the
implementation of the design with a fixed-size FPGA chip. From a point view of the
power, time multiplexing computation can provide very low toggle rate on the memorys
and the multiplexers used in this architecture resulting in saving the dynamic power dissi-
pation. In addition, the two-level pipelining has been exploited with the pipelining from
processor to processor and the arithmetic pipelining inside each processor. In this way, the
two types of array processors with different processing times are synchronized, and
throughput of the design has been increased due to the use of a smaller clock period. From
a point of view of the speed, the proposed systolic array architecture can easily be further
developed by involving more systolic array pairs to process the matrix-vector ACS com-

putation so that a smaller number of time-multiplexing iterations is needed. As a result,

-6l -

CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VITERBI DECODER

the speed of the decoder can be increased. In the trace-back unit, the truncated trace-back
strategy and 2D-circular memory addressing scheme has been employed to retrieve the
decoded sequence from the survivor path memory. In order to achieve high-speed trace-
back operation, the simple one read pointer approach is adopted instead of using different
memory read and write access time or multiple read pointers, In this way, the access rate
of read operation should be three times higher than that of write operation so that the three
read operation and one write operation can be done at the same time period. Also, the
input buffer and one-stage branch metric generation has been designed corresponding to
the strongly-connected trellis decoding. A testbench has been built in this system and
used to demonstrate the successful functionality of the decoder implemented.

It is noted that the array processors used for generating the composite branch metrics
and updating the path metrics consume the largest amount of power. This is because these
array processors take relatively a large amount of FPGA hardware resource, and switching
activities in the decoding process are mainly generated by the ACS computations pro-
cessed by them. In the next chapter, in order to reduce the amount of ACS computations in
the strongly-connected trellis decoding process, an adaptive Viterbi algorithm is proposed.
Using this adaptive algorithm, a low-power adaptive Viterbi decoder with reduced switch-
ing activities in its array processors is then proposed in Chapter 5. In view of this adaptive
Viterbi algorithm and the corresponding adaptive decoder to be presented in Chapters 4
and S, respectively, the reformulated Viterbi algorithm of Chapter 2 and the Viterbi
decoder presented in this chapter are henceforth referred to as a non-adaptive Viterbi algo-

rithm and a non-adaptive Viterbi decoder, respectively.

.62 -

CHAPTER 4

AN ADAPTIVE VITERBI DECODING
ALGORITHM

4.1 Introduction

As described in Chapter 2, a Viterbi algorithm [7] can be formulated employing a
matrix-vector multiplication, whose hardware implementation can be realized using a sys-
tolic array architecture. Since the low-connectivity trellis decoding results in the adjacency
matrix to become very sparse, the efficiency of the hardware utilization is rather poor for
this formulation. In order to resolve this problem, a strongly-connected trellis-based Vit-
erbi decoding method was also proposed in [7] for improving the utilization of the systolic
array processors as well as for increasing the throughput of the decoding. A strongly-con-
nected trellis is obtained by merging the stages in each group of the (K-1) contiguous
stages of the original low-connectivity trellis so that every state in the (K-1)-th stage of the
group is reachable from the states of the preceding (K-2) stages, where K is the constraint
length. This, however, makes the amount of ACS computations in the strongly connected

Viterbi decoding process to become very excessive. It is known that, in a Viterbi algo-

-63-

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

rithm, at each state, all possible distinct paths in the trellis are evaluated and the most
likely one with the shortest Hamming or Euclidean distance is determined. Consequently,
for the strongly-connected trellis Viterbi decoding, the amount of ACS computations can
increase exponentially as the constraint length K increases. For instance, in the Viterbi
decoder, for K= 9 and r=1/2, the path metric update at each state has 256 ACS computa-
tions. Since for a trellis with K=9, there are 256 states in a strongly-connected trellis, a
total of 256 x 256 ACS computations for each stage are required. This contrasts with a
total of 2 x 256 x 8 ACS computations for each group of 8 stages in a two-ACS per state
computation of the corresponding low-connectivity trellis decoding. Thus, a major draw-
back of the strongly-connected trellis Viterbi decoding is its increased computational com-
plexity, in that its number of ACS computations per stage is 16 times higher than that in
the corresponding low-connectivity counterpart. In order to reduce the amount of compu-
tations in the Viterbi decoding process, an adaptive Viterbi algorithm was proposed by
Chan and Haccoun [22]. This algorithm is a modified version of the conventional Viterbi
algorithm and is based on a low-connectivity trellis decoding. However, it requires a time-
consuming sorting operation to determine the most likely survivor paths among all the
possible survivor paths.

In this chapter, an adaptive Viterbi algorithm based on a strongly-connected trellis
decoding is presented [23]. The algorithm does not require a sorting operation to deter-
mine the most likely survivors and is very suitable for systolic array-based hardware
implementation. A simulation study is carried out on the implementation of the proposed

algorithm based on a systolic array architecture. The simulation results show that the pro-

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

posed adaptive Viterbi algorithm can reduce the number of ACS computations signifi-

cantly while maintaining almost the same error performance as that of the non-adaptive

Viterbi algorithm.

4.2 Formulation of the Proposed Adaptive Viterbi Algorithm

In this section, the adaptive Viterbi algorithm is reformulated as presented in [22] so
that it is suitable for a systolic array-based hardware implementation of the algorithm. The
most important modification introduced in the proposed algorithm is the employment of
strongly-connected trellis decoding technique. This is done in order to achieve an
increased utilization of hardware resources offered by the systolic array architecture and a
higher throughput of the decoding. A bi-product of this change is in the elimination of the
sorting operation needed in the low-connectivity technique of [22]. Similar to the Viterbi
decoding process, the proposed adaptive Viterbi algorithm can be viewed as a process of
finding the shortest path in a strongly-connected trellis diagram. This process includes
mainly the generation of the composite branch metrics, updating of the path metrics, and
the trace-back operation. The difference between the formulations of the Viterbi algorithm

and the proposed algorithm is only in the updating of path metrics, all other parts for gen-

eration of composite branch metrics, the modulo arithmetic for ACS, and the radix-2K"!

trace-back update remaining the same.
In the adaptive Viterbi algorithm of [22], instead of keeping all the possible distinct
paths in each trellis stage, only a number of the most likely paths are kept and all the oth-

ers discarded. As a result, only the survivor paths are involved in the evaluations in each

-65 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

trellis stage, and thus the amount of computations is reduced. The selection of the survivor
paths at the trellis stage q is done by chosing for each state a path with the minimum met-

ric distance and comparing it with (d,, + T), where T is the discarding threshold value
selected by the user, and d,,, the minimum distance of all the survivor paths at the trellis
stage (q - 1). Assuming a convolutional code with the constraint length of K and a code
rate of 1/n, in its strongly-connected trellis diagram there will be 2K-1 number of states at

each stage. Further, at each state of a stage, 2K-1 branches enter and the same number of

branches leave. For the q-th strongly-connected trellis stage, let 2, () denote the survivor

path metric and Sur () the survivor state with the smallest path distance, where j = o, 1.,...,
2K-1_| denote the different states. We denote by b (i, j) the g-th stage composite branch
Y b, q g P

metric [7] from state i of stage (q-1) to state j of stage q. Also, let 47 represent the mini-
mum distance of all the survivor paths, and 5,(j) represent the survivor information at the

q-th stage. The adaptive Viterbi algorithm can be foermulated as follows.

At the start, the path metric £,(0), the survivor state Sury(0), and the survivor informa-

tion s,(,) are initialized as

Py0) =0 4.1)
Sury(0) = 0 (4.2)

: / for j=0
S = 4.3
otJ) {0 othenvise . 4-3)

- 66 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

Let jg j,.....j, represent the L survived states at the (q -1) th stage. Then, s,_,(j)and

47" can be expressed as

Set (D) = {1 ors = Jo e (4.4)
q-1 ;
0 otherwise
(" = min{P__,(O)VP,_(I)...P,_,2"7!
dy, = min{P,_(0).P,_,(I)....P,_((2" "-1)}. (4.5)

The survivor information S, () can be combined into the path metric valuqu_,(j) and
treated as a flag bit indicating the survivor of the j-th state in the (g-1)-th stage. We can

now find P, (jrand sur () as follows:
P ()= min{P _ (i) + b,y J)serePyyGr) + 0,0 DY (4.6)

Sur,(j) = min™ {P_ (o) + b,y /)or--sPy_1(ir) *blips D} 4.7)

where j represents 2K states of the g-th stage, min represents the operation of taking the

minimum distance of the survivor paths at state j (of stage ¢q), and min”! represents the
operation of finding the state number in the (¢-1)-th stage that yields the minimum dis-
tance of the survivor paths at state j of stage q.

In general, just as the Viterbi algorithm can be formulated as a matrix-vector computa-

tion presented in Chapter 2, the path metric update here can be expressed as

P =P _,®B (4.8)

q q qQ’

-67 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

where P, represents the path metric row vector of the q-th stage with 2X-I elements, whose

J-th element is denoted by P (j), B, represents 2RIy okl adjacency matrix, whose ij-th

element is denoted by b(i, /) representing the composite branch metric from state i of
stage g-1 to state j of stage ¢, and ® represents the ACS operation according to the like-
lihood criterion.

It is clear that (4.6) can be viewed as an example for path metric update at state j in
(4.8), and it also shows that the ACS computations of the 2K-1 incoming paths at each state
are performed selectively by the survivor information of the (g -1)-th stage. This means
that only if the survivor information of the (¢-1)-th stage is ‘1°, the ACS computations at

q-th stage are performed. The present survivor information S,(j)at each state can be deter-

mined by comparing 7 _¢;) with @ em If P () <(d?"'+ 1), then the g-th stage survivor
information s,(j)is set as “1’, otherwise as ‘0’. As pointed out in Chapter 2, the Euclidean

distance for computing a composite branch metric has been simplified into signed addi-
tions in the same way as presented in [9]. Therefore, the composite branch metrics and
hence, the path metrics could have negative values. Consequently, the minimum distance

d, at a given stage could also be negative. In this case, the most optimum value for the

threshold value T should be negative.
The selection of the survivor paths and the survivor paths update can be repeated by
using the procedure described above at each strongly-connected trellis stage. Finally, the

decoded data can be obtained through a traceback of the survivor path.

- 68 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

From the description above, it is seen that the adaptive Viterbi algorithm based on a
strongly-connected trellis diagram can be viewed as processing a matrix-vector ACS com-
putation in which the survivor information at each state is combined into the state path
metric value and treated as a flag bit. Its hardware implementation can be realized by using

the systolic array architecture that will be discussed in the next chapter.

4.3 Comparisons with The Non-Adaptive Viterbi Algorithm

The performance of the proposed adaptive Viterbi algorithm based on the strongly-
connected trellis decoding in the presence of additive white Gaussian noise is simulated
using the C-language (see Appendix). This simulation study is carried out for decoding a
convolutional code with a constraint length K =9 and a code rate of 1/2, in which a BPSK
modulation scheme and a 3-bit soft-decision are used. The computational precision is
selected to conform with the requirements of the hardware computing units.

Figure 4.1 shows the error performance for both the convolutional coded binary data
using the proposed algorithm and uncoded binary data. The error performance is
expressed by the bit error rate (BER) as a function of E;/N,, where E}, denotes the signal
energy and N, the noise density. It can be seen from this figure that the proposed adaptive
Viterbi algorithm based on the strongly-connected trellis decoding can provide at least a 5

dB coding gain at a bit-error-rate of 107, when the threshold value T is chosen to be

greater than -8.

-69 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

T T T T T T T T T
_) y o B T —o— AVD(T=-5)
. i -O- AVD(T=-7)
10" ST . - P O P —+= AVD(T=-8) S
. S .oDoniniiinn —-0- AVD(T=-10)
- - - -1 —— uncoded
10_2.-
-a
I10 2
wl
m
10 N e
10-55-
10*5 1 1 1 1 J] 1 I} 1
0 1 2 3 4 5 6 7 8 9 10
Eb/No in dB

Figure 4.1. Error performance for coded and uncoded binary data

Figure 4.2 shows the error performance of the proposed algorithm for four different val-
ues of T as well as that of the non-adaptive Viterbi aigorithm. Figure 4.3 and Figure 4.4
show the two expanded forms of Figure 4.2 in the ranges of E,/N, from 2.9 dB to 3.05 dB
and from 3.8 dB to 5dB, respectively. When the threshold value T is chosen to be -5, the
error performance curve for the proposed adaptive Viterbi algorithm completely coincides

with that of the non-adaptive one, whereas when T = -7 and T=-8, there is a slight degra-

-70-

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

dation in the performance for E;/N, greater than 4 dB. However, for T=-10, this degrada-

tion is not negligible. Thus, the error performance can be brought close to that of the non-

adaptive Viterbi algorithm by increasing the threshold value.

T T T — T T T I I
"] = VD
—0- AVD(T=-5)
10-‘ . . o . o : B SiL Liiiiliiiiiiio: -O-AVD(T=-7) H
E o . . o . Coo oo o —= AVD(T=-8) |3
r o —#= AVD(T=-10) |1
10-25-
-3
cclO 3
w [
m
107t
10°F
10-5) Il t) ! 1 1 1)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/No in dB

VD: Non-Adaptive Viterbi Decoder
AVD: Proposed adaptive Viterbi decoder
Figure 4.2. Performance of the bit-error (BER) as a function of Eb/No

-1 -

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

BER

—— VD

-0~ AVD(T=-5)

-0~ AVD(T=-7)

—— AVD(T=-8)

-e- AVD(T=-10)

29 295

EtyNo in dB

Figure 4.3 an expanded form of Figure 4.2 in range of E,/N, from 2.9 dB to 3.0

BER

1 L 1

'

—— VD

-0~ AVD(T=-5)
-O- AVD(T=-7)
—— AVD(T=-8)
-e- AVD(T=-10)

38 4 42

44
Eb/No in dB

46

Figure 4.4 an expanded form of Figure 4.2 in range of E,/N, from 3.8 dB to 5 dB

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

T T T 1) L - T] 1
5
10° .
> 6 & = o -0 —0 —& 465536
—

Q =

N——\\‘\ : o —————428120

11382

10

Average number of ACS computations per stage

-~ VD
—+— AVD(T=-5)
-6~ AVD(T=-7)
—— AVD(T=-8)
—+— AVD(T=-10)

T 1 1 1 I 1 1 1

0 0.5 1 1.5 2 25 3 35 4 45 5
Eb/No in dB

Figure 4.5 Average number of ACS computations per stage over Eb/No

The computational complexity expressed by the average number of ACS computation
per stage as a function of E/N,, is shown in Figure 4.5 for the non-adaptive Viterbi algo-
rithm as well as for the propqsed algorithm for four values of T. It is seen that for a coding
gain of 5 dB, the average number of ACS computations per stage using the proposed adap-
tive algorithm with T = -5 is 42.8% of that of the non-adaptive Viterbi algorithm for a
strongly-connected trellis decoding. This number reduces to 30.1%, 28.4%, and 17.4%
respectively for T=-7, T = -8, and T = -10. However, as pointed out earlier, there is a deg-

radation in the error performance for T=-10.

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

Thus, it is seen that by using the proposed algorithm with a threshold value of -7, one
can achieve a computational complexity of only 30% of that of the non-adaptive algorithm

while maintaining virtually the same error performance.

4.4 Summary

In this chapter, an adaptive Viterbi algorithm based on the strongly-connected trellis
decoding of binary convolutional codes has been presented. The proposed adaptive Viterbi
algorithm has been developed by reformulating the adaptive Viterbi algorithm presented
by Chan and Haccoun [22] so that it is suitable for a systolic array architecture-based
hardware implementation. The most important feature that has been introduced in the pro-
posed algorithm is the employment of the strongly-connected trellis decoding technique.
This can provide an increased utilization of the hardware resources offered by the systolic
array architecture and a higher throughput of the decoding. A bi-product of the use of the
strongly-connected trellis decoding is the elimination of sorting operation needed in the
low-connectivity technique. An extensive simulation study has been carried out in order to
show the performance and the efficiency of the proposed algorithm. It has been shown that
with a threshold value of -5, the proposed algorithm can yield the same error performance
as that of the non-adaptive Viterbi algorithm based on the strongly-connected trellis
decoding, but the amount of the ACS computations reduced to 42.8%. It has also been
shown that this reduction in the ACS computations can be reduced to as low as 30% for a
threshold value of -7, with a very slight degradation in the error performance. These

reductions in the amount of computations by the proposed algorithm can provide the ben-

-74-

CHAPTER 4. AN ADAPTIVE VITERBI DECODING ALGORITHM

efits of a lower power dissipation if the algorithm is implemented based on a systolic array

architecture.

=75 -

CHAPTER 5

DESIGN AND IMPLEMENTATION OF
AN ADAPTIVE VITERBI DECODER

5.1 Introduction

According to the power estimator results presented in Chapter 3, power consumption in
the systolic array architecture-based Viterbi decoder results mainly from the array proces-
sors used for generating the composite branch metrics and updating the path metrics at a
given stage. This is because these array processors constitute a significant part of the
FPGA hardware resource of this design, whereas the operations carried out by the proces-
sors result in a dorminant switching activity of the decoding process. In this chapter, by
using the adaptive Viterbi algorithm proposed in Chapter 4, a design and implementation
of a low-power systolic array-based adaptive Viterbi decoder is presented [18]. It was seen
in Chapter 4 that the proposed adaptive algorithm can reduce the amount of ACS compu-

tations significantly. It is shown in this chapter that this feature can result in reducing the

.76 -

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

amount of switching activities in the array processors for the proposed adaptive Viterbi
decoder. As a consequence, the dynamic power consumption of the decoder is reduced.
The block diagram of the proposed adaptive Viterbi decoder is shown in Figure 5.1 In
this decoder, the Input buffer & one-stage branch metric generation unit is designed to col-
lect the two soft input sequences and to compute all the possible branch metrics corre-
sponding to the eight low-connectivity trellis stages. The path metric update unit is
designed to generate the composite branch metrics and to process the matrix-vector ACS
computation. The trace-back unit is designed to retricve the decoded sequence from the
survivor path memory through the trace-back strategy described in Chapter 3. The built-in
testbench provides a functional testability to the design, and the control logic provides the
timings for all the input signals to each unit. The difference between the implementations
of the non-adaptive Viterbi algorithm and the proposed algorithm is only in the path metric

update units, all other parts of the design being identical. The trace-back unit, the input

Control logic

] {

) o _ Decoded
Input buffer & _ . . output
one-stage branch .| Path metric updata 7™} Trace-back unit -
metric generation | : | unit(systolic arrays) | :
unit > ‘>
])
Softinput2
Softinputl ! gie-in testbench -
> Comparison result

soft_input_online soft_input_online

Figure 5.1 Block diagram of the adaptive Viterbi decoder

-77-

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

buffer, the one-stage branch metric generation unit, and the built-in testbench are shown
respectively as in Figures 3.12, 3.13, 3.14 and 3.15. In the following section, a systolic
array-based path metric update unit with a reduced spurious toggle is presented for the
proposed adaptive Viterbi decoder. Furthermore, the performance of the adaptive Viterbi
decoder in terms of speed, power and hardware resource utilization is analyzed and com-

pared with that of the implementation of the non-adaptive Viterbi decoder.

5.2 Systolic Array-Based Architecture and Spurious Toggle Reduction

The systolic array architecture for the path metric update unit is shown in Figure 5.2.
This unit is the same as the one shown in Figure 3.1 for the Viterbi decoder except that the
former unit includes four CMPs, two multiplexers and a dm_plus_T block. In this design,
time multiplexing, arithmetic pipelining, and a scheme for avoiding large clock-to-data
skews and for providing a tolerance to low clock-to-data skews are employed in the same
way as for the Viterbi decoder described in Chapter 3.

Similar to the Viterbi decoder, this path metric update unit processes the matrix-vector
ACS computation as given in (4.8). For K=9, the 256 x 256 adjacency matrix B, is parti-
tioned into four 256 x 64 submatrices, and the four submatrices along with the path metric
vector Py_; arc used in (4.8) to update the corresponding 256 (=4x64) path metrics of a
given stage. This is done by the four pairs of interconnected linear systolic arrays shown in
Figure 5.2. Each pair of the linear systolic arrays is the same as the one shown in Figure

3.2, and the two types of arithmetic-pipelining processors for an BM_4 and an ACS_4 are

-78 -

CIIAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

a pair of
systolic arrays ROMO I ROM1 ROM2 ROM3
Yq S
\r-‘——i—ﬂr" —_'ll‘—""—_ﬂl‘_‘ji -9
xl ; i
uxI\s il BM_4 N v g " B s H BM 4 I
] | " I [. I - |
: v w; H v :: H) 3 Yy v |
ROM | I I I |
| ACS_4 ¥ ACS_4 ¥ ACS_4 0 ACS_4 |
cPREPE FRRRS CPRFE RREPOCTREERE EPERCTRRR TR
1117 L y
MUX_Pf \MUX_S \._ulx_r' MUX_S \\1—U.‘(_P MUX_S \.\lUX_P MUX_S
R Sur % Sur Sur ur
v y v v
CMP CMP CMP CMP
RAMO RAMI RAM?2 RAM3

g R 3 1]
T3 "\ BUS_MUX /

L g

Pyt (0), Py y(1)ccees, Py y(255) L]
dm_plus_T
1

v

Figure 5.2 Systolic array-based architecture for an adaptive Viterbi decoder

the same as the ones shown in Figure 3.3 and Figure 3.4 respectively. In each pair of sys-
tolic arrays, BM_4 is used to process the composite branch metrics given by (2.4) and
(2.5), whereas ACS_4 is used to update :he corresponding subset of path metrics of a
given stage according to (4.6) and to make decisions on the survivor paths for the corre-
sponding subset of path metrics of the stage according to (4.7). For computing the corre-
sponding four subsets of By at each stage, the codeword vector Cj is divided into four

1 x64 subvectors to be stored in four ROMs, ROMO to ROM3, and the codeword vector Cy

stored in ROM. Globally, the four submatrix-vector ACS computation are carried out

-79.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

simultaneously by the corresponding four pairs of systolic arrays of Figure 5.2. Locally,
inside each pair of the systolic arrays the corresponding submatrix-vector ACS computa-
tion is time multiplexed.

In the four CMP units in Figure 5.2, the survivor information corresponding to the

updated path metrics from the four pairs of systolic arrays arc obtained by comparing

p,(ywith (@!'+T). In the dm_plus_T unit, &%"" is obtained by taking the minimal value

among the path metrics at the (q-1)-th stage, and @?"'+1) is calculated. The updated path

metric subvectors from the four pairs of systolic arrays are selected by the four multiplex-
ers (MUX_P) and sent to the four CMP units. The path metric subvectors together with the
survivor information are written into and read out from the four RAMs, RAMI to RAM3.
The two multiplexers, Mux | and Mux2, are used to keep the input data streams to the pairs
of systolic arrays unchanged from their previous values whenever the corresponding path
metric to be computed is not survived, so that there is no switching activity in the arith-
metic units of the systolic arrays. This process of eliminating the unnecessary switching is

called spurious toggle reduction.

5.3 Performance Analysis and Comparison with the Non-Adaptive

Viterbi Decoder

The design of the adaptive Viterbi decoder has been simulated, synthesized and imple-
mented based on the VHDL modeling (see Appendix). In this section, the performance of
the proposed adaptive Viterbi decoder is analyzed in terms of speed, power and hardware

resource utilization and compared with that of the implementation of the non-adaptive Vit-

erbi decoder.

-80-

CHAPTER 5. DESIGN AND IMPLEMFNTATION OF AN ADAPTIVE VITERBI DECODER

5.3.1 Speed

From description in Section 5.2, compared to the Viterbi decoder presented in Chapter3,
it is seen that a hardware overhead arising from the additional computation is introduced
in the adaptive Viterbi decoder. This is because the four CMPs, the two multiplexers, and
the dm_plus_T block are needed for the latter for generating the survivor information and
for eliminating the spurious toggles. However, the speed of the design is not degraded by
the computation overhead. As seen from Figure 5.2, each CMP unit can be viewed as a
pipeline stage in the pipeline of the corresponding ACS_4 whose outputs are sent to the
CMP unit through the multiplexer MUX_P. Similarly, the dm_plus_T unit works in paral-
lel with the two multiplexers, mux! and mux2, and can also be viewed as a pipeline stage
in the pipeline of any ACS_4. In this way, the critical path delay of the design for the adap-
tive Viterbi decoder is not changed over that for the non-adaptive one. Therefore, the

speed of the former decoder remains the same as that of the latter decoder.

5.3.2 Power

The power consumption is estimated using the Virtex-II power estimatior based on the
implementation results provided by the Xilinx implementation tool. In this design, the
FPGA resource utilization and power estimator results in memory units, the DCMs, and
the I/O cells are the same as the ones for the non-adaptive Viterbi decoder, shown in
Tables 3.5, 3.6, and 3.7 of Chapter 3. The comparison between the two systolic array-
based decoders can be carried out by comparing the power dissipation in the CLB logic

used by the two decoders. Table 5.1 shows the power estimator result for the CLB logic

-81 -

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

used in the adaptive Viterbi decoder, and Table 5.2 shows the average toggle rate and Py

in different modules of CLB logic used by the two decoders. It is seen from Table 5.2 that
the average toggle rates in the array processors, acsPEx 16, brcPEx 16, and brcREGx 16, for

the proposed decoder are only about 30% of the corresponding rates in the non-adaptive

Table 5.1 CLB logic power estimator results for the adaptive Viterbi decoder

LUT
Average | Vecint
. . Routing
Module |Frequency| CLB | Flip/Flop | ghift Toggle | | Subtotal
(MHz) | Slices [or Latches| Register | SelectRAM| patg(es)| ~MOU" (mW)
acsPEx16 40 448 608 0 0 15% High 40
acsCNTx16 40 64 128 0 0 25% | Medium 6
brePEX16 40 1488 832 480 0 15% High 138
brcREGx16 40 32 64 0 0 17% High 3
testPKG 40 48 56 2 0 50% High 12
conLOGIC 40 206 165 0 0 50% High 51
recBUF 40 220 256 0 0 12% High 16
decOUT 40 20 40 0 (0] 12% | Medium 1
MUX_Ps
& 40 16 0 0 0 2% High 0
MUX_Ss
cmpPEx4 40 104 48 0 0 2% Medium 1
dm_plus_T 40 31 20 0 0 50% | Medium 4
mux1&mux2 40 14 0 0 0 15% | Medium 0
Total 275

decoder. As explained in Section 5.2, this is due to the fact that spurious toggles have been
eliminated in the adaptive Viterbi decoder. This results in a reduction in the dynamic
power consumed in these three units in the adaptive Viterbi decoder as compared to the

non-adaptive one. As can be seen from Table 5.2, the dynamic power consumed by these

-82-

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

three units in the adaptive Viterbi decoder is only about 35% of that in the non-adaptive
decoder. It is seen that the hardware overhead by the CMP units (cmpPEx4), the
dm_plus_T unit, and the multiplexers (Mux1 and Mux2) in the adaptive Viterbi decoder
consume a power of only about 5 mW. As a consequence, the total internal power Pyt in
the CLB logic used in the adaptive Viterbi decoder is about 43.7% of that in the non-adap-
tive decoder.

Table 5.2 Power and average toggle rate in CLB logic for the non-adaptive
and adaptive Viterbi decoders

Non-adaptive Viterbi Decoder Adaptive Viterbi Decoder
Module Average Toggle Pyt Subtotal Average Toggle Pyt Subtotal

Rate % (mW) Rate % (mW)
acsPEx16 50% 114 15% 40
brcPEx16 50% 417 15% 138
brcREGx16 55% 9 17% 3
cmpPEx4 X X 2% 1
dm_plus_T X X 50% 4
mux1&mux2 X X 15% 0
acsCNTx16 25% 6 25% 6
testPKG 50% 12 50% 12
conlLOGIC 50% 51 50% 51
recBUF 12% 16 12% 16
decOUT 12% 1 12% 1
i 2% 0 2% 0

Total 629 Tota! 275

Table 5.3 shows the power estimator results for the total power. It is seen that the power

consumption from the core supply voltage Vcine is dorminant in this design. Table 5.4

shows the static power consumption, the dynamic power consumption, and the total power

consumption in the two systolic array-based Viterbi decoder. It is seen that the dynamic

-83-

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

power consumption from Ve in the adaptive Viterbi decoder is only about 43% of that

in the non-adaptive one. Consequently, the total power consumption in the adaptive Vit-

erbi decoder is only about 57% of that in the non-adaptive decoder.

Table 5.3 Power estimator results for the adaptive Viterbi decoder

Target Device Estimated Design Power Values (mW)
Device Package Total Power Vegint 15V | Vecaux 33 V| Veco 33V
XC2v1000 FG256 477 442 33 2

Table 5.4 Power consumption for the non-adaptive and adaptive Viterbi decoders

Non-adaptive Viterbi Decoder Adaptive Viterbi Decoder

Static Power Dynamic Power Static Power Dynamic Power
Total Power Total Power
Vecint 15V | Vecint 15V Veeint 15V | Vecine 1.5V

150 mW 680 mW 830 mW 150 mW 292 mW 477 mW

5.3.3 FPGA Resources Utilization

As mentioned above, the adaptive Viterbi decoder requires a hardware overhead due to
the inclusion of the four CMPs, the two multiplexers and the dm_plus_T block for gener-
ating the survivor information and for eliminating the spurious toggles. As shown in Fig-
ure 5.2 instead of using the four CMP units to process the four outputs from a ACS_4, one
CMP unit is used to process these outputs selected by the corresponding multiplexer
MUX_P. In this way, only four CMP units instead of 16 CMP units are used to generate

the survivor information for the updated path metrics at a given stage. The FPGA resource

-84 -

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

utilization with the four CMP units is obviously one-fourth of that with the 16 CMP units.
By using four CMP units instead of 16 CMP units, the increase in hardware in the adaptive
Viterbi decoder is very little. Table 5.5 shows the FPGA resource utilization for the two
systolic array-based Viterbi decoders. There is a total of 5120 slices in the Xilinx VirtexII-
XC2VI1000-4FG256. It is seen that the adaptive Viterbi decoder takes 2934 slices, which
is 57.3% the total number of slices available. On the other hand, the non-adaptive Viterbi
decoder takes 2793 slices, which is 54.6% the total number of slices. Consequently, the
hardware overhead in the adaptive Viterbi decoder is 5% compared to the hardware

needed for the non-adaptive decoder.

Table 5.5 FPGA resources utilization for the non-adaptive and adaptive Viterbi decoders

Target Design Slices LUTs FFs Latches | BlockRAMs| DCM
Non-adaptive Viterbi Decoder| 2793 4083 2693 4 17 1
Adaptive Viterbi Decoder 2934 4255 2777 4 17 1

5.4 Summary

In this chapter, the design and implementation of a low-power systolic array architec-
ture-based adaptive Viterbi decoder has been presented. This adaptive decoder is different
from the non-adaptive Viterbi decoder presented in Chapter 3 in terms of the path metric
unit. The important change in the path metric update unit for the adaptive Viterbi decoder
is the involvement of four CMPs, two multiplexers, and a dm_plus_T block. These units

are needed for generating the survivor information and for eliminating the spurious tog-

-85-

CHAPTER 5. DESIGN AND IMPLEMENTATION OF AN ADAPTIVE VITERBI DECODER

gles in the array processors caused by the path metric updates corresponding to the paths
that are not survived. It has been shown that because of the reduction in the spurious tog-
gles, the average toggle rate at each clock for the array processors in the adaptive Viterbi
decoder is only about 30% of that in the non-adaptive Viterbi decoder presented in Chap-
ter 3. This reduced average toggle rate at each clock for the array processors has resulted
in lowering the dynamic power consumption. The power estimator results have shown that
at the expense of a 5% overhead in hardware, the total power consumption in the adaptive

Viterbi decoder is only 57% of that in the non-adaptive decoder.

- 86 -

CHAPTER 6

CONCLUSION

6.1 Summary and Conclusions

The conventional Viterbi algorithm provides an efficient method for the maximum like-
lihood decoding of convolutional codes. It has been shown that this algorithm can be for-
mulated by employing a matrix-vector computation and it can be implemented in
hardware based on a systolic array architecture. It is also known that the strongly-con-
nected trellis decoding method can be used to improve the efficiency of the hardware utili-
zation in the systolic array architecture and the throughput of the decoding. However, the
employment of the strongly-connected trellis decoding method results in an excessive
amount of computations in the decoding process as the constraint length K becomes large.
Moreover, the hardware complexity of the systolic array architecture increases exponen-
tially with the constraint length of the code. This makes the adoption of such a systolic
array architecture not feasible in the design of the Viterbi decoder for decoding a convolu-

tional code with a large K.

87

CHAPTER 6. CONCLUSION

In this thesis, a study on low-power designs and implementations of systolic array-
based Viterbi and adaptive Viterbi decoders for decoding a convolutional code with a large
K has been presented. First, the conventional Viterbi algorithm has been reformulated for
the strongly-connected trellis decoding. Then, based on this algorithm, the design and
implementation of a systolic array-based non-adaptive Viterbi decoder for decoding a con-
volutional code with the constraint length K=9 and the code rate r=1/2 using Xilinx Vir-
texI1-XC2V 1000-4FG256 have been presented. Further, an adaptive Viterbi algorithm that
is based on strongly-connected trellis decoding has been proposed in order to reduce the
amount of addition, comparison, and selection (ACS) computations. Using this algorithm,
the design and implementation of a low-power systolic array-based adaptive Viterbi
decoder with K=9 and r=1/2 employing Xilinx Virtexl[-XC2VlOOO-4FG256 has been pre-
sented.

In the non-adaptive Viterbi algorithm based on the strongly-connected trellis decoding,

the processes of generating the composite branch metrics, and updating the path metrics,

the ACS computations using modulo arithmetic, and radix-25-! trellis trace-back updating
in the Viterbi decoding have been reformulated. A composite branch metric is evaluated
for updating the path metric using the Euclidean distance between the codeword sequence
and the received data sequence under soft demodulator decisions. This computation for a
composite branch metric has been simplified into several signed additions under the BPSK
modulation. In this way, the multiplication operations for computing the Euclidean dis-
tance have been avoided, thus reducing the hardware complexity of the design. The updat-

ing of path metrics in the Viterbi decoding process has been formulated as a matrix-vector

-88-

CHAPTER 6. CONCLUSION

ACS computation so that its hardware implementation is suitable for a systolic array archi-
tecture. Morcover, the adoption of the modulo arithmetic method has made the normaliza-
tion for the ACS computations unnecessary so that the overheads of the hardware and the

processing time due to the normalization have been avoided. In the trace-back decoding

process based on the strongly connected radix-2®D trellis, (K-1) bits can be decoded per
trace-back operation. Thus, the strongly-connected trellis decoding has increased the
throughput by a factor of (K-1) of that in the original low-connectivity trellis decoding.

In the proposed systolic array-based non-adaptive Viterbi decoder, a novel systolic array
architecture that uses four pairs of systolic arrays with each array having four processors
have been exploited. In this architecture, the time multiplexing has been employed to pro-
cess the large matrix-vector ACS computations by using 32 array processors instead of
512 processors that are required if the time multiplexing is not used. In addition, the
employment of the time multiplexing technique has lowered the toggle rate in the memory
units and the multiplexers in this design so that the power dissipation in these units has
been saved. However, a drawback of using the time multiplexing technique is that the
speed of the decoder is one-sixteenth of of that without using the time multiplexing tech-
nique. This is due to the fact that 16 iterations of time multiplexing are needed to process
the matrix-vector ACS computation at a given stage. However; this speed degradation has
been compensated, since the strongly-connected trellis decoding has increased the
throughput of the decoding and the arithmetic pipelining technique empioyed has
increased the clock-rate of the design. The employment of the arithmetic pipelining has

not only increased the clock-rate of the design, but it has also ensured that the multi-rate

-89-

CHAPTER 6. CONCLUSION

array processors in this systolic array-based decoder are synchronized. Also, in this two-
level pipelining architecture, there is no need of an additional period for initializing the
systolic arrays at the beginning of each iteration. This has avoided the speed degradation
of the decoder. Furthermore, a scheme for avoiding large clock-to-data skews and for pro-
viding a tolerance to low clock-to-data skews have been investigated to ensure that the
timings in the design are not violated.

The proposed adaptive Viterbi algorithm is based on the strongly-connected trellis
decoding and it is very suitable for a systolic array architecture-based hardware implemen-
tation. An extensive simulation study has been carried out in order to show the perfor-
mance and the efficiency of the proposed algorithm. It has been shown that with a
threshold value of -5, the proposed algorithm can yield the same error performance as that
of the non-adaptive Viterbi algorithm based on a strongly- connected trellis decoding, but
the amount of the ACS computations is reduced to 42.8%. It has also been shown that this
reduction in the ACS computations can be lowered to as low as 30.1% for a threshold
value of -7 with a negligible degradation in the error performance.

In the proposed systolic array-based adaptive Viterbi decoder, the time multiplexing has
been employed to implement the large constraint-length Viterbi decoder with four pairs of
arrays of a fixed size. The arithmetic pipelining has been applied to ensure that the pro-
cessing times of the various array processors can be synchronized without sacrificing the
speed of the decoder. The scheme for avoiding large clock-to-data skews and for providing
a tolerance to low clock-to-data skews have been used to ensure that the timings in the

design are not violated. Moreover, a process of spurious toggle reduction has been intro-

-90-

CHAPTER 6. CONCLUSION

duced to eliminate the unnecessary switching activities in the array processors, caused by
the path metric updates corresponding to the paths that have not survived.

The performances of both the non-adaptive and adaptive Viterbi decoders have been
tested and estimated in terms of the speed, power, and FPGA resource utilization. It has
been shown that the adaptive Viterbi decoder can achieve the same decoding speed and

coding gain as the non-adaptive one. The decoding speed and coding gain for both are

respectively 78 Kbps and 5 dB at a bit-error-rate of 10°3. However, the total power dissipa-
tion for the non-adaptive Viterbi decoder is 830 mW, whereas for the adaptive one it is
only 477 mW. The total number of slices for the non-adaptive Viterbi decoder is 2793,
whereas for the adaptive one it is 2934. Thus, the total power consumption in the adaptive

Viterbi decoder is only 57% of that in the non-adaptive decoder with a hardware overhead

of only 5%.

6.2 Suggestions for Future Investigations

In this thesis, it has been demonstrated that the proposed adaptive Viterbi decoder has
advantages in terms of power consumption compared to the non-adaptive one. However,
the array processors for computing the composite branch metrics and the path metrics uti-
lize a relatively large amount of hardware resources, and thus the power consumption of
these array processors dominates the total power consumption of the decoder. If these
array processors can be further simplified, the amount of hardware resource utilization as
well as the amount of power consumption would be further reduced. On the other hand, if

the array processors can be designed with less complexity, we can involve more pairs of

-9] -

CHAPTER 6. CONCI.USION

systolic arrays to process the matrix-vector ACS computation so that the number of time
multiplexing iterations can be reduced. As a result, the speed of decoding would be
improved. Thercfore, design and implementation of an adaptive Viterbi decoder with sim-
pler array processors can be investigated in order to lower the power consumption further

and to increase the speed.

APPENDIX

The computer programs have been developed using C language and run on a SUN work-
station for the simulations of the non-adaptive and adaptive Viterbi algorithms. The Vit-
erbi decoders are modeled using VHDL, simulated using Synopsis VSS, synthesized
using Synopsys Design Compiler, and implemented using Xilinx Design Manager. The
simulation programs in C and the design models in VHDL, including the initial data for
the memory units and the stimulus used for the simulations, are included in a CD-ROM

with proper headings, as part of the thesis.

-903 -

REFERENCES

REFERENCES

[1] G. David Forney, JR., “The Viterbi Algorithm,” Proceedings of the IEEE, Vol. 61, no.
3, pp. 268-278, March 1973.

[2] Vijay K. Gary, Wireless Network Evolution 2G 1o 3G. New York: Prentice hall, 2002.
[3]1G. D. Forney, Jr., “Convolutional Codes I1: Maximum Likelihood Decoding,” Inf. Con-
trol, 25, pp. 222-266, July 1974.

[4]J. K. Omura, “On the Viterbi Decoding Algorithm,” [EEE Trans. Inf. Theory, [T-15,
pp. 177-179, January 1969.

[5] Bupesh Pandita and Subir K Roy, “Design and Implementation of a Viterbi decoder
Using FPGAs," in Proc. 12th International Conference on VLSI Design, pp. 611-614,
January 1999.

(6] Jang-Hyun Park and Yea-Chul Rho, “Performance Test of Viterbi Decoder for Wide-
band CDMA System,” in Proc. IEEE Asp-Dac’97, pp- 19-23.

[7] Chi-Yung Chang and Kung Yao, “Systolic Array Processing of the Viterbi Algorithm,”

IEEE Trans. on Information Theory, vol. 35, no. 1, pp. 76-86, January 1989.

-04-

REFERENCES

[8] G. M. Megson, An Introduction to Systolic Algorithm Design. Oxford Science Publica-
tion.

[9] Yun-Nan Chang, Hiroshi Suzuki, Hiroshi Suzuki, and Keshab K. Parhi, “A 2-Mb/s
756-State 10-mW Rate-1/3 Viterbi Decoder.” IEEE J, Solid-State Circuits, vol. 35, no. 6,
pp- 826-834, June 2000.

[10] Inyup Kang and Alan N. Willson Jr, “Low-Power Viterbi Decoder for CDMA
Mobile Terminals.” [EEE Journal of Solid-State Circuit, vol. 33, no. 3. pp. 473-482,
March 1998.

[11] P. Elias, “Coding for Noisy Channels,” IRE Conv. Rec., Part 4, pp. 37-47, 1955.

[12] J. M. Wozencraft and B. Reiften, Sequential Decoding, MIT Press, Cambridge,
Mass., 1961.

[13]J. L. Massey, Threshold Decoding, MIT Press, Cambridge, Mass., 1963.

[14] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm,” IEEE Trans. Inf. Theory, IT-13, pp. 260-269, April 1967.
[15] Shu Lin and Daniel J. Costello, Ir., Error Control Coding. Prentice-Hall, Inc. Engle-
wood Cliffs, New Jersey 07632

[16] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thaper, “VLSI architecture for
metric normalization in the Viterbi algorithm,” in Proc. int. Conf. Communications, vol.
4, Atlanta, GA, pp. 1723-1728, Apr. 1990.

[17] Peter J. Black and Teresa H. Meng, “A 140-Mb/s, 32-State, Radix-4 Viterbi Decoder,”

IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1877-1 885, December 1992.

-95-

REFERENCES

(18] Man Guo, M. Omair Ahmad, M.N.S. Swamy, and Chunyan Wang “FPGA design and
Implementation of a Low-Power Systolic Array-Based Adaptive Viterbi Decoder,” to be
submitted to IEEE Trans. on Circuits and System-PartIl.

[19] Gennady Feygin and P. G. Gulak, “Architecture Tradeoffs for Survivor Sequence
Memory Management in Viterbi Decoders,” [EEE Trans. on communications, vol. 41,
no. 3, pp. 425-429, March 1993.

[20] Xilinx Inc., “A Simple Method of Estimating Power in XC4000XL/EX/E FPGAs,”
Application Brief XBRF 014 June 30, [997.

[21] K. Weiss, C. Oetker, I. Katchan, T. Steckstor and Prof. Dr. Wolfgang Rosenstiel,
“Power Estimation Approach for SRAM-based FPGAs,” FPGA2000, pp- 195-202.

[22] Francois Chan and David Haccoun, “Adaptive Viterbi Decoding of Convolutional
Codes over Memoryless Channels,” IEEE Trans. on Communication, vol. 45, no. L1, pp.
1389-1400, November 1997.

[23] Man Guo, M. Omair Ahmad, M.N.S. Swamy, and Chunyan Wang “An Adaptive Vit-
erbi ALgorithm Based on strongly-connected trellis Decoding,” in Proc. IEEE Interna-

tional Symposium on Circuits and Systems, Scottsdale, Arizona, May, 2002.

-96-

