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ABSTRACT

Fault Detection, Classification and Location in Transmission Line

Systems using Neural Networks

[brahim Farhat

Transmission lines, among the other electrical power system components, suffer from
unexpected failures due to various random causes. These failures interrupt the reliability
of the operation of the power system. When unpredicted faults occur protective systems
are required to prevent the propagation of these faults and safeguard the system against
the abnormal operation resulting from them. The functions of these protective systems
are to detect and classify faults as well as to determine the location of the faulty line
when a fault is detected in the voltage and/or current line magnitudes. Once the fault is
detected and classified the protective relay sends a trip signal to a circuit breaker(s) in

order to disconnect (isolate) the faulted line.

Successful applications of neural networks in electrical power systems have demonstrated
that this powerful tool can be employed as an alternative method for solving problems
accurately and efficiently. The features of neural networks, such as their ability to learn,

generalize and parallel processing, among others, have made their applications to many
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systems ideal. The use of neural networks as pattern classifiers is among their most

common and powertul applications.

This thesis presents an artificial neural network approach to detection, classification and
isolation (location) of faults in transmission line systems. The objective is to implement a
complete scheme for distance protection of a transmission line system. In order to
perform this goal, the distance protection task is subdivided into different neural
networks for fault detection, fault identification (classification) as well as fault location in
different zones. The other purpose of this work is to study and compare the application of
three different neural network architectures for the protection of the transmission lines.
The considered three approaches are back-propagation, radial basis functions and support
vector machines. Simulation results are provided to demonstrate the advantages and
disadvantages of these structures when applied to the problem of transmission line

protection.
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Chapter 1

General Background and Research Goals



1.1 Introduction

The greatest threat to the continuity of electricity supply is system faults. Faults on
electric power systems are an unavoidable problem. Hence, a well-coordinated protection
system must be provided to detect and isolate faults rapidly so that the damage and
disruption caused to the power system is minimized. The clearing of faults is usually
accomplished by devices that can sense the fault and quickly react to disconnect the

faulty section from healthy ones.

In the control centers of the electrical power systems a large number of alarms are
received as a result of different types of faults. To protect these systems, the faults must
be detected and isolated accurately. The operators in the control centers have to deal with
a large amount of data to get the required information about the faults. This, indeed, takes
a long time when time is the critical issue. In addition, the protection system may, itself,
fail, let alone disruption in the communication networks and corruption of transferred
data. All these are challenges to the protection of the electrical power systems. The

challenges are to detect, classify and locate the faults as fast as possible when they occur.

Conventional schemes set thresholds according to the fault currents and voltages [1].
When a fault occurs, the fault currents and voltages develop a transient DC offset
component and high-frequency transient components in addition to the power frequency
components. The fault currents and voltages vary with fault type, location, size, and fault

inception angle and system condition. These variations cause the space to be non-linearly
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separable and none of the thresholds can be found so as to satisfy for various system and
fault conditions [2]. Furthermore, when faults take place the faulted phase(s) have an
effect on the healthy phase(s) due to mutual coupling between these phase(s). This
problem is compounded by the fact that this coupling is highly non-linear in nature and is

dependent on a complex interplay amongst a number of variables [2].

Intelligent systems have been in use for fault diagnosis in power systems for some time
[3-8]. Among the intelligent systems, Artificial Neural Networks (ANN) have been
applied to several power system operation and protection [10-20]. The ANN superiority
over conventional schemes, (details are presented in Chapter 2), is demonstrated widely

[11,21-29).

ANN employed as pattern classifiers, has been used in the area of transmission line fault
diagnosis [3, 11, 30-34]. Due to the neural networks ability to acquire information and to
learn through training, many neural network models are proposed in the literature [35].
The capability of neural networks to generalize as well as their fault tolerance makes

them a reliable tool to be used to handle unseen fault patterns.

1.2 Research Motivation

Transmission line is the most likely element in the power system to be exposed to faults

especially when their physical dimension is taken into consideration [36, 37].



This thesis has concentrated on understanding the behavior of the transmission line phase
voltages and currents as a consequence of faults. The objective of this work is to study
and employ neural network techniques as a reliable tool to detect, classify and isolate
faults in a transmission line system. Artificial neural networks are a powerful tool to use
in transmission line fault detection, classification and isolation. The parallelism inherent
in neural networks enables them with faster computational time than traditional
techniques. Hence, using this technology in transmission line fault diagnosis does
validate its usefulness and encourage engineers to use this technique in other power

systems applications [3-11, 30-34].

1.3 Literature Review

Due to the possibility of training neural networks with off-line data, they are found useful
for power system applications [3, 10-35]. The history of applying neural network
techniques to power system is not that long and can be traced to some recent work [39].
Neural network techniques have extensively been of a great interest to the power system
community since Sobajic and Pao applied it to transient stability for prediction of the
critical clearing time [40]. By the late eighties and early nineties the application of neural

networks in this area has become quite well established [41].

The neural network applications in transmission line protection are mainly concerned
with improvements in achieving more effective and efficient fault diagnosis and distance

relaying. A wide variety of published work in the fault diagnosis of transmission lines
4



can be obtained in the literature. For instance Dalstein and Kulicke [21] employed neural
networks to detect transmission line faults and distinguish between arcing and non arcing
faults. Kezunovic, Rikalo and Sobajic [42], proposed a neural network scheme to detect
and identify high speed faults under changing system conditions. In the area of fauit
location and selection of the faulted line in a network a large number of published work is
available. For instance, Chen and Maun {43] used neural networks to improve single-
ended lines fault location while Song [44] applied neural networks to improve fault
location for series compensated lines. Other published work in the area may be found in
references [24, 26-28, 30, 34, 36, 45-48]. It should be noted that most of the
implementations in the above references are based on the feed-forward multilayer
perceptron. Although other architectures have also been investigated in the literature by
some of the references mentioned [22, 28, 45, 65], they are by all means few in numbers.
More discussion about the applications of the various neural network archetictures in the
area of fault diagnosis to distance relaying is presented in Chapter 3. A survey of some of
the typical neural network approaches in transmission line fault detection, classification

and isolation is provided in [16, 25].

1.4 Research Objectives and Contributions of the Thesis

In view of the above discussion, the objectives of this research are to utilize neural
network techniques for development and evaluation to the fault detection, classification
and isolation of transmission line systems. Specifically, the goal is to detect and to

identify the type of fault in the line and to determine which zone (segment) of the line has
5



become faulty. In order to achieve these objectives, three network approaches are studied,
implemented and modified to perform the above three tasks. The neural network
architectures considered here are; (i) back-propagation network (BP), (ii) radial basis
function network (RBF), and (iii) support vector machines (SVM). This thesis presents
the results of applying the back-propagation network as a pattern recognition machine to
detect faults in a typical transmission line system. The use of the three architectures to
identify and classify the type of fault and to specify the faulty zone in a transmission line
system is then investigated, and a comparative study is conducted on the performance of
the three networks. The outcome of this work would serve as a guideline on the selection
of a suitable network from the set of the considered three alternatives as may be
appropriate for a specific application. The possibility of using support vector machines,
for the first time in the literature, in the protection of transmission line was explored

which resulted in improved performance as compared to the other architectures studied.

1.5 Research Methodology

By observing the voltage and current signals of a line, one is then able to identify the
existence of faults in the system. These signals are also used to specify the fault type and

location. Figure 1.1 shows the stages conducted in this thesis.

As shown in Figure 1.1, the algorithm investigated in this thesis consists of three stages:



1. Fault Detection: A neural network is employed to determine if a fault has occurred or
not. The inputs to this network are the three phase currents and voltages of the
system, thatisI=[I, Ip L]" andV=[V. Vp V.]", respectively. The output of the

network is a binary decision to indicate occurrence of a fault.

2. Fault type identification: A second neural network is used to classify the fault. It
receives as inputs the line currents and voltages, that is [ =[I, I L]" and V=[V,
Vb V.]", respectively. The output of the network has four signals to distinguish the
four fault types that are phase-to-earth fault, phase-to-phase fault, double-phase-to-

earth fault and three-phase fault.

3. Fault isolation: The third neural network is used to localize faults in the transmission

line system according to following three protection zones:

e The main protection zone Z;: can be 90%-95% of the protected line.
e The second protection zone Z,: 110%-140%.

e  The third protection zone Z3: 150%-200%.

The network has the line currents and voltages as inputs and the output signals identify

the faulty zone, Z1, Z2 or Z3.
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Figure 1.1: The research methodology for fault detection, classification and isolation

in typical transmission line system using neural networks

In order to perform the above three tasks, simulation models of the transmission line
system are constructed and the generated information are then channeled using the
software MATLAB (Version 6.1) and accompanying Neural Network Toolbox (Version
5.0) and SVM Toolbox (Version 3.00) as well as Power System Block Set (Version 2.1).

MATLAB, and its associated Toolboxes, provides the means to conveniently simulate

and model the studied transmission line and the proposed neural networks.
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1.6 Outline of the Thesis

In Chapter 2, the issues and problems related to the protection of a typical transmission
line system, the fault types and protection schemes available in the literature are briefly
presented. The state of art research results for transmission lines protection and relaying
are described in this chapter. In Chapter 3, a brief introduction to neural networks and a
few architectures are presented. A literature review of the application of various neural
network topologies to power system transmission lines is presented. Chapter 4 presents
the development and application of the proposed neural network architectures for
detection, identification and isolation of the faults as applied to a typical transmission line
system. Extensive simulations are also provided in this chapter. In Chapter 5, conclusions
of the thesis are stated and recommendations for future use of the proposed neural

networks in the area of faulty transmission line systems are discussed.



Chapter 2

Protection of Power Transmission Line Systems
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2.1 Protection Systems

A fault, which is an abnormal system condition, occurs as a random event. The faulty
system component (line, bus, transformer, etc.) must be isolated from the system quickly
to prevent power system instability or break-up of the system through the action of other
protective devices. Therefore, a protection system must be designed to disconnect the

faulted component from the system as quickly as possible.

The protection system consists of many other subsystems, which contribute to the fault
removal process. These subsystems are presented in Figure 2.1. Besides relays, the
protection system consists of transducers (voltage transformers (CVT) and current
transformers (CT)). The circuit breaker, which interrupts the current and isolates the
faulty section, is operated by energizing its trip coil from the station battery, and the

relays do this job by closing contacts between the battery and the trip coil.

CT Breaker

(R,
ICVT Relay

Battery I

Figure: 2.1 Subsystems of a protection system. Besides relays, the protection system

consists of transducers, circuit breakers and station battery.
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The most important component of the protection system is the relay. This is a device
which responds to the condition of its inputs (voltages, currents, or contact status) in such
manner that it provides appropriate output signals to trip circuit breakers when input

conditions correspond to faults for which the relay is designed to operate [49].

A relay must be designed so that it produces a trip output only for the faults it is
responsible for, while it doesn’t for any other faults. This is the concept of reliability as
understood in relaying literature. Reliability of the relay is the degree of its certainty to
perform as intended. The relays have two alternative ways in which they can be
unreliable: they may fail to operate when they are expected to or, they may operate when
they are not expected to [50]. A reliable relay has to be dependable and secure [51].
Dependability implies that the relay always operates for conditions for which it is
designed to operate. A secure relay does not operate for any other power system

disturbance.

2.2 Classification of Relays

In general, the relays that are in use on power systems may be categorized as follows
[52,53]:
e Magnitude Relays: These relays respond to the magnitude of the input quantity as
described in later sections. Overcurrent relays belong to this class.

e Directional Relays: These relays respond to the phase angle between two inputs.

12



e Ratio Relays: These relays respond to the ratio of two input signals expressed as
phasors. The most common ratio relays are distance relays.

o Differential Relays: These relays respond to the magnitude of the algebraic sum of
two or more inputs.

e Pilot Relays: These relays employ communicated information from remote

locations as input signals.

The candidates under which one uses these relays are explained in later sections. The

advantages and disadvantages of these relays will also be described.

2.3 Zones of Protection

A zone of protection is a portion of the power system for which a specific protection
system is designated. The idea of an area of responsibility of a protection system is

formalized by assigning zones of protection to various protection systems [54].

Figure 2.2, which is a one-line diagram of a portion of a power system containing a

transformer and four buses, illustrates the concept of zones of protection.

The closed dashed lines indicate the five zones of protection by which the various power
system components are covered. Each zone contains one or more of the system
components in addition to two or more circuit breakers [49, 54]. The boundary of each

zone defines a portion of power system such that when a fault occurs in any part of that
13



zone, the protection system for that zone takes an action to isolate everything within that
zone from the rest of the system. In order to isolate (de-energize) the faulty zone (or

component), the relays in that zone activate trip coils of certain circuit breakers.

Y S B
BT S ,-_1:---——--:]-]'
H: ;{' So-———
Si--—g-=) i

P I T D T G S VD e S o -

;

luD
\

®

Wenen an an an an e

Figure: 2.2 Zones of protection.
Zone 2 defines the boundary for protection of transmission line 4-B. Zone 4 defines

bus-A4 protection. Zone 5 is a transformer protection.

It should be noted that a circuit breaker should be inserted at each point where the
equipment inside a zone and the rest of the system such that the circuit breaker defines

the boundaries of the zones of protection [54].

In order to make sure that there is no portion of the system that is left without protection,
each segment of the system must be covered by a primary high speed protection. In
addition, the various zones always overlap as shown in Figure 2.2 to ensure that there are
no blind spots in the protection system. In other words, to reinforce the dependability of

the overall protection system, a zone will be protected by several protection systems. This

14



will ensure that even when a failure occurs in the protection system itself, the power
system will not be unprotected. On the other hand, it should be clear that if a fault occurs
within the overlapped areas, a larger portion of the power system will be isolated. In
other words, the smaller the region of overlap, the less the segment of the system that

would be lost from service [54].

2.4 Protection of Transmission Lines

As mentioned above, among the faults of a power system, transmission line faults occur
more frequently. About two thirds of the faults in power systems occur in the

transmission line network [36, 37]. Faults in transmission line can be:

e Single-line-to-ground faults (conductor-to-ground)
e Phase-to-phase-to-ground faults (two conductors-to-ground)
e Phase-to-phase faults (two conductors)

e Three-phase faults (three conductors)

Statistically, three-phase faults only form a 5% of faults while 70%-80% of faults are
single-line-to-ground faults [31]. Transmission line fault diagnosis has been a subject of
study for a long time. Traditional protective relaying methods are based on preset values
of the parameters and conditions of the system considering only the common situations.
These parameters and conditions vary widely when faults take place. This influences the

relays, which are set to perform well only during predetermined fault conditions [30].
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2.4.1 Overcurrent Relays

As a result of the occurrence of a fault, the current becomes greater than the pre-fault
current in any power system element. Therefore, the current magnitude is used as an
indicator of a fault. Applying this principle, overcurrent relays are used to protect the

transmission lines as explained below.

When a fault occurs in the zone of protection, the fault current is smallest at the far end of
the line and greatest at the breaker end [49, 50]. In Figure 2.3 (a), if the minimum fault
current possible within the zone of protection is greater than the maximum fault load

current, then the operating principle of a relay can be defined as follows:

|1|21 » Sfault in zone, trip.

(2.1)

|1| <1, no fault in zone, do not trip.
where [ is the current in the relay and I is known as the pickup setting of the relay.
Figure 2.3 (b) depicts the variation in steady state ac fault current with fault location. The
relay characteristic given by Equation (2.1) is defined in terms of the symmetrical fault

current.

Figure 2.4 (a) shows the operating characteristic of an ideal relay, which is described by
Equation (2.1). As shown in the figure, the relay only operates when the current

magnitude exceeds /p taking a time T, to close its contacts. This type of relay is called

16



an instantaneous relay. Figure 2.4 (b) depicts the traditional method of representing the
operating characteristic of the overcurrent relay. The pickup current /p of a relay is
adjustable through the taps on its input winding. For a given current the operating time of
the relay can be shifted up or down by adjusting the time-dial setting to produce slow or

fast operation time

I fault

I : Iload

A Location B

(a) (b)

Figure 2.3: Overcurrent protection of a transmission line. (a) Radial system protection,

(b) Fault current magnitude as a function of fault location.

Time
Dial
i
™ Tmin gl
El-- z
!
I, Current I, Current
@) )

Figure 2.4: Overcurrent relay operating time, (a) Instantaneous relay,

(b) Time overcurrent relay.
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2.4.2 Directional Relays

For some power systems, an overcurrent relay may not be able to provide adequate

protection. Figure 2.5 (a) illustrates a system that has sources on both ends of the line.

A E B F

Fault

D WD G GNP WY I P IR AP YR

(a)

Reverse

Figure 2.5: Line protection for a loop system, (a) System diagram,

(b) Voltage and current phasors.

In this figure F; is a fault within the zone of protection of the line and F> is outside this
zone. Depending on the relative strength of the source on the two sides, the current
tflowing through the relay at B for a fault at F; might be less than the current that would
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flow through the same relay for a fault at F,. In such a case, an overcurrent relay set to
trip for a fault at F; would also trip for a fault at F». This is unacceptable from a security
point of view. To avoid this situation a directional relay is provided at B. This relay is
insensitive to the faults that occur outside the zone of protection [49]. It uses a polarizing
voltage where its operation depends upon the direction of the current with respect to the
voltage. In view of these descriptions, this type of relay is called directional. Figure 2.5
shows that the directional relay operates when the fault is in the forward direction, i.e.

towards the zone of protection.

2.4.3 Distance Relays

Distance relays are widely used to protect transmission lines [55]. These relays respond
to the impedance between the relay location and the fault location. They, in fact, respond
to the distance to a fault on the transmission line, as the impedance per unit length is
fairly constant. In view of the drawbacks of the overcurrent relays, distance relays

provide excellent protection under all circumstances.

Figure 2.6 (a) shows a fault at a fractional distance & from the relay location. If a phase-
to-phase fault occurs between phases x and y such that x # y,and x, y = a, b, c, then it can
be shown that [55, 56]:

Ex=E 4z 2.2)
1.\' - [Y
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where Ex and Ix are the phase x voltage and current, Ey and /y are the phase y voltage and
current and Z; is the positive sequence impedance for the entire line, which is the
impedance to positive-sequence current [54]. Similarly, for a phase to ground fault on

phase x we have:

2 S 4 2.3)

where m=(Z,-Z,)/ Z, and Z, is the zero sequence impedance of the line, which is the

impedance to zero-sequence current [54]. The ratio of the appropriate voltages and
currents represent the fraction of line positive sequence impedance at which a fault
occurs. The computed ratio can be compared with the total positive sequence impedance
of the zore being protected, and if smaller, trip output is produced. The comparison is
made in the complex impedance plane as shown in Figure 2.6 (b). For faults on the
transmission line, the ratio is a complex number lying on line segment A-B. To define the
fault region in the complex plane, a rectangular, circle or a segment of a circle can be
used to define the zone of protection in the X-R plane as described in [49]. The circular
zone shown in Figure 2.6 (b) belongs to the class of relays known as "offset impedance

relay”, the center of the circle being offset from the origin.

The performance of distance relay near its zone boundaries is not predictable due to
various error types such as the transducers accuracies and fault arc resistance [57].
Consequently, it is necessary to form multiple zones of protection in order to achieve the

required dependability and security for protecting the entire line. For the line 4-B in
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Figure 2.7 (a), the dotted line represents the zone of protection for the line. However, to

be sure of covering it in presence of input errors, two zones (zone 1 and zone 2) are used.

A F B

o TTETTETEETETEETTT T

K '
VI *-

R {1 S

(@)

(b)

Figure 2.6: Distance relaying of transmission line, (a) Line with a fault in

zone of protection, (b) Distance relay characteristics.

The relay in zone 1 is set to operate instantaneously (without delay, i.e. in about one or
two cycles) while a fault in zone 2 causes the relay to operate with an added delay (about
20-30 cycles). The zone 2 operating delay is to permit other relays such as those
belonging to lines B-C and B-D to operate for faults within their respective first zones,
such as F, or F3, which may lie in zone 2 of the relay protecting line AB. It should be
noted, hereby, that a similar protection system exists at the B terminal looking towards 4.
It is clear that such a line protection scheme would provide high speed protection from
both ends against faults in the middle portion of the line, in the X7 region.
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Figure 2.7: Distance relaying of a transmission line, (a) Transmission lines protected

by distance relays, (b) Three zones of protection.

On the other hand, faults on the line, but outside the XY region, are cleared
instantaneously by near relay and with zone 2 time delay by the distance relay. In

addition to these two zones, a third zone with an additional time delay of the order of one
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second is provided at each end to provide remote backup for the protection of
neighboring circuits. Zone 3 overlaps the longest line connected to the same bus as the
line being protected [49, 50, 57]. The three zones of protection are shown in Figure

2.7(b).

The distance relays can be classified according to the shape of their zones of protection.
Traditionally, all zone shapes have been circular, because an electromechanical relay
produces a circular boundary for the zones of protection. Relay types are, generally,

recognized according to the shapes of their operating zones [55, 57, 58]:

Impedance relays, which have a circular shape, centered at the origin of the R-X

diagram.

e Admittance or mho relays have a circular shape, which passes through the ongin.

e Reactance relays have a zone boundary defined by a line parallel to the R-axis.

¢ Quadrilateral relays, which have their characteristic, as the name implies, defined by
four straight lines. This characteristic is only available in solid-state or computer

relays.

2.4.4 Pilot Relaying

When an entire transmission line is to be covered with high speed protection, pilot
relaying technique is employed. Pilot relaying principles are based upon information

obtained by the relay from a remote location. The information, which is usually in the

23



form of open-or-close contact status, is sent over a communication channel using power

line carrier, microwave, telephone circuits, etc.

Two classes of pilot relaying systems are in use: the directional comparison system and
the phase comparison system. In practice, both of these systems could be sub-classified
into more sub-categories such as permissive or non-permissive, over or under-reaching
[58]. It should be noted that the phase comparison function becomes totally inoperative
in case of communication system failure, while the directional comparison system can

provide an additional distance relaying protective function.

To summarize, faults in transmission line systems need to be classified accurately and as
fast as possible. This chapter reviews some of the conventional methods available in the
literature corresponding to protection set thresholds based on the increase of the fault
currents and the decrease of the fault voltages [1]. However, because fault currents and
voltages vary with fault types, fault location and the power system condition, the fault
classification space is not linearly separable and there exists no specific threshold that can

satisfy for all various systems and fault conditions.

In the next chapter it is demonstrated that neural networks may be used as an alternative
method to the conventional protection methods discussed in this chapter. Subsequently,
in Chapter 4, practical and simple neural networks are designed to learn the complex
decision functions from several sample patterns, in addition to performing the task of

transmission line protection associated by fault detection, classification and isolation.
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Chapter 3

Neural Networks and their Applications in Power

Transmission Line Systems
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3.1 A Brief Introduction to Neural Networks

A common engineering problem is that of estimating a function or a map based on the
knowledge of some examples of input-output pairs. This process is known as supervised
learning by the neural network community. Other designations ued are function
approximation (numerical analysis), regression analysis (statistics) or system
identification (control theory). The training set (examples) is composed of pairs of values
for the independent (input) and dependent (output) variables. In general the neural

network will be playing the role of representing the map ¢(.) in [35, 38]:

y = ¢(x) @3.1)

where x is the vector of inputs and y is the vector of outputs.

The supervised learning problem can be subdivided into parametric and nonparametric
models. In parametric estimation, the form of the functional relationship is known but it
may contain free parameters that are determined during the learning process. Usually the
free parameters of a parametric model have meaningful interpretations in terms of the
physical parameters of the system. An example of a parametric model is polynomial

regression.

Nonparametric models are different in the sense that there is no a priori knowledge of the

form of the function being estimated. The function is still modeled using an expression
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with many free parameters but in a way which allows the class of functions which the
model can represent to be very broad. Neural networks, as well as Fourier series, spline

functions, and wavelets are nonparametric models.

A neural network is a massively parallel distributed processor that has the ability of

storing knowledge and making it available for use. It resembles the brain in three aspects:

e The knowledge is acquired by the network through a learning process.
e Interneuron connection strengths, known as synaptic weights, are used to store the
knowledge.

e The network is capabie of generalization.

The learning process is performed by a learning algorithm. The objective of the algorithm
is to change the synaptic weights of the network to attain a desired design objective. Once
the network is trained it is capable of generalization. Generalization refers to the
capability of the neural network producing "reasonable" outputs for inputs not

encountered during the training process.

The characteristics of neural networks that are relevant to this thesis are as follows:

e Input-output mapping. One popular class of training algorithms is called
supervised learning. The network is presented with input samples and the network

weights are modified so as to minimize the difference between the network output
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and the desired output. The training proceeds until the network reaches a state
where there are no further significant changes in weights.

e Nonlinearity. A neuron basically represents a nonlinear element. Therefore, a
neural network made up of a collection of neurons is itself nonlinear.

e Adaptivity. A neural network trained to perform a specific task in a specific
environment (input-output pairs) can be easily retrained to deal with minor

changes in this environment.

The most popular type of neural networks for supervised leaming is the multi-layer
perceptron (MLP) which became prevalent in 1986 with the development of the back-
propagation algorithm [59]. MLP's have feed-forward connections with adaptable
weights, i.e., the free parameters. Training a MLP implies estimating the best set of
weights so that the tracking error between network output and desired response is
minimized. This requires the solution of a nonlinear optimization problem which is
usually performed by means of the gradient descent in the weight-space [59]. The
weights are incrementally adjusted to decrease the error, and this process is iterated until
the error can no longer be minimized. Nonlinear optimization of this nature has typically

slow convergence properties and can also get stuck in local minima.

3.2 The Neuron

A biological neurons, as shown in Figure 3.1, behaves as function representative. It

transforms an input signal x into an output signal @¢(x). The function ¢(.) can assume
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many forms. It can model a simple static activation function such as the sigmoid, the
threshold, the radial basis, or linear functions. Figure 3.2 represents some of these

activation functions [35, 38].

dendrite

synapse

synapse

synapse

axon

Figure 3.1: Biological neuron.

Jnput - Radial Basis Newon =~ Input  ~Siginoidal Newon
x1)

Figure 3.2: Examples of nonlinear activation functions for a neuron

The physiological interpretation of the input signal x and the output signal y involves

electrical impulses of potential difference and their temporal summation. Input
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activations involve small membrane pulses while output signals involve large axonal
pulses. Mathematically, the activation input x represents the membrane potential or
voltage difference across the neuron's surface membrane. The activation can be positive
or negative. The output signal & represents the output induced by the activation input x. In
general, signal functions are monotonic nondecreasing. Increasing activation values can
only increase the output signal or leave it unchanged. They can never decrease the signal.
In practice this means signal funciicns have an upper bounded saturation value. An
important exception to signal monotonicity is the Gaussian functions. Generalized

Gaussian functions define potential basis functions as defined later in this chapter.

3.3 Network Architectures

The way in which the neurons of a network are arranged and connected together strongly
influences the learning algorithm used to train the network. The various existing

architectures can be divided into four main categories [35]:

° Single-layer feed-forward networks
° Multilayer feed-forward networks
° Recurrent networks

J Lattice networks

Multilayer feed-forward networks are only used in this thesis as they are the most widely

used architecture in function approximation, classification and pattern recognition
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problems. Among the many existing variations in both architecture and training

algorithms, three specific ones that are implemented in this thesis are described in details

below:

. Multilayer perceptron networks trained by the error back-propagation algorithm
(BP).

° Radial basis function (RBF).

. Support Vector Machines (SVM).

3.3.1 Multilayer Perceptron Networks

Multilayer perceptron networks have been applied successfully to many different
problems since the advent of the error back-propagation learning algorithm [59]. This
network architecture and the corresponding learning algorithm can be viewed as a

generalization of the popular least-mean-square (LMS) algorithm.

A multilayer perceptron network consists of an input layer, one or more hidden layers of
computation nodes, and an output layer of computation nodes. The input signal
propagates through the network in a forward direction, layer by layer. The error back-
propagation learning algorithm consists of two phases. The first is usually referred to as
the presentation phase or forward pass and the second as the back- propagation phase or
backward pass. In the presentation phase an input vector x is presented to the network
resulting in an output y at the output layer. During this phase the synaptic weights are all

fixed. In the back-propagation phase the weights are adjusted based on the error between
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the actual and desired outputs. The details regarding the above discussion are presented

below.

o The Presentation Phase

For simplicity a network with just one hidden layer is analyzed. The following is a list of
symbols used in the remainder of this chapter.

e NI: number of neurons in the input layer.

e NH: number of neurons in the hidden layer.

e NO: number of neurons in the output layer.

e Xx:input vector.

e A" input for the hidden layer.

¢ 4P input for the output layer.

¢ ' output of the hidden layer.

e y: output of the network.

e w; : matrix NH x NI of synaptic weights connecting the input and hidden layers.

e wy: matrix NO x NH of synaptic weights connecting the hidden and output layers.

e }b: bias, or threshold vector.

¢ ¢(.): the nonlinear function performed by the neuron.

e j=[1: NI]: a neuron in the input layer.

j =[1: NH]: a neuron in the hidden layer.

k=[1: NOJ: a neuron in the output layer.
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Once an input vector is presented to the input layer one can calculate the input to the

hidden layer as follows:
NI
h =b, +Y w,x,. (32)
=1

Each neuron of the hidden layer takes its input h/H and uses it as the argument for a

function and produces an output given by:
y, =¢(h]). 3.3)

Now the inputs to the neurons of the output layer are calculated as:

NH
B =b,+> w,yr. (3.4)

1=l
and consequently, the network output is then given by:

Ve =o(h)). (3.5)

¢ The Error Back-Propagation Learning Algorithm

An output error is defined as the difference between the network output and the desired
output value, that is for the k™ output neuron we have [35, 38],

& =d, — Y- (3.6)

Based on the output error one can calculate the sum of squared errors as:
e=15e2. 3.7
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This is the cost function that is to be minimized during the learning process. The sum-
squared-error £ is a function of all the variables of the network. Using the chain rule one
can calculate the gradient of the error with respect to the weight matrix connecting the

hidden layer to the output layer as foliows:

dc _ Oe¢ e, dy, Ok
ow, Oe, oy, oh? ow,

(3.8)

Computing each term of this expression yields:

Combining the expressions above results in:

oe
ow,,

=—e, 4, (h))y!. (3.9)

The correction Aw, applied to the weight matrix connecting the hidden layer to the

output layer is:

o .
Aw,, = —n——=ne,4,(h))y}'. (3.10)

g
where nis a constant known as the step-size or the learning rate. The equation above can

be rewritten as:
34



Aw, =nd,y; . (.11)

where &, = e, (h7) is the local gradient term. To update the weights connecting the

input layer to the hidden layer we need to repeat the procedure above according to

dc _ oc Oe, dy, ohP Oy, Oh}
ow, de, dy, oh) Ay ohl ow,

"

(3.12)

After calculating each of the terms above, the correction to the weight matrix is written
as:

Aw, =-nd x,. (3.13)
where &, =¢ (h] )Z:: d,w, . In general, the correction term is calculated by:

Aw,, =nod, x, =learning rate x local gradient x input to the layer. (3.14)

e Neuronal Activation Functions

In general the functions ¢(.) of the hidden layer are different from the ones in the output
layer. There are many possible choices for the activation functions used to shape the
weighted input sum and to produce an output. The selection of the activation function
depends on the task of the neuron. Fig. 3.3 shows some activation functions that are
commonly used are further described below [35, 38]:

e Hard Limit Transfer Function: This function sets the neuron output at unity if its

net input reaches some threshold. otherwise the output is zero.
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The Symmetrical Hard Limit: This function sets the neuron output to unity if its
net input reaches a pre-specified threshold, otherwise, the output is set to -1.

The Linear Transfer Function: It passes the neuron's input signal after multiplying
it by some scaling constant (slope) and adding a neuron bias to its output port.
The Saturated linear Transfer Function: The saturated linear transfer function
output is -1 if the input is less than -1 and has an output +1 if the input is larger
than +1. In between the interval [-1, +1] the neuron acts as a linear neuron with
slope=1.

The Log-Sigmoid: This function is used to produce an output that varies from 0 to
+1 as the input varies from -« to +c0. The log-sigmoid is a differentiable function
and that makes it suitable for networks that are trained with error back
propagation algorithm.

The Tan-Sigmoid Function: This function is used to map neuron input in the

interval (-c0,00) to obtain an output varying from -1 to +1

The linear function is normally used in the output layer while in the hidden layer the

sigmoidal class of functions is the preferred choice. If the functions in the hidden and the

output layers are selected to be linear one obtains a LMS network.

The log-sigmoidal function is formally defined as:

_ 1
l+e™’

—00 < X < +0, (3.15)
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Figure 3.3: Commonly used activation functions for a neuron, where o/p denotes

output of the neuron and I/p denotes the input.

The special form of the derivative makes this function very attractive for practical

implementation considerations. A variation to the log-sigmoidal function is the tan-

sigmoidal function that is formally given by:
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l-e™ 2a

-bx

= -a. 3.17
l+e l+e™ (3-17)

y =atanh(bx) =a

The common choices for a and b are a=1.716, and b = 2/3.

The multilayer perceptron network has been proven to be a universal approximator,
implying that it can approximate any continuous multivariate function to any degree of

accuracy provided that enough hidden neurons are selected [60, 61].

As with any steepest-descent gradient algorithm, the error back-propagation algorithm
suffers from slow convergence and high probability of converging to a local minima.
There are ways to improve the algorithm by using adaptive learning rates and momentum

terms as described in [35] .

Other training algorithms have also been developed for multilayer perceptron networks.
Among these the most popular algorithms are the ones that are based on conjugate-

gradient techniques and on Newton's method [35].

3.3.2 Radial Basis Function Networks

Radial basis functions (RBF) were first used in the context of neural networks by

Broomhead and Lowe [62] in 1988. These networks belong to a single layer perceptron

category where the output of the neurons in the hidden layer is expressed as [35, 38]:
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NH

Wz)=D w,d(2) (3.18)

where the argument z has the form:

z=(x—c) R'(x-c)) (3.19)

and where y is the vector denoting the output of the network, x is the input vector to the

network, R is the weighting matrix that depends on a metric selected, and ¢ is the radial

basis function.

By using the Euclidean metric, the argument z is written as:

z= M (3.20)
o,

where ¢, o, denote the "center" and "variance” of the functions of the neurons. For the

network to be a linear function of the free parameters wij, the number of hidden neurons

(p), their position (cj), and the metric R oro, ) have to be constant. Often a constant term,
called bias or threshold, is added to the weighted sum as in Equation (3.18) so that the
function now becomes:

NH
yz)=w, + Zwlqﬁj(z). 3.21)
7=l

Park and Sandberg [63] showed that the RBF networks are suitable for nonparametric
regression and that under certain conditions they are universal approximators. The

conditions are:
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e The hidden layer must contain enough neurons, and

e The function ¢(.) must be continuous, bounded and monotonic in [0, ).
Common choices for ¢(.) are the Gaussian functions of the form:
#(z)=e", (3.22)

and the Cauchy functions of the form:

#(2)=— (3.23)

6 (x)=e (3.24)

and - 1 (3.25)

The parameter o (the spread constant) determines how the basis function selectively
responds to an input. For large values of o the range of input activation of the basis

function is broader. The center ¢ determines where the maximum output will occur.

A Radial Basis Function (RBF) network has the architecture shown in Figure 3.4. When
the input vector x is presented to the network its distance to each of the centers ¢j is
measured and each neuron in the hidden layer will output a value between 0 and 1
according to the proximity of the input vector to the neuron's center. This output is
weighted by the connections between the hidden and output layers to yield the network

output y. Neurons with centers far from the input vector will have output close to zero.
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This small output will have only a small effect on the output neurons. In contrast, neurons
with centers close to the input vector x will output values close to one, and will influence

the final output, y.

y=W*h(dist(x,C))

Figure 3.4: RBF network architecture.

e The Learning Process

RBF network is completely defined by Equations (3.18), (3.21), and (3.22) or (3.23) and
Figure 3.4 is its schematic representation. Each radial basis function defines a hyper-
spherical receptive field. The i* neuron outputs a signal that is close to one for sample
activation vectors x that fall within its receptive field, and smaller values otherwise. The

training of RBF network comprises the following steps [35]:

e Selection of the centers: There are different ways of selecting the centers. The

most commonly used approaches are: (i) to use the input vectors as centers; (ii) to
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randomly choose vectors from the input set as centers; and (iii) to use the K-
means algorithm [64, 65] to cluster the input vectors and select the centers based
on the number of clusters and their variance.

Choice ofo: o can also be chosen in a variety of ways. It is a measure of the
variance of the input set. One way of calculating o is to use the P-nearest

neighbor algorithm according to:
P 2
o, =71)-Z("c/ —o )= (3.26)
k=1

where ¢, is the P-nearest neighbor of o ) and P is determined heuristically.

Calculation of the weights : The output of the network is given by:

y=Wo(x,c,o)=>W = yp" (96" )" (3.27)

The training of the weights are continued so that the error of the network is close to zero

for the training input vectors. The quality and performance of the generalization

capability of the network would then depend on how well the training set represents the

solution space.

3.3.3 Support Vector Machines

Support Vector Machines (SVM) was invented by Vladimir Vapnik [35]. They are a

method for creating functions from a set of labeled training data. The function can be a

classification function (the output is binary) or it can be a general regression function.
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Support Vector Machines, like multilayer perceptrons and radial basis function networks,

are used for pattern classification tasks [35].

The theory of Support Vector Machines (SVM) is based on Statistical Learning Theory
[66, 67]. SVM use linear separating hyper-planes to create a classifier. For the problems
that cannot be linearly separated in the original input space, SVM would non-linearly
transform the original input space into a higher dimensional feature space. In this feature
space it is then possible to find linear optimal separating hyper-planes in the sense of
maximizing the margin of the classifier with respect to training data [35]. Thus, for
classification problems, SVM operate by finding a hyper-surface in the space of possible
inputs. This hyper-surface will attempt to split the positive examples from the negative
examples. The split is chosen to have the largest distance from the hyper-surface to the
nearest of the positive and negative examples. Intuitively, this makes the classification

robust for testing data that is near, but not identical to the training data [35, 67, 68].

° SVM for the Classification Problem

SVM is a pattern recognition technique whose foundations stem from statistical learning
theory. The basic training principle that is used in SVM is to find the optimal linear
hyper-plane such that the expected classification error is minimized.

For classification problem, first let us consider the case of classifying the set of linear
separating samples

(x.3), i=L..l x R, y, e{-L+l}. (3.28)

43



The general form of a linear decision surface function in n-dimensional space is g(x) =
w'x + b, where x is an input vector, w is an adjustable weight vector and b is the bias.
Let wo and bp be the optimum values of the weight vector and bias, respectively.

Correspondingly, the classification optimal hyper-plane is defined by:

wlix+b, =0

and gx)=w.x+b, (3.29)

A set of vectors is said to be optimally separated by the hyper-plane if this set is
separated without error and the minimal distance between the vector x; and the hyper-
plane is maximal. Without loss of generality it is appropriate to consider a canonical
hyper-plane, i.e. to normalize the function g(x). In other words, all samples would satisfy:

wx +b|21 (3.30)

lg(x)| =

Such constrained condition is favorable to simplify the formula developed later. It can be
shown that the margin is 2/}|w,||. A separating hyper-plane in canonical form must then
satisfy the following constraints:

yIWx)+b]21,  i=1.d (3.31)

Hence, the hyper-plane that optimally separates the data is the one that satisfies the above

equation and minimizes:
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d(w) = %wrw (3.32)

The optimization solution of Equation (3.32) under the constraints of Equation (3.31) is

given by the Lagrangian:

Lowb,@) = 07 W)= e (w7 5) + 611 (333)

1=1
where a;'s are the Lagrange multipliers. The Lagrangian L (w, b, @) has to be minimized
with respect to w, b and maximized with respect to a>0. Classical Lagrangian duality
principle enables the primal problem, Equation (3.33), to be transformed to its dual

problem, which is easier to solve. The dual problem is to maximize:

!

0@ =Y a1 Y aayy,@-x) (3.34)

=1 =1 4=l

If the solution to the problem is &, , then:

!
w, = Za,,_,y,x, (3.35)

=1

Because most a,, 's are equal to zero, samples corresponding to non-zero a,; 's are

support vectors. They are often part of all the samples.

According to the support vectors, the optimal classification function is

f(x) =sgn{(w;x)+b,} = Sgn{iaa.,}’, (x/x)+b,} (3.36)

=1
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If the two classes are not linearly separable, the input vectors are then non-linearly
mapped to a higher dimensional feature space by an inner product kernel function K(x,
x;). If the inner product kernel function is used instead of the dot product, the optimal

decision function becomes:

f(x)=sgn{(w,x)+b,} = sgn{Z[:a,,_,y.K (x/x)+b,} (3.37)
=1

More detailed information on support vector machines may be found in [66, 69- 72].

o Classification using SVM

As discussed in the previous section, after support vectors are obtained, the optimal
classification function is determined, which can be applied to data classification. The

detailed steps are as follows:

For the kernel functions with restricted domain, data normalization is required. This
normalization is also advantageous for non-restricted kemels. Therefore, before
classification is performed, the input data needs to be pre-processed first. This
normalization is performed by computing the inner production of the kernel functions.
The classifier is then trained using training samples so that the support vectors required
for classification are obtained. The support vector set is a subset of the training data.

Finally, the performance of the classifier is tested using the test samples.
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For implementation purposes, since one is not aware a priori whether the data is linearly
separable or not, therefore, one needs to introduce an additional cost function associated
with the misclassification of data. This can be accomplished by introducing positive slack
variables , i=I, 2, .., . The generalized optimal separating hyper-plane is then

determined by vector w, which minimizes the function
1 !
d(w,q) =5wrw+C Zé, (3.38)
=1

where C is a value that controls the magnitude of the penalty added to the errors, and
realizes the compromise between the ratio of misclassified samples to the algorithm
complexity. Correspondingly, the constraint in Equation (3.35) is 0 < a; < C. It is
important to note that the parameter C is to be selected by the user experimentally by trail

and error or analytically [72].
3.3.4 Selecting the Proper Network

Neural networks are nonparametric models able to represent any function with arbitrary
accuracy, provided enough neurons are selected. Supervised learning is the preferred
algorithm to train a neural network for function approximation and from the many
existing architectures, feed-forward and radial basis function networks are the most

widely used.

The back-propagation learning algorithm is the most commonly used procedure yielding

usually good generalization capabilities. However, the algorithm generally requires long
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training periods and may possibly converge to local minima. Radial basis function
networks produce, on the other hand, more localized approximation of the mapping
considered and depend linearly on the connection weights. For the SVM approach, the
optimization criterion attempts to maximize the classification margin, that is the distance
from the closest data point to the separating hyper-plane. The location and slope of this
hyper-plane are defined by a group of training points called support vectors. When
choosing between one of the above three approaches one should consider the
characteristics of the task being performed, the available amount of training data, and the

amount of time required to train the network for producing acceptable desired results.

3.4 Neural Network-based Approaches Power System

Problems

Due to a combination of increasing energy consumption and impediments of various
kinds to extension of existing electric transmission networks, the power systems are
operated closer and closer to their limits. This situation requires a significantly less
conservative power system operation and control regime which, in turn, is possible only
by monitoring the system state in much more detailed form than was necessary

previously.

Fortunately, the large quantity of information required can be provided in many cases

through recent advances in telecommunications and computing techniques. There is,
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however, a lack in evaluation techniques required to extract the salient information and to
use it for higher order information processing. Whilst the sheer quantity of available
information is always a problem, this situation is aggravated in emergency situations
when rapid decisions are required. Because of the high dimensionality and nonlinearities
of power systems, its monitoring and control involves several hundred variables.
Nonlinear load demands and dynamic loads are difficult to model. These problems
provide an important motivation to explore novel data processing techniques such as

neural networks.

Different power system problems, where neural network approaches have been
investigated, are documented in the literature [3, 10-35]. Neural networks have the
inherent capacity of modeling functional relationships between input and output data
without the explicit knowledge of an analytical model. Neural networks can easily be
adapted to several data sets in a short amount of time. This feature, aiso called “black-box
approach”, encouraged researchers to apply neural networks to load forecasting where

they were already applied as early as 1975 [73].

In the area of on-line transient stability assessments early work on patiern recognition
techniques inspired research on simple neural network models with supervised learning
[16]. In addition to load forecasting and security assessment, other applications of neural
networks to power systems are also explored such as, control, system identification,

optimization and alarm processing [16, 41].
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3.4.1 Neural Networks for Transmission Line Relaying

As discussed in Chapter 2, one of the most popular transmission line protection principles
for high voltage applications is the distance relaying. A distance relay for the protection
of transmission line is usually designed on the basis of a fixed setting. The relay either
overreaches or underreaches depending on the operating conditions of power system and
location of the fault. Since fault detection and classification is traditionally performed on-
line, new pattern recognition techniques should be developed and implemented that are
quick and flexible. Comprehensive surveys of literature using neural networks for
distance relaying are found in [16, 25]. The uniqueness of the neural networks based
distance protection is that it does not explicitly use impedance information as the basis of
decision making criteria but rather learns it from examples presented to it during the
training process. The neural network operates as a pattern classifier and is able to detect
the changing power system conditions quickly and accurately. Consequently, resulting in

the improvement of performance over conventional digital relays techniques.

Various applications of neural networks were used in the past to improve the recognition

capability of the impedance used in the distance relaying of transmission lines [25].

3.4.2 Network Architectures used for Transmission Line Protection

To employ neural network techniques successfully, some fundamental issues should be

considered. Among these issues is the selection of the network architecture and the

50



learning algorithm, such as the net size, learning step, number of training patterns and
number of iterations. However, almost all the studies in the literature have so far only
employed the back-propagation (BP) neural network structure with supervised learning.
Despite the advantages of back-propagation networks, they have their drawbacks such as
slow learning process, requirement of large training sets, easily getting trapped in local

minima and poor robustness [35].

One other alternative is the use of unsupervised learning. A typical unsupervised learning
commonly used is the self-organizing maps (SOM) developed by Teuvo Kohonen [35,
45]. A SOM network possesses the advantage of fast learning and small training sets.
However, due to the absence of a desired output information, it is not suitable for use by
itself for some decision-making processes. Rather, it is used as a front-end to an output
layer with desired target information through a supervised training process. That is, a
combination of both an unsupervised learning as well as a supervised learning process
integrated together. Combined unsupervised and unsupervised networks have the added
capability to sort out very complex, highly non-linear pattern recognition problems, such
as transmission line fault diagnosis. This type of neural network is insensitive to noise
due to the low dimensional internal representation, thus resulting in improved robustness

[35].

Among the other class of networks that are used for transmission line protection are

radial basis functions (RBF) and counter-propagation (CP) networks {41, 45].
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3.4.3 Fault Diagnosis in Transmission Line Systems

In general, a fault diagnostic system consists of three components: detection, isolation
and identification. Fault detection and isolation are very often referred to in the literature

as fault diagnosis and abbreviated as (FDI) [46, 47, 48].

A comprehensive scheme for fault diagnosis of transmission line systems should

accomplish the following three tasks:

e Fault Detection: To establish and determine if a fault has occurred in the line
or not.
e Fault Classification: To determine what is the type of the fault detected.

e Fault Location: To determine in which zone the faulty line is located.

Accordingly, a neural network or a bank of networks should be designed to carry out
each of the above three tasks for the problem of fault diagnosis in the transmission line

system.

In the next chapter, the above three tasks are accomplished by properly designing and
developing suitable networks. Different neural network architectures are investigated for
these three tasks and comparative study is conducted to determine the advantages and

disadvantages of these solutions.
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Chapter 4

Protection of Power Transmission Line Systems

using Neural Networks
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4.1 Introduction

As discussed in the previous chapter, neural networks have been proposed and used to
protect transmission lines by many researchers [24, 26-28, 30, 34, 36, 45-48]. The
capabilities of neural networks to perform pattern recognition and classification are

employed in this part of the thesis to address the fault diagnosis problem in this area.

This chapter presents a neural network-based approach for developing and implementing
a complete scheme for distance protection of a transmission line system. In order to
perform this goal, the distance protection problem is subdivided into different neural
network models for fault detection, fault identification and fault location corresponding to

different protection zones.

4.2 Modeling the Transmission Line System

A 440 kV transmission line system is used to develop and implement the proposed
architectures and algorithms for this problem. Figure 4.1 shows a one-line diagram of the
system used to train and test the neural networks. The system consists of two generators,
four buses and three transmission lines. The zones of protection are shown in Figure 4.1,
where zonel is 142.4 Km, zone 2 is 195 Km and zone 3 is 225 Km from bus B
respectively. More detailed information regarding the transmission line parameters are
presented in Appendix A. The line is modeled with four IT sections. A typical IT section
is shown in Figure 4.2.
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Figure 4.1: One-line diagram of the system studied.
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Figure 4.2: A typical IT section equivalent model of the transmission line system.

In Figure 4.2, Vs and s are the sending end voltage and current and Vi and /z are the
receiving end voltage and current, respectively. In general, using a I section

representation of a transmission line, the voltage at sending end can be expressed as:

Vi=IxZ+V,
Using I =1,+1, wenow have

Vs = (VRx%Y+1R)Z+VR

or equivalently,
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Vs =(1x%YZ)VR +ZI, 4.1)

The current at the sending end is represented by:

Iy=0L+1
. 1 1 |
or equivalently I =[(1+5YZ)VR +ZIR]5Y+(VR +[1R)5Y
that is,
1., 1
I =(Y+ZY Z)VR+(1+5YZ)1R 4.2)

Equations (4.1) and (4.2) can be rewritten in the following compact matrix form:

[Vs} _ 1 +EZY VA -|:VR:| “3)
Is Y+lZY2 l+lZY I

4 2
The above power system was simulated using the Matlab Power System Block Set. The
parameters and the data corresponding to the system are listed in Appendix A.
The three-phase voltages and currents, V=[V, V, V" and I=[I, I, I.]" are

measured at bus B in Figure 4.1. These signals will be utilized subsequently as inputs to

the proposed neural networks-based schemes. The Matlab Power System Block Set is
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used to generate the data for the 440 kV transmission line system corresponding to both

normal and faulty conditions.

In the subsequent simulation results we consider the following four categories, namely (i)
phase to ground faults, (ii) phase to phase faults, (iii) double-phase to ground faults and
(iv) three-phase faults. The data set required for training the neural networks developed
below is generated from various fault situations considering different fault locations as

shown in details in Appendix B.

For training, validating and generalization purposes more than 300 different fault cases
were generated for the detection task, about 130 cases for the classification problem and

more than 1000 cases for the fault location task.

4.3 Top View of the Proposed Scheme

Although the relay characteristics, in most cases, remain fixed, the trip/no trip decisions
using digital technology-based distance relays have experienced some improvements as
compared to older electromechanical relays. The objectives of this chapter are to design,
test and implement a complete methodology for the problem of transmission line system
fault diagnosis. As a pre-processing step the training and the testing data generated from
the transmission line system are collected. The first step is that of the detection of a fault
situation in the system. Following that, fault classification and fault isolation/ location

(zone 1, 2 or 3) tasks are investigated. As stated before, the contribution of this thesis is
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to propose an integrated methodology by utilizing a bank of neural networks to perform
these tasks. A back-propagation neural network is used for the fault detection while three
neural network architectures are designed for the classification and isolation tasks,
respectively. A comparison between the proposed architectures is also investigated and

presented.

4.3.1 Data Pre-Processing and Feature Extraction

Feature extraction is the process by which one intends to reduce the size of the neural
network and improves its performance [2]. In order to make use of all the relevant
information contained in the waveforms and obtain fast response, instantaneous values of
the voltages and currents could be utilized [21]. On the other hand, this could require a
large neural network size and a large body of training patterns. In fact, due to the
stochastic nature of the time domain waveforms, simply considering a limited window of

the instantaneous signals may not be representative of the fault voltages and currents [1].

In order to convert the instantaneous voltage and current signals to practically constant
values, they were transformed to RMS values. The per unit values are used to scale the
RMS values of the voltages and currents. The use of the per unit scaling is due to the
presence of different nominal values for the voltages and currents measured in volts and
amps. To select a characteristic feature fault and to reduce the training set and, therefore,
the training computation time, the average values of the voltages and currents during the

fault period are used.
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As an illustration, Table 4.1 shows the voltage and current per unit values used as a

training set in the normal condition (no fault) as well as the training set subject to various

fault types occurring at bus C, 150 km from bus B.

Table 4.1: Voltage and current values at bus B.

Normal condition as well as faulty cases occurring at bus C, 150 km from bus B.

Case Input Vector (pu) Fault
No. V, Vo Ve Ia Iv I Type
1 0.6345 | 0.6345 0.6345 0.1345 | 0.1345 | 0.1345 No Fault
2 0.00439 | 0.5404 0.5618 0.09496 | 0.1235 [0.1143 | A to Ground
3 0.5618 |0.00439 0.5404 0.1143 0.09496 | 0.1235 | B to Ground
4 0.5404 ]0.5618 0.00439 ]0.1235 0.1143 |[0.09496 | C to Ground
5 03174 |[0.3171 0.6345 0.09745 | 0.09094 |0.1345 Ato B
6 0.6345 |0.3174 03171 0.1345 }0.09745 |0.1345 Bto C
7 03171 |0.6345 03174 0.09094 [ 0.1345 | 0.09094 CtoA
AtoBto
8 0.00513 | 0.006046 | 0.1527 0.09005 [ 0.1047 |0.05796 Ground
BtoCto
9 0.1527 [0.005126 | 0.00605 | 0.05796 { 0.09005 |0.1047 Ground
CtoAto
10 | 0.00605 | 0.1527 0.00513 | 0.1047 | 0.05796 | 0.09005 Ground
AtoBtoC
11 | 0.00198 | 0.00198 |0.001982 | 0.07625 | 0.07625 | 0.0763 to Ground
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In the above table it should be noted that the voitage of the faulty phase is approximately
zero as expected. It should also be noted that, since the system is considered to be
balanced, the voltages and currents of the faulty phases have the same values when they

experience the same fault type.

4.3.2 Training Data

As indicated in Section 4.3.1, for all the networks considered in this chapter, inputs are
the average per unit RMS values of the voltages and currents of each phase at the

reference point at bus B (refer to Section 4.2.1), and the output is the fault condition.

In order to train all the proposed networks, the input and output data is applied
sequentially. To obtain enough examples for training, different types of faults are
simulated at different fault locations. Considering these factors, 130 different fault cases

for each fault category are used to train the proposed networks.

Furthermore, different locations corresponding to various fault categories are also
considered. In addition, other system parameters associated with the fault are varted

within each simulation, namely

. Fault resistance is varied from 0 Q,0.5Q,0.75Q,1.0Q,5Q,10Q, 25 Q, 50 Q,

75Q1t095 Q.
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) Fault inception angle is varied from 0, 30, 45, 90, 150, 180, 210, 270, 315 to 330

electric degrees on the phase voltage waveform.

In the following sections we consider the design, implementation and testing of all the
proposed neural networks to perform the three objectives of fault detection, classification

and isolation.

4.4 Design of Neural Networks for Fault Detection

In order to design a neural network for addressing the fault detection problem, several
different topologies of MLP (Multi Layer Perceptron) neural networks are studied. The
criteria used to implement and select an appropriate MLP neural network for the problem
of fault detection does take into consideration the factors such as the network size, the

suitable learning rule, and the size of the training data.

4.4.1 Training Procedure and Learning Rule

The back-propagation learning rule is used in perhaps in over 80-90% of practical
applications [48]. However, the standard back-propagation training algorithm is slow,

since it generally requires small learning rates for stable learning process so that changes

in the network weights using the steepest descent algorithm remains small.
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Some techniques to improve the standard back-propagation method such as the addition
of momentum terms and adaptive learning rate as well as alternative methods to the

gradient descent such as Levenber-Marquadt optimization routine can also be used.

Through the application of various improvement techniques to different network
architectures, it was determined that the most suitable training method for the selected
network was the back-propagation method based on the Levenber-Marquadt optimization

routine.

During the training process, different learning rates were also tried out in the hidden and
the output layers. The momentum factor was also included and adjusted to yield the most

suitable results,

4.4.2 Selecting the Right Network Size

Selecting the right structure size of the network reduces not only the training time but
also significantly impacts the generalization and representational capabilities of the
trained network [35]. The number of the hidden layers and neurons in these layers are an
important factor in determining the optimal size and structure of the network. Clearly, the
lower the number of hidden layers and neurons, the smaller the network. However, a
minimum number of neurons are generally needed to represent a given problem which

cannot be determined a priori [35].
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As mentioned earlier, the three phase voltage and current values are used as inputs to the
network. The network has one output to discriminate between the fault and the normal
situations. Figures 4.3 to 4.8 depict the training process performance and the squared sum

error of some of the networks studied.

The networks presented here represent only a sample of those that were investigated and

correspond to the "best" results that were obtained after extensive trail and error

procedure.

RMS error is often used as a criterion to terminate the learning process. Figures 4.4, 4.6,
4.8 and 4.11 illustrate the learning error in terms of the RMS of the network. The time to
reach a pre-specified error target (leamning speed) is an important factor that one has to
consider in the task of network selection. However, it should be pointed out that smaller
RMS values do not necessarily imply a better generalization performance. There is

generally a trade-off between the learning error and the generalization error.

After extensive simulations, it was decided that the desired selected network would have
one hidden layer with four hidden neurons. The selected network is shown in Figure 4.9
and the performance and error plots associated with this architecture are given by Figures

4.10 and 4.11.
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Figure 4.3: Learning process for the BP neural network 6-5-5-1.
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Figure 4.4: Learning process output error for the BP neural network 6-5-5-1.

64



Training-Blue line -Goal-Black line

10- Al T T

107 r—

N
DS ey

10+

2]
77, D W S W VYV S

10+

10

10' R L L . L 1

Eoochs xl04

Figure 4.5: Learning process for the BP neural network 6-2-1.
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Figure 4.6: Learning process output error for the BP neural network 6-2-1.
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Figure 4.8: Learning process output error for the BP neural network 6-3-1.
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Figure 4.10: Learning process for the BP neural network 6-4-1.
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Figure 4.11: Learning process output error for the BP neural network 6-4-1.

4.4.3 Testing (Generalization) of the Network

A test set was created to analyze the performance of the proposed network. A total of 405
fault cases for each category of fault were utilized in the test set. Appendix B includes the

variables considered to form the test set.

The selected network from the previous section was able to recognize and classify
correctly both the normal condition as well as the fault conditions (i.e. 100% recognition

rate) after 4 ms of the occurrence of a fault. Table 4.2 presents the results obtained by this

network.
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Table 4.2: Correct recognition and processing time required for the proposed

BP fault detection neural network. Legend: Ph-Gr (phase to ground), Ph-Ph (phase to
phase), Ph-Ph-Gr (phase to phase to ground) and 3-Ph (3-phase).

Percentage (%) Correct Classification and Recognition Time
Recognition | Ph-Gr Ph-Ph Ph-Ph-Gr 3-Ph
Time faults faults faults faults
2 ms 70.82% | 76.88% 82.14% 82.45%
3 ms 95.20% 98% 97.46% 96.57%
4-5 ms 100% 100% 100% 100%

Concerning the time required by the neural network to classify the presence of a fault or a
normal operating condition, Table 4.2 illustrates that the network yields 100% correct

recognition rate after 4-5 ms. Figure 4.12 depicts the results obtained in Table 4.2.
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Figure 4.12: The performance of the proposed neural network detection structure.
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4.5 Fault Identification (Classification)

When a fault situation is detected, the next step is to identify the type of the detected
fault. This section presents the results for the design and implementation of a neural
network that successfully performs the task of classification of different types of faults

detected.

Neural network-based classifiers for transmission line system faults have been
extensively proposed by a number of investigators [29, 31, 33, 45]. However, almost all
of the studies reported in the literature have so far employed the multilayer perceptron
(MLP) neural network structure with back-propagation (BP) supervised leamning
algorithm. Although (BP) can provide a very compact distributed representation of

complex data sets, it has the following disadvantages:

Slow learning

Need for a large training sets

Getting easily trapped in a local minima and poor robustness

Difficulty in selecting the optimal size of the network.

In the following sections three neural network paradigms are considered. The first is the
back-propagation (BP) algorithm, which is used here as a benchmark. The second
architecture is the radial basis function (RBF) network that is designed, implemented and

tested for the identification problem. The third architecture is the Support Vector
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Machines (SVM) paradigm. The above three approaches are all applied to perform the
fault identification task for the considered transmission line system. A comparison
between the three approaches is also investigated in terms of the attributes such as the
size of the neural networks, the learning speed, and the classification performance and

accuracy.

4.5.1 Back-Propagation Network

The same process that was used in Section 4.4 for the design and development of the
detection neural network is also followed in this section in order to choose the most

suitable BP network as a fault classifier.

The network to be designed here has to have six inputs (the three phase voltages and
currents) and four outputs associated with the four fault categories. The outputs contain
variables whose values are given as either 0 or | corresponding to the three phases and
the ground (that is, A, B, C and G) and can be generalized to represent all the practical

fault categories permutation involving combinations of phases.

The proposed neural networks here should classify the specific phases involved in the

fault scenario. It should be able to distinguish among ten (10) different categories of

faults as illustrated in Table 4.3.
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Table 4.3: The BP classification network truth table.

Fault Network Outputs
Situation A B C G
A-G 1 0 0 1
B-G 0 1 0 1
C-G 0 0 1 1
A-B 1 1 0 0
B-C 0 1 1 0
C-A 1 0 1 0
A-B-G 1 | 0 1
B-C-G 0 l 1 1
C-A-G 1 0 1 1
A-B-C 1 1 1 0

A large number of BP networks with different structures were studied and analyzed in
order to obtain the simplest structure with the fastest training time. The training results
for some of the selected networks, namely structures 6-5-5-4, 6 -2-4, 6-5-4 and 6-7-4,

are shown in Figures 4.13 to 4.20, respectively.

It should be pointed out that the above specific selected networks correspond to only

representative of a large number of networks that were extensively studied.

After an exhaustive search for the most suitable network size, the one with only one
hidden layer and eight hidden neurons was chosen to carry out the classification task. The
proposed network as before has six inputs (the three phase voltages and currents) and

four outputs. This network is illustrated in Figure 4.21.
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Figure 4.16: Learning process output error for the BP neural network 6-2-4.
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Figure 4.20: Learning process output error for the BP neural network 6-7-4.
76



The performance and the errors achieved by the selected network during the training

process are shown in Figures 4.22 and 4.23.
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Figure 4.21: BP Neural network chosen for fault classification.

Generalization Results of the BP Classification Network

The BP neural network for fault classification was tested using the same test set which

was used to test the detection network by taking into account the different fault

conditions given in Appendix B. The results are illustrated in Table 4.4.
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It can be seen from Table 4.4 that the BP classification network was able to discriminate
correctly all the faulty phases involved on an average of 93.15 % within 4 to 18 ms after

the fault has occurred. Figure 4.24 depicts these results.

Table 4.4: Classifications and recognition time for the BP identification neural network.

Percentage (%) Correct Classification and Recognition Time

Recognition | Ph-Gr Ph-Ph Ph-Ph-Gr 3-Ph Average
Time faults faults faults faults
4 ms 20.41% 0% 0% 0% 5.10%
5 ms 57.12% 4.51% 6.25% 0% 16.97%
6 ms 87.23% | 18.62% 16.33% 0% 30.55%
7 ms 92.83% | 36.14% 42.45% 29.12% 50.14%
8 ms 93.41% | 51.22% 65.72% 57.84% 67.05%
9 ms 93.98% | 77.08% 84.19% 81.29% 84.17%
10-18 ms 94.11% | 93.24% 93.07% 92.17% 93.15%
19 ms 94.11% | 93.24% 93.07% 92.17% 93.15%
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Figure 4.24: The classification BP neural network correct answers and processing time.
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4.5.2 RBF Neural Network Fault Classifier

As discussed in Chapter 3, RBF neural networks basically contain three entirely different
layers. The input layer, the output layer and the hidden layer, which is composed of the

kernel nodes whose functions are different from those of a BP network.

Kernel nodes based on radial basis functions compute symmetric functions that are
maximum when the input is near the center of the node. The output nodes contain simple

linear activation functions.

° Learning Process and Network Size

As discussed in Chapter 3, the training process of the RBF network is carried out by an
algorithm that determines the unit centers through adaptive clustering. Further, the widths
of the neurons are determined by a nearest-neighbor method. The algorithm employs the
Delta-rule with sigmoidal function to calculate the weights between the hidden and

output layers. The learning coefficient is set as 0.20 and the learning ratio as 0.50.

The number of the inputs is chosen as six (6) which is the same as that of the BP network
classifier. The number of outputs, as in the BP case, is also selected as 4. In order to find
the optimal structure of the RBF network, different models were studied. In each model
different number of kernel nodes was applied. The number of kernel nodes investigated

varied from 4 to 44.

80



Figures 4.25 to 4.28 illustrate the learning process and convergence rates for a selected
number of the RBF networks studied. These figures depict the convergence rate
corresponding to different number of neurons selected in the hidden layer (44, 40, 36 and
32, respectively). An RBF neural network with 32 kernel nodes was chosen for this
application as it gave the best overall performance with respect to the convergence rate

and the RMS classification error.

It should be pointed out that the networks of fewer than 32 neurons in the hidden layer
gave larger RMS error. In fact, in these cases the error resulted was higher than the

desired value which was 1x10°.

) Generalization Results of the RBF Classification Network

The RBF network that is tested for generalization capabilities of this type of network is
the 6-32-4 structure subject to different fault conditions provided in Appendix B. The

results obtained are illustrated in Table 4.5.

Table 4.5 shows that the RBF fault classification network was able to categorize the
faulty phases and the type of the faults correctly on average of about 95.36% within 3 to
15 ms after the fault has occurred. Figure 4.29 provides a graphical summary of these

results.
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Figure 4.26: Learning process for the RBF neural network 6-40-4.
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Table 4.5: Classification and processing time for the RBF identification neural network.

Percentage (%) Correct Classification and Recognition Time
Recognition Ph-Gr Ph-Ph Ph-Ph-Gr 3-Ph
Time faults faults faults faults
3ms 33.74% | 6.09% 5.64% 0%
4 ms 64.95% | 15.36% 16.12% 5.01%
5ms 90.34% | 22.35% 20.03% 11.25%
6 ms 93.56% | 54.25% 49.72% 39.03%
7 ms 93.87% | 66.38% 65.13% 66.75%
8 ms 94.75% | 84.64% 85.08% 86.31%
9 ms 96.21% | 94.97% 93.88% 93.24%
10-15ms 96.36% | 95.84% 95.34% 93.89%
16 ms 96.36% | 95.84% 95.34% 93.89%
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Figure 4.29: The fault classification of the RBF neural network and its recognition time.
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4.5.3 Fault Classification using Support Vector Machines

In order to implement the SVM for the fault identification task, the Matlab SVM toolbox
(Version 3.00) is used. The SVM toolbox provides routines for support vector
classification and support vector regression problems [74]. The toolbox works with the

Matlab optimization toolbox.

For training, 130 different fault cases were considered for the classification task taking
into account different fault scenarios (fault locations and resistances as discussed in
section 4.3.1). As a pre-processing stage, all the data samples are normalized in order to

make their " energy " equal to unity followed by scaling all data samples to the interval

[-11].

In the simulations, three functions, namely Linear function, Polynomial kernel function
and radial basis kernel function, were used in order to compare the effects of different
kernel functions on the classification results. The explicit mathematical description of
these functions is as follows:

e The linear function: K(x,x,)=k(xx,).
o The polynomial function: K(x,x,)=[(xx,)+1]%, where g is the order of the

polynomial function.

2

x—x| . . .
I——) , where ¢ is the basis function

e The radial basis function: K(x,x,) = exp(— 2
width and x; is its mean (center).
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¢ Classification Generalization Results

The SVM classifier was tested first using the polynomial kernel function with C set equal
to 1 and the order g was changed from 1 to 20,000. These results are shown in Table 4.6.
It is clear that the results become better as g is increased, however the complexity of the
algorithm is also increased and the training time required for convergence is significantly

longer (as represented by the number of support vectors constructed).

Table 4.6: Fault identification results using polynomial kernel function (C=1/).

The
Parameter | Average Percentage (%) Classification Accuracy

q Number Ph-Gr Ph-Ph Ph-Ph-Gr 3-Ph

of SV fauits faults faults faults
1 347 67.33% | 66.25% 67.08% 65.13%
10 221 84.67% | 80.65% 79.85% 81.42%
100 139 90.34% | 88.28% 89.82% 88.51%
1060 103 96.12% | 95.45% 95.64% 94.87%
10000 102 96.23% | 95.56% 95.66% 94.91%
20000 102 96.23% | 95.56% 95.66% 94.91%

Further results obtained from different support vector machines constructed by choosing
different functions are given in Tables 4.7, 4.8 and 4.9. In these three cases, only C was

changed. It should be noted that as a higher error penalty (C being larger) is imposed, the
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is also improved.

number of support vectors is correspondingly reduced and the classification performance

Table 4.7: Comparative results for using linear kernel function (k=1).

The
Parameter | Average Percentage (%) Classification Accuracy

C Number | Ph-Gr | Ph-Ph | Ph-Ph-Gr | 3-Ph

of SV faults faults faults faults
1 347 65.12% | 62.51% 66.02% 60.30%
10 281 78.33% | 75.25% 77.26% 69.54%
100 193 88.45% | 89.32% 87.63% 88.12%
1000 143 93.32% | 92.25% 92.97% 90.26%
10000 109 96.98% | 95.74% 95.13% 94.55%
20000 109 96.98% | 95.74% 95.13% 94.55%

Table 4.8: Comparative results for using polynomial kernel function (g=2).

The
Parameter | Average Percentage (%) Classification Accuracy

C Number | Ph-Gr | Ph-Ph | Ph-Pb-Gr | 3-Ph

of SV faults faults faults faults
| 221 83.24% | 81.22% 80.32% 78.94%
10 163 88.92% | 86.32% 88.12% 86.23%
100 118 94.71% | 94.00% 94.21% 91.65%
1000 101 96.94% | 95.98% 95.88% 95.64%
10000 101 96.94% | 95.98% 95.88% 95.64%
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Table 4.9: Comparative results for using radial basis kernel function (6=1).

The
Parameter | Average Percentage (%) Classification Accuracy

C Number | Ph-Gr | Ph-Ph | Ph-Ph-Gr | 3-Ph

of SV faults faults faults faults
1 313 79.13% | 78.12% 77.24% 77.83%
10 215 82.13% | 81.52% 83.15% 83.12%
100 143 91.61% | 90.84% 90.42% 89.55%
1000 104 96.11% | 9591% 95.74% 94.76%
10000 104 96.11% | 95.91% 95.74% 94.76%

The above results show clearly that the polynomial kernel classifier yields the best

performance with an average rate of 96.1% correct classification.

Polynomial Kernel Function

"%" Accuracy

Average# of SV Parameter C

Figure 4.30: SVM with polynomial kernel function to classify faults.
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4.5.4 Comparison of the Performance of the Proposed Three Classifiers

A classifier can be evaluated by considering many factors and metrics. Among these are
misclassification rate, training time, computation time, adaptation and robustness
performance, and real-time implementation requirements. In this section, emphasis is
placed on a comparison of the performance of the three considered neural network
classifiers in terms of the size of the neural network, the learning process and the

classification accuracy.

e Neural Network Size

As discussed in the previous sections, the number of the inputs to the three network
classifiers is 6 and the number of outputs is 4. In the BP network only one hidden layer
with 8 nodes was used and found to be quite adequate for this particular application. The
RBF neural network with 32 Kemel nodes performed very well. For the SVM network,
the parameter C characterizes the complexity of the network as reflected in the number of
support vectors that is about 101. Basing on the above results, it is concluded that the BP

network has the least complexity in its structure as compared to the others.

o Learning Process

The learning algorithm used with the BP network was the back-propagation rule based on

the Levenber-Marquadt optimization technique. The Levenber-Marquadt method is a
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single-shot method which attempts to find the local fit-statistic minimum nearest to the
starting point. Its principal advantage is that it uses information about the first and second
order derivatives of the fit-statistic as a function of the thawed parameter values to guess
the location of the fit-statistic minimum. This method works quite well (and fast) if the
statistic surface is well-behaved. Its principal disadvantage is that there is no guarantee it
will find the global fit-statistic minimum [48]. The Hyperbolic tangent transfer function
was used due to the fact that it has better convergence performance as compared to the
sigmoid function [45]. During the training process the learning parameters were adjusted
to obtain the best performance. For instance, the learning factor, which controls the rate
of convergence and speed, was chosen to be 0.5 at the beginning of the training process
and was gradually reduced to 0.01. The momentum factor, which is normally added to
stabilize the training and avoid the local minima, was chosen at 0.45 experimentally

through a number of trails and errors.

Three steps were conducted to train the RBF network. First, the adaptive clustering
algorithm determined the unit centers. The widths were determined using a nearest-
neighbor method. Finally, the other network parameters were chosen by trail and error to

yield the best performance. The learning coefficient was set to 0.2.

The statistical learning theory is the basis for the SVM to determine the optimal linear
separating hyperplanes and to minimize the classification error. Three functions were
investigated. The classifier was tested with the different functions and with different

values of the parameters.
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¢ Fault Type Classification Rates

Table 4.10 summarizes the correct classification rates for the generalization cases
corresponding to the four types of fault. It can be observed that the error rates vary with
the type of the fault. Clearly, the SVM offers the best performance among the three
networks. It can also be noted that the correct classification rate for the three phase faults

is lower than that of the other three fault types.

Table 4.10: Summary of the results for the three networks for fault classification.

Fault Type % Correct Classification (Average)
BP RBF SVM
Phase to Ground 94.11% 96.36% 96.94%
Phase to Phase 93.24% 95.84% 95.98%
Two Phase to Ground 93.07% 95.34% 95.88%
Three Phase 92.17% 93.89% 95.64%
Average 93.15% 95.36% 96.11%

4.6 Fault Isolation/ Location (Identifying the Faulty Zone)

Following the detection and classification of the faults, the task of fault isolation/ location
is performed. In other words, one has to determine the physical location of the fault. As
mentioned in Chapters 1 and 2, the reach for protection zones 1, 2 and 3 are set to 95%,

130% and 150% of the protected transmission line to identify the zones 1, 2 and 3,

respectively.
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The BP, RBF and SVM architectures are designed and applied to handle the fault
location task. The networks are provided with the same number of inputs as in the
previous task of fault classification (that is, the three phase voltages and currents) and are
now assigned with three outputs corresponding to the three fault zones/ locations (Z1, Z2
and Z3). Different structures for the above three network paradigms were studied as in

the previous section on fault classification.

4.6.1 Back-Propagation Neural Network for Fault Location

It is found experimentally through trail and error that a BP network with two hidden
layers provides the best training performance. The first hidden layer has 48 neurons and
the second hidden layer has 44 neurons. The network is expected to identify the location
of the fault by classifying the identified fault into one of the three fault zones, namely Z1,

Z2 and Z3. The desired truth table for the network training is shown in Table 4.11.

Table 4.11: The isolation network desired response.

Fault Network Output
Location Z1 72 3
Zone 1 1 0 0
Zone 2 0 0
Zone 3 0 0 1

) The BP Isolation Network Results

The BP network was tested using the same test set that was used previously

corresponding to different fault conditions as shown in Appendix B. As mentioned
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before, a total of 405 different fault cases for each type of fault were utilized in the test

set. The results are illustrated in Table 4.12.

Table 4.12 shows that the fault isolation BP network is capable of determining the faulty

zones correctly on an average of about 92.44 %. It can also be noted that the recognition

time required by the network is 18 ms after the occurrence of the fault in order to reach

the maximum possible correct recognition rate. These results are also shown in Figure

431.
Table 4.12: Correct isolation and recognition time for the
fault isolation BP neural network.
Percentage (%) Correct Isolation and Recognition Time
Recognition Ph-Gr faults Ph-Ph fauits Ph-Ph-Gr faults 3-Ph fauits

Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone

Time

1 2 3 H 2 3 1 2 3 1 2 3

8ms 08% | 00% | 00% | 00% | 00% | 00% | 06% | 00% | 00% | 0.0% | 00% | 0.0%
9ms 61% | 58% | 37% | 49% | 46% | 41% | 88% |532% | 46% | 00% | 00% | 0.0%
10ms 23% | 182% | 169% | 182% | 18.0% | 16.4% | 17.3% | 168% | 152% | 9.0% | 54% | 4.0%
11 ms 393% | 39.0% | 38.2% | 323% | 31.2% | 30.0% | 44.8% | 443% | 44.1% | 20.0% | 18.9% | 15.7%
12ms 62.9% | 62.5% | 61.4% | 53.1% | 52.2% | 51.4% | 56.0% | 553% | 546% | 32.4% | 32.1% | 31.1%
13ms 75.0% | 74.8% | 733% | 75.0% | 74.2% | 72.9% | 71.9% | 713% | 70.4% | 66.1% | 65.8% | 65.2%
14 ms 86.9% | 86.1% | 85.5% | 87.9% | 87.0% | 86.5% | 86.0% | 857% | 852% | 78.9% | 78.7% | 77.0%
15 ms 93.1% | 93.0% | 92.5% | 904% | 90.1% | 89.8% | 90.8% | 90.0% | 89.9% | 88.9% | 88.2% | 87.9%
16-18 ms 93.8% | 93.5% | 93.3% [ 92.8% | 92.0% | 91.2% | 92.0% | 914% | 91.9% | 92.7% | 92.4% | 92.2%
19 ms 938% | 93.5% | 93.3% | 928% | 92.0% | 91.2% | 92.0% | 914% | 919% | 92.7% | 92.4% | 92.2%
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Figure 4.31: The fault location BP NN correct isolation and processing time.

4.6.2 RBF Network for Fault Location
After extensive trails and errors a 6-44-3 RBF network structure was selected. The
network was tested on different fault conditions as provided in Appendix B. These results

are given in Table 4.13 and Figure 4.32.

The proposed network is capable of isolating the faulty zones correctly on an average of

about 92.46% within 9-17 ms after the occurrence of the fault.
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Table 4.13: Correct isolation and recognition time for the RBF neural network.

Percentage (%) Correct Isolation and Recognition Time

Recognition Ph-Gr fauits Ph-Ph faults Ph-Ph-Gr faults 3-Ph faults
Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone
Time
1 2 3 1 2 3 1 b 3 1 2 3
9ms 21% [10% [03% [22% [10% [05% |19% |[1.1% [07% |09% |05% | 03%

10 ms 232% | 21.1% | 194% | 20.6% | 19.1% | 18.8% | 23.7% | 22.4% | 21.9% [ 15.1% | 11.0% | 9.2%

1ims 44.1% | 40.2% | 398% | 36.1% | 35.6% | 32.3% | 45.1% | 44.7% | 39.9% | 202% | 20.1% | 19.0%
I12ms 66.0% | 66.0% | 61.7% | 62.1% | 60.6% | 57.6% | 60.3% | 59.6% | 58.8% | 33.8% | 33.7% | 32.1%
13ms 86.8% | 86.0% | 799% | 724% | 712% | 702% | 69.1% | 68.1% | 67.7% | 52.1% | 50.7% | 47.9%
14 ms 91.5% | 90.2% | 89.7% | 84.0% | 82.8% | 80.8% | 85.5% | 85.1% | 84.0% | 66.1% } 65.1% | 65.0%
ISms 94.1% | 929% | 92.8% | 89.1% | 88.6% | 87.1% | 89.7% | 89.0% | 882% | 73.9% | 73.7% | 72.1%

16-17 ms 950% | 94.1% | 93.5% | 93.1% | 92.2% | 91.7% | 93.0% | 92.1% | 91.3% | 91.7% | 91.2% | 90.5%

18 ms 950% | 94.1% | 93.5% | 93.1% | 92.2% | 91.7% | 93.0% | 92.1% | 91.3% | 91.7% | 91.2% | 90.5%
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Figure 4.32: The fault isolation RBF neural network correct rates and recognition time.
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4.6.3 Fault Location using Support Vector Machines

Using polynomial kernel function, many networks were tested and finally the SVM's

structure represented by Table 4.14 is chosen.

In this network, only the parameter C was changed. As expected from previous results the

higher the error penalty term (C is larger), the fewer the number of support vectors and

correspondingly the more accurate the results.

Table 4.14: Results of using polynomial kernel function SVM for fault location.

Percentage (%) Correct Isolation

The
C Ph-Gr Ph-Ph Ph-Ph-Gr 3-Ph
Average
faults faults faults fauits
Number
Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone | Zone
of SV 1 2 3 1 2 3 1 2 3 1 2 3
1 346 809% | 80.1% | 80.0% | 79.7% | 79.1% | 780% | 77.1% | 769% | 76.6% | 79.0% | 78.9% | 78.3%
10 263 86.8% | 86.2% | 856% | 86.1% | 85.6% | 854% | 839% | 83.5% | 822% | 85.7% | 85.1% | 84.3%
100 174 925% | 92.4% | 92.1% | 91.9% | 91.4% | 90.5% | 91.0% | 90.6% | 89.7% | 91.9% | 91.1% | 91.0%
1000 121 959% | 952% | 94.7% | 95.1% { 949% | 94.2% | 950% | 94.7% | 94.3% | 95.1% | 94.6% | 94.9%
10000 121 959% | 952% | 94.7% | 95.1% | 949% | 942% | 950% | 94.7% | 94.3% | 95.1% | 94.6% | 94.9%
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The above table shows that the polynomial kemmel SVM's network identifies the faulty

zones with an average of 94.86% correct classification rate.

4.6.4 Comparison between the Results of the Three Architectures used for the

Fault Location

As in the classification task in section 4.5.4, each neural network architecture proposed in
this section for fault isolation is now compared to the others by considering several
metrics and factors. The three network architectures are compared by taking into account

the of size of the network, the learning process and the classification accuracy.

¢ Neural Network Size

As in the previous cases, each of the three networks has 6 inputs and 4 outputs. In the BP
network two hidden layers are employed with the first layer having 48 nodes and the
second layer having 44 nodes. The RBF neural network with 44 Kernel nodes provides
the best performance. For the SVM network, the parameter C characterizes the
complexity of the network. Setting the parameter C to 1000 reduces the number of
support vectors to 121. Consequently, in view of the above obtained results, it can be

concluded that the RBF network has the smallest size when compared to the others.
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Learning Process

As in the classification case, the back-propagation rule was used to train the BP network
for the fault isolation. The learning factor was chosen to be 0.6 at the beginning of the
training and was gradually reduced to 0.05 to control the training speed and convergence
rate. The momentum factor, which is normally added to stabilize the training and avoid

the local minima, was set at 0.4 after a number of trails and errors.

For the RBF network, the learning coefficient was set to 0.25 while the other network

parameters were adjusted to yield the best performance.

For the fault isolation SVM architecture, as in the case of the fault classification, three
functions were investigated. The network was tested with the different functions and with

different values of the parameters. The polynomial kernel function was chosen.

e Correct Isolation Rates

The results of the three approaches, as far as isolation rates are concerned, are shown in
Table 4.15. The table demonstrates the average of correct isolations percentage rate

obtained by each network for each type of fault.

From Table 4.15 it can be concluded that the SVM again gives the best performance

among the three networks for the task of fault location.
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Table 4.15: Summary of the results of the three approaches used for fault location.

Fault % Correct Isolation (Average)

Type BP RBF SVM
Phase to Ground 93.54% 94.21% 95.23%
Phase to Phase 92.02% 92.32% 94.71%
Two Phase to Ground 91.78% 92.14% 94.65%
Three Phase 92.42% 91.17% 94.86%
Average 92.44% 92.46% 94.86%

4.7 Overall Discussion of the Results

The results obtained in the previous sections demonstrate that the overall performance of
the proposed neural network architectures was highly satisfactory as far as speed and

accuracy of the network models are considered.

It should be emphasized that a lengthy process was involved in training and
generalization of these networks until satisfactory performance was obtained. This, of
course, was a time consuming process. It should also be pointed out that the proposed
networks estimated the expected response for the patterns tested corresponding to the

changes in the operational conditions of the system as indicated in Appendix B.
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For the fault detection objective, the network outputs converged to the correct class after
5 ms of the occurrence of the fault. As shown in Section 4.4, the proposed network

recognized the correct scenario with 100% recognition rate.

The classification task was performed using the BP, RBF and the SVM architectures. The
SVM paradigm yielded the best results as compared to the structures as shown in Section

4.5.

Finally, considering the problem of three protection zones, the results obtained
demonstrate that the three proposed approaches yield a reliable identification of the
location of the faults corresponding to all types of faults. As in the previous problem, the
SVM approach resulted in the best candidate compared to the other networks as

presented in Section 4.6.
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Chapter 5

Conclusion and Further Work
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5.1 Conclusions

This thesis has empirically investigated the use of three neural network architectures as
an alternative method for detection, fault classification and isolation of faults in a
transmission line system. The three approaches use phase voltage and phase current RMS
values as inputs. This work took into consideration single phase to ground faults, double

phase faults, double phase to ground faults and three phase faults.

The neural networks concerned in this thesis are: back-propagation neural network (BP),
radial basis neural network (RBF) and support vector machines network (SVM). These
three networks were used to simulate a comprehensive protection scheme from detection
to isolation stages for a transmission line system. This work also presents a comparison
study of the three neural network approaches for fault classification (fault type

identification) and isolation (fault location zones).

The results obtained demonstrate that in general the performance of the proposed
different neural network structures was highly satisfactory. As further illustrated, the
support vector machines, and the radial basis function paradigms yield the best
classification/ recognition error rates compared to the back-propagation network. Over
all, the support vector machines network, which is employed in this area for the first time
in the literature, is shown to be the best candidate for the classification and isolation of

faults while the back-propagation yields a very high performance for the fault detection.

102



To simulate the power transmission system and the different proposed neural network
structures used in the study, MATLAB (Version 6.1) with Power System Block Set

(Version 2.1), Neural Network Toolbox (Version 5.0) and SVM Toolbox (Version 3.00)

were employed.

The following general conclusions can be drawn from this study:

e Neural networks do indeed provide a reliable and an attractive alternative
approach for the development of an ideal protection relaying system for the
modern complex power transmission systems. The design of a power transmission
system protection can be treated as a problem of learning machine pattern
classification.

e It is important to investigate various neural network structures and learning
algorithms before one selects a particular structure for a specific application. A
trade-off between the off-line training and real-time implementation factors
should be considered. In the case of transmission line system protection, the

accuracy and classification/ recognition rates should be the first priority.

5.2 Future Work

As a further work it would be quite useful to generate a complete and integrated
algorithm so as to convert all the neural networks proposed for the three tasks of fault

detection, classification and location into a single program code. This algorithm would
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interface the three networks in a sequential manner so that the process starting with fault
detection network to zone protection is fully automated. Consequently, when a faulit is
detected the last RMS voltage and current values are transferred to the fault classification

network and after classifying the fault type, data are directed to the location network.

Another recommendation for future work is to implement the proposed networks as part
of a real-time control scheme for the protection of power transmission systems and to

verify the practical implications of the online realistic factors.

It is worth stating that this work concentrated on the performance of the proposed three
network approaches as applied to fault detection, classification and location. To evaluate
the practicality of the proposed networks, a number of realistic factors such as field data

test and hardware implementation issues should be taken into consideration.

This work has shown that neural networks utilized effectively as a tool can facilitate and

introduce more new dimensions in the problem domain of relaying and distance

protection of power transmission line systems.
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Appendix A:

Power Transmission Line System Data

Bus Phase Voltage:

Vrms =311 KV

Transmission Line 1:

Line length: 80 km R=221Q L=0.0936 H

Transmission Line 2:

Line length: 150 Km R=443Q L=0.1755H

Transmission Line 3:

Line length: 100 Km R=3225Q L=0.117H

Generation Units:

E\=1.0 L0°

E»=0.95 £45°

Spase=500 MVA (Base Power).

Viase=350 KV (Base Voltage).

Z,r=0.1 (E; Impedance Ratio).

Zr=0.1 (E; Impedance Ratio).
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C =19.08 uF

C =35.775 uF

C =23.85 uF



Appendix B:

Variables Considered for the Test Set:

Fault Locations (km):

94, 112, 122, 133, 142, 153, 162, 173, 182, 193, 202, 213, 222, 227, 233, 242, 248, 252,

262,273,277, 283, 288, 292, 297, 303, 313, 312, 316, 319.

Fault Resistance (ohm):

e Phase to Ground: 30, 60, 90.

e Phase to Phase :0.3,0.5,0.6,0.9.
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