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ABSTRACT

Construction of Low Density Parity Check
Codes Without Short Cycles

Lizhi Wu

With the rapid expansion of communication networks, there has been an
increasing demand for efficient and reliable digital data transmission and storage
systems. Many efficient codes have been developed. The LDPC code is one of them.
In this thesis, the sum-product algorithm is used in the decoding of LDPC codes.
Some schemes for encoding LDPC codes have been studied. In particular, two
methods of producing regular H matrices have been attempted that include short
cycles of length four with code rates of 0.5, and we present three schemes of
finding regular H matrices which do not include short cycles of length four with
code rate being 0.5. The effect of short cycles in the bipartite graph of regular LDPC
codes has been considered. The simulation results show that the BER performances
of regular H matrices that do not include short cycles of length four based on BPSK
or 8PSK on AWGN channel is better than those of regular H matrices that include
short cycles of length four. In conclusion, in order to obtain good performance with
LDPC code, one should design H matrix related to bipartite graph without short

cycles.
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Chapter 1

Introduction

1.1 Structure of Digital Communication Systems

In recent years, 'there has been an increasing demand for efficient and reliable
digital data transmission and storage systems. In order to understand the role of error
control coding in these systems, a model of a general communication system is
shown in Fig. 1.1.

In the system, the task of the transmitter is to transform the information
generated by a source into a form that can tolerate the interference of noise over the
transmission medium.

The information source can be either a person, a machine, words or code
symbols. The source output, which is to be communicated to the destination, can be
either a continuous waveform or a sequence of discrete symbols.

Because the output of the information source is in general not suitable for

transmission as it might contain too much redundancy, the source encoder



transforms the source output into a sequence of binary digits with minimum
redundancy.

Information Source Channel Modulator
source encoder encoder (writing unit)

Noise ————pi Channel

y Source Channe! Demodulator
Destination decoder decoder (reading unit)

Fig. 1.1 Block diagram of a digital communication system

The channel encoder transforms the information sequence into a discrete encoded
sequence called a code word. The channel impairments cause errors in the received
signal. The channel encoder is incorporated in the system to add redundancy to the
information sequence in order to minimize transmission errors.

The output of the channel encoder is not normally suitable for transmission. The
modulator transforms each output symbol of the channel encoder into a waveform of
duration T seconds that are suitable for transmission. The waveform enters the
channel (or storage medium) and is corrupted by noise. Typical transmission
channels include wire lines, microwave radio links over free space, satellite links,
fiber optic channels, etc. On a telephone line, the disturbance may come from

switching impulse noise, crosstalk from other lines, thermal noise, or lightning. In
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the receiver, the demodulator (or reading unit) processes each received waveform of
duration T and produces an output that may be discrete (quantized) or continuous
(unquantized). The demodulator outputs corresponding to the encoded sequence are
called the received sequence.

The basic decoding idea is based on the rules of channel encoding and the noise
characteristics of the channel. The channel decoder makes an estimate of the actually
transmitted message. Although the noise may cause some decoding errors, the goal
of the decoder is to minimize the effect of channel noise.

Based on the source encoding rule, the source decoder transforms the estimated
sequence into an estimate of the source output and delivers this estimate to the user
(destination). )

It is possible for a proper design of the transmitter-receiver system to remove or
decrease the effects of attenuation and distortion and to minimize the interference of

noise. But, the impact of noise can not be totally removed because the complete

knowledge of noise still confuse us.

1.2 Motivation

Assume we want to send information through a noisy communication channel
reliably. Shannon proved that arbitrarily reliable transmission is possible through this
channel if the information rate in bits per channel use is less than the capacity of the
channel. The performance of error-correcting codes was bounded by Shannon in
1948[1]. But, practical coding methods did not approach the Shannon limit until the
discovery of Turbo codes in 1993 [2]. Therefore, the Turbo codes opened the new
era of near Shannon limit performance for the additive white Gaussian noise channel,
significantly improving on all previous methods. Not only have the Turbo codes
approached the Shannon limit, but also Low Density Parity Check codes (LDPC)
that Gallager found in 1963 [3] and MacKay and Neal [4] [5] rediscovered provide
an excellent performance.



Low density parity check codes are a class of linear error-correcting block codes.
In 1963, Gallager introduced the LDPC codes which are defined in terms of a sparse
parity-check matrix: each codeword satisfies a small number of linear constraints.
Gallager proposed layouts, a description of an iterative probabilistic decoding
algorithm and theory that in some aspects goes beyond what is known today as
Turbo codes. Unfortunately, LDPC codes were almost forgotten for more than thirty
years. It wasn’t until 1995, that the excellent performance of LDPC codes was found
by MacKay and Neal [51.

Gallager considered codes whose parity check matrix had fixed row and column
weights (a construction which is refered to as ‘regular’). MacKay, Neal, Michael
G.Luby, Michael Mitzenmacher, M Amin Shokrollahi, Daniel A. Spielman, and
Matthew C. Davey gave up this constraint and produced ‘irregular’ LDPC codes that
have a variety of row and column weights.[6] [7]. High weight columns can make
the decoder identify some errors quickly; The remaining errors are easier to correct.

Some performance comparison of LDPC codes have been shown in some papers.
MacKay [4] reported a good regular binary LDPC code which was introduced by
Gallager in 1962. Its bit-error probability is at 10 when the Eb/No is 0.9dB, code
rate %, and blocklength 40000 bits, Luby ;Mitzenmacher, Shokrollahi and Spielman
first showed irregular construction of LDPC codes and reported the performance of
irregular binary LDPC codes in 1998 [8]. Its bit-error probability is 10> when value
of Eb/No is 0.5 dB, code rate % , and blocklength 64000 bits. The code ‘Irreg
GF(8)’ beats the best known turbo codes, at least for bit error rates above 107,
making it the best (at this error rate) error correcting code of rate % for the Gaussian
channel currently known. The error-correction performance is better than that of the
turbo code; besides, its blocklength is less than that of the turbo code. Another
important difference between turbo codes and LDPC codes is that all errors made by
the LDPC decoding algorithm are detected errors. In other words, the decoder

reports the fact that some blocks have been incorrectly decoded.



Richardson, Shokrollahi and Urbanke [9] reported that extremely long
blocklength (10° bits) irregular LDPC codes can perform within 0.1 dB of the

Shannon limit.

1.3 Organization of The Thesis

In Chapter 2, a brief review of low-density parity-check codes is given.
Gallager’s codes received little attention prior to 1995; but now, there is a huge
interest since their performance has been recognized . We describe several methods
for constructing a suitable low-density matrix. The matrices constructed by method
we denote as W1 and W2 will be suitable bipartite graph with short cycle of length
four and code rate 0.5. The matrices constructed by W3, W4, and W5 will
correspond to the bipartite graph without short cycle of length four and code rate 0.5.
The definitions of W1, W2, W3, W4, and W35 is presented in Chapter 2.

In Chapter 3, an efficient encoding based on approximate lower triangular form
is given [10]. The method formulates an algorithm for constructing efficient
encoders for LDPC codes. The efficiency of the encoder arises from the sparseness
of the parity-check matrix H and the algorithm can be applied to any sparse H
matrix. We also introduce a systematic encoders based on a generator matrix.[4].

In Chapter 4, we introduce binary input symmetric-output memoryless channels
and details of the mathematical equations. In Section 4.2, we show how to map bits
to BPSK based on AWGN. In Section 4.3, Gray mapping of bits to 8PSK symbols
on AWGN is presented. In Section 4.4, we present an anti-Gray mapping of bits to
8PSK on AWGN.

In Chapter 5, we describe what the bipartite graph is, and describe the condition
of having short cycles in the bipartite graph. Then, some basic concepts of decoding
LDPC codes are presented in Section 5.2. In Section 5.3, we state the sum-product

algorithm in detail.



In Chapter 6, five different H matrices whose sizes are 30*60, 48*96, 60*120,
92*192, 252*504 are discussed. The bipartite graphs related to these H matrices do
not include short cycles of length four. In Section 6.1, we compare the performance
of mapping of bits to BPSK in the AWGN channel for different H matrices. In
Section 6.2, performance comparison for Gray mapping of bits to 8PSK combined
on AWGN is presented. In Section 6.3, we also compare the performance with an
anti-Gray mapping of bits to 8PSK on AWGN.

In Chapter 7, we summarize, and provide conclusions.

1.4 Contributions of the thesis

The main contributions of the thesis are stated as follows:

+ Present two methods W1 and W2 of designing regular H matrices which
include short cycles of length four with code rates of 0.5. The details are

shown in Section 2.4.3.

+ Present three schemes W3, W4, and W5 of finding regular H matrices which
do not include short cycles of length four with code rates being 0.5. The

details have also been shown in Section 2.4.3.

+ Comparison of the effect of short cycles in the bipartite graph of regular
LDPC codes with 0.5 code rates. The simulation results show that the BER
performances of regular H matrices which do not include short cycles of
length four based on BPSK on AWGN channel is better than those of regular
H matrices which include short cycles of length four. The difference in BER
performances between having short cycles and no short cycles in the bipartite

graphs have been shown in Section 6.2 .



+ Similarly, we analyze the BER performances of some regular H matrices that
are used to draw bipartite graphs which do not include short cycles of length
four and decode LDPC codes based on Gray mapping 8PSK on AWGN
channel. The performances show that they are better than those of regular H
matrices that are used to draw bipartite graphs that include short cycles of
length four and decode LDPC codes - The bar charts of statistical scheme
clearly express results that show the difference in BER performances of those
having short cycles and those with no short cycles in bipartite graph. The

details have been shown in Section 6.3.

+ We also research the BER performance of LDPC codes combined with anti-
Gray mapping 8PSK on AWGN channel and compare regular H matrices
with short cycles of length four and H matrices with no short cycles of length

four for a code rate of 0.5.



Chapter 2

Low Density Parity Check Codes

2.1 Developing History of Low Density Parity Check Codes

Low-density parity-check codes were introduced by Gallager in his Ph.D
thesis[3]. The term low-density means that the number of I’s in each row and
column of the parity check matrix is small compared to the block length. LDPC
codes are a class of linear error-correcting codes. Linear codes are defined and
described in terms of generator and parity-check matrices. The codes can be
explained as using a generator matrix G to map information k to transmitted blocks t
called codewords. For a generator matrix, G, there is a parity-check matrix H. In
terms of the related parity-check matrix H, all codewords must satisfy Ht=0 .

In 1963, Gallager defined (n, ¢, rw) LDPC codes which have a blocklength n,
exactly c ones per column, and rw ones perrow in a parity check matrix, where ¢ >

3. Fig. 2.1 shows the H matrix of a (20, 3, 4) code structured by Gallager.[3].



L 1 1 1 0 0 o ¢ 0 0 0 0 0 o0 o ¢ ¢ 0 o0 o
0 0 0 o t 1 | 0 0 0 0 o0 o0 o o 0 0 o0 o
0 0 0 0 0 0 o0 ¢ Lt 1 1 0 0 ¢ ¢ 0 0 0 o
¢ 0 0 o0 o0 o0 o 0 0 0 o0 o | 1 I 0 0 o0 o
0 0 0 0 0 0o o0 o 0 0 0 0 o0 o o [ S N |
1 0 0 0 1 ¢ o0 o 10 0 0 1 o0 ¢ o 0 0 o0 o
0 t o 0 o0 1 o 0 0 1 0 o0 o0 o0 o ¢ I 0 0 o
0 0 1 0o 0 o0 1 o 0 0 0 0 0 1 o ¢ 0O 1 0 o
6 0 0 1 o0 o0 o ¢ 0 0 1 0 o0 o 1 ¢ 0 0 1 o
06 0 0 0 0 o0 o | 0 0 0 1 0 ¢ o I 0 0 o0 1
I 0 0 0 0 1 o o 0 0 0 1 0 o o 0 0 1 o0 o
0 1 0 0 0 o0 1 g 0 0 1 0 0 o0 o | 6 0 o o
0 0 1 o0 0 o0 o0 | 0 0 0 0 1 o0 9 ¢ 0 0 1 o
0 0 0 1 0 o0 o0 o I 06 0 0 0o 1 o o L 0o o o
0 0 0 0 1 o0 o ¢ ¢ 1 0 0 o0 o0 1 g 0 0 o0

Fig. 2.1 Example of a parity-check matrix for a (20,3,4) LDPC code

Why had Gallager’s codes, introduced in 1963, had been forgotten for a long
time? The main reason is that the storage requirements of encoding, and the
computational demands of decoding made them impractical at that time.

In 1981, Tanner[4] described generalized constraints of codes defined on
bipartite graphs , which represented the relationship between codeword symbols and
general constraints, and stated the optimality of the sum-product algorithm for
decoding codes based on the bipartite graphs.

In 1995, Wiberg, Loeliger and Koetter [12] [13] rediscovered Tanner’s
constraints and introduced states into Tanner’s graphs, as a result, connections to
trellises and to turbo codes became possible. Wiberg carried out some performance
analysis for iterative decoding, and evaluated some performance of some low-density
parity check codes.

The most important and interesting thing is that, with the introduction of LDPC
codes by Mackay et. al (4](5][14] and Spielman et al (15], the connections to
Bayesian networks were recognized [16](17]. MacKay showed that LDPC codes are
‘very good’ when decoded with an optimal decoder.

In 1998, Davey and MacKay [18] presented non-binary Gallager’s codes and
irregular non-binary Gallager’s codes, and reported that performance of those could
be significantly improved. Luby, Mitzenmacher, Shokrollahj and Spielman [8]
defined irregular LDPC codes which have highly non-uniform column-weight



distribution. The irregular LDPC codes could improve the performance of decoding.

Finally, they proved that the performance of imregular codes exceeds that of turbo
codes.

It is well known that the LDPC codes have become more and more important in
communication field. A lot of papers have been published on this subject.

2.2 Bipartite graph and short cycles

In this section, we will present the bipartite graph and the related short cycles in
the more detail. The bipartite graph corresponding to the parity check matrix H is
also called the Tanner graph [11]. A Tanner graph is shown in Figure 2.2.

Example 2.1 Consider the following parity check matrix

—_—0 e~ O
—_— O O

S - O -
~N—

O - - o

What are its linear equation system of six variables, Tanner graph, and
corresponding bipartite graph ?

Clearly, if the six variables are x = {x1, X2, X3, X4, Xs, Xg 1» then Hx =0 , and their
linear equations are the following:
X; + X3+ Xg =0
X2+ X3+ X4 =0
X3+ X5+ X5 =0

X| + Xq4+ X5 =0

Then, we can find the Tanner graph corresponding to the linear equations.

10



Fig. 2.2 An example of a Tanner graph

According to the Fig. 2.2, we find certain edges which exist between equation
points and variables x. Each variable X, is put on the left and named a “left node”,
“bit node” or “message node” represents a bit of the codeword . Each equation point,
is put on the right and named a “right node” or “check node”, represents a parity
check of the code. According to the definition, we can rearrange Fig.2.2 and get
bipartite graph of Fig2.3.In Fig. 2.3, an edge exists between a bit node and a check
node only when there is a | element in the corresponding to position in the parity
check matrix. The situation is absolutely the same as Fig 2.2 . Therefore, a Tanner
graph is a bipartite graph representation for a check structure.

In example 2.1, we describe what the bipartite graph is and what the relationship
between the bipartite graph and Tanner graph is. However, the number of 0 elements
is equal to number of | elements in the parity check H matrix. As a result, the parity
check H matrix is not low density because, in low density parity check codes, the
number of | elements is less than the number of 0 elements in the H matrix.

11



Bit nodes

X1

Check nodes
equation

X2

aquation »

X3

equation s

equation

Fig. 2.3 The bipartite graph in example 2.2

In order to describe the relationship between bipartite graph and short cycles in
low density parity check codes, we give a six rows by twelve columns H matrix as
follows.

From the H matrix, we find that there are two overlaps between the first column
and the seventh column. The overlaps are shown in the Fig. 2.4 (b). Obviously, the
four dark lines have one to one relationship with the 1 elements of the two overlaps
in the H matrix.

In Fig. 2.4 (b), the four dark lines form a cycle. In general, we will call the cycle
a short cycle when its length is four. In chapter 6 , we will find that a short cycle

affects the performance when we do some simulations.



0 11010010011
fJor1oo0o0flo1 110
H={l}00[ll{l}l°000
1L 1toooct1 o101 91
0 !'1 100101100
0001 1100101 1

(@) A low density parity check matrix in Fig24

Bit nodes

(b) Bipartite graph corresponding to H matrix in Fig. 2.4
Fig. 2.4 An example of a parity check matrix and its corresponding bipartite graph

2.3 Rule of constructing regular LDPC codes

Gallager’s codes have fixed row and column weights. However, with the
development of LDPC codes theory, the constraint has been relaxed. If a column
weight is greater than 2 and the parity check matrix H is produced at random, we
want to constrain the distribution of row and column weights to be as uniform as
possible. Besides, we also require that there is no overlap between any two columns

in the matrix H .

13



Because the matrix H is produced randomly, the matrix H is not in systematic
form, and we can use Gaussian elimination and reordering of columns to derive an
equivalent parity-check matrix in a systematic form.

This thesis concentrates on LDPC codes (N,3,6) with no short cycles in their

bipartite graph and investigates the performance of these codes in terms of BER vs
Ew/No (dB).

2.4 Construction of LDPC matrices

2.4.1 Gallager’s construction of H matrices

In order to express Gallager’s construction of H matrices, we use an example of a
parity-check matrix for a (20,3,4) LDPC code. N is 20,c=3,and w =4 .

Firstly, consider an Ne¢/rw by N matrix shown in F ig. 2.5. The matrix has been
divided into 12 submatrices, and each has 5 rows and 5 columns. The first row and
column of submatrices are identity matrices. The rest of the submatrices contain the
letter L in each main diagonal and X in the other positions. The next step is to find 5
non zero elements in each submatrix and guarantee that there is no more than one
overlap between any two columns in the H matrix . The letter X is used to denote an
acceptable position in which to put a 1 without forming more than one overlap
between any two columns in the H matrix. The letter L expresses an unacceptable
position because the 1 of the position must create an overlap of more than one
between some two columns in the H matrix. (see [3] for more details).

Secondly, we choose a submatrix with L and X elements, and in the first row,
arbitrarily pick a position containing a X and make the X a 1. Meanwhile, the rest of
the positions in the submatrix that are in the same row or column cannot be made 1.
Also, if the same position of some other submatrix which is corresponding to the
chosen position of the submatrix can not be made a | it can only be a 0. See Fig.2.6

for more details.

14
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Fig. 2.5 The first step of Gallager's construction of H matrices
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Fig. 2.6 The second step of Gallager’s construction of H matrices

the method above, we can continually do the transformation in the

, the third row , etc
one 1 element in each submatrix . The matri

According to

, and other submatrices. F inally , each row has only

second row

which is made from the submatrices

lude more than one overlap between any two columns

does not inc
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2.4.2 MacKay’s description of H matrices.

In 1999, MacKay[4] introduced methods to construct parity check matrices
which are related to the bipartite graph . Fig.2.4 shows the relationship between the
H matrix and the bipartite graph.

From the example, we find that there is at least a cycle of length 4 (dark lines) in
the bipartite graph. MacKay [4] reported some construction methods of matrices
without cycles of length 4. They are as follows:

+ Construction 1A.

If we fix a weight per column ¢ (e.g., c=3) and construct an M rows by N
columns matrix at random with weight per row as uniform as possible, the overlap
between any two columns is not more than 1. Shown in figure 2.7 (a).

+ Construction 2A.

Design m/2 columns with weight 2, these are constructed without overlap
between any two columns. The rest of the columns are produced at random with
weight 3, with the weight per row as uniform as possible, and overlap between any
two columns of the entire matrix not more than 1. Then, the M rows by N columns
matrix can be constructed. Shown in Fig. 2.7 (b).

+ Construction 1B and 2B.

If we choose some columns carefully from a 1A or a 2A matrix , delete them and
make the bipartite graph of the matrix have no short cycles of length less than some
specified length 1, (e. g., 1=6).

16
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Fig. 2.7 (a) Construction 1A fora Gallager code for t=3, t,=6, and code rate <1/2
(b) Construction 2A for a Gallager code with code rate 1/3.

4]

2.4.3 New schemes for constructing LDPC codes matrices

Although arbitrary sparse H matrices which satisfy the definition of Gallager’s
codes can produce correct encoding, different H matrices which are constructed by
different schemes will have different encoding and decoding. The low density parity-
check matrices can also be created as follows:

W1: An M rows by 2*M columns matrix is created. Firstly, fix M rows and
make every row have a fixed number of | elements at random, (for example, six 1
elements), then by modifying | position in each row, make every column have a
fixed number of | elements, (for example, three 1 elements), and still keep in every
row a fixed number of 1 elements. Fig. 2.8 shows the scheme. We can apply the

matrix to encode and decode a regular LDPC codes with code rate =0.5.

M
R ,,,_..,.._._., - >
00010701 — 00 o)
100060000 .. 011
Mi{010600000 __ 004
00000101 __ 0a0;1
%0008 10 . 000
00010011 __ 00 0)
10000000 . o011
10000000 . 000
00000101 ... 0o,
01000[00....._.000J

Fig. 2.8 The W1 scheme for constructing H matrix
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W2: An M rows by 2*M columns matrix is created. Firstly, fix 2*M columns
and make every column have a fixed number of 1 elements at random, ( for example,
three 1 elements ), then modifying pesitions of 1 in every column, make every row
have a fixed number of 1 elements, ( for example, six elements 1) and stil] keep a
fixed number of 1 elements in every column. We can also apply the matrix to encode
and decode a regular LDPC codes with code rate =0.5.

M

q—————r-~—-—~>
‘000100101__01,0
1o00o0o0o1oo . g ov
M oofoooooumooo
0 'ooo0ot1o00°" . g0
YUWo0o0o00010 . 990
000[0[0‘1.......000
L0oooooo . o9
01000000 . 99
00000101 ___ g9

l00000[0........000

Fig. 29 The W2 scheme for constructing H matrix

W3: In order to create M rows by 2*M columns matrix , firstly, find all columns

with a fixed number of 1| elements or weights ( ¢ ). The total number of such

columns is CMC=(M]. Then, from the (MJ columns, choose 2*M columns with
c c

no more than an overlap of elements | between any two columns, keep every row
with fixed | elements (six elements 1, in the thesis ), and every column with another
fixed number of Is (in the case , three elements 1) . For example, if we want to build

a 50*100 H matrix with three weights for every column and six weights for every
. 50
row. Firstly, find all (3 J= 117600 columns. Then, we can choose one hundred

columns from the 970200 columns without more than an overlap of elements 1|
between the any two columns of the one hundred columns. Also, every row in the H
matrix constructed must contain six elements 1. Thus, the 50*100 H matrix is

18



constructed. However, the scheme is only suitable for small size H matrices because
of memory usage. Anyway, we can still employ the small size H matrix to encode
and decode a regular LDPC codes with code rate =0.5 .

M

O e - O
v oo o o)
AL -~ I~ Y ~ T — W
AL - I~ T — -3
LU - N~ S
e O oY

B | v
M 00010011 .._000
10000000 .01 1
10000000 .00 0
00000101 ...001
wWO 1000100 ._000

Fig.2.10 The W3 scheme for constructing H matrix

W4: If an M rows by 2*M columns matrix is created, we can firstly fix the first
column which has a fixed number of 1 elements as uniformly as possible. Next,
produce another column which has the same number of 1 elements at random as
uniformly as possible, but the overlap of elements 1 between the column and the first
column is not more than 1. If this is true, the second column has been fixed. Next,
produce the third column which has the same number of fixed 1 elements at random
as uniformly as possible, and check whether there is any overlap of elements 1 of
more than | between the column and all former columns. If there is no overlap, the
third column is been fixed. Then, proceeding step by step, an M*2M H matrix
without has more than 1 overlap of elements 1 is obtained. However, when we use
the method to produce the H matrix, we may meet the problem of no solution in the
last few columns. If the problem arises, we want to put the fixed number of 1
elements in the last few columns and keep every row having the same weights. But,
the result may cause some overlaps of more than 1 in some columns. In order to
solve the problem, we need to exchange the 1 position between the columns with

more than 1 overlap of elements 1 and confirm that for whole matrix the number of

19



more than | overlaps of elements 1 are decreased after the exchanging. Finally, the

H matrix will be constructed. The matrix can be used to produce regular LDPC codes
with code rate 0.5.

— M
(1 e ) fto1 .}
[ 010 e
0 e 001 .
S 100 .
0 e L lo 1 0 M
0 e e 000 e
T L S
CR——— R FA )

Fig. 2.11 The W4 scheme for constructing H matrix

WS: When we want to create M rows by 2*M columns H matrix, firstly check
whether the M rows divided by integer I, for example 3. Next, if it is true, produce
the M/I; by M/I,, identical H submatrices which are put in the former M/I,,, columns
of the H matrix . Then, produce the other M - M/I,; columns at which every column
have only I, elements 1 at random as uniform as possible and there is not more than
1 overlap of elements | between any two columns in the H matrix. However, when
one uses the method of producing the H matrix, one may also meet the condition of
no solution in the last few columns. If this is a problem, one want to put the I,
elements 1 into the last few columns and keep every row having the same weights.
But, the result may cause some more than 1 overlaps of elements | between some
columns. In order to overcome the problem, one needs to exchange the positions of
I between the columns of the rest M - M/I,,, columns with more than one overlap of
elements 1 and confirm the number of more than one overlaps of elements 1 in the H
matrix is decreased after the exchanging. Finally, the H matrix will be constructed.
The matrix can also be used to make a regular LDPC codes with code rate =0.5.
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Fig. 2.12 The W5 scheme for constructing H matrix

Using one of the above five methods, one can get five different H matrices.
Each H matrix will correspond to & bipartite graph. The bipartite graphs that are
produced by methods W1 and W2 may include short cycles of length four.

Meanwhile, the bipartite graphs which are produced by the W3, W4, and W5 will not
include short cycles of length 4.

2.4.4 Some comments on the H matrices constructed using the new

schemes

+« H matrices constructed using W1 and W2,

One assumes the H matrix is M rows by 2M columns. One also suppose that

every column has a fixed weight (i.e. 3) for W2. Then, the total number of 1s is
3*columns.

That is 3*No. of columns =2*3*rows=6*rows

Obviously, weight of every row can be kept as 6. Suppose that the ratio of the
number of columns to the number of FOWS, is

s columns

rows

21



is not an integer and let n be the weight of every column. Then, the weight of every

TOW is n*ss. Assume n=3, ss=1.5, then n*ss =4.5. In fact, we can not keep every row

columns .

to have weight 4.5. As a result, we always assume that ss = Is an integer.

rows
In conclusion, if the weight of columns is fixed (n), the weight of every row can
always be kept as another fixed weight ss*n after making some permutation of
weight according to rule of W2 as well as W1. But, the schemes can not eliminate
short cycle of length 4 in their bipartite graph.

+ H matrices constructed by use of W3, W4, and W5

Although the methods of constructing H matrix by use of W3, W4, and W5 have
some differences , they all can be used to construct the same size H matrix. Using a
C program, M rows by 2M columns H matrices of (N,3,6) was constructed one by
one. The results show that the minimum size of M rows by 2M columns H matrix
with no more than | overlap between any two columns is 7 by 14. In other words, the
lower bound of the M rows by 2M columns H matrix of (N,3,6) is 7 by 14 if short
cycles are to be avoided . Therefore, H matrix of M rows by 2M columns without
short cycle of length 4 can be built for encoding and decoding LDPC codes,

In conclusion, the three schemes can be easily realized by C program.
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Chapter 3

Encoding Methods of LDPC Codes

It is well known that the low density parity check codes have high encoding
complexity. In [15][27], a scheme of choosing the number of stages and the relative
size of each stage was suggested; therefore, one can construct encodable and
decodable linear codes. In [6], the scheme is to force the parity check matrix into an
almost lower triangular form. Although these schemes can be used to encode LDPC
codes, their complexity is high. Recently, some new schemes to encode LDPC codes
have been presented. In Section 3.2, we will present an efficient encoding scheme in
detail. But, we first present a systematic encoding scheme based on a generator

matrix in Section 3.1.
3.1 Systematic encoders based on a generator matrix

Suppose the parity check matrix can be written as follows:
H=[H,|H,] 3.1
Where H, and H; are two very sparse matrices and the rows in H are linearly
independent. The matrix H, is a square k*k matrix and invertible. If H; is not
invertible, we reorder the columns of the H matrix. The new H matrix defines a code

which is equivalent to the original code , but the codewords which are produced by
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the new H matrix will be different from those encoded by previous H matrix. The

matrix H; is a rectangular k*(n-k). We can then derive an equivalent parity check
matrix[4]:

H=H,' H=H,'[H |H]=[P|Iy] (3.2)

Where P=H,"'H, and Iy=H,"H,

The generator matrix of the LDPC is given by,

T_| 1k _ I
i)

t=G"k (3.49)

and

Where Ix is the k*k identity matrix . t is a codeword and k is source

information. H*GT =W’ *GT =0 . Example 3.1 shows the procedure of the LDPC
codes encoding.

Example3.1: Suppose we have a H matrix and information sequence
=(0,0,0,0,0,1), k;=(0,0,0,0,1,0), k2=(0,0,0,1,0,0).

H=[d, H,]=

O O - O =
O - 0 - -
-0 0 QO =™ -
QO —~ = O - o
-0 e~ -0 0O
-0 0 - O -~
O -0 - O
- -0 0o - o
-0 O = O -
O O = = -
O = = ~ 0 O
_— .- O OO

After using Gaussian elimination, the H matrix has the following form:
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001110 100004 010110
100000 010000 ot 1011
) 110111 001000 “Jtro1 1o
H=[P"]=011100 oo0o0too| oo 101,
100110 000010 10001 1
011100 000001 101100

(100000

010000

001000

000100

000010

00000 1

G =

001 110

100000

11 o111

011100

100110

OlllOOJ

I

According to formula (3.4), we can get the three codewords which are
:=(0,0,0,0,0,1,0,0,1,0,0,0), ¢, = (0,0,0,0,1,0,1,0,1,0,1,0) , :=(0,0,0,1,0,0,1,0,1,1,1,1).
The three codewords satisfy the condition Ht"=0.

Obviously, the scheme is available for encoding LDPC codes. But, because we
use the Gaussian elimination in the scheme, the complexity of calculation is high.
Furthermore, when the length of the codewords is increased, the complexity of
calculation will increase. In order to decrease the complexity, we introduce another

scheme as follows.

3.2 An efficient encoding based on approximate lower triangular form

In [10], an efficient encoder for low density parity check codes is introduced.
Now, let us review the algorithm briefly. The algorithm of the encoding comes from
the sparseness of the parity check matrix H. Firstly, we suppose throughout that the
rows of H are linearly independent. If the rows are linearly dependent, some

redundant rows from H in the encoding process can be removed.
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If we have an sxn parity check H matrix, LDPC codes can be expressed as the
null space of a parity check matrix H , 1., tis a codeword if and only if

Ht=0 3.5)

So when we have an H matrix, we perform row and column permutations so as
to make the parity check matrix become of the form indicated in Fig.3.1.[10]. The
new H matrix is defined as being of approximate lower triangular form. The H
matrix is still sparse because the transformation of the H matrix was accomplished
solely by permutation.

nN-g ] s =g
o
h1 h2 | n1 ' =-s
s
h3 hae hSs I g
n

T_AT —rh1 h2hT
H:'=0 H=(1h3 hehs
k=n-s t=Ck,p., P,)

Fig.3.1 An approximate lower triangular form of parity-check matrix

More precisely, suppose the matrix is of the following form

h h2 AT
T

Where h1 is (s-g) rows by (n-s) columns, h2 is (s-g) rows by g columns, h3 is g
rows by (n-s) columns , h4 is g rows by g columns, hS5 is g rows by (s-g) columns,
hT is (s-g) rows by (s-g) columns. Obviously, all submatrices should be sparse, and
hT is lower triangular form with | elements in every position of the diagonal.

Premultiplying this matrix by
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I 0 .
—h5*hT" | G7)

The result is that

hl h2 hT 58)
—hS*hT™Rl+h3 —hS*RTH2+h4 o )

Let t=(k, p;, p: ) where k denotes the systematic part (source information is
random) , p; and p; combined denote the parity part , p; has length g, and p; has
length (s-g). So, according to formula (3.5) , we can have formula (3.9)

kT 0
hl h2 hT r
- - o, =0 (3.9)
—-hS*hT Al + A3 -hS*hT'h2+h4 0 T 0
P2

Now, we can define F=-hS*hT 'h2+h4 and suppose for the moment that F is

nonsingular. Then from (3.9) we conclude that

P =—=F\(=h5*hT 'hl + h3)kT (3.10)

The next task is to use formula (3.5), (3.9), and (3.10) to find codewords .
Simply, we list these operation in table 3.1 and table 3.2[10]

So far, according to a random k information sequences, we encode a codeword
t=(k, p, pz ). Example 3.1 will show the encoding method in more details. Although
the example is binary, the algorithm can also be used for low density check H
matrices whose entries belong to a different field.
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Table 3.1

Computation of p," = —F~'(-=hS*hT-'h1 + h3)k”

Operation Comment
hi kT Multiplication by sparse matrix
hT'(h1 k7] hT"' multiplyed by hi kT
-hS [hT'h1* KT} Multiplication by sparse matrix
h3 *k' Multiplication by sparse matrix
[-h5hT'h1 k"] + [h3 kT Addition

pi'=-F'[-h5 hT'h1 k" + K3 k"]
F=h5*hT'h2 +h4

Multiplication by dense g£%g matrix
Definition

Table 3.2
Computation of p,' = -hT! (hik? +h2p, ")
Operation Comment
h2p,T Multiplication by sparse matrix
[h1k™]+[h2p,T] Addition

-hT' [l k" +h2 p,"]

-hT" [h1 k" +h2 p,"]=y"e> - [h1 KT + h2 pt |=hTy"

Example 3.1: Suppose we have a H matrix:

- —— 0 0O
O —- O O =
—- 0 0 O — -
© - -0 - o

—_e— O O —-= O

O -~ O = O -

28
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-0 O - o -
—_— 0 O =~ O -
O - - - o
O O = O r -

(3.11)



If we simply reorder the columns » We can get the following H matrix

LT 1001101000
P'T 1100010100 (3.12)
=l 0001 1 10111 g
OOt 1000071 1 1
01010011001 |
00101101100

Considering (3.6) and (3-12) , we can divide the H matrix of (3.12) into six
submatrixes.

010100 11 0011

R3= 4 = h5 =
[001011]"(01) (1001]
Now, let us produce an information Sequence at random. Suppose the

information sequence is (1,1,0,0,1,1) . Then we can get the codeword step by step as
follows:

()

L1t oo N1 (1
mear<|t L L 10 ofo] [o
00001 0fo] o
too 11 ofif (o

)
100 oY (1
preaeer 2|0 10 0fo] Jo
L 11 ool |1
101 1ho) 1
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00
0

~hS*hT *p1*kT =(l

p3ser (0 1 0 L 0 0Yo| (1
o101 1)ol”

Py’ =~hT™ *(k1*k™ +h2% 7 )=

—_— 0 O
-~ 0 O O

0) (0
l 1
I 0
0 1

Finally, we get the codeword t is Kk p,p2)= (1,1,0,0,1,1,1,1,0,1,0,1). If we use
the equation Ht'=0" to check whether the codeword is right or wrong, we find that
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the codeword is correct. Therefore, the encoding method based on approximate
lower triangulations is valid for arbitrary H matrix of LDPC codes,

In summary, because the scheme is applied to encode LDPC codes without using
Gaussian elimination, the complexity of calculation decreases. However, we use the
Systematic encoding scheme based on a generator matrix to encode the LDPC codes
in the thesis because the H matrix size is not so big. The small H matrix size can be

easily used to encode the LDPC codes and the complexity of calculation is not very

high.
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Chapter 4

Real-Output Channel

4.1 The error probability for binary modulation

First, let us consider binary signals whose waveforms are si(t)=w(t,) and
S2(t)=-w(t,).

Where w(t,) is a pulse whose definition is in formula (4.1)

@) 0<t <T @1
w(t )= )
! 0 elsewhere
r el el
& = [ w)dr, =m’T 4.2)

Where t, is the time. These signals are called antipodal because s,(t,)= -sa2(t). The
energy in the waveform wi(t) is & . Fig. 4.1 shows the two signal points after

matched filtering.
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12

W2 0 Wi
Fig.4.1 Signal points of binary antipodal signals

Suppose that the two signals are equally probable. When signals si(ty) or sx(t,) are
transmitted, the received signals from the demodulator are the following:

pl .
y =& +noise

y = -&"? +noise 4.3)

Where noise means the additive Gaussian noise component, which has zero mean

and variance o2 = %No - Therefore, if y>0, it is assumed w(t) was transmitted, and

if y<0, that wy(t,) was transmitted. Formula (4.4) and (4.5) show the two conditional

PDF-s of the received signal.

1 (-5,
yiw)= e (4.4)
p(y| 1 \/Fo
1 (y+z,)?
r(y| w,) = Yo

4.5
me (4.5)

The two conditional PDF-s are shown in Fig. 4.2
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p(riw2) p(riwy)

Fig. 4.2 Two conditional pdfs of received signals

Obviously, when wi(t) is transmitted, the probability of error is P(errorjw,)
during the period of 1<0.(The detail is shown in formula 4.6)

Plerror | w) = [;P()’l%)dr: l fae[—(y_TW/jT)z}/r

0

(4.6)

Where Q(x) is the Q-function. Using the same idea, we also get

2¢,
N, ) -

0

P(errorjw)=0(

Finally, the average probability of eeror can be calculated as follows:

Prvcese = 5 (Plerror | ) + Plerror | w,)) = Q(‘/zg‘ ) @.7)
2 N,
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4.2 Mapping of bits to BPSK based on AWGN

As in Section 4.1, the binary input real output Gaussian channel is shown in
Fig.4.3 again.

P(ylx=-1) P(yjx=+1)

Fig. 4.3 Binary input real output Gaussian channel

Now, letus focus on the simple case of a channel with inputs of t e
{0,1} and real valued outputs. Here, an arbitrarily selected received vector r includes
an implicit noise vector n. Here r and n are vectors over GF(2) resulting from the
decisions made in the receiver. That is if y>0 we decide r;=1 and vice versa. For
independent noise, the bits being 1 is determined by the likelihood ratio for the
received signal. For a Gaussian channel with input of xijy= %1, the received signal is
Yi=(2 t-1) + v;, where v; is a zero-mean Gaussian noise of variance ¢ . The
effective probability for a 1 in bit i of the noise vector n (based on r =0) means that
we want to find out the probability that n;=1 when r;=0. Since ri=t © n;, that is
like saying we want to find the probability that t; =1 given what we have received

(yi), ie., P(t; =1}y,), and y;is the real output of the channel at time i.
Using:
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P(y, |4, =D)P@, =1) + P(y;|t, =0)P(t, =0) = P(y)) (4.8)

with Pit, =))=P(t, =0)=1/2. (4.9)
And:
I (_0,_2;)2)
P(y, |t,=1)= et (4.10)
18, =1) Ny
-(y,+’l)1
Py |t,=0)= ;.’O'e( 2 ) (4.11)

PO 14 =0) _ e(-j—f) 4.12)
P(y, [t =1)

We have:

P(fi =1 I yi) = fln(i) = P(yi Itip?;?)P(ti = 1) (4.13)

(using Bayes’ theorem)

1
: EP(,V,- [¢, =1)
S =

i (4.14)
EP(y,. [ ¢ =1)+§P(y,. [t, =0)

FreolPO 4 =D+ PG, 14, =0)]= P(y, [t =1)  divided by P(y, [t =1)

Flai {1+M] =1 (4.15)
P(y; |, =1)
1
S[lan =“_2yl)—=P(t,. =1{y,). 4.16)
l+e'

What happens if r #0 ?
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Ifr; =1 (rge(O,l)) =t ® n; L=l= =0 n;=I or ti=l n;=0 The

effective probability for a 1 in bit i of the noise vector n (based onr = 0) is then

2y,

flar=—— {(t=0m=1 } @.17)
1+e("1)

Since r;=t; @ n;, that is like saying we want to find the probability that t; =0

given what we have received (i) Pz, =0| yi)=f 0 (i)

Using:
PO, 1t =DP(, =1)+ P(y, |1, =0)P(z, = 0) = P(y,) (4.18)
with P(t, =1)=P(, =0)=1/2.
And:
~(y,~1)?
P(y, [t, =1) = — e( 2 J (4.19)
2ro
1 (-(y,»fn‘\
P(y, |t =0)= et ¥ 4.20)
(y, I i ) «/5;0' (
_ 2
2ol =b _ (3] @21)
P(y,. It,. = 0)
We have:
P(y. |t. =0)P(r. = 0
P(, =0]y,) = £y = 201 =OPC = 0) (422)
P(yi)
. 1
f a(i) =*T‘)- (423)

l+e' @
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Using the same idea , we can derive ', =

l(ﬂ) { =1 n; =0 } (4.24)
l+e\e

Finally, we always get, whenr; =1,

1
J e —— (4.25)

Whenr,; =0,

1
fln(i) =

(4.26)
1+ e( o

Next, if the binary inputs are (+1, -1), the real output y has a conditional

Gaussian distribution which has mean 1 and variance o?

1
2o

Fy|l) = J:e'”"”’zﬂz dy (4.27)

In this thesis, we set the input signal amplitude to 1 and vary o to correspond to
the signal-to-noise ratio. For the uncoded channel, E¢/No=Ey/Ny, because there is one
channel symbol per bit. However, for the coded channel,

Es/No=(Ev/No)*(k/n)=(Ey/Ng)*R,
1 Olongs/No=lOlogwEb/No+IOlogm(1dn).

For example, for code rate = 1/2 ,
10log10E/No= 10log;4Ey/Nj +10log0(1/2)= 10log)oEx/Ny — 3.01dB.

Similarly, for code rate = 2/3,
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Es/No=Ep/No +10log;o(2/3)= Ey/No - 1.76dB.

In the AWGN channel, the signal is corrupted by additive noise, which has the
power spectrum watts/Hz. The variance o> of the noise is equal to Ny/2. If we

communicate using a code rate R, the signal to noise ratio can be expressed in

formula (4.28) or (4.29).
1 E, l
10" = Py (4.28)
1 E, I
IOION" = F (429)

So we can simulate a Gaussian channel using the above conditions and formulas.

4.3 Gray mapping of bits to 8PSK on AWGN

For 8PSK modulation, the eight signal waveforms are shown in Fig.4.4. We note

that these signal waveforms are using Gray mapping of bits to 8PSK and they have

equal energy that is:

T, Lt 1
E= J:) 5, (1), =3 J; w(t,)dt, —ng (4.30)

Where w(t,) is the signal pulse and the €, denotes the energy in the pulse w(t,).
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Fig. 4.4 Signal space constellation of Gray mapping for 8PSK signals

Assuming unit amplitude this mapping is given by:

-0 0 0-— 1+0
a--0 0 - YZ4V°

a0 | - 0+l

b L 1
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Clearly, three bits will be mapped to a complex value after 8PSK modulation.

Fig.4.5 describes the procedure in detail.

v + v,
’ Vi
informaton Lostists 8PSK J\ Demodulate FosTyaTa
—— Encoder . — - of soft —
modulate N ..
X+ jxy — decision
Yo

Fig. 4.5 Simplified model of a coded system using 8PSK modulation

From Fig.4.5, we can know information = encoder — (tio, t

it ) = 8PSK
modulate —

Xitjxq = y+ JYo=Xi+jxq + v + JvqQ = demodulation of soft
decision =— Tio, Lig, Ti2 -
I = t;; © ny je {0,1,2} , iis the symbol sequence index

flo =p(ny =11y) = p(t, =1, | y,) (4.31)

The f ‘..,, is the effective probability for a 1 in bit i of the noise vector n . Now ,

let us analyze two different situations based on rj=Oandr; =0.

) if =0 = Sl =p(t; =1y)

(4.32)
Firstly, we should define
t.=1ly. |t =1
l, =A(n,)=In p(; ly.)=lnp(y,| i =1 4.33)
P(tij =0]y,) p(y; ,tij =0)
2.p(3: 1¢;)
I, =i (4.34)
W IOATS
t;€s(0)
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Where s(1) is set of element 1 in sequence i and position j, and s(0) is set of

element 0 in sequence i and position j.

p(y; )
l,,-ea‘.;_;,.a,.a-, 4 1 (}’/ _a4[)2 +(yQ —a4Q)2
ly =In =27 = In{—(exp[ 3 ]
2p:ly)  2no 20
ly€ay ay @, a3
_ 2, _ 2 _ 2 _ 2
+exp[ O =) ng %s0) ]+exp[- O =) +§y, o) ]
20 20
2 2 2 2
~-a + -a - +(y, -a
+exp[— (v, 10) f}’g 70) 1/ 1 —(expl (v, —ay,) E}ﬁ 00) ] (435)
20 2no 20
_ 2, _ 2 _ 2 . _ 2
+exp[- Vi ay) ng Gig) ]+exp[- Or =) E‘V £ ~%20) ]
20 20
_ 2 _ 2
+exp[ (y; -a;,) ng dsp) I
20
DWLCATS . :
ly€a, 8y a,a - + -
[, =Int=225 = ln{—1 7 (exp[- i ~ay) Eyg %20) ]
Z p(y; [¢;) 2roc 20

ty€ay,a 05 a,

0 —ay)’ +(yp ~ay,)? (v —a,)* +(y, -049)2]

p[ 20-2 ] p[ 20-2
- 24 - 2 _ 2 N )
rexpl- 2L %) +0gaig)’ (expl- 2= Gn) 0 mag)'
20 270 202
+exp[- O; ~ay)” +§yQ _alg)2]+exp[ 01 —ay)* +£}’1 —asg)Z]
20 2o
-_ 2 + - 2
+exp[— Wi =ay,) gy 0 ~93) 1
20
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2. pW; 1)

ty€a,a, a5 a - 2+ - 2
I =In* Z( I )=In{2lz(CXP[ = a")z e to)
oy, t,.j o ag

"l Edq'd"ﬂ‘_a7

- 2 + - 2 -a 2 + ~a 2
+expl- U, a,) zag}’g azQ) 1+ exp[— (¥, —ay,) 205)’1 sg) ]
7 2 2 2
-ae,) +(y, — -ay,)’ +(y, —a
+exp[~ (y[ aﬁg) gyg a5Q) ])/ l - (exp[ (yl OI) gy[ OQ) ] (4.37)
20 2no 20
_ 2, _ 2 —a. VY +(y - 2
+ exp| O, a;;) 2a§yQ a3Q) 1+ exp[~ (y;-a,) 265}’1 a4g) ]
_ 2 _ 2
o220 e mer)'
from (4.32) and (4.33) we get that
f! f' |
l,=In—=—2 _ — =gl
Y l-fln,, I—fln,, ¢
Then
flo = AN (4.38)
Tol+et 1+ e
2) If r =1 r;j=tgj®nij
tij © n; {ti=1 n3=0 or =0 n; =1} fla = p(ti; =0ly;)
1~ f' 1-fla
l.=ln— " — L=g"
y flﬂv flllu
floy =—L (4.39)
l+e"



We also get the receive vector r from formula (4.35) (4.36) (4.37)

If lip >0 rio =1 and lio<=0 rip =0
Similarly Ii1 >0 rii =1 and lij<=0 i1 =0
liz >0 =1 and Ip<=0 ri2 =0 (4.40)

4.4 With an anti-Gray mapping of bits to 8PSK on AWGN

In Section 4.3, we have discussed Gray mapping of bits to 8PSK on AWGN. In
the section, we will analyse an anti-Gray mapping (The definition can be found in
[19], i.e., the Euclidean distance between adjacent signal points is either 2 or 3 ) of
bits to 8PSK depending on AWGN. F ig.4.6 shows the signal constellation.

//‘\\_
110 , T 111
o ; L
g ! .
/ :

011 ¢ i 000
‘—.l_ : + -
.\\ ; v’/
to0 @ ; @ 0

[l

Fig. 4.6 Signal space constellation of anti Gray mapping for 8PSK signals

From the anti Gray mapping, we find that the weight between adjacent signal
points is either 2 or 3. Assuming unit symbol energy this mapping is given by:



3y -0
a -1
a; -0
az -1
-0
as —-1
ag---0
ajs---1

lo

0-—-

140

We can also apply formulas (4.31) - (4.40) to this case.
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Chapter 5

The Decoding Problem for LDPC Codes

5.1 Linear block codes

In general, linear block codes are defined and described in terms of generator and
parity-check matrices. The encoding of an (n, k) linear block code changes a
sequence of k information symbols into a longer sequence of n symbols which is
called a codeword. A binary linear block code has three properties. The first property
is that component modulo-2 sum of two codewords is another codeword. The second
property is that the code contains the all-zero sequence. The third property of a linear
block code is that a codeword only depends on the current input information
Sequence and not on the past information. In other words, the encoder does not have
memory. More generally, not only can the information consist of nonbinary symbols,
but also the codewords can be sequences of nonbinary symbols. But, in this thesis,
only binary symbols are considered.

In an (n,k) linear block code, the code rate is R=k/n . In total, there are 2¢
different possible information inputs. We get 2* different codewords because of the

one to one relationship between the possible information sequences and codewords,
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In a linear block code, if we have a set of k linearly independent binary n-tuples

81s 82, 83 ....8«, The codeword for an information sequence k= (k;, ks ,..
represented as linear combination as follows:

...ky) can be

t=kg +k2g2+k3g3+ ...... + kigx G

where t is a codeword , 81, 82, &3 .....8k can also be written as a kxn matrix :

G, i & e ik
G, &1 8n . &%

G=| : |=] : : : : (5.2)
G, 8u iz e 8

where G is called the generator matrix of the code. If the generator matrix is

written as follows, the linear block code with this structure is referred to as a linear
systematic block code.

G,) Pu Dy e Pnse 1 0 ... 0
G, Dy Prn o Py 0 1 ... 0

G=| : |=(P I)=| : : : : N (5.3)
G, ) Pu Dir e Py 0 0O ... l

where P is k xn-k matrix, and I is a kxk identity matrix.

A code can also be defined by a parity check matrix. An n-tuple t is a code word

in the code generated by G if and only if t «+H'=0. The matrix H is called a parity

check matrix of the code. Based on this idea, we describe the basic concept of
decoding LDPC codes in Section 5.2
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5.2 Basic concept of decoding LDPC codes

Equation 5.3 can also be written as follows:

T _ A
G _[PJ (5.4)

Where I is a kxk identity matrix and P is a binary matrix. Equation (5.4) is
another form of equation (5.3), i.e. transpose of the generator matrix. Therefore,
formula (3.3) is more suitable to encode LDPC codes

I
t=GTk=[ X }k (5.5)
H,"H,

I
In Equation (5.5) means that [H 'I'(H] is in systematic form and a source
2 I

vector k of length k is encoded into a transmitted vector t defined by t = GT k mod
2. The channel introduces noise and we receive the vector r =( G k + n ) mod 2,
where n is the noise vector. Of course, the receiver does not know either t or n . For
the received r, the decoder must first detect whether r includes transmission €rTors or
not. If the errors are found, the decoder will either mark the errors and correct them
or request for a retransmission of t.

In the case of a binary-symmetric channel, n is assumed to be a sparse random
vector with independent and identically distributed bits of density f,, and r will be

corresponding to the sign of the real output y. We declare the received bit r=1 if y>0
and r=0 if y<0.
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When r is received, the syndrome of r can be calculated by decoder as follows
S=r.H" mod 2 (5.6)

Clearly, the syndrome is zero if and only if r is a code word, and the syndrome is
not zero if and only if r is not a code word. As a result, when the syndrome is not
Zero, we can understand that the errors in the r have been detected and r is not a
codeword. Otherwise, if the syndrome is zero, r is a code word and the receiver
accepts r as the transmitted code word . However, we should pay attention that , T
may contain errors, even if $ = r.H' =0. This is possible because the errors in some
€rror vectors are not detectable. In this situation, the error patterns are called
undetectable error patterns. Naturally, when an undetectable error pattern occurs, the
decoder makes a decoding error. But, the probability of an undetected error for a
binary symmetric channel (BSC) is derived [20] and shows that the error probability
can be very small.

In fact, the syndrome computed from the received vector r only depends on the
noise vector m, and does not have any relationship with the transmitted code word t.
It is clear that r is the vector sum of t and p - From Equation (5.6), we can derive the
new Equation (5.7)

S=rH" mod2 =(t+n)+H' mod 2
= (t«H" +n.H") mod 2 (5.7)

Where the t sH  mod 2 =0. As a result, the relationship between syndrome and

noise vector can be expressed as follows:

S= n-HTmod2 (5.8)
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For LDPC codes , we must first get H matrix according to Section 2.4. The H
matrix is a parity-check matrix for G i.e. H G'=0mod 2. Asa result, the decoding
problem is to discover t by finding the most likely m that satisfies the equation

neH =zmod 2
Where z is the syndrome vectorz=r . H=G"&keH +n.H = n.H",
When we perform the syndrome decoding in LDPC codes, we find the most
probable noise vector, x, , that explains the observed syndrome vector

n-HT=xn-HT=z mod 2

In other words, x, is our estimate of the noise vector. From x, , we can get our

estimate of the transmitted signal vector (codeword).
t’ =(r +x, ) mod 2
Example 5.1. In example3 -2, Suppose we have received three sequences
r=(1,0,0,0,0,1,0,0,1,0,0,0), r,=(0,1 0,0,1,0,1,0,1,0,1,0) , r;=(0,0,1,1,0,0,1 ,0,1,1,1,1).

What are the noise vectors ?
Answer:

H™=[H, H,J=

© O - O = =
© —~ O O -
—_— 0 0 O - -
© —- o - o
-0 - —~ o o
-0 0~ O -
© - O —- O -
—_—0 0 - o
-0 0 - O -
© O - = - o
© -~ —- - 0o o
- - - 0 0 O

Si=rieH' mod2,$S,= r,eH" mod 2,
S3=r;eH" mod 2
Therefore, S, = (1,1,0,1,0,0), S,= (1,1,0,0,1,0), S3=¢( 1,1,0,0,0,1). The three
codewords being considered are t,=(0,0,0,0,0, 1,0,0,1,0,0,0), t=
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(0,0,0,0,I,O,I,O,1,0,1,0) , t3=(0,0,0,1,0,0,1,0,1,1,1,1) in example 3.2. It is very easy
for us to find the three noise vectors are as follows:

n; =(r;+t;)mod 2= ( 1,0,0,0,0,0,0,0,0,0,0,0)
n2 =( ry+t;) mod 2= (0,1,0,0,0,0,0,0,0,0,0,0)
2 =(r;+t;) mod 2= (0,0,1,0,0,0,0,0,0,0,0,0)

However, when we solve a practical decoding problem, it is not so easy to find
the noise vector . Therefore, our goal is to estimate the noise vectors using some
algorithm. The next few sections will address this problems.

5.3. The sum-product algorithm

When the block length of a block code becomes large, for example LDPC code
or RM block codes, maximum-likelihood decoding often becomes difficult . What is
called belief propagation in the artificial intelligence community, which is also called
sum-product decoding, can be thought of as using Bayes’s rule locally and iteratively
to calculate approximate marginal a posteriori probabilities for the codes. Because
the decoding complexity of this approach per iteration is linear in block codes size,
the sum product algorithm is practical. If a bipartite graph corresponding to an H
matrix is no cycle, then it can be easily proved that the sum-product algorithm
calculates marginal posterior probabilities exactly.

When we review the bipartite graph of Fig.2.4 (b), there are many short cycles
which exist in the graph. In this situation, we still want to run the sum product
algorithm because we want to compare the performance of graphs of a fixed size
with and without short cycles. Our goal is to find the effect of the short cycles on the
sum product algorithm. Although there is not enough theoretical understanding about
the turbo codes and low density parity check codes, the two types of codes provide
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excellent performance, and their huge success has ignited further research in the
area.

In Chapter 2, we described an LDPC code as a linear block code specified by a
very sparse check matrix. As a linear block code, an LDPC code can be represented
by a bipartite graph. Besides, if we assume the low density parity check H matrix has
N columns and M rows , then the designed code rate is as follows:

N-M =1_£=1_L (5.9)
N N rw

R=

Based on Fig.2.4 (b) and sum product algorithm, we can designate the set (i.e. a
group) of bits n that takes part in check m by A(m) = { n: Hy,=I }. Similarly, we
can also designate the set of checks that bit n takes part in as B(n) ={m : Hum=1}. As
aresult, Fig.2.4 (b) , the bipartite graph corresponding to the H matrix in F ig. 2.4
(2) can be divided into two parts . The sum product algorithm is an example of an
algorithm that works by passing messages between the nodes of the graph
representing the code. The first part is that we only consider message passing from
bit nodes to check nodes. The second part is that we only analyse message passing

from check nodes to bit nodes, The details are shown in F ig5.1 and Fig 5.2 .
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Bit nodes

2 (7,
= Check nodes
Iy —_
3 ' equation 1
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Fig.5.1 Message passing from bit node n to check node m in LDPC codes

Bit nodes
1
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— ;“. equation m
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Fig.5.2 Message passing from check node n to bit node m in LDPC codes
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InFig. 5.1 and 5.2, we have described how the message passes from bit nodes to
check nodes and from check nodes to bit nodes for each edge in bipartite graph. The
decoding algorithm iteratively will update two kinds of log a posteriori probability
ratio messages, q and r. The quantity g, is the message coming from the channel. The

quantity ¢ is the message passed from the bit node to the check node along the

edge between connecting points, and the g, can be represented in the equation
(5.10)

g5 =log 2 =11W) (5.10)
p(x, =0]u)

Where x, expresses the value of the bit node, and u expresses all messages

coming from the edge connected to the bit node and the channel, except the edge
being considered. The quantity 7.~ expresses the message passed from the check

node to the bit node along the edge between connecting points , and the r.> can also

be represented in the equation (5.1 1)

plx, =1]v)

ro =log
p(x, =0|v)

(5.11)

Where x, has the same meaning as equation (5.10) , and v represents all
messages coming from the edge connected to the check node, other than the edge
being considered. When we use the sum product algorithm to decode LDPC codes, it
is very important for us to pay attention to the fact that the incoming message along
the edge can not be considered in determining the outgoing message along the edge
where the message is updated. Obviously, only the extrinsic message is calculated.
Based on this point, this should be similar to turbo decoding [21].
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5.3.1 Initialization

In the Fig. 5.1 and 5.2, the bit nodes are first used to accept information from the
channel. Therefore, we set the prior probability of x, =1 to be is P(x; =1). Naturally,
P(xn =0) =1- P(x, =1). When we consider the LDPC codes using a binary symmetric
channel, and assume that the channel is a binary input Gaussian channel with a real

output, P(x, =1) can be expressed as follows: (details are in section 4.2)

1
P(xa=1)=f. =—

% (5.12)
l+e("_z)

The formula (5.12) means that P(xa =1) can be initialized to the appropriate
normalized likelihood. In other words, if there is Hp,=1 for every edge from n to m

or from m to n, the quantity g~ is initialized to P(xa). If xi=1, g is initialized to

P(xa =1). If x,=0, ¢ is initialized to P(x, =0).

5.3.2 Row calculation

In the row calculation of the sum product algorithm, the information r.» that
check m delivers to bit n should be the probability of check m being satisfied if the
bit in question has x,=1 or x,=0. Therefore, when we calculate ri= which is the
probability of the syndrome x,+ H' = z mod 2 appearing when x,=0, and we know
the other bits { X, :n'# n }which are corresponding to the probabilities {¢° , ¢! 1},

the 7,2* can be defined as follows:
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W= YPGlx =0k, im e am\mpx [[or (.43

[xr nwed(m)\n] med(m)\n

Where z,, is syndrome which is observed from check node m corresponding to
Xa=0 and check equation m. Similarly, when x,=I , the corresponding = can be

expressed in equation (5.14)

rol = ZP(zm |x, = Lix :ne A(m)\ n}) x Hq; (5.14)

[x._ neA(m)\n] ned(m)\n

Where z,, is syndrome which is observed from m check node corresponding to
Xo=1 and check equation m.

In formula (5.13) and (5.14) , n" € A(m)\ nhas the same meaning. This indicates
that o’ belongs to the set A(m), but the n is not considered. The x still has its
original value (1 or 0) and its value is not constrained by the formula. The
summation of these conditional probabilities are either 1 or 0 which depends on
whether the viewed syndrome z,, matches the noise VeCtor X {Xi, X2, .... Xy, .... Xy }.
References [22][23] also provides some forward-backward algorithms to calculate
the probabilities for syndrome z, having its observed value as either x, =1 or x, =0.

Using the forward and backward method, a very convenient way of using the

product of differences Ag,,, = g™ - g™ is calculated,

Now, suppose we can get Ar,, =50 =rm™ from Aqug. If this is true, we can

get following equations:
Since o 4 <
ra =(+Ar,)/2 (5.15)
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rat =(-Ar,)/2 (5.16)

The next step is to find Argy . In order to get the Ary, » we will use a simple
iterative method. F irstly, we assume that the B=xi +x; mod 2, and x; and X; have

probabilities qio,q,-o and qi‘,q,-l of being 0 or 1, then

P(B=0) =qq" +g'q;' (5.17)
P(B=1)=gi'q’ +q;" (5.18)

Hence

P(P=0)-P(B=1)=q°q" +qi'q' - g'q” - ;'
=(a’-q') g ¢') (5.19)

Based on the (5. 13), (5.14), and (5. 19), we can obtain the equation (5.20)

Ar, =15 < (o) HAqM (5.20)

ned(m)\n

5.3.3 Column calculation

In Section 5.3.2 section, we have calculated the values of ri=%and ri='. The
next step of column calculation is to update the values of the probabilities q>="and

4. according to the r*= and r™'. For each bit node n, we can get the following

equations:

gu’ =D, P(x, =0) [ (5.21)

meB(n)\m
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4 =@, P(x, =1) | G (5.22)

meB(n)\m

In Equation (5.21) and (522) , m' € B(n)\mhas the same meaning. This
indicates that m’ belongs to the set B(n), but m is not considered. Dy, is a coefficient

and it satisfies the following condition of Equation (5.23)

am’ +qnt =1 (5.23)

Clearly, depending on Equations (5.21) and (5.22) , we can efficiently calculate

these products in an upward pass and downward pass.

5.3.4 Tentative decoding

After the iteration, we have obtained updating information of qga=, q=",

ran s and r3™. Therefore, we can also calculate the probabilities g, g%

during the iteration. The formula is shown in equations (5.24) and (5.25)

3, =®,P(x, =0) [Irze (5.24)
meB(n)
g7 =, P(x, =1) 1= (5.25)
meB(n)

Where @, is a coefficient and the following condition (5.26) is satisfied.

R s | (5.26)
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These probabilities of g~ g, are used to produce a tentative decoding x,’.

The decoding method is to set X’o=1 if ¢;"™'>0.5. If the vector Xo’ satisfies the

syndrome equation ,
X' e H'= neH =z mod 2

- We stop the decoding algorithm and declare a success. Otherwise, the iteration will
continue to update g, g%, p5=0 anq 7 until the decoding is successful. If
the maximum number of iteration , for example , three hundred, has occurred and
the successful decoding is not found, then we declare a failure and the iteration is

stopped. Another new message sequence will enter the encoder, modulator, AWGN

channel, demodulator, and decoder. Fig 5.3 gives an outline of the sum product
algorithm.
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Chapter 6

Simulation Results Based on Five Different

H Matrices

6.1 Comparison of different H matrices

Codes (of the same rate and size), but defined by different H matrices, may
produce differing simulation resuits. However, in this chapter, we only list the
simulation results based on W1, W2, W3, W4, W5 H matrices. The H matrices
produced by W1, W2 include short cycles of length 4 in their bipartite graph. When
the two H matrices are used in encoding and decoding of LDPC codes, the
simulation results are the similar. The H matrices constructed by W3, W4, W5 do
not have short cycles of length 4 in their bipartite graph. As a result, the
performances of LDPC code corresponding to these H matrices for the BPSK and
8PSK in AWGN channel are better than those related to W1, W2. The three H
matrices constructed by W3, W4, W5 are similar to MacKay’s H matrices of
construction 1A. However, there is little difference between the two construction of
H matrices. In MacKay’s H matrices of construction 1A, all row weights are not
guaranteed to be equal. In other words, some rows have less weight than other rows.
But, every row weight is equal in the H matrices of constructions W3, W4, WS, The
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LDPC codes based on these H matrices are regular which corresponds to Gallager’s
construction of H matrices. The difference is that Gallager’s construction of H
matrices has high complexity of computation and the three H matrices constructed
by W3, W4, W5 are easily realized by C program. Although H matrices constructed
by W3, W4, W5 are different, they keep the basic property whose every column has
the same weight and every row also has the same weight. The simulation result
shows that performance of codes obtained employing the three H matrices. The
following sections describe performance comparisons. Besides, for simple reason, all
M by 2M H matrices will be defined by M*2M in the following sections.

6.2 Performance comparison for mapping of bits to BPSK for
AWGN

i =——gpmewmithsort cyciene.200.
i~ ~8— ~shortcyclefreette. 10
=ty $hort cyciefree ite. 100
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Fig.6.1 Performance comparison of LDPC code of 30*60
H matrix based on BPSK in AWGN channel
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Figures.6.1, 6.2, 6.3, 6.4, and 6.5 show the performance comparison of LDPC
codes of five different H matrices for BPSK in AWGN channel. Cycle free indicates
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a construction that doesn’t have cycles of length 4. According to the figures, we list
some results in table 6.1. From the table 6.1 and also bar chart Fig.6.6, we find that,
with the increasing number of iterations, the bit errors will decrease. When the
number of iterations is 200, the convergence basically is stopped. Furthermore, we
also note that the size of the low density parity check H matrix affects the bit errors
probabilities. The bigger the size of low density parity check H matrix is used in
encoding and decoding of LDPC codes, the better the BER performance will be.

TABLE 6.1
Comparison of Ey/Ng (dB) at BER 10~ about LDPC
Codes based on BPSK and AWGN channel

Number of Ite.\H matrix size | 30*60 | 48%96 | 60%120 | 96*193 252*504
Cycle Ite. 200 7.1 6.2 5.8 53 3.8
Free cycle Ite. 10 545 53 5 4.6 3.6
Free cycle Ite. 100 53 49 43 4 2.8
Free cycle Ite. 200 5 4.7 4.2 38 2.65
TABLE 6.2

Gain in Performance by eliminating for cycles, difference Ep/Ny (dB)
at BER 10™ about LDPC Codes based on BPSK and AWGN channel

Number of Ite.\H matrix | 30*60 | 48*96 | 60*120 | 96*192 252*504
Cycle Ite. 200 0 0 0 0 0
Free cycle Ite. 10 1.65 0.9 0.8 0.7 0.2
Free cycle Ite. 100 1.8 1.3 1.5 1.3 1
Free cycle Ite. 200 2.1 1.5 1.6 1.5 1.15

note* the value of table 6.2 is equal to that a Ey/N, (dB) - Ey/Ny (dB) of cycle Ite. 200 in same H matrix
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After analyzing Table 6.2 and also from bar chart of Fig. 6.7, we see that the
existence of short cycles in bipartite graph seriously affects the performance of
LDPC codes based on BPSK and an AWGN channel. Firstly, the effect of short
cycles gradually becomes obvious with the increase in the number of iterations. The
effect means that, if there is some short cycle in the bipartite graph of the same size
H matrix, the same performance will occur at different E,/N, s. For example, when
we use H matrix of size 252*504 to encode and decode LDPC code , One way is to
use an H matrix 252*504 produced by W1,or W2 with short cycles of length 4 in the
bipartite graph, and another way is to apply an H matrix 252*504 constructed by
methods W3,W4,0or W5 without short cycles of length 4 to do same thing. Table 6.2
and bar chart Fig.6.7 show the difference.

: :
. 7 mCycleTte. 200 WFreecyclelte 10~ -
bar chart of table 6.1 | OFreecyclelte. 100 [ Free cycle Ite. 200
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3060 48°96 60°120 96°192 252*504
Size of H matrix

Fig.6.6 Ey/Ny bar chart of LDPC code of different H matrix based on
BPSK in AWGN channel at bit errors probabilities 10~
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Fig.6.7 Short cycle affecting saving Ey/N, bar chart of LDPC code of different
H matrix based on BPSK in AWGN channel at bit errors probabilities 10~

In this case, if the number of iterations is the same number 200 with the H matrix
of size 252*504, the difference in Ew/Npis 1.15 dB. This is an interesting result. The
result indicates that using an H matrix of size 252*504 constructed by W3, W4, or
WS can save energy 1.15 dB over using an H matrix of size 252*504 produced by
W1, or W2 . The bar chart of Fig.6.7 show the relationship between the energy
saving in dB for EyNj and the size of the H matrix and the iteration number. For the
same H matrix, more iterations will increase the energy saving in dB for Ey/Nj.
These effects occur for all five different sizes of H matrices. However, little
difference is shown for H matrices of sizes 48*96 and 60*120. It seems that the
energy saving in Ey/Np for an H matrix of size 48*96 should be more than the saving
for an H matrix of size 60*120. But, the results do not show this. The reason should
be caused by irregularly separated quality of H matrix, (or the reference bars of H
matrix at Fig. 6.7 are different) . It means that, although the H matrices constructed
by methods W3, W4, or W5 do not include short cycles of length 4, we do not
guarantee that these H matrices will always keep no irregularly separated quality. In
other words, when we construct these H matrices according to the method of W3,
W4, or W5, we find that these H matrices possess a certain property at random. Just
as the property, these H matrices will have irregularly separated quality. As a result ,
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it is possible not to decrease the energy saving for Ey/Ny linearly with the increase of
the H matrix size. Anyway, it is a fact that the short cycles really affect the bit error
probabilities. The Table 6.2 and bar chart of Figure 6.7 have shown this,

In Table 6.1 and bar chart of Fig. 6.6, we also find another interesting
phenomenon which is that, if we only consider the BER performance produced by
employing H matrices constructed using W1 or W2 with short cycles in their
bipartite graph for encoding and decoding LDPC codes, the bit errors probabilities
decrease with the increase of the size of H matrix.

Similarly, we can write Tables 6.3 and 6.4 at BER 107 using Fig. 6.1, 6.2, 6.3,
6.4, 6.5 . We can also draw the corresponding bar charts of Fig. 6.8 and 6.9. Then ,
analyze them and compare the differences between table 6.1, 6.2 and table 6.3 , 6.4

as well as between bar chart Fig.6.6, and 6.7 and bar chart Fig. 6.8 and 6.9 as
follows:

TABLE 6.3
Comparison of E4/N, (dB) at BER 10°° about LDPC
Codes based on BPSK and AWGN channel

Number of Ite.\ H matrix | 30*60 | 48%96 | 60¥120 | 961973 252*504
Cycle Ite. 200 8 7.2 6.7 6 43
Free cycle Ite. 10 6.5 6.3 5.7 54 3.9
Free cycle Ite. 100 6.3 5.6 5 4.7 3
Free cycle Ite. 200 6.2 53 49 4.4 295
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TABLE 6.4
Comparison of the short cycle affecting saving Ey/Nj (dB) at
BER 10 about LDPC Codes based on BPSK and AWGN channel

Number of Ite.\ H matrix | 30%60 | 48%96 | 60*120 96*192 | 252*504
Cycle Ite. 200 0 0 0 0 0
Free cycle Ite. 10 1.5 0.9 1 0.6 0.4
Free cycle Ite. 100 1.7 1.2 1.7 1.3 1.3
Free cycle Ite. 200 1.8 1.9 1.8 1.6 1.35

N
note* the value of table 6.4 is equal to that a Ey/N, (dB) - Ey/N, (dB) of cycle Ite. 200 in same H matrix
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Fig.6.8 Ey/N, bar chart of LDPC code of different H matrix based on
BPSK in AWGN channel at bit errors probability of 10"
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Fig.6.9 Short cycle affecting Ey/N, saving bar chart of LDPC code of different
H marrix based on BPSK in AWGN channel at bit errors probability of 107

Using these tables and bar charts, we can make some comparisons between Table 6. ]
and Table 6.3, Table 6.2 and Table 6.4, Fig. 6.6 and Fig. 6.8, as well as Fig.6.7 and
Fig 6.9. In general, these comparisons are similar in nature and conclusions with the
previous analysis. But, when we study the tables and figures in more detail, we can
still find some differences between them. Fig. 6.10 and Fig. 6.11 express these
differences. In Fig. 6.10, the result shows that Ew/No saving differences of LDPC
code of five sizes of H matrices based on BPSK on AWGN channel between bit
errors probabilities 107 and 107 sti]] have some commonality. The differences
basically decrease with the increase of the iteration number. Besides, irregularly
separated quality of H matrix also affects the differences so that the differences can
not vary according to expected value with the increase of the iteration number and
the size of H matrices. However, the smaller and smaller differences indicate that the
effect of short cycles decreased. In Fig. 6.11, the positive bars express that the
energy saving for Ey/Nj at bit errors probabilities 10 is greater than the value at 10,
Similarly, the negative bars indicate a reduced energy saving. Furthermore, the

irregular bars prove that the variability of 1 position in different H matrices is

irregularly separated quality.
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Fig.6. 11 Short cycle affecting Ey/Ng bar chart difference of LDPC code of five H matrix
based on BPSK in AWGN channel between bit errors probabilities 10°° and 10~

In conclusion, short cycles of length 4 in the bipartite graph affect the bit error
probabilities for a given Ey/Nj. Generally speaking, the performance in a short cycle
free bipartite graph will save 0.2 ~ 1.9 Ew/No (dB) energy over a code that has short
cycles in its bipartite graph. The reason for the difference is that there is irregularly
separated quality in different sizes of H matrix. However, the effect will be
diminished when we employ huge H matrixes to encode and decode LDPC codes.
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6.3 Performance comparison for Gray mapping of bits to 8PSK on
AWGN
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Fig.6.12 Performance comparison of LDPC code of 30*60

H matrix based on 8PSK in AWGN channel
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Fig.6.13 Performance comparison of LDPC code of 48*96
H matrix based on 8PSK in AWGN channel
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H matrix based on 8PSK in AWGN channel

Figs. 6.12, 6.13, 6.14, 6.15, and 6.16 have shown the performance comparison of
LDPC code of five different sizes of H matrix for 8PSK in AWGN channel.
According to the figures, we list some result in Table 6.5. From Table 6.5, we find

that , with increasing the number of iterations, the bit errors will converge. Once the

number of iterations reaches 200,

Furthermore, we also note that the size of the low density parity check H matrix

affects the bit error probabilities. The bigger the size of H matrix is the better is the

performance.

the convergence basically is stopped .

TABLE 6.5
Comparison of Ey/N, (dB) at BER 10" about LDPC
Codes based on 8PSK and AWGN channel

Number of Ite.\ H matrix | 30*60 | 48*96 | 60*120 | 96*192 [ 252*504
Cycle Ite. 200 7.6 7.2 6.6 5.9 4.4
Free cycle Ite. 10 7.2 6.2 6 54 3.9
Free cycle Ite. 100 6.6 5.8 5.6 4.8 34
Free cycle Ite. 200 6.3 5.7 55 4.6 33

74




TABLE 6.6

Comparison of the short cycle affecting E,/N, (dB) at BER 10
about LDPC Codes based on 8PSK and AWGN channel

Number of Ite.\ H matrix | 30*60 | 48%96 | 60*120 [ 96*192 [ 252*504
Cycle Ite. 200 0 0 0 0 0
Free cycle Ite. 10 04 1 0.6 0.5 0.5
Free cycle Ite. 100 1 14 1 1.1 l
Free cycle Ite. 200 1.3 1.5 1.1 1.3 1.1

note* the value of table 6.6 is equal to that a Ey/Ny (dB) - EyN, (dB) of cycle Ite. 200 in same H matrix
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Fig.6.17 bar chart of LDPC code of different H matrix based on
8PSK in AWGN channel at bit errors probabilities 10~
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Fig.6.18 Short cycle affecting Ey/Ny bar chart of LDPC code of different H
matrixes based on 8PSK in AWGN channel at bit errors probabilities 10~
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TABLE 6.7
Comparison of Ey/N, (dB) at BER 10 about LDPC
Codes based on 8PSK and AWGN channel

Number of Ite.\ H matrix | 30¥60 | 48*96 | 60*120 [ 96*192 | 252*504
Cycle Ite. 200 8.5 8 72 6.5 5
Free cycle Ite. 10 8 6.9 6.4 5.9 43
Free cycle Ite. 100 7.3 64 6 5.3 39
Free cycle Ite. 200 7 6.3 59 5.1 3.6
TABLE 6.8

Comparison of the short cycle affecting E,/N, (dB) at BER 10~°
about LDPC Codes based on 8PSK and AWGN channel

Number of Ite.\ H matrix | 30*60 | 48*96 | 60*120 [ 96*192 | 252*504
Cycle Ite. 200 0 0 0 0 0
Free cycle Ite. 10 0.5 1.1 0.8 0.6 0.7
Free cycle Ite. 100 1.2 1.6 1.2 1.2 I.1
Free cycle Ite. 200 L5 1.7 1.3 14 14

note* the value of table 6.8 is equal to that a Ey/Ny (dB) - Ey/N, (dB) of cycle Ite. 200 in same H matrix

bar chart of table 6.7
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8PSK in AWGN channel at bit errors probabilities 10°5
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Fig.6. 22 Short cycle affecting Ey/Ny bar chart difference of LDPC code of five sizes of
H matrix based on 8PSK in AWGN channel between bit errors probabilities 10~ and 10~

After analyzing Table 6.6 and comparing to the bar chart of Fig. 6.18, we note
that the short cycles in the bipartite graph affects the performance of LDPC codes
with 8PSK over AWGN channel. Firstly, the effect of short cycles gradually
becomes obvious with the increase in the number of iterations for codes without
short cycles. The effect means that, if there is some short cycle in the bipartite graph
of an H matrix of a given size, the same bit error probabilities will arise for a
different values of Ew/No.

If the number of iterations is set to 200, the results show that for an H matrix of
size 252*504 constructed by W3, W4, or W5 we can save 1.4 dB energy over an H
matrix of size 252*504 produced by W1, or W2 . The bar chart Fig. 6.18 shows the
relationship between the various values of energy saving in dB and the size of the H
matrix as well as the number of iterations. For a given H matrix, a large number of
iterations will also increase the energy saving for Ey/N,. However, the increase is not
linear.

Similar to Section 6.2, we also draw bar charts of Fig.17, Fig.18, Fig.19, Fig.20,
Fig.21, and Fig.22. After analyzing , the figures lead to similar results and
interpretation as Fig.6.6, F ig.6.7, Fig.6.8, Fig.6.9, Fig.6.10, and Fig.6.11.
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In summary, the results show that short cycles of length 4 in the bipartite graph
also affect the bit error probabilities for a given Ey/N, . In general, the performance
of codes without short cycles in their bipartite graph will save 0.5 ~ 1.7 Ey/N, (dB)

energy relative to the performance of codes with short cycles in their bipartite graph
ata BER of 107

6.4 Comparison of performance between Gray mapping of bits to 8PSK
and mapping of bits to BPSK on AWGN

In Sections 6.2 and 6.3, we have respectively analyzed the performance of
mapping of bits to BPSK and performance of Gray mapping of bits to 8PSK on
AWGN channel. So far, we have known the fact that the short cycles affect the
performance. But, we do not know the difference between Gray mapping of bits to
8PSK and mapping of bits to BPSK on AWGN channel. Therefore, we will use

four bar charts to show the difference. The four bar charts are as follows:

bar chazrt oftable 6.5-6.1 WOkl A0 0 B ee CYcie e, 200
18
16 |
14
1.2 ] |
1] '
0.8 |
0.6 :

04
0.2 !
0| : : l

30"60 4896 60120  96™192  252'504 |
Size of H matrix g

EbiNo (dB)

Fig.6.23 E, /N, bar chart difference between LDPC codes of five sizes of H matrices
based on BPSK and 8PSK in AWGN channel at bit errors probabilities 10~
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Fig.6.24 Ey /N, bar chart difference between LDPC cedes of five sizes of H matrices
based on BPSK and 8PSK in AWGN channel at bit errors probabilities 10

In Fig. 6.23, the bar chart shows the saved energy Ey/No dB difference between
LDPC codes of five sizes of H matrices based on BPSK and 8PSK in AWGN
channel at bit errors probabilities 10*. The minimum difference is 0.3 dB, and
maximum difference is 1.75 dB. The result means that, in order to arrive at the same
performance , the used energy based on BPSK will be 0.3 ~ 1.75 dB less than when
8PSK is used. Furthermore, in Fig.6.24, there are similar conclusions at bit errors
probabilities 10, The minimum difference is 0.4 dB, and maximum difference is 1.5
dB. But, the differences are not linear.

Using Fig.6.23 and F ig. 6.24, we can further analyze the convergence behavior
related to the differences. Firstly, when we draw Fig. 6.25 and Fig. 6.26 , the bars
labeled Cycle Ite. 200 represent the asymptotic performance for each H matrix and
can be regarded as a reference for consideration of convergence behavior.

Both bar chart of Fig. 6.25 and Fig 6.26 show that the effect of short cycles based
on reference bar of Cycle Ite. 200 is not simply increasing or decreasing in every H

matrix. In other words, the bars change with increasing and decreasing of iteration
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number. But, the variable bars are either positive or negative. The results express that

there is difference of convergence between Gray mapping of bits to 8PSK and
mapping of bits to BPSK on AWGN . The phenomenon belongs to the character of
irregularly separated quality in different H matrices.
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Fig.6.25 E, /N, bar chart difference based on cycle Ite.200 between BPSK
and 8PSK in AWGN channel at bit errors probabilities 10~
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Fig.6.26 E, /N, bar chart difference based on cycle Ite.200 between BPSK.
and 8PSK in AWGN channel at bit errors probabilities 10
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6.5 Performance comparison with an anti-Gray mapping of bits to 8PSK
on AWGN

We have done some simulation similar to the previous schemes, with encoding,
channel simulation, anti-Gray mapping of bits to 8PSK , and decoding based on the
sum-product algorithm. The simulation results have been obtained. Unfortunately,
these results show that performance is so bad that the curves of the bit errors
probabilities basically limit with the curves of uncoded performance. As a result, it is
not necessary for us to list the associated simulation results. F inally, we can conclude
that the performances of the anti-Gray mapping of bits to 8PSK for AWGN is not
suitable for the schemes in this thesis.

6.6 Comparison between LDPC code and Turbo code

In general , both LDPC codes and Turbo codes are excellent codes. They have
four differences.

Firstly, Turbo code [2][21] has become very popular in recent years. In terms of
Ew/No, Turbo code is better than LDPC code. However, there are some similarities
between the codes. The sum product algorithm may be used in turbo decoding
algorithm [12][13][17].

Secondly, using the sum product algorithm, we can state that all the bit errors
produced by LDPC codes that we have viewed are detected errors; in contrast , the
bit errors made by turbo codes are undetected errors. Likely, turbo code errors are
caused by some low weight codewords. F urthermore, the complexity of LDPC codes
is less than that of turbo codes.

Finally, the meaning of decoding iteration between LDPC codes and Turbo codes

is different. The former means the number of iteration is a limit , and it does not

82



mean every codeword must pass that number of iterations when decoding. For
example, the number of iteration is 500, but some codewords run less than 10 times.
The correct codewords have been solved. However, the number of iteration in Turbo

code is completely used for decoding every codeword.
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Chapter 7

Conclusions and Some Suggestions For
Further Work

7.1 Conclusions.

Low density parity check codes were hardly paid any attention to in the
communication field and other scientific literature from 1962 to 1995. But, since
MacKay rediscovered LDPC codes 1995[5], research into LDPC codes has become
more and more popular. Indeed, when one employs huge H matrices, some literature
has shown that the performance is substantially better than that of standard
convolutional turbo codes or of block turbo codes.[14][24] . Recent work has shown
they can arrive at the capacity under optimal decoding.[9].

The main objective of the thesis was to develop some more efficient H matrices
which are easier operated by computer program and to analyze the effect of short
cycles of length 4 in the bipartite graph. In order to do this, we first studied the sum
product algorithm which can be used as a decoding algorithm for LDPC codes. Then,
we did some simulations of the LDPC codes. Our objective has been to find the best
H matrix because we know a better H matrix can improve the performance of LDPC

codes. Therefore , five schemes to construct the H matrix were considered. The H
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matrices produced by schemes W1 and W2 include short cycles of length 4 in their
bipartite graph. Meanwhile, the H matrices constructed by schemes W3 , W4, and
W5 do not possess short cycles of length 4 in their corresponding bipartite graph.
When the H matrices are constructed, not only do the weight of every column stay
the same, but also the weight of every row is the same. This means that the LDPC
codes encoded by the H matrices are completely regular. These LDPC codes are
completely consistent with the definition by Gallager in 1963. [3].

For the encoding, at first, we mainly studied the efficient encoding based on
approximate lower triangulations.[10]. This scheme arises from the sparseness of the
parity-check matrix H and the algorithm can be used for any sparse matrix H . If the
rows are linearly dependent, then the algorithm which is used for the decoding can
find the dependency. Therefore, one can either change to another matrix H or
eliminate the redundant rows from the matrix H in the process of encoding. Thus
reasonable LDPC codes can still be encoded. Then, we also studied the systematic
encoders based on a generator matrix. In fact, the generator is derived from a sparse
matrix H. Similarly, we require that the rows of matrix H are linearly independent.
If the rows of matrix H are not linearly independent , all dependent rows must be
removed and only those rows which are linearly independent be kept. As a result, the
matrix H will have the same number of columns and fewer rows. One obtains
another matrix H whose rows are linearly independent. An equivalent generator
matrix will be derived after using Gaussian elimination and reordering of columns .
Finally, we combined the two encoding schemes to derive systematic encoders only
based on an H matrix. The major idea is that , when a low density parity check H
matrix has been obtained, we use Gaussian elimination and reorder columns to get a
new H matrix of the form (H =[P [Im]) . Then, we apply the condition H*tT = 0T
to encode LDPC codes. The encoding processing is clearer than the systematic
encoders based on a generator matrix, because the codewords obtained by the
method have direct relationship with the H matrix and do not need to be transformed

into some other matrix like a generator matrix. However, when we use the scheme
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to encode LDPC codes, we still want to consider the problem whether the rows of
matrix H are linearly independent. If the rows of the matrix H are not linearly
independent , all requirements are the same as the second encoding scheme. In this
thesis, the final encoding scheme was adopted.

For the channel, we focus on the simple case of achannel with inputs of te
{0,1} and real valued outputs. For independent noise included in the arbitrary
received vector r, the bits being 1 is determined by the likelihood ratio for the
received signal. In the thesis, we derived the mathematic equations for mappings of
the bits to BPSK, Gray mapping of bits to 8PSK , and anti-Gray mapping of bits to
8PSK for AWGN. Then, the results of the simulation channel were fed into the sum
product algorithm.

For the decoding, we implemented syndrome decoding combined with the sum
product algorithm. Using the bipartite graph corresponding to the H matrix, we
simulated five different sizes of LDPC codes with code rate 0.5. These LDPC codes
employed different sizes of H matrix and different mappings of bits.

For the analysis of simulation result, we carefully compared the performances
between 200 iterations of codes with length 4 cycles and 10, 100 and 200 iterations
of codes without length 4 cycles at the point of bit errors probabilities of 10~ and
10°. The simulation results have shown that the short cycles of length 4 in the
bipartite graph affect the performance of LDPC codes. For the mapping of bits to
BPSK in the thesis, the maximum difference is 2.1 dB at the bit errors probability of
10*,and 1.9 dB at 10°. For Gray mapping of bits to 8PSK, the maximum difference
is 1.5 dB at bit error probability of 10*and 1.7 dB at 10~. Obviously, the

performance of the former is better than the latter.
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7.2 Some suggestions for further work .

The performance of LDPC codes , which is affected by short cycles in the regular
bipartite graph based on the H matrixes, has received attention in the thesis.

However, three suggestions can be made for further research in the future.

+ Block length

In this thesis, we concentrated on short block LDPC codes. After doing the
simulation, we know that the short cycles of bipartite graph affect the performance of
LDPC codes. However, with the increase of the block length, will the effect be
eliminated or decreased? We guess the effect should decrease because the H matrix
will become more and more sparse with the increase of the matrix size. If the guess
is true, what size of H matrix will be enough for this to become obvious? How long

should the Block length be?
4 The effect of short cycle in the irregular LDPC codes

When we researched the effect of short cycles in the regular bipartite graph, the
weight of every row and every column in the H matrix was , constrained to be the
same. Therefore, it is not easy for us to find the suitable and good H matrix although
some methods of H matrix construction were presented. If the constraint is relaxed,
the H matrix should be easy to obtain. But, the H matrix is not regular, rather it is
irregular. For the irregular H matrix, we must first apply the encoding scheme, then
do some further simulation. This would let us analyze the effect of short cycles in the

irregular bipartite graph corresponding to the H matrix.

87



+ An application for LDPC codes

It is well known that the LDPC codes are single block , low complexity , and
have good performance. Therefore, when we research their application in the future,
not only will we consider them for use in the general communication field, but also
we should develop new fields , for example : electrical power systems. In these
system, there is a lightning line above a set of electrical power transmission lines.
The lightning line can be used to deliver information. If the technology of combining
the LDPC codes and communication using the lightning line will be developed, the
two aspects will benefit. One aspect is that the electrical power system will obtain
greater communication quality and also decrease the cost ; another aspect is that the

application will enrich the research of LDPC codes.
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Appendix A

The statistical schemes used in the simulation
A.l1 Binomial distribution

It is well known that the a binomial experiment possesses the following four
properties:

(1) The experiment consists of a fixed number N, of trials.

(2) The result of each trial can be classified into one of two categories: success

or failure.

(3) The probability p of a success remains constant in each trial.

(4) Each trial of the experiment is independent of the other trials.

In the simulation of LDPC codes » We assume that the bit error probability of a
received bit is p (error) or a correct bit (correct) in a given Ew/No dB. Obviously, the

condition is satisfied by the binomial experiment.
A2 Normal approximation of the Binomial Distribution

The estimator of a population proportion of errors is the sample proportion.

That is, we define the number of errors in a sample and calculate in the formula
(A1)
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A
p=—" (A.1)

Where Xoum is the number of errors and Ng;,. is the sample size. The normal
distribution can be used to approximate the probability distribution of the
binomial. The normal approximation of the binomial distribution works best
when the number of experiments (sample size) is large, for example, Ny;,.p>5
and N (1-p)>S5. Thus, the number of errors in Niize identical independent tests

Xoum 1S approximately a normal distribution, whose mean is Nsizep and and

standard deviation JN,..p(1- p) . We can derive (A.2) [26].

A

Z,=—PL P (A2)
‘\/p(l—p)/N:':z

Where Z,, is approximately standard normally distributed [26].

A.3 Confidence level

First, let us define that the sample mean ¥ as the arithmetic average of all
samples, and the population standard deviation is 64. We can derive confidence

interval according to confidence leve] of Table A.1.

Table A.1 Tail probabilities for the normal distribution

l-a o o2 Z,/2

0.9 0.1 0.05 Zy05=1.645
0.95 0.05 0.025 Zy025=1.96
0.98 0.02 0.01 Z001=2.33
0.99 0.01 0.005 Z0.00s=2.575
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The lower confidence limit is ¥~ 221204/ Nz, , and the upper confidence limit

is X’+Za,zo'd /N, .
A.4 Selecting the sample size

From the Section A.3, we know the formula for the interval estimate population

mean is X-Z,,.0,/\[N_ and X+ Z21204/\N,, . Now, let us derive a general

formula for the sample size needed to estimate a population mean. Let W,

represent the width of the interval. Therefore, when an interval estimator ¥+ W,

has 1-a confidence, the required sample size is

2
Ny = (*Z“’za‘) (A3)
W

wide

A A A
However, we do not know Od, and only know p . If the Nsize p and Ngge(1- p)

A
are greater than 5, the sampling distribution of P is also approximately normal with

mean p and standard deviation e P)/ N, . We can also derive an interval

A
estimator p + W4 of p.

A A
A 1-
=p22,,,/20=2) (a9

size

A
DWW,

wide

A
Clearly, if p , Ny » and confidence level are given , we can get the confidence

A
interval . For example, determine the confidence interval of N =10, =107, with

95% confidence. Then, 1-0=0.95, 0=0.05, a/2=0.025, Z3n=Z0.025=1.96.
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A 10*(1-107%)
W, =10"*+196 — L "V )
p wide 106

=107 +£0.196x10™*
Where the (107 - 0.196x10* , 1074+ 0.196x104) expresses the confidence interval.
The 10™ - 0.196x10™ is called the lower confidence limit (LCL), and thel0*+
0.196x10 is called the upper confidence limit (UCL).

However, what we are interested in is the Nyi¢. because we want to know how
large the sample size can satisfy the 95% confidence of bit error probabilities p in the
simulation of LDPC or other codes. First, let us see a simple fact. Suppose that as a
result of statistical study we estimate with 95% confidence that the average bit error
probabilities lie between 10" and 107, This interval is so wide that very little
information was derived from the data. Suppose, however, that the interval estimate
was 0.91x107 to 1.09x1075. This interval is much smaller, and thus provides the bit
error probabilities with more precise information. The W, of the interval estimate
is a function of the sample proportion, sample size, and confidence interval. So, we
can derive the sample size N, according to the formula (A.4), if the W4, is given.
In fact, Wy;q. is one of the key parameters for us to derive the sample size Ny in
order to ensure the confidence .

The size of sample will be

A A 2
N = Z.,\p(1-p)

Size W

wide

(A.5)

We find that decreasing the width of the interval will increase the sample size
from the formula (A.5). In other words, a larger sample size provides more potential
information. The increased amount of information is reflected in a narrower interval,

however increasing the sample size increases the sampling cost.
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In the practical simulation of LDPC and other codes, it is impossible for us to
run an infinite number of bits to find a bit error probability p- Therefore, only the
thing we can do is to use enough sample size to limit p. In general,

if p=10~*,
we take Wiiee=0.19x10°" or less
or Nsize=10%"*2 or more

Where e is a positive integer. For example p=10" what sample size will make

A
p limit p=10" with 959, confidence of Wy;4e = 0.18x10 ? Then, according to the
formula (A.5) the sample size will , at least, be

N

size

_[1.96 10 (1-10"

2
0.18x10™ )J =1185560 ~ 1.18 x 10° (bits)
. X

The above €quation means that , when we simulate LDPC codes and require
p=10" performance of bit errors probabilities with 95% confidence in the interval
between 10 ~0.18x10* and 10 +0.18x10, we must simulate at least 1180000 bits
- Otherwise, the performance does not possess sufficient confidence. Similarly, we
can get that sample size for 10 performance of bit errors probabilities with 95%
confidence is 11856790 bits.

In this thesis, all the simulations satisfy this condition. One can check the

results one by one . For example, when we check the simulation result of Fig. 6.5,

the sample size is 11894400 bits at 3 dB and ;=10'5 for the cycle free bipartite
graph using 200 iterations. Does the size satisfy the above confidence level ? Clearly,
because the size 11894400 is greater than 11856790, the simulation result at bit error
probability 10 has 959 confidence for the interval between 10°- 0.18x 107 and
107 +0.18x107,
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