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Abstract

A VLSI Sensory-Motor Architecture for an Obstacle Avoidance Task
in an Unstructured Environment

C. David Claveau

Obstacle avoidance is a difficult task for autonomous robots. To overcome limita-
tions of traditional computer vision systems, some robots have made use of efficient VLSI
sensory-motor systems. However, because the processing in these systems is at the pixel
level, it is difficult to achieve algorithms that can deal with real-world. unstructured envi-
ronments. To make these VLSI sensory-motor systems more widely applicable. new archi-
tectures and strategies are needed.

This thesis presents an architecture for a VLSI sensory-motor system designed for
obstacle avoidance by a mobile robot in an unstructured environment. Drawing inspiration
from biology and behavior-based robotics. the development of the architecture is guided
by an emphasis on the requirements of an obstacle avoidance behavior for a mobile robot.
The architecture incorporates features which enable it to deal with unstructured environ-
ments. A special foveation and weighting scheme are used to facilitate the detection of
real-world objects. The sensory and motor maps of the system are aligned to relate fea-
tures in the visual field to a left and a right control signal. The effectiveness of the archi-
tecture is demonstrated through computer simulation. A model of a sensory-motor system
based on the architecture is used to create a realistic looking virtual environment simula-
tor. Simulation results show that such a system is capable of efficient obstacle avoidance in
an unstructured environment, while using only a small number of simple operations con-

nected hierarchically, potentially leading to an implementation with small pixels.
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Introduction

Moving through a cluttered room without bumping into anything can be easily done
by all creatures, great and small, that possess the necessary perceptual and motor capabili-
ties. Getting a robot to perform that task has proven to be very difficult. This is partly
because it is a sensory-motor task. which means that an appropriate motor action must be
taken according to the signals derived from a sensory system. Sensing the environment in

a timely and sufficiently detailed manner is difficult. [t usually involves a large amount of



data which must then be processed quickly enough to produce a control signal for an actu-
ator. The various creatures of the world have vision to sense their environments. Visual
features can be used to distinguish the obstacles from the background. and to perceive the
depth and relative position of these obstacles. Likewise, when engineering a sensory-
motor system for a robot, some type of camera system is generally used to acquire images
of the robot’s environment. The image data are processed by a computer using various
algorithms. Recently there has been growing interest in acquiring the visual signal and
processing it on the same integrated circuit. With these "smart sensors . the algorithm is
embedded in their signal processing architecture and the circuits used to implement it. The
work in this thesis comprises such an architecture. designed for obstacle avoidance in real-

world. unstructured environments.

1.1 Autonomous Mobile Robots and Obstacle Avoidance

An autonomous mobile robot must operate without the aid of an external controller.
The robot is self-contained. which means that it has its own sensors. its own processing
units. and its own actuators to perform its tasks. Because it is mobile. it must be able to
move through a certain variety of environments and avoid obstacles. Achieving that func-
tionality within the constraints of the robot’s resources is a unique and important chal-
lenge. Its importance lies in the many useful applications of these robots.

The major application areas for autonomous mobile robots are scientific. industrial.
military, and consumer. Scientific applications include using mobile robots for exploration
and data gathering. Industrial applications include surveillance and various tasks in factory

settings. Military applications usually involve reconnaissance robots which must pass



through hostile areas. Consumer applications include service robots such as the automatic
vacuum cleaning and lawn mowing robots already available on the market. All of these
applications require the robot to perform reliable obstacle avoidance in its environment.
The difficult part for many of these applications is that the robot should be able to
move safely and efficiently through an unstructured environment. An unstructured envi-
ronment is one which has not been purposely designed or altered to facilitate the move-
ment of a robot. Examples include natural environments like the surface of a planet, or
man-made environments like a factory floor. However, if a white line is painted on the
floor so that a robot can use the line to guide its movements. then it is an artificially struc-

tured environment. Fig. 1.1 shows an example of both.

Fig. 1.1 Structured and unstructured environments. Shown in (a) is the top-view of a
structured environment in which a robot follows a white line on a black floor.
An unstructured environment is in (b). A lawn mower robot must avoid obstacles
like bushes and people.
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For traditional computer vision systems, performing a task such as obstacle avoid-
ance in an unstructured environment is computationally intensive. First. the image
sequence from the camera must be processed fast enough to permit the robot to move at a
reasonable speed. This requires processing at very high clock rates because of the large
amount of data. Secondly, extracting information like the position and size of obstacles is
algorithmically complex because of the many different ways they may appear in realistic
images.

Exploratory robots for scientific applications are good examples of this problem
because they are often deployed in challenging and remote locations. Fig. 1.2 shows an
experimental rover designed to explore the surface of the planet Mars. It uses solar cells to
power its motors and its sensory equipment. Because of the great distances involved. and
the great financial costs of these missions. the robot must explore the planet as efficiently
and reliably as possible. Using traditional computer vision for navigation and obstacle
avoidance is expensive in terms of time. power. and size. On the Sojourner rover of the
Pathfinder Mars mission in 1998, the camera image sensors consumed 5% (0.75W) of the
total power budget and the microprocessor-based system consumed 24% [1]. The micro-
processor was mostly used to process static images while the rover remained motionless.

waiting for the results [1].



An experimental Mars rover for planetary exploration is an example of an
autonomous robot with an important and difficult task.
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1.2 Obstacle Avoidance and VLSI Smart Sensors

Because of the limitations of the traditional techniques. other approaches including
those based on VLSI smart sensors have been explored. A smart sensor consists of an
array of pixels, each of which coniains a photoreceptor and some signal processing cir-
cuitry. In the smart sensor paradigm, the per-pixel signal processing circuitry can perform
various operations on the photoreceptor signals. Some types of image processing and
computer vision algorithms can be implemented directly on the sensor. The algorithm is
entirely determined by the architecture of the smart sensor. The architecture defines the
signal processing operations to be performed and how they are interconnected across the

array. For example, sometimes the processing is used to produce an image with enhanced



edges. which can then be scanned out and digitized. Sometimes the processing is used to
ccmpute a global property of the image such as the minimum/maximum brightness or an
image histogram.

Often the architecture of the signal processing is derived from a study of biological
systems which perform tasks related to vision. such as target tracking and motion detec-
tion. If this visual processing produces a motor control signal to follow a target or to steer
a robot to avoid obstacles. then the system can be referred to as a VLSI sensory-motor sys-
tem. Such a system can be used in a control loop to replace a traditional microprocessor
based computer vision system which may use multiple chips for things like analog-to-dig-
ital conversion. memory and processing. In addition. high-bandwidth inter-chip connec-
tions can be eliminated by having a single chip which can take a visual signal from a scene
and produce a motor control signal that can be used with minimal interfacing.

In the fust 10 to 15 years. several VLSI sensory-motor systems for autonomous
robots have been proposed. They are able to perform their functions efficiently because
they process the visual signal in parallel. However. extracting relevant information about
real-world obstacles is still a difficult task. Because of limited space. the complex algo-
rithms used in conventional systems are not implementable using sensor arrays. Also,
since the processing of a sensor array is mainly at the level of individual pixels. it is usu-
ally better suited to tasks in low-level vision such as edge detection. Thus. it is much easier
to locate a white line or a spot of light on a black background than it is to locate a bush or
a rock.

To overcome these difficulties, new architectures and strategies are needed to make

VLSI sensory-motor systems more widely applicable to real-world robotics. The research



in this thesis is motivated by an interest in bringing together ideas from robotics. biology,

and smart sensor technology to propose a new architecture for a VLSI sensory-motor sys-
tem for an autonomous mobile robot. The research is based on the thinking that a conflu-

ence of ideas from these three fields can lead to a more effective solution for difficult tasks
like obstacle avoidance in unstructured environments. Drawing inspiration from biological
systems has become increasingly popular as an engineering strategy in the field of robotics
and also in the field of smart sensors. This is particularly true for systems which must per-

form tasks which resemble things that humans and animals appear to perform with ease.

1.3 Objectives

The first major objective of the research in this thesis is to develop a signal process-
ing architecture for a VLSI smart sensor intended to efficiently solve the problems of sen-
sorv-motor systems using minimal hardware resources. The architecture should lead to an
effective obstacle avoidance behavior in realistic environments. It should remain effective
in the presence of irregularly shaped objects with textured surfaces and many details.
Also. the architecture should exhibit the qualities which make it suitable for a smart sensor
implementation. One of these qualities is to use only computationally simple operations so
that the svstems can be easily implemented using standard VLSI technologies at a low
cost.

In order to evaluate the efficiency of the architecture. modules for the simulation of
the architecture need to be developed. which is the second objective of the work of this
thesis. Because of the recent availability of high-performance workstations. it is possible

to create detailed software simulations which permit flexible and accurate prototyping. In



this case. a virtual environment is needed to test the architecture as if it was actually
mounted on an autonomous mobile robot in a realistic environment. like a room or in a
factory. The simulation should model three things: the realistic environment. the imaging
process. and the functionality of the architecture which determines the steering of the
robot. A well constructed simulation can also be used to determine some important design
parameters for an eventual implementation.

The third objective of the thesis is to provide an example implementation of the
architecture using simple circuits in order to prove the feasibility of a VLSI implementa-

tion which uses standard technology.

1.4 Overview and Outline of the Thesis

This thesis presents a VLSI sensory-motor architecture which is directed at perform-
ing a useful task in an unstructured environment. The architecture is designed for an obsta-
cle avoidance task by a mobile robot in a real-world. unstructured environment where
there are no simple visual cues to follow. The architecture maps easily to the smart sensor
paradigm, but incorporates special features which enable it to avoid real-world obstacles
in common settings.

The features of the architecture will be developed by emphasizing the particular
requirements of an obstacle avoidance task for a mobile robot. For obstacle avoidance. a
control signal to steer the robot must be derived from the visual signal. To this end. a spe-
cial type of foveation scheme will be developed which produces a low-pass filtering of the

image to make complex objects appear more like a block of uniform intensity. Also. a bio-



logically inspired technique of aligning sensory and motor maps will be used to produce a
control signal to keep the robot centered on the open pathway.

This thesis describes the development and simulation of the VLSI sensory-motor
architecture in detail. In Chapter 2. relevant background material on autonomous robots
and obstacle avoidance is presented. along with a brief description of some of the biologi-
cal inspirations for the thesis. Some recent VLSI sensory-motor systems. related to the
work in this thesis. are also presented. Chapter 3 describes the development of the archi-
tecture in detail. starting with the two basic organizing principles and ending with a com-
plete architecture for an obstacle avoidance system. Chapter 4 describes a simple
mathematical model of the architecture which is used as the basis for computer simula-
tion. A detailed simulation scheme using 3D computer graphics is presented to evaluate
the effectiveness of the architecture. Chupter 5 presents a set of circuits for the operations
required by the architecture to demonstrate the feasibility of a potential implementation in
a standard CMOS technology. Finally. Chapter 6 summarizes the most important points of

the thesis and suggests opportunities for future research.



Background

and
Related Work

This chapter presents some background material on VLSI smart sensors and sen-
sory-motor systems. It reviews the key historical developments in the smart sensor para-
digm followed by a consideration of a set of more recent sensory-motor systems. Some of
the principle influences and inspirations for the work in this thesis. such as those related to

biological vision systems and behavior-based robotics. are highlighted.



2.1 Autonomous Robots and Obstacle Avoidance

As mentioned in Chapter L. an autonomous mobile robot must be able to move
through various environments and avoid obstacles without the aid of an external controller.
This type of automatic sensory-motor behavior is difficult to achieve because of the large
volume of sensory data that must be processed in a timely and efficient manner. Tradi-
tional approaches have been strongly influenced by the model of computation supported
by the stored-program computer. They have generally followed what is referred to as the
sense-model-plan-act (SMPA) cycle. In this cycle. sensing is performed in order to con-
struct a central. symbolic model of the robot’s environment. The model. stored in com-
puter memory. is then used as the basis for all decision making and planning for things
such as obstacle avoidance or more complex behavior. [t should be a detailed. comprehen-
sive model of the environment. which is able to support the planning of actions for most of
the robot’s behavior. The purpose of visual sensing in these systems was to extract features
from the environment which could be incorporated into the general purpose model.

There have been several problems with the SMPA approach. It is difficult for the
robot to be reactive to a dynamic environment because feature extraction and model build-
ing must be executed on a large amount of incoming data and this process can be slow.
Likewise for the planning stage. model-based computations like searching and sorting
often require high-speed processing. Also. because planning and decision making is based
on a model. the model must be kept up-to-date. Situations can arise in which the model no
longer accurately reflects the state of the environment and the resulting plan could lead to
disaster. As a result of these deficiencies. the traditional systems were often developed for

simplified environments in which obstacles were easy to detect and locate.



A different approach. referred to as behavior-based robotics [21][22], was developed
in the mid-1980s. The traditional approach decomposes the task of robot control into a
sequence of functional modules which were implemented as algorithms operating on
detailed data structures, as shown in Fig. 2.1 (a). The behavior-based approach. shown in
Fig. 2.1 (b). decomposes the task into layers of separate “elementary” behaviors that can

interact to form the complete behavior of the robot.

environment
quentiai functional mod
1 f2 3 f4
build process derive a formulate
sensor symbolic |—e{ model | —«{ plan from —e{ a control actuator
model (search. sort) the model signal
(a)
environment

layered behaviors

b3: map building

sensor b2: wandering ———{ arbiter actuator

b1: obstacle avoidance

(b)

Fig. 2.1 Two approaches to robot control. The traditional approach is shown in (a) and
the behavior-based approach is shown in (b).



Each behavior performs a complete (though often simple) task and forms a tight
coupling between perception and action. Separate sensing strategies can be tailored to
each behavioral module. depending on the needs of that particular behavior. The impor-
tance of this approach to the work of this thesis lies in the following two points:

1) Sensing of the environment should be done to extract behaviorally relevant
information, not to construct a central, detailed model of the world.

2) Sensing should be directly coupled to action without intervening modeling and
complex data processing. Information which is directly derived from the 2D
image sequence should be used for decision making and control.

Because of the way they simplify computation, these two points are applicable to the
development of a sensory-motor architecture targeted to a smart sensor implementation
which has limited computational resources.

An example of a behavior-based system which inspired this thesis is the obstacle
avoidance system developed by Lorigo [19], based on earlier work by Horswill [20]. In
their system. a camera is mounted on the front of a robot and is angled toward the ground
so that the bottom of the image is assumed to show the unobstructed. ‘safe” path. Using
the assumption that the ground is flat and that obstacles lie on the ground. the height in the
image of an obstacle will indicate its depth. The image heights of obstacles are found from
left to right across the image. The robot is steered by merely computing a turn angle which

is proportional to the difference between the average of the obstacle image heights on the

left half of the image and the average on the right.



2.2 Imitating Biology

Drawing inspiration from biology has become a practical strategy for many fields of
engineering. Biomimetic or biomorphic systems are designed to imitate biological struc-
tures and processes. Recent sensory-motor systems have showed a tendency to make use
of biological models of sensory-motor coordination. Generally the models are derived
from sensory-motor regions of the vertebrate brain such as the superior colliculus (SC)
and the posterior parietal cortex (PPC), shown highlighted in Fig. 2.2. The figure shows
the most important parts of the primate visual system. Two main pathways can be distin-
guished. Most of the signal from the retina follows the primary visual pathway to areas in
the cerebral cortex. Part of the signal. however, follows the secondary visual pathway to

the SC.

primary visual pathway

retina thalamus cerebral cortex

receptor bipolar ganglion gg:fe inferior

cell + cell + cell lateral geniculate nucleuS ppmeeemwn V1 V2 ™. emporal
horizontal ~ amacrine (LGN) cortex (ITC)

cell cell V2 ey pOSterior

panetal
cortex (PPC)

secondary visual pathway
midbrain hindbrain

superior colliculus oxssyemsm  brainstem. spinal cord
(SC)

Fig. 2.2 The primary and secondary visual pathways in the brain. The superior colliculus
and the posterior parietal cortex are shown highlighted.
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Research has shown that the SC contains layers of neurons which receive visual
input from the eyes and other senses. arranged so that they preserve the map of the visual
field as it is sensed by the retina (a sensory map or a retinotopic map) [12]. The SC also
contains layers of neurons which project to motor centers of the brain which control the
orientation of the eyes and head. These layers are referred to as a motor map. The sensory
and motor maps overlap each other and are aligned so that activity in a particular region of
the sensory map will trigger activity in the motor map which will lead to an orientation
toward that region of the visual field. This mechanism is thought to underlie our ability to
acquire a target in the visual field and to track its movement. Similar to the superior collic-
ulus. neurons in the PPC receive both visual signals and eye position signals. By recording
the activity of these neurons it has been shown that the amplitude of their response is mod-
ulated by the position of the eye [13]. These neurons are described as having "gain modu-
lated’ receptive fields (similar to *weighted’ signals. in signal processing terms). Based on
these studies it has been postulated that gain modulation in the PPC is used to transform
eve-centered coordinates to body-centered coordinates by taking into account any shift in
gaze angle.

These two strategies. the alignment of sensory and motor maps and the use of
weights for signals from different parts of the visual field. can be readily applied to sen-
sory-motor systems based on the smart sensor paradigm. Chapter 3 will describe how the

architecture in this thesis makes use of both strategies.



2.3 VLSI Smart Sensors

2.3.1 The Smart Sensor Paradigm

The sensory-motor architecture proposed in this thesis is based on the smart sensor
paradigm. A VLSI smart sensor consists of an array of pixels, each of which contains a
photoreceptor and some signal processing circuitry, as shown in Fig. 2.3. The photorecep-
tor array transduces the incoming pattern of light into an array of currents or voltages. The
per-pixel signal processing circuitry can perform various operations on these photorecep-
tor signals. including some types of algorithms for image pre-processing. In the smart sen-
sor paradigm. the algorithm is entirely determined by the signal processing architecture.

which defines the operations to be performed and their interconnections across the array.

-« INCIDENT LIGHT

PHOTORECEPTOR — ™

INDIVIDUAL
PIXEL SIGNAL PROCESSING
CIRCUITRY -
AND
INTERCONNECTIONS

EXAMPLE OUTPUTS
- a preprocessed image (eg. edge enhancement)
- a global image parameter (eg. an image histogram)
- a motor control signal

Fig. 2.3 The smart sensor paradigm. Signal processing is performed at the pixel-level,
making for a highly parallel sensing and processing system on a single chip.



Some advantages of the smart sensor paradigm include an increase in processing
speed due to the parallel nature of the architecture and less time spent on the transfer of
image data from a sensor to a processor. Also, total system size can be reduced because
most of the processing can potentially be done on a single chip. There is also a decrease in
power consumption because of the reduced hardware.

To minimize the area per pixel, analog circuitry is often used in sensor arrays. A dis-
advantage of analog signal processing is that it results in less accuracy and a loss of preci-
sion compared with digital techniques. Also, since the processing in a smart sensor is
mainly at the level of individual pixels, it is usually better suited to tasks in low-level
vision. Low-level vision is mainly concerned with extracting primitive features from an
image. Edge detection is an example of such an activity. Intermediate-level vision is con-
cemed with grouping primitive features in semantically meaningful ways. Figure-ground
segregation is an example.

The following subsections present a brief survey of some of the key developments in

smart sensor technology, in roughly chronological order.

2.3.2 Early Solid-State Image Sensors

The idea of putting an array of phototransistors on a single chip was initially moti-
vated by the desire to have a solid-state television camera. A 50x50 array of phototransis-
tors was reported in 1966 by Westinghouse [2]. Other sensors based on metal-oxide
semiconductor (MOS) technology were reported in the late 1960’s [3][4]. Research into

MOS-based sensors declined during the 1970's however. because in 1970 the CCD
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(charge-coupled device) sensor was developed [5]. Its smaller pixel size, higher sensitiv-

ity. and better noise reduction made it the dominant form of integrated sensor technology.

2.3.3 Early Smart Sensors

Interest in MOS-based sensor arrays was renewed in 1981 when an optical mouse
was reported by Lyon [6]. The mouse was based on a chip which is arguably the first VLSI
smart sensor. [t combined a sensor array with mixed analog and digital circuitry to track
the movement of a fixed pattern on a mouse pad. Most importantly it showed that a stan-
dard NMOS technology could be used for both sensing photons and for analog/digital cir-
cuitry. It also showed the importance of using simple operations and conservative circuit

designs when developing smart sensors.

2.3.4 Neuromorphic Sensors

In 1989. Mahowald and Mead [7]{8] developed a smart sensor which was structur-
ally and functionally similar to the outer portions of the vertebrate retina. Its architecture is
shown in Fig. 2.4 along with the corresponding cell structures of the retina. In the verte-
brate retina. a network of horizontal cells average the outputs of the photoreceptors spa-
tially and temporally. The bipolar cells detect the difference between the averaged output
of the horizontal cells and the input from each photoreceptor. In the silicon retina. a net-
work of active resistors, implemented with MOS transistors, is used to emulate the averag-

ing of the horizontal cells. Each photoreceptor circuit consists of a phototransistor with
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additional differential amplifiers to compute the difference between the average computed
by the resistive network and the value of the phototransistor. The result is a spatio-tempo-
ral filtering which enhances edges and their movement. In particular. the design highlights
the use of averaging and differencing to bring out important features in the array. These

two operations seem to be basic to both biological and electronic vision systems.

bipolar cell
horizontat cell . photoreceptor circuit
ganglion cell

AAMN\— resistive circuit
amacrine cell

(a) (b)

Fig. 2.4 The neuromorphic architecture of the silicon retina [8]. (a) shows the structure of
the retina in which the signals from the photoreceptors are averaged by the net-
work of horizontal cells. (b) shows the resistive network used by the silicon ret-
ina to perform a similar type of averaging.

2.3.5 Foveated Sensors

Another feature of the retina that has been used in smart sensor design is foveation.
A ‘foveated’ sensor is one in which the density of photoreceptors decreases radially away
from the center. Foveation allows for a wide field of view and while maintaining a region
of high resolution near the center, without requiring too many receptors. The sensor shown

in Fig. 2.5 was reported by Wodnicki [9]. It has a high resolution central region. the fovea,
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and a peripheral region with decreasing resolution. In the central region, photoreceptors
are uniformly spaced in a rectangle and in the periphery they are placed in a circular array.
The log-polar arrangement in the periphery has been shown to simplify operations such as
rotation and scaling in two dimensions [10]. Also, these types of sensors show promise for
sensory-motor type systems because they can differentiate between stimuli in the periph-
eral region and stimuli in the central region. Unfortunately, they are difficult to design

because of the nonuniform spacing and sizing of the photoreceptors. as can

be seen in the figure.
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Fig. 2.5 A photomicrograph of a foveated sensor [9]. The high resolution central region is
the fovea. It is surrounded by a peripheral region where pixels have different
sizes and spacings depending on their radial distance from the center.



2.4 VLSI Sensory-Motor Systems

Advances in both fabrication technologies and circuit design have lead to the ability

to integrate more functionality onto smart sensors. As mentioned in the introduction. a

very useful type of functionality for a smart sensor is the ability to produce a motor control

signal from its sensor array. The resulting VLSI sensory-motor system could be used in

many applications which would benefit from visually-guided control. As shown in Fig.

2.6. compared to a traditional computer vision system consisting of a camera and a digital

processor. a VLSI sensory-motor system would provide some obvious system-level

advantages such as reduced size and power consumption and less movement of data

through high-bandwidth connections.

HIGH

BANDWIDTH
CONNECTIONS
CCNTROL SIGNAL
IMAGE l PLANT
SENSOR ADC MEMORY MICRO- cit)
(CAMERA} ‘ PROCESSOR - autonomaus robot
- active viIsion system
(a)
CONTROL SIGNAL
VLS! a) PLANT
SENSORY-MOTOR - autenomous robot
SYSTEM - active wision system

OBSERVABLE BEHAVIOR

- obstacte avaidance
- target tracking

OBSERVABLE BEHAVIOR

- qbstacle avodance
- target tracking

Fig. 2.6 Taking advantage of a VLSI sensory-motor system in a typical control loop.
A traditional microprocessor-based computer vision system, shown in the grey
box in (a). is replaced with a single-chip VLSI sensory-motor system. in (b).



VLSI sensory-motor systems are most often used to control either an active vision
system or an autonomous mobile robot. In the active vision system of Fig. 2.7 (a), the sen-
sor array is continuously reoriented by the left and right motors in order to perform tasks
like target acquisition and target tracking. The sensory-motor system produces a control
signal for the motors based on the two-dimensional image signal of its sensor array. In a
similar way, a VLSI sensory-motor system was used in the robot in Fig. 2.7 (b) to make it
follow a white line on the floor. One of the earliest examples of such a system for a robot
was reported in 1991 by Clark and Friedman [11]. It performed a type of edge detection
from which it created a control signal to enable an autonomous robot to perform a line-fol-

lowing task.

sensory-motor

lens

() (b)

Fig. 2.7 Two common test applications for VLSI sensory-motor chips. In (a) a sensory-
motor chip is used to control the left and right motors of an active vision system
in order to track a target. In (b) a wheeled robot uses a sensory-motor chip to
follow a white line on a black floor.
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2.4.1 Approaches Based on Feature Position

Recent VLSI sensory-motor systems have tended to use one of two strategies. The

first approach, discussed in this section, finds the brightest or ‘strongest’ feature in the

scene and converts its position on the sensor array to a motor control signal. usually to

keep the feature centered on the array. The feature. an edge or a spot of light. is usually

detected with per-pixel spatial derivative operations across the array, and the brightest fea-

ture is determined with a winner-take-all (WTA) circuit [14]. The WTA circuit suppresses

all signals except the strongest, which it allows to pass.

One of the best examples of this approach is the sensory-motor robot controller of

Maris and Mahowald [15]. It was used by a mobile robot in a line-following task. A simi-

lar architecture was also reported by Indiveri [16]. The essential elements of this type of

architecture are shown in Fig. 2.8. The architecture consists of an array of photoreceptors

followed by edge enhancing circuitry.

- —

—-—- — photoreceptor

circuit

vy

edge enhancement

eg. with a spatial
derivative

V{

edge enhancement

eg. with a spatial
derivative

winner-take-all
operation

\ 4

winner-take-all
operation

position-to-voltage
converter
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position-to-voltage
converter

Fig. 2.8 Block diagram showing two pixels of an architecture that finds the position of an

edge using a WTA operation.



The output of the edge enhancement is sent to a WTA to identify the pixel with the stron-
gest edge. A position-to-voltage circuit then converts the position of the pixel in the array

to an analog voltage which is used to keep the robot centered over a line on the floor.

2.4.2 Approaches Based on Motion Detection

The second commonly reported approach for VLSI sensory-motor systems detects
any motion in the scene and then determines the direction and speed of that motion. It then
produces a motor control signal to move the sensor in such a way as to match the direction
and speed of the motion detected in the scene. Often. a circuit which is modeled on the
elementary motion detector (EMD) thought to exist in biological vision systems. is used.

A good example of this type of architecture is the system described by Harrison [17].
Fig. 2.9 (a) shows the basic EMD used. A measure of image motion between two pixels is
computed by correlating the output of one photoreceptor with the delayed output of an
adjacent photoreceptor. Two adjacent photoreceptors send their outputs to temporal band-
pass filters which remove constant illumination (no information) and high frequencies
(noise). These signals are then delayed by using the phase lag inherent in a first-order tem-
poral lowpass filter. Delayed channels are then correlated with nondelayed channels
through a multiplication operation. The two outputs are differenced to produce a positive
response for leftward motion and a negative response for rightward motion. Fig. 2.9 (b)
shows how a subgroup of the array of EMDs can be spatially summed in order to reduce
the effects of complex textures on the total response. Fig. 2.9 (¢) shows how two side-

mounted motion sensors can be compared in order to perform obstacle avoidance. As the



robot moves through its environment. nearby objects will move across a motion sensor’s
field of view faster than far away objects. If it steers away from the side that measures the

largest velocity, it can avoid large objects and stay on the open path.
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Fig. 2.9  The motion detection approach of Harrison [17]. An elementary motion
detector (EMD) is shown in (a), and in (b) a group of EMDs are spatially
summed te handle textures. Two side mounted sensors. shown in (¢) can be
used for obstacle avoidance.

Another example of the motion detection approach was described by Etienne-Cum-
mings [18]. It consists of a two-dimensional array which makes use of foveation by having
two regions of different resolution, as shown in Fig. 2.10. At the center of the chip is a 9x9

foveal region where photoreceptors and edge-detection circuits are densely packed. It uses
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a resistive network (like in the silicon retina) to realize an edge detector. followed by
EMD:s to compute the speed and direction of motion of the edges. A potential target’s
speed is given by the time interval between the disappearance of an edge at a pixel and its
re-appearance at a neighboring pixel: the direction is signaled by which neighboring pixel
receives the edge. The direction of motion is then used to produce a signal used off-chip to

produce an incremental motor adjustment to keep the target centered on the fovea.
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Fig. 2.10 A photomicrograph of a sensory-motor chip which makes use of both motion
detection and foveation [18].

Surrounding the fovea is the peripheral region which is used to locate new targets.
which in this case are edges. High-resolution imaging is not required. The peripheral cells

perform a temporal derivative of the binary edge image. and determine the location of



arriving edges When an edge appears at a pixel. it sends its location to the edge of the
array by activating a row and column line. The location of the triggered row (column) is
then given by an analog value which is read from a resistive divider. The position can be
used off-chip to produce a coarse motor action to adjust the orientation of the system. One

of the applications of the chip was a line-following robot.

2.5 Conclusion

Obstacle avoidance in an unstructured environment is a difficult task for an autono-
mous mobile robot. Traditional approaches to the task have often been inefficient and
more suited to simplified environments. Some new ideas and approaches. which have been
explored over the last fifteen years by various researchers. were described in this chapter.
Some of these ideas have inspired. or are directly incorporated into. the work of this thesis.

First. behavior-based robotics provides an approach which is ideally suited to VLSI
sensory-motor systems. This is because it avoids complex data structures and detailed
models of the environment. Instead. it emphasizes the particular requirements of the
behavior itself. along with the properties of the environment and how the robot interacts
with it. It looks for simple ways to more directly couple the sensory-motor system of the
robot to the environment.

Secondly, the various smart sensors discussed in this chapter have exhibited some
very useful strategies. Perhaps the most important of which. using only simple operations.
was present in most of the early sensors. In subsequent sensors. operations such as spatial

averaging or summation were shown to be useful in smoothing over some of the high fre-



quency patterns in nature that can lead to unnecessary complexity in the processing.
Related to this is the way spatial derivatives and differencing can be used to bring out
important details from low frequency backgrounds. Finally, foveation was used by some
sensors to prioritize or categorize features according to their position in the visual field.
Despite the usefulness of these strategies, there are still difficulties with achieving an
effective obstacle avoidance behavior in an unstructured environment. The first objective
of this thesis, as stated in Chapter 1, is to develop a VLSI sensory-motor architecture for
an obstacle avoidance task in an environment where there are no simple visual cues to fol-
low. Chapter 3 will describe how the architecture in this thesis achieves that objective by
making use of some of the strategies described above in a unique way. In the computer
simulation of Chapter 4, the architecture is shown to be an effective way to transform a

visual signal to a motor control signal for unstructured environments.



System Architecture

In general. the functionality of a signal processing system is determined by its archi-
tecture which defines the functional blocks that are used and the way they are intercon-
nected. For systems based on the smart sensor paradigm. the building blocks are generally
analog-mixed signal processing operators. Because of imaging and implementation con-
straints. these operators should be simple in their design and operation. and should use as

little space and power as possible. The operators should also be connected in a regular and



scalable manner to reduce the complexity of interconnection wiring and to facilitate the
implementation. This chapter presents an architecture for a VLSI sensory-motor system
based on the smart sensor paradigm. It is designed to perform a visually-guided obstacle
avoidance behavior in an unstructured environment, for typical wheeled robots. The archi-
tecture is based on two organizing principles which are derived from a consideration of
this behavior, as described in section 3.1. The first organizing principle. described in sec-
tion 3.2. is a special foveation scheme which is designed to emphasize parts of the visual
signal which are relevant to obstacle avoidance. The second organizing principle.
described in section 3.3. involves the alignment of sensory and motor maps to more easily
convert the visual signal to a motor signal to be used to steer around obstacles. A complete
sensory-motor architecture for obstacle avoidance. based on these principles. is described
in section 3.4. It is shown to make use of only a small number of computationally simple
operators. connected in a regular and hierarchical manner. Because of this. the architecture
should lead to a straightforward design and implementation with reasonably sized pixels.
By supporting the massively-parallel smart sensor paradigm it could facilitate the realiza-

tion of system-on-a-chip (SOC) integration for various automatic control systems.

3.1 A Smart Sensor Approach Based on Behavior

3.1.1 An Approach to Suit the Smart Sensor Paradigm

Traditional approaches to achieving visually-guided obstacle avoidance have gener-
ally used conventional processing methods which make use of a CPU or DSP connected to
an image sensor via an analog-to-digital converter. They make use of algorithms that rely

on constructing a detailed, two or three-dimensional model of a scene in memory. Process-
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ing these models is often computationally intensive due to the large volume of data.

In contrast, the approach taken in this thesis proceeds within the smart sensor para-
digm. This requires the use of simpler algorithms and processing architectures which can
be mapped to the type of signal processing supported by this paradigm. The development
of such an architecture, as described in this thesis. draws inspiration from the field of
behavior-based robotic control, which was described in Section 2.4 of Chapter 2. In the
behaviur-based approach. emphasis is placed on the definition of behaviors. along with
establishing a more direct and complementary coupling between sensing and acting. In a
similar way, the sensory-motor system in this thesis is explicitly designed to extract behav-
jorally relevant information from a scene in order to avoid obstacles. The starting point is

a clear definition of an obstacle avoidance behavior.

3.1.2 A Simple Definition of An Obstacle Avoidance Behavior

For an obstacle avoidance behavior. a robot should steer its body away from any
stimulus which might signal that a significant object is in its pathway. As it moves. it
should be orienting itself towards an open part of the pathway in front of it. The basic
requirements are:

1) real-world obstacles must be detected and located relative to the robot’s body,

2) the robot should steer to the left or right around the obstacle in a reactive manner.

3.1.3 Use of Foveation

If, as the first requirement suggests, only relative locations are needed. then actual

positions in a coordinate frame need not be computed. The first requirement also suggests
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that obstacles need not be recognized or even resolved with much precision; they only
need to be detected. In addition, resolving power does not even have to be the same for all
parts of the scene. More distant parts of the scene do not need high resolution because in
the distance only the detection of large objects is needed to make steering decisions.
Space-variant or foveated sensing schemes have been shown to have these qualities. in
both biological [10] and engineered systems [23]. Thus, the first organizing principle for
the sensory-motor system in this thesis is that a foveated sensing scheme should be used.
The particular scheme proposed in this thesis is referred to as post-receptor foveation. and

is described in section 3.2.

3.1.4 Alignment of Sensory and Motor Maps

The second requirement of the obstacle avoidance behavior suggests that for a typi-
cal wheeled robot. only a left/right orientation decision is needed to avoid an obstacle.
This greatly simplifies the task of converting the visual signal to a motor signal. The fact
that only a left/right decision needs to be taken can be exploited by aligning the map of the
visual field (as represented on the sensor). with the center of the robot’s body. If more
obstacles are on the left of the visual field. then they are to the left of the robot’s body and
the robot should turn to the right. This is a simple alignment of a sensory map and a motor
map, and is the second organizing principle for the architecture. An enhanced version of

this alignment is described in detail in section 3.3.



3.2 Post-Receptor Foveation

3.2.1 Hierarchical Averaging

As mentioned in chapter 2. there have been several sensor architectures reported in
the literature which make use of foveation schemes [24][25][26]. All of these schemes
vary the sizes and the placement of individual receptors in the array, e.g. log polar arrange-
ments. However, for a VLSI smart sensor system. an architecture based on a homogeneous
array of uniform pixels is easier to design and extend. The pixel can be designed like a
standard cell with a constant pitch. and can be arranged to abut with common power rails
and interconnections. This would reduce the number of unique cells that must be designed
and could make it easier to scale or modify the system. Thus. a foveation scheme based on
a homogeneous array of uniform receptors is proposed in this chapter. In this scheme.
called post-receptor foveation. the variation in resolution is achieved by spatially averag-
ing the signals from the photoreceptors. The basic structure is shown in Fig. 3.1. Each
photoreceptor produces a signal. like a voltage or a current, which represents the intensity
of the light which projects onto its area from the scene. The average of the signals from a
‘field’ of four adjacent photoreceptors is called a level-1 average. Following this. the aver-
age of four adjacent level-1 averages is then called a level-2 average and so on, in a hierar-
chical manner. In this way. each level defines a set of fields which cover the array of
photoreceptors. The field size at level-1 is the smallest. At each successively higher level
the field size increases by a factor of four. A larger field can be said to contain or overlap
the smaller fields which contribute to its value. The hierarchical simplicity of the scheme
resembles the pyramid data structures often used in image segmentation [27], rather than

following a polar distribution.
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Fig. 3.1 Basic structure for the hierarchical averaging of a homogeneous array of
receptors.

3.2.2 Defining the Fovea

In general, the fovea refers to the area on a sensor in which the highest resolution is
available for processing. It is usually surrounded by an area which has a decreasing resolu-
tion away from its center. In the post-receptor foveation scheme just described, the avail-
able resolutions are determined by the interconnection structure of the array. The
resolution that can be obtained by accessing the level-1 averages, or fields, is four times
the resolution that can be obtained by accessing the level-2 fields. A fovea can be defined
over an area where the smallest fields (eg. level-1) are used for processing. A particular
example is shown in Fig. 3.2, where the fovea is defined to be in the shaded corner area
where the difference between two level-1 fields, e.g. a spatial derivative, is computed.
Operations on larger fields, like the level-2 spatial derivative, can overlap the fovea but are

not considered part of the fovea.
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Fig. 3.2 Defining a fovea on an 8x8 array. The fovea consists of the four level-1 fields in
the unshaded comner. Each of these fields contains four photoreceptors, whereas
the level-2 derivative is performed on fields which contain 16 photoreceptors
each.

In this way, the fovea can be placed anywhere on the array and can assume different
shapes. This is similar to the situation in some birds which are known to have an elongated
fovea (to align with the horizon), or even multiple foveas as in the case of the owl [28].
These arrangements can facilitate the extraction of critical information from situations
which are common to the organism. Using a homogeneous array as a substrate, a diagram
of some possible configurations is shown in Fig. 3.3 (not showing the average operators
and interconnections). The sensor in Fig. 3.3 (a) has the fovea in the center of a 32x32

array array while in (b) the fovea is at the bottom of a 32x16 array.
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(a) A centered fovea on a three-level 32x32 array

R

(b) A bottom-edge fovea on a rectangular 32x 16 array

Fig. 3.3 Positioning the fovea. The fovea may be positioned anywhere on an array of
receptors, including the center, as in (a), or on the perimeter, as in (b).
3.2.3 Advantages for Applications in Unstructured Environments
This type of foveation offers a couple of important advantages when it is applied in
realistic, unstructured environments. First, the hierarchical averaging produces a type of
low-pass filtering of the image which is increasingly coarse away from the fovea. This can

make complex objects like bushes or rocks appear more like a block of uniform intensity,
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facilitating their detection based on intensity differences. Emphasizing parts of the visual
signal with lower spatial frequencies helps to filter out distracting details which could
complicate the process. A second advantage is that hierarchical averaging leads to a con-
venient foveated framework for other types of operations that can be incorporated at any
level of the hierarchy. For example, the density of the receptor array remains uniformly
high, making it possible to add an operator like a temporal derivative, to each pixel as
shown in Fig. 3.4. This can be used to distinguish objects based on differences in their
texture and the amount of ‘flicker’ they produce, within the foveated framework. As
another example, a simple motion detector could be integrated with each photoreceptor to
detect and measure optical flow in the horizontal and vertical directions across the array.
Combining multiple cues in this way can help to disambiguate obstacles in unstructured

environments.

B photoreceptor

8 level-1 average operator

B level-2 average operator
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Fig. 3.4 Augmenting the basic structure with a per-pixel temporal derivative operator.
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3.3 The Alignment of Sensory and Motor Maps

3.3.1 Sensory-Motor Transformations

A sensory-motor transformation is a process by which a sensory signal is converted
to a motor signal. Traditional approaches often express this as a coordinate transformation
from the coordinate system of a three-dimensional world model to the robot’s local coor-
dinate system, in order to specify its orientation. It is difficult to implement these types of
coordinate transformations in the smart sensor paradigm. As mentioned in chapter 2.
there have been some strategies based on optical flow, but these have also proven to be
computationally intensive [29]{30] making it challenging to use optical flow in smart sen-
sor architectures [17][31].

The scheme proposed in this thesis, to perform sensory-motor transformations. is
based on the fact that a representation of the visual field is constantly present across the
photoreceptor array. This is referred to as a sensory map. If the only degree of freedom to
be controlled is a left/right steering action, then in a similar way, the motor map can be

defined as a ‘left control signal’, ¢;(t), and a ‘right control signal’, cg(t). The left and right

control signals are derived from the left and right sides of the visual field respectively,

aligning the two maps as shown in Fig. 3.5.
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Fig. 3.5 A sensory-motor system viewed as an alignment of a sensory map and a
motor map.

This alignment scheme is motivated by similar sensory-motor mechanisms thought
to exist in the superior colliculus, as discussed in section 2.2 of Chapter 2. Sensory and
motor maps in the superior colliculus overlap and are aligned so that activity in a particu-
lar region of the sensory map will trigger activity in the motor map. leading to a rapid ori-
entation toward that region of the visual field. A smart sensor is an ideal substrate for this
type of processing because the map of the visual field is always present across its photore-
ceptor array. Later, in section 3.3.3, an enhancement to this alignment scheme will be pre-
sented. In a similar way, the enhancement scheme is based on mechanisms thought to exist
in the posterior parietal cortex, as was also discussed in section 2.2 of Chapter 2. This
region of the brain receives both visual signals and eye position signals, and produces a
response which is modulated by the current position of the eye [13]. It has been postulated
that this modulation is used to transform eye-centered coordinates to body-centered coor-
dinates by taking into account any shift in gaze angle. In a similar way, the system dis-
cussed in this thesis will use weights, or gain factors, which depend on the vertical gaze

angle of the sensor.
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3.3.2 A Simple Configuration for a Robot with a VLSI Sensory-Motor System

The left and right control signals should reflect the degree to which the left and right
sides of the visual field are obstructed. The post-receptor foveation scheme of section 3.2
can be used for this purpose. As mentioned in Chapter 2, the most frequently cited advan-
tage of foveation is the ability to combine high visual acuity (near the optical axis) with a
large field of view, while using fewer receptors and reducing the amount of data to be pro-
cessed. In addition to this, however, Ballard [32] showed that foveation could be used to
establish a frame of reference centered on an object in the scene. The frame of reference is
referred to as the ‘fixation frame’. Its center is the ‘fixation point’ which is the place in the
scene where the optical axis, or fovea. is directed as shown in Fig. 3.6. An observer can
shift the fixation point to any object in the scene to suit its current information gathering
needs. Other objects in the scene can be located relative to the fixation point in an impre-

cise but efficient manner, due in part to the decrease in resolution away from the fixation

point.
..
.----" object in scene
R T 0 N N opticalaxis .
center of fixation point
projection

foveated imaging surface

Fig. 3.6 The fixation frame. The location of objects relative to the fovea gives a quick
approximation of their location in the scene, relative to the fixation point (any
point of interest).
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To illustrate how this can be used, an example configuration for an autonomous
robot with a VLSI sensory-motor system is shown in Fig. 3.7. The sensory-motor system
is mounted on the front of the robot with the center of the sensor aligned with the midline
of the body. Making use of the strategy in [20], the sensor is angled toward the pathway, as
shown in Fig. 3.7 (a), so that the point of fixation is immediately in front of the robot
where the path is assumed to be ‘open’. If all potential obstacles are on the ground plane
(or near to it), then the more distant they are from the rebot, the higher up they will appear
on the image plane. Obstacles can then be located relative to the open path in front of the
robot by using this measure of depth along with a determination of whether they lie more
to the left or right of the point of fixation. Since the center of the sensor is aligned with the
midline of the robot’s body, the point of fixation and the visual field are also aligned with
the body. This means that if an obstacle lies more on the left side of the sensor, then the
robot should steer to the right. By using spatial derivatives and other visual cues to deter-
mine where the open pathway is limited by obstacles. a continuous signal from each side
of the sensor can be produced, the magnitude of which indicates the degree to which the
side is obstructed. Thus, a left/right control signal can be obtained through this simplified

transformation.
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sensory-motor

field of view
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Fig. 3.7 An autonomous robot with a VLSI sensory-motor system mounted on the front.
Shown in () is the side view of a robot with a sensory-motor system angled
toward the ground. Shown in (b) is a top view of robot showing the left and right
motor signals from the sensory-motor system.



Fig. 3.8 shows an example 16x8 sensor array configured in this manner. The sensor’s
width is double the height in order to increase the field of view laterally and to accomodate
the rectangular foveation. The fovea is at the bottom of the array in order to establish a fix-
ation frame centered on the open pathway immediately in front of the robot. This allows
the rest of the height of the sensor to be used to map scene depth. The extent of the open

pathway on each side are expressed as continuous left and right control signals, ¢, (1) and

c R( 1).
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Fig. 3.8 A rectangular array divided into left and right halves. The fovea (unshaded) is
aligned with the midline of the body to facilitate a left/right steering decision.
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3.3.3 An Enhancement to Map Alignment

The simple association of the left and right halves of a sensor with the left and right
halves of the robot’s body and the visual field can be further enhanced. Central regions of
the sensor can be associated with the ‘nose’ of the robot and peripheral regions can be
associated with the sides. This refinement can be used to add a weighting scheme to the
obstacle detection cue such that objects which are more immediate and closer to the nose
will elicit a stronger signal for the robot to turn away from them. Central, diagonal and
side (or peripheral) regions may be distinguished to refine the response of the system. Fig.
3.9 shows the diagonal fields that would be used in a computation (like a spatial deriva-
tive), where the smallest fields consist of four receptors, and the next level fields have 16
receptors. A spatial derivative across the smaller fields can have a larger weight. or gain
factor, than for the next level field because it would indicate a more immediate obstacle. In
section 3.4, below, a description of a complete architecture shows more clearly how these

weights are used.
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(a) Foveal, or level-1 fields which consist of four receptors each.
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(b) Level-2 fields consist of 16 receptors each and overlap the fovea.

Fig. 3.9  The diagonal region of an example 16x8 array is composed of four level-1
diagonal fields, shown in (a), and four level-2 diagonal fields, shown in (b).



3.4 A Complete Sensory-Motor Architecture

The post-receptor foveation scheme of section 3.2 and the enhanced map alignment
scheme of section 3.3 can be combined to produce a complete sensory-motor system for
obstacle avoidance. The architecture is depicted in Fig. 3.10. For clarity, only the right side
of the system is shown and not all level-1 derivatives are depicted. Comparator symbols
are used to show the spatial derivatives which are computed for the three regions, center.

diagonal and side.
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Fig. 3.10 The right side of a sensory-motor architecture. The structure comprises
hierarchical averaging, spatial derivative operations with scale factors, and a
summation of all levels.
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The center derivative can signal an object in the robot’s face, while diagonal and side
derivatives are progressively less frontal. The gain factors following the derivatives should

reflect this. For example, the second level gain factor for the center is shown as k> and for
the diagonal and side as kap and k5. In most cases they should follow the general rela-
tionship: k¢ > kyp > k. These factors can be related to the shape of the robot’s body
(narrow/wide) in order to determine more precise ratios. Derivatives for lower levels will
signify more immediate obstacles so that if k;y is used to refer to all gain factors at level i.
then it should be that k;x > k;;, ;) . for i > 1. The angle at which the sensor is mounted on
the robot (the vertical gaze angle) can be used to determine more precise inter-level ratios
for these constants. Finally, by summing the scaled derivatives a continuous signal is pro-
duced to indicate the extent of the free pathway. The difference between left and nght sig-

nals can then be used to steer the robot.
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3.5 Summary

This chapter presented an architecture for a VLSI sensory-motor system, based on
the smart sensor paradigm, to perform visually-guided obstacle avoidance in an unstruc-
tured environment. The architecture made use of two organizing principles: (a) a special
foveation scheme designed to emphasize parts of the visual signal which are relevant to
obstacle avoidance, and (b) the alignment of sensory and motor maps to more easily con-
vert the visual signal to a control signal to be used to steer around obstacles.

The post-receptor foveation scheme results in a structure which is regular and hier-
archical, and which uses uniformly spaced pixels of identical size. In summary, the advan-
tages related to using post-receptor foveation are:

® pixels are like standard cells with a constant pitch, designed to abut with

common power rails and interconnections across the array

® hierarchical averaging makes all levels of resolution available for processing.
supporting spatiotemporal operations down to the pixel level

® hierarchical averaging results in a regular interconnection structure which can be
extended easily for larger arrays

® large fields of receptors can help to deal with variance in receptor response. such
as noise, device variation, and receptor failure.

The alignment of sensory and motor maps enables a sensory-motor transformation in
a simple and computationally efficient manner. In summary, the advantages related to
using this scheme are:

® a sensory-motor transformation is achieved without the use of explicit
coordinates or optical flow computations

® the close coupling of sensory and motor maps enables rapid orientation
behavior
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The architecture makes use of four basic signal processing operators, all of which
have standard analog VLSI circuit implementations:

1) an average computation

2) adifference computation

3) ascaling

4) a summation
The fact that the operators are computationally simple could lead to smaller pixel sizes
and higher fill-factors. The next chapter presents an analysis and two computer simula-
tions of the architecture, and then chapter 5 presents cxample circuits for the four opera-

tors.
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An Evaluation

of the Architecture
through Analysis
and Simulation

The previous chapter described a signal processing architecture for a sensory-motor
system based on the smart sensor paradigm. This chapter describes a simple mathematical
model of the architecture. The model, presented in Section 4.1. is used as the basis for
computer simulation of the architecture. Two simulations are described. The first simula-

tion, presented in Section 4.2, is designed to verify that the architecture is able to extract a
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useful signal for motor control from a still image. The second simulation, presented in
Section 4.3, is designed to verify that the architecture which was presented in Chapter 3,
can actually perform an obstacle avoidance behavior in an unstructured environment. It
uses a three-dimensional virtual environment and is based on a simple imaging model
described in this chapter. The simulation is also used to determine the minimum pixel size

for a potential implementation.

4.1 A Mathematical Model of the Architecture for
Computer Simulation

4.1.1 Mathematical Expressions for the Sensory-Motor Architecture

This section identifies a set of mathematical expressions to model the sensory-motor
architecture in order to simulate it. Fig. 4.1 shows the right half of a homogeneous array of
photoreceptors. As described in Chapter 3. the array is partitioned into levels where each
level consists of four fields. Each field belongs to one of the regions: ‘path’, ‘center’,

"diagonal’, ‘side’.

Jne : signal from level-n center field

f2c de f nd

. signal from level-n diagonal field

fns . signal from level-n side field

¥ f;,p . signal from level-n path field
f Ic f1a
f 2 h2 W, o width in pixels of field at level n
fip | fis hp © height in pixels of field at level n
- el -

P

>

w2
Fig. 4.1 Right half of the array showing the notation used to refer to the four fields at each
level.



The value of each field is the average of the magnitudes of the signals from its con-
stituent pixels. Using the notation shown in Fig. 4.1, this can be expressed as the summa-
tion of the magnitudes for all of the field’s pixels, divided by the number of pixels in the
field. If I(x,y.t) denotes the magnitude of the signal which represents the intensity of light
on the pixel at position x,v and at time ¢, then the expressions for the signals of the center,
diagonal, and side fields at the nth level are:

w, 2h

— 1' \
FaelD)= =— YNy, nzl (1)

noTn g

2w, 2h,
. 1
= . > D
Fna() o~ thI(x,_v,t). nz1 (2)
L 2w, h,
Fs(D)= . Zzl:l(x. v.t). n21 (3)

where w;, and A, are the width and height in pixels of the fields at level n. The expression

for the signal for the “path’ field at level-1 is:
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1
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and for subsequent levels, the signals from the previous levels are used:
1
fnp(t)_—' ‘-)7.(f(ll-l)p([)+f("_[)c(t)+f(n_.l)d([)+f("_[)S([))v n>l' (5)

Expressions (1) to (3) are used to compute the differences between the values of the path
field and the center. side. and diagonal fields, eg. the spatial derivatives. as described in

Section 3.4. The left and right control signals, ¢;(¢) and cg(t), can be expressed as the sum-

mations of all of these spatial derivatives for all levels. Each derivative is multiplied by a



weight which depends on its level and its region. These weights are: K, K;;4, K,;5- As an

example, the right control signal. cg(t), is:

L L L
CR(t) = D K U0 = £ (014 D K g L g = F ()% YKy - [ ()= F (0] (6)
1 | 1

where L is the highest level. The signal can vary between 0 and some value cyyax- A value

of 0 occurs when all the derivatives are 0, indicating that the path is completely free of
obstacles. A value of cy;5x occurs when the sums of the derivatives are a maximum.
strongly indicating the presence of an obstructed path.

The functionality of the architecture described in Chapter 3 does not go beyond the
left and right control signals. For the purposes of a complete obstacle avoidance simula-
tion. the control signals had to be used to determine the change in a robot’s orientation.
The change in orientation angle. denoted Acu(?). is proportional to the difference between
the left and right control signals. with a scaling factor K, to convert to an angular measure

like radians:

Aa(r) = K, -[c (t) —cg(t)] radians. (7

The signals cyyax » c1(t) and cg(t) would be either voltage or current signals in an actual
smart sensor implementation. A constant like K, is a coefficient for signal conversion

from voltage or current to radians. giving it units like radians/V or radians/A. On a real
robot this would represent the conversion of the steering signal to an actual change in

direction.

w
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4.1.2 From Architecture to Algorithm for Computer Simulation

For a computer simulation, the expressions in the above model had to be applied to
every frame in a discrete-time sequence of images. Each frame was processed in the same
way, using the algorithm, process_frame, shown in the flowchart of Fig. 4.2. The first step
involves computing the average for every field at every level of foveation. as described in
equations (1)-(5) in the previous section. The second step involves computing the left and
right control signals, in the same way as in equation (6). In the third step, the change in

orientation angle is computed as in equation (7).

C process_frame )

post-receptor_foveation

o compute fac, fog, fns frp

Y

compute_control_signals

e compute ¢_and cg

Y.

compute_new_pose

e compute the change in
orientation, Aa

=

Fig. 4.2 Flowchart of the algorithm used to process each frame in a simulation. The first
step is the post-receptor foveation which is described by equations (1)-(5) and is
shown in detail in the flowchart of Fig. 4.3.




The post_receptor_foveation step is described in more detail in the flowchart of
Fig. 4.3. The most important thing about the algorithm is that it consists of simple compu-
tations which must be done repetitively across the array. This type of algorithm is ideally
suited to the smart sensor paradigm because the computations are simple and may be per-

formed at the pixel level in parallel.

(post—receptor_foveation)

level =0

level =level + 1

4

compute all center fields.
fae, according to equation (1)

compute all diagonal fields.
fag. according to equation (2)

compute all side fields,
fas. according to equation (3)

compute all ‘path’ fields.
fap. @ccording to equation (4)

false

true

=

Fig. 4.3 Flowchart of the algorithm used to compute the values for all of the fields for all
levels of foveation. It is the first step in the flowchart of Fig. 4.2.
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4.2 Computer Simulation with a Still Image

4.2.1 Purpose of the Simulation

The simulation with a still image was intended to be a preliminary verification of the
effectiveness of the architecture. The purpose was to determine if it would be possible to
derive reasonable control signals. cg(t) and ¢;(t), from a 2D signal array acquired from a
simple test scene. Positive results were needed to proceed with confidence to the more

elaborate simulation described in Section 4.3.

4.2.2 Methods Used for the Simulation

For the simulation, a simple test scene was configured with a dark cube resting on a
textured surface. A grey-level image of the scene was subsampled down to a resolution of
16x8 to match the architecture shown in Fig. 3.14 of Section 3.4 in Chapter 3. and to show
that the architecture can be effective at such a low resolution. The test image is shown in
Fig. 4.4 (a). Pixel values ranged from 0 to 256. The post-receptor foveation algorithm of
Fig. 4.3, on page 53. was applied to the image. For each level of foveation. the differences
between the path field and the surrounding center, diagonal and side fields were deter-
mined, as in equation (6), but with unity weights. These differences, or spatial derivatives,

were then plotted using Matlab to form a type of gradient map.

4.2.3 Results
The result of applying the foveation step to the test image is shown in Fig. 4.4 (b)
and the plot of the differences is shown in (c). The plot itself is only for visualization. The

values for the differences have been distributed according to the level and region they
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Fig. 4.4 Test image and simulation results clearly indicating an obstacle on the left.



belong to in the foveation scheme. The actual differences, specified in equation (6), were
calculated for all three levels and are shown in the figure along with the values for the left
and right control signals. The large peak on the left side of the plot signifies the presence
of the black cube unambiguously. The result indicates that it would be possible to use the
architecture to derive reasonable control signals, cg(t) and c,(t), from unstructured scenes.
A clear decision to turn to the right can be derived from the plot, as can be seen by the dif-
ference between cg(t) and ¢ (). It is interesting to note that the textured surface had no
effect on the results. The foveated image shows how the surface variations are averaged
away. They did not create a distraction for the process. Nor were they necessary for the

detection of the obstacle.



4.3 Computer Simulation with a Virtual Environment

4.3.1 Purpose of the Virtual Environment Simulation

The purpose of the second simulation was to verify if the architecture which was
presented in Chapter 3, would lead to a system which could perform an obstacle avoidance
behavior in an unstructured environment. The simulation was also intended to verify that
the architecture is suitable for a smart sensor implementation by determining parameters

such as pixel size, based on an imaging model for the sensor.

4.3.2 Methods used for the Virtual Environment Simulation

To simulate an unstructured environment, a computer program was developed using
the OpenGL graphics library. The program made use of techniques in three-dimensional
computer graphics to create a virtual environment. The virtual environment could be made
to look realistic by applying patterns to the floor and other objects. The view of the virtual
environment was designed to represent how it would appear from the view of a sensory-
motor system mounted on the front of a robot. The program. hereafter referred to as the

simulator, was designed with an interactive user-interface, shown in Fig. 4.5.



current view (from sensory-motor system on robot) top-view of room
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processed frame of current view cor‘i'rrols
Fig. 4.5 User-interface for the simulator. The top left panel contains the current
(perspective) view of the room, the top right panel contains the top view of the
room and the bottom left panel contains the foveated image of the current view.
As shown in Fig. 4.5, the top-left panel of the simulator’s interface displays the cur-
rent (perspective) view of an example virtual environment as it would be seen if one were
to look from the point of view of the sensory-motor system on the robot. In this example,
the virtual environment is a room with a hardwood floor and obstacles which resembie
small bushes. The top right panel displays a top-view of the room, and will show a trace
of the path of the robot through the room as the simulation proceeds. The bottom-left
panel contains a foveated image of the current view, as created by the post-receptor fove-

ation algorithm in Fig. 4.3. The lower right panel contains a set of controls to set the

parameters for a simulation run.
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The parameters for the simulation include the angle at which the sensor is mounted
on the robot, the height of the mounting. the focal length of the imaging system, and the
size of the sensor itself. These parameters are part of a simple imaging model which the
simulator used to recreate the mapping of a realistic scene onto an actual sensor. The

details of this model are described in the next section.

4.3.2.1 An Imaging Model for the Sensory-Motor System

The current (perspective) view from the robot, as displayed in the top left panel of
the simulator. had to correspond closely to what would actually be acquired by a physical
sensor. To achieve this, a simple model based on the classic pinhole camera scheme. as
shown in Fig. 4.6, was used to model the image formation process for the simulation. [t
was used because it is simple and can be easily simulated using standard 3D computer
graphics.

The pinhole camera scheme assumes that light rays pass through a pinhole sized
aperture at the front of the imaging system or camera. The geometry of image formation in
such an arrangement is closely approximated by perspective projection. The aperture cor-
responds to the center of projection, C, as shown in Fig. 4.6. The center of projection is the
origin of the camera coordinate system denoted by x.,v.z.. The optical axis is the line of

sight which passes through the center of projection and is aligned with the z. axis. The

image plane is at a distance f; the focal length, behind the center of projection and the pro-
jected image is inverted. This is the case in an actual camera. However, the image plane
can be thought of as being in front of the center of projection as a mirrored plane. to sim-

plify the derivation of the mathematical model. A rectangular sensor array can be thought

61



of as being in the image plane with its center aligned with the origin of the plane. Image

plane coordinates are expressed as u,v. Perspective projection is accomplished by extend-

ing a straight line from each point in the scene to the center of projection. Each straight

line corresponds to a ray of light which would be emitted or reflected by the scene point.

The intersection of the line with the image plane determines where each scene point is

mapped. The figure also shows how the view volume and the field-of-view angles, ¢.¢,,

are defined by the size of the sensor array and the focal length.

viewing volume

center of
projection

rectangular sensor array mirrored plane
in the image plane

..................................... -

optical axis

paint of
fixation

~c

Fig. 4.6 Pinhole camera scheme for image acquisition with a rectangular sensor array.
Perspective projection can be used to map the sizes of objects in the scene onto
the surface of the sensor which lies in the image plane w,v. For the purposes of
illustration the focal length. f. is shown much larger than it would actually be.

With this scheme, objects in the scene can be mapped onto the surface of the sensor

array, in the «,v plane, by using perspective projection. For obstacle avoidance, it can be

assumed that there is some minimum size for objects in the scene. below which they are

not significant. Only objects which are larger than the minimum size are considered poten-



tial obstacles. By mapping a minimum sized object onto the sensor array it is possible to
determine how large the smallest fields of the post-receptor foveation should be in order to
detect it. The smallest fields are the level-1 fields and they are square so that their length

and width can be denoted by 6;. They provide the finest resolution used to compute spa-

tial derivatives around the point of fixation. The fields should be kept small enough so as
not to lose important features in the scene. On the other hand. the larger they are, the larger
the photoreceptor that can be used in each, resulting in stronger signals.

To determine the value of 6}, it is assumed that only obstacles or features which are

more than 1/5th of the robot’s body width are to be regarded as potential obstructions to its
progress. The most difficult to detect objects will be ones which are very low or do not rise
above the ground plane. A hole in the ground is a good example. Fig. 4.7 shows how a cir-
cular hole with diameter w/S, where w is the width of the robot. would be projected onto
the sensor using the perspective projection model. The sensor’s orientation in the y-z plane
is denoted by the vertical gaze angle. 0. between the optical axis and a line perpendicular
to the ground plane. The height of the sensor from the ground plane. h, is measured along
a line from the center of projection (aperture) to the ground plane. The distance, d,,;,,
denotes the distance between the sensor and the intersection of the optical axis with the
ground plane. The arrangement in the figure has the optical axis at the bottom of the sen-
sor where the fovea is, as described in Fig. 3.14 of chapter 3.

In the system shown in Fig. 4.7, the ground-plane is projected onto the sensor result-
ing in a rectangle with a width of «, and a height of v, covering the hole. Because of the
gaze angle 6, the height will be compressed more than the width when the ground plane is

mapped to the sensor.
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Fig. 4.7 A circular hole in the ground is used to represent the smallest feature that must
be detected. The hole is mapped to the sensor using perspective projection,
taking into account the height. i. of the center of projection from the ground
plane. and the gaze angle, 8. Proportions have been exaggerated to show the
parameters with clarity.

Thus. the size of the level-1 field, oy, is determined according to the compressed
height. v,. The dimensions u, and v, can be expressed in terms of the vertical gaze angle,

0, and the parameters of the configuration, such as £, the focal length, w and 4 (the deriva-

tion for these expressions is presented in Appendix A):

w
o = f - -5‘—;; -cos(0) , vo = > -k (mm) (8)

2 w
(tan(8))” + S tan(0) + 1
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As a practical example. for a sensory-motor system mounted at a height of & = 50mm. on
a robot of width w = 50mm, at a vertical gaze angle of 6 = 60 degrees, and with a focal
length f=3mm, then:

u, =300u ,v,=140u
Taking the smaller of the two, 140y. as the dimension for the smallest square field at level
1, 5|, then a level-2 field has a side of 280u and a level-3 field has a side of 560u. Thus. a

three level arrangement would have a total width of 1« = 2240u and a total height of v =

1120u. or a total size of 2.24mm x 1.12mm. The total size and the focal length can be used
to calculate the horizontal field-of-view angle, ¢,. The result is around 37 degrees. which
is similar to that of a typical 35mm camera with a 50mm lens. These are reasonable num-
bers for an implementation of the system. Thus. the analysis suggests that such a system is
feasible if a level-1 field can have the dimensions 140u x 140gt. Of course. for a much

larger robot the dimensions will be larger. For example. if w = 500mm. then 6| = 800y in

order to be sensitive to an obstacle of 100mm width.



4.3.2.2 A Simplified Kinematic Model for the Simulation

The imaging model of the previous sub-section was used to map parts of the scene to
the sensor plane in a realistic manner. After the imaging mapping and the signal process-
ing of the architecture, the left and right control signals are generated to make a steering
decision. To simulate this in a realistic manner, a model of a wheeled robot is used to ver-
ify that the steering decisions in the simulation are realistic. For this purpose. a wheeled
robot with a differential steering system is used. [n such a system, the left and right drive
wheels are independently powered and their relative velocities determine the steering
angle of the robot. Fig. 4.8 shows a top view of the drive wheels of such a robot. The robot
is located on the ground plane at position, (x,v) and with an orientation angle. .

The simulation proceeds on a frame by frame basis and each frame of the simulation

is assumed to represent the passing of 1/60th of a second to match the video frame rate of

left wheel

P right wheet

u)/ﬁ
°

" center of rotation

Fig. 4.8  Top view of a robot’s drive wheels with the parameters for a kinematic model.
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a typical video camera. Assuming that a simulated robot of 50cm width and length is mov-
ing at an average speed of about 1.8 m/second, the speed of a brisk walk, then the simula-
tor should move forward by 3cm per frame. The maximum change in orientation per
frame should be determined to suit these parameters. Referring to Fig. 4.8, the left and
right wheels will have velocities in the direction of roll, given by the products of the turn-

ing radius, r (adjusted by half the axle length, b), and the angular velocity w:

Ve = u)(r-i-g) . VL = w(r-g) 9

The angular velocity about the center of rotation can then be expressed as:

(vg-vy)

b (10)

This may then be expressed in terms of the orientation angle, o

do. _ (Vg=vy)
d_?z___’*b L (11)

Integrating both sides, and assuming constant velocities and an initial orientation angle.

oy

a(r) = (v-—R—;—vL—)Hao. (12)

This is the forward kinematics expression for the orientation angle, ¢, which can be deter-
mined at any time, f, given the wheel velocities. For a At, the change in orientation angle is

simply:

At
Ao = -b-'(VR-VL) . (13)
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For a robot with a width of 30cm, b will be 25cm. The time difference, At, will be 1/60th

of a second. That yields:

Aa = %'(VR—VL) (m/s) (14)

Assume that the maximum achievable velocity difference over this At is around 2m/s. The

maximum change in orientation per frame will be around 0.133 radians or about 8°. Con-
sider how the change in orientation angle was previously given by equation (7) in Section

4.1.1:

Ac(t) = K -[c (t) —cg(r)] radians.

where K, is a coefficient for the conversion of the difference between left and right control

signals to radians. Substituting equation (7) into equation (13) yields:

Ky Ty () = cp(n] = 55+ (v =v,) 0133 radians. (15)

Equation (15) is used to determine K. The exact value of K, depends on the range of the
difference between the control signals. It should be set such that the maximum change in

orientation is less than 0.133 radians or 8°.
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4.3.2.3 Procedure of the Virtual Environment Simulation

A complete procedure of the virtual environment simulation is shown in the flow-
chart of Fig. 4.9. The first step, create_room, creates a geometric model of a virtual envi-
ronment, such as a room, in three-dimensional coordinates. The next step.
set_imaging_geometry, sets the imaging parameters like the focal length and the field of
view. to simulate how the scene would be projected onto a sensor array of a particular size.
using the imaging model presented above. After that, set_view establishes the initial view
of the room which is determined by the position and orientation of the robot. and the angle
at which the sensory-motor system is mounted on it. When the simulation loop starts.
draw_room draws the current view of the room in the top-left panel. and then
process_frame uses the current view of the room to create the foveated image and to
determine the direction the robot should turn. according to the algorithm back in Fig. 4.2.
The amount of forward motion for the robot is also determined at this step. After this.
update_view sets the new view of the room according to the new orientation and position
of the robot. The simulation loop then begins again by drawing the new current view, and

the cycle continues.
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Cdynamic_simulation)

create_room

set_imaging_geometry — initialization

set_view

draw_room

process_frame — simulation loop

update_view

false

true

=

Fig. 49  Procedure of the Virtual Environment Simulation
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4.3.3 Example of Simulation and the Results
This section describes the settings for the parameters of the simulator and presents
the results from several simulation runs. For each run of the simulator. the four imaging

parameters were set to the values shown in Table 1.

Table 1:
parameter value description
f 3 mm focal length of imaging system
ur 2 mm total width of sensor array
0 60° vertical gaze angle
h 50cm height of sensor from ground plane
w 50cm width of robot body

The last parameter. w. the width of the robot body is included as an imaging parameter
because it is used to determine the size of the smallest obstacle to be detected as w/5.
In addition to the imaging parameters, the weighting scheme for a three level system

had to be set in accord with the relationship k;c > k;p > ks fori=1.2.3. The values used

1n the simulator are shown in Table 2.

Table 2:
level 1 level 2 level 3
K;c =40 Kre =25 K;c =10
Kip=35 |K;p=20 K;p =05
K;5 =30 K- =15 K;s =05
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The scene chosen for the simulations consists of a Sm x 5m room with a typical
hardwood floor pattern. The pattern can be replaced with a flat color or other variations.
Two types of obstacles were spread out across the floor. The first type was a small green
bush and the second type was a circular hole with a 10cm diameter. The bushes were
designed to simulate irregular, natural obstacles without well-defined contours. They
ranged in size from 10cm to 50cm in diameter. Fig. 4.10 (a) shows how both obstacles

appear when using the imaging parameters of Table |. Fig. 4.10 (b) shows how sensitive

the system is to any change in these parameters. A change of only 10° in vertical gaze
angle and 10mm in the height of the sensor above the ground plane accounts for the differ-

ence in appearance between the two images.
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(b) View obtained with 8 = 70° and h =40cm.

Fig. 4.10 Two views from the simulator using different settings for vertical gaze angle
and the height of the sensor above the ground plane.



In particular, the dark hole obstacle is less distorted in Fig. 4.10 (a) in which the
imaging parameters of Table | are used. These parameters were also used in the analysis
of Section 4.3.2.1 to predict that the smallest field size (of level-1 fields) should be approx-
imately 140u x 140u, with a sensor width of approximately 2mm, to detect a hole of 10cm
diameter. Fig. 4.11 shows how the simulator confirms this prediction. With the sensor
width set to 2mm, the foveated image shows that the smallest fields are just able to give a

strong indication of the presence of the hole.

Fig. 4.11 A circular hole with a 10cm diameter is detected by the smallest fields of the
array.
When multiple obstacles are in the field-of-view, such as in Fig. 4.12 (a), the fove-
ated image shows that a correct steering decision is difficult to make. However. with a
weighting scheme. such as that shown in Table 2. the closer object will automatically have
a greater effect. Fig. 4.12 (b) and (c) show how the simulated robot correctly moves to the

left first to avoid the circular hole which is closer to it.
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(a) Framel: bush obstacle appears at top left and
hole obstacle appears at bottom right near center.

(b) Frame 2: robot correctly steers to the left to
avoid the nearer obstacle first.

(c) Frame 3: obstacles are now out of view as
robot steers to the left as seen by the pattern on
the floor.

Fig. 4.12 A sequence of frames produced as two obstacles are encountered.



The results for each simulation run were taken from the top-view of the room which
showed the path of the robot as it moved around the obstacles. as shown in Fig. 4.13. The
size of the room was 5m on each side. The black line represents the center of the robot’s
path and the grey portion represents the width of the robot’s body, which was set to 50cm.
As mentioned, the two types of obstacles, a small green bush and a circular hole, were

spread out across the floor.

small bush
obstacles

circular hole
obstacles

path of robot

Fig. 4.13 Top-view of the room showing the obstacles and the path of the robot.

76



An example of a simulation run is shown in Fig. 4.14. The left control signal. ¢ (2),
produced by the simulation, is shown in (a) and cg(t) is shown in (b). The difference
between the two, shown in (c), was used to determine the orientation angle as in equation
(15) of Section 4.3.2.2. To keep the angle from exceeding 8°, the parameter K, was set to

a value between 1/5 and 1/10.

(c) Difference signal, ¢;(1) - cg(1). (d) Top-view of room showing the path

Fig. 4.14 Results for the left and right control signals and the steering signal for a
particular run.
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A similar example is shown in Fig. 4.15. This time the texture on the floor has been
made more coarse by a factor of 5. The results show that this has no negative effect on per-

formance. In fact the difference signal is easier to correlate with the path of the robot.

(a) Difference signal, c;(t) - cg(1). (b) Top-view of room showing the path

Fig. 4.15 The steering signal for a simulation run using a coarse texture on the floor.

A set of four simulation runs are shown in Fig. 4.16. The first three runs. (a)-(c),
were performed with a floor made to resemble a typical hardwood pattern. The fourth run,
shown in (d), was performed on a floor of uniform color without texture. The runs were
started from different positions so that obstacles would be encountered in different ways

for each run. In each case the robot avoided the obstacles and generally avoided any con-

tact between its body (in grey) and the obstacles.
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Another configuration of obstacles was designed to create a more challenging scene
to test the system. Fig. 4.17 (a) shows how the obstacles were arranged too closely for the
robot to pass. Particularly difficult places are indicated with arrows. Fig. 4.17 (b) shows
the only possible path for the robot. It was mostly successful, however, near the end of its
course it passes over a ‘hole’ obstacle as indicated on the figure. The infraction is on the
outer edge of the robot’s body and is not surprising given how close the obstacles are. Fig.
4.17 (c) and (d) show how the system handled impossible situations. In both cases the sys-
tem approached the obstacles until they became close enough to cause a sharp turn, due to
the stronger weighting for obstacles in the fovea. The path taken in (d) was the result of

two consecutive sharp turns and resulted in a total retreat from the area.
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4.4 Conclusion

A simulation of the architecture described in Chaptér 3 has been conducted with a
still image and with a virtual environment. The results of the simulation with a virtual
environment showed that a system in which the architecture is implemented is able to effi-
ciently perform obstacle avoidance in an unstructured environment. In particular the
results showed that the architecture was effective with or without textures in the scene
which is an advantage over approaches based on stereo [36] or optical flow [34], which
depend on the presence of surface details. They also showed that the weighting scheme
combined with the post-receptor foveation makes it possible to appropriately avoid a com-
bination of multiple obstacles depending on their place in the visual field and their posi-
tion with respect to the body of the robot. The complex obstacle that looked like a bush
helped to demonstrate the effectiveness of the architecture in avoiding obstacles which
would be problematic for other approaches. Infrared sensing schemes which rely on
reflected signals would not be able to detect the full extent of a bush-like object. Classical
edge detection schemes would also have difficulty. Fig. 4.18 shows how a classical edge
detector applied to the image of the bush results in a barrage of data which has parts of the
bush intermingled with the pattern on the floor. The foveated image in (b) however, deliv-
ers a signal that can be easily used for a steering decision.

In general, the simulations showed that a smart sensor architecture could be used as
an effective 2D solution to the 3D problem of obstacle avoidance by appropriately parti-

tioning the processing in accordance with the task to be performed.



Fig. 4.18 A comparison of images resulting from post-receptor foveation (b) and classi-
cal edge-detection (c), of an image of the ‘bush’ obstacle on a hardwood fioor.
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An Example Implementation
of the Architecture
Using a VLSI Circuit

This chapter presents an example of a circuit that could be used for the implementa-
tion of the sensory-motor architecture described in Chapter 3. The purpose is to demon-
strate the feasibility of implementing the architecture using simple circuit building blocks

with a standard CMOS technology.
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5.1 From Architecture to Electronic Circuit

Smart sensor arrays need to be designed for standard CMOS technology so that the

circuits can be easily integrated on the same chip as digital circuits. For a smart sensor

array, the per-pixel processing circuitry must be very compact to have a reasonably high

resolution for a given circuit area. For this reason the signal processing is usually imple-

mented with analog circuits. The processing required by the architecture in this thesis is

shown again in Fig. 5.1. The four essential operations are: averaging, differencing, scaling

and summation.

nght side of sensor

e B a
' liI

B

nunn
S
nE n
walaln
B
unm

f

n

LE n.
- -JLl

B ITI
'm

Ao

naln =
S

lavel 2 genvauves

D2.C center
k-
02.0 agonal
k2o
D25 sige
ks
tevel 1 denvatives
- center
- - agonal ]
015 side

Kes

= {Y]

Fig. 5.1 Right side of the sensory-motor architecture as shown in Fig. 3.10 of Chapter 3.
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Fig. 5.2 A 4x2 portion of the architecture in Fig. 5.1 with the four required operations.

Fig. 5.2 shows a detail of the architecture with two fields of four photoreceptors
each. [t contains the four required operations. In CMOS technology. a photodiode serves
as a photoreceptor. In an n-well process it can be formed from the junction between the p-
substrate and the n++ diffusion, or that between the p++ diffusion and an n-well. As a
result of the absorption of photons. each photodiode produces a photocurrent. the magni-
tude of which depends on the photonic power received. the size of the photodiode and the
particular CMOS technology used.

An example of a possible current-inode circuit for averaging and differencing in a
4x2 portion of an array is shown in Fig. 5.3. The circuit makes use of Kirchoff’s Current

Law (KCL) to sum the incoming photocurrents. For example, the current /, is the summa-
tion of the photocurrents ;. 45, [43, and [, into node A. The current /4 can be consid-

ered to be the average of the four photocurrents by consistently disregarding the division

by four for each level. The same applies to current /g at node B.
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Fig. 5.3 Averaging, differencing and scaling circuits based on KCL.

The difference between the average currents /4 and /g can be found by using KCL

again. This time the direction of the currents are arranged at node D. by using current mir-

rors, such that the current /4, is equal to Ig,,> - [y, The current mirror consisting of
transistors M1:M2 is used to reverse the direction of [, so that it is leaving node D as [,y ;.
The current mirrors of M3:M4 and M5:M6 are used to reverse /g twice in order to have

node D between two mirrors. This makes it possible to control the voltage at node D. The
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final two current mirrors (M1:M2 and M5:M6) can also be used for the scaling operation.
Their output currents can be scaled by a factor K, g, as shown in Fig. 5.3, by adjusting the
aspect ratios of the transistors appropriately. For example, the K ; in the diagram would
be:

C(W/L)ys  (W/L)y
b3 (W/L)y T (W/L)ys

Thus, the output current /; ¢ has a magnitude equal to the difference of I, and I, scaled by
a factor K, ¢ . The direction of the current is determined by the sign of the difference. For
the processing, only the magnitude of the difference is important and the current should
always be positive. Therefore. an absolute value operation should follow the differencing.
The circuit in Fig. 5.4 can be used to produce the absolute value of the difference current.
I; 5 [37]. The operation of the circuit can be understood by seeing that no current will pass
through transistor M7 or M8 as long as the voltage at node D is close to Vpp/2. If Ig,,> >
Iy then the voltage at node D wili rise. At some point the voltage will be large enough
for M7 to be tumed on and M8 to be off and the difference current will pass through it. If
Igma < 1y, then the voltage at node D will drop until it is low enough for M8 to conduct

and M7 will be off. In both cases, the current through M7 or M8 will be redirected

through one of the current mirrors to produce a unidirectional output current.
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Fig. 5.4 An absolute value circuit to follow the circuit in Fig. 5.3.

The circuits in Fig. 5.3 and 5.4 were simulated using models for a 0.18u CMOS pro-

cess with Vpp = 1.8V. The current mirrors were all configured as cascode mirrors to

increase their output resistance. The results of the simulation are shown in Fig. 5.5. The

photocurrent /g (consisting of the sum of four photocurrents) was held constant at 400nA
while I, varied from 300nA to 500nA by varying one of its photocurrents from O to

200nA. The output current shown at the top of the figure always reflects the magnitude of

the difference between /, and Ig. The voltage at node D is also shown at the bottom.
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Fig. 5.5 The output current (top) with all photocurrents at 100nA except I, which goes
from O to 200nA. The output current reflects the difference between I and I.
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5.2 Output Stage of the Sensor Array

The current-mode circuits presented in the previous section are convenient for oper-
ations like addition and subtraction and occupy a small area. However, it is easier to output
a voltage signal than a current signal. A current signal with varying magnitude is very sus-
ceptible to noise. To facilitate the signal output, the magnitude varying current signal is
converted into a stream of pulses with constant amplitude and width, but the duration of
the pulse cycle is proportional to the magnitude of the current, as shown in Fig. 5.6 [38].

A circuit unit that can be used to convert a current signal to a cycle-time varying
pulse signal is shown in Fig. 5.7 [40]. It consists of a schmitt trigger and an inverter with a

feedback path that makes the capacitance (C) to be charged and discharged alternatively.
This forms an ‘integrate and fire’ structure in which the capacitor. C, can be charged up to

the upper threshold of the schmitt trigger by the input current. The resulting ‘high” output
will cut-off the charging switch. M17, to the capacitor and tum-on the discharge switch.
M 6. to lower the voltage on the capacitor to the lower threshold of the trigger, sending

the output to ‘low’. The voltage, V}, on the transistor M 15. below the discharge switch. is

used to control the discharge current, thus controlling the pulse width. whereas the input

amplitude

a time-varying analog
signal (like a voltage
or a current)

time

a binary stream of pulses
with fxed ampit.de | L0 O L L]
and width t

ime

Fig. 5.6 Converting a magnitude-varying signal to a frequency-varying one.
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Fig. 5.7 Basic circuit to convert a current signal to a pulse stream of a particular
frequency. The dashed box encloses the schmitt trigger [40].
current determines the pulse frequency. The schmitt trigger provides for a clean transition
between voltage levels and the hysteresis helps to avoid unstable conditions.
The results of a simulation are shown in Fig. 5.8. The output pulse train for an input
current ranging from 20nA to 80nA is shown in (a). The time between pulses decreases
gradually as the current increases. In (b) an output pulse train is shown for an input current

of 20nA. The voltage at the capacitor, V¢, is shown below it to indicate how the charge

and discharge pattern of the capacitor leads to each output pulse. In both cases the pulse

width is approximately 10ns.
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(b) Pulse train output for an input current of 20 nA. The bottom waveform shows the
voltage on the capacitor, Cj, as it charges and discharges.

Fig. 5.8 Simulation results for the ‘integrate and fire’ circuit of Fig. 5.7.
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5.3 Conclusion

A set of circuit units have been presented to provide a possible implementation
example for the architecture described in Chapter 3. It has been shown that the required
operations can be implemented easily with a simple current-mode circuit, which confirms
that the resulting pixel size will be very small. and the sensor circuit can be very easily

implemented using a standard CMOS technology.
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Conclusion

The work of this thesis was directed at solving the problems of existing sensory-
motor systems for obstacle avoidance in autonomous robots by developing a new architec-
ture targeted to a smart sensor implementation. The problems of existing systems which
were specifically addressed were the large volume of data to be processed, the computa-

tional resources required for the processing, and the hardware resources required for the
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implementation.

Extracting relevant information about real-world obstacles is a difficult task. There
have been a variety of VLSI sensory-motor systems developed in the past decade intended
to replace traditional microprocessor-based computer vision systems. However, because
the processing in these systems is at the pixel level, it is difficult to achieve algorithms that
can deal with real-world, unstructured environments. [t was concluded that new strategies
and architectures would be required to get past these limitations.

In this thesis, a new sensory-motor architecture has been proposed. Its development
was based on inspiration drawn from behavior-based robotics and the biology of natural
vision systems. Emphasis was placed on the particular needs of an obstacle avoidance
behavior for a simple wheeled robot. Using this approach led to the two organizing princi-
ples of the architecture: (a) a special post-receptor foveation scheme designed to empha-
size parts of the visual signal which are relevant to obstacle avoidance, and (b) the
alignment of sensory and motor maps to more easily convert the visual signal to a control
signal to be used to steer around obstacles.

In the post-receptor foveation scheme, hierarchical averaging is performed on a
homogenous array of photoreceptors. Unlike with other foveation schemes that vary the
size and arrangement of photoreceptors, the pixels can be more like standard cells with a
constant pitch, designed to abut with common power rails and interconnections across the
array. The use of hierarchical averaging makes all levels of resolution available for pro-
cessing, supporting spatiotemporal operations down to the pixel level. From the point of
view of obstacle detection, post-receptor foveation simplifies obstacle detection by pro-

ducing a type of low-pass filtering which makes complex objects (like bushes or rocks)
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appear like a block of uniform intensity while retaining enough information for obstacle
avoidance. This can greatly reduce the amount of computation necessary to localize an
obstacle relative to the fovea.

In the alignment of sensory and motor maps, the center of the sensor is aligned with
the midline of the robot’s body. This means that the point of fixation and the visual field
are also aligned with the body. Whether an obstacle lies more on the left or right side of
the sensor can be quickly determined using spatial derivatives and other visual cues, and
can lead to a quick decision to steer to the right or the left. Just as in sensory-motor parts
of the brain, a stimulus in a sensory map causes activity in a motor map permitting rapid
orientation behaviors. The focal-plane processing of a smart sensor is a good substrate for
this type of scheme because the map of the visual field is always present across its photo-
receptor array. The scheme was further enhanced by associating regions of the visual field
with the body of the robot such that visual cues could be weighted according to their rela-
tive proximity to the robot. With this refinement, objects which are more immediate and
closer to the center will elicit a stronger signal for the robot to turn away from them. Thus,
a sufficiently accurate sensory-motor transformation is achieved without the use of explicit
coordinates or time-consuming optical flow computations

A detailed model of the architecture and the imaging process was described in Chap-
ter 4. The model was used to develop an algorithm for a simulation of the architecture. The
algorithm highlighted the advantages of using a parallel approach to performing imaging
operations because of their simple and iterative computations and because of the large vol-
ume of data. A simulation scheme, which takes into account a realistic environment, has

been developed to show that the sensory-motor architecture is able to perform obstacle
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avoidance in an unstructured environment. Three-dimensional computer graphics were
used to create obstacles which have complex shapes and irregular contours. The example
of the architecture used in the simulation is a sensor array with a relatively low resolution
of 16x8 pixels. The effectiveness of the approach was demonstrated by simulating the pas-
sage of a robot through a group of obstacles on both textured and untextured floor sur-
faces. The weighting scheme of the architecture was also shown to be effective in dealing
with combinations of obstacles which are all in the field-of-view but which are in different
locations with respect to the robot.

For the VLSI implementation of the architecture, circuit units to be integrated in
each pixel for the signal processing have been proposed. The architecture makes use of
only four signal processing operations: averaging, differencing. scaling and summation.
Very simple current-mode circuits can be used to perform these operations. Integration of
these circuit units do not require any special fabrication process. Moreover. the use of sim-
ple processing circuitry means that most of the area in each pixel can be used for the pho-
toreceptor. resulting in a high fill-factor. This means that large photoreceptors can be used,
increasing the signal level of the photocurrent and possibly reducing the variance of recep-
tor response across the sensor.

To conclude, the significance of the sensory-motor architecture in this thesis resides
in its ability to achieve a difficult task while using minimal computational and hardware
resources. It enables the processing of a dense flow of visual information while using a rel-
atively low resolution pixel array. The architecture leads to an effective 2D solution to the
3D problem of obstacle avoidance by appropriately partitioning the processing in accor-

dance with the task to be performed.
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Based on the work of this thesis, future work will involve an ASIC implementation
of the architecture. Also of interest is an exploration of the inherent flexibility of the archi-
tecture with respect to the size and placement of the fovea. Different configurations may
lead to improved performance for particular tasks and environments. Other applications
for the architecture may also be profitably explored. The most promising are those which
are related to obstacle avoidance, such as target acquisition and target tracking. The fove-
ated structure and weighting scheme can possibly be used to keep an object centered on

the fovea and thus track its changing position.
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Appendix A Derivation of u, and v,

o — w/10

o~

¢ u

Fig. A.1 Top view of the imaging geometry showing the similar triangles of perspective
projection used to determine the image width of the smallest feature.

The ratios from the similar triangles in Fig. A.1 are:

w2l “7 (A1)
and solving for u, gives:
u., = f- w/IIO. (A.2)
The length from the center of projection to the point of fixation is given by:
N cosh(O) (A-3)
which leads to an expression for u,, in terms of the vertical gaze angle 6:
o = f- l—g—h - cos(0). (A4)

If the width of the robot and height of the sensor mounting and its focal length are consid-
ered constants, they can be combined as:
w

Ky=f- 0% (A.5)
and then i, can be expressed as a function of the vertical gaze angle:
uo = K, -cos(6) . (A.6)
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optical axis

: center of projection
: focal length

- height of sensor

: image size of smallest feature

: vertical field-of-view angle

(a) Focal length should be selected to produce an image for the size of the sensor.

/ .. h - height of optical center
g - vertical gaze angle
~ C dy  :total distance mapped to sensor
: smallest detectable feature

0
. ‘ do
ground plane < I d J|
dmin r dmax

(b) The height and angle of the sensor with respect to the ground plane determine the
mapping of features on the ground plane to the surface of the sensor.

Fig. A.2 Imaging geometry used to determine the size of the smallest feature to be
detected.
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From Fig. A 2 it can be seen that the intersection of the field of view of the sensor with the
ground plane is bounded by:

d,;,= h-tan(8) and d,.= h-tan(6 +¢) (A7)
and so the total forward distance projected onto the sensor is:

dr= h-[tan(0+¢/2)—tan(8)]. (A.8)
The smallest forward distance that must be detectable can be expressed similarly:

do= h-[tan(0 + ¢.) — tan(0)]. (A.9)

Following the guideline that this distance be one tenth of the body width. w, results in:

lO h-[tan(® + ¢.) — tan(6)]. (A.10)

An expression for the angle ¢, associated with this distance can be found as follows:

[10 I+tan(9):|— tan(6 + ¢-)

w o tan(0) + tan(9.)
[10 R+ )] [ = tan(8) - tan(0.)

[mw: Rt mn(e)] B [10“: Rt [an(e)] -tan(8) - tan(9.)= tan(8) + tan(9-)

— +tan(0) |- tan(0) ud
an(o.) = [10 h ] = 10 A (A1)

[10 h+tan(0)] tan(0) + 1 [10 h+tan(6)] tan(8) + 1

From Fig. X (a), it can be seen that tan(¢.) = v./ f, which leads to:

Vo = h (A.12)

(tan(G)) + 0 I tan(9)+l
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Appendix B Expressing the Imaging Model in OpenGL

The simple imaging model presented in section 4.3.2 corresponds to the perspective
projection used in OpenGL. specified with the command glFrustum, and the parameters
shown in Fig. B.1. As can be seen from the figure, the size of the sensor can be specified
using left. right, top, bottom, and the viewing volume defines the field-of-view. The focal
length of the system can be specified using the parameter near. In this way a sensor with a
2mm width and a 3mm focal length can easily be specified through the user interface of
the simulator. The API expresses everything in its own native ‘units” which in this case

were consistently treated as millimeters.

rectanguiar sensor array

is represented by the

imaging surface defined o

by left, right, top. bottom viewing volume

top

near far
glFrustum( left, right, bottom, top, near, far);

Fig. B.I Notation used by the OpenGL interface to specify the imaging geometry.
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