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Abstract

An Integrated FEC/ARQ Scheme for Reliable Multicast

over the Internet

Nasser R. Shayan

The requirement of reliable communication protocols is that all the intended
receivers of a message receive it unimpaired and complete. Automatic Repeat Request
(ARQ) techniques are used in unicast protocols. The main advantage of this scheme is
bandwidth conservation because no redundant packets are transmitted. ARQ based
protocols do not scale well to multicast protocols with large groups of receivers.
Effectiveness of retransmissions is reduced since losses tend to become independent and
the advantage of conserving bandwidth does not hold. Forward Error Correction (FEC) is
another method for loss recovery. Redundant packets are sent together with regular data
packets from the sender to the receiver. Depending on how many packets are lost it may
be possible to recover missing packets based on the received ones. However, FEC alone
does not provide complete reliability. But combining FEC with ARQ results in
significant improvements for reliable multicasting.

In this thesis we have implemented a code that integrates FEC with ARQ-based
technique. We have performed the test of our proposed QOS scheme in the laboratory.
The communication between two PCs was tested using this hybrid FEC/ARQ technique
while network impairments such as packet drops were applied by a network impairment
emulator. The performance of the system was studied. We have also simulated a
multicast environment where our QOS techniques were used. The scheme was applied to
a network consisting of different multicast flows. Various cases such as independent and
shared losses for homogeneous receivers and also heterogeneous receivers were
considered. Effect of using NAK implosion avoidance mechanism was also studied. Then
behavior of the network considering queuing delays and losses due to buffer overflow
was observed. In the end, the results were compared to ARQ based technique and

improvements obtained by our proposed scheme were determined.
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Chapter 1

Introduction

Many applications that use multicast communication have been developed in the recent
years. These applications span an entire spectrum in terms of reliability and end-to-end
latency requirements. Some of these applications, e.g. audio or videoconferencing tools
tolerate segment losses with a relatively graceful degradation of performance. Others
such as electronic whiteboards, electronic newspapers or distribution of software have
instead more strict requirements and require reliable delivery of data. Thus they would
greatly benefit from an increased reliability in the communication.

Reliable data transfer in computer communications is generally achieved by
implementing reliability at different layers in the protocol stack, either at the link layer, or
using end-to-end protocols like TCP at the transport layer, or directly in the application.
The fundamental basis of achieving reliability is loss recovery. To recover from loss two
well known techniques exist. First, automatic repeat request (ARQ) [1,2] that is generally
used in unicast protocols: missing packets are retransmitted upon timeouts or explicit
requests from the receiver. Possible retransmissions for several times will incur high
latency. Also in multicast communication protocols ARQ might be highly inefficient
because of uncorrelated losses at different groups of receivers. With the second

technique, forward error correction (FEC) [2,22,23), sender prevents losses by



transmitting some amount of redundant information cailed parity along with the original
data, which allow the reconstruction of missing data at the receiver without further
interactions if the amount of lost original data is not more than received parity data. FEC
by itself cannot provide full reliability. But when coupled with ARQ, FEC can be used to
produce inherently scalable reliable multicast transport protocols. If FEC is introduced as
a separate layer below ARQ layer, it causes reducing probability of packet loss and as a
result reducing number of packet retransmissions and network bandwidth requirements.
If integrated with ARQ in the same layer, FEC will have very high repair efficiency and,
therefore substantially reduces network bandwidth requirements of an application
requiring reliable multicast data transport.

In this thesis, we first implement a code based on our integrated FEC/ARQ
scheme and test it in network laboratory of Ecole de Technologie Supérieure (ETS),
Montreal on two PCs communicating as a sender/receiver pair while a network
impairment emulator PC applies errors and erasures to the transmitted packets. The
scheme is receiver initiated i.e. the sender does not keep track of the state of receivers.
The receivers send negative acknowledgements (NAKSs) to the sender when the number
of lost original packets are more than received parity packets. The performance of the
experimental system is studied at various conditions such as flow rate and packet loss. It
is seen that the code performs satisfactorily and reliable communication is achieved using
the developed code. Then our scheme is expanded and applied to a hypothetical multicast
network consisting of multicast flows with various topologies and different number of
receivers. Simulation results show that the integrated FEC/ARQ scheme makes more
efficient use of network resources than an approach solely based on ARQ even when
losses are correlated and shared and also it is seen that adding FEC increases reliability
and scalability.

The rest of the thesis is organized as follows. The remainder of this chapter gives
an introduction to multicast communications and also a brief overview of FEC based
reliable multicast protocols. Chapter 2 considers the test and performance of our
implemented code on two PCs in ETS network laboratory. The focus of chapter 3 will be
on multicast network performance in presence of independent or shared losses for

homogeneous receivers as well as flows with heterogeneous receivers. The performance



is studied with and without NAK avoidance mechanisms. Also, behavior of our

hypothetical multicast network considering queuing delay in routers while packet losses

are caused by router buffer overflow (congestion), is studied. Conclusions are drawn in

chapter 4.

1.1

Multipoint Communications

Many emerging Internet applications are one-to-many or many-to-many, where one or

more sources are sending data to multiple receivers [1]. Transmission of data to multiple

receivers can be done in three different ways as follows:

1.

Unicast [2]. In multipoint unicasting, a source sends an individual copy of a
message to each recipient (Figure 1.1). This technique is easy to implement but
suffers from significant scalability restrictions if the group is large. The number of

receivers is also limited by the sender’s bandwidth.

Broadcast [2,3]. In a broadcast design, applications can send one copy of each
packet and address it to a broadcast address. One significant feature of broadcast
is to relieve the source from the task of duplicating any packet that is addressed to
multiple receivers. If this technique is used the network must either stop
broadcasts at local area network (LAN) boundary (as is frequently done to prevent
broadcast storms) or send the broadcast everywhere which will reduce the
available bandwidth to a large extent if only a small group actually needed to see
the packets.

Multicast [3]. Multicasting falls between unicast and broadcast. Rather than send
data to a single host (unicast) or to all hosts on a network (broadcast), with a
multicast design, applications can send one copy of each packet and address it to
the group of recipients (the host group) that explicitly want to receive it. Multicast
is a receiver-based concept. Receivers join a particular multicast session group
and traffic is delivered to all members of that group by the network infrastructure.
The sender does not need to maintain a list of receivers. Only one copy of a
multicast message will pass over any link in the network, and the copies of the

message will be made only where paths diverge at a router (Figure 1.1). Thus [P



multicast yields many performance improvements and conserves bandwidth end-

to-end.

a. With unicast, for every packet b. With multicast, sender only
sender transmils as many copies as transmits a single copy of a packet
number of receivers. regardless of number of receivers.

Figure 1.1:Comparison of Multicast and Muitiple Unicast

1.2 Multicast Applications

Many kinds of applications have already been developed to use multicast. Some of which
cover multicast requirements of LANs and small networks. Some other were developed
based on the needs of wide area multicasting made feasible by deployment of internet
multicast backbone (Mbone) [2]. However, many of these can be divided into three broad
categories based on reliability and latency [3,8]. On one end of the spectrum are
interactive real time applications such as conferencing with stringent latency
requirements. The typical latency requirement for this type is in the order of 100 ms. This
type of applications can tolerate some loss because of the inherent redundancy in audio
and video data. On the other hand of the spectrum are reliable multicast applications,

such as document distribution or software distribution that require 100 % reliability.



Latency is not as critical for these applications as for the interactive real time
applications. The third category of multicast applications falls between the two extremes
in the sense that they have reliability requirements not as rigorous as reliable multicast
applications, while their latency requirements are less stringent than the interactive real
time applications. These are one-way non-interactive real time streaming applications
such as streaming music or movie. Figure 1.2 shows categories of multicast applications
based on their reliability and latency requirements. Some more examples of multicasting
are web server replication, distribution of stock quotes and billing data, distance learning,
distributed database applications, corporate messages and files and software updates sent
to the staff.

Interactive Streaming Reliable Multicast
4 Applications  Applications Applications

ARRRRARA

0.2 2
End to end latency (S)

8

Reliability (%)

Figure 1.2: Categories of Multicast Applications Based on
Reliability and Latency Requirements

1.3 IP Multicast and Data Link Layer Multicast [4,5]

Multicast can be implemented at both the data-link layer and the network layer. Ethernet
and FDDI [2], for example, support unicast, multicast and broadcast addresses. An
individual computer can listen to a unicast address, several multicast addresses, and the
broadcast address. Token Ring also supports the concept of multicast addressing but uses
a different technique. Token Rings have functional addresses that can be used to address

groups of receivers.



If the scope of an application is limited to a single LAN, using a data-link layer
multicast technique is sufficient. However, there are many multipoint applications that
are not limited to a single LAN.

When a multipoint application is extended to an internet consisting of different
networking technologies, such as Ethernet, Token Ring, FDDI, ATM, Frame Relay and
SMDS, it is best to implement multicast at the network layer.

1.4 IP Multicast Delivery and Groups [4]

[P multicast as an extension to the IP network-layer protocol is described in RFC 1112
[5] as: “ the transmission of an [P datagram to a ‘host group’, a set of one or more hosts
identified by a single IP destination address. A multicast datagram is delivered to all
members of its destination host group with the same ‘best-efforts’ reliability as regular
unicast [P datagrams. The membership of a host group is dynamic; i.e.; hosts may join
and leave group at any time. There is no restriction on the location or number of members
in a host group. A host may be a member of more than one group at a time.” In addition,
at the application level, a single group address may have multiple data streams on
different port numbers, on different sockets, in one or more applications. Multiple

applications may share a single group address on a host.

1.5 Network layer requirements for multicasting

1.5.1 Addressing [2,6]

A network-layer address is needed to be used for communicating with a group of
receivers rather than a single receiver. For this purpose, Class D addresses of IP address
space that is reserved for multicast traffic is used (Figure 1.3). Classes A, B and C are
used for unicast traffic. In addition, there must be a mechanism for mapping the I[P
address onto data-link layer multicast addresses where they exist.

4b 28b
L 1L10] Multicast Address ]

Figure 1.3: [P Class D Address for Multicast



1.5.2 Dynamic Registration [3,4]

There must be a mechanism for a host to communicate to the network that it is a member
of a particular group. Without this ability, the network cannot know which sub-networks
need to receive traffic for each group. RFC 1112 defines the Internet Group Membership
Protocol (IGMP). IGMP specifies how the host should inform the network that it is a
member of a particular multicast group. IGMP main ideas are as follows.

In order to determine if any hosts on a local subnet belong to a multicast group,
one IGMP-capable router per subnet periodically broadcasts an IGMP Host-Membership
Query message on its subnet. If a host on the subnet is a group member, a random timer
is set to send one IGMP Host-Membership Report. When the timer expires, the host
multicasts the Host-Membership Report to the group members (not broadcast to all hosts
on the subnet). Now the router which subscribes to all groups, knows that there is a
member on its subnet listening to a given group. Other group members on the subnet
cancel their timers and do not transmit the scheduled IGMP Host-Membership Report. A
host is not needed to explicitly inform the router when it leaves the group. When the
router sends the next IGMP Host-Membership Query, if the router does not receive any
IGMP Host-Membership Report it knows that there is no member left in its subnet for
that specific group.

1.5.3 Multicast Routing [6]

The network must be able to build packet distribution trees that allow sources to send
packets to all receivers. A primary goal of these packet distribution trees is to ensure that
each packet exists only one time on any given network (that is, if there are multiple
receivers on a given branch, there should only be one copy of the packets on that branch).
Since the number of the receivers of a multicast session might be very large, the sender is
not to know all the relevant addresses. Instead network routers should translate multicast
addresses to host addresses. The basic principal in multicast routing is that routers
interact with each other and exchange information about neighboring routers. For each
physical network one router is selected (via IGMP) so that effort duplication is avoided.

Selected routers make a spanning tree (Figure 1.4) that covers all members of a multicast



group. There is maximum one connection between every pair of routers and the tree is
loop free. If each router knows which of its links are in the multicast tree, it can generate
only the required copies of incoming multicast message and send them to its outgoing
branches. Messages are only replicated when the tree branches, so minimum copies of
them are transmitted through the network. The spanning tree must be dynamically
updated in order to consider joining or leaving of members of a group at any time.
Branches with no group members are discarded (pruned). Each router joins the multicast
tree based on the network layer source address of the multicast packet and prunes it based
on the packet network layer destination (multicast) address. How routers interact with
each other and which spanning tree algorithm is used, depends on the goals of routing
protocol. Various routing protocols have been developed with different features and

objectives as given in the next section.

1.5.4 Multicast Routing Protocols [7]

Multicast routing protocols can be categorized into two types depending on the
distribution of members of multicast groups. For the first type, it is assumed that the
multicast group members are densely distributed throughout the network and bandwidth
is almost unlimited. These dense mode protocols periodically flood the network to setup
and maintain multicast trees. Distance Vector Multicast Routing Protocol (DVMRP),
Multicast Open Shortest Path First (MOSPF), and Protocol-Independent Multicast-Dense
Mode (PIM-DM) [7] are dense-mode routing protocols. For the second type, group
members are sparsely distributed and the network bandwidth is not necessarily widely
available. Flooding the network in this case will waste network bandwidth, so more
selective techniques have to be used by sparse-mode multicast protocols to setup and
maintain multicast trees. Core based Trees (CBT) [6,7] and Protocol-Independent
Multicast-Sparse Mode (PIM-SM) [7] are sparse-mode routing protocols.



a. A Subnet b. Spanning Tree
Routed at RT1

Figure 1.4: Spanning Trees

1.6 Transport Layer Multicast Protocols

End-to-end use of multicasting requires protocols for the transport of data as well as
application-level protocols. Generally there are two types of these protocols. First groups
are protocols developed for real-time multimedia data, like, audio, video or simultaneous
data delivery such as Real-Time Transport Protocol (RTP) and its associated protocol,
Real Time Control Protocol (RTCP). Second group are Reliable Multicast Protocols that
provide reliable data delivery to multicast groups. These will be discussed in more detail

in next section.
1.6.1 Reliable Muiticast Protocols [8]

General data delivery using generic protocols is accomplished via IP and UDP, leading to
unreliable delivery. This is unsuitable for many applications that can use multicasting.
Therefore, other protocols have to be designed to add reliable delivery to multicasting.
Reliable multicasting brings with it a series of problems such as, (a) the possibility that
feedback from receivers might overwhelm a source (a feedback implosion, Figure 1.5);

(b) how lost packets are recovered; and (c) the different requirements that different



multicasting applications can impose. Many reliable multicast protocols have been
evolved out of necessity for solving specific problems and satisfying the needs of
different applications. Therefore, their design criteria have been different. In spite of
these differences several unique features can be used to group most of these apparently

different protocols as follows:
a. Unicast-emulation protocols

Refiable multicast is implemented as an abstract form of unicast by these
protocols. Both flow-control and error-recovery are sender based. Receivers send
their retransmission request (NAK) to the sender and the sender retransmits them.
Flow control is based on the feedback from the receivers. Two important
protocols in this group are Xpress Transport Protocol (XTP) [9] and Single
Congestion Emulation (SCE) [10]. SCE uses all features of TCP, i.e.

flow/congestion control, error recovery and connection establishment.
b. Cycle-based Protocols

A file is divided into a sequence of fixed size packets such that each packet has a
unique identifier (e.g. a sequence number) and the whole file is transmitted to all
the receivers of a multicast group. After a transmission cycle, retransmission
cycles start in which the receivers send the list of missing packets to the sender
and the receiver retransmits them. IMM protocol [1], MFTP [12] and RMTP [13]
are examples of these protocols. However, details of how flow/congestion control
or how error control is done are different. IMM protocol is modified and
completed by using forward error correction and NAK suppression using a timer

based mechanism to avoid NAK implosion. This protocol is called MDP [14].
c. Tree based protocols

These protocols use divide and conquer policy. The recipients are grouped into
local regions or domains with a representative called Designated Receiver (DR).

The local regions are organized in a hierarchical tree structure. The receivers in a
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local region send their requests for missing packets to their DR and the DR sends
the missing packets to the receivers in the local region. If the DR does not have
the requested packets, it requests them from the higher level DR until it reaches
the sender. This approach reduces end-to-end latency by using local regions and
solves the problem of NAK implosion by design, and therefore scales well in a
wide area network where members are widely distributed. The protocols
belonging to this group are RMTP, TMTP [15], LBRM [16], LGMP [17] and
LORAX [18). However these protocols differ in some details. Unlike other

protocols in this category, LORAX is a many to many reliable multicast protocol.
Group communication protocols

These category of protocols provide different ordering and delivery semantics to
the applications. Most of them provide total ordering across multiple senders,
while some of them even provide k-resilient or majority-resilient delivery
semantics. Reliable Broadcast Protocol (RBP) that belongs to this category was
designed for local area broadcast networks. RMP [19] extended RBP for using it
in a wide area network. RMP uses a TCP like flow/congestion control mechanism
which relies on slow start, additive increase and multiplicative decrease of the
sender’s window, and also provides a group membership protocol to keep track of
dynamically changing set of members. Scalable Reliable Multicast (SRM) [20]
fits into this category of protocols for sharing documents among group members.
However it does not provide order in delivery. This improves latency when the
reliable delivery is much more important than the order of delivery. SRM is a
NAK based protocol in which the receivers multicast NAKs to ali group members
and a timer-based mechanism is used to reduce the number of retransmissions

sent for the same lost packet.
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Figure 1.5: A Feedback Implosion

There is a classification for reliable multicast protocols based on how the different
protocols adjust their memory allocation window (MW) and the congestion control
window (CW). The memory allocation window is related to releasing of buffer associated
with a block of data while the congestion window is associated with the rate of

transmissions or retransmissions.
1. Sender-initiated protocols

In the sender-initiated protocols (Figure 1.6.a), the sender maintains the state of
all receivers. Receivers send acknowledgements (ACKs) directly to the sender
and after receiving ACKs from all the receivers the sender can decide to advance
the memory allocation window (MW). These protocols suffer from ACK-
implosion problem i.e. the sender has to process a great number of ACKs and this
increases sender’s processing load. XTP is an example of a sender-initiated

protocol.
2. Receiver-initiated protocols

Receiver-initiated Protocols do not keep track of the receivers (Figure 1.6.b).
Receivers send negative acknowledgments (NAKs) to the sender if they miss a

packet. The sender retransmits the missing packet. In this scheme, if each receiver

12



sends a NAK to the sender, there will be a NAK implosion at the sender. There is
a modification to this protocol that avoids NAK implosion. If a receiver detects a
missing packet it schedules a timer. If the receiver hears a NAK before its timer
expires, it cancels its timer. Otherwise it multicasts a NAK after expiration of its
timer. This modified version of receiver-initiated protocol is named receiver-
initiated with NAK avoidance (RINA) protocol. There is no mechanism for
memory allocation window (MW) in these protocols since the sender has no idea
when it is suitable to de-allocate the buffer space. However, the pacing of the
receivers and retransmission mechanism i.e. adjustment of congestion window
(CW) is done in a scalable and efficient manner. SRM is one of the protocols
belonging to this category. Scalability [21] for SRM is achieved by NAK
avoidance and application level framing.

Tree-Based protocols

[n these protocols, the receivers are organized in a tree such that the sender is at
the root of the tree, the receivers are at the leaves and the domain representatives
are at the intermediate points of the tree. Domain representatives (DRs) represent
a group of receivers or a domain and are also organized in a hierarchical manner.
Sender is the highest level DR. In these protocols, the receivers send status
messages (ACK+ bitmap or ACK+ NAK) to the corresponding DR. The
sender/DR moves the congestion window (cw) based on the ACKs and
retransmits missing packets based on the NAKs. RMTP, LGMP, TMTP belong to
this category. Tree based protocols are optimized by using NAK avoidance
scheme of the RINA protocols. These protocols are named Tree-NAPP because
they combine NACK avoidance and periodic polling with the basic tree-based
organization of the receivers. TMTP belongs to this group of tree-based protocols
(Figure 1.6.c).
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4. Ring-Based protocols

Ring-Based protocols (Figure 1.6.d) arrange the receivers in the form of a ring (on
the contrary to the sender-initiated and RINA protocols which assume a flat
organization of receivers). One of the receivers at any instant of time is designated
a token site. The token site is responsible for sending ACKs back to the sender.
The token site retransmits the missing packets. The token is passed to the next
receiver in the ring when the next receiver has received all the packets that the
current token site has received. Once the token is passed, the token site can move
the memory allocation window (mw). Adjustment of the congestion window (cw)
is done either by token site or by the sender. RMP and TRP are examples of this

group of protocols.
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Figure 1.6: Different Classes of Reliable Multicast Protocols
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1.7 FEC Based Reliable Multicast Protocols

Reliable data transfers among communicating parties is usually achieved by
implementing reliability at different levels in the protocol stack, either on a link-by-link
basis (e.g. at the link layer), or using end-to-end protocols at the transport layer (such as
TCP), or directly in the application. The fundamental basis of reliable multicast protocols

is loss recovery. There are traditionally two different ways of recovering missing packets:

1. Automatic repeat requests (ARQ)

2. Forward error correction (FEC)

1.7.1 Automatic Repeat Request (ARQ)

These techniques are generally used in unicast protocols. Missing packets are
retransmitted upon timeouts or explicit requests from the receiver. When the bandwidth-
delay product approaches the sender’s window, ARQ might result in reduced throughput.
The main advantage of this scheme is bandwidth conservation because no redundant
packets are transmitted. However, the disadvantage of retransmission-based recovery
mechanism is the increase in end-to-end latency because at least a round-trip elapses
between the time a receiver sends a retransmission request and actually receives the
transmitted packet from the sender. In case of multicast even the advantage of conserving
bandwidth may not hold if the retransmission is also multicast regardless of the number
of receivers that request the missing packet. And it might also be inefficient because of

uncorrelated losses at different (groups of) receivers [22].

1.7.2 Forward Error Correction (FEC)

These techniques are generally based on the use of error detection and correction codes.
These codes have been studied for a long time and are widely used in many fields of
information processing, particularly in telecommunications systems. In the context of
computer communications, error detection is generally provided by the lower protocol
layers that use checksums (for example Cyclic Redundancy Checks) to discard the

corrupted packets. Error correcting codes are also used in special cases, e.g. in modems,
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wireless or otherwise noisy links, in order to make the residual error rate comparable to
that of dedicated, wired connections. After such link layer processing, the upper protocol
layers have mainly to deal with erasures, i.e. missing packets in a stream. Erasures
originate from uncorrectable errors at the link layer (those are not frequent with properly
designed and working hardware), or, more frequently, from congestion in the network
which causes otherwise valid packets to be dropped due to lack of buffers.

Despite an increased need, and a general consensus on their usefulness there are very few
Internet protocols that use FEC techniques [23]. This is possibly due to the existence of a
gap between telecommunications world, where FEC techniques have been first studied
and developed, and the computer communications world. In the former, the interest is
focused on error correcting codes, operating on relatively short strings of bits and
implemented on dedicated hardware; in the latter, erasure codes are needed, which must
be able to operate on packet sized data objects, and need to be implemented efficiently in

software using general purpose processors.

1.7.3 FEC Based Loss Recovery

In forward error correction-based recovery, redundant packets (also called parity packets)
are sent together with regular data packets from the sender to the receiver. Depending on
how many redundant packets are sent and how many packets are lost at the receiver, it is
possible to recover missing packets on the received packets. Thus FEC-based approach
reduces the end-to-end latency at the cost of additional bandwidth. Reed Solomon
correcting code is chosen as a possible code because of its excellent capability for
correction of both errors and erasures {24]. The details of code and preparing data and
parity packets will be given in chapter 3. Here some general information is given.
Suppose that there are K data packets denoted by {d;, d>, ..., dg}. Using RS encoder and
some processing N-K parity packets {pi, pz2,-.-, pnk} are generated. Assuming that the
data packets are transmitted in the order dy, d,, .... , dk, p1, P2 -.-» Pk, the following
three scenarios can occur:

I. None of the K data packets are lost. Then no decoding is necessary.

2. L <= (N-K) packets are lost. This means the decoder can recover the missing

packets.
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3. L >=(N-K) packets are lost. In this case the lost packets can not be recovered
unless additional q packets are transmitted, where Q = L-(N-K).

1.7.4 Combining FEC and ARQ

There are a number of different ways that FEC can be introduced to a reliable
multicast protocol stack. The simplest approach is to add a layer responsible for FEC
between the network layer and the reliable multicast layer, such that the reliable multicast
layer sees a more reliable network. The second approach is to integrate FEC with reliable
multicast and place them into a single layer. Layered FEC reduces packet loss probability
and as a result reduces the number of packet retransmissions and network bandwidth
requirements {25, 26]. FEC will have very high repair efficiency if it is integrated with
ARQ in the same layer, and, therefore substantially reduces network bandwidth
requirements of an application requiring reliable multicast data transport [26, 27].

[n this thesis we have used integrated FEC approach as a basis for a new reliable
multicast protocol. In chapter 3 the details of our implementation are given and the
results of experiments performed on a single link between a sender and a receiver are
discussed. In chapter 4 our integrated FEC technique is expanded to multiple receivers
and multicast flows and by simulating a variety of different situations, performance of
this technique is investigated. Protocol stack for our reliable multicast scheme integrated

with FEC is shown in Figure 1.7.

Application
FEC/ARQ(RM)
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Figure 1.7: Integrated FEC/Reliable Multicast (RM) Protocol Stack
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Chapter 2

Implementation and Testing of Integrated
FEC/ARQ

[n this chapter we introduce our technique where we integrate Forward Error Correction
and Automatic Repeat Request as a receiver initiated [28] scheme to recover losses
encountered in the Internet. In sections 2.1 to 2.3 details of FEC, sender/receiver
algorithms, packet formats and interleaving are given. For FEC we have used a Reed-
Solomon code because of its good error and erasure correcting capability. Details of
preparing encoded words such as encoding, preparing parity information and adding CRC
bytes are given and then interleaving the encoded words and adding 4 of such interleaved
words to make a2 UDP datagram (packet) for transmission, are explained. NAK packet
formats containing sequence number of required words are also given. In section 2.4
sending and receiving processes and programs are discussed. First, UDP socket
programming done on Linux/Unix is described. Unix SIGIO signal that we have used for
more efficient performance of the sender and receiver codes are explained. The receiving
process provides information about checking the socket for new received words,
checking for erasures, de-interleaving words, decoding and sending NAKs. Flowchart of

the receiver code is also drawn in this section. Then window mechanism for our
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FEC/ARQ scheme is described. In the last part of the section the sending process
consisting of packet preparation and transmission, checking socket for NAK, storing the
requests in a queue and serving them based on FIFO is considered. An interesting feature
of our scheme stated in this chapter is the reduction of no of NAKs compared to general
ARQ schemes without FEC. In error recovery schemes based on ARQ, NAK is sent as
soon as a single packet is found to be missing but in our FEC/ARQ scheme only one
NAK is sent for a whole block of packets. Focus of section 2.5 is on experimental details.
First the test bed used in ETS network laboratory in Montreal is described. It consists of
the two sending and receiving PCs that are interconnected through a third PC as a
network impairment emulator. OQur implemented codes for the new FEC/ARQ scheme are
installed and run on the sender/receiver PCs. Various performance parameters such as
mean delay, delay variance, no of retransmissions, no of NAKs, no of packets recovered
by decoding and etc. are measured and their graphs versus transmission rate (throughput)
and random packet loss are drawn. In the end of the chapter conclusions are drawn.
It should be mentioned that in the thesis, flow rates are for packets containing data, parity
and other redundant fields unless it is stated to be the actual data flow rate. Actual flow
rates for data are less. For instance, for a value of 2Mbps the actual flow rate for data is
2*%(220/256)=1.7 Mbps.

2.1 Reed-Solomon Code

In our implementation, a Reed-Solomon (RS) code by Phil Kam [29] is used. Complete
details of these can be found in coding theory textbooks [30]. Here is a brief summary of
the code: We have used a (N, K) RS systematic code over Galois Field or GF(2" ) where
M is the code symbol size in bits, K is the number of data symbols per block, K<N and N
is the block size in symbols, which equals (2* -1). Since the Reed-Solomon Code is non-
binary each RS “symbol” is actually a group of M bits and just one bit error anywhere in
a given symbol spoils the whole symbol. That’s why RS codes are often called “burst-
error-correcting” codes [31]. [n our implementation we have chosen values of 255, 223
and 8 for N, K and M respectively. The error-correcting capability of a Reed-Solomon
code depends on N-K, the number of parity symbols in the block. In the pure error-

correcting mode (no erasures indicated by the calling function), the decoder can correct
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up to (N-K)/2 symbol errors per block and no more. The decoder can correct more errors
if the locations of errors are known (i.e. erasures). For the case where the code is non-
binary knowing error locations by itself is not enough to correct them. In the general case
when there are both errors and erasures, each error counts as two erasures. For example
for our case, (255, 223) RS code over GF(28), the code can handle up to 16 errors or 32

erasures or various combinations such as 8 errors and 16 erasures.

2.2 Sender and Receiver

The main entities of our technique are sender and receiver algorithms. These will reside
as a part of new multicast protocol above UDP layer. The sender routine exists at the
subnet router of sender of the video or voice... session or one of the intermediate routers
(Designated Receiver-DR [32]). The receiver routine exists in the corresponding router of
the subnet where the receiving host is located. The scheme we have used is receiver
initiated so that instead of acknowledgments,‘ negative acknowledgments (NAKSs) are sent
by receivers to the sender when either the number of lost original packets are more than
received parity packets or there is a decoder failure due to the fact that number of

erasures and errors exceed correcting capability of the RS code.

Sender Multicast Tree Receiver

apooug
AABI[IU]
19)oeq ULIO,]
)
aABapIUI-o(]
apodsa(]
ele(q Aejd

-

Figure 2.1: Sender and one Receiver in the Multicast Network

Figure 2.1 shows the sender and one receiver in the multicast network and their main

building blocks.
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2.3 Packet Formats and Preparation

Two main types of packets are transmitted (Figure 2.2). First, Data and parity packets
transmitted by sender. Second, NAKSs sent by receiver to request retransmission.

a. CRC16 applied to data

1B 220B 2B
DL DATA CRC-16

b. RS encoding applied to 223 Bytes in part a. The result is 256 bytes of encoded data.

18 220B 2B 328 1B
DL DATA CRC-16 | PARITY [DUMMY

¢. 256 encoded words of part b are interleaved. Resulting words are each 256 Bytes long.

2568
INTERLEAVED WORD

d. Format of the packet sent by sender to receiver. 4 words are normaily transmitted
and the packet length is 1037 bytes(~ 1 Kbytes)..

iB 1B 2B  256B IB 2B 256B
pL [S |&| worp |[5|g| worD | ...
[¢] [+ L8

¢. NAK packet format
1B 1B 1B 1B 1B 1B 2B

type | DL | Blkno | Seqno |Blkno [Seqno | ---e...... CRC

Figure 2.2: Packet formats for FEC/ARQ scheme

2.3.1 Data and Parity packets

Following steps are done in the sender to prepare and send the packets containing data
and parity information to the receiver.

2.3.1.1 Encoding

As in Figure 2.2 data is split into groups of K-3 (220) bytes each. One byte is allocated
for indicating the Data Length (DL. Number of bytes of data being transmitted in each
group is always K-3 except for the last group of data that is less than or equal to K-3). A
two Byte Cyclic Redundancy Check (CRC-16) [33] field is also formed at the end of data
group to make a total of K (223) bytes. The resulting 223 bytes are fed into (255, 223) RS
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encoder and the output is an N (255) bytes encoded word. Since the RS code used is
systematic, the first K (223) bytes of the encoded word will be the same as input bytes
(including Data, DL and CRC) and the last N-K (32) bytes will be redundant (parity)
bytes. A one byte of dummy data is added to obtain a 256 byte encoded word.

2.3.1.2 Interleaving

Block interleaving is next applied to a record of 256 such encoded RS words, to yield a
corresponding interleaved record [34]. The resulting first interleaved word of such record
consists of the first byte of each of encoded words before interleaving. The 256
interleaved word is similarly the concatenation of bytes number 256 of each pre-
interleaving word. Now the first 223 interleaved words contain the data and the next 32
interleaved words include the parity information. We call each set of 256 interleaved
words that corresponding to 256 encoded words a block.

It is also possible to have a smaller depth interleaving e.g. 128 in which case the
first interleaved word will contain the first byte of 128 pre-interleaving words followed
by the 127 interleaved words each consisting of one byte of 128 pre-interleaving words.
Figure 2.3 shows an encoded block of data before and after block interleaving at sender.
2.3.1.3. Preparing packets
In order to prepare packets to be transmitted, a two bytes interleaved word sequence
number field is added to each interleaved word, this is preceded by one byte of type field
denoting an interleaved word. The sender routine groups up to 4 interleaved words in one
UDP data unit. This makes a data unit length of approximately one Kbyte. Larger number
of interleaved words such as eight can also be grouped to make the data unit.

At the beginning of the data unit (packet to be transmitted), a data length field is
included. This will enable the receiver software to know how many words are included in
the data unit while the constant length of 259 bytes, the type, and the sequence fields of
each word will enable correct parsing and processing at the receiver side.

All the packets that are transmitted have the same configuration whether they are
retransmitted packets (repair) or not. The difference is that the selected words can be
either interleaved words or encoded words (in case of decoder failure in the receiver due
to the fact that number of errors plus erasures has exceeded decoding capability of RS

decoder). Much of the processes above are done offline in the sender, i.e. the whole
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MPEG or voice file...etc. is encoded, interleaved as above and stored before starting the
multicast in real time. The process of adding interleaved words and preparing data units

is executed in real time once the multicast session starts.

00 0-1 02 0-254 | 0-255
10 t-1 1-2 1-254 | 1-255
20 241 22 3-255 | 2-255

254-0 | 254-1 | 2542 254 | 254-
254 255
255-0 | 255-1 | 255-2 255- | 255-
254 255

a. A block of encoded words. Each row is an encoded word and each cell is a

Byte.
00 |10 | .. e b b ) | 2540 2550
o1 J1t | .. .| 254-1 | 255-1
02 |2 |.. e e e s L ] 2542 2552
0- | 1-254 254- | 255-
254 254 | 254
o- 1285 ... v b} 255 | 285
255 254 | 255

b. The same block in a (above) after block interleaving. Each row is a

concatenation of same byte number of 256 pre-interleaving encoded words in a.

Figure 2.3: An encoded block of data a. before and b. after interleaving at the sender.
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2.3.1.4 Burst packets

After transmission of each set of 256 interleaved words (window) a burst pulse
containing for example 5 short packets of each two bytes length, is transmitted. First byte
of each packet is the type and the second byte is the sequence number of the packet. By
receiving any of the above packets, the receiver will realize that all 256 words belonging
to the current window have been transmitted and in case it has been waiting to receive
more words, it will stop it and will start de-interleaving and decoding received

interleaved words.

2.3.2 Negative acknowledgement (NAK)

Upon receiving interleaved words and in case the number of received words is less than
K (223), the receiver will request retransmissions (repairs) by sending a negative
acknowledgement (NAK) packet to the sender.

The negative acknowledgement NAK format is shown in Figure 2.2. A one byte
type field indicates whether it is a request for interleaved or encoded words. A one byte
field denotes the data length of the NAK message, i.e. the number of requested words.
The following fields give the sequence number of interleaved or encoded words as asked

by the receiver. A final one byte CRC field is used for error checking at the sender.

2.4 Sending and Receiving Processes and Programs

All the codes are written in C programming language and run on Linux/Unix operating
system. The length of the code for sender and receiver is 600 and 2400 lines respectively.
In order to communicate between sender and receiver PCs, UDP socket programming
[35] is used. At startup, receiver is ready to receive packets from sender. The sender
sends packets to receiver IP address and UDP port. Upon receiving a packet, receiver
extracts the words and stores them into relevant arrays depending on their type.
Using a Unix Signal: we use a type of signal called asynchronous /O with non-blocking
socket calls” in order to let the receiver perform other tasks when there are no packets on
its UDP socket.

Following are some details about signals. Generally signals provide a mechanism
for notifying programs that certain events have occurred, for example, the user typed the
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“interrupt” character, or a timer expired. Unix has dozens of different signals with
various triggering events. The signal we have used is SIGIO and its triggering event is
“socket ready for /O”. Some of the events (and therefore the notification) may occur
asynchronously, which means that the notification is delivered to the program regardless
of where in the code it is executing. In our case, the operating system informs the
program when a socket call will be successful. This way the program can spend its time
doing other work (such as de-interleaving, decoding and preparing NAKs, in case of
receiver) until notified that socket is ready for something to happen. This is called
asynchronous VO, and it works by having the SIGIO signal delivered to the process when
some [/O—related event occurs on the socket.

In our program the receiver is able to perform other tasks when there are no
packets form the sender on the socket. After creating and binding the socket, instead of
calling recvfrom() and blocking until a datagram arrives, the SIGIO signal is delivered to
the process, triggering execution of the handler function. The handler function calls
recvirom(), extracts words from the datagram (packet), stores the words into appropriate
arrays for further use by the program, and then returns, whereupon the main program
continues whatever it was doing.

Complete details about signals and UDP sockets are found in TCP/IP socket
programming texts [36].

2.4.1 Receiving Process

When the receiver program is initiated, receiving word arrays are checked for new
interleaved words (As mentioned above, new words are stored in those arrays after a call
to SIGIOhandler and receiving packets on UDP socket). If there is a new interleaved
word its sequence number is compared with the expected one so that missing words are
detected. If word sequence number is greater than what is expected, there is a loss. Then
the word is de-interleaved into one byte of each 256 encoded word. The process is
repeated until there is no more new received word. In this case the receiving process for
the current block of words (256) is finished provided that one of the three followings
occurs. Otherwise program checks arrays for new words and the loop repeats itself.

1. Last interleaved word of the current block is received (seq. no. 255)
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2. A word from the next block has arrived.
3. End of block burst packet is received.
4. Timer for receiving current block words expires.

Upon finishing the receiving process number of received bytes of encoded words
(@) are checked. If q is greater than or equal to K (223) all data bytes are recovered.
According to Figure 2.4.a, if no data byte is lost no decoding is required and data is
already available.

But if some data bytes are lost the decoder will be called and will recover the lost
bytes if there is no error in the received bytes (Figure 2.5). In case 2*(number of errors) +
(number of erasures) is greater than N-K the decoder will fail and consequently relevant
encoded words will be requested by sending NAK.

In case q is less than K, a NAK containing sequence number of (K-q) packets are
sent to the sender. The state of the receiver changes to first request and the timer for new
state is started (Figure 2.5). After sending NAK the program checks if there are
retransmitted interleaved words in the relevant array (retransmissions arrived on the
socket). Arrived words are de-interleaved, number of available bytes of each de-
interleaved word is compared with K and decision for decoding or sending another NAK
is made.

Flowchart of the main receiver program used in our experiments in ETS
laboratory, Montreal gives more details about receiver. According to the code, the
receiver maybe in one of the two states. The first state is for receiving and processing
fresh packets (i.e. packets that are transmitted by the sender for the first time) and it is
called “block fresh receive state”. See Figure 2.6. If the current block of packets can be
processed and completed without a need to retransmissions the receiver remains in this
state and starts receiving and processing next block of packets, otherwise the receiver
state changes to “ block request state” and it starts processing retransmitted packets. The
flowchart for this state is shown in Figure 2.7 as part 2 of flowchart.
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Sender

Receiver

a. No lost data. b. No of Lost Packets
Decoding not required. less than / equal to N-K.
Data ready as Received. Decoding recovers lost

data.

Figure 2.4: Receiving Process. The two cases that data is recovered without
sending NAK and receiving retransmissions.

No of lost Packets greater than N-K. NAKSs are sent.
Requested Packets are retransmitted.Decoder recovers lost data.

Figure 2.5: Receiving Process. The case when NAKs and retransmissions are
required to recover data.
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Figure 2.6: Part 1 of Receiver flowchart used in experiment. Block! fresh receive process
(b1f). Flowchart for b2f is similar.
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Figure 2.7: Part 2 of Receiver flowchart used in experiment. Block1 retransmission
process (blr). Flowchart of b2r is similar.
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2.4.2 Window Mechanism

We define time T to be the total time to receive and process a block of words (as stated
before, each block of words contain 256 words and each word is 256 bytes long), i.e.

T=RT+PT 2.1)
where RT stands for Receive Time of one block and PT is its max Process Time. PT
includes all actions taken in the receiver to recover erroneous or lost packets like de-
interleaving, CRC checking, RS decoding, sending NAKs and receiving retransmissions.
In Figure 2.9 receive and process details are illustrated. Among those actions, RS
decoding is the most time consuming one specially if number of erasures is N-K (i.e. max
number of erasures that can be recovered). In our experiment with two 600 Mhz PCs and
using two Ethernet (10Base-T) cards max decoding time was about 90% of the total
Process Time (PT). So the max process time of a block and the flow rate (reciprocal of
PT) was determined. Since flow rate is also equal to reciprocal of RT,

PT=RT 2.2)

Also because the sender is assumed to send packets continuously and at fixed rate, it
means that next block of words generated by sender are being received while the
receiver is processing the current block. Words of Next block are stored and will be
processed after current PT is finished. Figure 2.8 shows receive, process and play time of
various blocks. For example, for block number n, receiver window w (n) is open. During
this time window, block n is received and processed and block n+1 is received and stored
but words belonging to other blocks are discarded (if received). After block n processing
is finished the window slides forward so that block n+1 can be received and processed

and also block n+2 is received.

2.4.3 Sending Process

The same signal as in the receiver is used in the sender, and in case of receiving a
datagram (NAK) the SIGIO signal is delivered to the process, triggering execution of the
handler function. The handler function calls recvfrom(), sequence number of requested
words are extracted from NAK packet and put in the relevant queue, and then after it

returns, the main program continues to do what it was doing before.
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As mentioned before, encoding data and interleaving the encoded words are done
offline i.e. they are prepared and stored in files prior to starting the session. So the sender
program opens those files and uses their contents to build the packets to be transmitted.
At start of program, when there is no request (NAK) from the receiver, sender
continuously prepares packets i.e., one packet from 4 consecutive interleaved words and
transmits them at a fixed predetermined rate to receiver. After transmitting every 64
packets (256 words) a few End of Block Bursts (EBB) are sent to inform the receiver of
the block end. Sending the packets are continued until a NAK is received asking for
retransmission of some words. Sender stops sending normal packets (hereafter called
fresh packets). Block number and Sequence number of requested words are stored in a
queue and requests are served based on FIFO (first in, first out). Sender transmits
requested words as fast as it can so that retransmissions are received fast and data
recovery is done as quickly as possible. When the queue is empty the sender continues to

transmit the rest of fresh packets until it receives another NAK....

Sender
Block I \ Block2\ Block3 \| Block's \...\ Blockn
Reception | Reception\ Reception \Reception Reception
' T2 T2 T T2 T/2
Receiver Block I | Block 2 Block 3
Processing Processing | Processing
Block [ Block 2
w(l) Play Play | ...
" w(2)
wQ3)

Figure 2.8: Sliding window mechanism at receiver
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Block n Transmission

Receiver

Block n Reception. Block n Processing
T

Figure 2.9: Reception and processing details at receiver

2.5 Experimental Details

Experiments were performed in ETS (Ecole de Technologie Supérieure) network
laboratory in Montreal.

Experiment setup:

Two 600 MHz PCs were used, one as receiver and the other one as sender. Both PCs
were equipped with Ethernet 100BASE-T (100Mbps capacity) interface cards for
communication between each other. In order to test and evaluate the performance of FEC
/ARQ codes on the two PCs, network impairments had to be applied to the packets that
are transmitted and received. A third PC (733 MHz workstation) equipped with network
impairment emulation software called [P WAVE was used. Two 10BASE-T network
interface cards were already installed on the PC for communication. Each interface port
(can be called a gateway) of the [P WAVE PC can be attached to a separate sub-network
(in our case sender or receiver). The [P packets are forwarded from each sub-network to
another, with the [P WAVE adding its impairments in the forwarding process.

Six different impairments that can occur in networks may be applied to IP packets
using this instrument. Various kinds of impairments can be applied independently.
Packets may be duplicated, delayed and fragmented or out of order errors can be applied.
Errors can be injected into selected packets. Packets may be dropped in a periodic,

random and bursty manner. Packets could be impaired at speeds up to 10 Mbps for each
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direction of flow. The system setup is shown in Figure 2.10. The impairment we have
applied is dropping packets and in one case we have injected errors into a certain

percentage of packets.

(] L (]
Sender Network [mpairment Receiver
Emulator (IP WAVE)

Figure 2.10: Experiment setup at ETS network laboratory

2.5.1 Experimental Procedure

Various performance parameters of RS/ARQ scheme were measured. For each test,
transmission rate and random packet loss were specified and applied. Transmission rate
was selected by changing the time interval between successive packet transmissions by
the sender. The transmission rate was changed from 1000 Kbps to 2400 Kbps, at 100
Kbps steps. As mentioned in the introduction to this chapter, above flow rates are for
packets containing data, parity and other redundant fields. Actual flow rates for data are
less. For instance, for a value of 2Mbps the actual flow rate for data is 2*(220/256)=1.7
Mbps. Random packet loss was selected by changing the settings on impairment
emulator. Packet loss was changed from 0 to 10 %, at 1% steps. For each transmission
rate one graph of the desired parameter versus flow rate could be drawn. By changing
transmission rate as the second variable, three-dimensional graphs of the parameter

versus transmission rate and random packet loss are plotted.
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2.5.2 Measured parameters and explanation of results

2.5.2.1. Delay

Delay for each word is the time it takes for a word of data (220 bytes) to be processed at
sender (encoding, cyclic redundancy checking, interleaving, preparing packet, delivering
it from application to UDP port), transmitted over the link to the receiver and processed
in the receiver (de-interleaving, CRC, decoding) until decoded data is ready to be played.
Word delay is calculated from equation below:

A: =[“_| _tl (2'3)
ti is the time when encoding the word starts and t;.; is when the word is ready to play

after processing at receiver. The average delay A (mean) of the transmitted words is

calculated from

—_ 1 N
—_ —— 2.4
A N(EA') (2.4)

N is the number of words (no of tests made at each specific transmission rate and packet

loss).
Delay variance (o-i ) is a measure of spread around the average and is given by

N 2

$o,-3

=1

Ou= NI )

Figure 2.11, Figure 2.12 and Figure 2.13 give average delay (A), delay variance and
standard deviation versus flow rate and packet loss respectively. As seen in the graph for
a given flow rate, average delay increases with packet loss increase. When there is no
packet loss average delay is minimum (i.e. Ims). This small delay is mostly due to
encoding, transmission and CRC. Decoding is not done in this case since there is no
packet loss. Delay variance and hence standard deviation is zero indicating that delay of
all words are the same. With packet loss increase both average delay and variance
increase. As random loss increases more words need to be decoded and less words are
recovered only with CRC being done. The more the number of lost bytes in a word (i.e.
interleaved words in a block) the more time it takes for RS decoder to decode and recover

the lost bytes. Decoding delay is the largest delay component and as stated previously, it
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increases linearly with number of lost bytes. For the RS code used in our experiment,
max decoding time (A, ) for N-K erasures is two times the minimum decoding time
(A, » when no of erasures is 0). Taking above into consideration, decoding delay (A )

for @ number of erasures can be calculated from the following:

App ~Apee ApuN-A__K
+

A = min max 2’6
dec q N — K N — K ( )
For A, =2%*A_, measured in experiment for our decoder, we have
(N -0.5K)—-0.5¢9
A, . =A 2.7
dec max N-K ( )

At higher losses (around 10%), in some cases lost information is more than correcting
capability of the encoder so NAKs are sent and retransmissions are received causing
additional delay. By increasing the packet loss it is seen that ratio of standard deviation to
average delay on a given flow rate slightly increases, meaning that at lower losses word
delays are less close to the average.

For a given packet loss, by decreasing the flow rate, average delay increases. The
obvious reason for that is slower transmission.

Here we give the reasoning for large values of delay variance in Figure 2.12. We
consider 2000 Kbps transmission rate and 10% loss for which average delay and delay
variance in Figures 2.11 and 2.12 are about 25 ms and 8000 respectively. In this case, the
delay for packets that are received (90% of whole packets of a block) is only 1 ms that is
mostly due to encoding, transmission and CRC. These are ready to play as soon as they
arrive at receiver. The delay for lost packets (10%) consists of two components (Figure
2.9): 1) the difference between generation time of each lost packet and the time when
block reception period is finished; 2) block processing time that includes decoding time
and may also include NAK sending and retransmission times if losses are more than N-K.
For above transmission rate total window time T will be about 500 ms and the delay for
lost packets will be between 250 and 500 ms. Hence, with average delay of about 25 ms
and wide spread of packet delays around the mean value, from | ms (for 90% of the
packets) up to 250-500 ms (for 10%) above mentioned value for delay variance is

reasonable.
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Experimental Resuit

Average Delay (ms)

Transmission Rate (kbps) Random Packet Loss (%)

Figure 2.11: Average Delay versus Transmission rate and Random Packet Loss
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Experimental Result

Transmission Rate (kbps) Random packet Loss {%)

Figure 2.12: Delay Variance versus Transmission Rate and Random Packet Loss
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Experimental Result

1
o 1900 2100 0
Transmission Rate (kbps) Random packet Loss (%)

Figure 2.13: Delay Standard Deviation versus Transmission Rate and Random
Packet Loss
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Figure 2.14: Peak Delay versus Transmission Rate and Random Packet Loss

Peak delay of the words versus transmission rate is shown in Figure 2.14. At 2000
kbps that is the maximum satisfactory flow rate of our design, the maximum peak delay
is 485 ms. Referring to Figure 2.8 the maximum delay for a word in a window is T that is
inverse of flow rate. This delay is 500 ms for 2Mbps, then peak delay of 485 ms is less
than the width of a window and we are on the safe side. Peak delays in excess of window
width (i.e. 500 ms) will result in loss of next coming block’s data. This peak delay (480
ms) consists of two parts (Figure 2.9), a block transmission time (250 ms) and a block

processing time (235 ms). The components of processing time are (de-interleaving, CRC,
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NAK, retransmissions and decoding). For our setup, max decoding time for one block
(256 RS words) is 230 ms. For a given loss rate, peak delay increases with decreasing
transmission rate as stated above for the other delay curves.

2.5.2.2 CRC and Decode

Figure 2.15 shows the number of times “only CRC is called” versus Transmission Rate
and Random Packet Loss. In order to clarify the term “only CRC is called” following
explanation is given.

When there is no missing packet in the received ones of a block of words, CRC
error detection is done. If there is no error and since RS coding used is systematic
decoding is not required and the first 220 bytes of the word is data and is played as it is.
This is called the case when only CRC is called. Graph of percentage of those cases
(when only CRC is called) in all received words are drawn in Figure 2.15. At zero packet
loss always “only CRC is called” and no decoding is required. As random packet loss
increases no of cases with missing packets also increases causing decrease of times “only
CRC called”. The amount approaches zero approximately at 10% packet loss. A
complementary graph for above is given in Figure 2.16 where percentage of “no of times
the RS decoder is called” is displayed versus transmission rate and packet loss. At 0%
loss decoder is not called at all and “times the decoder is called” increases with packet
loss until it is called almost all the times at 10% packet loss.
2.5.2.3 Data recovered by decoding
Data bytes may be received or recovered in three ways. First, some of them are
received directly at first transmission of information. Second, if enough number of bytes
are not received for decoding and NAK is sent, retransmissions may include data bytes
(These are data bytes received by automatic repeat request (ARQ). Third, data bytes may
be recovered by decoding. Figure 2.17 shows the percentage of data recovered by
decoding out of total data recovered (both via second way stated above i.e. ARQ and
third way that is by decoding). As it is seen in the graph data recovery by decoding is
more than 80% at all measured points (except at zero packet loss where no decoding is
required). It means that only less than 20% are recovered by ARQ. This is a measure of

how efficient and advantageous RS decoding (FEC) is as compared to ARQ.
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Experimental Result

No of times only CRC is called

300
Transmission Rate (kbps) Random packet Loss (%)

Figure 2.15: No of times only CRC is called versus Transmission Rate and Packet

Loss
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e

Times RS decoder is called(%)
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Figure 2.16: Times RS decoder is called versus Transmission Rate and Packet Loss
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2.5.2.4 NAK and Retransmissions

In error recovery schemes based on ARQ, NAK is sent as soon as a single packet is found
to be missing but in our FEC/ARQ scheme only one NAK is sent for a whole block
(window) and it contains the sequence number of all bytes (i.e. interleaved/encoded
words) that are required for recovery of lost information. Figure 2.18 shows the
percentage of “windows generated NAKs” in whole blocks of the session. Number of
NAKSs sent for each block may be one or two. Second NAK is sent if all information
requested through first NAK is not received and relevant timer expires. First and second
NAKs are both counted and the total is displayed in Figure 2.18. As shown in the figure,
number of NAKSs increases with packet loss increase and the rate of change is positive.
The reason is that for low packet losses a block rarely loses more packets than erasure
correcting capability of the decoder (about 11%), while at higher packet losses that much
loss is more probable.

As stated before, complete and satisfactory functioning of our implemented
FEC/ARQ scheme is up to 2000 kbps flow rate. Above that rate up to a few hundred kbps
more, it still functions well but some degradations are observed. More details will be
given later. Looking at Figure 2.18 it is observed that number of NAKs increase when
transmission rate exceeds 2000kbps and this increase is larger at high packet losses. For
example at 10% loss, number of NAKSs sent at 2300 kbps is 14% more than the maximum
NAKSs sent at rates below 2000 kbps. The reasoning is as follows. As mentioned in
section 2.2.5.1, max measured time needed for decoding is 230 ms and total of other
processing times is 5 ms, making a total of 235 ms, adding 25 ms as reserve, total
processing time of a block (T/2) and as a result, minimum transmission time of a block is
260 ms. Since each block contains 256 words each containing 256 bytes, total number of
bits to be transmitted in 260 ms is 256*256*8=524288. This is equivalent to a
transmission rate of 524288/(260 ms) that is 2000kbps. At transmission rates above this
rate and especially at high losses, processing at the receiver specially decoding won’t be
fast enough and processing time will exceed the allowed window time determined by
transmission speed. As a result transmitted packets of next block will be lost for the
duration of the time that decoding exceeds the window time. So in addition to packet loss

caused by the network some more packets are lost because of fast transmission (slow

45



decoding) of packets. Consequently there will be more cases with losses exceeding
erasure-correcting capability of the decoder and more NAKs have to be transmitted.
Figure 2.19 is for NAKSs sent for first time for a block and Figure 2.20 shows number of
second NAKSs sent. In both of the figures trends of increase in number of NAKs are the
same as in Figure 2.18 (for total number of NAKSs) and the same reasoning is valid.

Number of retransmitted words is also measured. The percentage is calculated
according to following and the result is plotted and shown in Figure 2.21.

NR% = RW

*100 (2.8)

NR is the number of retransmissions as a percentage, RW is the number of retransmitted
words in response to NAKs and TW is the total number of transmitted words (excluding
retransmitted words). NR in this figure follows similar variations as NAK graphs, i.e. at
high packet losses and transmission rates number of retransmissions increase compared

to lower losses and transmission rates, respectively.
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Figure 2.18: Windows Generated NAK versus Transmission Rate and Packet
Loss
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Figure 2.19: Windows Generated 1™ NAK versus Transmission Rate and Packet
Loss
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Figure 2.20: Windows Generated 2™ NAK versus Transmission Rate and Packet

Loss
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Figure 2.21: No of Retransmissions versus Transmission Rate and Packet Loss
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2.5.2.5 Residual losses
Residual loss (RL) as defined below is plotted against transmission rate and packet loss in
Figure 2.22.

RL(%) = BNR
BT

*100 2.9

BNR is the number of bytes that are not recovered (after RS decoding, ARQ, etc.) and
BT is the number of transmitted bytes. As is shown in the graph, up to 1900 kbps, almost
all losses are recovered and this scheme is completely reliable. Above 1900, some bytes
remain un-recovered. Maximum value is 1.5% at 2400 kbps and 10% loss. The reason for
above residual loss as stated for NAK section above is fast transmission of the data (slow
decoding). This will cause sending more NAKs requesting for larger no of lost words. As
a result there will be more cases that either some second retransmission packets are lost
in the network or not arrived at receiver before second NAK timer expires. Consequently
for some blocks or words enough repair information for decoding is not available and
some lost bytes are not recovered. This is more pronounced at higher transmission speeds
and losses.

2.5.2.6 Both Errors and Erasures

In the last test, in addition to dropping packets, errors were injected to some of them,
measurements were made and behavior of the system was studied. Figure 2.23 shows
number of retransmitted words versus transmission rate and packet loss while there are
1% byte errors in RS words. The same definition and calculation as for retransmitted
words without errors is used. Comparing the two cases with (Figure 2.23) and without
(Figure 2.21) 1% error it is seen that almost every-where (except at low packet losses
where number of retransmissions are very low for both graphs) the case with error has
considerably more number of retransmissions than the case without error. The reasoning
for this is as follows.

As stated previously, 1% error for the decoder is equivalent to 2% additional
erasure. As the first example for extra retransmissions, a case with 10% loss is
considered. The decoder can marginally decode the word and recover the lost bytes but at
the same loss condition and 1% error the decoder will fail because number of erasures

plus two times number of errors i.e. 12% will exceed error and erasure correcting
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capability of the decoder. As a result a NAK will be sent and the request will be re-
transmitted.

As the second example, suppose a case where a NAK is sent (due to high number
of lost packets). Upon receiving the requested repair information the decoder will try to
decode (no of lost packets after receiving retransmissions is N-K) but in case of 1% error
the decoder will fail. Now not only another NAK and retransmission (in response) is sent
but also one more decoding is done. Transmission of extra NAK, retransmission and
decoding will lengthen the process time that may cause some packets of next (block) to
be dropped, and as a result more NAKSs and retransmissions will be sent. This situation is
much more pronounced when transmission time of a block is less than decoding time (i.e.
high transmission rates such as 2000 kbps and more).

Third, even when the decoder succeeds in decoding, the time consumed for
decoding is more than the case without error, thus increasing the possibility of

insufficient processing time causing packet drops and more NAKs and retransmissions.

2.6 Conclusion

The results of the above tests show that our integrated FEC/ARQ scheme makes reliable
communication between two PCs for flow rates up to 1.7Mbps (2ZMbps without
considering redundancy due to FEC) and losses up to 10%. This is achieved at extra cost
of coding/decoding in the end systems. Coding delay in the sender can be reduced in
different ways:

1. Pre-encoding the packets off-line and storing the encoded information on

disk prior to transmission.

2. Using a more powerful machine at the sender.

3. Using dedicated hardware in the sender.

The receiver is simply equipped with its part of code and will start to play the
extracted data after an initial start up delay of one window length (e.g. 500 ms for a flow
rate of 2Mbps). It is also observed that error/erasure control feedback for this system is
very small, since NAK is sent for each block of information (consisting of N words)
instead of for each missing packet and only when packet loss rates are large (greater than

N-K). Also number of retransmissions at worst case, i.e.10% loss and 2Mbps flow rate is
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Figure 2.22: Residual Loss versus Transmission Rate and Packet Loss
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Figure 2.23: Retransmissions (while 1% byte errors in RS words) versus

Transmission Rate and Packet Loss
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Chapter 3

Simulation of QOS Multicast

We are going to simulate our QOS multicast scheme in this chapter. We consider a
hypothetical network that covers 4 flows with different number of receivers, various
topologies and different number of flows through routers. The code written for the
simulation is in C programming language and run on windows operating system. It is
over 10000 lines.

Sender, receiver and router algorithms for the proposed FEC/ARQ scheme are
given in section 3.1. We also simulate a generic version of a reliable multicast protocol
that uses only ARQ to recover lost packets. This protocol is explained in section 3.2.
Section 3.3 discusses NAK avoidance mechanism used in the simulation.

In section 3.4 simulation results are given. Performance of FEC/ARQ scheme is
studied and where necessary, the results are compared to ARQ scheme, with or without
NAK avoidance. Four cases are considered. First, independent losses for homogeneous
receivers are discussed followed by shared losses. Then simulation results of
heterogeneous receivers are explained. The last case considers effect of queues in the

performance of the FEC/ARQ scheme.
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3.1 FEC/ARQ Scheme

In order to study the performance of integrated FEC/ARQ scheme in multicasting, a
hypothetical network that covers four multicast flows is considered. It is assumed that
multicast (packet distribution) trees are built and multicast groups are registered and
established according to Figure 3.1 and will remain constant during simulation. The four
multicast trees are chosen with different number of receivers, various topologies (shared,
independent and mixed links) and different number of common routers between flows.
Above is done so that the network covers most features of a real multicast network. Flow
1,2, 3 and 4 cover 4, 6, 5 and 3 receivers respectively and also there are 13 routers in the
network that receive packets of various flows and route them to next hops and eventually
to relevant receivers. An iteration is a unit of time at which actions are taken at all
elements of the network i.e. senders, routers and receivers and is equal to transmit time of
a retransmission packet. In Figure 3.2 four multicast flows are separated from each other.
Table 3.1 and Table 3.2 show multicast routes and routing tables for the hypothetical
network.

3.1.1 Sender

As stated in chapter 3, n=(N+1)/4=64 encoded and interleaved packets, k=(K+1)/4=56
data and 8 repair packets, (~1 Kbyte each) per window are generated. At certain
iterations, a fresh packet is generated depending on the ratio between transmission
capacity of the link and sender flow rate. For example, if the link is 4 times faster (gR=4),
fresh packets are generated once in every four iteration, i.e. iteration no. 1, 5, 9, 13...
Sender will stop generating above-mentioned fresh (data and repair) packets as soon as a
NAK is received. Generation of fresh packets is continued after requested packets are
retransmitted. One retransmission packet per iteration is transmitted. This is the case for
our experiment in ETS labs where flow rate of fresh packets was chosen to be between 1
and 2Mbps while retransmission packets were sent at 10 Mbps rate (10 BASE-T Ethernet
link used between the two PCs and Network Impairment Generator). This was done to

minimize the delay for recovery of lost Packets.
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A six element integer array is dedicated for the generated packet. First element
indicates whether the packet is fresh or retransmit (0 or 1) second element is the flow
number (1 to 4). Third element is the generation iteration number while fourth and fifth
elements are the block (window) and sequence numbers respectively. The last element is

reserved to store iteration no at which the packet is delivered to the receiver.

3.1.2 Router

It is assumed that all links in the network have the same transmission capacity and all
routers can receive one packet/iteration on each input port and transmit one
packet/iteration on each output port.

For each output port in a router two FIFO (first in first out) priority queues [37]
are implemented. The sender marks each packet with a priority. A fresh packet is marked
with priority 0 and a retransmission packet with priority 1. The router always transmits
packets out of the higher-priority queue (1) before moving on to the lower priority queue
(0). Within each priority, packets are still managed in a FIFO manner. In fact, with above
idea, retransmission packets (high priority) are put to the front of the line at each output
port. Giving priority to retransmission packets is to reduce both queuing delay and packet
loss due to buffer overflow (congestion).

In addition to queues, following elements may be implemented within a router
depending on number of input and output links and also number of flows through them.
3.1.2.1 Packet Copier
When a packet is supposed to be transmitted to more than one branch of the multicast
tree, a packet copier prepares required copies of each incoming packet and passes the
copies to relevant buffers in the router. For example the packet copier implemented in
router Rt7 makes six copies of incoming packets from flow no 2 and passes them to
output buffer queues for transmission towards six receivers of that flow.
3.1.2.2 Mixer
When two different flows are input to two different input ports and are supposed to be
output on the same output port, a mixer is used. The mixer is a buffer with a size of two

and in each iteration, it may include 0, 1 or 2 packets depending on packets arrived at its
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inputs. The packets in the mixer are passed to output buffer queues for transmission. As
an example, the mixer in router Rt4 mixes flows no 2 and no 3 (Figure 3.1).

3.1.2.3 Separator

Packets of two mixed incoming flows, on the same link, are separated then packets of
separated flows are forwarded to two separate output links. For instance, separator in
router Rt2 separates flows no 2 and 3 and relevant packets are delivered to R 22 and R32.
See Figure 3.1.

3.1.2.4 Background Traffic

For simulating background traffic (e.g. unicast, multicast other than the four considered
flows and broadcast) random traffic is generated at each output buffer in a router with a
certain probability P, and this packet if generated will be sent over the output link, thus
packets in the queue will be delayed or will be dropped if a fresh packet is input to a full
buffer for that iteration. The procedure to decide whether a background packet is
generated is as follows. A uniform distribution function (0,1) is called, if the output of the
function is less than the generation probability P, background packet is generated,

otherwise it is not generated.
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Figure 3.1: Hypothetical Muiticast Network Topology
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ow 1 multicast routes

S1-Rt1-R2-RW-RB-R1(1)
S1-Rt1-R2-RE-Rt7-Rt10-R1(2)
S1-Rt1-Rt6-Rt9-Rt11-R1(3)
S1-Rt1-RI6-Rt3-R1(4)

flow 2 multicast routes

S2-Rt7-Rt5-R2(1)
S2-Rt7-Rt4-R2-R2(2)
S2-R7-Rt8-Rt13-R2(3)
IS2-Rt7-Rt10-R2(4)
S2-Rt7-Rt9-Rt11-R2(5)
S2-RI7-Rt3-R2(6)

flow 3 multicast routes

S3-Rt13-Rt8-Rt4-R3(1)
S3-Rt13-R18-Rt4-R2-R3(2)
S3-Rt13-Rt11-Rt12-R3(4)
S3-Rt13-Rt1 1-Rt9-R16-R3(3)
S3-Rt13-Rt8-Rt7-Rt5-R3(5)

flow 4 multicast routes

S4-Rt12-Rt11-Rt9-R16-Rt5-R4(1)
S4-Rt12-Rt11-Rt9-Rt6-Rt1-R4(2)
S4-Rt12-Rt11-Rt9-R16-Rt3-R4(3)

Table 3.1: The Four Multicast Flow Routes

62



Flow NoINext Hop |Flow Nol Next Ho
Rt1 R t8
1 7] 1 R11
1 R6 2 Rt13
4 R42 3 R4
3 R7
Rt2 Rt
1 R4 1 R14
2 R22 1 Rt11
3 R32 2 Rt
R:t3 3 Rt6
4 R43 4 RIS
2 R26 R t10
Rt4 1 R12
3 RE2 2 R24
3 R31 R t11
1 Ri8 1 R13
1 R7 2 R25
2 RE2 3 RS
Rt 3 Rt12
2 | Rt 4 Rt9
3 R3S R t12
4 | Rat 3 R34
Rt6 4 Rt11
4 Rt1 Rt7
4 ] 1 R0
4 RtS 2 4]
1 Rt 2 RS
3 R33 2 RH10
R.t13 2 Ri8
2 R23 2 RtA
3 Rt8 2 RtS
3 Rt11 3 RtS

Table 3.2: Routing Tables for the Four Multicast Flows
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3.1.3 Receiver

As stated above each block of information contains n encoded packets that are

transmitted one after another by the sender and distributed by the network to the group

members (receivers) of the flow. Time taken to generate n packets is WL (Window
Lengthy=n*gR iterations. For the case of gR=4 and n=64,WL=256 i.c. it will take 256
iterations to generate a block of encoded packets of data and repair. Upon receiving first

packet of the flow, the receiver determines and sets first window timer. The time allowed

for receiving packets of the window is WL+ND (Network Delay). Receiver will continue

receiving and storing packets, making note of number of lost packets and also their block

and sequence numbers until one of the three followings happens:

1.

Timer for receiving packets of data and repair expires (Hereafter data and repair
packets that are transmitted for the first time are called fresh while the packets
retransmitted in response to NAKs are called retransmitted ones).

Last packet of the window is received. This means that no more fresh packets of
this window will arrive.

A packet belonging to next window is received. This is again an indication that no

more packets from the current window will arrive.

In all three above cases, receiver checks the number of received packets (p) of the

window. Three cases may happen:

L.

If p is greater than or equal to k=56 and none of the data packets (Sequence
Number | to k) are missing. No decoding is required. Since the RS code for
encoding is systematic the first k packets are data and in order and can be stored
in output buffer for playing. The window number is incremented and receiver
starts receiving packets of the new window.

If p is greater than or equal to k=56 and all data packets are not received (i.e. one
or more of packet numbers 1 to k are missing). Decoding is required. Decoding
delay will be added to other delays. After decoding next window will start as
stated above.

[f p< k the decoder can’t decode and recover the lost packets. As a result first
NAK for q=k-p missing packets containing their block and Seq. Number is
transmitted to the sender. A timer for first request is started. If q packets are
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received, before the timer is expired, the decoder will decode and missing packets
are recovered. Then processing of next window starts. In case the timer is expired
and all requested packets are not received 2" NAK will be sent. This process can
continue until all packets are recovered. In our case maximum number of NAKs
are limited to 2.

Figure 3.3.a and b show flow chart of the code for FEC/ARQ receiver used in the

simulation.
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3.2 ARQ Scheme

We simulate a generic version of a reliable multicast protocol that uses only ARQ to
recover the lost packets. The results of this simulation will be compared to the hybrid
FEC/ARQ protocol so that the performance of the latter can be evaluated correctly. The
receiver in ARQ scheme will be different from FEC/ARQ and the sender will have a
minor change. Other components of the hypothetical muiticast network such as routers

and links are the same for both protocols.

3.2.1 Sender

The sender starts and continues to send Fresh (data) packets until it receives a negative
acknowledgement (NAK) from a receiver for a missing packet. The sender will stop
sending Fresh packets and will retransmit the requested packet. After retransmission the

sender will continue sending Fresh packets again.

3.2.2 Receiver

Receiver starts to receive packets sent by the sender. When it detects a missing packet it
sends a NAK for that packet to the sender and will start a timer. If the timer expires
before the requested packet arrives, the receiver will send another NAK and start a new
timer. This process can continue until the lost packet is received. In our simulation we
have limited the number of NAKSs to two so that both protocols can be run and compared

at the same conditions.

3.3 NAK Implosion Avoidance

As we shall see later in detail, one of the advantages of FEC/ARQ scheme is that it solves
the problem of NAK implosion to a great extent because for packet losses up to several
percents there is no need for NAKs. So more processing and complexity at designated
routers, receivers and sender for handling NAK implosion problem is avoided. In our
simulations we compare behavior of the two multicast protocols when they are equipped
with NAK implosion avoidance [38]. Brief description of NAK implosion avoidance

operating mechanism was given in section 1.6.1.2.
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3.4 Simulation Results

Throughout this section, performance of integrated FEC/ARQ reliable multicast protocol
is investigated and where necessary, the results are compared to the scheme with only
ARQ. First we assume that packet losses occur independently. Then we examine the
effect that different loss probabilities have on the performance of reliable multicast
protocol. Finally, performance of hypothetical multicast network is studied, while the
routers and their buffers are considered as sources of packet loss (buffer overflow) and

network delay (buffer delay).

3.4.1 Independent Loss - Homogeneous Receivers

In this case it is assumed that only the receivers lose packets independently with
probability p. Other nodes (routers) of the multicast tree do not lose packets at all.
Figure 3.4.a shows the number of transmissions versus packet loss for the four flows and
results of FEC/ARQ scheme is compared to the case without FEC (only ARQ). No of
transmissions is normalized to number of data packets sent. So for ARQ protocol the
number of transmissions at no loss is equal to number of transmitted data Packets i.e. 1,
while number of transmissions for FEC/ARQ at no loss is N/K= 1.14, that is due to
sending parity as well as data. As seen in the figure, while in ARQ only, increasing
number of receivers in a flow increases the number of transmissions considerably, for
FEC/ARQ schemes it causes a minor increase at high loss rates (around 10 %) and the
rate remains constant and almost equal to 0 at low packet loss probabilities (due to action
of FEC). As a result while ARQ schemes suffer from weakness in scalability, FEC/ARQ

protocol is scalable and can be used with large number of receivers.
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Figure 3.4: a) Number of Transmissions versus Packet Loss. Independent Packet
loss, Homogeneous Receivers, FEC/ARQ and ARQ schemes. b) FEC/ARQ
curves of figure (a) are enlarged for clarity.

70



Figure 3.5 compares the two protocols when NAK implosion avoidance
capabilities in network elements are considered for ARQ scheme. Although number of
retransmissions for ARQ compared to previous figure is decreased, this protocol can’t
scale well yet. Figure 3.6 compares number of retransmissions (as a percentage of data
packets transmitted) for ARQ with NAK implosion avoidance and FEC/ARQ schemes.
Again very low percentage of retransmissions in FEC/ARQ is a measure of efficient

bandwidth utilization and scalability of this protocol.
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Figure 3.5: Number of Transmissions versus Packet Loss. Independent Packet Loss,
Homogeneous Receivers, ARQ with NAK Avoidance and FEC/ARQ schemes.
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b) FEC/ARQ curves of figure (a) are enlarged for clarity.
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In Figure 3.7.a, number of NAKSs as a percentage of number of windows is plotted
versus packet loss. It should be mentioned that in the FEC/ARQ protocol, each receiver
sends NAKs at the end of each block and the NAK includes sequence number of required
packets from that window. For instance, at 10% packet loss for tlow no.l with 4
receivers, for almost every window a NAK is transmitted (windows generated NAK
equals 100%). Figure 3.7.b and ¢ show Number of first and second sent NAKs. The
values for number of retransmissions for the two former figures are added together to
achieve Figure 3.7.a.

Our simulation shows that for ARQ scheme, number of NAKSs increases almost
linearly with packet loss and also with the number of receivers of a flow (Figure 3.8).
Comparing this figure to Figure 3.7, it is observed that for integrated FEC, number of
NAKS is considerably smaller than the case without FEC.
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In Figure 3.9.a, Residual Loss (RL) in percent is plotted versus packet loss.
Residual loss (%) is calculated according to following formula,

DNR

RL =100* DL 3.1

in which DNR (Data Not Recovered) is the number of lost data packets of the flow
that are not recovered and DL is the total number of lost data packets of the flow. As
is seen, FEC/ARQ scheme is almost reliable (less than 0.1% for losses up to 10
percent and completely reliable for losses below 5%, with max number of
NAKSs/window limited to two). Residual loss for ARQ with the same number of
allowed NAKs/lost packet is at least 10 times the value for FEC/ARQ (see Figure
3.9.b). In practice for ARQ protocol, when reliable communication is required,

greater number of retransmissions for each lost packet is allowed.
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Figure 3.9: Residual Loss versus Packet Loss. Independent Packet Loss,
Homogeneous Receivers. a) FEC/ARQ. b) ARQ.
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Packet delay is also measured as the time difference between the time the packet
is generated and the time it is ready to be played at the receiver (equation 2.3). In this
section, it is assumed that transmission delays (i.e. encoding and interleaving,..) are small
compared to receiving delays and thus they are ignored. While the packet is transmitted
in the network it is delayed for one unit of time (iteration) whenever it passes a node.
This is the only network deiay that is considered. Queuing delays are considered in the
last section of this chapter (3.4.4) where routers and their buffers act as sources of packet
loss and queuing delays in the hypothetical multicast network. The delay measured in this
section also includes all processing delays (receiving, decoding, de-interleaving,
transmitting NAKs and receiving retransmissions). Using equation 2.4 and applying

relevant subscripts we have:

Np(1) s .
EG, )= 3 2b)) (.2)
&N,

where E{(i,j) is the receiver average (mean) delay, N,(i) is the number of packets of flow 7,

A, (i, j) is the delay of packet number k, i is the flow no. (sender no.) and j is the receiver

number. Flow average delay E(i) is the mean of all receivers’ average delay and is given

below:
Na (1)
EG,))
E(@) = _F'___ (3.3)
Ny ()
where Ng(i) is the number of receivers of the flow i.

Replacing notations of equation 3.3 and 3.4 in equation 2.5 we get the following equation
for variance of flow delay (o7 ),

Ne(t) Np(r) L. .

2 2 (8 G N-EG)

2 _ 7=l
e N @* N, -1 ¢4

Figure 3.10.a is the plot of average delay of four flows of the multicast network. Relevant
curves of delay variance are plotted in Figure 3.10.b. Peak delay is shown in Figure 3.11.
All delays are measured and calculated at 2 Mbps transmission rate. The reasoning for
large values of delay variance in Figure 3.10.b is similar to explanation given in 2.5.2.1

for our experimental results.
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Figure 3.10: a) Average Delay versus Packet Loss. b) Delay Variance versus
Packet Loss. Independent Packet Loss, Homogeneous Receivers, FEC/ARQ
scheme.
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Figure 3.11: Peak Delay versus Packet Loss. Independent Packet Loss,

Homogeneous Receivers, FEC/ARQ scheme

3.4.2 Shared loss — Homogeneous Receivers

In previous section we have assumed that all losses occur as independent events at the
receivers while in reality there may be losses within the multicast tree that will be shared
by more than one receiver. In this section we investigate whether and how the presence of
such losses affects the conclusions drawn from our independent loss model. Instead of
using our hypothetical multicast network, we use another model to simulate shared
losses. In {39] the sharing of loss was analyzed for multicast trees built by different
multicast routing algorithms. The authors conclude that the loss sharing in multicast trees
is modeled well by a full binary tree (FBT). In order to investigate the effect of shared
loss we consider a FBT of height d, where the sender is the root of the tree and the
receivers are the leaves. We assume that losses occur as independent events at each node
(router) excluding source (sender) and leaves (receivers), with probability p,. Here p, is

chosen such that loss at each receiver is p,

p=1-(1-p, )" (3.5)
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We consider three full binary trees of 2, 4 and 8 receivers (values of 0, 1 and 2 for d
respectively) and execute simulations for them.
Independent Loss: In order to be able to compare results of independent and shared loss
cases, the same full binary trees as for shared loss are used to simulate independent losses
and it is assumed that in this case only the receivers lose packets, each receiver
independently with probability p. Other nodes of the multicast tree do not lose packets at
all.

Note that each receiver experiences the same loss probability p in both shared and

independent models.
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Figure 3.12 compares the number of transmissions for independent and shared
losses. First, we observe that the number of transmissions is almost the same for both
types of loss when NAK avoidance is not considered. Second, it is seen that our
observations drawn from the independent loss case in the previous section continue to
hold. However, comparing Figure 3.13 and Figure 3.14 it is seen that the number of
receivers for shared losses need to be larger before the benefits of integrated FEC
appears. These figures show that the overhead of transmitted parities with integrated FEC
is amortized by the repair efficiency for greater number of receivers for shared losses

than for independent losses.
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Figure 3.13: No of Transmissions versus Packet Loss. Independent Packet
Loss, Homogeneous Receivers, ARQ with NAK Avoidance and FEC/ARQ

schemes.
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ARQ with NAK Avoidance (NA) compared to FEC/ARQ
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Figure 3.14: No of Transmissions versus Packet Loss. Shared Packet Loss,
Homogeneous Receivers, ARQ with NAK Avoidance and FEC/ARQ schemes.
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3.4.3 Heterogeneous Receivers

In this section we are going to discuss how our observations change in the presence of
heterogeneous receivers, i.e. receivers with different loss probabilities. We use our Full
Binary Tree (FBT) model for 2. 4 and 8 receivers as in the shared loss case. We assume
that only receivers lose packets and half of the receivers are low loss and the other half
are high loss. High loss receivers’ loss is assumed to be 9 times low loss receivers’.

First, we compare performance of FEC/ARQ with the case without FEC (only ARQ) and
consider the effect of NAK avoidance mechanism on the performance. Then behavior of
heterogeneous receivers is compared to homogeneous receivers. Note that for
comparison, for homogeneous receivers we have used our Full Binary Tree (FBT) model
for 2, 4 and 8 receivers as in the heterogeneous case.

Figure 3.15 shows the number of transmissions of heterogeneous receivers for
both FEC/ARQ and only ARQ schemes. Again it is seen that FEC/ARQ is more
advantageous but comparing those graphs with Figure 3.13 (for which receivers are
homogeneous i.e. there are no high loss receivers) shows the degradation due to high loss
receivers. This means that number of receivers has to be higher before advantages of
integrated FEC reveals. Also comparing Figure 3.15 and Figure 3.13 we observe that the
presence of high loss receivers has a greater effect on the number of transmissions in the
case of integrated FEC than only ARQ. Simulations are also performed for the case
without NAK Avoidance. Results are similar when NAK avoidance is not provided and it
is observed that better performance for heterogeneous receivers by using FEC/ARQ is

achieved.
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Figure 3.15: No of Transmissions versus Packet Loss. Heterogeneous
Receivers, ARQ with NAK Avoidance and FEC/ARQ schemes. Number
of High-loss and Low-loss receivers in each flow is the same.

Figure 3.16 compares number of transmissions for heterogeneous receivers with
homogeneous receivers. It is observed that the performance of integrated FEC is
determined by high loss receivers. For instance, in heterogeneous case with four receivers
and at 5% average loss (i.e. 2 receivers with 9% loss and 2 receivers with 1% loss),
number of transmissions is 1.153, that is equal to the value for the flow with two
homogeneous receivers at 9% loss. As another example, it is seen that number of
transmissions for heterogeneous model with 8 receivers at 6% loss (i.e. 4*10.8% and 4*
1.2% loss receivers) is 1.19 and it is equal to number of transmissions for homogeneous

case with 4 receivers at 10.8% loss.
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For heterogeneous case, high-loss receiver is 9 times low-loss receiver loss
and number of high-loss receivers and low-loss receivers in each flow is equal.
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Figure 3.16: Comparison of no of transmissions between homogeneous and

heterogeneous receivers. FEC/ARQ scheme.

3.4.4 Considering queuing delay and loss due to buffer overflow

In section 3.4.1 we studied the performance of our hypothetical multicast network for
homogeneous receivers with independent packet loss. In those simulations, we assumed
that while the packet was transmitted in the network it was delayed for one unit of time
(iteration) whenever it passed a node. This was the only network delay that was
considered.

In this section we also consider queuing delays in routers and assume that packet
losses are due to router buffer overflow (network congestion). In order to understand how
these assumptions may affect our conclusions, first simulation results and performance of

a single link and then our hypothetical multicast network are studied. Buffer size of the

routers in the network for the simulation is 7.
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1. Single link: A single end-to-end link consisting of a sender, a router and a
receiver and their interconnecting links is considered. Random background traffic is
generated at input to the router as stated in section 3.1.2.4. Background traffic generation
rate is changed and parameters like packet loss, delay and no of transmissions and etc. are
measured and relevant graphs are plotted. Service rate of the router buffer i.e. the rate at
which packets leave the router is assumed to be constant and it is one packet per iteration.
Also main flow rate i.e. flow from sender to receiver, is 0.25 times the service rate of the

buffer. Figure 3.18.a shows packet loss in (%) due to buffer overflow versus traffic

intensity (p = '1# in packet arriving / packet served) of the router buffer. 4 is packet

serving rate, 4 =4, + 4, is the total packet arriving rate, A, is main flow arriving rate
and A, is background traffic arrival rate at the buffer. In the above figure =1 and

4,=0.25 packet/iteration are kept constant and background traffic (4, ) is changed.

Figure 3.17.a and b show the plot of mean delay and delay standard deviation
versus packet loss. The dashed curves are plotted without considering the router buffer
and it is assumed that packets are randomly lost at the receiver whenever the output of a
uniform distribution function after each call is less than the probability of required loss
Pr. Also the delay (A, as defined in eq. 2.1) does not include the network delay caused
by queue in the buffer. For the solid curves the router is considered and packet losses are
due to the router buffer overflow and end to end delay of the packets (A,) also include
delay caused by queue in the buffer. It is seen that average delay in solid graph is about
10 units of delay (iterations) more than in the dashed curve and this is due to queuing

delay in the buffer. As shown in Figure 3.17.b standard deviation of the case with buffer

is less than the other curve that is reasonable.
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Figure 3.17: A single end to end link. Average Delay (a) and Delay
Standard Deviation (b) versus Packet Loss.

In Figure 3.18.b peak delays are shown. Maximum peak delay for the case with
router buffer is about 500 that is less than the maximum tolerable delay for FEC/ARQ
scheme (520 ms at 2 Mbps rate, section 2.5.2.4). It means that none of the packets are
considered lost due to delay in arriving at receiver. For longer delays in buffer (peak
delays in excess of 520 ms) the packets are considered lost (late arrival at receiver and
expiry of receive timer in receiver). In this case the solution is to transmit the packets by
the sender at lower rates. In practical situations buffer delays in network routers are rarely
as high as 20 ms and flow rates of about 2Mbps seem achievable. Figure 3.18.c shows no
of transmissions versus packet loss due to buffer overflow. Note that values on vertical
axis are normalized to K (no of the original data packets). As a result at zero packet loss,

no of transmissions (data and parity) is 1.142 (N/K).
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Above observations show that our previous conclusions continue to hold when

queue in the router is considered for a single link.
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Figure 3.18: A single end-to-end link including one sender, one router and one
receiver. FEC/ARQ scheme. a. Loss due to buffer overflow versus router traffic
intensity, b. Peak delay versus packet loss and c. No of transmissions versus loss
due to buffer overflow.

2. Hypothetical Multicast Network: Background traffic is generated at the input
to each router buffer as in single link above. Main flow is also input to each router buffer
and the rate is assumed to be constant and equal to 0.25 times service rate of buffer.
Depending on network topology, packets from other three multicast flows of the
hypothetical network may be input to the buffer, too. As a result, buffers in our network
have different traffic intensities at the same background traffic that is the reason for
different queuing delays in buffers and also losses due to buffer over flow. For instance,
for flow no 3, on the link from the sender (S3) to R31, there are only two buffers of
routers RT13 and Rt8 and only background and flow number two traffic are input to
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them. While for all flow number 4 links, e.g. link from S4 to R41, there are four buffers
(routers Rtl12, Rtll, Rt9 and Rt6) two of which (Rtl1 and Rt9) also carry the packets
from flow no 3 and as a result will have high loss and high delay at the same background
traffic (Figure 3.1). Since all three links of flow no 4 are of highest loss and delay, this
flow has maximum average loss and delay compared to other three flows and this is
clearly seen in next figures. Figure 3.19.a and b show average delay E(i) including buffer
delay and packet loss versus background traffic rate respectively. While drawing the
figures, main flow and other multicast flow rates input to buffer are kept constant and

equal to 0.25% of buffer output rate.
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Figure 3.19: Hypothetical network. FEC/ARQ scheme. a. mean end to end packet
delay and b. packet loss due to buffer overflow, versus ratio of background packet
arrival rate to output rate of router buffer, while main flow and other multicast
flow rates are constant and each equal to 0.25 output rate of buffer.
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Figure 3.20 is the plot of no of transmissions versus packet loss due to buffer
overflow. As it is seen FEC/ARQ scheme has less bandwidth usage compared to only
ARQ protocol specially at higher loss rates and as the no of receivers per flow increases

that is a proof of scalability of integrated FEC.
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Figure 3.20: Hypothetical network. Comparison of FEC/ARQ and ARQ schemes.
No of transmissions versus Packet loss due to buffer overflow.

Figure 3.21 is a plot of peak delay packet loss for two cases. one considering
buffer delay and the other one without considering it. It is seen that peak delay for the
case considering buffer delay is about 20 to 40 units higher. Peak delay unit in the figure
is iterations. As mentioned previously, for a flow rate of 2Mbps each iteration is equal to
1 ms and maximum tolerable packet delay is 520 ms. This means that if a packet delay is
more than 520 ms it is considered as lost since it is not received at receiver before
relevant timer expires. In Figure 3.21delays are less than 520 i.e. no packet is considered
lost due to excessive delay. In practice such long delays (20 to 40 ms) are not expected to

happen in buffers across an end-to-end link and transmission rates of up to 2Mbps seem
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achievable. Of course, if tolerable peak delays are exceeded the transmission rate has to
be reduced.
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Figure 3.21: Hypothetical network. FEC/ARQ scheme. Peak delay versus packet

loss.

90



Chapter 4

Conclusion and Future Work

4.1 Conclusion

The results achieved by laboratory testing our integrated FEC/ARQ code on two
sender/receiver PCs show that the QOS technique addressed in this thesis performed
reliably for random packet losses up to 10% and actual data flow rates up to 1.7 Mbps.
This is achieved at extra cost of coding/decoding in the end systems. Coding delay in the
sender can be reduced by 1) pre-encoding the packets off-line and storing the encoded
information on disk prior to transmission; 2) using a more powerful machine in the
sender; or 3) using dedicated hardware in the sender.

With our FEC/ARQ scheme, the receiver starts to play data after an initial start up
delay of one window length (e.g. S00 ms for 2 Mbps transmission rate).

Error/erasure control feedback is very small for integrated FEC. NAK is sent for each
block of information (consisting of N words) and only when packet loss rates are large,
while for the schemes without FEC, NAK is sent for each missing packet. Number of
retransmissions at worst case is less than one percent of total transmitted information,
thus showing extremely minor usage of extra network bandwidth to achieve full

reliability. In case of burst loss, performance of FEC is improved by interleaving encoded

91



words prior to transmission. Interleaving lets the sender spread the transmission of an
encoded word over an interval that is longer than the burst loss length.

Simulations performed on our hypothetical multicast network results in the
following. For independent packet losses at homogeneous receivers, by increasing the
number of receivers, total no of transmissions (including retransmissions) for FEC/ARQ
scheme is almost constant for a considerable range of packet losses and there is only a
minor increase due to retransmissions at high losses (around 10%), while without FEC
number of transmissions increases considerably. Thus it is concluded that while ARQ
schemes suffer from weakness in scalability, FEC/ARQ protocol is scalable and can be
used with large number of receivers. Also it is seen that for various flows in the network
FEC/ARQ is completely reliable for losses below 5% and almost reliable up to 10%
packet loss. Residual loss for ARQ with the same number of allowed NAKs/lost packet
is at least 10 times the value for FEC/ARQ. Also for integrated FEC, number of NAKSs is
considerably less than the case without FEC.

For shared losses, the number of receivers needs to be larger before the benefits of
integrated FEC appears. Simulations show that the overhead of transmitted parities with
integrated FEC is amortized by the repair efficiency for greater number of receivers for
shared losses than for independent losses. Other observations for independent losses
continue to hold for shared losses and integrated FEC outperforms the case with only
ARQ even when NAK avoidance is considered. The results for flows with heterogeneous
receivers show that the performance of integrated FEC is determined by high loss
receivers.

In the last section (3.4.4), the hypothetical multicast network is considered while
losses are due to overflow of buffers and total packet delay also includes queuing delays
in routers. The important effect is that packet delay has increased due to queuing delay in
the buffers. In case, the packet delays are less than maximum tolerable delay,
transmission rates of up to 2 Mbps (1.7 Mbps actual data rate) seem achievable. If in
practice, due to delay in buffers, tolerable packet delays are exceeded the transmission

rate has to be reduced.
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In all the above cases our integrated FEC/ARQ scheme is shown to be scalable,
reliable and utilizes network bandwidth efficiently and it outperforms schemes that do not

use FEC. These advantages are achieved at cost of coding/decoding in the end systems.

4.2 Suggestions for Future Work

Expanding the proposed integrated FEC/ARQ code to cover a real multicast
network consisting of a sender and a few routers and several receivers and practical
testing and evaluation of the performance is the next step that is already being done at
ETS network laboratory by other researchers.

In order to decrease the decoding delay and consequently the processing delay at

the receiver, a faster and more efficient code is to be prepared.
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