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ABSTRACT

Performance of Serial Concatenated Convolutional Codes
with MSK over IST Wireless Channels

Le Feng

Serial concatenated convolutional code (SCCC) with minimum shift keying
(MSK) modulation technique over AWGN channel and ISI channel in wireless com-
munication systems are investigated and analyzed. Iterative log-MAP (Maximum
A Posteriori Probability) decoding algorithm is applied. The design criteria for se-
rial concatenated codes are given. For AWGN channel, the simulation results show
SCCC with MSK is an alternative to turbo codes and the performance is supcrior
at high SNR. The types of the interleaver, the interleaver size, the number of iter-
ations and different algorithms that influence the performance are investigated and
simulated. For intersymbol interference (ISI) channel, which is caused by multipath,
limited bandwidth and motion in wireless communication systems, zero-forcing and
least mean square equalization algorithms are used to compensate for the effect
of ISL. It is shown that least mean square algorithm has better performance than

zero-forcing algorithm.
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Chapter 1

Introduction

Digital communication systems play an irreplaceable role in the military, government
and our daily life. Digital communication is simply the practice of exchanging
information using finite sets of signals that are in the form of electrical waveforms
or electro-magnetic fields. Figure 1.1 illustrates the functional diagram and the basic
elements of a communication system. The information source generates messages
(words, code symbols, etc.) bearing information to be transmitted. The source
encoder is designed to convert the source output sequence into a sequence of binary
digits with minimum redundancy. The purpose of the channel encoder is to minimize
transmission errors caused by the channel by adding redundancy to the information
sequence. The digital modulator maps the encoded digital sequences into a train
of analog waveforms suitable for transmission. Channel examples are wire lines,
optical fiber cables, microwave radio links, magnetic recording media, etc. At the
receiving end, the digital demodulator generates a binary or analog sequence at
its output as the best estimates of the modulated sequence. The channel decoder
makes an estimate of the transmitted message based on the encoding rule and the

characteristics of the channel. The source decoder transforms the estimated sequence



from the channel decoder into an estimate of the source output and delivers it to

the information sink{1][2][3].

Information ‘Charnet - Dx_ml

Source ncoder:: Modu]atorf

Channel
(storage
medium)

Information Source - vainall j'
Sink Decoder Decoder Demo or

Figure 1.1: General model of a digital communication system

Increasing demand for higher data rates through efficient and reliable digital
data transmission and storage systems has motivated the development of novel com-
munication technology and information services. More and more research has been
done on every functional block. Among these functional blocks, channel coding and
modulation techniques for wireless communication systems are the concern of this

thesis.

1.1 Channel Coding Background

The main challenge of communication systems is to recover the original informa-
tion at the receiver as reliably as possible. In 1948, Shannon demonstrated in his
landmark paper [4] that by proper encoding of the information, errors caused by
a noisy channel or storage medium can be reduced to any desired level if the data
transmission rate r, (in bits/sec) from the source encoder is smaller than the channel

capacity C'. The concept of channel capacity C is defined as the maximum rate at
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which information can be transmitted over a noisy channel. For an Additive White
Gaussian Noise (AWGN) channel, the capacity is given by the Shannon-Hartley for-
mula: C = Blogy(1 + 2) bits/sec, where B is the svstem bandwidth and %— denotes
the signal-to-noise ratio (SNR) [1]. This formula shows that noise sets a limit on the
data rate not on the error probability. If the data rate r, > ' , 1t is not possible to
design a code that can achieve an arbitrarily small error probability. Therefore, the
primary objective of error control coding is to maximize the reliability of transmis-
sion within the constraints of signal power, system bandwidth and complexity of the
implementation. A great deal of effort has been devoted to the problem of devising

efficient encoding and decoding methods for error control in a noisy environment

[11{3].

Block codes and convolutional codes are two different types of codes most commonly
used today. The encoder of a block code is memory-less with implementation of
a combinational logic circuit, while the encoder of a convolutional code contains
memory which can be implemented by a sequential logic circuit. In the class of
block codes, Hamming code [5] and Golay code [6] are single-error-correcting and
multi-error-correcting perfect codes, respectively and they have played an important
role in coding history. Binary BCH codes (discovered by Hocquenghem in 1959
[7] and independently by Bose and Chaudhuri in 1960 [8]) and non-binary BCH
codes, Reed-Solomon (RS) codes (introduced by Reed and Solomon in 1960 [9]) are
powerful and widely used random error-correcting cyclic codes (subclass of block
codes). Block codes are widely used for error control in computer main,/control
memories and data storage systems, such as magnetic drums, photo-digital storage
systems, magnetic bubble memories. Convolutional codes were first introduced by
Elias in 1955 [10] as an alternative to the block codes. Convolutional codes with

Viterbi decoding have found many applications in space and satellite communication

[V



systems, cellular mobile, digital video broadcasting, etc [1][2][3]. In 1982, another
pioneering work by Ungerboeck [11] introduced trellis-coded modulation (TCM). It
has become an effective scheme of combining coding and modulation techniques for
bandlimited channels. By using the TCM approach, significant coding gain can be

achieved without bandwidth expansion [3].

1.2 Parallel Concatenated Codes

The introduction of digital mobile telephony and wireless data communications has
made lower transmission power and higher network capacity necessary. Hence the
use of more advanced channel codes has become essential and highly demanded
so that the system can provide both improved performance and better bandwidth
efficiency. Noise and finite bandwidth are the two major limitations of the real
channel which influence the design of channel coding and modulation schemes of the
system. A recent landmark development is Turbo Error Control Coding invented by
Berrou, Glavieux and Thitimajshima in 1993 [12]. The performance of Turbo code,
in terms of Bit Error Rate (BER), is very close to Shannon’s limit [12][13]. (Low
Density Parity Check (LDPC) Codes invented by R.G.Gallager [14] in 1962, and
rediscovered by D.J.C.Mackay have been shown to have a performance better than
that of Turbo Codes with lower complexity. However, these codes are not subject

of this thesis).

The discovery of turbo codes is one of the most significant breakthroughs in the field
of channel coding since they offer near capacity performance in power-limited chan-
nels such as deep space, satellite and wireless channels. A large amount of research
and effort have been expended on how to further improve the performance of turbo

code and to apply turbo codes in current communication systems so as to improve



system performance. NASA’s next generation deep space transponder will utilize
turbo codes [15]. Another application is 3rd generation of wideband code division
multiple access (W-CDMA) cellular mobile systems [16] where turbo codes have
been recommended for both forward and reverse supplemental channels. Moreover
turbo codes have been accepted by ETSI as the standard for digital video broad-
casting (DVB). For 3rd Generation Partnership Project ( 3GPP) and INMARSAT’s

new mobile multimedia service, turbo codes are proposed to be used [1].

Turbo codes, originally suggested by Berrou et al. [13], consist of a parallel concate-
nation of two rate 1/2 recursive systematic convolutional (RSC) encoders with an
interleaver between them. The first encoder receives an original copy of the input
sequence, while the second one receives a permuted version of the Input sequence.
Thus turbo codes are also referred to as Parallel Concatenated Convolutional Codes
(PCCC). The interleaver will do the permutation of the input sequence. The turbo
decoder consists of the serial concatenation of two decoders separated by an inter-
leaver. The decoding algorithm is based on either a Mazimum A Posterior probabil-
ity (MAP) algorithm or a Soft Output Viterbi Algorithm (SOVA). Iterative decoding
process instead of maximum likelihood (ML) trellis decoding gives near-ML perfor-
mance with reasonable complexity [1]. It has been shown by Berrou et al. in [3][12]
that turbo coding could achieve a BER lower than 10~3 at Ey/Ng = 0.7dB with
code rate of 1/2 which means 0.7 dB from Shannon’s limit. The concept of turbo

codes has been extended to block codes in [17].

1.3 Serial Concatenated Codes

Shortly after the introduction of turbo codes, Serially Concatenated Convolutional

(Block) Codes (SCCC or SCBC) were found to be appropriate for iterative decocing.



As an alternative to parallel concatenated codes, Benedetto et al. have demonstrated
in that the interleaver gain can be made significantly higher than that of turbo
codes and lower changes of slope in the bit error probability curves than turbo
codes. They also showed that low-complexity iterative decoding algorithm vields
performance close to the Shannon limit (0.76 dB from Shannon capacity limit) [18].
A d4-state encoder with overall code rate 1 /3 SCCC is one of the two candidates for
the 3GPP. The inner code is a rate 1 /2 RSC code with generator matrix G( D) =
[ 1 % ] The outer code is a rate 2/3 code obtained by puncturing every

other parity-check bit of a rate 1/2 RSC code. The generator matrix for the outer

code is the same as for the inner code f1].

A serial concatenated code consists of the cascade of an outer encoder, an interleaver
permuting the outer codewords and an inner encoder whose input words are the
permuted outer codewords. Iterative MAP or SOVA algorithm can also be applied to
the serial concatenated codes. On the other hand, in many communication systems,
such as satellite and mobile communication systems, non-linear power amplifiers that
require a low peak-to-average power ratio for the modulated signal are emploved.
Continuous Phase Modulation (CPM ) is a constant envelope modulation technique
and thus a good choice for such systems. Bandwidth efficiency can be achieved by

combining the serial concatenated codes with CPM modulation.

1.4 Thesis Qutline

In this thesis, the focus is on investigating the performance of SCCC with different

modulation schemes over various types of channels.



In Chapter 2, the fundamentals of serial concatenated codes are explained. Iterative
log-MAP and Max-log-MAP decoding algorithms for serial concatenated convolu-
tional codes are studied in detail. Analysis and design guidelines for SCCC are
presented. For bandwidth efficient transmission using M-ary modulation technique,
a converting algorithm is applied for the first time in the demodulation of SCCC
with M-ary PSK modulation. The simulation result shows that the converting al-
gorithm is a good trade-off between the computational complexity and the BER

performance.

In Chapter 3, the performance of serial concatenated convolutional code with Min-
imum Shift Keying (MSK) over AWGN channel is investigated and analyvzed. It-
erative log-MAP decoding for the outer and the inner decoder is studied in detail.
The performance comparison of SCCC with MSK modulation and Turbo convo-
lutional codes with BPSK modulation reveals that SCCC with MSK outperforms
turbo code at high SNR. Factors that influence the performance such as interleaver

type, number of iterations and decoding algorithms are evaluated and analyzed.

The performance of decoding SCCC with MSK over ISI channel is also studied.
IST channel is a commonly encountered channel model in wireline, radio, satellite
and mobile communication systems and it degrades the performance significantly.
Considering the complexity of decoding SCCC with MSK over ISI channel, equalizers
using Least Mean Square Error (LMSE) and Zero-forcing algorithms to compensate

for the distortion caused by ISI channel are deployed in Chapter 4.

In Chapter 3, conclusions are made and directions for future work are sucgested.
o0
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Chapter 2

Serial Concatenated Convolutional

Code

In this chapter, we first give a brief introduction of the turbo code, followed by
the introduction of the component encoder, interleaver and design considerations
of serial concatenated convolutional code. Second, the general iterative decoding
algorithm of SCCC is studied in more detail. Finally, the converting algorithm
of transforming the probability density of non-binary symbol to the probability
density of binary symbol. which is applied in SCCC with M-ary PSK modulation is

presented.

2.1 Introduction

It is well known that there always exists a trade-off between the coding gain and
system complexity. G.D.Forney proposed the scheme of serial concatenated codes
with two levels of coding. an inner and an outer code, linked by an interleaver
[18}{19]. The initial scheme had a short convolutional code as the inner code and

a long high-rate low redundancy nonbinary Reed-Solomon code as the outer code.
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The decoding scheme would be simple maximum-likelihood decoding of the inner
code and a powerful algebraic error-correction algorithm for the outer code using
reliability information from the inner decoder. This approach has evolved as a
standard for those applications where very high coding gains are needed such as
space and deep-space applications (18]. The primary reason for using a concatenated
code is to achieve a low error rate with an overall decoding complexity lower than
that required for a single code of the corresponding performance. The relatively
low complexity is obtained by decoding each component code separately [20]. Since
turbo code is very popular and has been applied in many systems, let us discuss

turbo code in some detail first and then introduce serial concatenated code.

2.1.1 Turbo Code

L
> 21
=
s r
- 2 u MAP T
Rsc |Ccl] &% r ,? L Decoder |
Encoder1| gg Changel g
”< g x Le
Y 12
| Rsc {2 | Wl vap
Encoder 2 . Decoder 2 L21
2

H-l

Decision | _~ .

Device

Figure 2.1: Block diagram of encoder and iterative decoder for turbo code



Figure 2.1 illustrates the block diagram of the encoder and the iterative decoder of
a parallel concatenated convolutional code, i.e., turbo code. Taking the advantage
of the classical concatenated coding scheme, the main ingredients that formed the
basis of the invention of turbo codes and serial concatenated codes are two or more

constituent codes (CCs) and an interleaver (or interleavers).

For the turbo codes, the same input information will be encoded twice but in a
different order. The two constituent encoders are arranged in a parallel way and
can be the same or different. The original design scheme [12] was formed by two
identical recursive systematic convolutional (RSC) encoders separated bv a non-
uniform interleaver. The first component encoder operates on the input sequence
p directly. Since the two encoders are systematic ones, the two outputs of the
first encoder will be the information y and the parity check sequence cl. Then the
information sequence ; goes to the interleaver to generate a “scrambled” information
sequence u' and feeds the second encoder. The output of the second encoder is the
parity check sequence c2. The information sequence u, parity check sequences cl
and c2 are passed to the puncturing device and multiplexer and then are transmitted

over the channel.

The puncturing device is to delete selected parity bits to reduce the coding overhead
based on the puncturing matrix in order to obtain the desired higher code rate. The
code rate of the original turbo code without puncturing is 1 /3. To achieve a code
rate of 1/2, we might delete all the even parity bits from the first encoder and all
the odd parity bits from the second one. In a similar way, it is possible to design
code rates of 2/3, 3/4, 6/7, etc. The performance of higher code rate turbo code

will degrade compared to the lower rate codes [1].

10



One of the principal factors that has great impact on the performance of the con-
volutional codes is the minimum distance of the codeword. The interleaver between
the CCs is important in designing the encoder and decoder system to achieve high
performance. A good interleaver can break the low weight input sequences so as
to increase the minimum distance of the overall turbo code. Thus, the error floor
caused by the minimum distance can be lowered and the overall performance of the

turbo code can be improved.

The decoding process for the turbo codes is an iterative decoding algorithm based on
the maximum a posteriori probability (MAP) algorithm. In Figure 2.1, the decoding
part consists of two component decoders serially concatenated via an interleaver.
The first MAP decoder takes as input the received information sequence T, the
received parity sequence r., generated by the first encoder and the deinterleaved
extrinsic information (the soft output information from all the other coded bits in
the code sequence) produced by decoder2 L, as a priori. Decoderl then generates
the extrinsic estimates of the information and passes the interleaved sequence L,
to decoder2. Note that one does not send the interleaved information sequence from
the second encoder, just the parity check bits. Therefore, for decoder2, the other
two inputs are the interleaved received information sequence r, and the received
parity check sequence r., produced by the second encoder. At the final iteration,
the a posteriori probabilities of the information sequence from decoder? will be
deinterleaved and passed to the hard decision device to make final estimates of the
information sequence %. The simulation results in [13] show that with a 13-state
RSC encoder, nonuniform interleaver and 18 iterations, the BER is lower than 10-3

at Eb/lVo = 0.7dB.

11



2.1.2 Serial Concatenated Convolutional Code (SCCC)

It has been shown in [18] that the serial concatenated convolutional code has signif-
icantly lower change of slope in the BER than PCCC with an equal input decoding
delay. Figure 2.2 shows the block diagram of a general model of coding/decoding of
the serial concatenated codes. The outer encoder and the inner encoder are linked
by an interleaver. Iterative max*- log-MAP (call max-log-MAP with correction term
as max*-log-MAP) decoding algorithm applied in both the outer decoder and the
inner decoder of the serial concatenated codes demonstrates a good trade-off be-
tween performance and complexity. An iterative log-MAP algorithm is employed in
simulation to get better performance. The decoding algorithm and the factors that

influence the design criteria are discussed in detail in the following section.

Channel noise

[nformation
..1010011 Y
— | Outer Code » Inter- » Inner Code Modulator ,C A
Encoder leaver Encoder M-PSK
e e e e e e el y
' Decoded
ﬁ Information
Inner Deinter- Outer }—sp
Decoder leaver | ——g| Decoder

[ Inter- l
l learver }

Figure 2.2: General code/decode model of serial concatenated codes

To achieve higher bandwidth efficiency, M-ary (M>2) modulation techniques are

widely used in practical systems [16]. To get soft-decision values from the M-ary

12



received symbols at relatively low complexity, namely transforming symbol proba-
bility to bit probability, a converting algorithm, which can obtain soft values of the

coded bits to be used by the SCCC inner decoder is introduced.

2.2 Design of SCCC

For serial concatenated codes, the CCs can be either block codes resulting in serial
concatenated blogk codes (SCBC) or convolutional codes resulting in serial concate-
nated convolutional codes (SCCC). For practical applications, SCCCs are preferred
to SCBCs. One reason is that the maximum a posteriori algorithms are less complex
for convoiutional codes than for block codes. Another reason is that the interleaver
gain can be greater for convolutional CCs, provided they are suitably designed [18].
In this thesis, therefore, the focus is on studying the performance and decoding
algorithms of SCCC with applications to coded MSK and M-ary PSK modulation

schemes.

2.2.1 The Component Encoder

In the original turbo code encoder [13], the two constituent encoders are connected
in a parallel manner, while for the serial concatenated codes, the two encoders are
combined in a serial manner. The structure of SCCC encoder consists of an outer
encoder with rate R, = k/p and an inner encoder with rate R; = p/n and an
interleaver between them. The overall concatenated code rate is R = R,-R; =k/n.
Figure 2.3 illustrates the structure of the component encoders for a given SCCC.
The information frame U, is encoded by the outer encoder which produces the
outer codeword C,. The codeword C, maps into U; after being permuted by the

interleaver. [ is fed to the inner encoder as the input information sequence,

13



| Modulator
M-PSK

Quter Enocoder Inner Encoder

Figure 2.3: Encoder structure of serial concatenated convolutional code

The outer encoder can be either a recursive or a non recursive code with memory
U, and code rate k£/p. The inner encoder must be a convolutional recursive encoder
with memory v; and coder rate p/n. In the thesis, for example, we use RSC code
of code rate R, = 1/2 with memory v, = 2 as the outer encoder and RSC code of
R; =1/2 with memory v; = 1 as the inner encoder. Figure 2.3 shows an example

of the structure of an outer encoder concatenated with an inner encoder.

2.2.2 Interleaver

The interleaver plays an important role in the design of both turbo codes and serial
concatenated codes. The choice of interleaver has a great effect on the performance
of these codes. Interleaving is the process of rearranging the order of a data sequence
in a one-to-one deterministic mapping format. The inverse of this process is called

deinterleaving which restores the received sequence to its original order [1].

The performance of any binary code is dominated by its free distance, dfre (the
minimum Hamming distance between codewords, which coincides with the minimum
Hamming weight of a nonzero codeword for linear codes) and its multiplicity [21].

The main purpose of the interleaver is to break low weight input sequences, and

14



hence increase the code’s Hamming distance or reduce the number of codewords with
small distance in the code distance spectrum. Another function of an interleaver is to
spread out burst errors. The interleaver provides new order information data (output
codewords of the outer encoder) to the inner encoder. For the decoding process, one
decoder decorrelates the input from the other decoder so that an iterative decoding
algorithm based on “uncorrelated” information exchange between the two decoders

can be applied [1].

In general, the interleaver size N is much larger than the encoder memorv v. A
long block code can be constructed from small memory convolutional encoder by an
interleaver [1]. Usually the performance can be improved by increasing interleaver
size. Regarding the interleaving techniques, there are four major types of interleav-
ing schemes: block interleavers, convolutional interleavers, random interleavers and
code matched interleavers. Different types of interleaver with different sizes and
structures will have considerable effects on the performance of both turbo codes and
serial concatenated codes. At low SNR'’s, the interleaver size is the principle fac-
tor while both interleaver size and structure affect the code performance greatly at
high SNR’s. Code matched interleavers can improve the performance significantly
by breaking the low weight input patterns effectively vet with highest complex-
ity. Random interleavers are commonly used in practical systems. A non-uniform
interleaver has been used in the original turbo codes [13]. S-random interleavers
proposed by Divsalar and Pollara are pseudo-random interleavers [22]. S is defined
as the minimum interleaving distance. The principles of S-random interleavers are
as follows. For a S-random interleaver of size N, the distance between two integers
less than S; before interleaving will be spread to the distance greater than or equal
to S», where S; and S, are two integers smaller than N. In general, the parameters

Sy and S, should be chosen as large as possible in order to break the maximum
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input pattern lengths. Usually it is appropriate to set Sy =8,=38. For S =1, the

S-random interleaver becomes a random interleaver.

2.2.3 Design considerations

In [18], Benedetto et al. have proposed an analytical bound on the performance
of the SCCCs and used it to derive design criteria for the constituent codes (the
conclusions can be extended to SCBCs when appropriate). On the basis of the
mathematical analysis, the design guidelines for the SCCCs are as follows:

. The inner encoder must be a convolutional recursive encoder.

—

[SV]

. The outer code could be either recursive or non-recursive code.

. The free distance of the outer code d%___ is preferred to be odd and maxi-

free

(]

mized.

2.3 Tterative Decoding of SCCC

Trellis-based iterative decoding of SCCC consists of an outer decoder and an inner
decoder separated by a (de)interleaver. The decoding algorithm of SCCC is based
on the iterative use of a posteriori probability (APP) algorithms [23] applied to each
constituent code. Soft-input-soft-output (SISO) module is very appropriate for the
implementation of the APP algorithm in its basic form for the iterative decoding of
a concatenated coding scheme. MAP or log-MAP algorithms are used to estimate

the most likely information bit which have been transmitted in a coded sequence.
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2.3.1 SISO Module for Iterative Decoding
2.3.1.1 Log-likelihood Algebra

The log-likelihood ratio L (ux) of a binary random variable U taking value u; is

defined as:
_ P (uk = 1)
b = =)

where u; is in the field GF(2) with the elements {1, 0}.
Since
Pugp=1)=1- P(ux = 0)

hence

eL(uk) - P(uk = ].)
1- P(uk = 1)

SO we can get

eL(uk)
Pla=1) = o

=L{ug)/2
p— i(u;/ . e[‘(uk)/2
1+ e L)

1
P(uk = 0) = %1 + eL(ur)

- Liug)/2
- (e\) e Hw)/2

and

1+ e~ Llu)
From the two equations above, there is one common item and one different
item, therefore the probability of random variable U taking value 0 or 1 can be

represented by a general expression as follows:

e\ - bty
— . pluk—3)Liug
Plu) = (1_*_6_[‘(“&)) etk T2

Ap - el 3)Llue) (2.1)

~L{ugy/2 .
where 4, = (£ —~") is a common factor.
1+e- Liok)
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- 2.3.1.2 SISO module for iterative decoding algorithm

The core of the decoding algorithm for SCCC is a four-port device with two inputs
and two outputs. It accepts the probability (or corresponding likelihood ratio) of
the information and code symbols labeling the edges of the code trellis as its inputs.
“and forms an update of these probabilities as its outputs. Figure 2.4 shows an edge
of the trellis section, where symbol e denotes the trellis edges, i.e, a transition from
time k£ — 1 to k, and the information and code symbols associated to the edge e are
represented by u(e) and c(e), and the starting and ending states of the edge e are

59(e) and sE(e), respectively. Assuming a time-invariant convolutional encoder.

Time k-1 k

O -——--
O - - -

o) )

Figure 2.4: Trellis section of a transition caused by an input symbol

Two SISO modules are used in the iterative decoding process as shown in Figure
2.5. Figure 2.1 illustrates the encoder and iterative decoder for turbo codes (PCCC)

as a comparison. Let us explain the decoding process in detail.
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Figure 2.5: Block diagram of iterative decoder based on SISO module for SCCC

The symbols L(-; I) and L{-: O) at the input and output ports of SISO refer to
the logarithmic likelihood rartios (LLR’s). The second argument [ represents soft
values from channel, or a priori values from the other decoder while O represents
a posteriori of the information symbols or code symbols. The subscript o refers to
the outer encoder and ¢ to the inner encoder. The argument u and c refer to the

information symbols and code symbols respectively.

In contrast to the iterative decoding algorithm employed for turbo decoding, first the
SISO outer decoder of SCCC iterative decoding algorithm receives a priori probabil-
ities of code symbols, instead of channel observations and, secondly, it must compute

and update a posteriori probebilities of both information symbols and code symbols.

During the first iteration of the SCCC algorithm, the SISO inner decoder is fed
with the demodulator soft outputs, consisting of the symbol values received from
the channels, i.., of the code symbols of the inner encoder. The second input
L(uy; I) of the SISO inner decoder is set to zero during the first iteration, since no
a priort information is availabie (no output from SISO outer decoder for the first

iteration).
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The LLR’s L(c;; I) are processed by SISO inner decoder block which computes
tze eztrinsic L*(u;; O) of the information symbols of the inner encoder. Then the
eztrinsic LLR’s L¢(u;; O) are passed through the inverse interleaver 7~ !and the
cutputs correspond to the LLR’s of the code symbols of the outer encoder, i.e.,

= HL*(u; O)] = Licy; I).

These L(c,; I) are sent to the block SISO outer decoder through its upper input.
The SISO outer decoder starts to process the input L(c,; /) and compute a poste-
riort probability LLR’s of both code symbols and information symbols. The input
Liu,; I) at the lower input of the SISO outer decoder is always set to zero. This im-
Diles assuming equally likely transmitted source information symbols. The eztrinsic
LLR’s L¢(c,; O) of the outer code symbols, after interleaving, «, are fed back to the
lower input (corresponding to the information symbols of the inner encoder) of the

block SISO inner decoder to start the second iteration, i.e., 7{L%(c,; O)] = L(uy; [ ).

In the final iteration, the output LLR’s L(u,; O) of the information symbols (which
Vield the a posteriori LLR’s of the SCCC information symbols) will be used to re-
cover the information bits [18][20][24][23]. The decision device makes a hard decision

based on the L(u,; 0).

2.3.2 Optimum and Sub-optimum Decoding Algorithms

The Mozimum Likelihood (ML) algorithm (e.g., Viterbi Algorithm) is an optimal
decoding method which minimizes the probability of information sequence error for
convolutional codes, while mazimum o posterior (MAP) algorithm is optimal to
find the most probable information bit to have been transmitted given the received

secuence.
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Figure 2.6: Relationship between MAP, log-MAP, Max-log-MAP and SOVA

For trellis-based soft-output decoding algorithms delivering additional reliability in-
formation together with hard decisions, the BCJR algorithm [23], known as symbol-
by-symbol MAP algorithm is an optimal algorithm for estimating the states or out-
puts of a Markov process. It generates the APP for each decoded bit. However,
MAP algorithm is difficult in practice due to its complex numerical representa-
tion of probabilities. Therefore by using the logarithm of the actual probabilities,
log-MAP algorithm is equivalent to the true MAP in terms of performance but
without its problems of implementation. MAP like algorithms, Soft-Output Viterbi
Algorithm (SOVA) and the Max-log-MAP algorithm, are both suboptimal at low
signal-to-noise ratios. The relationship between these algorithms is illustrated in
Figure 2.6 [26]. It is worth noting that adding the correction factor to Max-Log-
MAP results in an algorithm, Max*-Log-MAP whose performance is close to the

Log-MAP algorithm.

2.3.2.1 SISO MAP algorithm

A section of a trellis diagram of a convolutional encoder is shown in Figure 2.4
Figure 2.7 shows the general SISO model.

Assume we have the following quantities:

(1) A finite time index set K, i.e., K = {1,2,..,n},

(2) U = (Uk)rek, the sequences of input symbols over the time index set A and

drawn from the alphabet u = {u;, ua, ..., ux, }. The sequence of a priori probability
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Figure 2.7: General soft-input soft-output (SISO) model
distribution defined as:
P'(u)A (PUk = wi])rex

(3) C = (Ck)ex, the sequences of output (coded) symbols over the same time
index set K, and drawn from the alphabet ¢ = {ci.ca...,cn, }. For the sequence of

coded symbols, the associated a priort probability distribution defined as:

PY(c)A (P[Ck = cl)ezx

(4) A set of N states s = {51,5, ..., sy }. The state of the trellis at time & is
Sk = s.
(5) All possible transitions between the trellis states can be obtained by the

product:
€= S X u= {e].) L3 eN\'_\'I}

The following quantities are associated with each edge e
- The starting state s5(e)

- The ending state s®(e)

- The input symbol u(e)

- The output symbol c(e)

The relationship between these functions depends on the particular encoder. Through-

out the thesis, we assume that the pair (s5(e), u(e); uniquely identifies the ending
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state s%(e) which means that given the initial trellis state, there is a one-to-one
correspondence between input sequences and state sequences. (we will drop e for
simplicity) From Figure 2.7, the probability distributions of the output sequences
P%(c) and P9(u) are based on its inputs and on its knowledge of the trellis branch

transition section. At time k, the output probability distributions are computed as:

P(e)=B: ) aw[s°(e)|Pf[ule)|P![c(e)]Bels"(e)] (2.2)
e:c{e)=c

Pow)=Bu Y oui[s®(e)]Pilu(e) Pilce)]5elsE (e)] (23)
e:u(e)=u

where Bc and Bu are normalization constants.
The forward recursion o[- and backward recursion 3;[] are given by
ael(s)= D aw[s(e)]- Pifue)]- Pilc(e)l, k=1,2,.n  (2.4)
e:sE(e)=s

and

o
W
)

B(s) = D Benls®(e))- Plyfu(e)l- Plale(e)l, k=n—1,.,0 (2

e:s3(e)=s

with initial values:

1 S = So
ag(s) = {

0 otherwise

0 otherwise

1 s=85,
Ba(s) = {

The quantities B., B, are normalization constants calculated as follows:
B. = Y PPc)=1
c
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B, — Zp,?(u)zl

It is apparent that the P/[c(e)] in Equation 2.2 and P[{u(e)] in Equation 2.3
do not depend on e, by definition of the summation indices and can be extracted

from the summations. Therefore, we define the new quantities

P2(c)A B, :,((;) (2.6)
210
PO(u)A B, Z’((Z)) (2.7)

B, — Y PPu)=1

From Equations 2.2, 2.3, 2.6 and 2.7, we can obtain

P2(c) =BB. Y axi[s5(e)| Pl u(e)]8e[s"(e)] (2.8)
e:c(e)=c

Po(u) = BuBy Y ar[s®(e)|Bl[c(e)]BelsE (e)] (2.9)
e:u(e)=u

The probability distributions P2 (u) and P2(c) are extrinsic information that present

the added value of the SISO module to the a priori distributions P{(u) and P/(c).

2.3.2.2 Log-MAP algorithm

Although MAP algorithm is the optimal way of decoding for both turbo code and

serial concatenated codes. its high computational complexity prevent it from being
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implemented in practical systems. This is due to the fact that MAP is a multiplica-
tive algorithm. To overcome this drawback, the natural logarithm function with
monotonicity is applied to convert multiplications into additions.

The following are some definitions:

Li(c) = ln[P(c)] L(w) = I[P (u)]

a™(s) = Infou(s)] B (s) = In[Bk(s)]

Taking the natural logarithm of the output probability distributions of Equa-

tions 2.8 and 2.9, we can get

LY(c) = W[PP(c)]

= ln< > ak_l[ss(e)]P,{[u(e)]Bk[sE(e)]) +1n(B.B.)

ce(e)=c
= In Z exp (In {ax-1[s°(e)] P{[u(e)]Bk[s5(e) ]})} + In(B.B.)
_e:c(e)—c
= In Z exp (af™ [s%(e)] + Li[u(e)] + B,f‘“[[ss(e)])} (2.10)
_e:c(e)—c

+1n(B.B.)

LP(u) = In[PP(u)]

= 1n< > ak-l[s5<e)1Pé[c(e)1sk[sb‘(e)]) +1n(B.B.)

e:u(e)=u

= In [ Z exp (af[s°(e)] + Li[c(e)] +,3,f‘M[sE(e)])J (2.11)

cu{e)=u

+1n(ByBy)



Similariy. the forward and backward recursions in logarithm domain can be obtained

by takirg the logarithm of Equations 2.4 and 2.5 respectively:

afis) =1In Z exp {a;2{[s°(e)] + Li[u(e)] + Li[c(e)]} | . k=1,2,..,n

e:sE(e)=s

BM(s)=In| 3 exp{BEMIsB(e)] + Liyfu(@)] + Li[ee)]} |, k=n~—1,..1,0

e:s5(e)=s

with initial values

0 s =S5
§(s) = °
—oo  otherwise
0 s=35,
3(s) =

—oo  otherwise

2.3.2.3 Max log-MAP and correction term

When celculating L2 (u), LE(c), a£*(s) and BFM(s), the sum of exponentials in
these equations will still result in the computing complexity and the possibility of
excessive growth of the numerical values of a’s and 8’s. A simple solution to this
problem is using the max function to yield approximations of these quantities.

1. Max function

Define two variables a;, a5, we have

In(e® +€*) = Ine® +In(1 + ele2-2))
= Ine® +In(1 + ela1-92))
= max(ay,as) + In(1 + e~le2-al)
= max(aj,as) + f(laz — ay])

where f, is a correction term.
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Assume max(ai, as) > a;, i =1, 2, then
In(e™ +e*) =~ max(a,, a,).

Similarly we can get max function for & variables:

In [ZLI eai] = |n [ea.x +e%2 ... + e%-1 4 ea,‘]
= max(a;) +1n [Zf;l e“*—maxw] (2.13)
~ max(a;)

Therefore by using Max-log-MAP algorithm, equations of L (u), L9(c). a L (s)
and 85M(s) become:

L9(c) ~ max {afM[s°(e)] + Liu(e)] + 3¢M[s5(e)]} +In(B.B.)

e:c(e}=c

LY(v) ~ max {af*[s%(e)] + Li[c(e)] + B¢M[sE(e)]} +In(B.B.)

e:u(e)=u

of(s)~ _max {afX[s(e)] + Lifu(e)] + Lice)]}, £=1,2..n

e:sE(e)=s

5e*(s) = max {8EM[s5(e)] + LL, [ule)] + L, [e(e)]}, k=n~—1,..,1,0

e:s5(e)=s

2. Correction term

Max-log-MAP algorithm is good for medium to high signal-to-noise ratios but
the performance degrades at low signal-to-noise ratios. According to Equation 2.12,
a correction term can be added to the max function to increase the accuracy at the
expense of sacrificing some of the lowered complexity of the Max-log-MAP algorithm.
For k variables in Equation 2.13, the correction term could be In [Z:;I e““ma"(“*)J
or an approximation of In [Zf:l e““ma"(“')} that can be computed using a one-

dimensional look-up table to simplify the calculation while keeping the desired per-

formance [17]. We call max-log-MAP with correction term as max*-log-MAP.
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2.4 Demodulation and Decoding of SCCC with M-
ary Modulation

In most digital communication systems, bandwidth efficiency and power efficiency
are important factors in choosing coding and modulation techniques. Coding im-
proves the performance dramatically and requires lower power, however, it needs
more bandwidth for the transmission at the same data rate compared with the
uncodec case. On the other hand, higher level modulation schemes decrease band-
width occupancy but increase the required received power [27]. For bandwidth-
efficient transmission, we may use Turbo Trellis Coded Modulation (TCM) but at
the cost of a very high decoding complexity caused by the hypertrellis of the combi-
nation of coding and modulation. To reduce the decoding complexity of SCCC with
bandwicth-efficient M-ary modulation techniques such as M-ASK (amplitude-shift
keying). M-PSK (phase-shift keying) or QAM (quadrature amplitude modulation),
we appiy a converting algorithm to demodulate the received symbols the first time in
the system of SCCC with M-ary modulation. The soft-decision bit values obtained
from demodulating the received symbol values will be used by the SCCC'’s inner
decoder. We will study the algorithm in more detail in this section. The general
system model of serial concatenated convolutional code with M-ary modulation is

shown ir Figure 2.8.

2.4.1 Converting algorithm

At time £. we assume the following parameters over AWGN channel:
C: a binary sequence output from inner encoder
S: transmitted symbol sequence generated by mapping coded bits C onto

signal constellation



Informaiton U Overall Coded bits C | Meary Symbols S

Encoder Modulator

Y

Channel noise {)

M-ary
S ver;ﬂl < Demodulator
Estimated ©Coder ) Soft-decision \ (Converting Algo.) | Received
information u values R symbols Y

Figure 2.8: General system model of SCCC with M-ary modulation

Y: received symbols from channel

R: soft-decision values of coded bits received from m-ary demodulator

2™ symbol points on the constellation, m is the number of coded bits mapping
to one symbol, e.g., m = 2 means that 4 possible signal points on the constellation
space, m = 3 means 8 possibilities, etc.

by, by, ...b, represent the m coded bits taking values of 0 or 1.

The modulated signals (symbols) are transmitted through in-phase (I-part)
and quadrature (Q-part) channel. The transmitted signals and received signals can

be represented by the following, respectively:

ko kL ok
sT=S[+7sg

and
v* =y +5yd
= (s;+75) + j(s§ +nb),

where 7f and 75 are Gaussian noise at time k in [-part and Q-part.

Now, we begin to describe the algorithm to find the log-likelihood ratio of every

coded bit by, b,,...b,,. Take a constellation with 2™ signal points. The probability
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of m conditioned on the received signal y is (we drop k& for simplicity):

p(y | b =0)- P(b; =0)

=01y = p(y)
= {Z ZZ Zp(y|b =0, by,..bi_1, biyy, ...bm)
p(y) —
-P(b; = 0, by, »-bi—lybi-i-ly -..bm)} (2.14)

Suppose that the signals are transmitted with equal probability. Therefore, in
Equation 2.14, the second term in the numerator is a constant, i.e., 1/2™ and can
be extracted from the summation. Then Equation 2.14 becomes:

P(bi=0]y) = 5 p(y Z DD Zp(ylb =0, by, bioy, by, i)

bi—1 bity

Similarly we can get the probability of b; = 1 conditioned on y :

Plbi=1]y) = 5 p(y Z DD Y p(y b =1, by, iy, bt bin)

bioy by b

The log-likelihood ratio of bit b; is:

A\ Plbi=1]y)
1 P(b; =0y)

Zbl "'Zb‘_l me b, PY | i =1, by, by, b, bim)
Db Dby 2oty " 2oy P 1 0 =0, by, iy, iy, b

The computation of the summation will be very complicated for both the

(2.13)

In

numerator and the denominator in Equation 2.15. We find that there exists a
dominant term among the summation in both the numerator and the denominator
in Equation 2.15. Using the max function described in 2.3.2.3, we may keep the
dominant term and omit the rest of the terms. Though we sacrifice the performance
a ittle bit, it is worth to do the approximation so that the complexity can be reduced
significantly.

Now let us do the approximation. The dominant term will be the probabil-

ity of the received signal conditioned on the nearest signal point with b; = 1 or 0.
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When b; =1 (i = 1,2,..m), let 4,(¢) = 4 ;(d) + 74;,0(%) be the nearest signal
point, ie.. (b1, ba,...,0i_1, 1, biy1, ..., bin), to the received signal y. When 6; = 0
(¢ = 1,2,..m), let 49(2) = Ag (i) + jAo,q(%) be the nearest signal point i.e.,
(b1, ba, ... bi_1, 0, bity, ..., b)), to the received signal y. Simplify the Equation 2.13,

we get:

i (yr@)~ A, 1)) . (vo(i)— A1 o))’
V2ra €xp [— 202 T Yoro &p |— 242

1 } (!/1(1')—-40.1(1'))2 1 (yca(i)—flo‘q(l))2
277 &P [—“—Tﬂ— Bl

= 5 42100+ 42,000) — [42 1(0) + 42 o (0)

+2-yr(2) - [Ay, 1(8) — Ao, ()] +2- yg (%) - [A1,0(7) — Ho ()]} (2.16)

In

R
X

Equation 2.16 is the general expression of the converting algorithm. From Equation
2.16, the computation of LLR converts to simply calculating the distance between
the two signal points. AF /(i) + A o(¢) and A2 (i) + A2, (4) are the energy of the
signal points Ag(z) and 4,(7) respectively. When using modulation techniques with
equal energy of transmitted signals, such as 8PSK, the Equation 2.16 can be further

simplified to
A= % {r(i) - [44, 1() — Ao, 1(0)] +v0(i) - [A1,0(i) — d0.0(2)]}. (2.17)

Afterall A,, i = 1,2, ...m which are the log-likelihood ratio soft-decision values of the
coded bits are obtained, they will be passed as the soft input to the inner decoder.

We now study an example in a bit more detail to illustrate the algerithm. The
constellation of 8PSK is shown in Figure 2.9 where three coded bits are mapped
to one signal point. First we calculate the distances between the received signal y
and every signal point, i.e., the 8 signal points on the constellation, for b, = @, a =
lorQ and i = 1, 2, 3, respectively. Secondly, we choose the signal points on the

constellation for b; = 1 or 0, respectively that have the minimal distance to the
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received signal y. For example, if the received signal y is within the decision area
of the signal point V5 with x-y values of (v/24, 0), the nearest signal points for
by =0and b, =1 are (v/24, 0) and (4, —A4), respectively. Similarly, we can get the
nearest signal points for b, =0, b, =1 and b3 =0, b3 = 1 are (v/24, 0), (0, V24),
and (24, 0), (4, 4), respectively. For 8PSK modulation with equal energy of the
transmitted signals, we may use the Equation 2.17 to get the log-likelihood ratio
soft values for the three coded bits. Therefore, the log-likelihood ratio of the coded

bit b1 is:
1
o= e (4= VB4) +so-(-0]
Similarly, we obtain log-likelihood ratio of the coded bits b»:
1
o= - (30 20 (2.
and b32
1 54) -
/\3 =§ [y[’ (.‘1— \/5.'1) *.'yQ':lJ y
respectively. In this way, we obtain the soft values of the coded bits from the received

symbols with acceptable demodulation complexity. These values will be passed to

the SCCC inner decoder.

2.4.2 Simulation results

Now, some examples of SCCC with QPSK and 8PSK modulation techniques are
given. The outer encoder and inner encoder are showx in Figure 2.3. The constel-

lation of QPSK and 8PSK are illustrated in Figure 2.9.

In Figure 2.10, the two solid lines and the two dash-dotted lines represent the BER
performance of SCCC using QPSK and 8PSK modulation techniques with two dif-

ferent block sizes respectively. The overall code rate of the SCCC encoder is 1 /4,
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Figure 2.9: QPSK and 8PSK constellation diagram with Gray mapping

for QPSK modulation, the bandwidth efficiency is 1/2bps/Hz while for 8PSK is
3/4bps/Hz. The number of iteration is 8 for all simulations. A random interleaver
links the outer and the inner encoder. From the simulation results, we can conclude
that (1) the performance of 8PSK modulation is about 1.0 dB worse than QPSK at
BER of 107° under the same block size but with higher bandwidth efficiency; (2)
the performance improves with the size of the block, e.g., the BER of SCCC with
8PSK modulation of blocksize = 2047 reaches 107° at 2.5dB and is about 0.3dB

better than blocksize = 1021.

2.5 Summary

In this chapter, the fundamental principles of designing serial concatenated convo-
lutional codes have been introduced, including encoder structure, functions of the
interleaver, soft-input soft-output optimal and sub-optimal decoding algorithm and
design criteria. The inner encoder must be a convolutional recursive encoder which
vields the interleaver gain. The iterative log-MAP decoding algorithm is based on

SISO module which generates maximum a posteriori log-likelihood ratios of the

33



Bit Error Rate

[} - QPSK-1021 |
-6~ QPSK-2047 |-
-5} +- 8PSK-1021

1078 . 8PSK 2047 [11:1iiE
—— uncoded .
Merationmg | +++-* 111 I S *
107 : : : . '
0 0.5 1 15 2 25 3
Eb/No in dB

Figure 2.10: BER Performance of SCCC with QPSK and 8PSK modulation tech-

niques using the converting algorithm

information symbols.

For bandwidth-efficient transmission, multi-ary modulation techniques are applied

with SCCC. To reduce the complexity of the decoding algorithm, a converting algo-

rithm is introduced to yield soft-decision values of the coded bits utilized by SCCC

inner decoder. The simulation result shows that the performance is acceptable with

low decoding complexity.
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Chapter 3

SCCC with Coded MSK over AWGN
Channel

In reference [18], Benedetto et al. showed that serial concatenated convolutional
codes have good performance, especially at high signal to noise ratios. The ana-
lytical results showed that serial concatenated codes can vield significantly higher
interleaver gains and steeper asymptotic slopes for the error probability curves. In
addition, for SCCC, the error floor presents at very low bit error rate. The choice
of coding and modulation techniques is important in communication systems for
improving performance and saving bandwidth. TCM is one method to be utilized
in SCCC to obtain bandwidth efficiency. In TCM systems, the inner code is a re-
cursive trellis code designed for the chosen signal set [28][29]. On the other hand, a
more advanced modulation technique is Continuous Phase Modulation (CPM). The
fact that CPM is a modulation technique makes it a good candidate for the inner
code of a SCCC. We will investigate the performance of 2 SCCC with CPM as an
inner code over AWGN channel and ISI channel in the next two chapters. The basic

principles of the CPM, the decoding algorithm for the convolutional outer decoder



and MSK inner decoder/demodulator and the simulation of different factors which

impact SCCC with MSK over AWGN channel will be discussed in this chapter.

3.1 Continuous Phase Modulation (CPM)

In the transmission of digital information over a communications channel, the modu-
lator is the interface device that maps the digital information into analog waveforms
that match the characteristics of the channel. There are two main categories of
modulation techniques, memoryless modulation such as PAM, PSK, QAM, etc.,
and modulation with memory [30]. We focus on the nonlinear modulation method
with memory called continuous phase modulation (CPM) in which the phase of the

signal is constrained to be continuous .

3.1.1 Brief introduction

The conventional memoryless modulation techniques, such as FSK are generated by
shifting the carrier by a number of frequencies f, = IAf Uy, up = £1, 23, ., 2(M—
1), to reflect the digital information being transmitted, where A f = 1/2T represents
the minimum frequency separation between adjacent signals for orthogonality of the
M signals, where T is the symbol interval. The switching from one frequency to
another may be accomplished by having M = 2m separate oscillators tuned to
the desired frequencies and selecting one frequency according to the m-bit symbol
transmitted in the signal interval. However, such abrupt switching from one os-
cillator output to another in successive signalling intervals may result in dramatic
phase-changing and relatively large spectral side lobes outside of the main spectral

band, consequently, requiring a large frequency band for transmission of the signal.
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M-PSK modulation techniques also generate phase shifts and make undesired side-
bands [2]. The solution to this problem is to make the phase of the modulated signal
constrained to be continuous. To this end, Continuous Phase Modulation (CPM)
was proposed and research interest grew rapidly in the late 1970’s and early 1980’s.
References [31], [32] and [33] present a comprehensive summary of much of this
research work. The constant envelope of CPM scheme and their excellent spectral
properties make them attractive in many digital transmission systems, such as satel-
lite and mobile communication systems. The constant envelope property is useful
for non-linear power amplifiers which require a low peak-tc-average power ratio and
is desirable for digital data transmission over nonlinear and/or fading channels. In
real communication systems, CP)M has a narrower spectral occupancy in terms of
fractional out-of-band power. The bandwidth efficiency accounts for the popularity

of CPM in many digital communications systems.

3.1.2 Decomposition of CPM

CPM systems are memory modulation schemes thus exhibit a coding gain when
compared to memoryless modulation techniques. The manner of introducing mem-
ory to a CPM system resembles a convolutional encoding svstem in many ways. In
both cases, trellis can be used to display the possible output signals and describe
how the states change with time. As described in [34], CPM can be decomposed
into a continuous-phase encoder (CPE) and a memoryless modulator (MM). Such a
decomposition would have two obvious advantages. First, it allows the encoding op-
eration to be studied independently of the modulation. If the CPE is time invariant
and linear, then it can be studied using the same techniques that have been devel-
oped for convolutional codes. Second, the isolation of the MM allows us to model

the system as a cascade of the MM, the waveform channel and the demodulator that
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operates over a discrete memoryless channel [34].

Consider a CPM system with M-ary information symbols U € {0,1,..., M—1}
transmitted every symbol interval T, where M = 2™ The symbols are phase-
modulated using a positive normalized frequency pulse g( t) containing no impulses
and being non-zero for L symbol intervals. L is a positive integer called the memory
of the CPM scheme. If g(t) =0 fort > T, L =1 and the CPM signal is called full
response CPM. If g(t) # 0 for t > T, L > 1 and it is called partial response CPM.
The phase pulse g(t) is the integral of the frequency pulse [34][35]. For example, if

g(t) is a rectangular pulse with amplitude 1/2LT

1/(2LT 0<t<L LT
ga):{ /eIT) 0%t

0 otherwise

then ¢(t) can be represented as

t

o) = [ gar

0 t<0
= { ¢/(2LT)  0<t<IT
1/2 t>LT
b g(t) b q(t)
1/2T - --
T ¢ T 't

Figure 3.1: Pulse shape for full response CPM (L = 1)
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Figure 3.1 shows the pulse shape of the full response CPM. The modulation index
is assumed to be rational and irreducible, A = Q@/P. An infinite variety of CP)M
signals can be generated by choosing different pulse shapes g(t) and by varying the
modulation index h and the alphabet size M. The Minimum-shift keying (MSK)
which is a binary continuous phase FSK with A = 3 is widely used in many digital

communications systems and is our main research concern.

— U
n
o Lln-I
g un-L+l
l mod P
Na
D D D DD Fr—
un unl un-Z un-L-e-l *+

Figure 3.2: General diagram of continuous phase encoder (CPE)

It is well known that the CPM system can be described by a trellis [31]. The
general diagram of continuous phase encoder (CPE) is shown in Figure 3.2. The
transmitted signal during symbol interval n is specified by the current symbol u,,
the L — 1 previous data Symbols up_r11,..., Up_;, and the accumulated value of
{w:} is denoted by v, ie., 1, = Z,’:OL u; mod P which can take only P values.
The output vector from the CPE Tn = [Un, ..., Unopi1, Up] is fed to the memoryless

modulator, which generates one of the P - M~ signals.

3.2 Decoding of SCCC with MSK Modulation

Minimum Shift Keying (MSK) isa special form of binary continuous phase FSK with

modulation index A = 1 (P = 2). The two possible frequencies in the interval nT <
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t < (n+1)T are f; = fe—z- and f, = f.+, where f, is the central carrier frequency
[2]. The frequency separation Af = f, — f; = 1/2T is the minimum frequency
spacing to allow coherent demodulation. Compared with QPSK and OQPSK (offset
QPSK), MSK has smoother pulse and lower sidelobes. It is a spectrally efficient
modulation scheme which is particularly attractive for use in bandwidth and power
efficient communication systems, including mobile satellite systems [36] [37] and
high-rate microwave systems {38][39]. A baseband filtered version of MSK, called
Gaussian MSK is used in the GSM and DECT systems [40]. From Figure 3.2, we
can see that the CPE behaves as a recursive systematic convolutional (RSC) code

and thus can be incorporated as the inner code in an SCCC system.

3.2.1 System model

Figure 3.3 illustrates the system model and decoding algorithm of serial concate-
nated convolutional code with MSK modulation as the inner code. The outer er-
coder structure is the same as the outer encoder in Figure 2.3 which is a systematic
recursive code with code rate R, = % The generator matrix for the outer encoder
is Gouter(D) = (1, Flg—:%]. MSK is coded modulation with full response taken as

both inner encoder and modulator.

As mentioned in Section 3.1.2, CPM can be decomposed into CPE and MM. Thus
MSK can also be decomposed into a continuous phase encoder followed by a one-tc-
one memoryless mapper. The main function of the CPE is to ensure carrier phase
continuity. MM will map the coded bits encoded by the CPE to the signal space.
According to Figure 3.2, for full response of MSK, i.e., L = 1, the encoder will be
binary recursive systematic one (i.e., M = 2) with one memory. Figure 3.4 depicts

the decomposition of MSK, the structure of CPE and memorvless mapping. The
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Figure 3.3: System model of SCCC with MSK

CPE generates a RSC code with code rate Rope = 1/2 and the generator matrix
Ginner(D) = [1,725], where bi(k) = U}, by(k) = [S5 Ullmoe> and U] is the
permuted coded bits output from the outer encoder. The two coded bits will map

to one of the four transmitted waveforms.

| bibs z(t) | signal point |
11 | —cos[27(f. + 4T)(t kT) (t) (0,4
01 | —cos[27(f. — =)t = kT)] | —s(¢) (—4.0)
) (t)
) (t)

10 cos[27x(f. + 47)(t — kT (0, A
00 cos[27(fc — &=)(t — kT (4,0

Table 3.1: Mapping relationship between the coded bits of CPE ard signal points

It has been shown in [36] that the phase of transmitted waveforms in each symbol

time interval can be represented by a single time invariant memorvless one-to-one
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Figure 3.4: Block diagram of decomposition structure of MSK

mapping, so that the time varying phase output z(t;U) in Figure 3.4 can be trans-
formed into z(t) as shown in Table 3.1. From Table 3.1, it is seen that in each
symbol interval, the information symbol Uy, equivalent to &,(k) determines the fre-
quency, for example, b; = 1 means the signal waveform of higher frequency f. + #
is selected, and b,(k) determines the phase of the transmitted waveform, e.g., by = 1
or O causes the starting phase of the signal waveform to be 7 rad or 0rad respec-
tively [36]. The signal constellation and trellis structure for MSK are given in Figure
3.5. The minimum squared Euclidean distance is given by d3 = 2.42. There are two
states 0 and 1 in the trellis. The trellis branch is labelled by input information
symbol / transmitted waveform (signal point) where we map the input symbols to
the signal points represented by in-phase (I) and quadrature (Q) components on the

constellation directly.
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Figure 3.5: MSK constellation and trellis structure

3.2.2 Decoding algorithm

The decoding algorithm of SCCC with MSK is a log-MAP algorithm with iterative
decoding. The decoding principles are the same as what we have explained in Section
2.3 which is the general description of the algorithm. We will derive the decoding

algorithm for SCCC with MSK in detail in the following section.

3.2.2.1 The decoding algorithm for inner decoder

Let r7x and 7o be the received signal values from AWGN channel in the T part and
@ part, respectively at time k. Let u} be the inpurt bit at the inner encoder taking
values 0 or 1 that is associated with the transition from time & — 1 to time k. =,
and zq are the corresponding I part and Q part values in the signal space as shown
in Figure 3.5. The trellis states at time k£ — 1 and ¥ are indexed by the integers s’
and s. For binary convolutional encoder, the MAP algorithm can be derived by:

Z(s’.s,u;‘=1 p(slr S, T‘)

Plug=1]r1) .
Z(S'.S '!.','c=0 p(s’, S) r)

" Plus =07 "

(3.1)

L{dg) =1
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where

p(s', s, 1)

Here <, denotes the

p(s',rck) - p(s, Tk | §) p(rysk | s)

p(s',ryck) - P(s| §) - P(Tkls s) - P(Tpkl 5)

ak—1(sl) : - 3k(s)

(s, s)

sequence of received symbols 7; from the beginning of the

trellis up to time k—1 and rj>¢ is the corresponding sequence from time k+1 up to

the end of the trellis. The forward recursion and backward recursion as mentioned

before are represented by

and

respectively.

ok(s) =

S 1(s',9) - axor(s)

Be(s') = Z 1x(s, 8) - Bexa(s),

The branch transition probability between s’ and s is given by (we drop & for

simplicity)

7(s',5) = p(r | u) - P(!),

where 7 is the received signal consisting of the two orthogonal component r; and

rQ. Hence, we can get the branch transition of the inner decoder-

Hin(s'ys) = p(rr | ') p(rq | u') - P(ul)
- 2ro exp{- - 2—051)2} ) T o ep{= (TQZ } P!
= 2;0 {exp [— er-;ré] exp [— I%QZ;%J (3.2)
TITI ::rQIQJ} P(uf)
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In Equation 3.2, r? + r%, which is independent of branch transitions, is the
energy of the received symbol from time k—1 to time k. 2 +xé is the energy of the
branch output symbol from state s’ to s in the trellis. Then z2 + 13 is equal to the
constant A? since the signal space is an equal-energy constellation. So, Equation

3.2 becomes:

' TrkZTrk +TQkTQ,
0n(55) = A By -exp | HAZATIOT0E xp (0] - -

Here, we have used the expression for P(u!) given by the Equation 2.1.

L(uf) is the a priori probability derived from the outer decoder which is equal
to zero in the first iteration. The terms A and By are equal for all transitions and
hence will be cancelled out in the ratio of Equation 3.1. Taking the logarithm of
Yin($', 5), we obtain:

Ll\'f( ) —

Yin = Inyi(s, s)

TrkZTrk —TQATQ,k 1
= o (- ) - L))

Now, we denote max*-log-MAP as Max-log-MAP with correction term. We briefly

define the following,

maz * (a,b) = lIn(e* +e¢)
= max(a, b) +In(1 +e~°79))

= max(a, b) + d(a, b) (3.3)

and 6(a, b) is a correction term approximating In(1+e~1*=9). If the correction term
is In(1 + e71~4l), then max*-log-MAP is exactly log-MAP. We use Max-log-\[AP
with correction term, i.e., maz®, to compute & and 5.

Hence,
anA/i(S) = 1ﬂ{eXP[1n(Z”/m.k(3's5"ain,k-1(3'))]}

LM R
= nzaxs,{[wl[,‘l“,fk 1(3173) zl;tvli l(s ] [/zn‘uk_O ' + al[f'lli 1('5)}
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5151{%(3 maxs {[’Yzﬁ U=l (3 3 + 311 J+1 (3)] [ lan“ik—O (slt 3) m I:+1 (S) }

and the log likelihood ratio of the a posterior of the input information symbols
at the inner encoder becomes:

Z( : . elnlae—1(s") 7k (s".5)-Be(s)]
s’ s),up=

~f _—
L(Uk) B lnz(a',s),uk =0 elnfoe_ ) (8" )- 7 (s’ .5)-Bk(s)]

= uk—l{%[rlz (S 3)'*‘01['11% 1( )+ mk.( ,)}

—mazy, ofva"(s',5) + a1 (s) + BEM(s)}

Subtracting the @ priori probability L(ul) from L(af), we get the extrinsic
information Le(4f) which will be passed to the de-interleaver and then to the outer

decoder.
Le(&) = L(af) — L(ul)

3.2.2.2 The decoding algorithm for the outer decoder

In Figure 3.3, the outer decoder receives the permuted extrinsic information from
the inner decoder instead of channel values. The decoding algorithm is similar to
the one employed in the inner decoder. The structure of the outer encoder and the
corresponding four-state trellis are shown in Figure 3.6. The branch transitions are
denoted by input bit up / coded bits Clxs €34 For the recursive systematic outer
codes, ¢l x = ug. Different from the inner decoder, the outer decoder will produce
the a posteriori probability of both the information bits and the coded bits.

The log-likelihood ratio of the information u, coded bits ¢y, c» for the outer

codes are:
L(ag) = mazy, HvES )+agzi‘t{k—1(s) 35{2:[/:( O}
—mazy, _o{"gi (5", 8) + a1 (s) + 35(5)}
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Figure 3.6: Structure of the outer encoder and corresponding trellis

L(cfy) = ”w-f:-l.-‘ﬂ{ (sl,s)'*‘ag'uhf,kq(s)‘5‘,3::%1:(5')}
—maz;,  —o{Vous (5'8) + @b, (s) + BEM(s)} (3.4)
L{cge) = mazy, i {var ('s8) + M, (s) + BEM(s)}
~mazy, o (7H(5,9) + k() + SHL(Y) (39

The extrinsic information of the coded bits ¢; and ¢, will be obtained by subtracting
the a priori probability which is the corresponding permuted a posteriori probability
from the inner decoder from Equations 3.4 and 3.5. This extrinsic information will
be employed as the a priori probabilities to feed the inner decoder to start the
next iteration. L(dg) will be used in the final iteration to make estimation of the

input information sequence. If L(@g) > 0, we decide 42 = 1, and we let ug =0if

L(ag) < 0.



3.3 Simulation Results

In this section we present some simulation results and analvsis based on the above
mentioned encoding structure and decoding algorithm. The simulation results com-

ply with the theoretical analysis.

Log-MAP algorithm, random interleaver
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Figure 3.7: Comparison of SCCC with MSK and PCCC with BPSK under the same
bandwidth efficiency

Figure 3.7 shows the simulation result of comparing SCCC with MSK and PCCC
with BPSK modulation over AWGN channel at three different block lengths. The
structure of the two component encoders of PCCC are the same as the outer encoder
of SCCC with MSK. The decoding algorithm is the iterative log-MAP algorithm as

described in [13]. The coded bits for PCCC will be punctured to code rate 1/2. The
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bandwidth efficiency of PCCC with BPSK modulation is the same as SCCC with
MSK, ie. 1/2 bps/Hz. Random interleaver is used for both schemes. The solid
lines and dashed lines represent the BER curves of SCCC with MSK and PCCC
with BPSK, respectively. We can see that SCCC with MSK modulation outperforms
PCCC with BPSK at high signal-to-noise ratio (Ej/Np) for all three block lengths.
The cross points for each pair of corresponding lines, i.e., same block length, are
around 10~>. The error floor is absent, or at least, much lower in the case of SCCC

with MSK than PCCC with BPSK.

Log MAP algorithm, ditferent types of interleaver
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Figure 3.3: Performance of SCCC with MSK using different tvpes of interleaver

Figure 3.8 illustrates the performance of SCCC with MSK under three block lengths

using different interleavers. The dashed lines show the bit error probabilities using
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block interleaver. The performance does not change noticeably with the increase of
the block length. The solid lines and dash-dotted lines represent the performance
with pseudo-random and S-random interleavers. We can see that by using S-random
interleaver the performance can be improved by about 0.15dB under block lengths
of 1024 and 456 but no noticeable improvement is observed for block length 1632.
The possible reason is that the minimum interleaving distance S = 30 is not big
enough for size of 1632 to break low weight input sequences [1]. In general, the
larger the value of S is, the better the performance will be. However, the search
time for S-random interleavers will become fairly long for large values of S compared
to random interleavers. for a given interleaver size S, the value of S is bounded by
S < /N/2 [22]. Both types of interleaver can achieve much better performance

than block interleaver.

In Figure 3.9, it is obvious that the performance is affected by the interleaver size.
By increasing the interleaver size IV, the bit error probability is reduced by a factor.
This is called the interleaver gain. For interleaver size of NV and outer code free
distance df, it has been shown in [18] that in theory the interleaver gain is N~%/2
for even values of d% and N~ *D/2 for odd values of d$. In our case of SCCC
with MSK, the outer code free distance d} = 5 so that the interleaver gain is V3.
The error probability decreases sharply when increasing the length of the input

information block. It is about 1.2dB interleaving gain between block length 4096

and 456.

Figure 3.10 shows the BER curves of SCCC with MSK at different number of it-
erations under a fixed block length of 1632. The performance can be improved by
increasing the number of iterations. There is about 0.3 dB gain when the number of

iteration is increased from 4 to 8. However, the improvement is very limited when
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Figure 3.9: Performance of SCCC with MSK with different interleaver sizes

the number of iteration is over 8, for example, less than 0.2dB gain between 18
iterations and 8 iterations. In addition, more iterations mean higher complexity.
Thus in terms of the acceptable performance, we choose the number of iterations
to be 8 in most of our simulations to get a good trade-off between performance and

complexity.

In previous simulations, we use the log-MAP algorithm in all decoding processes.
Figure 3.11 illustrates the performance comparison of employing log-MAP, Max log-
MAP (without correction term) and max*-log-MAP (with correction term) decoding
algorithms. Two block lengths are simulated for comparison. The solid lines and

dashed lines represent SCCC with MSK at block size 1632 and 436 with 8 iterations,
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Log MAP algorithm, block length=1632
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Figure 3.10: Performance curves of SCCC with MSK with different iterations

respectively. For max*-log-MAP algorithm, we use look-up table for the correction
term 6(a, b) in Equation 3.3. An 8-value look-up table with a step-size of 1 /8 of the
correction term is used. The range of the term| b — a [is between 0 and 3. We may
see from the figure that the performance of using log-MAP algorithm is about 0.5dB
better than Max-log-MAP (without correction term) algorithm. The performance
of max*-log-MAP algorithm is between the two with medium complexity. e use
log-MAP as our main decoding algorithm. However, the complexity is higher for
log-MAP algorithm than the other two algorithms. In practical systems, max*-log-

MAP is more suitable.
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Figure 3.11: Performance comparison of log-MAP and Max log-MAP algorithm
3.4 Summary

In this chapter, the design of serial concatenated convolutional code with the ap-
plication of coded modulation technique minimum shift keying (MSK) over AWGN
channel was investigated. The properties of constant envelope and spectral efficiency
for continuous phase modulation (CPM) techniques, such as MSK make them at-
tractive in wireless communication systems. The decomposition structure of CPM
(MSK) introduces memories so that it can be combined in SCCC as the inner encoder
and modulator. Iterative MAP decoding algorithms for both the outer decoder and
the inner decoder are derived and simulation results are given based on the decoding

algorithms.



From the simulation results, we may conclude:

e Serial concatenated convolutional codes using MSK as the inner code can be
considered as a valid alternative to turbo codes. SCCC with MSK shows excellent
performance at medium to high signal-to-noise ratios and has significantly lower
change of slope in the bit error probability curves than PCCC, i.e., no error floor

found at 10~7 for different block sizes.

e Interleaver type will affect the performance greatly as we can see from the sim-
ulation results. Random or S-random interleaver can be chosen as the interleaver
between the outer and the inner encoder to achieve better performance. Block

interleaver should not be used in the case of SCCC with MSK.

® Since the interleaver gain, which is the factor of decreasing the bit error proba-
bility, is a function of the interleaver size and free distance of the outer codes, the
performance improves if we increase the interleaver size or choose outer code with a.

larger free distance.

e The number of iterations is another factor that influences the performance. Taking
the decoding complexity into account, we use 8 iterations to achieve good perfor-

mance while keeping relatively low complexity.

AWGN channel is the most used channel model in wireless and satellite comnmu-
nication systems. We will discuss SCCC with coded MSK over more complicated

channels in the next ctapter.



Chapter 4

SCCC with Coded MSK over ISI
Channel

In previous chapters, we discussed the design, performance analysis and iterative
decoding of SCCC with MSK over Gaussian channels. It is observed that SCCC
with MSK can achieve remarkably low bit error rate with iterative log-MAP de-
coding algorithm over AWGN channel. However, in real communication systems,
such as radio, satellite and mobile communication systems, besides Gaussian noise,
inter-symbol interference (ISI) caused by limited bandwidth, multipath propagation
and motion can distort the transmitted signals at the receiver and generate serious
degradation in performance. It is useful to study and evaluate the performance of

SCCC with MSK modulation over ISI channel.

The transmitted pulses through the non-ideal channel at rates comparable to the
channel bandwidth W are smeared to the point that they are no longer distinguish-
able as well-defined pulses at the receiving terminal [2] [41]. Let us take the example
of systems with a data rate of 150 kbit /s (close to ISDN data rate of 144 kbit/s), the

required transmission rate would be approximately 75 ksymbol/s assuming rate 1 /2



coded 16 QAM signalling with a symbol period of 13.3 us or approximately 6.9 us
for 150 ksymbol/s system with rate 1/2 coded QPSK signalling. It is obvious that
the multipath delay spread in the order of tens of microseconds will cause significant
frequency selective fading, i.e., inter-symbol interference (ISI) in these situations and
the system performance will degrade significantly over such fading channel [2][42).
In digital cellular radio systems such as GSM, some environment multipath compo-
nents may be delayed by up to 30 us which cause ISI and thus affect the received
signal quality greatly [43]. Therefore, ISI has been recognized as the major obstacle
to high speed data transmission over mobile radio channels. It is important to find

a way to eliminate or reduce the effect of ISI to improve the performance.

For communication channels where the channel frequency response characteristics
are unknown a priori or are time-varying, optimum modulation filter at the trans-
mitter and demodulation filter at the receiver can’t be designed directly. In order
to eliminate or reduce the effect of ISI, one solution is to combine the inner encoder
and the IST channel which can be treated as a Finite State Machine (FSM) to create
a super trellis and use ML or symbol-by-symbol MAP algorithms to decode. Bet-
ter performance can be obtained through this method. However, the total number
of states in the resulting super trellis will become large due to the combination of
the inner encoder and the channel memories and the trellis will be fairly compli-
cated. Thus the decoding complexity increases dramatically. Another solution is
to use an equalizer to compensate or reduce the ISI of the received signal. Though
the performance may not be as good as the previous solution, the decoding com-
plexity decreases significantly and the performance is acceptable. The ISI channel
model, the criteria of the equalization algorithm and equalization algorithms will be

discussed in this chapter.



4.1 Design of Equalizer to Compensate ISI Channel

4.1.1 System model

As is well known, the equivalent discrete-time ISI channel can be regarded as a non-
recursive nonsystematic convolutional code with memory L and rate-1 [44], whose
channel coefficients h; may vary in time. Figure 4.1 shows the general model of serial
concatenated convolutional code with MSK over an ISI channel with the additive
Gaussian noise and the general transversal structure of the equalizer. The nonre-
cursive nonsystematic form of channel can also be considered as a tapped delay line
with tap spacing at symbol duration time T. The output y, from the ISI channel
will be the convolution sum of the modulator output s, and the channel impulse
response h,. Suppose the coefficients h;, 7 = 0,1, ..., L of the impulse response are
invariant during the period of one block length. The signal is assumed to be cor-
rupted by the addition of white Gaussian noise. Thus the received signal at time n

can be expressed as:

™ = Yn+tWn

L
Zh/z T Tin
=0
= h,® S+ (4.1)

where 7, is Gaussian noise with zero mean and variance 0%, ® represents the
convolution operation. Then the corrupted signals will enter the equalizer and the
output from the equalizer g, is fed to the iterative log-MAP Inner:Quter decoder

described in the previous chapters to obtain the estimate value 4.

As we mentioned earlier, equalization is an effective way of compensating for inter-
symbol interference in terms of complexity. In general, most of the channel char-

acteristics are unknown a priori and are time varying. Equalizer must track the
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Figure 4.1: General model of SCCC with MSK over ISI channel

time varying characteristics of the channel and adjust the coefficients cj accord-
ingly. These equalizers are called adaptive equalizers and are widely used in real
systems. Equalization techniques can be divided into two general categories - linear
and nonlinear equalization. These categories are determined from how the output of
an adaptive equalizer is used for subsequent control (feedback) of the equalizer [38].
In general, the equalizer output sequence g 1s processed by the decision making de-

vice at the receiver. The decision maker determines the value of the data sequence

being received and applies a slicing or thresholding operation (a nonlinear operation)



in order to obtain the estimated sequence. If the estimated sequence is not used in
the feedback path to adapt the equalizer, the equalization is linear. On the other
hand, if the estimated sequence is fed back to change the subsequent outputs of the
equalizer, the equalization is nonlinear. In terms of structures, there are two main
classes, transversal and lattice. For each structure, there are numerous algorithms
used to adapt the equalizer. Figure 4.2 provides a general categorization of the

equalization techniques according to the types, structures and algorithms used (38].

The most common equalizer structure is a linear transversal equalizer (LTE). A
linear transversal filter is made up of tapped delay lines, with the tappings spaced a
symbol period apart. We use LTE as our equalizer structure, as shown in Figure 4.1,
where there are 2K delay elements and 2K +1 equalizer taps with coefficients c; and
T is the symbol duration. Among the algorithms, the zero-forcing algorithm and
the Least Mean Square (LMS) algorithm are discussed in the following paragraph.

The Recursive Least-Squares (RLS) algorithm is not covered in this thesis.

The general operating modes of an adaptive equalizer include training and tracking.
First, a known, fixed-length training sequence is sent by the transmitter so that the
equalizer at the receiver may initialize to a proper setting. The training sequence
is typically a pseudo-random binary signal or a fixed, prescribed bit pattern that is
known by both the transmitter and the receiver. Following the training sequence,
the user data is sent. The equalizer utilizes the training sequence and a certain kind
of equalization algorithm to evaluate the channel and estimate filter coefficients to
compensate for the channel. Therefore, the filter coefficients are close the optimal
values for reception of user data after the training sequence is finished [45]. Since the
channel characteristics are changing over time, equalizers require periodic retrain-

Ing to adjust the coefficients in order to maintain effective ISI cancellation. These
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Figure 4.2: Classification of Equalizer

coefficients (or weights) are updated continuously by the adaptive algorithm, either
on a sample by sample basis or on a block by block basis, i.e., a specified number of
samples input to the equalizer. They are commonly used in digital communication
systems where user data is segmented into short time blocks. Time division multiple
access (TDMA) wireless systems are particularly well suited for these types of equal-
izers. For example, in GSM systems, equalization is performed at the receiver with
26 bits training sequence out of 156.25bits transmitted in the midamble of every

time slot [46].

However, the effective data rate of the communication link will be lowered by send-
ing the training sequence periodically to optimize the coefficients of the equalizer. In
many high data rate, bandlimited digital communication systems, the transmission

of a training sequence will be very costly or impractical. In some applications, for
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instance, no training signal is available in trying to intercept enemy communica-
tions. Another example is in a multi-user broadcast system. it is highly undesirable
for the transmitter to engage in a training session for a single user by temporarily
terminating its normal transmission to a number of other users [47]. Thus another
class of adaptive algorithms called blind equalization algorithms which do not rely
on training signals are developed. The self-recovering ability of blind equalizer is
very attractive to short burst formats used in existing wireless communication ap-
plications using Time Division Multiple Access (TDMA) technique such as [S-136,
GSM and packet data systems [48]. The objective of blind equalization is to recover
the unknown input sequence based only on its probabilistic and statistical proper-
ties. The cost function of the blind equalization algorithm, which implicitly involves
higher order statistics of the channel output, is different from that of the non-blind
one [47]. The most popular and effective blind equalization algorithm is the con-
stant modulus algorithm (CMA) which is used for constant envelope modulation
and forces the equalizer weights to maintain a constant envelope on the received

signal. Blind equalization algorithms are not covered in this thesis.

4.1.2 Criteria for equalization algorithms

The objective of the equalizer is to optimize the filter coeficients {c;} so as to
remove the IST as much as possible and thus reduce the probability of error. Since
the probability of error is a highly nonlinear function of {¢;}, so the probability
of error as a performance index for optimizing the tap weights of the equalizer is
impractical. The solution is to find a certain kind of criterion 2s a measure to adjust
the coefficients to their optimal values. Two criteria are widely used in optimizing
the equalizer coefficients {c,}. One is the peak distortion criterion and the other is

the mean square error criterion.
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4.1.2.1 Peak distortion criterion

The peak distortion is defined as the worst-case intersymbol interference at the
output of the equalizer. Suppose the discrete-time linear flter model having an
impulse response {h,} and an equalizer with an infinite number of taps having an
impulse response {c,}, a single equivalent filter is the convolution of {cn} and {An}

dn = cn®h11

= Y Cihny (4.2)
j=—0

The estimate gx output of the equalizer will be the convolution of the received

sequence ri and the equalizer impulse response c;:

% = Te®cCk
= (ye + ) ® ck
= (sk®@hp+m) Qck
= k@ ®@ck+ i Qck

= Sk @dr+ M Qg {(1.3)

Combining Equations 4.2 and 4.3, we get

oo
Gk = Z Cn " Tk-n

n=-o0o
o

o0
= ) sadent ¥ ke,

n=-x j=—o0

= Sgdy + andk_n + Z C5 M- (4.4)

n#k Jj=—cc

The first term in Equation 4.4 represents a scaled version of the desired symbol.

For convenience, we normalize dy to unity. The second term is the inter-symbol
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interference. Then the peak distortion is defined as the peak value of the interference,

which can be represented as

Ae) = ) ldaf
> by

1=

(4.3)

n=—oo,n=0

With an equalizer having an infinite number of taps, it is possible to select the tap
weights so that A(c) = 0, ie., d, = 0 for all n except n = 0. From Equations 4.4
and 4.5, we infer that the inter-symbol interference can be completely eliminated.

The value of the coefficients are determined from the condition:

b = Y Gha,

However, infinite length equalizers are not available in real systems. Since ¢, = 0
for || > K, the convolution of {hn} with {c.} is zero outside the range —A" < n <
K + L. The peak distortion for equalizer with 2K + 1 coefficients and channel with

L +1 tap weights is:

Ae) = D |dal

Although the equalizer has 2K + 1 adjustable parameters, there are 2A" + L + 1
nonzero values in the response {d,}. Therefore it is generally impossible to com-

pletely eliminate the inter-symbol interference at the output of the equalizer. There
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is always some residual interference when the optimum coefficients are used. Zerc-
forcing equalization algorithm is based on the minimization of peak distortion ar

the output of the equalizer.

4.1.2.2 Mean Square Error (MSE) Criterion

In the MSE criterion, the tap weight coefficients {c,} of the equalizer are adjusted

to minimize the mean square value of the error
Sk =Sk — Gk

where s is the signal output from the modulator transmitted in the kth signalling
interval and g is the estimate of the corresponding symbol at the output of the
equalizer. When the signal sequence {s;} is complex-valued, the performance index

for the MSE criterion is defined as:
r = E lSk|2
= Elsk— g :
If the information symbols are real-values, the performance index is simply the
square of the real part of ex. In either case, [ is a quadratic function of the equalizer
coefficients {c;}. In our case, the input signals {sx} are complex-valued. The Least

Mean Square algorithm is based on the minimization of the mean square error at

the output of the equalizer.

4.1.3 Zero-forcing algorithm

In the peak distortion criterion, the peak distortion .\. is minimized by selecting

the equalizer coefficients {ck}, assuming {ci} is real. In general, there is no simple
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computational algorithm for performing this optimization. Here we discuss a special

case where the peak distortion at the input to the equalizer, defined as

1 X
o =g ; |l

is less than unity. Under this condition, the distortion A. at the output of the
equalizer is minimized by forcing the equalizer response d, =0 for 1 < |n| < K, and
dp = 1. In this case, the computational algorithm leads to a zero-forcing algorithm.
Assume that we have an equalizer with 2K + 1 taps and L + 1 channel co-
efficients. The solution for the zero-forcing algorithm is achieved by forcing the
cross-correlation equation function between the error sequence = = sy — g and
the desired information sequence {s} to zero for shifts in the range 0 < |n| < K.
Since the signal sequence at the input of the equalizer is complex-valued, we take

the expectation of ¢, and the conjugate of s; and get

E(sk-Sim) = E[(sk—a)-sim]

= E iS¢ Si_m— 0k Siom) m=-K,.,K (46)

where * denotes the conjugate operator. From the Equations 4.1 and 4.4 in Section

4.1.1, we have

In addition, we assume that the symbols {s;} are uncorrelated and normalized to

unity, i.e.,

0 k#J



and also the sequence {si} is uncorrelated with the additive noise sequence {m;},

Le., E(s; -n;) =0. Then we can derive

K
E (fk ) SI‘c—m) = E l:sk ) sl::-m - ('Z G- Tk—j) : S;_m]

=—K
K L
= E (sk . sl‘c—m) - E{ Z Gj- [Zh'l *Sk-j-1 T m‘-‘i} : sl.c—m}
==K i=0
K L
= Jm - E{ Z G- [Zh‘l " Sk—j-i~ s;—m T g Sl.c-m:, }
1=—-K =0
K L
= dn= ) - {Zh,E [Sk-jmi Sim] + E {Uk-J'SZ-m]}
1=K =0
K L
= On— 3 ¢ Y hiE[sejoiSi_m] (4.7)
=K  i=0

Only when j 4+ ¢ =m, or i = m — j, there is an impulse response. Then Equation
4.7 becomes
K
E(sk-Sim) = Gn— D ¢ hm

=k
O — dm m=-K,..K (4.8)

From Equation 4.8, we may derive dy = 1 when m =0 and d,, = 0 for 1 <|m| <K,

which means the required condition E (g - Si_m) can be satisfied.

4.1.4 LMS algorithm

In the minimization of the mean square error (MSE) described in subsection 4.1.2.2,

we found that the optimum equalizer coefficients can be determined from the solution

of a set of linear equations. This will be discussed in the following paragraph.
Assuming that we have an equalizer with 2K + 1 taps {ck} and L +1 channel

coefficients and the input signal sequence at the equalizer is complex-valued, suppose
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{ce} is real. Then the mean square error is

I = Elsk—Qk|2
= E((sk—qx)- (sx — qt)]

= E(sk-s;)+E(ak-a5) — E(sk-qf + 5% - qi) (4.9)

which is the function of the equalizer coefficients. To minimize T, it is required to

set the derivative of Equation 4.9 with respect to the coefficients {¢,} to zero, ie.,

g_ _ a [E (Sk - 32)] + 0 [E (Qk i ql:)] _ a[E (sk ) ql: + g - Qk)] (410)

de; dc; dc; dc;
=0 1=-K,..,K

In Equation 4.10, signal sequence {s;} is not a function of ¢; so the derivative of
(sk - sz) in terms of ¢; will be zero. We may exchange the expectation operation and

the derivative operation in Equation 4.10. Thus we obtain

Oqx Oq; Oq; 9qx
Elg- =% +gq- —FE(sp- =2 +s1- 221 =0 411
[qk ac T4 g, " 5e T 5 (4.11)
Since
K
Qx = Z Cj " Tk-j
j=-K
and
K
4 = Z Cj * Th—go
jJ=—K
we get
gk dq;,
9% _ . 9% _ s 4.12
ac‘ rk aq rk—z ( )

Then Equation 4.11 becomes

%
E ['Z Cy - (rI:—j *Tk—o + Thk~g " T,:_l-) =F [Sk - T',:_l -+ S,: - T'k-,]

==&
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le.,
K
Z ¢j-E [7”;:_, "Tk—i + Tk—j - r;—i] =E [sk Thit Sk Tkmi] G j=-K,..K
j=—K

(4.13)
Writing the above equation in detail, we get
(
Cc_kx -2ReFE [T;:+K7'k+K] +---+cxg-2ReFE [TZ_KT/:+K] = 2ReF [sk . r;+K]
-k - 2ReE [t} (Tksr-1) + - +Cx - 2ReE [ry_yTeoro1] = 2ReE [sg-Tig_y]

¢k -2ReE [t} xTk-k+1] + - +Cx - 2ReE [ri-kTk-k+1] = 2ReE [sk- Th-ks1)

c_k -2ReE [rp gTi-x| + -+ +cx - 2ReE [ri_gTk-k] = 2ReE [si-ri_]

(4.14)
where r; and si are the received sequence and the training sequence at time instant
% in the training mode. The optimum equalizer coefficients can be determined from
the solution of the set of linear equations. Let 4 and B represent the matrix of the
left-side and right-side of the Equation 4.14, respectively. Thus Equation 4.14 may

be expressed in matrix form as
AC=B (4.15)

where A is the (2K + 1) x (2K + 1) matrix of the autocorrelation of the received
signal samples {r}, C is the column vector of (2K + 1) equalizer coefficients, and
B is a (2K +1)-dimensional column vector of cross-correlation of the received signal
samples and the training sequence samples through the channel. Therefore, we may

get Cope by inverting the matrix A

To avoid the high computational complexity of the matrix inversion, an iterative

procedure may be used in real systems. Steepest descent is one method to be used
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in the iterative procedure. The purpose of the steepest descent method is that
each tap weight will change in the direction opposite to its corresponding gradient

component expressed as

c§n+” =c;»‘ —uVC; n=20,1,2,..
j=-K,..K
where the gradient component is
v. = &L
J 6Cj
ad [E lsk b qk|2]
- aCj
_ O[E (st — q&) - (sz — q;)] (4.16)
ac]- ’ ’

From Equation 4.12, the gradient component becomes

Veo = E[qe-Th, +05 Thej — (sk - iy + 5% - o)

= 2Re [E (Qk - r;_]‘ — Sk - rl:-j)]

p 1s a positive number chosen small enough to ensure the convergence of the iterative

procedure.
The second derivative of the mean square error I is

0°C  O{E(a-ri;+at re—s— (se-Ti_j+ 5% -7%-5)] }
acj‘; - aCj

= F (rk_j Teej T Thoj rk_J)

= Elre,]? >0 j=-K,. K

So we can use steepest descent method since the objective function, i.e., mean square

erTor is convex.

In real systems, the choice of x should satisfy the inequality

O<u<

nar
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to ensure the convergence of the recursive procedure, where Anq, is the largest
eigenvalue of A4 in Equation 4.15 [2].

In practice, the channel response is unknown, so the cross-correlations given
by Equations 4.6 and 4.13 are also unknown. The problem can be solved by trans-
mitting a known training sequence periodically to the receiver, which can be used
to estimate the cross-correlation by utilizing time averages instead of the ensemble
averages. In many applications, the channel is not only unknown, but also time-
varying. Therefore the coefficients of the equalizer should be adaptively adjusted to
track the change of the channel. The equalization algorithms described above are

adaptive algorithms and suitable for the case of a time-varying channel.

4.2 Simulation results

In this section, we will give some simulation results and analysis of SCCC with MSK
over ISI channel. The system model is shown in Figure 4.1. The outer encoder is a
recursive systematic code with code rate R, = 1/2 shown in Figure 3.6. The inner
encoder is coded minimum shift keying modulation with code rate R; = 1/2. The
bandwidth efficiency is 1/2 bps/Hz. The signal sequence output from the inner MSK
modulator will go through the IST channel with 3 tap weights and will be corrupted
by additive Gaussian noise. We choose a 3-tap channel model of Stanford University
Interim (SUI-3) for broadband wireless applications described in [49]. We calculate
the attenuation factors according to the power parameters given in [49] and obtain

the tap weights as

h= [\/0.7060 V02310 \/0.0729} .

The total mean power is normalized to 1. e assume that the channel impulse

response does not change during a data block. The corrupted signal sequence will
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enter the equalizer first. Then the estimated output from the equalizer will be
passed to the inner and the outer decoder to obtain the estimates of the original
information. Zero-forcing equalizer and least mean square (LMS) equalizer are used
in our simulations. Iterative log-MAP decoding algorithm is emploved as described
in Chapter 3. The block length is 1024 and the number of iterations is 8 in all
simulations. Random interleaver is used between the outer and the inner encoders.

The training sequence will be sent every block and the coefficients of the equalizer

will be adjusted accordingly.

Zero-forcing equalization algarithm, block length=1024

Bit Error Rale

Ts=20
Ts=60
© Ts=100
H - D Ts=200 1
- _noequaIiZer .-.....‘......~--v.....7 ......... \l ............................................
-5 | lteration=8 Y
1
3 35 4- 4.5 5 5.5 6 6.5 7 7.5
Eb/No in d3

Figure 4.3: Performance of zero-forcing equalization algorithm over ISI channel
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Figure 4.3 and 4.4 show the performance using zero-forcing equalization algorithm
and least mean square algorithm for different training sequence lengths. The per-
formance improves as the training sequence length increases from 20 to 200 for both
algorithms. Since we use time averages instead of ensemble av;erages, longer length
of the training sequence means more samples can be utilized by the receiver to
acquire more accurate estimates of the optimal value of the equalizer coefficients.
In our simulations, the performance improves about 1.5dB at BER of 10~° as the
training sequence length increases from 20 to 60. However, there is no significant
improvement when increasing the length of training sequence over 60, e.g., less than
0.1dB improvement for the length of 100 training symbols compared to 60 training
symbols. Since there are three tap weights in the ISI channel model, the number
of the equalizer coefficients we use in our simulations is 3. Only a small margin
of improvement can be obtained by excessive samples and it will decrease the data
transmission efficiency. Table 4.1 shows the data efficiency under different number of
training symbols with the same block length 1024. From our simulations, 60 training
symbols is a good compromise between the performance and the data transmission

efficiency for both algorithms.

| Length of T'S | Percentage of TS over block length | Data eficiency |
20 1.95% 98.05%
60 3.86% 94.14%
100 9.77% 90.23%
200 19.5% 80.5%

Table 4.1: Data efficiency with different number of the training symbols
T'S- Training Symbols

Figure 4.5 shows the performance comparison of zero-forcing algorithm and least
mean square algorithm. The solid lines and dashed lines represent the performance

of LS algorithm and zero-forcing algorithm, respectively. For training symbols of
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Least mean square equalization algorithm, block length=1024
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Figure 4.4: Performance of lease mean square equalization algorithm over ISI channel

60, the performance of a system using LMS algorithm is about 0.3 dB better than one
with zero-forcing algorithm at BER of 10~° under the same conditions. Since zero-
forcing equalizer design does not take into account the effect of additive noise, it will
enhance the noise power while eliminating the inter-symbol interference. In contrast,
least mean square algorithm based on mean square error criterion overcomes the
drawback of zero-forcing algorithm by minimizing the combined power of both the
IST and the additive noise at the equalizer output. Least mean square algorithm has

better performance than zero-forcing algorithm.



Comparison of zero-forcing and Ims algorithm, block length=1024
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Figure 4.5: Performance comparison of zero-forcing and least mean square aigorithm

4.3 Summary

In this chapter, the equalizer design for serial concatenated convolutional code with
minimum shift keying modulation over inter-symbol interference channel is inves-
tigated. The ISI channel model is important for wireless communication svstems
since the performance will degrade significantly if there is no compensation for the
ISI channel. Equalization has been identified to be an effective method to reduce

the influence of the ISI.

The two commonly used criteria, peak distortion criterion and mean square error cri-
terion were discussed. Two adaptive equalization algorithms, zero-forcing algorithm

based on the peak distortion criterion and least mean square algorithm based on
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the mean square error criterion were studied. Simulation results show that (1) the
number of training symbols has impact on the performance and the number can be
chosen to have a good trade-off between the performance and the data transmission
efficiency; (2) least mean square algorithm has better performance than zero-forcing
algorithm since both the effects of Gaussian noise and ISI are minimized at the

equalizer output.

|
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Chapter 5

Conclusions

In this thesis, the performance of serial concatenated convolutional code with mini-
mum shift keying modulation over AWGN channel and ISI channel have been inves-
tigated and analyzed. To reduce the decoding complexity of SCCC with bandwidth
efficient M-ary modulation techniques, a converting algorithm which generates soft-

decision values of the coded bits is proposed.

The principles of designing SCCC, such as encoder structure, interleaver types,
iterative optimal and sub-optimal decoding algorithms have been introduced. In
wireless communication systems, minimum shift keying modulation technique has
been widely used. Based on these design criteria, combining SCCC with MSK
modulation as an inner code over AWGN channel has been identified to be valid

and it has comparable performance to the turbo code.

For ISI channel caused by limited bandwidth, multipath propagation and motion,
which can distort the transmitted signals severely, it is important to find a feasible
way to reduce the effect of ISI. Two popular equalization algorithms, zero-forcing

and least mean square algorithms are employed in the linear equalizer at the receiver
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to do the compensation. Simulation results show that the performance can be
improved dramatically by using equalization algorithms, and that the least mean

square algorithm results in better performance.

For future work, instead of using equalization, combining the inner encoder and ISI
channel to form a super trellis and decoding it as the inner code may be further
studied. By using good estimation algorithms of channel state information, better
performance may be achieved. In additfon, in some applications, such as high data
rate bandlimited systems, where training sequence is either costly or impractical,
it is desired to use blind equalization algorithms that do not rely on the training

sequence. Blind equalization algorithms may be further investigated.
The contributions of this thesis include:

1. To reduce the decoding complexity, we have applied a low complexity converting
algorithm to transform the probability distribution of non-binary symbol to the
probability distribution of binary one in serial concatenated convolutional code with

bandwidth efficient transmission M-ary PSK modulation.

2. For the first time the performance of SCCC with minimum shift keying over
intersymbol interference (ISI) channel is investigated and studied. To minimize the
BER performance, the optimal decoding algorithm is to combine the inner code
and the ISI channel to form a supertrellis and decode it using MAP algorithm. In
practice, sometimes it is desirable to sacrifice optimality for computational efficiency.
We use equalization algorithm to compensate for the effect of ISI to achieve a good

trade-off between complexity and performance.
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